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Peroxiredoxins in Parasites
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Abstract

Significance: Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen
species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be
central to such defenses and, as such, have potential value as drug targets and vaccine antigens. Recent
Advances: Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately
understood. For many other parasites our knowledge is even less well developed. Through parasite genome
sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is
known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi.
At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns
of expression, localization, and functionality among sequence-similar Prxs in related species. Critical Issues: The
nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative
inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms
and informative about structural and evolutionary relationships. Future Directions: The new nomenclature
should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research
community. The diverse parasite developmental stages and host environments present complex systems in
which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel
therapies and vaccines that are urgently needed. Antioxid. Redox Signal. 17, 608–633.

Introduction and Scope

Peroxiredoxins (Prxs; EC 1.11.1.15) are exquisitely effi-
cient cysteine-dependent peroxidases functioning in

antioxidant, regulatory, and signaling systems (90, 116, 206,
254). They are ubiquitous and frequently present at high
abundance (268). Broad reviews of Prx structure, function,
and physiology are available (90, 92, 250), but here we fo-
cus on Prxs of the single-celled protozoa, multicellular
helminths, and intracellular fungi that parasitize humans
and are major contributors to the global burden of disease
(267). In these organisms, Prxs are important for defense
against endogenous and host-derived reactive oxygen
species (ROS) and peroxynitrite (ONOO - ) and are possibly
involved in cellular signaling. We begin with an overview
of structure–function relationships among Prxs and, based
on the six Prx subfamilies, propose a systematic and in-
formative nomenclature for parasite Prxs. In the survey
section of this review, we list the Prxs of relevant parasites
and review studies of their biochemical properties and
cellular roles. Finally, we briefly discuss Prxs as potential
drug and vaccine targets.

General Features of Prxs

Redox stress is a fact of life and organisms are exposed to
oxidizing species from within and without, experiencing
harmful oxidation of DNA, proteins, and lipids. Prxs, not
recognized as widespread enzymes until 1994 (42), appear to
be the first and dominant line of defense against hazardous
ROS (263) and also are able to efficiently detoxify peroxyni-
trite/peroxynitrous acid (ONOO - /ONOOH; pKa = 6.8), a
powerful oxidant and nitration agent produced by the reac-
tion of superoxide (O2

� - ) with nitric oxide (NO�), as previ-
ously reviewed (240); NO�, ONOO - /ONOOH, and related
molecules are often collectively referred to as reactive nitro-
gen species (RNS). In many eukaryotes Prxs also play a role in
regulating signaling networks that use hydrogen peroxide
(H2O2) as a second messenger (79, 89, 126, 213, 265).

Distinct conserved sequence patterns allow Prxs to be cat-
egorized into six subfamilies—Prx1/AhpC, Prx6, Prx5, PrxQ/
BCP, Tpx, and AhpE (183). For simplicity, we will use Prx1 to
refer to the Prx1/AhpC subfamily, and PrxQ to refer to the
PrxQ/BCP subfamily. Conveniently, a Web-based searchable
database, the PeroxiRedoxin classification indEX (PREX), has

1Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon.
2Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina.

ANTIOXIDANTS & REDOX SIGNALING
Volume 17, Number 4, 2012
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ars.2011.4404

608



been developed that organizes Prxs into these families (235)
(http://csb.wfu.edu/prex).

Catalytic properties of Prxs

Prxs catalyze the direct reduction of a variety of hydro-
peroxides (ROOH) to the corresponding alcohols (ROH; or
H2O in the reduction of H2O2) and water (184, 268). This oc-
curs via a direct displacement SN2 reaction, with a Prx active-
site cysteine sulfur atom carrying out nucleophilic attack on
the distal oxygen atom of the peroxide (77). The reaction
proceeds through a planar transition state, releasing the al-
cohol and leaving the Prx cysteine oxidized to sulfenic acid
(SPOH) (Fig. 1). To regenerate the reduced active-site cysteine
for the next round of catalysis, the Prx participates in a series
of reactions involving disulfide intermediates.

The complete catalytic cycle is diagrammed in Figure 2. In
the first step of the reaction, within a fully folded (FF) Prx
active site, the Prx peroxidatic cysteine (CP) in its thiolate form
(PrxFF-SP

- ) reacts with ROOH to yield ROH and PrxFF-SPOH
(Step 1, peroxidation). The Prx-SPOH pKa value has been
measured as 6.1 (208) and 6.6 (103); however, its protonation
state during catalysis is unclear. Next, the Prx undergoes a
local unfolding (LU) of its active site (PrxLU-SPOH) to expose
the SPOH group for reaction with a resolving thiol (R¢-SRH) to
form a disulfide bridge (PrxLU-SP-SR-R¢) and release water
(Step 2, resolution). PrxLU-SP-SR-R¢ is then reduced by a cys-
teine thiol from a different protein (R¢¢-SH), yielding the dis-
ulfide R¢¢-S-SR-R¢ and restoring the reduced PrxLU-SP

- (Step 3,
recycling). Finally, to complete the cycle, R¢¢-S-SR-R¢ is re-
duced and the Prx active site refolds to the FF-conformation
required for peroxide reduction. Certain Prxs present in eu-
karyotes (268) are sensitive to overoxidation of the peroxidatic
SPOH, which occurs when a second molecule of peroxide
reacts with SPOH to form cysteine-sulfinic acid (SPO2H; Step
4). The SPO2H of such sensitive Prxs can in many organisms be
reactivated (Step 5) by ATP-dependent reduction by sulfir-
edoxin (Srx) or, perhaps, the less-characterized sestrin (46,
113). How these Prxs facilitate peroxide signaling is not yet
well understood but may involve a floodgate-like mechanism
(265) and/or the formation of larger aggregates with molec-
ular chaperone or other activities (12, 89, 197). Prx1 activity
has also been reported to be regulated by phosphorylation
(264).

Prxs can contain one or two participating Cys residues. In
addition to the CP possessed by all Prxs, 2-Cys Prxs have the
resolving thiol (R¢-SRH) present as a cysteine (CR) either on the

same chain (atypical 2-Cys Prxs) or on the other chain of a
homodimer (typical 2-Cys Prxs). Figure 3 illustrates the re-
arrangements involved in a typical 2-Cys Prx catalytic cycle
that allow the disulfide to form. R¢¢ is often thioredoxin (Trx)
(41), a Trx equivalent such as tryparedoxin (Txn) (187), plas-
moredoxin (Plrx; 24), or a Trx-like domain of a Prx reductase
as in the bacterial alkyl hydroperoxide reductase component F
(AhpF) (205). For 1-Cys Prxs, molecules such as Trx (193) or
GSH (157) provide the R¢ thiol although the reducing equiv-
alents can also be provided by ascorbate (171). The Trx or Trx
equivalent is reduced by an NADPH-dependent reductase
such as Trx reductase (TrxR). The NADPH is produced by the
pentose phosphate pathway, connecting Prx activity to pri-
mary metabolism.

Early work on Prxs reported typical catalytic efficiency
(kcat/Km) values of 105 M - 1s - 1. Such reported catalytic rates,
much lower than those of catalase and glutathione peroxidase
(Gpx), led to a perception that Prxs were only physiologically

FIG. 1. A structurally detailed view of the Prx peroxidation reaction mechanism. Adapted from Ref. (92).

FIG. 2. The Prx catalytic cycle, showing both chemical
steps and local unfolding/refolding steps. Shown are the
three chemical steps (peroxidation [Step 1], resolution [Step
2], and recycling [Step 3]) of peroxide reduction, and the two
chemical steps (overoxidation [Step 4] and ATP-dependent
Srx-catalyzed recovery [Step 5]) seen for the oxidative reg-
ulation of sensitive, eukaryotic floodgate-type 2-Cys Prxs.
The generic Prx is represented as a monomer with SP des-
ignating the sulfur atom of CP and SR the resolving thiol. See
the text for further descriptions. Adapted from Ref. (92).
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relevant in organisms lacking the efficient heme- (kcat/Km

*107 M - 1s - 1) or seleno-peroxidases (kcat/Km *108 M - 1s - 1)
(77, 81). However, recent work has found that kcat/Km values
of *107 M - 1s - 1 are typical for Prxs, with lower rates occur-
ring when recycling of the Prx (Fig. 2, Step 3) by non-
physiological redox partners is rate limiting (190). Given their
high rate constants and high expression levels [as high as
0.5 mM (77)], Prxs are now considered the preferential re-
ducing agent of ROOH, ONOO - , and lipid peroxides in the
cell (263), a view supported by a network model of cellular
redox reactions (2). Prxs may also play a role in detoxifying
peroxides of amino acids and proteins (196).

Remarkably, Prxs employ a simple cysteine sulfur atom as
the nucleophile in the catalytic chemical reduction of ROOH
yet achieve catalytic efficiencies nearly six orders of magni-
tude greater than expected for a thiolate (77). Recent structural
analyses reveal that this catalytic power arises from an ex-
quisitely structured active site that preferentially stabilizes the
transition state; it does not simply activate the thiolate, but
also orients and activates the peroxide substrate for attack
(Fig. 1) (92).

Structural features of Prxs

The first Prx crystal structure (49) revealed the basic Prx
fold (Fig. 4), which is related to that of Trx (192). Using a
family-based naming of secondary structure elements (Fig. 4)
(90), the CP is always located in helix a2 on one face of the b-
sheet, cradled between helices a3 and a5 (90). For 2-Cys Prxs,
the CR location tends to be characteristic of a given Prx sub-
family, and as noted below can be near the C-terminus, or in
a2, a3, or a5.

