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Abstract

One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of
prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are
difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we
developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify
the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of
prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature,
depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and
low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent
viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and
decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two
populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and
low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded
differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is
ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the
abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in
the environment are distinctly different among the prokaryotic and viral populations.
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Introduction

The Arctic Ocean is characterized by environmental extremes

and is subject to large seasonal differences in ice cover, availability

of sunlight, and river discharge that collectively set the pace for

marine life in the area. This polar region is influenced by the input

of particles and nutrients due to coastal run-off and the discharge

from large rivers. In particular, the Mackenzie River exports huge

quantities of sediment into the adjacent Beaufort Sea during

summer that are transported further into the Amundsen Gulf and

the western part of the Northwest Passage [1]. The Arctic Ocean

represents a key area for global carbon [2] and nutrient cycling [3]

and is sensitive to climate change. The signs of climate change in

the Arctic Ocean include rising temperatures, increasing precip-

itation, and river discharge coupled with decreasing snow and ice

cover [4,5,6]. These environmental changes have already had

detectable effects on arctic organisms [7,8].

Viruses are the most abundant biological entities in the oceans

[9] and influence global geochemical cycles [10,11]. Since viral

infection is dependent on the abundance of hosts [12], viruses

might selectively kill the winners in the competition for nutrients

and, thus, are considered to be a driving force in maintaining

prokaryotic diversity [13,14,15]. As obligate parasites, viruses

depend entirely on the host’s metabolism for proliferation.

Evidence for these tight links between viruses and their hosts

have also been found in the Arctic Ocean, where the shrinking ice

cover and the increasing levels of sunlight in spring and summer

enable substantial primary production [16], and the release of

large amounts of organic carbon that in turn stimulate prokaryotic

growth and also increase viral abundance [17–21]. Viruses are the

principal source of prokaryotic mortality in Arctic bottom waters,

dwarfing the impact of grazing during winter [22].

Increasingly, flow cytometry (FCM) of fluorescently stained

samples is used to determine the abundance of prokaryotes and

viruses in aquatic environments [23,24,25]. Based on the strength

of the fluorescence signal due to staining with nucleic acid dyes, at

least two prokaryotic populations can be distinguished by FCM.

Since, the intensity of the fluorescence signal has been shown to be

proportional to prokaryotic DNA content [26], the populations

have been referred to as high (HNA) and low nucleic acid (LNA)

cells. Some reports indicate that HNA cells are metabolically most

active [27,28,29], although LNA cells can be metabolically active
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too [30–33]. Previous studies have found no consistent taxonomic

differences between mixed populations of HNA and LNA cells

[31,34]. However, Wang et al. [35] isolated three members of the

LNA population that retained their low fluorescence signature in

culture, consistent with observations by Vila-Costa et al. [36] who

found that the majority of taxa in cytometrically-sorted fractions of

HNA and LNA cells were only found in one of the fractions

suggesting that HNA and LNA populations are largely composed

of different taxonomic groups. Contrary to prokaryotes, the

intensity of the fluorescence signal of viruses in FCM analysis does

not correlate with genome size [37], although FCM can resolve

different populations of viruses. Most marine viruses have

relatively low fluorescence intensity and are considered to infect

mostly prokaryotes. Viruses with stronger fluorescence signals are

thought to primarily infect eukaryotic phytoplankton and other

protists [38,39].

Because of the central role of the Arctic Ocean in global

geochemical cycles and its vulnerability to the effects of climate

change, understanding the possible consequences of changes in the

environment for microbes is critical. Kirchman et al. [40]

suggested that, based on a comparison between data from polar

regions and low-latitude waters, prokaryotic abundance and

growth in the Arctic Ocean appear to be controlled by the supply

of dissolved organic matter (DOM) and temperature. Also, Payet

and Suttle [20] found that prokaryotic and viral abundance in the

Arctic Ocean increased with increasing temperature and the

concentration of Chlorophyll-a (Chl-a), a main source of DOM.

However, these studies [20,40] also show that the effects of

temperature and DOM supply on prokaryotes are non-linear, and

likely more complex than currently appreciated. Conventional

statistical methods such as regression or principal components

analysis require data to be transformed (e.g., log-transformation) if

they are not normally distributed, else non-parametric tests have to

be used. Such methods usually resolve trends in the data, but may

miss or obscure the finer picture. An alternative or complementary

method of analysis, Artificial Neural Networks (ANNs), constitute

a data-driven tool for analyzing and modeling complex relation-

ships. An advantage of ANN-based models is that data do not have

to fit pre-defined conditions (e.g., linearity, normal distribution);

instead available data are used in a training phase to develop

empirical models [41,42]. For example, ANNs have been used to

model phytoplankton [43,44] and viral production [45], and to

predict zooplankton biomass [46].

In this study we used previously published seasonal data from

the Arctic Ocean [20] collected from November 2003 to August

2004 to develop ANN-based models of the abundances of

prokaryotes and viruses. A number of previous studies have

shown that the annual phytoplankton blooms in the Arctic release

substantial amounts of DOM that stimulates the growth of

heterotrophic prokaryotes [17,18,19,21], consistent with evidence

that prokaryotic abundance and growth are limited by the

availability of DOM in the Arctic Ocean [40]. Given that

phytoplankton are a major source of DOM in arctic waters, we

used Chl-a as a surrogate parameter for the availability of DOM.

