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Abstract

When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have
greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called ‘‘length
bias’’, will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene
Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are
not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis
by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the
statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates
with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the
transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership
and the significance of testing differential expression, conditional on the transcript length. We present both real and
simulated data examples to show that the logistic regression approach is simple, effective, and flexible.
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Introduction

RNA sequencing (RNA-Seq) has the potential to enable

simultaneous measurement of expression for all genes expressed

in a cell. Statistical tests [1–3] further enable assessment of

differential expression (DE) of individual genes under different

environmental or experimental conditions. To relate the outcome

of the DE analysis to biological functions, a widely-used approach

is to examine enriched Gene Ontology (GO) categories based on

the terms annotated to the genes identified as DE [4,5]. GO uses a

structured vocabulary to describe functional categories of gene

products. Genes annotated with the same GO term form a gene

category and share a common biological function. The enrich-

ment of a GO term among DE genes can be used to indicate the

association of biological functions to variations in experimental

conditions.

To quantify the enrichment of a GO term, one can dichotomize

results of DE analysis and cross-classify the genes according to

whether they are indicated as DE and whether they are annotated

to the specific GO term. The level of enrichment can then be

assessed using contingency-table-based tests such as the Fisher’s

exact test or the chi-square test (for a summary, see [6]). Table 1

shows an example of testing the enrichment of the GO term

GO:0005575 among DE genes in a prostate cancer dataset (see

the Results section for more details). One unappealing feature of

the contingency-table-based approach is that the numbers of DE

and non-DE genes and, in turn, the GO enrichment test result

depend on the p-value cut-off for declaring a gene as DE. In

Table 1, genes with DE test p-values less than 0.05 are declared as

DE. Figure 1 shows that Fisher’s exact test p-values vary with DE

test p-value cut-offs.

Logistic regression is an alternative GO enrichment analysis

approach that does not require dichotomizing DE test results. For

each gene i, let the binary variable yi indicate the presence (yi~1)

or absence (yi~0) of the gene in the GO category. Denote

pi~ Pr (yi~1), and let xi measure the significance of the DE test

result (e.g., transformation of the DE test p-value). The logistic

regression [7]

logit pi½ �~ log
pi

1{pi

� �
~b0zb1xi ð1Þ

relates the log odds of a gene belonging to a GO category to

the significance of DE tests. A significant positive b1 indicates

that the odds of a gene belonging to this particular category

increase as the significance of DE increases. Sartor et al.

implemented the logistic regression model in the software

LRpath and applied it to enrichment analyses for microarray

expression data [8]. The logistic regression approach is more

flexible than the contingency table approach. First, it is easy to
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include covariates in a logistic regression setting to adjust for

potential confounding factors–such as gene length. Second,

logistic regression allows the use of continuous measures of DE

test significance, which conveys more information than dichot-

omizing DE test results and avoids the nuisance of choosing an

arbitrary cut-off for DE test p-values.

One statistical concern with tests for enriched GO terms,

particularly those based on analysis of RNA-Seq datasets, is that

transcript length can be a confounding factor if it correlates

with both the GO membership and the DE test significance. In

regards to the latter, many existing DE tests have greater

statistical power to detect DE for genes with more reads

mapped to them [1–3]. Since genes with longer transcripts will

have more reads mapped to them than an equally expressed

shorter gene, the statistical power of these DE tests will depend

on transcript lengths. Oshlack et al. refer to the dependence of

DE test power on transcript length as length bias [9]. In the

presence of length bias, subsequent GO enrichment analysis will

have the potential to identify GO categories with a higher

proportion of longer genes. These categories are not necessarily

biologically more relevant.

Young et al. compensated for potential length bias by developing

a weighted resampling strategy based on contingency tables [10].

The basic idea is to estimate the DE test power as a smooth

function of the transcript length and resample genes with weights

inversely proportional to the estimated power of the DE test. For

computational efficiency, the resampling method can be approx-

imated by a test based on the Wallenius non-central hypergeo-

metric distribution. If no length bias is present, the Wallenius

approximation reduces to the Fisher’s exact test, which is based on

a central hypergeometric distribution. Their method is imple-

mented in the Bioconductor package goseq. Gao et al. proposed a

similar method where a different weighting function is used to

compute the non-central parameter of the Wallenius distribution

[11].

The dependencies between the GO terms should also be

considered in the statistical assessment for enrichment of GO

categories. GO terms are organized as a directed acyclic graph

(DAG). In this DAG, parent terms describe more general

functional categories than their child terms [12] and each child

term can have multiple parent terms. Because of this relationship,

a gene, when annotated with a GO term, is automatically

annotated to the term’s parent terms. Furthermore, any gene has

the potential for being annotated with multiple GO terms. Three

distinct categories, biological process (BP), cellular component (CC) and

molecular function (MF), describe the most general biological

functions each having potentially thousands of annotated genes,

while some of the very specialized categories (e.g. inner membrane

complex) may even have no gene products annotated to them.