Prxs form two types of dimers. A-type dimers, thought to
represent the ancestral mode of dimerization, interact in a tip-
to-tip manner at strands b1 and b2, and at the loops preceding
helices a2, a3, and a4 (Fig. 5A) (222). B-type dimers, seen for
Prx1 and Prx6 subfamily members, form by an edge-to-edge
b-sheet interaction (the B-interface) to make an extended, 10-
strand b-sheet (Fig. 5B) (90). The B-type dimers commonly
associate via the A-interface into ring-shaped decamers (or
dodecamers or octamers; Fig. 5C) to stabilize the FF active site
and allow maximal peroxidatic activity (23, 191). The LU form
of the enzyme favors dimers, suggesting that decamer–dimer
transitions occur during the catalytic cycle (266); regulation by
phosphorylation may occur via decamer disruption (268).

The following sections briefly describe structure–function
characteristics of each subfamily.

Prx1. The Prx1 subfamily includes all ‘‘typical’’ 2-Cys
Prxs. This subfamily is the largest and most widely distrib-
uted, with members found in archaea, bacteria, and all

FIG. 3. Structures of three intermediates of the Prx cata-
lytic cycle, using examples of dominant Prx1 and Prx6
family members. Steps in the cycle are numbered as in Fig.
2. Clockwise from upper left, the structures are PvPrx1a
(PDB Code 2I81), HsPrx6 (1PRX), and PvPrx1a (2H66).

FIG. 4. The standard Prx
fold. Shown is a stereo view
of one chain of PDB entry
2I81 with labels giving the
family numbering for sec-
ondary structural elements.
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eukaryotic classes (183). Members include bacterial AhpC
proteins; Txn peroxidases; yeast TSA1 and TSA2; and human
Prxs I, II, III, and IV. These form doughnut-shaped decamers
(Fig. 5C) and have CR in a C-terminal extension of the partner
chain of a B-type dimer (89). Thus, the disulfide form is a
covalent dimer, and nonreducing SDS gels provide a simple
method to test for Prxs in this form. Prx1s are typically the
most abundant Prxs in an organism and, in eukaryotes, may
be sensitive to overoxidation and involved in signaling. They
generally prefer H2O2 over organic ROOH substrates (195).

Prx6. The Prx6 subfamily is named after human PrxVI
(49). This subfamily is present in archaea, bacteria, and eu-
karyotes (183). Prx6 proteins resemble those of the Prx1 sub-
family, containing a C-terminal extension, forming B-type
dimers and, in some cases, oligomers (90). However, the vast
majority of Prx6s are 1-Cys Prxs (61). The physiological re-
ductant of most Prx6 members is unknown, and Trx notably
fails to reduce human PrxVI (115).

Prx5. The Prx5 subfamily derives its name from human
PrxV. Prx5s are present in bacteria, yeast, fungi, plants, and
mammals (183), and have been localized to mitochondria,
peroxisomes, and the cytoplasm (128). Members of the Prx5
subfamily form A-type dimers and include 1-Cys Prxs as well
as 2-Cys Prxs that have CR on helix a5 of the same chain (60,
90, 222). A unique feature of the Prx5 active site is a p-helical
bulge (52) in helix a2 immediately following CP (222). With
the possible exception of the bacterial Prx5s fused to glutar-
edoxin (Grx) (124), the reductant for Prx5 subfamily members
is Trx. Human PrxV prefers organic ROOH substrates and is
an efficient reductant of ONOO - (250).

PrxQ. The PrxQ subfamily was found first in plant
chloroplasts (132), and identified in Escherichia coli as the
bacterioferritin comigratory protein (BCP), a name given be-
fore its function was known (109). This subfamily is pre-
dominantly bacterial, but also occurs in archaea and some

eukaryotes, but not in mammals (183). This subfamily in-
cludes primarily monomeric Prxs (183) but some form A-type
dimers (e.g., Protein Data Bank codes 2CX4, 2YWN). The
PrxQ subfamily includes both 2-Cys and 1-Cys Prxs (257). For
the 2-Cys members, the common location for CR is in helix a2,
five residues after CP; however, about 7% of the subfamily
have CR in helix a3 (147, 183).

Tpx. The Tpx subfamily is smaller and less phylogeneti-
cally diverse than the previous subfamilies. Known Tpx
members are all bacterial (except for two trichomonad en-
zymes identified below) and are almost exclusively 2-Cys
Prxs with CR located in helix a3. Structural transitions in-
volved in the local unfolding of the active site during catalysis
have been examined in detail (93). Tpxs form A-type dimers
that are unaffected by redox state and are essential for activity,
as the substrate binding pocket includes residues from both
subunits (93). Tpx proteins are commonly reduced by Trx. E.
coli Tpx prefers hydrophobic, bulky cumene-OOH over H2O2

(Km *9 lM vs. 1.7 mM) (20), and, based on sequence conser-
vation, a similar preference is expected for all Tpxs (91). This
suggests a role in detoxifying lipid hydroperoxides (40).

AhpE. The AhpE subfamily, named after Mycobacterium
tuberculosis AhpE, contains the fewest members, all in aerobic
gram-positive bacteria of the order Actinomycetales (183). It
appears to include both 1-Cys and 2-Cys Prxs. M. tuberculosis
AhpE has been structurally characterized (146), but its natural
reducing partner remains unclear (103). As no parasites have
a Prx from this subfamily, we will not describe it further.

Occurrence and Studies of Prxs in Parasites
Affecting Human Health

In this review, parasites are organized into groups and
subgroups as follows: protozoa—the single-celled apicom-
plexans, kinetoplastids, and other protists; helminths—the
multicellular nematode, cestode, and trematode worms; and

FIG. 5. Quaternary struc-
ture of Prxs. Shown are (A)
an A-type dimer, (B) a B-type
dimer, and (C) a decamer
built using both A- and B-
type interfaces; examples of
A- and B-type dimers com-
prising the decamer are indi-
cated by broken and solid
lines, respectively. Structures
shown are (A) PfPrx5 (PDB
entry 1XIY), (B) PfPrx1m
(2C0D), and (C) TcruPrx1a
(1UUL).
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parasitic fungi. Detailed life cycle information for each para-
site discussed here can be found on the U.S. Centers for Dis-
ease Control & Prevention Web site (http://dpd.cdc.gov/
DPDx). To identify all relevant Prxs, a primary search of our
selected parasite genera (Appendix 1) used the PREX data-
base (235); the EuPathDB bioinformatics databases (14–16,
85, 98) were consulted as a secondary source. One challenge
in developing a list of Prxs is discerning whether highly
similar Prx sequences from a single organism represent dis-
tinct gene products. Our simplistic solution to this problem
was, for a given species, to list only the longest sequence
within groups of Prxs with ‡ 95% amino acid sequence
identity [as determined by Clustal Omega (231)]. For sur-
veying the literature, the genera list (Appendix 1) was used
to query National Center for Biotechnology Information
(NCBI) PubMed (226) in combination with the terms ‘‘perox-
iredoxin,’’ ‘‘thiol peroxidase,’’ ‘‘thioredoxin peroxidase,’’ ‘‘try-
paredoxin peroxidase,’’ ‘‘thiol-specific antioxidant protein,’’
and ‘‘peroxidoxin.’’

Of 97 unique parasite Prxs identified (Table 1), subfamily
Prx1 is overwhelmingly the most common, with 80 members
and at least one in every parasite considered. In some species,
the multiple Prx1 isozymes may have similar functional
properties but distinct localization or expression patterns such
as is seen for human Prxs I-IV, all in the Prx1 subfamily (97,
105). Representatives of the Prx6, Prx5, PrxQ, Tpx, and AhpE
subfamilies are much less frequently found, with 7, 4, 4, 2, and
0 occurrences, respectively. Plasmodia, the apicomplexan ma-
laria parasites, are uniquely well endowed with a range of
Prxs: two Prx1 proteins, a Prx6, a Prx5, and a PrxQ are present.
Apart from Plasmodia, a PrxQ occurs only in the fungus
Cryptococcus neoformans, a Prx5 is found only in the apicom-
plexan Toxoplasma gondii, and Prx6s were identified only
among C. neoformans, T. gondii, and the nematode worms. The
Tpx subfamily was represented only in the protozoan Tri-
chomonas vaginalis.

As Table 1 was assembled, it became apparent that the
nomenclature of Prxs from these parasites is highly inconsis-
tent, confusing, and provides little or no information about
the subfamily to which a given Prx belongs. For instance, 20
parasite Prx proteins named Tpx in the literature are not Tpx
subfamily members, and names for members of the Prx1
subfamily include CPX, Prx3, Px2, Pxn2, Pxn3, Tpx-2, Trx-
Px1, TRYP6, TSA, and TxnPx, among others (Table 1). To
resolve this confusion, we here propose a systematic, infor-
mative, and forward-looking nomenclature in which Prxs are
named according to the subfamily to which they belong (e.g.,
Prx6). Lettered suffixes (e.g., Prx1a and Prx1b) are used in the
Prx1 and Tpx subfamilies since multiple Prxs of these families
can be found in a single organism; even if just one Prx1 is
currently known in an organism, a suffix is assigned based on
its sequence similarity to other Prxs (e.g., Fig. 8). The suffix
‘‘m’’ (i.e., Prx1m) is given to Prxs assigned as mitochondrially
localized.

