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Optimal interpolation (OI) has been used to produce analyses of quasi-geostrophic (QG) stream 
function over a 59-day period in a 150-km-square domain off northern California. Hydrographic 
observations acquired over five surveys, each of about 6 days' duration, were assimilated into a QG 
open boundary ocean model. Since the true forecast error covariance function required for the OI is 
unknown, assimilation experiments were conducted separately for individual surveys to investigate 
the sensitivity of the OI analyses to parameters defining the decorrelation scale of an assumed error 
covariance function. The analyses were intercompared through dynamical hindcasts between surveys, 
since there were too few independent data for other verification of the various analyses. For the 
hindcasts, the QG model was initialized with an analysis for one survey and then integrated according 
to boundary data supplied by the corresponding analysis for the next survey. Two sets of such 
hindcasts were conducted, since there were only three statistically independent realizations of the 
stream function field for the entire observing period. For the irregular sampling strategy of the first half 
of the observing period, the best hindcast was obtained using the smooth analyses produced with 
assumed error decorrelation scales identical to those of the observed stream function (about 80 km): 
the root mean square difference between the hindcast stream function and the final analysis was only 
23% of the observation standard deviation. The best hindcast (with a 31% error) for the second half of 
the observing period was obtained using an initial analysis based on an 80-km decorrelation scale and 
a final analysis based on a 40-km decorrelation scale. The change in decorrelation scale was apparently 
associated with a change in sampling strategy and the importance of the resolution of small-scale 
vorticity input across the open boundary. The last survey used a regular sampling scheme with good 
coverage (about 20-km resolution) of the entire domain so that smaller-scale features were resolved by 
the data. The earlier surveys used a coarser (about 75 km) sampling resolution, and smaller-scale 
features that were not well-resolved could not be inferred correctly even with short error covariance 
scales. During the hindcast integrations, the dynamical model effectively filtered the stream function 
fields to reduce differences between the various initial fields. Differences between the analyses near 
inflow boundary points ultimately dominated the differences between dynamical hindcasts. Analyses 
for the entire 59-day observing period of the five independent surveys were produced using continuous 
assimilation. A modified form of OI in which the forecast error variances were updated according to 
the analysis error variances and an assumed model error growth rate was also used, allowing the OI 
to retain information about prior assimilation. The analyses using the updated variances were spatially 
smoother and often in better agreement with the observations than the OI analyses using constant 
variances. The two sets of OI analyses were temporally smoother than the fields from statistical 
objective analysis (OA) and in good agreement with the only independent data available for 
comparison. Unfortunately, the limiting factor in the validation of the assimilation methodology 
remains the paucity of observations. 

1. INTRODUCTION 

Given the sparsity and asynopticity of conventional ocean 
data, accurate estimates of oceanic fields might best be 
obtained from a blend of (incomplete, noisy) observations 
with (imperfect) model output. This paper presents the 
incorporation of optimal interpolation (OI), the data assimi- 
lation technique most commonly used in operational numer- 
ical weather prediction (see, for example, Bengtsson et al. 
[1981]) into a quasi-geøstrøphic (QG) open ocean model to 
produce synoptic estimates of the QG stream function field 
off northern California during the summer of 1984. 

Various four-dimensional data assimilation techniques 
similar to those in use or under development in the numerical 
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weather prediction community have been used to estimate 
initial and boundary conditions and/or forcing for ocean 
models [e.g., Bennett and Mcintosh, 1982; Thacker, 1988; 
Harlan and O'Brien, 1986] and to forecast or hindcast ocean 
fields [e.g., Robinson et al., 1986; Rienecker et al., 1987, 
hereinafter RMR]. Sophisticated techniques such as the 
Kalman filter or smoother [e.g., Miller, 1986; Miller and 
Cane, 1989; Bennett and Budgell, 1989; Gaspar and Wun- 
sch, 1989] or variational methods [e.g., Thacker, 1988; Long 
and Thacker, 1989; Bennett, 1990] impose considerable 
demands on computer resources and are optimal only in the 
case of linear dynamics. The Kalman filter also requires 
detailed estimates of the statistics of errors in the forcing and 
errors due to neglected physics or numerical truncation. 

The mechanism for assimilation of data in OI is identical to 

that in the Kalman filter, except that there is no (time- 
consuming) prognostic calculation of the model forecast 
error covariance matrix. Since the true model forecast error 
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covariance is unknown, the Kalman filter is necessarily 
initialized with an error covariance matrix which is arbitrary 
although, like OI, guided by observations. This initial uncer- 
tainty may mean that OI could provide analysis fields, from 
short-period assimilation into a nonlinear dynamical model 
integration, with error bounds comparable to those of the 
Kalman filter but achieved at lower cost. 

The availability of data which resolves the ocean meso- 
scale/synoptic scale is primarily limited to smaller open 
ocean domains. In its use of eddy resolving data and model 
for an open ocean domain, the spirit of the present work 
resembles the work of De Mey and Menard [1989] and De 
Mey and Robinson [1987], who used objective analysis 
(taken here to refer exclusively to statistically optimized 
interpolation/extrapolation techniques) to supply initial and 
boundary data to a QG model of an open ocean domain 
about 6 times the local internal deformation radius. One 

advantage of OI over the approach of De Mey and Menard or 
De Mey and Robinson is that periodic reinitialization of the 
interior field can be used to avoid the instabilities that 

inevitably develop in long open-boundary integrations [Mill- 
er and Bennett, 1988]. 

In contrast, White et al. [1990a] used OI to assimilate 

Geosat altimetric observations in the region of the California 
Current into a closed-basin non-eddy-resolving QG model of 
the entire North Pacific. Unfortunately, there were no inde- 
pendent observations to assess the accuracy of the assimi- 
lation procedure, and in comparison with seasonal structure 
inferred from long-term observations, no indication was 
given of how the updated model output (i.e., after assimila- 
tion of the surface data) improved upon the model without 
assimilation. It was clear, however, that the non-eddy- 
resolving model could not adequately reproduce the multiple 
core structure of the California Current system (CCS). 
Although the use of closed basin domains, as in the work of 
White et al. [1990a], avoids the difficulties of open boundary 
conditions, the error covariances at the boundaries between 
data-dense and data-sparse regions in large domains may 
require special treatment in the implementation of OI [Cohn 
and Motone , 1984]. 