When a GO term describing a general biological function is

identified as enriched among DE genes, all its offspring–GO terms

describing more specific functions–tend to be enriched as well. As

a result, if we rank the GO terms according to enrichment test p-

values, we tend to see many specific terms at the top of the list,

which may result in potentially misleading interpretation of the

data. To address this issue, Alexa et al. [13] and Grossmann et al.

[14] proposed ‘‘local’’ GO enrichment tests that incorporate the

parent-child relationship among GO terms. The basic idea is to

examine the relative enrichment of a GO term among genes that

are offspring of the parents of the GO term being tested. If a GO

term is enriched only because its parents are, the local GO

enrichment test will not identify it as enriched. The topGO

Bioconductor package [15] implements the method proposed in

[13], and the Ontologizer2 software [16] implements methods

proposed in [14].

In this paper, we describe our development of GOglm, a

logistic regression model that effectively adjusts for length bias

by including transcript length as a covariate. This inclusion

allows one to investigate the direct correlation between the GO

membership and the DE test significance conditional on the

transcript length. We analyzed two public RNA-Seq datasets

and simulated data to show that in comparison to the GOseq

approach, the GOglm method for length bias corrections is

equally effective, but confers the advantages of being more

simple, transparent and flexible. We also show that the

flexibility of GOglm allows one to address dependences in the

GO terms.

Results

Length Bias Correction Using Logistic Regression
We propose to adjust for length bias using logistic regression.

The method is simple and effective, allows the use of continuous

measures of DE test significance, and is flexible to incorporate the

parent-child relationship among GO terms.

Table 1. A typical two-by-two contingency table for testing
enrichment of a GO category.

D �DD Sum

C 1962 9803 11765

�CC 118 709 827

Sum 2080 10512 12592

C: in category;
�CC: not in category;
D: DE genes;
�DD: non-DE genes.
doi:10.1371/journal.pone.0046128.t001

Figure 1. Influence of DE testing p-value thresholds on the
determination of enriched categories. The p-value cut-off for
calling DE genes (x-axis) influences the p-value of subsequent GO
enrichment test (y-axis). Therefore, subjective decisions on declaring DE
genes will make subsequent enrichment results rather unstable.
doi:10.1371/journal.pone.0046128.g001

Length Bias Correction in GO Enrichment Analysis
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Correcting length bias using logistic regression is straightfor-

ward. One includes a measure of gene length, li, as a covariate in

the logistic regression model:

logit pi½ �~b0zb1xizb2li, ð2Þ

where i indexes genes, pi is the probability of a gene belonging to

the specified GO category, and xi measures the significance of the

DE test result. In GOglm, a gene’s length is defined as the median

length of all its corresponding mature transcripts.

The logistic regression model is easy to interpret and makes the

underlying statistical issue more transparent: the fundamental

cause of length bias is that the transcript length becomes a

confounding factor when it correlates with both the GO

membership and the DE test significance. When we include

transcript length as a covariate, the coefficient b1 now captures the

correlation between the log odds of being in the specified GO

category and the DE test significance–conditional on gene lengths.

A significant result from the hypothesis test H0 : b1~0 indicates

that the GO membership is correlated with the DE test

significance even after adjusting for length bias.

The logistic regression method is more flexible than the GOseq

approach. The logistic regression can be used in the contingency

table setting by letting xi be a binary variable indicating whether

gene i is DE or non-DE. In the data examples below, we will show

that the logistic regression method is equally effective in

accounting for length bias as the GOseq approach. But more

generally, the logistic regression model can use continuous

measures of DE significance as explained earlier. In GOglm,

one option is to use xi~ log (1{ log (DEtestp{value)) as the

continuous measure of DE. The inner log transformation helps us

focus attention on the order of magnitude change in p-values. The

outer log transformation will down weigh influence from

extremely small p-values. There are other ways to construct the

significance measure. We discussed earlier that p-values can be

dichotomized, but that will incur loss of information. One can

construct the significance measure based on test statistic values

(usually, the p-value is a monotone function of the test statistic).

Other measures such as log fold change can also be used. We

compared the performance of using different measures of DE in

the section Simulation Studies.

Logistic regression is flexible to incorporate the parent-child

relationship. To test for local enrichment, one fits the logistic

regression using a subset of genes. For example, if the set of all

genes annotated to the direct parents of the GO term is used to fit

the regression model, the results will be similar to the parent-child

union approach in Ontologizer2. In the following section on

RNA-Seq data examples, we analyze the Arabidopsis data and

compare results between GOglm and Ontologizer2.

