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Abstract

Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at
copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most
resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base
population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the
most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest
that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of
controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association
between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the
most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions
with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation.
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Introduction

Although vector-borne diseases account for approximately one-

sixth of the global human disease burden [1,2], we still lack

effective drugs and vaccines for many of these diseases. Even when

effective drugs are available, high-risk populations often cannot be

adequately treated due to a lack of funding and infrastructure in the

heavily impacted countries [1,3]. Therefore, in the absence of

vaccines, eradication efforts that include both drug therapy and

vector control can be the most effective approach [4]. Vector control

methods most often utilize chemicals for eradication [1,4]. This

approach has obvious drawbacks because it results in habitat

degradation and risk of human exposure to pesticides. Also, recurrent

pesticide application is often necessary because it is nearly impossible,

with a single treatment, to completely remove all possible vector

individuals from an epidemiologically relevant site [5].

Recent advances in understanding the genetics of host-parasite

interactions have led to increased interest in driving resistance

genes into susceptible vector populations [6–11]. In this context,

the term ‘‘resistance’’ describes a continuously varying trait we

define as the probability of becoming infected after being

challenged by a parasite, rather than to mean the absolute

inability to become infected (i.e. a population or genotype can

have high or low average resistance). Making vector populations

more resistant to infection could be a better long-term solution and

an ecologically safer way of breaking transmission cycles.

Unfortunately, this approach faces major population-genetic

hurdles. A non-exhaustive list includes: (1) genotype-by-environment

(GxE), where the performance of a gene or gene(s) of interest depends

on environmental conditions such that interactions can affect how a

resistance gene performs in the field versus in the lab [12–16], (2)

parasites and hosts are genetically more variable in the field, and

there can be interactions between host genotypes and parasite

genotypes (genotype-by-genotype (GxG) interactions; [16–19]), (3)

genetic background can influence how a resistance gene performs in

a natural versus a lab population. In other words, the gene of

interest may perform differently depending on the genomic context

in which it is interacting (epistasis), and (4), there may be a cost of

resistance such that natural selection in the absence of parasites

favors the ‘‘wild-type’’ alleles that we wish to replace.

Cost of resistance may be a particularly vexing problem for

resistance-gene introduction programs. Such costs have been

demonstrated in many host-parasite systems (reviewed in [20–26]).

Nevertheless, costs of resistance are not universal [8,27–31], and

they may be context dependent (e.g. revealed only in stressful

environments; [12,32–36]). Costs of resistance presumably involve

a reallocation of metabolic resources between one or more of the

following life-history components: reproduction, growth, and

somatic maintenance/immune function [24,26,37,38]. Also, the

severity of the cost should depend on the particular mechanism of

resistance [29,39]. For example, it was predicted that mechanisms

involving over-expression of particular genes might be among the

most costly [39].

This study was designed to measure costs of resistance and

epistatic effects of genetic background associated with a single

locus in Biomphalaria glabrata, a snail vector of the human pathogen

Schistosoma mansoni. Schistosomiasis is responsible for approximate-
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ly 200,000 deaths yearly, with 200 million people infected

worldwide [40–42]. B. glabrata is a facultative, hermaphroditic

freshwater pulmonate snail that occurs throughout much of the

New World tropics [43–45]. The B. glabrata/S. mansoni system is a

well-established model for investigating host-parasite interactions

in a controlled laboratory setting [46].

Resistance to S. mansoni infection in B. glabrata is highly heritable

in many lab and field populations, and is almost certainly

controlled by multiple loci [47–52]. The expression patterns of

known immune-related genes have been found to differ between

individuals from more resistant and less resistant strains when each

is challenged with the same strain of parasite [53–59]. However, to

date only a single locus has been identified at which allelic

variation clearly associates with resistance to the parasite: copper-

zinc superoxide dismutase (sod1) [60,61]. SOD1 is a ubiquitous

protein involved in several cellular functions including signaling

and immune response [62–65]. Among the various functions of

SOD1, it catalyzes the reduction of highly reactive superoxide

(O2
2) to hydrogen peroxide (H2O2). Hydrogen peroxide is a

known cytotoxic component of the oxidative burst, which is the

primary defense mechanism for parasite clearance in molluscs

[46,66,67]. When a schistosome invades a snail, hemocytes

surround the invading parasite and are thought to generate

H2O2 as part of the killing mechanism [46,66,68]. Consistent with

this hypothesis, increased H2O2 production was correlated with

the difference in resistance between snails from the M-line strain

and the more resistant 13–16-R1 strain [46,68]. An sod1 allele

present in the 13–16-R1 strain was over-expressed relative to the

other alleles, and correlated with a more effective defense against

parasite infection [46,61,69]. More recently, Moné et al. [70]

