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Raman scattering can be a significant contributor to the emergent radiance spectrum from the surface
ocean. Here, we present an analytical approach to directly estimate the Raman contribution to remote
sensing reflectance, and evaluate its effects on optical properties estimated from two common semi
analytical inversion models. For application of the method to ocean color remote sensing, spectral
irradiance products in the ultraviolet from the OMI instrument are merged with MODerate-resolution
Imaging Spectroradiometer (MODIS) data in the visible. The resulting global fields of Raman-corrected
optical properties show significant differences from standard retrievals, particularly for the particulate
backscattering coefficient, bbp, where average errors in clear ocean waters are ∼50%. Given the interest
in transforming bbp into biogeochemical quantities, Raman scattering must be accounted for in semi
analytical inversion schemes. © 2013 Optical Society of America
OCIS codes: (010.4450) Oceanic optics; (010.0280) Remote sensing and sensors; (010.5630)

Radiometry; (010.1690) Color.
http://dx.doi.org/10.1364/AO.52.005552

1. Introduction

Ocean color inversion models provide a means of re-
lating the emergent radiance spectrum to various ab-
sorbing and scattering components in the surface
ocean [1]. In turn, these absorption and scattering in-
dices convey rich information on suspended and dis-
solved materials that can now be estimated from
satellite at global, synoptic scales. Some of the better
characterized bio-optical signals (e.g., chlorophyll or
water transparency) have been used to examine long-
term changes in ocean properties associated with
climate variability [2–4]. However, the accuracy of
retrieved quantities depends upon a number of
factors ranging from satellite sensor calibration to

the formulation of the inversion algorithm itself.
The latter depends upon the ability to account for
all significant processes affecting light transmission
and propagation in the ocean and atmosphere. Some
of these processes and relationships can be expressed
analytically in an inversion algorithm, while others
rely on empirically derived information.

One such physical process that affects the ambient
light field is Raman scattering. Raman scattering is a
quantum molecular phenomenon that results from
photon interactions with the medium itself (e.g., sea-
water), and which are re-emitted at wavelengths dif-
fering from the excitation source [5,6]. While Raman
scattering is often conceptually lumped together
with other “trans-spectral” processes, it is a funda-
mentally different process from other forms of
absorption-reemission interactions, such as fluores-
cence. Unlike fluorescence, Raman scatter is
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associated with a fixed spectral shift between excita-
tion and emission frequencies [6]. In order to esti-
mate the spectral intensity of Raman scattered light,
three pieces of informationmust be known: the shape
and magnitude of the excitation energy spectrum,
how that excitation energy is spectrally redistrib-
uted, and some metric quantifying the “efficiency”
of Raman scatter. The first two pieces are simply
the incident irradiance spectrum and the spectral re-
distribution function, needed to predict the emission
spectra [7]. Therefore, most of the effort in ocean op-
tics related to Raman scatter has centered on char-
acterizing the third piece, the Raman scattering
cross section [8–11]. Gordon [12] provides a brief
chronology of these measurements and how they
compare with various simulation [13–15] and field-
based studies [16,17].

The results of these past efforts demonstrate that
Raman scattering can contribute significantly to the
marine upwelling radiance field across all visible
wavelengths to a variable degree [8,14,17,18]. For ex-
ample, Waters [15] carried out Monte Carlo simula-
tions suggesting that the Raman fraction of water
leaving irradiance could be as high as ∼15%, but this
was limited to longer wavelengths �λ > 650 nm�.
Further, the effect decreased rapidly with increasing
pigment biomass (∼2% when chlorophyll concentra-
tion �Chl� � 1.0 mgm−3�. More recently, however,
Gordon [12] modeled the Raman effect on the upwell-
ing (ir) radiance and found it to be higher than pre-
vious studies �> 25% of Lu�λ�, spectral upwelling
radiance, in pure seawater for λ > 500 nm� and sig-
nificant for chlorophyll concentrations up to
5 mgm−3. Both of these results—a higher relative
contribution from Raman and a decreased depend-
ence on Chl—were attributed to the use of revised
pure water absorption values [19] and newly re-
ported spectral variability of the Raman scattering
cross section [10]. Gordon concluded that Raman
scattering “…cannot be ignored in ocean color mod-
eling.” In subsequent work, Gordon et al. [20] also
demonstrated that Raman scatter prevented optical
closure efforts using hyperspectral radiometric field
measurements. Thus, it should be evident that
Raman scatter can introduce uncertainty to models
relating the radiance field to the inherent optical
properties (IOPs) of the ocean.