Most statistical software includes efficient programs for fitting

logistic regression models. We implement GOglm in R [17] and fit

the logistic regression model using the glm function with quasi-

binomial error distribution in order to account for potential over-

dispersions. The function glm uses the iteratively weighted least

squares method (equivalent to Newton-Raphson algorithm for

logistic regression) for estimation of regression coefficients and the

Wald test for hypothesis tests of regression coefficients.

When a GO category contains very few (e.g., fewer than 5)

annotated genes, the enrichment test p-value can be volatile and

the statistical evidence can be unreliable. In GOglm, users have

the option to exclude GO categories with too few genes when

ranking the enrichment test results. Other GO analysis software

such as topGO [15] and LRpath [8] also allow users to filter out

GO categories with small sizes.

RNA-Seq Data Examples
We present results to demonstrate the effectiveness and

flexibility of the GOglm logistic regression method for GO

enrichment analysis. First, we present results from GO enrichment

analysis of the prostate cancer data [18]. Young et al. used this

dataset to validate their GOseq method [10]. We compare the

performance of GOglm and GOseq and demonstrate that the

GOglm method effectively accounts for length bias. Second, we

use GOglm to perform local enrichment test on an Arabidopsis

dataset [3] by examining a GO term’s relative enrichment in the

context of its direct parent(s). The results are compared to results

derived from Ontologizer2 [14].

Prostate cancer data example. The prostate cancer data of

[18] contain RNA-Seq reads that aligned to 49506 genes from

three untreated and four treated cancer samples. It has been

demonstrated that the GOseq method is effective in correcting

length bias in this dataset [10]. We will use this dataset to compare

the performance of GOglm and GOseq.

We used edgeR [1] with a common dispersion estimate to

obtain DE test p-values. The GOseq method was designed for

contingency tables, so for the purpose of comparison, the p-values

were dichotomized–a gene was called DE if the FDR adjusted p-

value (i.e. q-value) was less than 0.05. The same DE results were

then used by GOglm and GOseq for GO enrichment analyses.

As discussed in the Introduction section, length bias becomes a

confounding factor when it correlates with both the response (GO

category membership) and the predictor variable (DE test

significance). To illustrate the prevalence of the correlation

between GO category and gene length, we considered 4249

categories having at least 10 annotated genes and asked what

proportion of these categories showed significant correlation with

gene length. For each GO category, we tested the correlation

between category membership and gene length by comparing

lengths of genes (on log scale) within and out of the category using

Welch’s two-sample t-test. We found the proportion to be 44.7%,

indicating that significant correlation between gene length and

GO category membership is prevalent among GO categories.

In Figure 2, we compare GO enrichment test p-values from the

logistic regression method in GOglm and from the Wallenius

method in GOseq. There is strong correlation (0.854) between the

two sets of p-values, especially for small p-values. In Table 2, we

list the most enriched GO terms identified by GOglm, and all of

them also rank highly on GOseq’s top list.

Figure 3 demonstrates the effect of length bias corrections. We

first ranked the GO categories according to one of the GO

enrichment tests: GOglm, GOseq, or the Fisher’s exact test. We

then divided GO categories into 300 GO groups according to the

average gene length in each category and computed the average

GO enrichment rank in each group. In Figure 3, we plot the

average GO enrichment ranks against the average gene lengths in

the 300 GO groups. Panel B shows that the ranks based on the

Fisher’s exact test–which was not adjusted for length bias–tend to

be more biased towards GO categories with greater average gene

lengths. This trend is less pronounced in panels A and C, where

data were analyzed using GOglm and GOseq, respectively.

Arabidopsis data example. The Arabidopsis data contain

RNA-Seq reads that aligned to more than 25000 genes from two

groups of Arabidopsis samples of size three each. The two groups

were derived from plants inoculated with DhrcC of Pseudomonas

syringae pv tomato DC3000 or 10 mM MgCl2 (mock). Di et al.

performed DE test on this dataset using the NBP negative

binomial model [3]. Cumbie et al. performed local enrichment

analysis on this data using the GORich tool of GENE-Counter

Length Bias Correction in GO Enrichment Analysis
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[19]. The dataset used in this paper comes directly from [3], which

is a subset of the data described in [19].