demonstrated a correlation between the ability of certain strains of

B. glabrata to produce reactive oxygen species and the anti-oxidant

defenses of their respective compatible S. mansoni strains. Thus, loci

involved in the oxidative burst, such as sod1, may be very

important in the evolution of schistosome-snail interactions.

Therefore, sod1 is a promising candidate locus for driving

resistance alleles into susceptible natural populations of snails.

Although sod1 seems a favorable candidate for genetic

manipulation of snail populations, there are two reasons why

one might expect a cost of resistance associated with the allelic

polymorphism at sod1. First, increased expression of any gene is

likely to be costly [39]. Second, increased expression of sod1 might

incur a cost due to increased oxidative stress on the host [71,72].

Therefore, investigating the fitness costs associated with allelic

variation at sod1 is an important first step in evaluating the

potential use of sod1 for creating highly resistant vector populations

in the field.

Methods

Study population
We used a population of the 13–16-R1 strain of B. glabrata that

has been maintained as a large population (hundreds) in C.J.

Bayne’s lab at Oregon State University since the mid-1970s. The

13–16-R1 strain was reportedly created by crossing highly

resistant strains of snails isolated from Brazil and Puerto Rico

[47] but it has been in culture for so long in so many laboratories

that its history is not entirely clear. Our population has been

maintained in the absence of parasite exposure, and therefore

under relaxed selective pressure in regards to resistance to S.

mansoni. B. glabrata is a facultative self-fertilizing hermaphrodite

such that snails will preferentially outcross when given access to a

mate, but when isolated will usually reproduce through self-

fertilization (e.g. [73–75]; our laboratory population is in Hardy-

Weinberg Equilibrium for sod1 and microsatellite loci: [61,69];

unpub. data). We recently created 52 inbred lines: we started with

haphazardly picked juvenile snails and completed three genera-

tions of selfing using a single offspring from each self-fertilization

event to begin the next generation. The inbred lines are mostly

fixed for one of three alleles of sod1 A, B and C, as described in

[61]. These lines also vary substantially for resistance within each

sod1 genotypic class (AA, BB, and CC). That there are highly

resistant and highly susceptible lines within each sod1 class suggests

that other loci besides sod1 have a large effect in determining

resistance. These inbred lines can be used to compare directly the

fitness effects of carrying a specific genotype at sod1 and the effects

of genetic background on the association between resistance and

sod1 genotype.

Breeding scheme
Several inbred lines were used to create three outbred F2

populations, each of which was segregating for the B and C allele

(Figure 1). We hereafter refer to these three F2 populations as

‘‘genetic backgrounds’’ because we wanted to know if the

phenotypic effects of variation at sod1 depend on the genomic

context in which those alleles are expressed. These F2 individuals

were then used to evaluate the effects of sod1 allele on life history

traits and resistance. Inbred lines were chosen so that the three

populations differed in average resistance. BB and CC fixed lines

were chosen because the B allele confers the highest resistance and

the C allele the lowest [61]. Additionally, in hemocytes (the defense

cells) the B allele is constitutively over-expressed relative to the

other two alleles [69]. To create the three F2 populations, we

paired an individual from an inbred line fixed for the B allele with

an individual from an inbred line fixed for the C allele (BB6CC),

which resulted in offspring that were heterozygous at sod1 (BC).

Three unique BB and CC inbred lines were used, and each cross

was completed in triplicate with unique individuals (n = 9 crosses).