Despite the presumed importance of Raman
scattering, few studies have included it in semi
analytical algorithms designed to invert in situ or
satellite ocean color reflectance data. In particular,
three such algorithms have been put forward
[21–23], but their implementation of Raman scatter
has not been carried forward in subsequent studies
or in the comprehensive report by the IOCCG [24].
This may be due, in part, to the fact that ocean color
remote sensing satellites do not currently have ultra-
violet (UV) bands, which are needed to compute
Raman excitation in the blue part of the visible spec-
trum. Indeed, these efforts have relied on empirical
relationships or lookup tables derived from radiative

transfer simulations. Here, we present a simulated
dataset to examine the effects of Raman scattering
on IOP inversion products from semianalytical mod-
els. We then develop an approach to directly estimate
the inelastic Raman contribution to remote sensing
reflectance and the resulting effects of its removal
on inversion of simulated and satellite ocean
color data.

2. Methods

A. Radiative Transfer Simulations

A series of radiative transfer simulations (Hydro-
Light, Sequoia Scientific, Inc.) were generated to
(1) demonstrate the magnitude of the Raman effect
on Rrs�λ� (remote-sensing reflectance, the ratio of
water-leaving radiance to downwelling irradiance
just above the surface), and (2) provide a validation
dataset for an approach to remove the Raman contri-
bution to Rrs�λ�. Paired runs with and without
Raman scatter were simulated for Chl ranging
from 0.01 to 5.0 mgm−3 �Chl � 0.01; 0.02; 0.03; 0.04;
0.07; 0.1; 0.2; 0.3; 0.5; 0.7; 1.0; 2.0; 5.0 mgm−3�. In or-
der to efficiently incorporate Raman scattering into
the radiative transfer equation, HydroLight uses an
azimuthally averaged formulation of Raman scatter,
which gives the correct Raman contribution to irra-
diances and nadir radiances (see Appendix A in [25]).
The standard “Case 1” model embedded in Hydro-
Light was used to relate Chl to other IOPs, details
of which can be found in Gordon and Morel [26],
Morel and Maritorena [27]. A fixed particle phase
function (Fournier–Forand) was used with a particu-
late backscattering ratio �bbp∕bp� equal to 0.01. In
this model, pure seawater properties are specified
by Pope and Fry [19] and Smith and Baker [28] for
absorption and scattering, respectively. For all simu-
lations, a clear sky with solar zenith angle of 30° and
a wind speed of 5 ms−1 was assumed.

B. Satellite Remote Sensing Data

Satellite products from two independent sensors
were used in this work, the ozone mapping instru-
ment (OMI) on Aura and the MODerate-resolution
Imaging Spectroradiometer (MODIS) on Aqua. Both
Aura and Aqua are part of the A-train constellation
of Earth observing satellites, with Aura having an
Equatorial crossing time just a few minutes later
than Aqua (∼1∶30 pm). OMI data were obtained as
daily, Level 3 products from Goddard Earth Sciences
Data and Information Sciences Center (GES DISC),
and were temporally binned to create monthly com-
posites. These data consist of noon-time UV irradian-
ces at four fixed wavelengths (305, 310, 324 and
380 nm). From MODIS, monthly Level 3 products
of instantaneous PAR (iPAR) and spectral satellite
remote sensing reflectances,Rrs�λ�, were downloaded
directly from the NASA Ocean Color Web portal
(http://oceancolor.gsfc.nasa.gov/). iPAR was decom-
posed to estimate spectral downwelling irradiance
�Ed�λ�� using fixed fractions estimated from an
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atmospheric radiative transfer model [29]. The
fractional constants are stable within 1%–6% de-
pending on wavelength and illumination conditions.
Together, resultant Ed�λ� in the visible and OMI UV
flux data allow pixel-wise reconstruction of incident
irradiance spectra. Ed�λ� at Raman excitation wave-
lengths corresponding to MODIS visible bands (365,
387.5, 421, 452.5, 467.5 nm for MODIS bands 8–12)
were linearly interpolated and band-averaged (band-
widths ∼10 nm). Global fields of MODIS Rrs�λ� were
used to estimate IOPs using two semianalytical in-
version models; the Garver–Siegel–Maritorena
(GSM) model [30] and the quasi-analytical algorithm
(QAA) [31]. Retrieved IOPs include the phytoplank-
ton absorption �aph�λ�, QAA only) or chlorophyll
concentration (Chl, GSM only), particulate backscat-
tering coefficients �bbp�λ��, and dissolved and detrital
organic matter absorption coefficient �aCDM�λ��.
C. Calculation of Raman Contribution to Remote Sensing
Reflectance