The hydrographic data used in this study were acquired in 
the domain shown in Figure 1 by the Ocean Prediction 
Through Observations, Modeling, and Analysis (OPTOMA) 
program during a 59-day experiment comprising five sur- 
veys, each of about 6 days' duration [RMR]. Based on an 
estimated decorrelation time of 20 days, the experiment 
comprises only three independent surveys. The sensitivity of 
analyses to the assumed structure of the error covariance 
function is investigated through independent analyses for 
separate surveys, produced by assimilating only during the 6 
days of the survey. The analyses are assessed through two 
separate hindcast experiments because of the lack of inde- 
pendent verification data. The error covariance parameters 
for continuous assimilation over the entire 59-day observing 
period are chosen on the basis of these hindcast experi- 
ments, and a technique is used to update the error variances 
according to a prescribed model error growth rate in order to 
produce estimates of the forecast error variance. The model 
and data assimilation systems are described in section 2. The 
assimilation experiments themselves are described in section 
3, and results are summarized in section 4. 

40N 
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36N • 
128W 

Fig. 1. OPTOMAII observational domain with bathymetry 
shown in meters. 

2. THE ASSIMILATION SYSTEM 

2.1. Implementation of 0I With the QG Model 

The dynamical model used in the assimilation system is 
the open ocean, QG model described by Miller et al. [1983]. 
The QG potential vorticity s r evolves according to 

D•' 
-- +/36x = F, (1) 
Dt 

where ½ is the QG stream function which is determined 
diagnostically according to 

•-= V2½ + F2(sCz)z. 

In the above, V 2 is the horizontal Laplacian operator, 

= -- + g(0, g), 
Dt Ot 

(2) 

v ;bL 2 
cr = t 0 •, 13 = to13 0L, F 2= No2H 2' 

s(z) = 
No 

N2(z) ' 

J is the JacobJan operator, L is a horizontal length scale of 
the motion, V is a velocity scale, t o is a time scale, f0 is the 
Coriolis parameter,/30 is the gradient of the Coriolis param- 
eter, N02 is the stratification scale, N2(z) is the average (in 
space and time) stratification, and H is the scale of thermo- 
cline depth variations. Dimensional stream function and 
potential vorticity are ½VL and (V/L, respectively. Subgrid- 
scale dissipation processes are included in the vorticity 
equation by use of a Shapiro filter F. 

The numerical integration requires initial specification of 
stream function and vorticity throughout the domain and 
specification of stream function along the boundary and 
vorticity at inflow points along the boundary at each subse- 
quent time step [Charney et al., 1950]. In addition, the 
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vertical velocity at the top and bottom boundaries must be 
specified at each time step, according to the wind stress curl 
forcing and bottom topography, respectively. 

The OI analysis field, ½• (written as a vector at time tk), 
is the linear, least squares best estimate of the stream 
function field formed from a correction to the dynamical 
model forecast field ½•: 

where the correction e• is derived from the observations at 
t k, •f, and the model forecast field' 

where 

T T -1 
K• = PH•(HkPH• + R) . 

Ht, defines the observational scheme at time t t,; the super- 
script T denotes the matrix transpose, P is the forecast error 
covariance matrix, and R is the observational error covari- 
ance. The error covariance of the analysis field, P•, is 

P/c = (I- K•H•)P, (3) 

where I is the identity matrix. The forecast error and the 
observational error are assumed to be uncorrelated. Details 

are given by Miller [1986]. 
In the Kalman filter formulation, P evolves from some 

initial specification according to the governing dynamics. In 
oceanographic applications, the correct initial P is unknown 
but is chosen to have a "realistic" functional form as 

estimated from data. In OI, P usually is held constant or 
allowed to evolve by a simple scheme. An example of such 
a simplified evolution scheme for P is presented by McPher- 
son et al. [1979], who transformed the estimated analysis 
error of an atmospheric data assimilative model into an 
estimated prediction error by augmenting the former accord- 
ing to an approximation of the model's error growth rate. 
The estimated prediction error, which was bounded by the 
climatological variance of the parameters, was used as an 
indication of the frequency and quality of assimilation up- 
dates. The assimilation scheme replaces P by P• where 
(following Cohn [1982]) 

pf• = (Df•)l/2C(Df•)1/2. (4) 

Here C is the forecast error correlation matrix, kept constant 
in time, and the forecast error variances D• (a diagonal 
matrix formed from the diagonal of P•) are assumed to grow 
in time according to 

Df• = D•_ r + D(r), (5) 

where D •-r is formed from the diagonal of P/•-r (see (3)) and 
D(r) is the prescribed forecast error growth over the r time 
steps since the last assimilation phase. This technique is 
employed below, for comparison with that using constant 
error variances, in the assimilation over the entire OPTOMA 
11 survey. The key to the difference between the two forms 
of OI lies in equation (3), which shows that assimilation 
reduces the forecast error variance at affected model grid 
points. If data are assimilated at those grid points at some 
later time, the constant error variance OI takes no advantage 

of the increased confidence in the forecast stream function, 

whereas (if the time between assimilation periods is suffi- 
ciently short) the time-dependent variance OI places an 
increased weight on the model stream function. Unlike the 
Kalman filter formulation, no account is made for the 
advection of information. 

2.2. Application to OPTOMAl l 

The OPTOMAll experiment was conducted in June to 
August 1984. Most of the data were acquired by expendable 
bathythermograph (XBT) casts in a 150-km-square domain 
centered approximately 180 km offshore Point Arena in a 
region of gently sloping bathymetry (Figure 1). The observ- 
ing system placed emphasis on the acquisition of data on the 
boundaries of 75-km-square submodules (see Figure 7e), 
with data spaced at about 18 km along these boundaries. The 
QG stream function used in the dynamical model was 
calculated from density anomaly profiles and was referenced 
to 750 km. This reference level was determined iteratively as 
that which gave the best hindcast in the experiment of RMR. 
The true reference level is unknown because of an unmea- 

sured barotropic flow component. Density profiles were 
estimated from the XBT temperature profiles using an aver- 
age salinity-temperature relation from conductivity- 
temperature-depth (CTD) data acquired during the experi- 
ment. The density anomaly was calculated with reference to 
the mean profile over the entire experiment. Further details, 
including the use of empirical orthogonal functions (EOFs) 
to estimate the density anomaly at the deeper model levels 
from the anomaly to at least 450 m, are given by RMR. A 
similar technique for extrapolation of surface data to deeper 
model levels was used by De Mey and Robinson [1987]. The 
relative error introduced at depth is potentially large, but the 
absolute error is small, and the technique avoids the intro- 
duction of spurious energy in high baroclinic modes which 
may result if the shallow data are simply inserted at shallow 
levels as was done by White et al. [1990a, b]. Such errors 
could be troublesome in this eddy-resolving model. 