To compare directly the effects of carrying the BB and CC

genotypes within a family and among different backgrounds, we

paired heterozygous offspring from each initial cross with a

heterozygous individual from a different initial cross using a

factorial design. This resulted in three different F2 populations of

outbred individuals that had the same sod1 genotypes, but in

different genetic backgrounds (Figure 1). The F2 individuals in

Author Summary

Driving resistance genes into vector populations remains a
promising but underused method for reducing transmis-
sion of vector-borne diseases. Understanding the genetic
mechanisms governing resistance and how resistance is
maintained in vector populations is essential for the
development of resistant vectors as a means of eradicating
vector-borne diseases. We investigated the utility of one
gene (cytosolic copper-zinc superoxide dismutase - sod1)
for driving resistance associated alleles into populations of
the snail Biomphalaria glabrata, a vector of the trematode
parasite of humans, Schistosoma mansoni. Under con-
trolled laboratory conditions we found no evidence for
costs of resistance associated with carrying the most
resistant allele at sod1 (in terms of growth, fecundity, or
mortality). However, we did find a strong effect of genetic
background on how strongly sod1 genotype influences
resistance. Thus, epistatic interactions with other loci may
be as important a consideration as costs of resistance in
the use of sod1 for vector manipulation in the field.

Fitness Effects of sod1 Genotype in B. glabrata
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each of the three populations carried the BB, BC and CC genotypes

in the expected (1:2:1) Mendelian ratios (sod1 genotypes were

verified by sequencing). We used these F2 individuals to test the

effects of sod1 genotype on fecundity, growth and resistance in

each of the three genetic backgrounds. Our three populations

(genetic backgrounds) differed in overall resistance (77.8%, 63.8%,

and 38.9%), which strongly correlated with the resistance of their

grandparents (the original inbred lines) (Figure 2).

Resistance
For each F2 population (genetic background), a total of 72

individuals were haphazardly chosen from a pool of offspring from

the final set of crosses. We exposed single juvenile snails (4–5 mm

diameter) to five S. mansoni strain PR-1 miracidia in 3 mL of

artificial spring water (ASW; [76]) for two hours at 26uC, in 12-

well culture plates. The PR-1 strain has been maintained in Syrian

hamsters and the M-line (Oregon) strain of B. glabrata snails by the

Bayne lab for 36 years. Challenged individuals were then reared in

moderately dark tubs in groups of 24, with three replicate tubs for

each background (n = 72). We examined the snails for infection at

six, nine, and eleven weeks (we rarely see shedding after 11 weeks).

Each examination week we induced cercarial shedding (parasite

emergence) by exposing snails individually in 3 mL of ASW to

direct fluorescent light for two hours at 26uC in 12-well culture

plates. The presence of cercarial shedding indicated a positive

infection. Infected snails were preserved in 95% ethanol (EtOH),

and non-infected snails were returned to rearing tubs after each

assay. After the final cercarial shedding attempt (eleven weeks) we

preserved the remaining snails, and all tissue samples were

processed for sod1 genotyping (described below in ‘Molecular

Methods’ section). Resistance to parasite infection was scored in

each tub group as the percentage of snails that did not shed

cercariae by eleven weeks post-challenge. Snails that died prior to

shedding assays were excluded from the experiment. Average

mortality observed from the parasite challenge ranged from 8–

12% among tubs, and did not differ among genetic backgrounds

(One-way ANOVA, p = 0.442).

Growth
We collected single egg masses (n = 58) from Styrofoam

substrate within 48-hours of egg mass deposition from individual

pairs of the final set of crosses (i.e. embryos in the eggs are F2s).

The single egg masses were reared individually and allowed to

hatch. We measured offspring size (diameter of the shell) twelve

weeks after egg mass deposition. All snails were then preserved in

95% ethanol for subsequent sod1 genotyping. Clutch sizes (the

numbers of eggs/embryos in single egg masses) ranged from 2 to

34 (n = 58). Initial analysis revealed that average offspring size was

correlated with clutch size, (adjusted R2 = 0.363, P,0.001)

suggesting a strong density-dependent effect of number of snails

per bowl on growth (same effect across all genetic backgrounds).

Therefore, we restricted our analysis of effects of sod1 genotype to

the offspring of clutch sizes between 13–17 eggs/embryos (there

was no association between clutch size and snail size within that

limited range of clutch sizes; adjusted R2 0.001, P = 0.28). We

compared snail growth from 3–4 clutches in each genetic

background (background 1: n = 45, background 2: n = 57,

background 3: n = 58).