The other parameters considered for modeling (temperature,

salinity, depth, day length) are easily obtained and representative

of changes in the physico-chemical environment of the water

column. Thus, potential input parameters for ANN-based models

were geared towards capturing potential bottom-up effects on

prokaryotic abundance. Although viruses are obligate parasites

that depend entirely on the hosts’ metabolism for proliferation, we

used the same input parameters as for prokaryotes. As most viruses

in the ocean infect prokaryotes, using prokaryotic abundance as an

additional input parameter might have resulted in better

performing ANN-based models of viral abundance. However,

we were more interested if changes in the physico-chemical

environment and Chl-a would predict viral abundance. Also, high-

fluorescent viruses are thought to infect phytoplankton [38,39] so

that a direct link between the abundance of this viral group and its

potential hosts is represented in the data. The objectives of this

study were (1) to identify the most successful combination of

parameters (salinity, temperature, depth, day length, Chl-a) that

lead to the best performing ANN-based models of the abundances

of prokaryotes and viruses, and (2) to use these models to further

investigate the effects of changes in the environment on

prokaryotic and viral abundances by performing simulations using

the developed ANN-based models.

Materials and Methods

Study area, sampling, and measured parameters
The data used for modeling are from Payet and Suttle [20], and

were collected from 8 stations in the south-eastern Beaufort Sea of

the Canadian Arctic. From 4 November 2003 to 6 August 2004

seasonal samples were retrieved 21-times at roughly weekly

intervals from depths of 3 m, 10 m, 20 m, 30 m, 50 m, 100 m,

150 m, and 220 m at a station in Franklin Bay (70u039 N,

126u309 W); occasional sampling problems led to 156 samples

being recovered. Additionally, 37 samples collected between the

surface and a maximum depth of 80 m (bottom depth permitting)

at 7 stations between the Mackenzie River and Amundsen Gulf

(between 69.5u–71.5u N and 122.3u–138.6u W) from 4 July to 10

August 2004 (see Fig. 1 in Payet and Suttle [20]) provided a spatial

data set. In addition to physico-chemical parameters such as

temperature and salinity, data were collected on Chl-a and

prokaryotic and viral abundances. FCM was used to distinguish

HNA and LNA prokaryotic cells, and high- (V1) and low-

fluorescent (V2) viruses, based on the fluorescence intensity after

staining with the nucleic acid dye SYBR Green I. Auto- and

heterotrophic prokaryotic cells were not distinguished from each

other so that total prokaryotic abundance (the sum of HNA and

LNA cells) includes all prokaryotic cells. More details on the

sampling scheme and the measured parameters are given by Payet

and Suttle [20].

Modeling prokaryotic and viral abundances using ANNs
Data preparation. Eighty percent of the seasonal data were

used for training the networks and the remainder (test data) were

used exclusively to determine when the training had finished (see

below). The spatial data set, comprised of 37 samples, was used to

evaluate the trained networks in order to determine the best

performing ANN-based model. The following 5 input parameters

were considered: Chl-a (mg L21), day length (hours), depth (m),

salinity (psu), and temperature (uC). The day length, defined as the

time in hours from sunrise to sunset, was calculated based on the

sampling date and the coordinates of the stations using the

software XEphem (version 3.7.4, Clear Sky Institute). Prior to

training, all data were scaled to a mean of zero and unity variance.

Modeling strategy. A short introduction to ANNs is

provided as part of the online supporting information (Text S1,

Fig. S1). For an in depth introduction to ANNs we refer to

Basheer and Hajmeer [42]. The input parameters were used alone

and in combination with up to two other parameters to develop

ANN-based models of the abundances of HNA and LNA cells

(105 mL21), and of V1 and V2 viruses (106 mL21). Feed-forward

(FFW) ANNs and radial basis function (RBF) ANNs with one layer

of hidden neurons and one output neuron were implemented in

Mathematica (version 7.0.1) using the Neural Networks applica-

Modeling Prokaryotes and Viruses in the Arctic
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tion package (version 1.1; both from Wolfram Research). Bias

terms with a fixed value of 1 were included in the input and the

hidden layer for FFW networks and in the output layer for RBF

networks. Before training, the parameters of the networks were

initialized using the option ‘‘LinearParameters’’ to randomize the

initial values of the non-linear parameters within the range of the

input data and to completely randomize the linear parameters. We

used the Levenberg-Marquardt algorithm [41,47] to train ANNs

with 2–15 hidden neurons each for 100 iterations, employing the

sigmoid function as the activation function of the hidden units for

FFW networks and the exponential function for RBF networks.

The progress of training was monitored using the root-mean-

squared error (RMSE) of the networks.

The initial values of the weights of the network can influence the

outcome of the training procedure [41]. Thus, in the first phase of

training, for each set of in- and output parameters and number of

hidden units, 100 ANNs were initialized and trained as described

above. ANNs can memorize the training data if trained for too
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Figure 1. Linear least-squares regression analyses of observed versus predicted prokaryotic abundance. The figure shows the results
of the linear least-squares regression analysis computed for the training and test data sets for the abundances of (A) HNA, (C) LNA, and (E) total
prokaryotic abundance (r2 = 0.898; y = 0.456+0.896 x). Additionally, the results of the spatial data set (region designations as in [20]) used for
evaluating the trained ANNs are shown for the abundances of (B) HNA, (D) LNA, and (F) total prokaryotic abundance (r2 = 0.703; y = 0.621+1.107 x).
Solid lines represent the linear least-squares fit to the data and dashed lines the theoretical 1:1 fit. The parameters for the linear least-squares
regression analyses for panels A–D can be found in Table 3.
doi:10.1371/journal.pone.0052794.g001
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many iterations (over-training), particularly when the networks

have a large number of hidden units. Over-training makes

predictions based on new input data inaccurate and can be

prevented by cross-validation [41]. As described above, the data

were split into training and test data sets. While the training data

were used for adjusting the networks parameters in order to

decrease the networks error in the subsequent iteration, the test

data were only used to validate the network at each iteration

during training without interfering in parameter adjustment.