We build on the approaches of Bartlett [18], Sathyen-
dranath and Platt [22], and Loisel and Stramski [23]
and express the remote sensing reflectance �Rrs� as

Rrs�λ; 0−� � Rrs;E�λ; 0−� �Rrs;IE�λ; 0−�; (1)

where the first term on the right-hand side accounts
for the contribution to Rrs from elastic scattering
(subscript E), and the second term accounts for in-
elastic scattering (subscript IE). For this exercise,
we are functionally considering three distinct proc-
esses as sources of “inelastic scattering” that affect
remotely sensed ocean color; fluorescence from col-
ored dissolved material (CDOM) and chlorophyll,
and Raman scatter from seawater itself. However,
CDOM fluorescence can be considered negligible
[32], and chlorophyll fluorescence only impacts
Rrs near 685 nm [33]. Hence, we assume that at
all wavelengths except near 685 nm:

Rrs�λ; 0−� � Rrs;E�λ; 0−� �Rrs;Raman�λ; 0−�: (2)

The immediate goal of semianalytical inversion al-
gorithms is to obtain the spectral absorption and
backscattering coefficients for given Rrs;E�λ; 0−�
of the surface ocean. Therefore, we must first esti-
mate Rrs;Raman�λ; 0−� and remove it from measured
Rrs�λ; 0−�. The Raman scattering coefficient, bR�λem�,
accounts for light inelastically scattered from all rel-
evant excitation wavelengths (λex) into an emission
wavelength, λem:

bR�λem� �
Z
λex

aR�λex�f R�λex → λem�dλex: (3)

Here, f R�λex → λem� is the wavelength redistribution
function, which is normalized to unity over all emis-
sion bands and whose shape was first described by
Walrafen [7] for pure seawater. We follow the conven-
tion of Mobley [34] and define the “Raman absorption

coefficient,” aR�λex�, which quantifies the loss of
radiant energy at the excitation wavelength due to
inelastic Raman scatter. Bartlett et al. [10] provided
the most recent measurements of the Raman absorp-
tion coefficient in seawater:

aR�λex� � 2.7 × 10−4
�
λex
488

�
−5.3

: (4)

Finally, the Raman scattered radiance in the upward
direction (Lu;R) emanating from a subsurface layer
between z1 and z1 � Δz at the emission band λem is

Lu;R�z1;Δz; λem�

� ~βR�θs → π�
Z

z1

z1�Δz

Z
λex

bR�λem�Ed�z; λex�e−Kdzdλexdz;

(5)

where ~βr�θs → π� is the Raman phase function,
Ed�z; λex� is the downwelling irradiance at the
relevant excitation wavelengths, and Kd is the at-
tenuation coefficient of downwelling irradiance.
Integrating over all depths and assuming vertically
homogeneous optical properties and single scatter-
ing, the Raman component of upwelling radiance just
beneath the sea surface equals

Lu;R�0−; λem� �
~βr�θs → π�br�λem�Ed�0�; λex�

�Kd�λex� � κL�λem��
: (6)

In this equation, κL�λem� is the attenuation coefficient
for upwelling radiance at emission wavelength λem,
and both the Ed and Kd are averaged over all ex-
citation bands (width less than 20 nm for visible
wavelengths<600 nm). For satellite applications, in-
tegration of Lu;R�0−; λem� over the width of each sat-
ellite band is required (∼10 nm for MODIS), which is
approximated by substituting band-averaged br and
κL in Eq. (6). Similar expressions for the Raman
contribution to upwelled radiance have been derived
in previous studies [10,18,21,35,36].