We also measured growth (shell diameter) in snails that were

raised individually for 32 weeks as part of the egg production and

hatch success experiments described below (hereafter referred to as

‘‘late growth’’ compared to the ‘‘early growth’’ measures described

in the above experiment).

Fecundity
As in the growth study, we collected egg masses from individual

pairs of the final crosses (i.e. the F2 offspring). From each

population, we haphazardly chose 50 sexually immature offspring

(4–5 mm shell diameter). Each snail was reared singly and a

portion of a tentacle was excised to determine its sod1 genotype.

We then randomly chose ten juveniles of each genotype (BB, BC,

and CC) from each set of 50 genotyped snails, and reared them

individually for subsequent fecundity comparisons (i.e. n = 30 per

Figure 1. Breeding scheme for generating F2 populations with
different genetic backgrounds. We created F2 populations by
crossing inbred lines (3 generations of selfing) that were fixed for BB or
CC genotypes. F1 offspring from unique inbred line crosses (fixed for
the BC genotype) were then bred to generate outbred F2 populations
that were segregating for BB, BC, CC genotypes in the expected
Mendelian ratio. This was done three times to generate three different
genetic backgrounds that differ in average resistance.
doi:10.1371/journal.pntd.0001701.g001

Figure 2. Resistance of genetic background as a function of
average resistance of grandparental inbred lines. Mid-grandpar-
ent resistance was estimated by averaging the resistance of the four
inbred, grandparental lines (determined previously). The resistance of
each genetic background (Grand-offspring resistance) was estimated by
parasite challenges done in triplicate (n = 2463) for each background
(N genetic background 1, m genetic background 2, and & genetic
background 3).
doi:10.1371/journal.pntd.0001701.g002
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genetic background). Because B. glabrata is a facultative self-

fertilizing hermaphrodite, we provided a mate to each snail prior

to measuring egg production and hatch success to ensure offspring

were not the result of selfing (because inbreeding depression is

expected to affect egg survival). We chose to mate the genotyped

individuals with snails from an isogenic inbred population to keep

consistent the relative contribution of the ‘‘male-acting’’ snail to

egg production. The isogenic inbred individuals were from a

population of inbred M-line strain of B. glabrata established at the

University of New Mexico through 32 generations of selfing (Si-

Ming Zhang pers comm.). Because the M-line and F2 offspring look

morphologically similar, we marked the M-line snails with a white

dot using nail polish 24 hours prior to mating.

All snails were individually reared until reproductively active, as

determined by the presence of well-formed egg masses containing

developing embryos. B. glabrata preferentially use allosperm for

fertilization and store sperm for up to 10 days [74]. Consequently,

each snail was paired with a size-matched, painted, inbred M-line

individual for one week, then separated and allowed to lay eggs for

one week in a new cup. These eggs were thus presumably fertilized

by allosperm, even though layed in the absence of a partner [73–

75]. Egg numbers were counted at the end of each 1-week laying

period, after which snails were re-paired with a different mate. We

continued the mating/laying schedule for ten weeks, resulting in

five one-week accumulated egg production measurements from

each snail. We present the sum of the five one-week egg

accumulation measures as the total egg production for each snail

over five weeks.

Hatch success
We examined egg hatch success in the same set of genotyped

individuals in which we surveyed egg production. Each snail was

paired with a size-matched painted inbred M-line individual for

48 hours, and then isolated in a new cup. Two egg masses from

each snail were carefully collected 72 hours post-transfer and

reared individually (n = 180). Egg masses were surveyed for total

egg count upon collection, and final hatch counts were conducted

six weeks later. Hatch success (percent of eggs hatched at six

weeks) from the two egg masses was averaged for each snail.

Mortality
In addition to measuring egg production and egg hatch, we also

monitored mortality at eight and twelve months in the same set of

F2 snails used for the egg production and hatch success

experiments. Mortality was measured as percent of individuals

from each sod1 genotype alive at the time of census for each

genetic background.

Snail rearing conditions
All snails were reared in an environmentally controlled room

kept at 26uC and on a 12 hr day/12 hr night light cycle with full

spectrum light. Snails were fed green leaf lettuce ad libitum

throughout all experiments. In experiments other than those in

which we measured resistance, egg masses and snails were reared,

mated, and maintained in 500 mL cups with 300 mL of ASW.