Training was assumed to have converged when the sum of the

RMSE of the training and test data sets reached a minimum. The

best performing ANNs for each set of in- and output parameters,

number of hidden neurons, and ANN type were determined by

searching for the smallest sum of the RMSE of the training and

validation data sets at convergence of training. In order to further

explore the parameter space for the best possible solutions, the best

performing network architectures from the first phase were

initialized, trained, and screened another thousand times as

described above. The best-performing networks from this second

phase of training were reconstituted at the iteration of the

minimum of the combined RMSE by retrieving the corresponding

network parameters from the training record.

Model evaluation. The ANN-based models from the second

phase of training were evaluated using the spatial data by

performing linear least-squares regression analysis between

observed and predicted abundances of HNA, LNA, V1, and V2.

The best performing network architecture for each output

parameter was chosen based on the parameters of the linear

least-squares regression analysis calculated between observed and

predicted values of the spatial data set, i.e., the slope (k) closest to 1

given a co-efficient of determination r2.0.5. Total prokaryotic and

viral abundances were obtained by summing the model outputs for

the abundances of HNA and LNA cells or V1 and V2 viruses,

respectively.

Simulation of the abundances of prokaryotes and

viruses. The ANN-based models were used to simulate the

abundances of prokaryotic and viral populations as well as total

prokaryotic and viral abundances. To obtain the simulations, the

values of the input parameters were varied within the range of the

seasonal data; specifically, temperature varied between 21.8–

2.8uC, day length between 0–24 hours, and Chl-a from 0.01–

0.61 mg L21. The abundances of V1 and V2 viruses as well as total

viral abundance was simulated at 5 m, 50 m, 100 m, 150 m, and

200 m depth.

Statistical analyses
Statistical analyses were performed with Mathematica 7.0.1

(Wolfram Research). Linear least-squares regression was used to

determine the relationships between observed versus predicted

abundances of HNA, LNA, V1, and V2. Differences in the y-offset

and the slope of linear least-squares regression analysis against the

theoretical values of 0 and 1, respectively, were tested by

calculating the t-statistic according to the equation t = |(byx–

Byx)|/|(Sbyx–SByx)|, where byx and Byx represent the y-offsets or

slopes and Sbyx and SByx the respective standard deviations. Due to

non-normality of the data, seasonal and spatial data were log-

transformed before statistical analyses except for temperature,

salinity, and day length, which were not transformed. A Student’s

t-test was used to test for differences in the parameters between the

seasonal and spatial data sets. Stepwise multiple linear regression

(SMLR) was performed to obtain statistical models of the

abundances of HNA and LNA cells as well as V1 and V2 viruses

as a comparison to the ANN models. Similarly to the ANN-based

models, the SMLR models were developed using the seasonal data

whereas the spatial data were used for evaluation. The p-values are

reported for the two-tailed t-distribution. Results of statistical tests

were assumed to be significant at p-values #0.05.

Results

Differences between seasonal and spatial data sets
Detailed statistical analyses on temporal, depth, and spatial

variations in the data can be found in Payet and Suttle [20]. Here,

we focus on differences between the seasonal and spatial data that

are relevant for the modeling approach. Differences between the

parameters in the seasonal and spatial data (Tables 1, 2) were

statistically significant for every parameter (Student’s t-test: in

every case p,0.0004). The spatial data were gathered during the

arctic summer under almost continuous sun light, higher water

temperatures, and from shallower waters than for the seasonal

data. On average, salinity was lower in the spatial data set

compared to the seasonal data set, indicating a stronger freshwater

influence. All biological parameters (Chl-a, abundances of

prokaryotes and viruses) were on average lower in the seasonal

data set than in the spatial data set (Tables 1, 2). In summary, the

spatial data set for evaluating the ANN-based models differed from

the data used to train the networks and, thus, provides a good test

for the models’ performance.

ANN-based models of the abundances of prokaryotic and
viral populations

Model development. ANN-based models of the abundances

of HNA and LNA cells as well as V1 and V2 viruses were

developed using 7 different combinations of the input parameters

for FFW and RBF networks (Tables S1, S2, S3, S4, S5, S6, S7,

S8). The results of the first two phases of model development

consistently indicated that these 7 combinations were best

performing for all ANN-based models. Based on the combined

RMSE of the training and test data set, there was considerable

variation in the performance of the various ANN-based models.

The RMSE of the models of HNA cells varied between 0.54 and

0.82 and between 0.63 and 0.94 for FFW and RBF networks,

respectively (Tables S1 and S3). For models of the abundance of

Table 1. Parameters measured as part of the seasonal data
set.

Parameter Avg SD Minimum Maximum CV N

Depth 74.8 74.7 1 225 99.9 156

Temperature 21.20 0.69 21.73 2.78 57.2 156

Salinity 31.90 1.63 27.31 34.69 5.1 156

Day length 12.6 8.4 0.0 24.0 66.7 156

Chl-a 0.08 0.10 0.01 0.61 132.7 156

HNA cells 2.22 1.62 0.44 9.49 72.9 156

LNA cells 2.05 1.08 0.80 6.04 53.0 156

Prokaryotes 4.27 2.68 1.32 15.54 62.7 156

V1 viruses 0.93 0.81 0.16 4.08 87.4 156

V2 viruses 5.26 3.17 0.90 16.11 60.4 156

Viruses 6.18 3.92 1.27 19.96 63.4 156

The average (Avg), standard deviation (SD), minimum, maximum, coefficient of
variation (CV; %), and number of samples (N) are given. Depth (m), temperature
(uC), salinity, day length (hours), Chl-a (mg L21), the abundance of HNA and LNA
cells as well as total prokaryotic abundance (N6105 mL21), and the abundance
of V1 and V2 viruses as well as total viral abundance (N6106 mL21).
doi:10.1371/journal.pone.0052794.t001

Modeling Prokaryotes and Viruses in the Arctic

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e52794



LNA cells, the RMSE ranged from 0.61 to 0.86 and from 0.75 to

1.05 for FFW and RBF networks, respectively (Tables S2 and S4).