Here we used the logistic regression in GOglm to perform the

local enrichment analysis and compared the results to those

derived from Ontologizer2. We focused on up-regulated genes

only. Using the R package NBPSeq [20], we performed one-sided

DE test to detect up-regulated genes. The logistic regression

method in GOglm took continuous measures of DE based on the

DE test p-values. In Ontologizer2, DE genes were determined by

two criteria: the log fold-change greater than 0 (up-regulated) and

the DE testing p-value less than 0.05. In the local enrichment tests,

we tested the relative enrichment of a GO term relative to all genes

that were offspring of the direct parents of the GO term being

tested, which corresponded to the parent-child union (PCU)

option in Ontologizer2.

From a total of 3851 categories, GOglm and Ontologizer2

detected 358 and 483 enriched categories respectively (using a p-

value cut-off of 0:1 in the enrichment tests). Among the 358

categories identified by GOglm, 201 (56.1%) categories were also

declared as enriched by Ontologizer2. The two methods also show

high consistency if we focus on the rankings (instead of p-values) of

the GO categories. Figure 4 shows the proportion of overlapping

categories when the same number of top-ranked categories are

selected using each method. Table 3 lists some of the most relevant

categories that were declared as enriched by both GOglm and

Ontologizer2. Categories such as plant defense, differential

expression in response to pathogens, wounding, and/or stresses,

signal perception, transduction, secretion or modification of plant

cell wall were expected. For the complete ranking lists, see the

Supporting Information (Table S1 and Table S2).

Simulation Studies
Simulation I. We developed a simulated dataset to further

clarify the cause of length bias and demonstrate the effectiveness of

our method (GOglm) in correcting the length bias. This dataset

consisted of 10426 genes that were binned into 40 non-overlapping

categories of different sizes. These 40 categories were simulated such

that they varied in the average length of genes, but none of the

categories was significantly enriched with DE genes. (See Materials

and Methods for further details on the simulation setup.).

To demonstrate the efficacy of our method, we analyzed this

simulated dataset using three different methods: 1) a simple logistic

regression without length bias corrections (see equation (1)); 2) the

GOglm method: logistic regression using log gene length as one

additional covariate (see equation (2)); 3) the GOseq method.

In the absence of any length bias corrections, the simple logistic

regression method identified a higher than expected number of

categories with small p-values (false positives; Figure 5). In

contrast, with length bias corrections, both the GOglm and

GOseq methods identified the correct proportions of small p-

values as expected under this simulation. A further examination

comparing the scatter plots of enrichment test statistic values

versus median gene lengths across gene categories provided

Figure 2. Comparison of p-values (on log scale) between
GOseq Wallenius and GOglm. Among 3966 GO terms in the
prostate cancer dataset, GOseq Wallenius and GOglm detected 492 and
486 enriched categories, respectively. Each plus sign denotes one
category.
doi:10.1371/journal.pone.0046128.g002

Table 2. Top 10 enriched categories of the prostate cancer dataset as ranked by GOglm.

Accession Term Onto1 p-value GOglm2 GOseq3 Leng4 Anno5

GO:0005737 Cytoplasm CC 2.30e-13 1 3 2972 6731

GO:0007049 cell cycle BP 9.19e-12 2 2 3260 1044

GO:0000278 mitotic cell cycle BP 1.92e-11 3 1 3288 607

GO:0022402 cell cycle process BP 1.12e-10 4 4 3289 792

GO:0044444 cytoplasmic part CC 1.41e-10 5 6 2882 4872

GO:0022403 cell cycle phase BP 2.16e-9 6 8 3226 653

GO:0000087 M phase of mitotic cell cycle BP 3.59e-9 7 9 3506 303

GO:0000280 nuclear division BP 5.68e-9 8 12 3555 295

GO:0007067 mitosis BP 5.68e-9 9 13 3555 295

GO:0048285 organelle fission BP 8.40e-9 10 16 3516 306

1BP, biological process; CC, cellular component.
2GOglm: category ranks by GOglm.
3GOseq: category ranks by GOseq Wallenius.
4Leng: median gene length (in base pair) within a category.
5Anno: number of annotated genes within a category.
doi:10.1371/journal.pone.0046128.t002

Length Bias Correction in GO Enrichment Analysis
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additional support that the correction methods addressed the

problem of length bias (Figure 6). These scatter plots clearly

revealed that the simple logistic method in the absence of any

length bias corrections favored categories with longer genes

whereas the GOglm method correctly adjusted for the length bias.

Simulation II. We use a second simulation to highlight an

important difference between GOglm and GOseq. We also

compared the performance of using different measures of DE test

significance or different parameterizations of gene length in

GOglm.

Here, we simulated six categories known to be enriched with

equal proportions (15%) of DE genes (versus on average 10% of

DE genes in the other 34 categories). However, we varied the

degree to which the genes were differentially expressed: the DE

genes in category one has the highest fold change whereas those in

category six had the lowest fold change, but were still DE.