Table 1 lists these newly assigned names and their corre-
sponding literature names, and notes experimental results
that cannot be uniquely assigned to a specific Prx. To refer to a
Prx from a certain organism, an italicized species-specific
prefix is used (e.g., TcruPrx1a for the first cytosolic Prx1 sub-
family enzyme of Trypanosoma cruzi). We assume unless
proven otherwise that the equivalent Prxs in organisms of the
same genus will behave similarly, and so studies of such en-

zymes are grouped together. We also assume, in the absence
of contrary evidence, that the members of a Prx subfamily will
share the features of that subfamily, so studies confirming
such properties are only mentioned briefly.

As we begin the survey, a few general observations can be
made. First, despite the presence in many Prx1 subfamily
members of motifs very similar to the ‘‘GGLG’’ and ‘‘YF’’
motifs associated with the overoxidation shunt (265), there is
no biochemical evidence that any protozoan parasite Prx1 is
susceptibile to overoxidation. Also, no protozoan parasite
appears to have a gene encoding sulfiredoxin. A second point
is that for many Prxs, the recycling step can occur via multiple
pathways and so sorting out the main path is nontrivial and
perhaps even of little importance. Overall, the most common
path seems to be through Trx via an NADPH-TrxR-Trx-Prx
cascade. As noted above, the apicomplexans and trypanoso-
matids feature Trx equivalents (i.e., Plrx and Txn), which
complement or replace the common system (Fig. 6). A third
point is that among the Prxs listed in Table 1, there are only six
for which crystal structures are available (Table 2). For the
others, the amino acid sequence identity to crystallographi-
cally characterized Prxs is generally high (at least 40% for all
Prxs except the PrxQs, which have greater than 34% identity
to a known structure), so their three-dimensional structures
can be inferred with reasonable accuracy.

Finally, we note that determining the physiological roles of
Prxs can be difficult. Since all Prxs will turnover (although
differentially) H2O2, ONOO - , and organic ROOH, it must be
realized that when any given Prx is artificially overexpressed
in a tissue, it will by its very nature protect that tissue from
oxidative assault. While it is tempting to say that this result
proves that the Prx in question is involved in protection from
oxidative stress, it does not. Such a result gives no insight into
the true physiological role of the Prx, because adding an ex-
cess of any peroxidase will provide such protection. In con-
trast, the true physiological role of a given Prx depends on
where and to what extent the enzyme is expressed under
natural conditions. Similarly, when a Prx gene is knocked out
or knocked down (i.e., by RNA interference [RNAi]), the lack
of a specific phenotype provides limited information about its
physiological role, because with multiple antioxidant en-
zymes present, there is typically a high level of redundancy.

The following sections are grouped by parasite type and
species, reviewing what is known about enzyme kinetic and
substrate profile studies (available for *50 Prxs), spatial
and temporal protein localization experiments (immunoblot
and immunolocalization, done for *40 Prxs), proteomic and
gene expression studies (reverse transcriptase–polymerase
chain reaction [RT-PCR], performed for *40 Prxs), and bio-
logical roles as dissected by gene overexpression, knockout
(deletion), and knockdown (RNAi) studies (reported for *30
Prxs). In many studies, enzymatic activity is evaluated indi-
rectly by monitoring the prevention of peroxide-induced in-
activation of glutathione synthase (GS) or the nicking of DNA
(123, 148).

Prxs in apicomplexans

Apicomplexans are obligate intracellular parasites con-
taining an apical complex that aids in entering host cells (28).
Many also contain a chloroplast-derived apicoplast (216),
which, for those that have it, is essential and is the site of
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isoprenoid, fatty acid, and heme biosynthesis (228). The api-
complexan parasites of humans are in the genera Plasmodia,
Toxoplasma, and Cryptosporidia, and all have Prxs.

Plasmodia. Parasites of the genus Plasmodia are the
cause of malaria. Their complex life cycle involves the
blood-meal ingestion of male and female gametocytes by
the Anopheles mosquito, wherein they multiply and form
oocysts, which rupture to release infective sporozoites. In
the human host, these sporozoites infect liver cells to form
schizonts that rupture to release merozoites, which in turn
infect red blood cells and develop into trophozoites. The
trophozoites develop into schizonts that rupture to again
release merozoites, which reinfect red blood cells to per-
petuate the disease-causing blood stage or else differentiate
into gametocytes.

While inside erythrocytes, Plasmodia are exposed to high
levels of oxidative stress from host-defense ROS and the
by-products of heme degradation. Plasmodial antioxidant
enzymes are thought to be crucial for pathogenesis and are
considered antimalarial therapeutic targets (62). Although
Plasmodia possess a mitochondrial superoxide dismutase
(SOD), they lack catalase and Gpx so their redox defense seems
to rely heavily on Prxs (180). Their Prx recycling systems (Fig. 6)
feature three Trxs (Trx1, Trx2, and Trx3) and also Plrx (24) and
Grx (185), all found in characteristic cellular compartments
(Fig. 7) (121). TrxR, the normal reductant for Trxs, has been
shown to be nonessential (31); Plrx is known to reduce PfPrx1a
(186) and PfPrx5 (185), but its reductant is unknown. Fasci-
natingly, Plasmodia are also reported to import host HsPrxII
(131) and other redox enzymes and equivalents (62).

Each plasmodial species considered here has a set of five
Prxs: two from the Prx1 subfamily (Prx1a and Prx1m), one
PrxQ, one Prx5, and one Prx6. The Prx1a and Prx1m enzymes
cluster more closely with their cognates in other species than
they do with each other (Fig. 8A), indicating that the Prx1a
and Prx1m groups had already diverged in a common an-
cestor of the Plasmodia. Plasmodia spp. affecting nonhuman
mammals have this same Prx complement, and are included
in the discussion where relevant.

Localization studies: Studies using GFP fusion proteins (121)
have localized Plasmodium falciparum Prx1a and Prx6 to the
cytosol, Prx1m to the mitochondrion [see also Refs. (27, 62,
271)], and Prx5 to the apicoplast [see also Ref. (222)]. PfPrxQ is
exclusively localized to the nucleus (214), superceding pre-
vious work placing it in the cytosol and elsewhere (127). In the
nucleus, it associates with chromatin (a novel observation for
any Prx), and is enriched in coding regions (214).

Expression levels and other in vivo studies: PfPrx1a is consti-
tutively expressed throughout the life cycle, with higher levels
in the erythrocyte stage (118, 119, 271). A PfPrx1a knockout
grows normally but is hypersensitive to exogenous ROS and
RNS (129) and PfPrx1a mRNA and protein levels increase
under oxidative stress (4). Also, the Dprx1a mutant in the
mouse parasite Plasmodium berghei shows a 90% decrease in
sporozoite formation, a 60% decrease in gametocyte yield,
and attenuated infectivity in mice, although with no evidence
of direct oxidative damage (272, 273).

PfPrx1m is present in the highly metabolically active tro-
phozoite and schizont stages, and PfPrx6 is constitutively
expressed, with transcript and protein levels elevated in the
trophozoite and early schizont stages (271). Recombinant

FIG. 6. Prx redox cascades
showing special participants
of Plasmodia (top pathway)
and kinetoplastids (bottom
pathway). TrxR, thioredoxin
reductase; Plrx, plasmor-
edoxin; Trx, thioredoxin; TR,
trypanothione reductase; TS2,
trypanothione; Txn, trypar-
edoxin.

Table 2. Available Prx Crystal Structures

PRX PDB code Resolution (Å) Redox state Conformation Oligomeric statea Reference

PvPrx1a 2H66 2.5 S50-S170¢ LU (a2)5 (255)b

PvPrx1a 2I81 2.5 SH50, SH170¢ FF (a2)5 n/ac

PyPrx1a 2H01 2.3 SH44, SH164¢ LU (a2)4 n/ac

PfPrx1m 2C0D 1.8 S67-SH187¢ LU(alt)d a2(B) (27)
TcruPrx1a 1UUL 2.8 SH52, SH173¢ FF (a2)5 (202)
PfPrx5 1XIY 1.8 SO3H59 FF a2(A) (222)
PyPrx6 1XCC 2.3 SH47 FF a2(B) (255)b

aAn A-type or B-type dimer is noted in parentheses. For octamers and decamers, both interfaces are used.
bThe publication summarizes a number of structures solved by the Structural Genomics Consortium (SGC; http://sgc.utoronto.ca) and

shows only structure snapshots without specific discussion of PvPrx1a or PyPrx6.
cThe structure has been solved and deposited in the Protein Data Bank (http://pdb.org) by the SGC and is unpublished to date.
dThe CP loop has shifted, as is expected to occur after decamer dissociation.
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PfPrx6 coprecipitated with agarose-bound ferriprotopor-
phyrin IX (117) and so it was thought to protect against heme
detoxification, although PfPrx6 cellular distribution does not
match that of heme (62). PfPrx5 is expressed in all erythrocyte
stages, with peak mRNA levels in trophozoites [microarray
data PlasmoDB (16)], mirroring Grx expression (185).

Biochemical characterizations: All five P. falciparum Prxs have
been biochemically characterized, along with certain homo-
logs in other mammalian parasites, for example, Plasmodium
yoelii Prx6 (119).

Prx1a. As expected for a Prx1, PfPrx1a is a doughnut-
shaped (a2)5 decamer (4) and forms disulfide-linked dimers
during its catalytic cycle (118). Mutagenesis confirms the lo-
cations of CP and CR (186), and proven substrates include
H2O2 (4), ONOO - (186), t-butyl-OOH, and cumene-OOH
(210). PfPrx1a can be reduced by E. coli Trx (118), plasmodial
Trx (4), and Plrx (186). Stopped-flow kinetics studies, with Trx
as the reductant, gave kcat/Km = 6.7 · 106 M - 1s - 1 for H2O2 (4)
and kcat/Km = 1 · 106 M - 1s - 1 for ONOO - (186). Structural
genomics projects have produced crystal structures for
PvPrx1a (two structures) and PyPrx1a (Table 2), but these
have not been described in publications.