The RMSE for FFW and RBF networks modeling the abundance

of V1 cells varied between 0.45 and 0.92 and between 0.52 and

0.91, respectively (Tables S5 and S7). For FFW and RBF models

of the abundance of V2 viruses, the RMSE varied between 0.55

and 0.86 and between 0.60 and 0.92, respectively (Tables S6 and

S8).

Best performing ANN-based models. The ANN-based

models developed in this study are available from the authors in

the form of Mathematica source files. The best performing

network model of the abundance of HNA cells as evaluated using

the spatial data used Chl-a and temperature as the input

parameters to a FFW network with 14 hidden units (Table 3,

Fig. 1A–B). The model explained 90% of the variation of HNA

cells in the seasonal and 56% of the variation in the spatial data set

(Table 3). The abundance of LNA cells was modeled best by a

RBF network with 15 basis functions and Chl-a and temperature

as input parameters (Table 3, Fig. 1C–D), which explained 84%

and 52% of the variation in the seasonal and spatial data sets,

respectively (Table 3). The sum of the abundances of HNA and

LNA cells obtained from the ANN-based models was similar to

observed prokaryotic abundances for the seasonal (Fig. 1E;

r2 = 0.898) and spatial data sets (Fig. 1F; r2 = 0.703).

The best performing model for the abundance of V1 viruses was

a RBF network with 15 basis functions using Chl-a, day length,

and depth as input parameters (Table 3, Fig. 2A–B). The model of

the abundance of V1 viruses explained 95% and 59% of the

variation in the seasonal and spatial data sets, respectively

(Table 3). The chosen model for the abundance of V2 viruses

consisted of a FFW network with 8 hidden units employing the

same input parameters as the model for V1 viruses and explained

91% and 54% of the variation in the seasonal and spatial data,

respectively (Table 3, Fig. 2C–D). Total viral abundance was

calculated by summing the abundances of V1 and V2 viruses

obtained from the models. The fit between observed and predicted

viral abundances was comparable to the models of the abundances

of the viral populations explaining 93% of the variation in the

seasonal (Fig. 2E) and 60% in the spatial data set (Fig. 2F).

In summary, although the ANN classes and their structures

differed between the models for HNA and LNA cells as well as for

V1 and V2 viruses, the models for the prokaryotic and viral

populations used the same input parameters (Table 3). Also, in

every case (Figs. 1, 2) the slope and the y-axis intercept for the

linear least-squares regressions between observed and predicted

abundances were not significantly different from 1 and 0,

respectively (in every case: p.0.05).

Comparison between ANN and SMLR models. The best

performing SMLR models for the abundances of HNA and LNA

cells consisted of Chl-a, salinity, day length, and temperature

(Table 4). However, despite the higher number of parameters in

the SMLR models for the abundances of the two prokaryotic

populations, the performance of these models based on r2-values

was inferior to the ANN models, for both the seasonal and spatial

data sets (Tables 3, 4). The abundance of V1 viruses was best

modeled by a SMLR model consisting of Chl-a, day length, and

salinity instead of depth as compared to the ANN-based model.

The best performing SMLR and ANN-based models of the

abundance of V2 viruses used the same input parameters;

however, the ANN models of the abundances of V1 and V2

viruses were superior to the SMLR models (Tables 3, 4).

Simulating the abundances of prokaryotes and viruses
To facilitate the interpretation of the simulations of the

abundances of HNA and LNA cells as well as of V1 and V2

viruses using the ANN-based models it is important to consider the

distribution of data over the parameter space (Fig. 3). The ANN-

based models were well supported by data below temperatures of

0.5uC and up to 0.5 mg L21 of Chl-a, with the highest number of

data points at lowest temperatures and values of Chl-a (Fig. 3A).

The entire range of day lengths was well represented (Fig. 3B).

Most data were available from the surface to 25 m depth with a

lack of data around 85 m, 140 m, and 185 m (Fig. 3C).

Overall, the abundances of HNA cells and total prokaryotes

exhibited a maximum at temperatures ranging between 21.3 and

20.3uC with comparatively small effects of changes in Chl-a

(Fig. 4A and C). Between 0.5 and 2.8uC, the abundances of HNA

cells and total prokaryotes increased slightly with increasing Chl-a.

Overall, the abundance of LNA cells increased with increasing

temperature and Chl-a and showed 4 pronounced peaks at

temperatures below 0uC.

Table 2. Parameters measured as part of the spatial data set.