We compared the performance of the same three enrichment

analysis approaches as in the previous example. However, with the

GOglm method, we tested different measures of DE significance:

untransformed DE test p-value, log fold change, log-transformed

DE test p-value, log (1{ log (DE test p-value)), and dichotomized

DE p-values (cut-off used was 0.05). We also examined the use of

either lengths or log-transformed lengths as the covariate. We

repeated the simulation 10 times and summarized the average

ranks given to the six known enriched categories by the different

approaches and parameterizations (Table 4). Based on the

simulation results, we make the following conclusions:

1. The GOglm method with { log (p-values) and log-trans-

formed lengths (column 5) as covariates yielded the best

performance: the known enriched categories were ranked

highly and the ranking order reflected the degree of DE. When

untransformed lengths were used with { log (p-values)
(column 6), the performance was very similar, but the average

ranks given to the top two enriched categories were closer,

indicating these two categories were less distinguishable under

this setting.

2. The GOglm method with log fold change and log-transformed

lengths (column 4) as covariates also performed well. Note that

conditional on the mean level (which is proportional to gene

length under this simulation setting), the p-value is a monotone

function of the log fold change. We should also be aware that

fold changes are not available in regression settings (e.g., when

investigating the dependence of expression level on a

continuous covariate).

3. The GOglm method using dichotomized p-values perform very

similar to the GOseq method (columns 9 and 10). Both

methods ranked the known enriched categories highly, but the

Figure 3. The effect of length bias corrections. GO categories are divided into 300 GO groups based on the average gene length in each
category. In each plot, the x-axis represents the average gene length and the y-axis represents the average GO enrichment rank in each of the 300 GO
groups. The Fisher’s exact test (panel B) did not correct for length bias and the enrichment analysis based on this test tended to favor GO categories
with longer average lengths. This is reflected as an obvious downward trend in panel B. The downward trend is less pronounced in panels A and C,
where GOglm (panel A) and GOseq Wallenius (panel C) were used to adjust for length bias. A horizontal line has been added to each plot to facilitate
visual comparison.
doi:10.1371/journal.pone.0046128.g003

Figure 4. Proportion of overlapping categories by GOglm and
Ontologizer2 (PCU). The proportion of overlapping categories (y-
axis) when the same number (x-axis) of top-ranked categories are
selected using GOglm and Ontologizer2 (PCU). As more enriched
categories were included, there were more overlaps (enriched
categories in common) between the two approaches as seen by the
increasing trend and the percentages.
doi:10.1371/journal.pone.0046128.g004

Length Bias Correction in GO Enrichment Analysis
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ranking orders did not reflect the degree of DE. This is as

expected, since using dichotomized p-values retains only

information on whether a gene is DE, not on how much the

gene is DE. This can be viewed as a feature, rather than a

drawback, of using dichotomized p-values, since sometimes it

might be of interest to identify categories with a large number

of DE genes rather than categories with a few extremely DE

genes. Nevertheless, users should be aware of this interesting

difference between using continuous p-values and using

dichotomized p-values.

4. Using the log (1{ log (p)) transformation (columns 7 and 8)

ranked the top 3 enriched categories slightly lower than using

the log-transformed p-values (columns 5 and 6). In our real

data examples, we used the log (1{ log (p)) transformation to

down weigh very extreme p-values. This became unnecessary

for the simulated datasets, since we did not simulate very large

fold changes. Again, we view this as a feature rather than a

drawback. In practice, we recommend the initial use of scatter

plots to help determine which transformations of p-values and

gene lengths are most suitable. One strength of the logistic

regression method is that it allows different choices.

5. When length bias was not corrected (column 2), the logistic

regression method still ranked the three enriched categories

with the highest degree of DE highly, but the average ranks

given to categories 4 and 5 were lower. This indicated that

some non-enriched categories sometimes received higher

rankings. As we now understand, this can happen due to

length bias.

6. Use of untransformed p-values (column 3) gave very poor

performance. The degree of DE significance was not reflected

well on the original scale of untransformed p-values.

Table 3. Partial list of enriched categories identified by GOglm in the Arabidopsis dataset.