Prx1m. Recombinant PfPrx1m is a functional peroxidase
that is reduced by the mitochondrial PfTrx2 about 10-fold
more effectively than the cytosolic Pf Trx1 (27); neither Grx
nor lipoamide could directly support Pf Prx1m activity. The
crystal structure of PfPrx1m has been solved in its LU dis-
ulfide form (Table 2), with the protein in the crystal forming a
B-type dimer (27). The mitochondrial targeting sequence
(residues 1–19) is disordered and thus seems unimportant in
the folding or activity of the mature protein.

Prx6. Despite showing activity in a GS-oxidation protection
assay (117, 185), recombinant Prx6 from P. falciparum exhibits
low peroxidase activity with both H2O2 and t-butyl-OOH. Its
functional reducing partners include Grx and a Trx, but not
GSH, even though one of its eight Cys residues can be glu-
tathionylated in vitro (185). The crystal structure of PyPrx6 has
been determined by a structural genomics group (Table 2).
Interestingly, PyPrx6 in the FF state with a reduced active site
is present in the crystal as a B-type dimer, suggesting that not

FIG. 8. Relatedness tree of Prx1 subfamily members. Shown are (A) a tree of the Prx1 subfamily members from protozoan
parasites, and (B) a tree of the Prx1 subfamily members from helminthic parasites. For each Prx1 we show only its italicized
species-specific prefix followed by its suffix in bold type. The tree was generated using Clustal Omega 1.0.2 multiple sequence
alignment (231) followed by PHYML3.0 phylogeny calculation (88) and displayed using phylip 3.67: drawtree (76).

FIG. 7. Compartmentalization of Prxs and related redox
cascade enzymes in Plasmodia. Adapted from Ref. (121).
Plrx, plasmoredoxin; Tlp, thioredoxin-like protein.
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all Prx6 subfamily members form decamer-like ring com-
plexes during their catalytic cycle.

Prx5. Recombinant PfPrx5 functions as a 1-Cys Prx and has
a preference for the organic ROOH substrates t-butyl-OOH
and phosphatidylcholine-OOH, with H2O2 and cumene-
OOH reduced less efficiently (185). Since the apicoplast is the
site of fatty acid synthesis, this suggests that PfPrx5 is im-
portant for the reduction of fatty acid peroxides. The recycling
of PfPrx5 is efficiently carried out by PfGrx, and to a lesser
extent PfTrx1 and Plrx (185). The putative apicoplast proteins
Trx2 and Trx3 (185) have not been tested. The existence of
bacterial Grx-Prx5 fusion proteins (124) suggests that Grx is a
plausible physiological redox partner of PfPrx5. The PfPrx5
crystal structure has been determined (Table 2) and is exten-
sively described (222). This structure provided the first view
of a CP doubly overoxidized to CP-SO3

- , thought to be an
artifact of long-term storage in an oxidizing environment.

PrxQ. PfPrxQ has an N-terminal Prx domain and an un-
characterized, lysine-rich C-terminal domain (214). The re-
combinant Prx domain reduces H2O2 or cumene-OOH with
Km*10 - 30 lM and a low specific activity of 6 lmol/min/mg
protein. Its preferred reductant appears to be PfGrx1 over
PfTrx1 (which does not show saturation). Its nuclear location
and genome-wide chromatin association (214) suggests that it
could play a sentinel role against oxidative DNA damage.

Toxoplasma. T. gondii, the causative agent of toxoplas-
mosis, infects about one-third of the world’s population,
causing serious illness in immune-challenged or pregnant in-
dividuals. The life cycle involves a bradyzoite stage with sexual
reproduction in cats and an asexual, tachyzoite stage in cats,
rodents, birds, or humans. The T. gondii genome contains four
Prxs: Prx1a, Prx1m, Prx5, and Prx6. Except for PrxQ1 these are
a one-to-one match to those found in Plasmodia. Unlike Plas-
modia, T. gondii has a functional cytosolic catalase (66).

Localization studies: Immunofluorescence microscopy has
localized TgPrx1a and TgPrx6 to the cytosol and TgPrx1m to
the mitochondria (141). An independent study confirms this
and identifies cytosolic Trx as a Prx reductant (5). Finally, a
Prx (presumably TgPrx1m) and an SOD isozyme undergo
dual targeting to the apicoplast and mitochondria (204).

Expression levels and other in vivo studies: T. gondii was
shown to express Prx1a and Prx1m constitutively and Prx6 in
the tachyzoite and bradyzoite stages (141). A study both de-
leting and overexpressing TgPrx6 and catalase showed that
both similarly protected against oxidative stress (141).

Biochemical characterizations: Biochemical characterizations
exist for TgPrx1a and TgPrx6.

Prx1a. Recombinant TgPrx1a turns over H2O2 and t-butyl-
OOH with a reported Km in the nanomolar range and kcat/Km

*106–107 M - 1s - 1 (5). As no nanomolar substrate concentra-
tions were tested, these Km values could be artificially low if
the recycling reaction is rate limiting. Also, treatment of
macrophages in vitro with recombinant TgPrx1a increases
their replication rates and influences their developmental fate
(159). TgPrx1a is also reported to interact with a histone lysine
methyltransferase to influence chromatin structure and reg-
ulate the expression of antioxidant defenses (223).

Prx6. Unusual for this subfamily (183), TgPrx6 appears to
be a 2-Cys Prx with Cys209 serving as CR (61). The enzyme
appears active by GS protection assay, but direct peroxide
reduction using Trx, Grx, or GSH could not be shown. The

protein mostly forms dimers, but also associates in tetramers
and hexamers (61). In a drug candidate screen, TgPrx6 was
covalently modified at CP by the drug conoidin, but the in-
hibition of TgPrx6 was not involved in conoidin bioactivity
(95).

Cryptosporidia. Three Cryptosporidia species cause the
water-borne disease cryptosporidiosis, characterized by gas-
troenteritis and diarrhea. The genomes of Cryptosporidium
parvum and Cryptosporidium hominis encode only a Prx1a and
that of Cryptosporidium muris a Prx1a and a Prx1m. Although
the localization of CmPrx1m has not been investigated, its
sequence contains a weak mitochondrial localization signal
and clusters nearer to the plasmodial Prx1m enzymes than the
other cryptosporidial Prx1s (Fig. 8A). The simpler Prx set in
Cryptosporidia compared with Plasmodia and Toxoplasma
makes sense in light of their further reductive evolution in-
cluding loss of the apicoplast. Also, the absence of Prx1m in C.
parvum and C. hominis is noteworthy in light of their simpler
mitochondrion-like organelles (mitosomes) that lack DNA
and most ATP synthase subunits and that do not carry out
oxidative phosphorylation (169).

The only characterized cryptosporidial Prx is Prx1a from C.
parvum. Proteomic analysis after high doses of gamma radi-
ation revealed nearly 10-fold elevated CpPrx1a mRNA levels,
peaking approximately 48 h after exposure (142). As radiation
exposure can produce toxic levels of H2O2 (18), this induction
may be an oxidative stress response.

Prxs in kinetoplastids

The kinetoplastid parasites (order Trypanosomatida) are
named for the kinetoplast, a characteristic granular sub-
structure associated with the basal body of the flagellum and
containing the DNA of the lone, extended mitochondrion.
They include Leishmania species responsible for disfiguring
(cutaneous and mucocutaneous) and fatal (visceral) leishma-
niases, as well as Trypanosoma brucei and T. cruzi, respectively
the causes of African and American trypanosomiasis (sleep-
ing sickness and Chagas disease).

As intracellular pathogens, the kinetoplastids must defend
against ROS and ONOO - , with the latter demonstrated to be
necessary and sufficient to control Leishmania donovani infec-
tions in a mouse model (59, 182). Recently, using T. cruzi,
direct support for ONOO - as an intraphagosomal cytotoxin
in host defense has been obtained (9). This implies that en-
zymes like Prxs capable of reducing ONOO - are crucial for
virulence.

The kinetoplastid redox system is comprised of subfamily
Prx1 peroxiredoxins (commonly called Txn peroxidases in the
literature), their reducing partner Txn, the small-molecule
dithiol trypanothione [TS2, oxidized; T(SH)2, reduced], and
trypanothione reductase (TR), as depicted in Figure 6 (65,
135). Each species with a sequenced genome has one cytosolic
Prx1 (i.e. Prx1a) and one Prx1m, and we suppose that the other
species also have Prx1m enzymes. In these kinetoplastids,
from two to seven highly similar, tandem cytosolic Prx1 genes
are present. Although few of these are recognized as distinct
by our 95% criteria (e.g., only two of seven loci in Leishmania
major), it is certain that at least some actually are distinct (e.g.,
Leishmania aethiopica and Leishmania chagasi Prx1a-type genes
are known to be differentially expressed).
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Leishmania. The Leishmania life cycle involves the devel-
opment of the infectious promastigote in the gut of the phle-
botomine sandfly and development of the disease-causing
amastigote in human macrophages.

