Correction to "Aliased tidal errors in TOPEX/POSEIDON sea surface height data" by M. G. Schlax and D. B. Chelton

In the paper "Aliased tidal errors in TOPEX/POSEIDON sea surface height data" by M. G. Schlax and D. B. Chelton (Journal of Geophysical Research, 99(C12), 24,761–24,775, 1994), Tables 1, 2, and 3 all contain errors in the alias wavelengths of the tidal harmonics. The corrected tables appear below. The changes have little or no effect on the primary alias wavelengths λ_0 that are of most interest in applications. The major error was the interchange of the secondary alias values for λ_{-1} and λ_1 in the tables for TOPEX (Table 1) and ERS 1 (Table 3). Minor changes have been made to the primary aliases for TOPEX. Note further that the repeat period of Geosat used to calculate the entries in Table 2 is 17.0505 days, rather than 17.05 days as was stated in the paper (p. 24,765).

We also wish to offer a more intuitive rationale for equation (3a),

$$\delta\psi_x = \delta\phi_x - \frac{2\pi}{T_a}\,\delta t. \tag{3a}$$

As was stated in the text, $\delta \phi_x$ is the phase change that occurs over the time interval δt between the nearest-time points on two adjacent ascending tracks. This is the phase change that has traditionally been used in the calculation of alias wavelengths. During the time interval δt the phase of the aliased signal at the earlier track has also advanced by the amount $2\pi T_a^{-1} \delta t$. The synchronous phase difference between the

Table 1. Tidal Periods, TOPEX Alias Periods, and theThree Longest Alias Wavelengths for the Six MajorTidal Constituents

Tide	Period, hours	T _a , days	$\lambda_{-1},$ deg	λ_0 , deg	λ_1 , deg
M2	12.420601	62.11	2.16 E	9.01 E	4.14 W
\$ ₂	12.	58.74	2.79 W	183.01 W	2.88 E
$\tilde{N_2}$	12.658348	49.53	2.16 W	9.01 W	4.14 E
Κ ₁	23.93447	173.19	2.81 W	366.03 W	2.86 E
$\dot{\mathbf{O}_1}$	25.819342	45.71	2.17 E	9.24 E	4.09 W
P_1	24.06589	88.89	2.81 W	366.03 W	2.86 E

The direction of propagation for each alias is denoted as E for east and W for west.

Fable 2.	Geosat Alias	Periods and	Three Longest	Alias
Wavelengt	hs for the Size	Major Tidal	Constituents	

Tide	<i>T_a</i> , days	λ_{-1}, deg	λ_0 , deg	λ_1 , deg
M ₂	317.13	1.25 W	8.00 W	1.81 E
S ₂	168.81	1.46 E	179.89 E	1.49 W
$\tilde{N_2}$	52.07	1.08 E	4.09 E	2.31 W
Κ ₁	175.45	1.47 E	359.79 E	1.48 W
0,	112.95	1.25 W	8.18 W	1.80 E
P ₁	4465.22	1.47 E	359.78 E	1.48 W

The direction of propagation for each alias is denoted as ${\bf E}$ for east and W for west.

Table 3. ERS 1 Alias Periods and Three Longest AliasWavelengths for the Six Major Tidal Constituents

Tide	T _a , days	λ_{-1}, deg	λ_0 , deg	λ_1 , deg
M ₂	94.49	0.78 W	8.79 E	0.67 E
S_2	8	0.72	179.76	0.72
$\tilde{N_2}$	97.39	0.86 E	4.29 W	0.62 W
Kĩ	365.25	0.72 E	359.70 E	0.72 W
O_1	75.07	0.79 W	8.58 E	0.66 E
\mathbf{P}_1	365.25	0.72 W	359.52 W	0.72 E

The direction of propagation for each alias is denoted as ${\bf E}$ for east and W for west.

aliased signals at the adjacent nodes is therefore given by the difference (3a).

Acknowledgments. The authors wish to thank Chen Ge for bringing these errors to our attention and helping to resolve them, and an anonymous reviewer of the original manuscript for pointing out the interpretation of equation (3a) given here.

(Received August 18, 1995.)

Copyright 1996 by the American Geophysical Union.