Accession Term Onto1 p-value GOglm2 Ontgz3 Leng4 Anno5

GO:0050896 response to stimulus BP 1.20e-19 4 1 1791 4062

GO:0009607 response to biotic stimulus BP 9.66e-15 6 4 1809 643

GO:0009611 response to wounding BP 9.66e-13 11 6 1801 164

GO:0045730 respiratory burst BP 1.78e-7 28 93 1833 6

GO:0009753 response to jasmonic acid
stimulus

BP 1.65e-6 37 18 1604 169

GO:0005886 plasma membrane CC 3.28e-6 41 28 1996 1763

GO:0006952 defense response BP 5.90e-5 58 39 1940 763

GO:0052482 defense response by cell
wall thickening

BP 3.44e-4 69 119 2537 15

GO:0004568 chitinase activity MF 6.50e-4 78 45 1104 17

GO:0009867 jasmonic acid mediated
signaling pathway

BP 1.21e-3 90 150 1711 44

Top 358 and top 483 categories are declared as enriched by GOglm and Ontologizer2 (PCU), respectively.
1BP, biological process; CC, cellular component; MF, molecular function.
2GOglm: category ranks by GOglm’s local enrichment test.
3Ontgz: category ranks by Ontologizer2 (PCU).
4Leng: median gene length (in base pair) within a category.
5Anno: number of annotated genes within a category.
doi:10.1371/journal.pone.0046128.t003

Figure 5. Histograms of enrichment test p-values from three enrichment analysis methods: logistic regression without
length bias corrections, GOglm, and GOseq. The left panel (no length bias corrections) shows a more than expected proportion of small
p-values (false positives). The GOglm (middle panel) and the GOseq (right panel) both gave correct p-value distributions expected under the
simulation setting.
doi:10.1371/journal.pone.0046128.g005

Length Bias Correction in GO Enrichment Analysis
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Discussion

The GOglm method discussed in this paper provides a simple

and effective tool for GO enrichment analysis with simultaneous

length bias corrections. The use of continuous measures of DE

avoids the subjective specification of p-value thresholds that is

inevitable for any contingency-table-based approaches. The

GOglm is also applicable to local enrichment analyses which

account for the parent-child relationship of the GO structure.

GO facilitates comprehensive and systematic functional explo-

rations based on currently known biological knowledge. However,

the complexity inherent in the ontology structure introduces

statistical challenges from several different sources. Here we list a

few issues that warrant deeper consideration beyond the scope of

this article. Researchers should be aware of the potential influences

these issues may have on inference before embracing any statistical

tools available for enrichment analysis.

Filtering Procedures
Not all genes under study had GO annotations available, and in

this paper we restricted attention to study genes annotated with at

least one GO term. In a GO enrichment analysis, researchers in

general aim to determine which categories are more enriched

relative to others in a database of all possible GO terms, so the

selection is competitive in nature among the GO categories.

Because genes without annotations tend to have relatively low

expression and small variability across conditions, researchers may

prefer to exclude them for limited discriminatory power and focus

instead on the more studied genes. In the prostate cancer dataset,

10102 genes were without annotations, among which only 4.6%

Figure 6. Scatter plots of the enrichment test statistic value against median gene length in category (log scale) before and after
length bias corrections. Before length bias corrections, the enrichment test statistic value tends to increase with median gene length in category
(left panel). After length bias corrections using GOglm, the trend is no longer visible (right panel).
doi:10.1371/journal.pone.0046128.g006

Table 4. Average ranks of the six known enriched categories by different enrichment tests (over 10 simulations).

Uncorrected GOglm GOseq

Significance1 2log(p) 2p log2 FC 2log(p) 2log(p) d-log d-log 0/1 0/1

Length2 none log(l) log(l) log(l) l log(l) l log(l) s(l)

1 2.2 9.0 1.8 1.7 1.8 2.1 2.2 3.9 3.6

2 2.8 7.0 2.4 2.0 1.9 2.5 2.4 2.0 2.1

3 2.9 7.5 2.7 2.6 2.6 2.9 2.9 2.5 2.3

4 6.5 7.0 4.1 4.1 4.1 4.1 4.2 4.0 3.9

5 6.4 6.4 5.4 5.5 5.4 5.2 5.2 5.4 4.8

6 14.2 14.0 12.1 12.3 12.6 12.1 12.0 12.7 13.4

1Significance: measures of DE significance. The measures used include minus untransformed DE test p-value, log2 fold change, minus log-transformed DE test p-value,
log (1{ log (DEtestp{value)) (d-log in the table header), and dichotomized DE p-values (cut-off used was 0:05).
2Length: whether to use log-transformed lengths [log (l)] or original lengths (l); a smooth function s(l) of length is used by GOseq for length corrections (the so-called
probability weighting function, PWF).
doi:10.1371/journal.pone.0046128.t004
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were called DE. In contrast, 16.9% of the 12592 genes having

annotations were called DE.

Alternatively, researchers may choose to retain those genes

without annotations in the study by assuming that they belong to a

single ‘‘pseudo-category’’ and treating them as background genes.

We note that analyses by GOseq in [10] and the goseq

Bioconductor package did not exclude genes without annotations,

so the final category list was slightly different than the list produced

in this study.