Localization studies: The L. chagasi enzymes LcPrx1a and
LcPrx1b (22), and L. amazonensis, LamPrx1a were localized
to the cytosol (101, 149). LdPrx1m has been shown in pro-
mastigotes to be found in the kinetoplast region of the
mitochondrion and throughout the entire mitochondrion in
amastigotes (96). An interesting twist occurs for Leishmania
braziliensis, for which a Prx was identified as secreted (55). The
exact Prx was not specified, but as it was homologous to
LgPrx1b, we denote it LbPrx1a. Because the LbPrx1a sequence
has no apparent signal peptide, and also because about 98% of
the L. donovani secretome lacks classical N-terminal secretion
signals (232), it was suggested that Leishmania may employ
nonclassical secretion pathways.

Expression levels and other in vivo studies: In L. aethiopica,
Prx1a expression is restricted to amastigotes and stationary
phase promastigotes, whereas Prx1b is expressed throughout
the life cycle (112). Similarly, in L. chagasi, Prx1a is expressed
in amastigotes, with Prx1b and Prx1c predominantly ex-
pressed in promastigotes, the latter at a much lower level (21).
Prx1m expression levels in L. donovani were shown to increase
strongly in promastigotes in the late logarithmic phase and in
amastigotes (96). Also, LamPrx1a and LamPrx1m were upre-
gulated by exposure to arsenite (101, 149). In L. major, Prx1a is
expressed in promastigotes, and accounts for 1%–4% of total
cellular protein (133).

Studies in Leishmania guyanensis show that oxidative chal-
lenges are present throughout normal growth, as LgPrx1a and
LgPrx1b populate the disulfide form (i.e., covalent dimers)
during all developmental stages. Provocatively, it was ob-
served that more of the disulfide form was seen in an ag-
gressively metastatic L. guyanensis strain than in a
nonmetastatic strain (1). In another isolate, an unspecified
cytosolic LgPrx1 also was identified as a virulence factor (258).

Prx overexpression, as expected, protects parasites from
oxidative challenge. Cell culture studies include Leishmania
amazonensis cells overexpressing LamPrx1a or LamPrx1m
(101), and L. chagasi cells overexpressing LcPrx1a (21), and
in vivo results are available for Leishmania infantum over-
expression of either LiPrx1a or LiPrx1m (38). In L. donovani,
overexpression of LdPrx1a in the promastigote results in
protection against a combination of H2O2 and NO� and in-
creased virulence (106) and overexpression of LdPrx1m de-
creases H2O2-induced apoptosis (96). In L. infantum, LiPrx1a
overexpression preferentially protects against H2O2 challenge
and LiPrx1m overexpression protects only against t-butyl-
OOH (38).

Biochemical characterizations: Prx1a and Prx1b. The cyto-
plasmic Prxs from L. chagasi and L. donovani have been bio-
chemically characterized. Recombinant LcPrx1a has been
shown to reduce H2O2, alkyl ROOH, ONOO - , and possibly
even hydroxyl radicals or nitric oxide (21), whereas LcPrx1b
was seen to only reduce H2O2 (22). Biochemical character-
ization of LdPrx1a, done with reducing partners Txn1 and
Txn2 from model trypanosome Crithidia fasciculata, revealed
its ping-pong reaction kinetics and very high activity with t-
butyl-OOH (kcat/Km = 2.4 · 107 M - 1s - 1); specific activity us-
ing t-butyl-OOH was similar with H2O2 and cumene-OOH,
but was relatively low with linoleic acid-OOH and phos-

phatidylcholine-OOH (80). Interestingly, the specific activity
of LdPrx1a with t-butyl-OOH using the CfTxn1 and CfTxn2 is
on the same order of magnitude as that of the native C. fas-
ciculata Prx in this system.

Prx1m. Mitochondrial Prxs from L. donovani and L. infantum
have been characterized. LdPrx1m was shown to reduce per-
oxides and protect DNA from oxidative damage (96). Re-
combinant LiPrx1m had efficient peroxidase activity in a redox
system comprised of NADPH, T. cruzi TR, T(SH)2, and C. fas-
ciculata Txn1 and Txn2 (35). CfTxn2 bound LiPrx1m well
(Km = 31.9 lM), and the catalytic efficiency (kcat/Km) for t-butyl-
OOH was 4.1 · 106 M - 1 s - 1. Curiously, LiPrx1m was reported
to be inhibited in a time- and concentration-dependent manner
by linoleic acid-OOH and phosphatidylcholine-OOH (35).

Trypanosoma. The trypanosomes have complex life cy-
cles involving the tsetse fly (for T. brucei) or the triatomine bug
(for T. cruzi) in which the epimastigote form develops and
then differentiates into the infective metacyclic trypomasti-
gote (MT). In the human host, T. brucei MTs develop into
bloodstream trypomastigotes and disseminate to a variety of
tissues (including blood, lymph, and spinal fluid). In contrast,
T. cruzi MTs develop into amastigotes, and differentiate into
trypomastigotes at the insect wound site, and then enter the
bloodstream. Interestingly, T. brucei and T. cruzi lack Grx and
Trx (135, 136), and the complete Prx cascade has been shown
in T. brucei to be essential for parasite survival [reviewed in
Ref. (8)] and is considered an important target for drug de-
sign. Both T. brucei and T. cruzi have two Prxs: Prx1a and
Prx1m.

Localization studies: As expected, T. cruzi and T. brucei Prx1a
and Prx1m are localized to the cytosol and mitochondrion,
respectively (247, 261).

Expression levels and other in vivo studies: TbPrx1a and
TbPrx1m are both expressed in the bloodstream and procyclic
stages of the parasite (247). Similarly, TcruPrx1a was seen to
be expressed throughout the life cycle (203). In support of the
role of Prxs in maintaining infectivity, overexpression of
TcruPrx1a both protect against exogenous ONOO - and yield
higher growth rates under ONOO - challenge (199). These
protective effects are lost if the CP residue is mutated. T. cruzi
parasites overexpressing both TcruPrx1a and TcruPrx1m ex-
hibit increased virulence (199) and levels of TcruPrx1a and
TcruPrx1m directly correlate with degree of parasitemia in
mouse models (200).

Biochemical characterizations: Prx1a. Recombinant TbPrx1a,
in the presence of the recombinant native Prx redox cascade
components (NADPH, T(SH)2, and T. brucei Txn and TR),
efficiently reduced H2O2 and could reduce ONOO - with a
kcat/Km = 9 · 105 M - 1s - 1 (249). Similarly, the reduction of
ONOO - by TcruPrx1a was reported to be 7.2 · 105 M - 1s - 1

(249) and independently around 1 · 106 M - 1s - 1 (201). In the
latter study, H2O2 reduction by TcruPrx1a was very effi-
cient (kcat/Km = 3 · 107 M - 1s - 1; 201); t-butyl-OOH reduc-
tion in a different study was much less so (kcat/Km = 3.2
· 104 M - 1s - 1) (87).

The crystal structure of TcruPrx1a has been determined in
its FF thiol form, providing the first structure of an active Prx
known to have efficient ONOO - reductase activity (202). It
adopted the expected toroidal pentamer of dimers. Recently,
molecular dynamics simulations have explored active-site
pKa values and oligomerization interactions (275).
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Prx1m. A recent, comparative kinetics study showed that
the remarkably efficient reduction of ONOO - by TcruPrx1m
(kcat/Km of 1.8 · 107 M - 1s - 1) is about 10-fold greater than that
by TcruPrx1a and more than double its own kcat/Km for the
reduction of H2O2 (201).

Prxs in other selected protozoan parasites of humans

Here we cover localization, in vivo studies, and biochemical
characterization of Prxs in metamonads (T. vaginalis and
Giardia lamblia), Naegleria fowleri, and species of the genus
Entamoeba.

T. vaginalis. T. vaginalis causes the sexually transmitted
infection trichomoniasis, considered the most common para-
sitic infection in industrialized countries. It is a metamonad,
which are flagellate anaerobic/microaerobic protozoa with a
life cycle including swimming trophozoite and cystic stages.
T. vaginalis prefers oxygen concentrations below 0.25 lM and
is unable to tolerate oxygen concentrations above 60 lM, or
about 5% O2 (189). As an anaerobe, it lacks mitochondria and
instead has a specialized organelle called the hydrogenosome.
Hydrogenosomes, particularly well studied in T. vaginalis,
produce ATP and hydrogen gas using an oxygen-sensitive
pyruvate:ferredoxin oxidoreductase and a hydrogenase (179).

To maintain low intracellular oxygen concentrations, T.
vaginalis employs cytosolic and hydrogenosomal oxidases
and SOD (70). T. vaginalis lacks detectable Gpx or heme-
dependent peroxidase activity (70), but has multiple Prxs: at
least six Prx1 subfamily members and two Tpxs. There may be
even more, as one of the Prx1 gene sequences filtered by our
> 95% identity cutoff appears to represent a distinct gene. Of
note, this is the only eukaryote with a Tpx subfamily Prx (183).
Proteomics identified TvTpx-a and a Trx as components of the
T. vaginalis hydrogenosome (209), and later, two TrxR en-
zymes bearing novel internal hydrogenosome targeting se-
quences were also discovered (162). Thus, a complete Prx
system exists in the hydrogenosome.

In expression studies of TvPrx1a, a Western blot detected
two protein bands of 22 and 20 kDa. The former is the ex-
pected size for TvPrx1a; the latter may be a crossreacting Prx.
High oxygen or the absence of ascorbate led to elevated Prx1a
mRNA and increases in both Western bands. Adding cysteine
slightly suppressed Prx1a mRNA levels, abolishing the
22 kDa protein band, but increasing the 20 kDa band (53).