Parameter Avg SD Minimum Maximum CV N

Depth 24.5 21.7 1 78 88.1 37

Temperature 1.04 2.93 21.45 8.52 282.5 37

Salinity 28.78 4.33 15.84 32.67 115.0 37

Day length 23.3 1.7 19.2 24.0 7.2 37

Chl-a 0.49 0.60 0.07 2.37 121.6 37

HNA cells 6.84 3.31 1.01 13.65 48.4 37

LNA cells 4.93 2.44 1.06 9.19 49.5 37

Prokaryotes 11.77 5.59 2.28 22.71 47.5 37

V1 viruses 1.86 1.44 0.06 5.35 77.4 37

V2 viruses 12.80 5.75 2.08 23.20 44.9 37

Viruses 14.68 6.94 2.49 28.55 47.3 37

The average (Avg), standard deviation (SD), minimum, maximum, coefficient of variation (CV; %), and number of samples (N) are given. Depth (m), temperature (uC),
salinity, day length (hours), Chl-a (mg L21), the abundance of HNA and LNA cells as well as total prokaryotic abundance (N6105 mL21), and the abundance of V1 and V2
viruses as well as total viral abundance (N6106 mL21).
doi:10.1371/journal.pone.0052794.t002
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The abundance of V1 viruses increased slightly with increasing

day length and Chl-a at 5 m and 50 m depths (Fig. 5A–B). At

100 m and 150 m depths, the abundance of V1 viruses was

predicted to be negative at Chl-a concentrations of 0.1 and 0.3 mg

L21 and day lengths between 8–24 hours (Fig. 5C–D). The

abundance of V1 viruses decreased with increasing Chl-a at 200 m

depth and was negative, particularly at short day lengths (Fig. 5E).

Highest abundances of V1 viruses were reached in surface waters

at 24 hour day length and between 0.4 and 0.5 mg L21 Chl-a

(Fig. 5A–B). The abundances of V2 viruses and of total viruses

were mostly influenced by Chl-a and depth (Figs. 6, 7). Overall, V2

viruses and total viral abundance increased with increasing Chl-a,

and were highest at Chl-a values around 0.6 mg L21, 24 hour day

length, and 50 m depth (Figs. 6, 7). The effects of Chl-a on the

abundances of V2 and total viruses were mitigated by increasing

depth (Figs. 6, 7).
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Figure 2. Linear least-squares regression analysis of observed versus predicted viral abundances. The figure shows the results of the
linear least-squares regression analysis computed for the training and test data set of the abundances of (A) V1 viruses, (C) V2 viruses, and (E) total
viral abundance (r2 = 0.929; y = 0.425+0.934 x). Additionally, the results of the spatial data set (region designations as in [20]) used for evaluating the
trained ANNs are shown for the abundances of (B) V1 viruses, (D) V2 viruses, and (F) total viral abundance (r2 = 0.599; y = 3.495+0.897 x). Solid lines
represent the linear least-squares fit to the data and dashed lines the theoretical 1:1 fit. The parameters for the linear least-squares regression analyses
can be found in Table 3.
doi:10.1371/journal.pone.0052794.g002
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Discussion

Ecological interpretation of the ANN-based models of
prokaryotes and viruses

Availability of data. As a data-driven modeling approach,

ANNs rely on the availability of suitable data. For the Arctic

Ocean, seasonal data on prokaryotic and viral abundances over

depth are very scarce. For a meaningful interpretation of the

simulations performed with the ANN-based models (Figs. 4, 5, 6,

7), it is important to note that the data was not equally distributed

over the entire range used in the simulations (Fig. 3). Thus, in

regions where no data were available for training, the ANNs were

unable to use an error measurement for improvement during

training, so the predictions are based on extrapolations. Although

Table 3. Best performing ANN-based models.

Input
parameters

Output
parameter Network

Hidden units
or basis
functions RMSE r2 r2-spatial Intercept

Intercept
spatial k k-spatial

Chl-a,
temperature

HNA FFW 14 0.706 0.901 0.559 0.169 20.001 0.929 1.213

Chl-a,
temperature

LNA RBF 15 0.808 0.843 0.516 0.357 1.294 0.826 0.824

Chl-a, day
length, depth

V1 RBF 15 0.522 0.951 0.586 0.045 0.691 0.959 1.205

Chl-a, day
length, depth

V2 FFW 8 0.669 0.905 0.544 0.455 3.728 0.915 0.781

The table gives the in- and output parameters, the network type (Feed-Forward Artificial Neural Network: FFW; Radial Basis Function Artificial Neural Network: RBF), the
number of hidden units for FFW and number of radial basis functions for RBF, and the root-mean-squared error of the networks (RMSE) summed up for the training and
test data set at convergence of the training procedure for the best performing ANN-based models as evaluated using the evaluation data set. Additionally, the
coefficient of determination (r2), the y-axis intercept, and the slope (k) of the linear least-squares regression analysis between observed and predicted values computed
for the combined training and test data set as well as for the spatial data set are shown (see also Figs. 1, 2).
doi:10.1371/journal.pone.0052794.t003

Table 4. Stepwise multiple linear regression (SMLR) analysis of the abundances of HNA and LNA cells as well as of V1 and V2
viruses.