Complete water changes were carried out weekly. When

generating the three different populations (i.e. the three different

genetic backgrounds) for the fecundity experiments, the egg masses

(and offspring) were reared in 2 L of ASW in aerated, lidded 1-

gallon, clear plastic boxes (IRIS, USA). The egg masses monitored

in the hatch success experiment were reared in petri-dishes

(100615 mm) with 5 mL of ASW. Finally, in the resistance assay

we reared exposed snails in moderately dark, lidded 3-gallon

plastic tubs (Dark Indigo Rubbermaid Roughneck boxes). Each

contained 7.5 L of aerated dechlorinated water supplemented with

10 mL of calcium carbonate shell hardening solution (30 mg

Ca++/L). Half of the water was changed with dechlorinated water

between each infection assay.

Molecular methods
We extracted genomic DNA from snail head foot tissue

following the CTAB protocol [77], and used chelex extraction

methods for tentacle tissue. sod1 genotype was determined using

fragment analysis on an ABI 3730 capillary sequencer following

amplification with AmpliTaq (Applied Biosystems, Inc.) (F-(VIC) -

TCA TTG GTC GCA GCT TAG TG, R - GTC CTG TCA

TGT AGC CAC CA). The B and C alleles are differentiated by a

two base-pair (bp) insertion/deletion in the fourth intron that is

fully resolved by the capillary system (the full sequences for the

fourth intron are available for the B and C allele on NCBI

GenBank from [61]). Sequence analysis of a subset of samples

corroborated fragment analysis methods. Fragment analysis peaks

were visualized using GENOTYPER (Applied Biosystems, Inc.),

and sequence data were analyzed using SEQUENCHER

(GeneCodes, Inc.).

Statistical methods
Data were assessed for normality (Shapiro-Wilk) and equal

variance. To examine the effects of genetic background on the

association between carrying the B allele and resistance to parasite

infection we used generalized linear models (logit function) to

compare resistance (coded as a binomial response for each snail,

infected = 1, not infected = 0) among genetic backgrounds and sod1

genotypes. We used regression coefficients from individual logistic

regressions to quantify the relative effect sizes of substituting one

allele for another in each of the genetic backgrounds. We

compared fitness measures (growth rate, egg production, and

hatch success) among genetic backgrounds and genotypes using

two-way ANOVAs and Tukey post-hoc tests. For mortality we

used generalized linear models (logit function, surviving snail at

time of census = 1, dead snail = 0). No transformations were

needed to normalize any of these data. We defined significance at

the level of alpha = 0.05. For data analyses, we used the statistical

packages SPlus version 8.1 for Windows (TIBCO Software, Inc)

and SigmaPlot for Windows version 11.0 (Systat Software, Inc).

Results

Resistance
We found main effects of genotype and genetic background,

and a background-by-genotype interaction (logit GLM; back-

ground: P = 0.09, genotype: P = 0.003, background6genotype:

P = 0.022). As expected, the B allele was most protective.

However, the strength of the association between sod1 genotype

and resistance to infection depended on genetic background. The

association was strongest in genetic background 1 and there was a

similar but non-significant trend in background 2. In contrast,

allelic variation at sod1 explained little of the variance in resistance

in background 3 (Figure 3). Substituting a B allele for a C allele

decreased the odds of infection by 6.2 in genetic background 1,

and by 2.5 in genetic background 2 (logit GLM; P = 0.0027 and

0.0477, respectively). In genetic background 3 there was no

significant additive effect. Thus, the effect of allelic variation at

sod1 on resistance to infection was most important in predicting

infection in the genetic background having high average

resistance, and was largely irrelevant in the low-resistance genetic

background.

Fitness Effects of sod1 Genotype in B. glabrata
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Growth
With regard to early growth (size at 12 weeks), we found

significant main effects of genetic background and sod1 genotype,

but no interaction effect. Surprisingly, individuals with the CC

genotype were smaller, on average, than those with BB and BC

genotypes (two-way ANOVA; background: F2,151 = 11.07,

P,0.001; genotype: F2,151 = 8.11,P,0.001; background6gen-

otype: F4,151 = 0.68, P = 0.991) (Figure 4A). Thus the B allele

was associated with faster growth and appeared almost completely

dominant to the C allele for this trait (Figure 4A).