For this region of the California Current, the vertical 
structure was resolved with six levels (50, 150, 400, 1070, 
2150, and 3380 m for an average ocean depth of 4000 m), and 
the specific parameters defined above were V = 10 cm s -j, 
L = 50 km, t o = 1.0 x 106 s, f0 = 0.91 x 10 -4 s -1 /30 = 
1.8 x 10 -l• m -• s -• No =0.011 s -• andH= 150m. The 
horizontal grid spacing was 9.4 km, over a 150-km-square 
domain, and the time step was 2 hours. 

For the experiments discussed below, P (or C) was chosen 
to have an isotropic, homogeneous functional form similar to 
the observed stream function covariance. This assumes that 

the dominant contribution to the error in forecast stream- 

function comes from inadequate knowledge of the intensity 
and phase of the "observed" features and from errors 
introduced by inadequate knowledge of the boundary values 
required for the open domain (compare with the scales of the 
E5 analyses discussed below). Since the observations are 
assimilated at each model level, some assumption must be 
made regarding the vertical dependence of P. Two functional 
forms were tried, the first with depth dependence only in the 
total variance; 

P(r, z) = rr2(z)(1 - (r/a)2)e -(r/t•)2, (6) 
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Fig. 2. Covariance functions used for the model error covari- 
ance function. Curve a shows function (6) with parameters deter- 
mined by regression from the observed stream function, (a = 80 km 
and b = 100 km), used for experiment El; curve b shows function (6) 
with (a = 40 km and b = 50 km), used for E2; curve c shows function 
(7) determined according to modal energies in current meter data 
with r 0 = 500 km and r l = 25 km, used for E3; and curve d shows 
function (7) with r0 = 1000 km and r i = 50 km, used for E4. Curves 
c and d are shown for z = 50 m. 

with a = 80 km and b = 100 km as determined by regression 
from the observations, and the second with depth depen- 
dence according to the mean barotropic/baroclinic structure 
[Rienecker eta!., 1988] observed in current meter data off 
the continental slope off northern California, 

P(r, z) = A{0.62 exp [-(r/ro) 2] + Fi(z ) exp [-(r/rl)2]}, 

(7) 

where F l(z) is the square of the profile of the first baroclinic 
mode, r is horizontal separation, and z represents the model 
level in question. For P(r) of (6) to have a physically 
realizable spectrum, it is sufficient that 21/2a --> b, which is 
satisfied by the parameter values determined from the ob- 
servations. For (7), values of r• = 25 km and re = $00 km 
were chosen as representative of the first-mode deformation 
radius and a larger, external scale, respectively. These 
choices corresponded to a much shorter decorrelation scale 
than that estimated from the observations, so r• = $0 km and 
r e = 1000 km were also considered. Only one data type was 
considered (namely, in situ stream function profiles) and 
data were treated separately at each level; hence A was 
chosen so the P(0, 0) = or2(0), the observed stream function 
variance at the surface. Graphs of (6) and (7) for various 
parameter choices are shown in Figure 2. 

The observational errors were assumed to be uncorre- 

lated, i.e., R(r) = 0, if r • O. R(r, z) was chosen to be 
0.1o'2(Z), i.e., 10% of the observed stream function vari- 
ance. This represents the average observation noise variance 
estimated from closely spaced observations on other OP- 
TOMA surveys by extrapolating the covariance at nonzero 
lags to zero lag and comparing the result with the calculated 
variance. The estimate may be justified a posteriori by the 
point comparison with the observations in the hindcast 
experiments conducted below. 

For the QG model, stream function data were assimilated 
level by level, with data at one level not directly affecting the 
analysis field at a different level (the vertical coupling was 
already accounted for in the EOF treatment of the data and 
in the assumed error covariance function). Once the ana- 
lyzed stream function was calculated, the analyzed vorticity 
was determined from (2) and the fields evolved further 
according to (1). 

3. ANALYSES FROM OPTOMAll 

Since the error covariance P is unknown, assimilation 
experiments were conducted to assess the sensitivity of OI 
analyses to the choice of P. In the description below, day 0 
corresponds to year day 158 (June 6). Independent analyses 
were produced for days 6, 21, 36, and 59 of the OPTOMA11 
surveys with assimilation starting at days 0, 17, 26, and 56, 
respectively. These analyses were independent in the sense 
that none of them was used as an initial estimate for another 

and they had no data in common. As discussed below, 
hindcast experiments, conducted as dynamical interpolation 
between OI analyses, were used to assess the analyses. 
Based on the estimated 20-day decorrelation time for the 
fields of these surveys, there were only three statistically 
independent realizations of the fields over the entire observ- 
ing period, allowing two independent hindcast experiments. 
The use of four (rather then three) analyses is dictated by the 
observing times and the desire to hindcast for about 20 days, 
the estimated decorrelation time, so that the estimated open 
boundary data are meaningful. 

This study focuses on mesoscale variability, and since the 
climatological mean flow of the California Current is weak 
compared with the mesoscale flow (about 4 cm s -1 com- 
pared to about 50 cm s -1 at the surface), the initial field 
(prior to assimilation) was taken to be tp = 0 for each survey. 
The analyses were produced by assimilating stream function 
data once per day, with all data within half a day of the 
assimilation time treated as simultaneous. Typically, 10 to 20 
profiles were assimilated per day. The data distribution per 
survey is given in Table 1. During the assimilation cycle, the 
boundary values of stream function and vorticity were kept 
fixed unless changed by the assimilation process. The results 
of this sensitivity study were used to choose the form of P for 
the production of analyses of each of the five OPTOMAll 
surveys in a continuous assimilation mode. The discussion is 
restricted primarily to the fields at 50 m, the most energetic 
level of those used in the model. 