Parameters F-ratio r2 p r2-spatial Coefficient t-statistic SE p

HNA 380.4 0.71 ,0.0001 0.36 ,0.0001

y-intercept 2.976 10.4 0.286 ,0.0001

Chl-a 0.283 9.8 0.029 ,0.0001

Salinity 20.072 27.7 0.009 ,0.0001

Day length 0.007 5.0 0.001 ,0.0001

Temperature 0.089 4.7 0.019 ,0.0001

LNA 245.5 0.61 ,0.0001 0.35 ,0.0001

y-intercept 1.722 7.2 0.239 ,0.0001

Chl-a 0.197 8.2 0.024 ,0.0001

Day length 0.007 6.1 0.001 ,0.0001

Temperature 0.078 5.0 0.016 ,0.0001

Salinity 20.037 24.7 0.008 ,0.0001

V1 522 0.77 ,0.0001 0.37 ,0.0001

y-intercept 2.970 11.0 ,0.0001

Chl-a 0.346 11.2 ,0.0001

Salinity 20.087 29.4 ,0.0001

Day length 0.009 5.8 ,0.0001

V2 362.1 0.70 ,0.0001 0.27 ,0.0001

y-intercept 1.128 26.2 0.043 ,0.0001

Depth 20.233 29.0 0.026 ,0.0001

Day length 0.009 6.5 0.001 ,0.0001

Chl-a 0.175 5.4 0.033 ,0.0001

The table gives the parameters for the best performing SMLR models and their coefficients. Additionally, the coefficient of determination using the SMLR model
developed with the seasonal data set (r2) as evaluated using the spatial data set (r2-spatial) is given.
doi:10.1371/journal.pone.0052794.t004
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Figure 3. Data frequency distribution. The figure shows the frequency distribution of the seasonal data (comprised of the training and test data)
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are shown.
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we took great care to develop ANN-based models with a high

ability to generalize, regions in the parameter space used for the

simulations with an apparent lack of data will not be taken into

account for further interpretation.

Differences among the models for prokaryotic and viral

populations. The choice of temperature and Chl-a for model-

ling the abundances of HNA and LNA cells (Fig. 1) confirms the

conclusions of other authors [20,40], that the abundance and

growth of heterotrophic prokaryotes in the Arctic Ocean is limited

by temperature and the availability of DOM, since phytoplankton

is a major source of DOM in the Arctic Ocean. However, if the

reactions to changes in temperature and Chl-a of HNA and LNA

cells are governed by the same mechanisms, the results of the

simulations (Fig. 4A–B) should be similar and the same class of

ANNs should have been able to perform equally well for both

populations. However, the results show that modeling the

abundance of LNA cells using the same input parameters with

an FFW network (r2-spatial; Table S2) would result in a model that

performs much worse than one employing an RBF network

(Table 3). Therefore, although the abundances of HNA and LNA

cells appear to be limited by temperature and the availability of

DOM, the mechanisms governing the response are clearly

different for the two populations (Fig. 4A–B).

Although the literature is not conclusive with respect to the

biological basis of the distinction between HNA and LNA cells

[27,30,33], at least two not mutually exclusive mechanisms might

be responsible for the differences in our models. Assuming that

more abundant prokaryotes such as HNA cells are better

competitors for nutrients, the differences in the models might be

explained by competition between HNA and LNA cells. Also,
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Figure 5. Simulation of the abundance of V1 viruses. The figure shows the abundance of V1 viruses at a depth of (A) 5 m, (B) 50 m, (C) 100 m,
(D) 150 m, and (E) 200 m. The ANN described in Table 3 was used to simulate the abundance of V1 viruses at day lengths ranging from 0–24 hours
and Chl-a from 0.01–0.61 mg L21.
doi:10.1371/journal.pone.0052794.g005
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given that flagellate grazing appears to be negligible in the Arctic

Ocean [22], the primary source of prokaryotic mortality is viral

lysis. Viral infection is dependent on the abundance [12] and/or

activity [48] of suitable hosts. Thus, differences in growth rates and

abundances between the two prokaryotic groups might lead to

differences in viral lysis and differences among our models.

Similar to the models for prokaryotes, the reaction to changes in

depth, day length and Chl-a as the optimal set of input parameters

differed among the models for V1 and V2 viruses (Figs. 5, 6).

Additionally, a FFW network using the same input parameters

modeling the abundance of V1 viruses would not have performed

well when evaluated with the spatial data set (r2-spatial; Table S5).

Likewise, using a RBF network to model the abundance of V2

viruses also resulted in unsatisfactory results with the evaluation

data set (r2-spatial; Table S8). V1 and V2 viruses are distinct

groups of viruses with V1 viruses thought to primarily infect

eukaryotic phytoplankton [38,39]. Thus, it makes sense that Chl-a

was an input parameter for the model of V1 viral abundance, as it

should link V1 viruses to their hosts. More surprising was that V2

viruses, which are assumed to infect mostly prokaryotes, would

have the same input parameters. Nevertheless, changes in depth,

day length, and Chl-a will only indirectly affect the abundance of

V2 viruses, explaining the differences between the models for V1

and V2 viruses. This is consistent with reports that different

marine viral groups distinguished by FCM respond differently to

environmental changes [49].

Ecological significance of input parameters. The simu-

lations using the ANN-based models developed in this study

suggest that small changes in temperature explained most of the

variation, especially for the abundance of HNA cells (Fig. 4). Chl-
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Figure 6. Simulation of the abundance of V2 viruses. The figure shows the abundance of V2 viruses at a depth of (A) 5 m, (B) 50 m, (C) 100 m,
(D) 150 m, and (E) 200 m. The ANN described in Table 3 was used to simulate the abundance of V2 viruses at day lengths ranging from 0–24 hours
and Chl-a from 0.01–0.61 mg L21.
doi:10.1371/journal.pone.0052794.g006
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a, as a surrogate parameter for DOM supply, affected the

abundances of HNA and total prokaryotes, mostly at temperatures

between 21.3 to 20.3uC (Fig. 4A and C). Also, the effect of

temperature on the abundances of HNA cells and total

prokaryotes were not only positive as suggested by correlation

analysis [20]. Rather, the abundances of prokaryotes and HNA

cells initially increased with temperature and then decreased again

at temperatures of about 20.7 to 20.3uC. Thus, the model

captured the time-lag between the phytoplankton bloom and the

increase in prokaryotic abundance in surface waters and also the

effect of the subsurface chlorophyll maximum during summer

where temperatures were lower year round [20]. Phytoplankton

constitutes a major source of DOM in the Arctic Ocean [21];

however, the input of DOM due to large rivers [1] in the warmer

season cannot be neglected. Thus, the lack of a positive

relationship between Chl-a and prokaryotic abundance at

temperatures above 20.3uC might indicate that under these

conditions most of the DOM is due to import from terrestrial

sources. Nevertheless, the models are not well constrained at

temperatures above 20.3uC (Fig. 3A) so that the model

predictions above this temperature need to be considered

cautiously.