For late growth (size at 32 weeks), we again found significant

main effects of genetic background and genotype, and no

interaction (two-way ANOVA; background: F2,75 = 39.8,

P,0.001; genotype: F2,75 = 3.68, P = 0.030; background6gen-

otype: F4,75 = 1.54, P = 0.20). The CC individuals were still smaller

than the BC and BB individuals, and the B allele appeared to act

dominantly (Figure 4B).

Fecundity and hatch success
In regard to egg production, we found a main effect of genetic

background, but no main effect of sod1 genotype and no significant

interaction (two-way ANOVA; background: F2,73 = 6.11,

P = 0.0035; genotype: F2,73 = 0.533, P = 0.59; background6gen-

otype: F4,73 = 0.472, P = 0.756). The BB genotype had the lowest

estimated fecundity in genetic backgrounds 1 and 2, but the CC

genotype had the lowest in background 3 (Figure 4C). However,

we examined only 10 individuals per genotype within each genetic

background, and thus had low power to detect all but strong main

or interaction effects, as evidenced from a post-hoc power analysis.

Our calculated effect size for the main effect of genetic background

was 0.432, while effect sizes for the main effect of genotype and

interaction were only 0.15 and 0.17, respectively. Additionally, our

calculated power was 0.95 for the main effect of genetic

background but only 0.22 and 0.27 for the main effect of genotype

and for the interaction, respectively. Thus, an effect of sod1

genotype on fecundity would have had to be much stronger than

observed to be detected with our sample sizes.

Average hatch success across all genetic backgrounds was 49%,

and varied from 35% to 62% among genotypes (Figure S1). We

did not find a significant main effect of genetic background or

genotype on hatch success (two-way ANOVA; background:

F2,60 = 0.47, P = 0.62; genotype: F2,60 = 1.52, P = 0.23; back-

ground6genotype: F4,60 = 0.99, P = 0.42). Thus, the B allele does

not incur an obvious fitness cost associated with egg production

(Figure 4C) or offspring hatch success. We note that although our

average hatch rate of 49% is on the low side of rates reported in

the literature, it is not unusually low (e.g. [78]).

Mortality
At the 8-month census we found significant main effects of both

genetic background and genotype on mortality (logit GLM,

background: P = 0.002, genotype: P = 0.04), but no interaction

(drop-in-deviance test, P = 0.19). CC individuals exhibited greater

mortality, averaging 37% across genetic backgrounds, whereas BB

and BC average 17% and 13% respectively (Figure 4D).

At 12 months we again found a significant main effect of genetic

background, but the genotype effect was no longer significant (logit

GLM, background: P = 0.02, genotype: P = 0.18), and there was

no interaction (drop-in-deviance test, P = 0.39). These results

suggest there is no cost to having the B allele in terms of increased

mortality, and a possible advantage in early survival (Figure 4E).

Discussion

In this study we considered the utility of a resistance-associated

locus, cytosolic copper-zinc superoxide dismutase (sod1) in

Biomphalaria glabrata, for vector-mediated control of Schistosoma

mansoni. We looked for evidence of fitness costs in growth rate and

reproduction. We also tested for epistatic effects of genetic

background by assessing influence of the B and C alleles on

resistance and on life history traits.

The effect of sod1 on resistance depends on other loci in
the genome

The association between allelic variation at sod1 and resistance

to infection varied substantially among genetic backgrounds. The

three genetic backgrounds differed in average resistance (78%,

64%, and 39%; Figure 2). sod1 genotype was most predictive in the

genetic background having the highest average resistance, and had

a negligible effect in the genetic background having the lowest

average resistance (Figure 3). Thus, sod1 appears to interact

epistatically with other genes that influence resistance, a result that

Figure 3. Effects of genetic background and sod1 genotype on resistance to infection. Graphs illustrate the average resistance of each
genotypic class within each background after a challenge with five PR-1 S. mansoni miracidia. Resistance means are the averages of three replicates
(tubs starting with n = 24 snails each). Error bars represent 16SE (background 1: n = 55 (BB = 10, BC = 36, CC = 9), background 2: n = 63 (BB = 8, BC = 39,
CC = 16), background 3: n = 63 (BB = 14, BC = 35, CC = 14)). There were significant main effects of genetic background, genotype, and interaction
between genetic background and sod1 genotype. (See text for statistical analyses.)
doi:10.1371/journal.pntd.0001701.g003
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might help us identify those other loci. That there are other