Challenges in GO Enrichment Analysis
Multiple testing correction. Because of the graph structure

of GO terms, enrichment tests for different GO categories can be

correlated, and therefore multiple testing corrections in GO

analyses cannot be simply addressed by calculating ordinary false

discovery rates (FDR) [21]. In our analysis, we did not adjust for

multiplicity partially because we were more interested in relative

ranks of categories instead of absolute magnitude of gene set p-

values.

Commonly used multiple testing corrections include the Holm-

Bonferroni’s correction [22], Benjamini-Hochberg’s FDR [23],

resampling-based p-value adjustment [24], bootstrap and Monte-

Carlo simulation approaches. Khatri et al. gave an overview of

these corrections with an emphasis on their performances under

different total numbers of functional categories and dependency

levels [4]. Graph-structured tests have been discussed in [21]

where the authors proposed a ‘‘focus level’’ method for DAG, and

a hierarchical approach suitable for tree structures is proposed in

[25]. Both methods are implemented in the Bioconductor package

globaltest [26–28]. Han et al. also discussed false discovery control

when test statistics are correlated [29]. Research on multiple

corrections suitable for complex structures like GO is still in high

demand.

Other sources of bias. In addition to length bias corrections,

we can also implement GOglm in other situations such as

corrections for total read counts of RNA-Seq data or corrections

for intensity levels in microarray [10] in a similar manner. To

obtain more accurate gene expression levels, Zheng et al. proposed

in a recent paper a generalized-additive-model-based approach for

simultaneous bias corrections from different sources, including

gene lengths, GC content and dinucleotide frequencies [30]. We

believe that such bias corrections performed in regression settings

are promising, though the choice of appropriate regression tools

depends on the underlying problem of interest.

Annotation quality. Even if the aforementioned statistical

problems are properly addressed, the issue of annotation quality

still exists as a non-statistical problem. Rhee et al. reported 14 types

of evidence supporting the association of GO identifiers to gene

identifiers, with different levels of experimental validation [12].

Less than 5% of all annotations have been manually checked–

which is considered as a reliable source of information. Over 95%

of annotations, however, are indirectly derived (i.e. inferred from

electronic annotation), leading to higher inaccuracy than those

manually curated annotations (see Table 1 of [12]). Therefore,

more efforts from biologists are needed to improve the annotation

quality.

Fundamental Assumption
One fundamental assumption underlying length bias corrections

is that there is no biological cause for longer genes to be more

differentially expressed, on average, than shorter genes. This

assumption is not statistically verifiable, but both [9] and [10] cited

evidence from microarray studies to support this assumption. If

there is a biological cause that violates this assumption, then its

effect will not be fully detected in GO enrichment analysis if length

bias is corrected.

Conclusion
We discussed a simple and effective method for length bias

corrections in the GO enrichment analysis using logistic regres-

sion. We validated its effectiveness by analyzing real and simulated

RNA-Seq datasets. We also compared its performance with

alternative enrichment methods (e.g. GOseq) and examined the

difference between the two approaches via simulations. Explicitly

modeling the gene length as a covariate in the logistic regression

framework helps to reduce length bias and enables flexible

implementations and straightforward interpretations. The use of

continuous measures of DE avoids the subjective specification of p-

value thresholds. The method is flexible and applicable to local

enrichment analyses which account for the parent-child relation-

ship of the GO structure. making it a promising tool for

enrichment analyses under different scenarios.

Materials and Methods

Preprocessing of the Prostate Cancer Dataset
The prostate cancer data [18] consist of seven samples: three

from mock treated prostate cancer cells and four from treated

cancer cells. The data originally consisted of 49605 genes as

annotated using Ensembl gene ID (ensGene) and NCBI Build 36.3

(hg18). In order to directly compare GOglm to GOseq, we did not

attempt to remap the reads to the genome. We fetched gene

lengths and mapped gene identifiers to GO terms from available

annotation Bioconductor packages. For example, we used the

org.Hs.egGO2ALLEGS R object in the Bioconductor annotation

package org.Hs.eg.db to obtain mappings between a given GO

category and all its annotated Entrez Gene identifiers [31]. Gene

length information is also accessible from the Ensembl Project

online. Descriptions of data preparations can be found in the

additional file of [10].

The 49506 genes under study were first filtered by excluding

genes with no fold changes. Among the remaining 22743 genes,

12592 genes had GO annotations for a total of 13956 unique GO

categories. In our GO enrichment analyses, we excluded 9162

categories (*69.8%) with fewer than 10 annotated genes from the

final enrichment ranking list. Statistical and biological consider-

ations for gene subsetting were mentioned in the Results and

Discussion sections, respectively.