In the Arctic Ocean, the abundance of viruses increases with

increasing prokaryotic abundance as a consequence of phyto-

plankton production [17,20,21]. Thus, it is not surprising that Chl-

a was picked as one of the input parameters for models of viral

abundance (Figs. 5, 6, 7). Additionally, viral abundance generally

declines with depth, an effect that was also captured by our

models. However, day length was an unexpected choice as one of

the input parameters for the models of viral abundance, although
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Figure 7. Simulation of viral abundance. The figure shows total viral abundance at a depth of (A) 5 m, (B) 50 m, (C) 100 m, (D) 150 m, and (E)
200 m. The ANNs described in Table 3 were used to simulate the abundances of V1 and V2 viruses at day lengths ranging from 0–24 hours and Chl-a
from 0.01–0.61 mg L21. Total viral abundance was computed by summing the simulated abundances of V1 and V2 viruses.
doi:10.1371/journal.pone.0052794.g007
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most of the variability in the abundance of viruses was explained

by Chl-a and depth with the exception of surface waters.

Metabolically highly active host organisms sustain high viral

abundances and viral abundance generally scales with the

productivity of the system [15,50]; hence, the choice of day length

is likely because phytoplankton production depends on light. The

effect of changes in day length and Chl-a on the abundance of V1

viruses appears to be direct since phytoplankton are the probable

hosts for this group of viruses. However, the effects of changes in

day length and Chl-a on the abundance of V2 viruses, mostly

infecting prokaryotes, is likely an indirect effect via the release of

DOM from phytoplankton.

Critical evaluation of the modeling approach
The biggest strength of ANNs is their high parallelism, that is

the number of hidden units for FFW networks or number of basis

functions in the case of RBF networks, making ANNs relatively

immune to outliers in the data. However, this strength can be the

biggest problem if the objective is to seek models with a high ability

to generalize based on new data [41]. Thus, ANNs can be made to

fit any kind of arbitrary data simply by increasing the number of

processing units (hidden units, radial basis functions) and training

iterations. However, the result would essentially be a data lookup

table with very little to no predictive value. Thus, we employed

cross-validation to avoid over-training and over-parameterization

of the ANNs. The rationale behind this approach is that an

additional test data set is used during model development. At the

onset of training, the error of the network will decline with every

training iteration, as it does for the training data set that is used to

adjust the network’s parameters. However, when the ANN starts

to memorize the training data, the error for the test data set will

increase, indicating that training should stop. Likewise, over-

parameterized ANNs can be distinguished by comparing the

errors between different ANNs that contain different numbers of

processing units. Initially the error of the trained ANNs will

decline with increasing numbers of processing units but eventually

will increase again, especially for the test data, thus, allowing to

constrain the ANNs to the optimal number of processing units.

Although this strategy should result in well trained ANN-based

models with high generalization ability we used an additional

evaluation data set, comprised of the spatial data (Table 2), to

further evaluate the trained ANNs. The spatial data used to

evaluate the trained ANNs was on average significantly different

from the training data. Thus, the evaluation data further ensured

that only well-trained ANNs with a high ability to generalize were

selected, as indicated by significant (p#0.05) and relevant

(20.5.r2.0.5) r2-values for the linear least-squares regression

analyses between observed and predicted values for the seasonal

and spatial data sets calculated for all ANN-based models (Table 3).

Also, the fit between observed and predicted values for the

seasonal and spatial data for all ANN-based models was

statistically indistinguishable from one-to-one, indicating successful

model development (Figs. 1, 2). Nevertheless, the scatter of the

data around the regression lines was higher for the spatial data set

as indicated by the lower r2-values compared to the seasonal data

set (Figs. 1, 2, Table 3). This indicates that although the ANN-

based models’ performance when confronted with new data is

good, and better than the SMLR models (Tables 3, 4), the ability

to generalize comes at a performance cost. This is particularly

evident when the ANN-based models predicted negative abun-

dances for prokaryotes and viruses at specific values of the input

parameters (Fig. 1B, Fig. 2B, Fig. 5). The ANNs were not forced to

predict only positive values, and the linear least squares regressions

were not forced through the origin (Figs. 1, 2); thus, at very low

abundances and/or combinations of input parameters that were

not found in the environment, the ANN-based models sometimes

predicted negative abundances.

In principle, the developed ANN-based models might also be

useful to predict changes in prokaryotic and viral abundances as

the Arctic Ocean warms. However, model outputs depended on

two (HNA, LNA) and three (V1, V2) input parameters and ANNs

for viral abundances were independent of temperature as an input

parameter (Table 3). Since warmer waters in the Arctic Ocean will

likely also have an effect on Chl-a and the models are not well

constrained for high temperatures (Fig. 3A), such predictions need

to be interpreted cautiously.