resistance loci segregating in the 13–16-R1 population is evident

because inbred lines having identical sod1 genotypes vary

substantially in resistance (Bender and Larson, unpublished

observations). Through gene expression studies, several other loci

have been identified in B. glabrata as being potentially immune

relevant [53–59], and various physiological differences have been

noted between snail strains having high or low resistance to

trematode parasites (reviewed in [67]). However, candidates that

seem particularly likely to interact with sod1 as observed here

include loci encoding proteins involved in non-self recognition and

loci that control other steps in the oxidative burst pathways.

Recognition loci are suggested because, as part of the effector

mechanism used by the host to attack the parasite, sod1 would

come into play only after the parasite has been recognized. Thus,

sod1 genotype would be irrelevant in a low-recognition back-

ground, but very important in a high-recognition background.

Possible recognition loci include lectin-like molecules such as

FREPs [79]. Loci affecting numbers or some other property of

hemocytes might also behave epistatically with sod1 in a similar

manner such that if hemocytes were incompetent (or insufficient in

number) to encapsulate the parasite, their ability to produce H2O2

would be irrelevant.

No evidence for a cost of resistance at sod1
Costs of resistance have been demonstrated in many systems

[21–26]. Even in B. glabrata, there is some evidence that strains

with higher resistance to schistosomes differ from strains with

lower resistance in components of fitness [49,50,80–85]. Further-

more, relative to the A and C alleles, the B allele of sod1 is over-

expressed. The SOD1 protein produces H2O2, a highly reactive

species with the potential to damage host tissue as well as the

parasite [69]. Thus, it would be no surprise to see a cost of

resistance associated with the B allele at sod1. Nevertheless, here

we failed to detect any disadvantage due to the B allele in terms of

reproduction, and observed an advantage over the C allele in

terms of growth rate and survival to 8 months post-hatch (Figure 4).

Furthermore, there were no significant interactions between sod1

genotype and genetic background with regard to life history traits.

It is also interesting that the B allele acted dominantly to the C

allele for growth rate (Figure 3), a result that might be expected if

the difference really results from over-expression of the B allele.

Given our data suggest that the B allele may confer a slight

advantage in terms of growth and early survival, one might

wonder why our population has not become fixed for the B allele.

Possible explanations include: (1) this laboratory maintained

population is not in equilibrium and the selection pressure is not

strong enough to have driven the allele to higher frequency yet (we

have no data on allele frequencies of sod1 at the founding of this

laboratory population); (2) there may be costs to having the B allele

in other components of fitness that we did not measure; (3) perhaps

there are complex interactions among the three major alleles in the

population (A, B, and C) that prevent the B allele from increasing

in frequency (e.g. see p 223–225 in [86]).

Potential use of sod1 for vector manipulation: caveats
and additional questions

We showed the promising result of no obvious cost, and perhaps

a life history trait advantage for the more-resistant allele at sod1.

Obvious caveats include that our experiments were conducted in a

(presumably benign) laboratory setting, and would need to be

replicated under field conditions. Other studies have found that

costs of resistance are more likely to manifest under specific

environmental conditions, such as low food and temperature stress

[12,32,35,36]. Of perhaps greater concern is the strong epistatic

effect on resistance between sod1 and other loci in the genome.

Defeating an attempted infection is a complex process that

involves many steps including recognition, signaling and imple-

menting the effector (killing) mechanisms. SOD1 can participate in

both signaling and effector mechanisms, and the products of many

loci may need to interact properly to sufficiently clear an infection.

Thus, it will be essential to assess the performance of sod1 in the

field and in a variety of other genetic backgrounds.