3.1. Sensitivity of the Analyses to Prescribed Covariance 
Parameters 

To test the sensitivity of the analysis to the prescribed 
error covariance structure, P was modelled in turn as each of 
the covariance functions (6) and (7). For each of these 
functions, two sets of parameters were chosen. For (6) these 
were (a, b) = (80, 100) km (as estimated for the observed 
stream function itself) and (a, b) = (40, 50) km, denoted 
below as experiments E1 and E2, respectively. For (7) the 
parameters were (r0, r l) = (500, 25) km (i.e., r I specified as 
the internal deformation radius) and (re, r•) = (1000, 50) km, 
denoted as experiments E3 and E4, respectively. During 

TABLE 1. Assimilated Data Distribution for Each OPTOMAll 

Survey 

Survey Observing Dates Number of Data 

1 (AI) 0-6 74 
2 (All) 17-21 79 

22-24 53 

3 (DII) 26-30 55 
4 (Alii) 32-36 29 
5 (Dill) 56-59 68 
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assimilation, only data within a radius of 75 (40) km of any 
model grid point were considered for the larger (smaller) 
decorrelation scales. This restriction of data lessens the 

influence of inappropriate (i.e., inadequately defined) cova- 
riances at large separation on the analysis [Lorenc, 1986]. 

Two other analyses for days 6 and 21 are shown in Figure 
3 for comparison: E0 is the statistical objective analysis (i.e., 
statistically optimized interpolation with no dynamics) pro- 
duced using (6) when all data in a given survey were assumed 
simultaneous. E5 represents the stream function determined 
according to Laplace's equation: 

V2½ =0, 

with boundary values provided by the E0 fields. A stream 
function so determined will have minimum kinetic energy 
consistent with the boundary values. E5 was performed to 
identify the extent of boundary control in this small open 
ocean domain for this realization of the CCS. The experi- 
ments are summarized in Table 2 and maps are shown in 
Figure 3 along with day 21 hindcasts which, as will be 
described below, are used for comparison purposes. 

For day 6, E1 displays a cyclone which penetrates farther 

E0 

analyses 

DAY 6 DAY 21 

hindcast 

DAY 21 

E1 

E2 

E3 

E4 

Fig. 3. The analyses of stream function at 50 m (left) for day 6 
and (middle) for day 21, and (right) the dynamical hindcast for day 
21. The stream function is nondimensional and the contour interval 

is 0.5. Dashed lines denote negative values; the thick solid line is the 
zero contour. The experiments are defined in Table 2. 

TABLE 2. Definition of Sensitivity Experiments 

Experiment Definition 

E0 

El 

E2 

E3 

E4 

E5 

objective analysis (no dynamics, all observations 
assumed coincident) 

OI using covariance function (6) with a = 80 km, 
b = 100 km 

OI using covariance function (6) with a = 40 km, 
b = 50 km 

OI using covariance function (7) with r0 = 500 
km, r I = 25 km 

OI using covariance function (7) with r 0 = 1000 
km, r I = 50 km 

interpolation according to Laplace's equation (no 
statistics, no dynamics) 

into the domain than the other analyses which all have 
cyclonic features less intrusive than E0. In the northeast 
quadrant, E1 contains a local high, whereas E2 and E3 
contain a local low bounded to the east by small-scale 
anticyclonic features. In E4 the northeast anticyclone is 
stronger and of larger scale, and the low to the west has two 
centers and slightly different orientation compared with E2 
or E3. In E0 there is no evidence for either a high or a low in 
the northwest quadrant (a region with no data in the interior 
of the quadrant; see Figure 6e)-these features in the OI 
analyses have developed dynamically depending on the 
corrections made to the model fields during the assimilation 
phase. The overall shape of the cyclone in E0 is in better 
agreement with E1 than with the other analyses. 

For day 21 the differences between the analyses lie in the 
curvature and gradient of the westward flowing jet. In E 1 the 
jet has less curvature and lower gradient than in E2 or E3. In 
E4 the jet has a more pronounced wavy structure. In E2 and 
E3 the anticyclone north of the jet has smaller-scale variabil- 
ity than in E1 or E4 because of the shorter covariance scale 
and radius of influence. At the western boundary, all four OI 
analyses show a slightly different curvature from that of E0. 
Otherwise, the curvature in the center of the domain and on 
the eastern boundary is similar for E0, E2, and E3. 

Although the OPTOMA experiment was designed to pro- 
vide initial, boundary, and verification data for numerical 
models, its data were still too sparse for a full set of 
validation experiments to be performed. Such validation 
experiments would necessarily involve holding back data 
from the assimilation process. From the number of observa- 
tions used in the assimilation (see Table 1), it is obvious that 
there are too few data to do this, since removal of any 
significant part of the data would degrade the analysis 
severely and too few points kept back for validation would 
not provide meaningful statistics. 

Since there was no independent "ground truth" field to 
test the adequacy of the analyses, they were compared 
through dynamical hindcasts in which the quasi-geostrophic 
model was initialized with the analysis for day 6 and then 
integrated forward to day 21. Boundary information was 
supplied by linear interpolation between the analyses for 
these two days and the model hindcast the interior field of 
the later analysis. The comparison of hindcast interior with 
analysis interior at day 21 for each experiment shows how 
well the analysis pairs are in quasi-geostrophic balance and 
are quasi-geostrophically consistent with each other in that 
one evolves to the other under the assumption of quasi- 
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TABLE 3. Statistical Assessment of the Dynamical Hindcasts for Day 21 

Analyses 

NRMSD 6 IV• 
Pointwise 

Observations C NRMSD C NRMSD C NRMSD 

E0 0.32 0.95 0.32 0.44 0.72 0.74 0.85 
E 1 0.35 0.97 0.23 0.44 0.51 0.88 0.55 

E2 0.39 0.92 0.38 0.24 0.75 0.65 0.87 
E3 0.35 0.93 0.37 0.21 0.89 0.61 0.97 
E4 0.35 0.91 0.43 0.25 0.77 0.59 1.02 
E5 0.32 0.97 0.28 0.53 0.80 0.77 0.81 

For each experiment, comparisons are made between the hindcast and the analysis used to provide 
the necessary boundary data as well as the observations of the second survey on a pointwise basis. C 
refers to the correlation; NRMSD is the normalized rms difference. For •, and •' the normalization 
factor is the standard deviation of the observations, 2.03 and 22.7, respectively. For IV6J the 
normalization factor is the mean gradient, 2.3. 

geostrophic dynamics. The inadequacy of fit in this case (as 
represented by the difference measures in Table 3) can be 
due to errors in the analyses or inadequate lateral and/or 
vertical boundary information. Although surface forcing by 
wind stress curl can be important, RMR found that during 
the initial phase of OPTOMAll surface forcing had little 
effect on the hindcast fields and it was not included in these 

initial integrations. The hindcast was also compared with the 
individual AII observations on a pointwise basis in space and 
time. Observational noise and incomplete physics also con- 
tribute to inadequacy of fit in this case. 

