Refractive Index and Optical Dispersion of In₂O₃, InBO₃ and Gahnite.

O. Medenbach^a, Theeranun Siritanon^{b*}, Mas Subramanian^{b**}, D. Dettmar^a, R.D. Shannon^c, and R. X. Fischer^d

^a Institut für Mineralogie, Fakultät fur Geowissenschaften, Ruhr-Universität Bochum,

Universitätstraße 150, D-44780 Bochum

^bDepartment of Chemistry, Oregon State University, Corvallis, OR 97331-4003

^cGeological Sciences/CIRES, University of Colorado, Boulder, Colorado 80309

^d Fachbereich Geowissenschaften, Universität Bremen, Klagenfurter Straße, D-28359 Bremen.

rfischer@uni-bremen.de

* Present address: School of Chemistry Suranaree University of Technology Nakhon Ratchasima 30000 THAILAND

Keywords:

A. Optical properties B. In2O3 C. ZnAl2O4 (gahnite) D. InBO3

**corresponding author.

E-mail address: mas.subramanian@oregonstate.edu

Abstract

Refractive indices of In₂O₃, $In_{2-x}Sn_xO_3$, $InBO_3$ and 2 different gabnite crystals ($ZnAl_2O_4$ and $Zn_{.95}Fe_{.05}Al_2O_4$) were measured at wavelengths of 435.8 to 643.8 nm and were used to calculate n at $\lambda = 589.3$ nm (n_D) and at $\lambda = \infty$ (n_∞) using the one-term Sellmeier equation $1/(n^2-1) = -A/\lambda^2 + B$. Total polarizabilities, α_{total} , were calculated from n_∞ and the Lorenz-Lorentz equation. Refractive indices, n_D and dispersion values, A, were, respectively, 2.093 x 10⁻¹⁶ m² and 133 x 10⁻¹⁶ m² for In₂O₃; 2.0755 and 138 x 10⁻¹⁶ m² for $In_{2-x}Sn_xO_3$; 1.7940 and 57 x 10⁻¹⁶ m² for $ZnAl_2O_4$ and 1.7995 and 56 x 10⁻¹⁶ m² for $Zn_{.95}Fe_{.05}Al_2O_4$ and $n_o = 1.8782$ and $n_e = 1.7756$ and <63> x 10⁻¹⁶ m² for $InBO_3$. [Add comments about dispersion here]

1. Introduction

A set of empirical electronic polarizabilities was recently derived from a large number of minerals, synthetic oxides, hydroxides, oxyhydroxides, oxyfluorides, oxychlorides, hydrates, and fluorides [1] and allowed prediction of mean refractive index (RI) of many minerals and synthetic oxides as well as delineating sets of compounds characterized by steric strain and the presence of corner-shared octahedral groups. However, because predicted polarizabilities and RI values were valid only at infinite wavelength, it was not useful for prediction of normal mineral RI's determined at $\lambda = 589.3$ nm. To provide data for the evaluation of polarizabilities and RI's valid at $\lambda = 589.3$ nm and as part of an ongoing study of optical properties of minerals, laser materials and synthetic

compounds [1-5], we have established a database of more than 2000 RI values for calculating mean values of polarizabilities using a procedure similar to [1] but using RI measurements made at $\lambda = 589.3$ nm. Such a system requires accurate refractive indices, compositions and unit cell volumes. In the early stages of this study it was noted that the polarizabilities of Zn²⁺ in ZnO and In³⁺ in In2O3 were not consistent with the Zn²⁺ and In³⁺ polarizabilities in other Zn- and In-containing compounds. In order to resolve these discrepancies, we have determined the refractive indices and optical dispersion of 2 different galnite samples (*ZnAl₂O₄* and Zn_{.95}Fe_{.05}Al₂O₄), 2 different indium oxide samples (In₂O₃ and In_{2-x}Sn_xO₃) and InBO3 and compare the dispersion values of ZnO and In₂O₃, both transparent conductive oxides, with the dispersion of nonconductive oxides.

2. Experimental

Crystal growth of In2O3[Ref 6]

Clear green plate-like crystals of InBO3 were grown from a PbO-Bi2O3 flux.

Two gahnite crystals, $Zn_{.95}Fe_{.05}Al_2O_4$ (Harvard collection No. 111989) from an unspecified location in Brazil and [$ZnAl_2O_4$] from the Alto Mirador Mine in Carauba do Dantes, Rio Grande do Norte, Brazil were used.