In a proteomic study of antiprotozoal 5-nitroimidazole
drugs, TvPrx1a and TvTpx-b were two of only seven proteins
identified as covalently modified by metronidazole and tini-
dazole (143). A twofold reduction in peroxidase activity was
observed in extracts of metronidazole-treated cells, but a
similar loss in TrxR activity was seen, so the Prxs are not
necessarily implicated. Also, metronidazole-resistant cells
had elevated levels of Prx1a, Prx1b, Prx1c, and a protein 96.4%
identical to Prx1c (EuPathDB gene ID TVAG_455310), which
could be a distinct gene product (143). An siRNA knockdown
of an unspecified Prx and TrxR led to no clear detrimental
effects although the cell cycle was somewhat extended [ac-
cording to an abstract (276)].

Only one T. vaginalis Prx, TvPrx1a, has been studied in vitro.
Recombinantly expressed TvPrx1a, TvTrxR, and TvTrx, to-
gether, were found to effectively reduce H2O2, cumene-OOH,
and t-butyl-OOH (53).

G. lamblia. G. lamblia [synonymous with G. intestinalis
(174)], also a metamonad, is the cause of giardiasis, ‘‘beaver
fever.’’ By our criteria, it has two distinct Prx1 subfamily
members. However, we found no associated published
studies. The GlPrx1b sequence is strongly predicted by Sig-
nalP-HMM (26, 71) to encode a secreted protein. As the G.
lamblia Prxs are not closely related to those of T. vaginalis (Fig.
8A), they need not behave similarly.

N. fowleri. N. fowleri is a free-living amoeba that causes
primary amoebic meningoencephalitis, a rare but acute and
frequently fatal central nervous system disease. The genome
has not yet been sequenced, but an 18-kDa Prx (matching a
Prx1 from Aedes aegypti by its N-terminal sequence) was
identified as an excretory–secretory pathogenic factor in N.
fowleri infection (122). While it was not cloned and so may not
be a Prx1, the sequenced genome of the nonpathogenic Nae-
gleria gruberi (84) contains a Prx1 and a Prx5 (NCBI accession
numbers XP_002678814 and XP_002680895, respectively).
Though neither is characterized, the TargetP server (71)
identifies a mitochondrial transit peptide in NgPrx5.

Entamoebae. Entamoeba histolytica is an anaerobic pro-
tozoan responsible for amoebic dysentery and amoebic liver
abscess. Two morphologically indistinguishable, nonpatho-
genic relatives, Entamoeba dispar (63) and Entamoeba mosh-
kovskii (7), commonly co-occur with E. histolytica and are also
discussed here. E. histolytica does not possess mitochondria
and lacks GSH as well as the enzymes central to GSH me-
tabolism (73). The E. histolytica and E. dispar genomes are se-
quenced but not yet fully assembled and, using our 95%
identity criteria, have one and three Prx1 subfamily members,
respectively, all very similar in sequence (Fig. 8a). With 8 and
20 possible loci in the two species, we suspect that more of
these will represent unique Prx genes, especially since seven
were cloned from a single strain of Entamoeba nuttalli, a rhesus
monkey parasite (243, 244).

EhPrx1a was initially discovered as a 29-kDa antigen Eh29. It
is by far the primary source of free thiol on the protein surface
(82), and formed the basis of a vaccine conferring protection in
an animal model (236). The protein was shown to be a Prx (30)
dependent on Trx and TrxR (207) and could also be reducible
by the E. histolytica trypanothione–dependent TR system (245).
EhPrx1a is 50 times more abundant than the EdPrx1 and is
mostly present on the outer surface of cells (poised to coun-
teract host redox defenses), and this may in part explain the
invasiveness of E. histolytica versus E. dispar and E. moshkovskii
(50). The only studied EdPrx1 seems restricted to the cytoplasm
(50) and EmoPrx1a to the cytoplasm and nucleus (48); EhPrx1a
may also be present in the cytoplasm (30, 242). EhPrx1a was
found to be upregulated about twofold in trophozoites under
oxygen stress conditions (3) or exposure to 50 mM Trichostatin
A, a histone deacetylase inhibitor (104). Increased expression of
EhPrx1a (along with SOD) is also associated with metronida-
zole resistance (246, 259).

The recombinant EdPrx1 (N-terminally fused to E. coli Trx)
yielded a kcat/Km of *105 M - 1s - 1 for H2O2. Its turnover of
various organic ROOHs was 10%–40% less efficient (50). At
saturating H2O2, the rate of a corresponding EhPrx1a was
about half that of the EdPrx1 (50). Independently, EhPrx1a
was found by DNA nicking assay to be slightly less active
than EmoPrx1a (48). The Prxs from E. histolytica and E. dispar
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have a distinctive*40 residue cysteine-, lysine-, and glutamate-
rich sequence at the N-terminus, reportedly essential to enzyme
activity, although some apparently truncated loci lack this
sequence (30).

Prxs in helminths

The helminths are multicellular, parasitic worms, and those
examined here are roundworms (Phylum Nematoda) and two
classes of flatworms (Phylum Platyhelminthes), namely,
tapeworms (Class Cestoda) and flukes (Class Trematoda). In
total, 25 Prxs—all in subfamily Prx1 or Prx6—were identified
in 17 species. No crystal structures of helminth Prxs have been
solved.

One important question is whether, as multicellular eu-
karyotes, helminths have floodgate-type Prxs (89) that par-
ticipate in cell signaling via an overoxidation shunt. While
overoxidation-sensitive Prxs have been documented in
Schistosoma mansoni (225), there are no recognizable sestrin
genes in helminths, including Caenorhabditis elegans (248).
Also, although C. elegans possesses a sestrin homolog and a
Prx sensitive to overoxidation, its subsequent reduction is
very slow. Furthermore, under ordinary conditions, accu-
mulation of the overoxidized Prx could be detected neither in
wild-type C. elegans nor in a sestrin deletion strain (248).

Nematoda. Nematodes cause widespread, disabling dis-
eases known as filiariases. Of the five species surveyed, the
filarial parasites with genomes sequenced have two or three
Prxs each. Of these, Brugia malayi Prx1b and Onchocerca vol-
vulus Prx1a have been expressed in vitro, and found to have
peroxidase activity by DNA protection assay (86, 152). These
two Prxs are transcribed and translated in larvae and adult
worms. In the adult, BmPrx1b was localized to the hypoder-
mis and lateral chord and was not secreted by or at the surface
of the larval or adult worms (86). In contrast, OvoPrx1a is
found in the larval and adult hypodermis and cuticle and
appears to be secreted (152, 278). The closely related homolog
BmPrx1a (86) (Fig. 8B) could be likewise surface-localized or
secreted, as it is antigenic in mice (10) and in humans (154,
155). The 1-Cys BmPrx6 has been cloned (44) and patented as a
vaccine antigen (U.S. Patent 6,352,836); its ortholog from the
dog heartworm Dirofilaria immitis is secreted and has been
found in developmental stages and localization patterns
similar to the filiarial Prx1a enzymes, above (45).

Although no Prx has been identified in Ascaris lumbricoides
(which lacks a sequenced genome), a closely related Prx1
(accession number Q9NL98) from the swine parasite Ascaris
suum has been shown to be active in vitro by DNA nicking
assay and to be expressed in adult female worms (251). Two
uncharacterized Prxs (accession numbers YP_198397.1 and
YP_197960.1) are found in the genus Wolbachia, the B. malayi
bacterial endosymbiont (83).

Cestoda. Cestodes cause cysticercosis when larvae pene-
trate the intestinal wall and disseminate into muscle and cen-
tral nervous system tissues. Although no genome of the four
cestodes surveyed has been sequenced, each has one identified
Prx. These are all Prx1 subfamily members and cluster by se-
quence (Fig. 8B). Echinococcus granulosus Prx1a is expressed in
all tissues of the protoscolex and brood capsules and has DNA
protection assay activity (100, 145). Its expression in the juve-

nile stage can be inferred from its isolation from a protoscolex
cDNA library (NCBI accession number AAL84833). In cystic
echinococcosis patients, EgPrx1a elicits a strong humoral im-
mune response, but since anti-EgPrx1a antibodies are not
protective against infection, their role, if any, is unclear (234).

Echninococcus multilocularis Prx1a is expressed at least in the
larval stage, having been cloned from a metacestode cDNA
library (NCBI accession number BAC11863). Taenia solium
and Taenia crassiceps have high H2O2 tolerance, and consti-
tutively express Prx1a (252). Antibodies against TsPrx1a were
used to show its presence throughout development, as well as
the presence of homologs in T. crassiceps cysticerci and Taenia
saginata adults (170). Recombinant TsPrx1a was found to have
Trx-dependent peroxidase activity with H2O2 and cumene-
OOH (170).

Trematoda. Trematodes include the blood and liver
flukes, which cause schistosomiasis and fascioliasis, respec-
tively. The six species included in our survey are two blood
flukes from the genus Schistosoma and four liver flukes, two
from the genus Fasciola and two from the family Opis-
thorchiidae. All of these have Prxs only from subfamily Prx1.
Trematodes do not possess catalase and their Gpx enzymes
are generally restricted to the vitelline glands and intrauterine
eggs (168) and exhibit little activity against H2O2 (156).