E1 provided the best fit between the dynamically hindcast 
field and the analysis at day 21 with a normalized root-mean- 
square stream function difference of only 23% (Table 3). This 
OI analysis assumed that the model forecast error covari- 
ance was the same as that of the • field itself. The differences 
between the hindcast from E5 and the E0 analysis for day 21 
were also small, although the difference in lateral and 
vertical gradients were much larger (by about 30%) than for 
E 1. The difference measures for E0 were only slightly worse. 
The hindcasts all had comparable agreement with the point- 
wise observations of AII, with differences consistent with 
the assumed observational noise variance. The analyses for 
E3 and E4, which used the depth-dependent covariance 
function (4), did not produce as good a hindcast as El, had 
difference measures comparable to or worse than E2, and 
had much worse difference measures for potential vorticity. 

For a closed model domain, the growth in stream function 
differences as a function of spatial scale depends on the 
dominant scales of energy as well as the scale-dependent 
effect of dissipation [Adamec, 1989]. For an open domain, 
the differences may eventually be advected out of the 
domain; however, initially, nonlinear instabilities could 
cause small analysis differences on short scales to grow 
quickly. This appeared to be the case during the assimilation 
cycle itself, when intense gradients were sometimes intro- 
duced due to the difference of the observations from the 

initial guess of • = 0. Differences between E 1 and E4 during 
the assimilation cycle were noticeable within 2 days, prima- 
rily because of small differences in the covariance functional 
form, but also because of lateral and vertical exchange 
processes. At the deeper model levels, the covariance scales 
increase for (7) with a concomitant increase in the level of 
correlation at nonzero separations. At 400 m the correlation 
from (7) for separations of about 60 km and less are very 

close to those from (6). Not surprisingly, the analyses from 
E1 and E4 at each stage of the assimilation cycle were almost 
identical, until at day 6 there were small observable differ- 
ences due to vertical exchanges. In contrast, at both 50 and 
150 m, the correlations are lower for (7) than for (6) at 
separations of less than about 65 km and are higher for larger 
separations. Although these variations are small, they are 
sufficient to have an impact on the analyses. For example, 
although the differences at day 2 (Figure 4) were primarily 
small scale (about 25-50 km), there was a marked difference 
in horizontal and vertical evolution at day 4. At 50 m, E1 
contained a small anticyclone north of a larger coherent 
cyclone (Figure 4a), whereas E4 contained a small scale 
intense cyclone northwest of a much "flatter" cyclone 
(Figure 4b). The intense cyclone of E4 extended to 150 m 
with the same intensity, whereas the 150 m analysis of E1 
contained much weaker features. For E1 there was some 

similarity of the 150 m analysis to that at 50 m but not nearly 
as strong a coherence as for E4. At day 6, there was more 

50m 

150m 

DAY 0 DAY 2 DAY 4 DAY 6 

b 

150m 

Fig. 4. Stream function at 50 and 150 m during the assimilation 
cycle for (a) E1 and (b) E4. Contour interval is 0.5. 
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TABLE 4. Statistical Comparisons Between Analyses and 
Between Hindcast Fields for Day 21 

C NRMSD C NRMSD 

Analyses 
E1 with E2 0.96 0.32 0.77 0.79 

E1 with E3 0.96 0.35 0.74 0.84 
E1 with E4 0.96 0.28 0.76 0.75 
E0 with E5 0.93 0.43 0.84 0.63 

Hindcasts 
E1 with E2 0.93 0.31 0.76 0.67 
E1 with E3 0.94 0.31 0.75 0.73 
E1 with E4 0.96 0.29 0.84 0.58 
E0 with E5 0.99 0.11 0.94 0.31 

coherence at these two upper levels for E1 but not nearly as 
noticeable as for E4. 

During the hindcasts (i.e., no additional assimilation be- 
yond the supply of time-dependent boundary information) 
the QG model allowed the stream function to evolve so as to 
lessen the differences between the initial fields (i.e., the 
various analyses), especially with regard to vertical structure 
(Table 4). This improvement was most noticeable for E0 and 
E5, where the stream function and potential vorticity differ- 
ences each dropped by 30%. The other marked agreement 
was for E1 and E4, where the potential vorticity difference 
dropped by almost 20%. Some differences remained, often 
dominated by the boundary forcing. At the end of the 
hindcast, the remaining difference field at 50 m (El - E4) 
was associated with differences in the flux of potential 
vorticity by the jet across the eastern boundary into the 
domain (Figure 5). Initial stream function differences ranged 
from -2 to 1.5 nondimensional units, with some small-scale 
variability; the final differences were generally about -0.5 or 
smaller in magnitude, except for the one dominant feature 
with amplitude of 2 units. The initial potential vorticity 
differences ranged from -30 to 60 nondimensional units, 
again with much small-scale variability; the final differences 
range from -20 to 40 units with small-scale variations of 
only about 10 units. At 150 m, differences at the eastern 
boundary were small and had less of an impact on the 
integrations; instead, the difference at the end of the hindcast 
was dominated by an interior feature about 50 km in diam- 
eter due to differences in the intensity and penetration of the 
anticyclone just north of the jet. At the deeper levels, where 
the flow was much weaker (10% or less of the surface flow), 

the stream function differences were weak and of domain 

size directly attributable to differences in the specified 
boundary values. As was found in other dynamical interpo- 
lation experiments in this region [e.g., RMR], over the 
15-day integration the dynamical model effectively devel- 
oped a vertical structure consistent with the dominant vari- 
ability in the upper levels. This successful model interpola- 
tion is probably dependent on the surface-trapped nature of 
the signal, maintained in the EOF projection to deeper levels 
independent of the assumed horizontal covariance structure, 
and the gentle slope of the bathymetry. 