The principal method of preparation of small crystal prisms and the procedure for measuring the refractive index and dispersion were described in detail by Medenbach and Shannon [2], along with a comprehensive discussion of the errors involved in the minimum-deviation method. The total error limits are estimated to be less than $\Delta n = \pm 0.0005$ [2].

2. Results and discussion

2.1 Refractive indices

Table 1 lists refractive indices of In_2O_3 , $In_{2-x}Sn_xO_3$, $ZnAl_2O_4$, $Zn_{.95}Fe_{.05}Al_2O_4$ and $InBO_3$ as a function of λ . Table 1 also lists the dispersion parameters A and B obtained by fitting to the 1-term Sellmeier expression used by Di Domenico and Wemple [7] and Wemple and Di Domenico and [8] and Wemple [9]:

$$\frac{1}{n^2 - 1} = -\frac{A}{\lambda^2} + B \tag{1}$$

where A, the slope of the plot of $(n^2-1)^{-1}$ vs. $(\lambda^2)^{-1}$, gives a measure of the dispersion and B, the intercept of the plot at $\lambda = \infty$ gives $n_{\infty} = (1 + 1/B)^{1/2}$. Calculated values of n_{∞} and n_D listed in Tables 1 were derived from the dispersion plots. The observed values of the total electronic polarizabilities were determined from the Lorenz-Lorentz equation:

$$\alpha_{obs} = \frac{1}{b} V_m \cdot \frac{n_{\infty}^2 - 1}{n_{\infty}^2 + 2} \tag{2}$$

where the Lorentz factor *b* is defined as $b = 4\pi/3$, $V_m = molar$ volume in Å³, and $n_{\infty} =$ the refractive index at $\lambda = \infty$ [10,11]. The value of $n_D(\ln_2O_3) = 2.0930$ agrees reasonably well with the value of 2.080 obtained by Staritzky [12]. The values of $n_o =$ 1.8782 and $n_e = 1.7756$ agree with the values obtained by Levin et al. [13] for InBO₃ ($n_o = 1.873$ and $n_e = 1.773$). Gahnite refractive indices depend on the composition but the values of our two gabnites, 1.7940 (Alto Mirador) and 1.7995 (Harvard, <u>111989)</u>, agree approximately with that of the gabnite $Zn_{.92}Fe_{.07}Mg_{.01}Al_{1.97}Fe_{.03}O_4$ from Jos, Nigeria of 1.7944[14]. <u>The</u> differences can be ascribed to varying amounts of Fe?(need microprobe of Alto Mirador)

2.2 Dispersion values

As a framework for the analysis of dispersion parameters, we use the analysis of Wemple and DiDomenico[8] and Wemple [9]. In this scheme $A = 1/E_0E_d$ where E_0 = the average single oscillator energy and E_d = the oscillator strength which measures the average strength of interband optical transitions. According to and Wemple and DiDomenico [8], E_d is related to physical parameters by the expression:

 $E_d = \beta N_c Z_a N_e$

(4)

where N_c is the cation coordination number, Z_a is the formal valence of the anion, N_e is the effective number of valence electrons/anion, $\beta = 0.26$ for ionic compounds. Using this scheme high dispersion values should result for compounds with:

- 1. low energy gaps
- 2. cations having low N_c

Table 2 summarizes the data from the crystals measured here and earlier data [3,15-17]. The very high dispersion values of both ZnO and In_2O_3 , 160 x 10^{-16} m² and 133 x 10^{-16} m² respectively are consistent with their low band gaps of 3.4 and 2.8 eV. DiDomenico and Wemple [7] and Wemple [9] concentrated primarily on optical dielectric constants (refractive indices) and their relationships to the above variables but they were not concerned specifically with dispersion, although DiDomenico and Wemple [7] noted that the refractive index dispersion is approximately inversely related to the average single oscillator Sellmeier gap, E_0 . In Ref [3] we focussed primarily on the dispersion, A, and the relationship to chemical composition and electron configuration of the atoms involved and found that many of the trends in A could be explained by the above factors. A survey of the dispersion parameters of the compounds in Table 1 of Ref [3] showed high dispersion values, A, associated with the "soft" d^{10} ion Zn^{2+} and that the dispersion depended on the total concentration of "soft" ions where these ions must be in concentrations > 10-15%. Wemple and DiDomenico [8] and Wemple [9] showed that low values of E_0 are associated with the d¹⁰ cations Cu⁺ and Ag⁺ and we see here (Table 2) that the d¹⁰ ions Zn²⁺ and In³⁺ also fit this trend. Among the Zn-containing compounds only ZnO (A= 160 x 10^{-16} m²) and ZnWO₄ (A = 82 x 10^{-16} m²) have high dispersion. ZnO has both low E_o and E_d (CN = IV) whereas ZnWO₄ has low E_o but a higher E_d caused by CN = 6 for both Zn and W. Note that the high dispersion of $ZnWO_4$ results from the combined presence of Zn^{2+} and W^{6+} . The lower dispersions of the other Zn- and In-containing compounds are explained by the presence of large concentration of non-soft ions B3+, Si4+ and P5+. The other Zn-containing compounds $(Zn_{.92}Fe_{.07}Mg_{.01}Al_{1.97}Fe_{.03}O_4, ZnAl_2O_4, Zn_{.95}Fe_{.05}Al_2O_4, Zn_4B_6O_{13}, and Zn_3BPO_7)$ and InBO₃ for which we have dispersion data have relatively high oscillator energies, Eo = 10-12 eV, and therefore lower dispersion. We believe lack of consistency of the polarizabilities of Zn^{2+} in ZnO and In^{3+} in In2O3 with the Zn^{2+} and In^{3+} polarizabilities in other Zn- and In-containing compounds is related to the very high dispersion and low E_0 of the simple oxides.

Acknowledgements

We are indebted to Prof. G. R. Rossman for microprobe analyses of the In2O3, InBO3 and gahnite samples. These

measurements would not have been possible without the skillful assistance of

References

[1] R.D. Shannon, R.X. Fischer: Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides and oxychlorides. Phys. Rev. **B 73** (2006) 235111.

[2] O. Medenbach, D. Dettmar, R.D. Shannon, R.X. Fischer, W.M. Yen: Refractive index and optical dispersion of cubic rare earth oxides and monoclinic Nd-doped Gd₂O₃ using a small prism technique. J. Opt. A, **3** (2001) 174.

[3] R.D. Shannon, R.C. Shannon, O. Medenbach & R.X. Fischer: Refractive indices and dispersion of fluorides and oxides. J. Phys. Chem. Ref. Data **31** (2002) 931.

[4] R.D. Shannon , R.X. Fischer, O. Medenbach, E. Bousquet, P. Ghosez: Correlation between optical constants and crystal chemical parameters of ZrW_2O_8 . J. Sol. St. Chem. **182** (2009) 2762.

[5] R.D. Shannon, O. Medenbach, H. Mizoguchi, M.A. Subramanian, R.X. Fischer: Optical constants and crystal chemical parameters of Sc₂W₃O₁₂. Mater. Res. Bull. **47** (2012) 235.

[6] Crystal growth of In2O3 reference

- [7] M. DiDomenico, S. H. Wemple, J. Appl. Phys. 40 (1969) 720.
- [8] S. H. Wemple, M. DiDomenico, Phys. Rev. B 3 (1971) 1338.
- [9] S. H. Wemple, J. Chem. Phys. 67 (1977) 2151.
- [10] H.A.Lorenz, Ann. Phys. Chem. 9 (1880) 641.
- [11] L.Lorentz, 1880 Ann. Phys. Chem. 11 (1880) 70.
- [12] E.Staritzky, Analyt. Chem. 28 (1956) 553. In2O3
- [13] E.M.Levin, R.S.Roth, J.B.Martin, Am. Mineral. 46 (1961) 1030. InBO3
- [14] O. Medenbach, R.D.Shannon, J. Opt. Soc. Amer. B 14 (1997) 3299.
- [15] W.L.Bond, J. Appl. Phys. 36 (1956) 1674. ZnO
- [16] L. Bohaty, S.Haussuhl, J. Liebertz, S. Stahr, Zeits. Krist. 82 (1982) 157. Zn4B6O13
- [17] A. Ehringhaus, H. Rose, Zeits. Krist. 58 (1923) 460. Zn2SiO4 willemite
- [18]G. Wang, Y.Wu, P.Fu, X.Liang, Z.Xu, C.Chen, Chem. Mater. 14 (2002) 2044. <u>*β*-Zn3BPO7</u>

List of Tables

Table 1. Experimental refractive indices, total polarizabilities (α_{total}) and dispersion parameters of In₂O₃, In_{2-x} Sn _xO₃, ZnAl₂O₄, Zn_{.95}Fe_{.05}Al₂O₄ and InBO₃.