Schistosoma: The schistosomal species S. mansoni and
Schistosoma japonicum are among the causative agents of
schistosomiasis (bilharzia), a persistent infection occurring
primarily in poor communities in the tropics, with over 200
million people infected and 700 million at risk. Three schis-
tosomal Prx1 enzymes have been studied, referred to here as
Prx1a, Prx1b, and Prx1m (the latter with a mitochondrial
targeting sequence). The orthologous enzyme pairs from the
two species cluster together in the relatedness tree (Fig. 8B),
suggesting their similar function. The PREX database lists two
additional Prx1 enzymes in S. mansoni, with SmPrx1c resem-
bling SmPrx1a, and SmPrx1d resembling SmPrx1b (Fig. 8B).

Transcription of the three studied S. mansoni Prxs increases
during development (224), peaking in the redox-stress toler-
ant adult forms (224). SmPrx1a was expressed at a higher level
than the others. In S. japonicum, all Prxs are constitutively
expressed throughout development (138). SjPrx1a has been
localized to the surface of the miracidium and in the space
between the miracidium and eggshell. In the adult fluke, it is
found in the tegument. SjPrx1a is secreted in culture and in
host tissues surrounding eggs (138). Likewise, SmPrx1a is
present in male and female adult worms (140), and is also
found in and secreted by eggs (262). Eggs also secrete a re-
ducing partner of SmPrx1a, SmTrx1 (6). SjPrx1b is found in
eggs only inside the miracidia; in the adult, it is found in sub-
tegumental tissues, the parenchyma, the vitelline gland, and
the gut epithelium (138).

Knockdown of SmPrx1a expression in culture results in
sevenfold decreased survival of parasites and increased pro-
tein and lipid oxidation (224). Also, whereas knocking down
SmPrx1a and SmPrx1b individually in S. mansoni sporocysts
exhibited no phenotype, a combined SmPrx1a/SmPrx1b
knockdown resulted in significantly smaller larvae (176) and
reduced survival upon exposure to H2O2 or when cultured
together with susceptible snail hemocytes (177). Similarly,
with SjPrx1a knocked down, larval growth is retarded by
organic ROOH treatment, whereas a knockdown of SjPrx1b
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had less pronounced effects (139). Study of recombinant
SmPrx1a, SmPrx1b, and SmPrx1c showed that each exhibits a
catalytic efficiency (kcat/Km) of *104–105 M - 1s - 1 (225).
SmPrx1a is robust to oxidative inactivation by H2O2, whereas
SmPrx1b and SmPrx1m are sensitive to H2O2 and have a
preference for organic ROOH substrates (225), so the latter
enzymes may play a role in redox signaling, if this occurs in
Schistosoma. Also, SmPrx1b and SmPrx1m could be reduced
by both Trx and, unusually, GSH (225).

Fasciola: The Fasciola species F. gigantica and F. hepatica lack
catalase and have little or no Gpx (43, 160). Three Prx1 genes
from the genus have been identified (43). One F. hepatica Prx is
secreted and so we denote it Prx1a (229). Although it lacks a
secretion signal peptide (71), FhPrx1a is strongly predicted by
the Secretome Server (25) to follow a nonclassical eukaryotic
secretion pathway and FhPrx1b is not. Although not bio-
chemically characterized, FhPrx1b (which is 99% identical in
sequence to FgPrx1b) has a weakly predicted mitochondrial
transit peptide of 24 residues at its N-terminus, and FhPrx1a
does not (71). FhPrx1a has demonstrated efficacy as a vaccine
antigen in an animal model (161), whereas an FgPrx1b-based
vaccine has failed in a separate animal trial (211).

FhPrx1a protein is abundant in the parasite and has been
cloned, recombinantly expressed, and characterized: it was
shown to be active by DNA protection assay; to reduce H2O2,
cumene-OOH, and t-butyl-OOH with catalytic efficiencies
(kcat/Km) *5 · 105 M - 1s - 1; and to be inactivated via over-
oxidation at 0.5 mM H2O2 (217, 229). FgPrx1b gene expression
is constitutive throughout development, and localized to the
gut epithelium, tegument, and reproductive system (43). In
very early stage juveniles, the gut epithelium exhibits in-
creased transcript levels (43).

Opisthorchiidae: Despite the lack of sequenced genomes,
several Prxs have been identified in the liver flukes Clonorchis
sinensis and Opisthorchis viverrini. In these organisms, thus far
only a Prx1b and a Prx1m have been found. Both Prx genes are
expressed during the entire life cycle, with CsPrx1b transcript
levels observed (by semiquantitative RT-PCR) to increase
steadily from the juvenile to the adult stages and the CsPrx1m
gene expressed at a constant, much lower level (19). Although
both proteins can be detected throughout the worm tissues,
CsPrx1b is much more abundant and is also secreted (19), as
confirmed by a secretion proteomics study (114). The OviPrx1b
gene is expressed in all parasite tissues and the protein may
also be secreted, as it was found in host secondary bile ducts
too small for infection (239). Thus, OviPrx1b and CsPrx1b ap-
pear to combine the properties of the Prx1a and Prx1b of
schistosomes. Recombinantly expressed CsPrx1b and CsPrx1m
showed activity in a DNA protection assay (239) and yielded
kcat/Km values on the order of 10- 3–10- 4 M - 1s - 1 for H2O2,
cumene-OOH, and 13-hydroperoxy-octadecadienoic acid (19).
E. coli and yeast reducing partners were used, however, so
these probably underestimate their true physiological rates.

Prxs in fungi

The intracellular pathogenic fungi with identified Prxs are
C. neoformans and the Encephalitozoon species, E. cuniculi and
E. intestinalis. The sequenced genomes show that C. neofor-
mans has three Prxs (from subfamilies Prx1, Prx6, and PrxQ),
and each Encephalitozoon species has a single Prx from sub-
family Prx1. In C. neoformans, CnPrx1a was shown to be in-

ducible by H2O2 (164, 165) and the gene encoding each Prx has
been individually deleted: the deletion of the Prx1a gene ex-
hibits reduced growth rate, increased sensitivity to ROS and
RNS, and decreased virulence in a mouse model; deleting the
genes encoding Prx6 and PrxQ yields no related phenotype
(164). E. cuniculi lacks catalase and has no detectable peroxi-
some, and is expected to rely on Prx1a along with a GSH-
dependent peroxidase and SOD for coping with ROS (75).
One proteomics study found EcPrx1a to be expressed in the
late sporogonial stages (29).

Prxs as Potential Drug, Vaccine, or Diagnostic Targets

Certain Prx systems seem to be essential for life, but current
drugs tend to target enzymes upstream of the Prxs (8, 107).
For example, arsenic-based drugs for African trypano-
somiasis and antimony-based therapeutics used against
leishmaniasis are thought to target T(SH)2 and TR (56, 74, 178,
269). Similarly, in L. infantum a cytosolic Txn has been shown
to be essential (215).

Although few selective Prx inhibitors are known, a structure–
activity relationship study with derivatives of conoidin A, a
covalent inhibitor of T. gondii Prx6, led to analogs with IC50

values ranging from about 10 to 100 lM (150). Although
conoidin is toxic to T. gondii cells, TgPrx6 is not its molecular
target (95). The inhibition of mammalian PrxI and PrxII by
conoidin makes it less attractive as an antiparasitic lead
compound, yet since few Prx inhibitors are known, Conoidin
A and its derivatives may be of value as probes in Prx che-
mical genetics studies (238).

One validated Prx drug target is TbPrx1a, shown to be es-
sential by RNAi (260). Inspired by the potential of some het-
eroaromatic quinols as cancer drugs, a series of substituted
quinols were tested against T. brucei bloodstream trypomas-
tigotes (134). Three of the derivatives exhibited half-maximal
effective concentration (EC50) values below 100 nM, although
all exhibited poor specificity for T. brucei cells (only two- to
threefold compared with MRC5 human fibroblasts). The most
promising compound (PMX464) was shown to be trypanoci-
dal at five times the EC50 value. Other molecular targets of
PMX464 were a Gpx-like protein (with an inhibition profile
nearly identical to TbPrx1a) and T(SH)2 (with 14-fold greater
affinity than GSH and cysteine).

A likely barrier to the development of clinical Prx inhibitors
is the strong conservation of the FF active site among all Prxs
(90), which makes specificity an issue. Some authors suggest
exploiting species-specific features such as the angle of ap-
proach of the CR in the resolving step of the reaction [human
erythrocyte TPx-B compared with TcruPrx1a (202)] or specific
characteristics of the dimerization interface(s).

Prxs have been implicated in several instances of drug re-
sistance. Antimony resistance resulted from overexpression of
LdPrx1a in L. donovani promastigotes and amastigotes (106).
TcruPrx1a and TcruPrx1m expression was found to be in-
creased in benznidazole-resistant T. cruzi strains (11, 188).
Likewise, metronidazole-resistant E. histolytica exhibited an
upregulated Prx1 (259).

Prxs have shown promise as vaccine antigens. LmajPrx1a is
part of a heterologous prime-boost vaccine that promotes
long-term protection against L. major infection in mice (237), a
vaccine protective against infection in mouse and monkey
models (34), and a trivalent vaccine successful in phase I
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clinical trials (51). LdPrx1a has been patented as a vaccine
antigen candidate (U.S. Patent 7795406).

Prx-based helminth vaccine development has also been
pursued. The BmPrx1a gene has been used in a DNA cocktail
vaccine efficacious in mice (10) and a peptide derived from a
BmPrx1a epitope is strongly immunogenic in mouse and hu-
man cell lines, and strongly and selectively immunoreacts to
sera from immune and infected individuals (154, 155). An
FhPrx1a-derived vaccine protected goats from liver damage
after Fasciola infection (161), but the FgPrx1b-derived vaccine
failed to demonstrate efficacy in buffaloes (211). Also, a
multiple antigen peptide combining S. mansoni aldolase with
SmPrx1a elicited a specific immune response in mice (69). On
a related note, Prxs may have diagnostic value in testing for
Leishmania species (219, 233), E. granulosus (158), F. gigantica
(43, 277), and Taenia species (253).