The successful hindcast from E5 indicates the strong 
control of boundary forcing on the evolution of features in 
this small open ocean domain, at least for these particular 
realizations: the model evolution of 6 on the largest scales 
was constrained predominantly by the imposed boundary 
conditions, accounting for the high correlation in 6 (Table 3). 
However, the development of the anticyclonic curvature in 
the E5 hindcast from the cyclone in the initial field demon- 
strates, in its agreement with the other analyses, the power 
of dynamical interpolation in evolving the stream function 
field in the model interior even in this small model domain. 

This effective forcing of smaller scales by larger scales 
through nonlinear dynamical coupling was also demon- 
strated in an open domain atmospheric model by Errico and 
Baumhefner [ 1987]. 

The comparison of the analyses for days 36 and 59 and the 
dynamical hindcasts for day 59 yields similar results, with E 1 
and E2 outperforming E3 and E4. Only the former are shown 
in Figure 6 and included in Table 5. The discrepancies 
between E 1 and E2 analyses are more pronounced for day 59 
than for any of the previous analysis days: the correlation 
between stream function fields was only 0.63, compared with 
about 0.96 for other analyses, and NRMSD was 49%, 
compared with about 32% for the other analyses. As well as 
the differences in the structure of the cyclonic region of 
negative stream function, there are differences in gradient 
and inflow-outflow locations along the northern boundary. In 
contrast to the previous set of sensitivity experiments, the 
better hindcast was obtained using the E2 analyses. An 
additional hindcast experiment, E6, was run: the QG model 
was initialized with the E1 field at day 36, and boundary 
information was supplied by interpolation between that field 
and the E2 field at day 59. This gave the best hindcast (Table 
5), indicating that the sampling strategy of DIII accounted 
for the difference from the previous sensitivity experiments. 
In the hindcast experiments of RMR, a bogus positive wind 
stress curl over the whole domain was necessary for an 

DAY 6 DAY 10 DAY 14 DAY 18 DAY 22 

Fig. 5. The differences between hindcasts, E1 - E4: (a) stream function (contour interval, 0.5) and (b) potential 
vorticity (contour interval, 10). 
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E1 

analyses 

DAY 56 DAY 59 

2 s 

hindcasts 

DAY 59 

! 

E6 

2 • 

Fig. 6. Analyses of stream function (left) for day 36 and (middle) 
for day 59, and (right) the dynamical hindcast for day 59. The E6 
hindcast used the initial filed from E1 and the final boundary 
conditions from E2. Contour interval is 0.5. 

accurate hindcast during this portion of the experiment. 
Additional experiments [Rienecker and Mooers, 1989] found 
that the imposition of an artificial source of positive vorticity 
across the northern boundary also improved the hindcast. 
Here it was found that the necessary vorticity forcing was in 
the smaller scales across the northern boundary. The rms 
error over a 23-day hindcast was 31% of the stream function 
variance for E6, while the error for a 15-day hindcast with 
artificial curl was 30%; with the artificial vorticity source at 
the northern boundary the error was 38% [Rienecker and 
Mooers , 1989]. 

The sampling strategy for DIII differed from the previous 
surveys in having a more regular coverage of the entire 
region: north-south tracks were spaced by about 21 km, 
much less than the 75-km spacing of AI and All. In addition, 
the tracks progressed from east to west, i.e., generally 
downstream. 

From the first set of analyses and hindcasts for this small 
open ocean domain, it is apparent that (1) an analysis 
technique which reproduced the large-scale (i.e., larger than 
50 km) features and used a depth-independent covariance 
function consistent with the vertical mode representation of 
the assimilated data produced the best analysis (in the sense 
of producing a consistent model hindcast), but that (2) in 
subsequent integrations without further assimilation, the 
dynamical model effectively "dynamically filtered" the anal- 
yses to reduce the impact of their differences, except, 
primarily, for the influence of differences on the boundary. 
From the second set of analyses and hindcasts it is apparent 

DAY 6 DAY 21 DAY 50 DAY 56 DAY 59 

Fig. 7. The analyses for the five OPTOMA11 surveys: (a) the 
statistical objective analyses (E0); (b) O! as in E1 but determined 
during continuous assimilation over 59 days; (c) as for Figure 7b but 
with error as determined according to (3) with (4) (contour interval, 
0.1); (d) lrr error fields; (e) the sampling scheme. 

that the accuracy of the vorticity estimates at inflow bound- 
ary sections is important for successful dynamical interpo- 
lation. The observation spacing should be small enough to 
define the small (about 40 km) scales (yet retain the larger 
domain-size scales) on the boundary; the appropriate fore- 
cast error covariance structure then has shorter scales. If the 

observation spacing is not sufficient to define these smaller 
scales, the first set of experiments would indicate that such 
structure cannot be defined merely by the imposition of 
shorter covariance scales. This indicates (perhaps not sur- 
prisingly) that the chosen global error covariance functions 
are not accurate (even in this small domain the covariance is 
likely to be inhomogeneous); however, the accuracy of the 
hindcasts would also indicate that the chosen functions and 

scales are not inappropriate. 