Table 2. Dispersion of Zn- and In-containing compounds.

 $Table \ 1. \ Experimental \ refractive \ indices, \ total \ polarizabilities \ (\alpha_{total}) \ and \ dispersion \ parameters \ (A, \ B, \ E_o \ and \ E_d) \ of$

wavelength λ ,	In ₂ O ₃	In _{2-x} Sn _x O	3 ZnAl ₂ O ₄	Zn _{.95} Fe _{.05} Al ₂ O ₄	InBO3	
nm			Alto Mirador	Harvard No.111989	no	n _e
643.8	2.0778	2.0596	1.7906	1.7959	1.8733	1.7717
576.9	2.0961	2.0801	1.7949	1.8003	1.8795	1.7765
546.0	2.1085	2.0931	1.7977	1.8031	1.8835	1.7799
508.6	2.1271	2.1122	1.8017	1.8074	1.8888	1.7838
480.0	2.1454	2.1310	1.8055	1.8112	1.8938	1.7880
468.0	2.1545	2.1405	1.8075	1.8134	1.8967	1.7904
435.8	2.1875	2.1727	1.8131	1.8180	1.9043	1.7962
A, 10 ⁻¹⁶ m ²	133	138	57	56	<63>	
В	0.3340	0.3421	0.4670	0.4628	<0.4367>	
E _o (eV)	6.34	6.30	11.48	11.52		
E _d (eV)	18.99	18.40	24.64	24.88		
n∞	1.9985	1.9807	1.7723	1.7778	1.8488	1.7521
<i>n</i> _D (λ=589.3 nm)	2.0930	2.0755	1.7940	1.7995	1.8782	1.7756
α_{e} , Å ³	7.718	7.625	6.602	6.637	<5.366>	

 $In_2O_3, In_{2\text{-}x}\,Sn_{\,x}O_3, \,ZnAl_2O_4, \,Zn_{.95}Fe_{.05}Al_2O_4 \,and \,InBO_3.$

Table 2. Dispersion of Zn- and In-containing compounds

		Atom		Ed	
	Dispersion 10 ⁻¹⁶ m ²	% *	Eo		Reference
ZnO	160	50	6.09	16.51	[3,15]
$ZnAl_2O_4$	57	14	11.48	24.64	This study
$Zn_{.95}Fe_{.05}Al_2O_4$	56	14	11.52	24.88	This study
Zn _{.92} Fe _{.07} Mg _{.01} Al _{1.97} Fe _{.03} O 4	56	14	11.50	24.64	[3,14]
$Zn_4B_6O_{13}$	61	17	11.48	22.70	[3,16]
Zn_2SiO_4	81	28	10.48	18.93	[3,17]
Zn ₃ BPO ₇	67	25	11.27	21.29	[18]
ZnWO ₄	82	33	7.32	26.68	[3,15]
In ₂ O ₃	133	40	6.34	18.99	This study
In _{2-x} Sn _x O ₃	138	40	6.30	18.40	This study
InBO ₃	63	20	10.52	24.10	This study

*atom % = total soft ions/total cations + anions

Table 2A. Dispersion of Zn- and In-containing

compounds

Compound	Dispersion	Atom % *	Eo	Reference
	10-16 m2			
ZnO	160	50	6.09	56 JAPIAU 36 1674
$ZnAl_2O_4$	57	14	11.48	This study
Zn.95Fe.05Al2O4	56	14	11.52	This study
$Zn_{.92}Fe_{.07}Mg_{.01}Al_{1.97}Fe_{.03}O_4$	56	14	11.50	97 JOBPDE 14 3299
Zn4B6O13	61	17	11.48	82 ZEKRDZ 161 157
Zn2SiO4	81	28	10.48	23 ZEKRDZ 58 460
Zn3BPO7	67	25	11.27	02 CMATEX 14 2044
ZnWO4	82	33	7.32	65 JAPIAU 36 1674
In2O3	133	40	6.34	This study
In _{2-x} Sn _x O ₃	138	40	6.30	This study
InBO3	63	20	10.52	This study

atom % = total soft ions/total cations + anions