Summary and conclusions
The data in Payet and Suttle [20] detailed seasonal and spatial

changes in the abundances of prokaryotes and viruses in the Arctic

Ocean in the context of environmental data. Based on these data

we demonstrated that it is possible to model the temporal

development of the abundances of prokaryotes and viruses in

the Arctic Ocean using ANNs and that these models are superior

to SMLR models. The abundances of HNA and LNA cells were

best modeled using temperature and Chl-a as input parameters,

while the best models of V1 and V2 viral abundances used depth,

Chl-a, and day length as input parameters. The models between

the groups of prokaryotes and viruses differed in the ANN classes

used (FFW versus RBF networks, respectively) and responded

differently to changes in the input parameters. Together, these

results indicate that the mechanisms governing the reaction to

changes in the environment as represented by the respective input

parameters differed among prokaryotic and viral populations.

Thus, the FCM-based distinction between HNA and LNA cells as

well as V1 and V2 viruses appears to be ecologically relevant.

The general trends of decreasing viral abundance with

increasing depth and decreasing productivity of the system were

captured well by the ANN-based models. Since phytoplankton

production depends on light, the combination of Chl-a and day

length appears to represent changes in productivity in the virus

abundance models. In the Arctic Ocean, because phytoplankton

are a major source of DOM [21], Chl-a can be interpreted as a

proxy for DOM supply. The models show that temperature was

the main factor explaining most of the variation in the abundance

of HNA cells and total prokaryotic abundance.

Supporting Information

Figure S1 Schematic description of Artificial Neural
Networks (ANNs). The figure details the network architectures

of feed-forward (FFW) and radial basis function (RBF) ANNs used

in this study. Data is fed into the input units (x1...xn) and

transmitted along the weights to the hidden layer. The activation

function for hidden units of FFW ANNs was the sigmoid function

(s) and for RBF ANNs the gaussian function was used. The output

of the ANNs (ŷ) is compared to the known target values (y) and the

difference is computed as the root-mean-squared error (RMSE).

Bias terms are omitted for simplicity.

(PDF)

Table S1 Feed-forward artificial neural network (FFW)-
based models of the abundance of HNA cells. The table

gives the input parameters, the number of hidden units, and the

root-mean-squared error of the networks (RMSE) summed up for

the training and test data set at convergence of the training

procedure. Additionally, the coefficient of determination (r2), the y-

axis intercept, and the slope (k) of the linear least-squares

regression analysis between observed and predicted values
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computed for the combined training and test data set as well as for

the spatial data set are shown.

(PDF)

Table S2 Feed-forward artificial neural network (FFW)-
based models of the abundance of LNA cells. The table

gives the input parameters, the number of hidden units, and the

root-mean-squared error of the networks (RMSE) summed up for

the training and test data set at convergence of the training

procedure. Additionally, the coefficient of determination (r2), the y-

axis intercept, and the slope (k) of the linear least-squares

regression analysis between observed and predicted values

computed for the combined training and test data set as well as

for the spatial data set are shown.

(PDF)

Table S3 Radial basis function artificial neural network
(RBF)-based models of the abundance of HNA cells. The

table gives the input parameters, the number of basis functions,

and the root-mean-squared error of the networks (RMSE)

summed up for the training and test data set at convergence of

the training procedure. Additionally, the coefficient of determina-

tion (r2), the y-axis intercept, and the slope (k) of the linear least-

squares regression analysis between observed and predicted values

computed for the combined training and test data set as well as for

the spatial data set are shown.

(PDF)

Table S4 Radial basis function artificial neural network
(RBF)-based models of the abundance of LNA cells. The

table gives the input parameters, the number of basis functions,

and the root-mean-squared error of the networks (RMSE)

summed up for the training and test data set at convergence of

the training procedure. Additionally, the coefficient of determina-

tion (r2), the y-axis intercept, and the slope (k) of the linear least-

squares regression analysis between observed and predicted values

computed for the combined training and test data set as well as for

the spatial data set are shown.

(PDF)

Table S5 Feed-forward artificial neural network (FFW)-
based models of the abundance of V1 viruses. The table

gives the input parameters, the number of hidden units, and the

root-mean-squared error of the networks (RMSE) summed up for

the training and test data set at convergence of the training

procedure. Additionally, the coefficient of determination (r2), the y-

axis intercept, and the slope (k) of the linear least-squares

regression analysis between observed and predicted values

computed for the combined training and test data set as well as

for the spatial data set are shown.

(PDF)

Table S6 Feed-forward artificial neural network (FFW)-
based models of the abundance of V2 viruses. The table

gives the input parameters, the number of hidden units, and the

root-mean-squared error of the networks (RMSE) summed up for

the training and test data set at convergence of the training

procedure. Additionally, the coefficient of determination (r2), the y-

axis intercept, and the slope (k) of the linear least-squares

regression analysis between observed and predicted values

computed for the combined training and test data set as well as

for the spatial data set are shown.

(PDF)

Table S7 Radial basis function artificial neural network
(RBF)-based models of the abundance of V1 viruses. The

table gives the input parameters, the number of basis functions,

and the root-mean-squared error of the networks (RMSE)

summed up for the training and test data set at convergence of

the training procedure. Additionally, the coefficient of determina-

tion (r2), the y-axis intercept, and the slope (k) of the linear least-

squares regression analysis between observed and predicted values

computed for the combined training and test data set as well as for

the spatial data set are shown.

(PDF)

Table S8 Radial basis function artificial neural network
(RBF)-based models of the abundance of V2 viruses. The

table gives the input parameters, the number of basis functions,

and the root-mean-squared error of the networks (RMSE)

summed up for the training and test data set at convergence of

the training procedure. Additionally, the coefficient of determina-

tion (r2), the y-axis intercept, and the slope (k) of the linear least-

squares regression analysis between observed and predicted values

computed for the combined training and test data set as well as for

the spatial data set are shown.

(PDF)

Text S1 A short introduction to Artificial Neural
Networks (ANNs).
(PDF)
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