Preprocessing of the Arabidopsis Dataset
The org.At.tairGO2ALLTAIRS R object in the Bioconductor

annotation package org.At.tair.db provides mappings between a

GO category and all its annotated TAIR identifiers [32]. We

subsetted our dataset from a total of 6916 GO terms available in

the database.

Testing a GO term’s relative enrichment requires knowledge of

this term’s direct parental term(s), and this information is available

from the GO.db Bioconductor package [33]. We found in our

Arabidopsis dataset 3993 BP, 601 CC and 2322 MF terms each

having at least one annotated gene.

We excluded 2039 genes that had zero read counts in all

samples, and discarded an additional 909 genes with zero fold

change. We further excluded 2504 genes without annotations, so

that the original 26222 genes were subsetted into 20770 genes

associated with 6916 unique categories. Median transcript lengths

for all genes were available. In this example, we excluded

categories with fewer than 4 genes (*50%) and focused on

3851 categories for enrichment analysis.
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Assessment of Differential Gene Expression
For ease of comparison with published results, in analyzing the

prostate cancer data [18], we used edgeR [1] with a common

dispersion estimate to obtain DE test p-values. For the Arabidopsis

dataset, we used NBPSeq [3] to obtain DE test p-values. EdgeR

and NBPSeq are both based on negative binomial models for

RNA-Seq read frequencies. The negative binomial model captures

potential extra-Poisson variation in RNA-Seq read frequencies

between independent biological samples using a dispersion

parameter. Other methods based on negative binomial model

include the tagwise or trend options in edgeR, or the DESeq

approach discussed in [2]. All of these methods use the same exact

NB test [34] for assessing DE, but differ in how they estimate the

dispersion parameter as a function of the mean frequency.

Simulation I
We simulated a 10426 gene dataset. The genes were binned into

40 non-overlapping categories with the number of genes ranging

from 101 to 1252. To keep the simulation simple and focused on

the issue of length bias, we simulated non-overlapping categories

to avoid correlated test statistics. In addition, moderate sizes of

simulated categories provide adequate statistical power in the

enrichment analysis. Gene lengths (on the log scale) were

simulated according to a normal distribution with mean 6 and

standard deviation 0.7 (simulated lengths ranged from 20 to 5867

base pairs). We assigned genes with the shortest lengths to the first

category, genes with the second shortest lengths to the second

category, and so on. The last category therefore contained the

longest genes. After assigning genes to categories, we added

additional noise to the log gene length according a normal

distribution with mean 0 and standard deviation 0.2 so that there

was overlap between gene length distributions in different gene

categories. This additional step was useful to avoid potential

convergence issues in the logistic regression.

We simulated RNA-Seq read counts according to negative

binomial distributions for 12 biological samples divided into two

groups, each of size 6. We specified the expected values m of read

counts to be proportional to simulated gene lengths and the

dispersion parameter w as a function of the mean 1:5m{0:5. This

dispersion model mimicked the one estimated for the Arabidopsis

data in [19]. We randomly designated 20% of all genes as DE.

The proportion of DE genes in each category varied from 14%

and 26% due to chance variations, but was independent of the

gene length distribution. For the DE genes, the mean values of

read counts in one of the groups (randomly decided) was less than

that in the other group, and the expected log fold change (base 2)

between the two groups was 0.5. We performed DE tests using

NBPSeq. The resulting p-values were transformed into a

significance measure using log (1{ log (p)) and used as one

covariate in the logistic regression for testing category enrichment.

Simulation II
We simulated 40 gene categories with the same category sizes

and gene length distributions as in the first simulation. The

baseline mean levels of simulated RNA-Seq reads were again

proportional to simulated gene lengths. However, this time we

simulated six categories to be enriched with DE genes. In each of

these six categories, there were 15% of DE genes. The remaining

34 categories had 10% of DE genes (randomly simulated among

all genes, so the actual number of DE genes in each of these 34

categories followed a binomial distribution with probability 0.1).

We assigned a constant log2 fold change of 0:5 to DE genes in the

non-enriched categories, but the log2 fold changes of DE genes in

the six enriched categories ranged from 0:5 to 1:0 at an increment

of 0:1, resulting in varying degrees of DE among these categories.

Software Information
The R codes implementing GOglm are available at the first

author’s website: http://people.oregonstate.edu/*mig/Site/

Research.html. GOglm conforms to the definition of Open Source

as defined by the Open Source Initiative. We have licensed

GOglm under the GNU General Public License.

Supporting Information

Table S1 Complete GO ranking list by GOglm.

(XLS)

Table S2 Complete GO ranking list by Ontologizer2
(PCU).

(XLS)
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