3.2. The OPTOMAI I Surveys and Forecast Error 
Estimates 

In light of the above results, OI analyses for the first four 
OPTOMAI1 surveys (Figure 7) were produced using the 
covariance function (6) with (a, b) = (80, 100) km. The 
covariance structure was changed at day 55 of the assimila- 
tion to (a, b) = (40, 50) km to produce the final analysis at 

TABLE 5. As for Table 3, but for Day 59 Hindcasts 

Analyses 

NRMSD 

Pointwise 
Observations C NRMSD C NRMSD C NRMSD 

E 1 0.60 0.76 0.50 0.38 0.89 0.19 0.59 

E2 0.45 0.83 0.34 0.58 0.68 0.18 0.58 
E6 0.31 0.91 0.37 0.73 0.55 0.29 0.52 
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day 59. The analyses were produced from a "continuous" 
model integration; i.e., the analysis for day 21 was produced 
by integrating from the day 6 analysis with boundary data 
kept constant until updated by assimilation and so on, to day 
59. (In the previous experiments the analysis for day 21 was 
produced independently from that for day 6, starting from 
• = 0 at day 17 instead.) Wind stress curl forcing, as 
obtained from the data used by RMR, was included. The 
sampling scheme for each survey is shown in Figure 7e. The 
periods over which data were assimilated to produce the 
final analysis for each survey are given in Table 1 with the 
number of data points actually assimilated. The OA fields are 
shown for comparison (Figure 7a). The stream function from 
the OI using time-dependent error variances in P, namely, Pk f- 
of (4), is also shown (Figure 7c) with the associated 1-stan- 
dard deviation error fields (Figure 7d). For Figure 7c, the 
D(r) of (5) was assumed to grow linearly in time to the 
climatological variance in 20 days, the estimated decorrela- 
tion timescale of the upper ocean in this region [Rienecker et 
al., 1988], after which it was held constant in time. The real 
model error growth is likely to be slower, but its determina- 
tion requires comparison with observations. An estimate 
could be made using a Kalman filter as was done by Cohn 
[1982]; however, the time scale was chosen from the obser- 
vations for consistency with the spatial scales (it roughly 
represents the Rossby wave-like time-scale associated with a 
spatial scale the same as the stream function decorrelation 
scale, compared with the advective time scale in the jet 
which is only about 2 days at 50 m). The OI with constant 
error variances will be referred to as Oil, and that with 
time-dependent variances, as OI2. 

Qualitatively, the two sets of OI analyses are similar; 
however, the fields produced using OI2 are smoother than 
those produced with Oil. This is to be expected, since OI2 
gives more weight to the forecast stream function in areas 
recently influenced by assimilation than does Oil and so the 
data assimilation is less likely to introduce artificial, sharp 
gradients or sharply curved features. The temporal evolution 
across these snapshots is more coherent than that of the OA 
fields, in which no account can be made for the appearance 
of the anticyclone of day 21 or the sharpened gradient in the 
center of the domain at day 36. 

The two OI analyses for day 6 are similar in the existence 
and location of the small-scale (diameter of about 40 km) 
anticyclone, but the gradients in the OI2 analysis (Figure 7c) 
compare better with those of the OA. In the regions most 
recently updated (as indicated by the low error contours), 
however, the two OI analyses are in good agreement. The 
anticyclone in the northern part of the domain at day 21, 
having developed from the small anticyclone at day 6, was 
more intense and penetrated farther into the domain in the 
OI analyses than in the OA or the E1 analyses formed by 
assimilation from • = 0 at day 17 (Figure 3). The time series 
from 150 and 400 m (not shown) indicate that this anticy- 
clone was formed by the vertical locking of separate anticy- 
lonic features at these three depths: the one at 50 m 
propagated slightly eastward and those at the lower two 
levels (see the anticyc!one in the east at 150 m in Figure 4a) 
propagated westward to interlock vertically and intensify. 
The curvature of the jet at day 21 in the center of the OI2 
analysis is in better agreement with that from OA than from 
Oil analysis, although the stronger gradient of the latter 

agrees better with the OA. The error is low over most of the 
domain because of the short transit time for this survey. 

At day 30 the anticyclone in both OI analyses remained 
narrower than in the OA and penetrated farther into the 
domain. It evolved slightly from its form and location at day 
21 and appears to be a robust feature, as its location was 
sampled twice during survey 3. The streamline curvature in 
the northeastern quadrant in the OI was cyclonic, in contrast 
with the OA, and showed some of the influence of positive 
wind stress curl forcing during this period [RMR]. The 
gradient and jet orientation in the western part of the OI2 
analysis agreed better with the OA than the Oil analysis. 
The sharper gradient and stronger curvature from Oil is a 
result of stronger gradients introduced by the OI when it 
does not place greater confidence in the forecast stream 
function. 

The OI analyses at day 36 were more in keeping with the 
synoptic fields from aircraft data taken 6 days later (not used 
in these analyses because the profiles were very shallow) 
than was the OA field (see day 200 in Figure 11 of RMR, 
equivalent to day 42 here). The NRMSD between the 
vertical shear (•50 m) - •150 m)) at day 42 of the 
continuous assimilation integrations and that from the air- 
craft data was 55%. This appears high, but the shear vari- 
ance used for normalization was only 0.95, whereas the 
normalization factor for stream function differences was 

2.03. In comparison, the vertical shear difference in the 
appropriate 13-day hindcast experiment of RMR using OA 
fields (where the boundary information supplied by the 
aircraft data should have improved the comparison) was 
79%. 

At day 59, the fields from the OA and OI2 are in better 
agreement with respect to the width of the jet compared with 
the fields from Oil, although the two OI analyses give a 
higher estimate of the gradient in the extreme northwest of 
the domain. Both O! analyses show the cyclone about 20 km 
southwest of its location in the OA, but with similar inten- 
sity. On the whole, it seems that the use of (4) and (5) with 
updated variances bounded by climatology may give a more 
accurate representation of the fields than the constant vari- 
ance OI. 

4. SUMMARY 

In this paper, optimal interpolation (OI) has been used to 
assimilate hydrographic observations into a QG model of a 
150-km-square open domain off northern California. Since 
the model error covariances are unknown a priori, experi- 
ments were conducted to investigate the sensitivity of anal- 
yses produced independently for four surveys to the param- 
eters used in an assumed model error covariance function. 

Since there were no independent observations with which to 
assess the quality of the analyses, a comparison was made 
through dynamical hindcasts. The QG model was initialized 
with the OI analysis for the first survey and the model 
"forecast" the interior of the second survey using boundary 
values based on analyses of both surveys. In this use of 
hindcasts to assess the analyses, the dynamical model es- 
sentially (re)defines "truth": the time and space scales of 
interest, and the only ones that can be verified, are those 
consistent with QG dynamics and the resolution of the 
model. A posteriori comparisons of the hindcasts with point 
measurements show good agreement (Tables 3 and 5). 