Treatment, prevention, and diagnostic tools are very lim-
ited for many parasitic diseases, especially those that dis-
proportionately affect people in resource-poor communities
(99). Despite the urgent need for improved interventions, fi-
nancial support for relevant product development is generally
weak (172, 173), limiting the progression of candidate drugs,
vaccines, and diagnostics through clinical testing. Funda-
mental research in parasite biology and biochemistry is
therefore essential to ensure that the therapeutic, vaccination,
and diagnostic approaches pursued in the clinic are the ones
most likely to succeed. Thus, it is encouraging to survey the
extensive work on parasite Prxs and to note numerous efforts
underway to understand and exploit their properties for the
benefit of hundreds of millions of patients and people at high
risk of parasitic infection.
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Wissing J, and Tomás A. Specificity and kinetics of a mi-
tochondrial peroxiredoxin of Leishmania infantum. Free Ra-
dic Biol Med 33: 1563–1574, 2002.

36. Castro H, Romao S, Gadelha F, and Tomás A. Leishmania
infantum: provision of reducing equivalents to the mito-
chondrial tryparedoxin/tryparedoxin peroxidase system.
Exp Parasitol 120: 421–423, 2008.

37. Castro H, Sousa C, Novais M, Santos M, Budde H,
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202. Piñeyro M, Pizarro J, Lema F, Pritsch O, Cayota A, Bentley
G, and Robello C. Crystal structure of the tryparedoxin
peroxidase from the human parasite Trypanosoma cruzi. J
Struct Biol 150: 11–22, 2005.
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268. Wood ZA, Schröder E, Harris JR, and Poole LB. Structure,
mechanism and regulation of peroxiredoxins. Trends Bio-
chem Sci 28: 32–40, 2003.

269. Wyllie S, Cunningham ML, and Fairlamb AH. Dual action
of antimonial drugs on thiol redox metabolism in the hu-
man pathogen Leishmania donovani. J Biol Chem 279: 39925–
39932, 2004.

270. Wyllie S, Mandal G, Singh N, Sundar S, Fairlamb A, and
Chatterjee M. Elevated levels of tryparedoxin peroxidase in
antimony unresponsive Leishmania donovani field isolates.
Mol Biochem Parasitol 173: 162–164, 2010.

271. Yano K, Komaki-Yasuda K, Kobayashi T, Takemae H, Kita
K, Kano S, and Kawazu S-I. Expression of mRNAs and
proteins for peroxiredoxins in Plasmodium falciparum
erythrocytic stage. Parasitol Int 54: 35–41, 2005.

272. Yano K, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, and
Kawazu S. 2-Cys Peroxiredoxin TPx-1 is involved in ga-
metocyte development in Plasmodium berghei. Mol Biochem
Parasitol 148: 44–51, 2006.

273. Yano K, Otsuki H, Arai M, Komaki-Yasuda K, Tsuboi T,
Torii M, Kano S, and Kawazu S. Disruption of the Plas-
modium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the
sporozoite development in the vector mosquito. Mol Bio-
chem Parasitol 159: 142–145, 2008.

274. Yoo W, Kim D-W, Ju J-W, Cho P, Kim T, Cho S-H, Choi S-
H, Park H-S, Kim T-S, and Hong S-J. Developmental
transcriptomic features of the carcinogenic liver fluke,
Clonorchis sinensis. PLoS Negl Trop Dis 5: e1208, 2011.

275. Yuan Y, Knaggs MH, Poole LB, Fetrow JS, and Salsbury FA.
Conformational and oligomeric effects on the cysteine pKa of
tryparedoxin peroxidase. J Biomol Struct Dyn 28: 51–70, 2010.

276. Zhang J, Fu Y, Xu X, Wu T, and Cao F. [RNA interference
to the expression of peroxiredoxin-related genes in Tricho-
monas vaginalis]. (Abstract of Chinese-language article).
Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi
23: 437–440, 2005.

277. Zhang W, Rogniaux H, Huang W, Chauvin A, and Moreau
E. Analysis of thioredoxin peroxidase as a promising anti-
gen for diagnosis of Fasciola gigantica infection: a prelimi-
nary study. Parasitol Int 60: 206–208, 2011.

278. Zipfel P, Schrum S, Bialonski A, and Buttner D. The per-
oxidoxin 2 protein of the human parasite Onchocerca vol-
vulus: recombinant expression, immunolocalization, and
demonstration of homologous molecules in other species.
Parasitol Res 84: 623–631, 1998.

Address correspondence to:
Prof. P. Andrew Karplus

Department of Biochemistry & Biophysics
Oregon State University

2011 Ag Life Sciences Bldg
Corvallis, OR 97331

E-mail: karplusp@science.oregonstate.edu

Date of first submission to ARS Central, November 14, 2011;
date of acceptance, November 18, 2011.

Abbreviations Used

AhpF¼ alkyl hydroperoxide reductase component F
BCP¼ bacterioferritin comigratory protein

CP¼peroxidatic cysteine
CR¼ resolving cysteine

EC50¼half-maximal effective concentration
FF¼ fully folded

Gpx¼ glutathione peroxidase
Grx¼ glutaredoxin
GS¼ glutathione synthase
LU¼ locally unfolded
MT¼metacyclic trypomastigote

NCBI¼National Center for Biotechnology Information
PDB¼Protein Data Bank
Plrx¼plasmoredoxin

PREX¼ the PeroxiRedoxin classification indEX
Prx¼peroxiredoxin

Prx1¼ a Prx subfamily or subfamily member
Prx5¼ a Prx subfamily or subfamily member
Prx6¼ a Prx subfamily or subfamily member

PrxQ¼ a Prx subfamily or subfamily member
RNAi¼RNA interference

RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species

RT-PCR¼ reverse transcriptase–polymerase chain reaction
SOD¼ superoxide dismutase

SP¼ sulfur atom of the peroxidatic Cys
SPOH¼ sulfenic acid form of the peroxidatic Cys

SPO2H¼ sulfinic acid form of the peroxidatic Cys
SR¼ sulfur atom of the resolving thiol

Srx¼ sulfiredoxin
Tpx¼ a Prx subfamily named thiol peroxidase,

or member of the same
Trx¼ thioredoxin

TrxR¼ thioredoxin reductase
TR¼ trypanothione reductase

TS2¼ trypanothione (oxidized)
T(SH)2¼ trypanothione (reduced)

Txn¼ tryparedoxin

(Appendix follows/)
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Appendix 1. List of Parasite Genera and Important Pathogenic Species Included in Prx Searches

Genus Important speciesa

Acanthamoeba astronyxis, castellanii, divionensis, hatchetti, lenticulata, lugdunensis, polyphaga, rhysodes, ulbertsoni
Ancylostoma duodenale
Angiostrongylus cantonensis, costaricensis
Anisakis simplex
Ascaris lumbricoides
Austrobilharzia variglandis
Balamuthia mandrillaris
Balantidium coli
Baylisascaris procyonis
Blastocystis hominis
Brugia malayi, timori
Capillaria hepatica, philippinensis
Clonorchis sinensis, viverrini
Cryptococcus neoformans
Cryptosporidium parvum, hominis, muris
Cyclospora cayetanensis
Cystoisospora belli (formerly Isospora belli)
Dicrocoelium dendriticum
Dientamoeba fragilis
Dioctophyme renale
Diphyllobothrium latum
Dipylidium caninum
Dracunculus medinensis
Encephalitozoon cuniculi, intestinalis
Echinococcus granulosus, multilocularis, oligarthrus, vogeli
Echinostoma echinatum
Entamoeba dispar, histolytica, moshkovskii
Enterobius vermicularis, gregorii
Fasciola hepatica, gigantica
Fasciolopsis buski
Giardia lamblia
Gnathostoma hispidum, spinigerum
Heterophyes heterophyes
Hymenolepis diminuta, nana
Leishmania aethiopica, amazonensis, braziliensis, chagasi, donovani, major, mexicana, guyanensis, infantum,

panamensis, peruviana, tropica, venezuelensis
Loa loa
Mansonella streptocerca
Metagonimus yokogawai
Naegleria fowleri
Necator americanus
Onchocerca volvulus
Opisthorchis viverrini, felineus
Paragonimus africanus, caliensis, kellicotti, skrjabini, uterobilateralis, westermani
Plasmodium falciparum, knowlesi, malariae, ovale, vivax
Pneumocystis carnii (also known as P. jirovecii)
Pseudoterranova decipiens
Rhinosporidium seeberi
Schistosoma haematobium, japonicum, mansoni, mekongi
Spirometra erinacei, mansoni, mansonoides, ranarum
Strongyloides stercoralis
Taenia crassiceps, solium, saginata
Toxocara canis, cati
Toxoplasma gondii
Trichinella britovi, nativa, nelsoni, spiralis
Trichobilharzia regenti
Trichomonas vaginalis
Trichuris trichiura, vulpis
Trypanosoma brucei, cruzi
Wuchereria bancrofti

aSpecies indicated in bold type are those with at least one Prx protein or gene that is mentioned in the review. For all others, we found no
Prx gene or protein mentioned in the literature or present in sequence databases.
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