There are also a number of basic questions, unrelated to those

addressed here, about sod1 and resistance to S. mansoni that need to

be answered before one could seriously consider using sod1 for

vector manipulation in the field. We still need to prove that the

association between resistance and sod1 alleles is actually causal,

and if so, if the protective effect of allele B is really owing to its

overexpression. It is theoretically possible that sod1 is not the actual

causal locus, but is just in strong linkage disequilibrium with a

closely-linked locus that actually controls resistance. This seems

unlikely given the association between sod1 genotype and

resistance was discovered using a functional approach (e.g.

knocking down H2O2 production in B. glabrata hemocytes

increases their susceptibility to infection [66]), but the functional

basis of the association still needs to be proven. Additional work to

test the causality of the association is underway. In the unlikely

event it turns out that another locus is actually causal, then the

results of this study are still quite relevant, but for the new locus of

interest.

We also do not know yet if the effect of sod1 we observed is

generalizable to other populations/strains of S. mansoni. We have

only studied the PR-1 strain of S. mansoni in interaction with the

13–16-R1 population of B. glabrata. It is possible that the protective

effect of sod1 alleles depends on the strain of parasite in addition to

the strain of snail. In a similar vein, we also have no data on if, or

how, sod1 genotype affects resistance to other pathogens. A field

Figure 4. Effect of genetic background and sod1 genotype on life-history traits. (A) Average size by genotypic class within each lineage at
12 weeks after egg masses were deposited. The points represent the averages of the mean size of individuals of each genotype within each of 3–4
cups (containing 13–17 F2 snails per cup). Error bars represent 16SE (background 1: n = 45 (BB = 16, BC = 20, CC = 9), background 2: n = 57 (BB = 16,
BC = 28, CC = 13) background 3: n = 58 (BB = 16, BC = 28, CC = 14)). Snails with the CC genotype grew significantly more slowly than those with BC and
BB genotypes. (B) Average size at 32 weeks of each genotypic class within each lineage. Means are the average of all snails within the genotypic class,
and error bars represent 16SE (background 1: n = 27 (BB = 9, BC = 10, CC = 8), background 2: n = 27 (BB = 9, BC = 10, CC = 8), background 3: n = 30
(BB = 10, BC = 10, CC = 10)). Again, snails with the CC genotype grew significantly more slowly than those with BC and BB genotypes. (C) Average total
egg production for five weeks per snail (each raised individually) by genotypic class within each lineage. Means are the average of all snails within the
genotypic class, and error bars represent 16SE (background 1: n = 25 (BB = 9, BC = 9,CC = 7), background 2: n = 27 (BB = 9, BC = 10, CC = 8), background
3: n = 30 (BB = 10, BC = 10,CC = 10)). (D) Mortality at 8-month census of each genotypic class within each lineage. Data points are estimates of the
percent mortality in each genotypic class and error bars represent 16SE on the proportion (for all backgrounds n = 30 (BB = 10, BC = 10, CC = 10)).
Snails with the CC genotype exhibited significantly greater mortality than those with the BB or BC genotype. (E) Mortality at 12-month census of each
genotypic class within each lineage. Data points are estimates of percent mortality in each genotypic class and error bars represent 16SE on the
proportion (for all backgrounds n = 30 (BB = 10, BC = 10, CC = 10)).
doi:10.1371/journal.pntd.0001701.g004
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population of snails interacts with many pathogens in addition to

S. mansoni, and there could be fitness tradeoffs associated with

other pathogens that render the use of sod1 for vector manipu-

lation ineffective in some environments.

In summary, we have here shown that, in a laboratory setting,

there was no obvious cost to having the most protective allele at

sod1, and perhaps a slight advantage. The generality of this result

will need to be verified in other environments, and for other

components of fitness. We also demonstrated an effect of genetic

background on the association between sod1 genotype and

resistance, a result that points to strong epistatic interactions with

other loci in the genome. Clearly sod1 is not the only locus in the

genome that influences resistance. So perhaps vector manipulation

will require changes at several interacting loci to insure success.

Further work of this sort on sod1 and other resistance-associated

loci will be essential for evaluating the prospects for vector

manipulation as a way to control transmission of S. mansoni.

Supporting Information

Figure S1 Average hatch success of each genotypic class
within each lineage. Means are the average of percent hatch of

two clutches per snail across genotypic class, and error bars

represent 16SE (background 1: n = 17 (BB = 8, BC = 6,CC = 3),

background 2: n = 24 (BB = 9, BC = 8,CC = 7), background 3:

n = 29 (BB = 9, BC = 10,CC = 10)). No effects were significant.

(TIF)
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