15,102 RIENECKER AND MILLER: OCEAN DATA ASSIMILATION USING OPTIMAL INTERPOLATION 

For the surveys with an irregular and rather coarse sam- 
pling strategy, the smoother analysis fields produced with 
error covariance scales identical to those of the observed 

stream function yielded better hindcast results than the 
analyses produced with reduced covariance scales. Based on 
differences during the model integrations for the first part of 
the observing period, the hindcasts were heavily influenced 
by vorticity estimates across the inflow on the eastern 
boundary. For the second half of the observing period, the 
hindcasts were heavily influenced by the flux of vorticity on 
small scales across the northern boundary. These small 
scales (which were resolved by the finer, more regular 
sampling strategy of the final OPTOMAll survey) and the 
locations of inflow across the boundary were best defined by 
shorter error covariance scales. 

Differences in the analyses near inflow boundary points on 
scales of 20-50 km led to 50-km scale differences in the 

model interior at the upper model levels after a 15-day 
integration. Initial differences in the domain interior on these 
scales and smaller tended to decay in time owing to the 
strong control of the boundary forcing for this size domain 
and the effective dynamical filtering afforded by the model. 
Differences at the lower model levels were weak, of domain 
scale, and totally attributable to stream function differences 
on the boundary. Similar remarks would apply to the results 
of De Mey and Robinson [1987], who performed open 
boundary computations in a similar size domain relative to 
the internal radius for the Polymode region of the northwest 
Atlantic. This size domain is typical for mesoscale ocean 
sampling schemes (see also Hua [1988] for the Tourbillon 
site in the eastern North Atlantic). The results here are 
consistent with those of Errico and Baumhefner [1987], who 
performed a predictability study for an atmospheric limited- 
area (open boundary) mesoscale model for the continental 
United States; the limited-area model domain was also 
comparable in size, for atmospheric scales, to the domain 
used here for the ocean. 

In the case of numerical weather prediction, where data 
over the entire model domain are collected (and assimilated) 
essentially simultaneously, analysis errors have the same 
spatial scale as the observation separation [Lorenc, 1988]. In 
our case the error structure is complicated by the space-time 
sampling problem: in regions of strong advection, the errors 
can propagate through the domain very quickly, resulting in 
larger error scales. This study (and that of Errico and 
Baumhefner [1987] for the atmosphere) shows that for an 
open domain once the large scales are defined (essentially by 
the boundary values) the errors on small scales diminish due 
to diffusion until the errors become concentrated near syn- 
optic/mesoscale features because of intensity and/or phase 
errors (see Figure 5). In the case of perfect boundary data, 
much of the mesoscale error may be advected out of the 
domain; in our case, imperfect boundary data contribute to 
the interior mesoscale error. For most of the OPTOMAI1 

survey, the best analysis (in a QG-consistent sense) was 
obtained using a forecast error covariance scale the same as 
that of the observed mesoscale stream function. This scale is 

somewhat justified a posteriori by the scale of differences 
between hindcasts based on different (but similar) analyses 
and by the scales defined only by the boundary data (exper- 
iment E5 above). It also happens to be about the same as 
defined by the observation separation (the larger of the 
along-track and cross-track data spacing). For the final 

survey, the best analysis was obtained with reduced error 
covariance scales because of the finer observation resolution 

and the importance of small-scale vorticity forcing at the 
northern boundary. However, if the observation spacing is 
not sufficient to define the smaller scales, this study indicates 
that such structure cannot be defined merely by the imposi- 
tion of shorter error covariance scales. 

In the continuous assimilation over the entire OPTOMA 

11 observing period, covering 59 days in all, analyses for the 
first four surveys were produced using the functional form of 
the observed stream function covariance for the forecast 

stream function error covariance. Reduced covariance scales 

were used for the final survey. A modified form of OI in 
which the forecast error variances were updated according 
to the analysis error variance and an assumed model error 
growth rate was also used. This allowed the OI to identify 
regions already influenced by assimilation and so to place 
more confidence in the forecast stream function there. The 

analyses from the updated variances were spatially smoother 
and often in better agreement with the observations than the 
OI analyses from constant variances. The two sets of OI 
analyses were temporally smoother than the fields from 
statistical objective analysis (OA) and in better agreement 
with the only independent data available for comparison 
(synoptic aircraft data acquired 6 days after the relevant OI 
analysis). The marked differences between the OA and OI 
analyses lay in the existence or location and intensity of 
smaller mesoscale features and associated gradients. 
Whereas the evolution inferred from the OA fields from day 
6 to 21 required the influence of external boundary forcing to 
produce the anticyclone north of the jet, the evolution from 
the OI analyses showed the interior evolution (the vertical 
locking of anticyclonic features in the upper levels of the 
model) to be important as well. 

This study has demonstrated the efficacy of using OI with 
real observations to produce synoptic estimates of mid- 
latitude mesoscale variability. The apparent improvement in 
the analyses afforded by the updated variance form of OI 
indicates that the use of the Kalman filter, which would also 
account for advection of variance information, would prob- 
ably improve the analysis further. In any case, the interplay 
between the dynamical model and data through the assimi- 
lation cycle, wherein data are synoptically ingested to cor- 
rect the model fields and then the model dynamically filters 
the resulting analyses, decreases the impact of errors asso- 
ciated with incorrect assumptions for the model forecast 
error covariance. In this way, data assimilation provides a 
powerful tool for presenting and interpreting asynoptic data. 

Clearly, there are many issues not addressed here. Per- 
haps the most important is consideration of the influence of 
the inhomogeneity of the error covariance: it is likely that 
the covariance structure near the boundaries is different 

from that in the interior of the model domain. As is shown 

here, the vorticity estimates at the inflow boundary points 
can have a marked impact on the evolution of the stream 
function fields, so it is important to have good estimates of 
the error covariance near the boundary. It is also important 
for the sampling strategy to define the vorticity scales on the 
boundary adequately. The issues of parameter sensitivity 
should be addressed in a much larger domain so that there is 
less influence of the boundary data on the internal evolution 
of the fields. In addition, the distinction between the resolu- 
tion or nonresolution of eddy scales in both the data and the 
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model should be addressed. The effect of different sampling 
strategies should be considered further. Unfortunately, the 
limiting factor in the validation of different methodologies 
remains the paucity of real observations. 
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