Transmitting the radiance across the air–sea
interface and normalizing to incident downwelling
irradiance, Ed�0�; λem�, yields an equivalent remote
sensing reflectance:

Rrs;Raman�0�; λem�

� t2

n2

~βr�θs → π�br�λem�Ed�0�; λex�
�Kd�λex� � κL�λem��Ed�0�; λem�

×
�
1� bb�λex�

μu�Kd�λex� � κ�λex��
� bb�λem�

2μuκ�λem�

�
: (7)

The additional terms in brackets on the right-hand
side of Eq. (7) account for higher orders of scattering
(e.g., Raman scattered light in the downward
direction, then elastically backscattered into the
upwelling stream) and are derived in detail else-
where [18,22].
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In practice, the approach presented in Eq. (7) for
estimating the Raman component of Rrs�λ� requires
estimates of IOPs (a and bb) and diffuse attenuation
(K-functions). Therefore, an initial semianalytical
inversion must be made to provide an estimate of
the total absorption and backscattering coefficients.
Attenuation coefficients are then calculated as

Kd�λ� �
a�λ� � bb�λ�

μd
and κ�λ� � a�λ� � bb�λ�

μu
; (8)

μd and μu are the mean cosine of downwelling and
upwelling light, respectively, and the latter is set
as 0.5 as the light field is assumed similar to that
of isotropic light [22], and the mean cosine for
downwelling irradiance is calculated following
Gordon [37] and Lee et al. [38].

The semianalytical inversion models used here re-
quire specification of eigenfunctions describing the
spectral shape of IOPs. Therefore, another consider-
ation that arises is extension of the eigenfunctions to
the UV region where UV irradiance excites Raman
emission in the visible. CDOM absorption and par-
ticulate backscattering can be extrapolated to the
UV with simple exponential or power laws that
adequately capture their spectral behavior (e.g.,
[27]). Absorption by phytoplankton in the UV is more
complicated and variable, as UV absorbing substan-
ces of phytoplankton (e.g., mycosporine-like amino
acids) can vary independently of other pigments
(e.g., [39,40]). Here, we assume that aph for λ <
412 nm is spectrally flat, which may reflect a “mean”
spectrum (see [40]).

3. Results

A. Results from Forward Simulations

Output from radiative transfer calculations provide a
complete and exact IOP/AOP dataset to develop
and test the approach for estimating the Raman

component of Rrs�λem� outlined in the previous sec-
tion. Figure 1(a) shows simulated reflectance spectra
over a wide range of Chl with and without Raman
scattering included (red dotted and black solid
lines, respectively). The contribution from Raman
scattered light can be assessed as the ratio of
Rrs;R�λ�∕Rrs�λ�, which increases with increasing
wavelength, and with decreasing pigment concentra-
tion [Fig. 1(b)]. Specifically, the presence of Raman
scatter enhances Rrs by 10% or less for λ < 500 nm,
while at longer wavelengths Raman scattered light
can account for nearly 25% of the total Rrs in the
clearest waters [Fig. 1(b)]. Importantly, Rrs;R�λ� is
not spectrally flat, particularly in the blue to green
spectral region. The magnitudes of the Raman con-
tribution to reflectance shown here are consistent
with previous studies (e.g., [12]) and are also a weak
function of solar geometry and cloudiness.

B. Inversion Using Semianalytical Models

The simulated Rrs�λ� can be used as input to semian-
alytical inversion models for estimation of IOPs in
the presence or absence of Raman scatter. In this
work, we have chosen to use the GSM [30] and
QAA [31] models, two approaches currently used
by NASA to produce satellite evaluation products.

Thesemodels returnvarious component absorption
and backscattering properties. QAA provides esti-
mates of phytoplankton absorption at 443 nm,
aph�443�, while GSM provides an estimate of Chl.
Both models return absorption by colored dissolved
and detrital matter at 443 nm, aCDM�443�, and the
particulate backscattering coefficient at 443 nm,
bbp�443�. Inversion results using the simulated reflec-
tances are shown in Fig. 2. Biases exist in all
retrieved parameters due to differing bio-optical
relationships specified in the forward simulations
(HydroLight) versus those assumed in the GSM
and QAA inversion models. These differences could
be easily reconciled by using the same expressions

Wavelength (nm) 

low Chl

high Chl

low Chl

high Chl

R
rs

 (
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-1
) 
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rs
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Fig. 1. Spectral remote sensing reflectance fromHydroLight simulations. (a)Rrs�λ� for varying Chl for cases which include Raman scatter
(dotted red lines) and which do not include Raman scatter (solid black lines). (b) Percent contribution of Raman scatter to Rrs�λ� expressed
as the ratio of Rrs;R�λ�:Rrs�λ� times 100. Details of simulations are described in Section 2.

1 August 2013 / Vol. 52, No. 22 / APPLIED OPTICS 5555



for phytoplankton, dissolved and detrital absorption,
and particulate backscattering in the forward and in-
verse models (not shown). However, it is the relative
difference in retrieved IOPs due to Raman scatter
that we focus on in this work. The relative error (or
bias) is defined as �IOPuncorr–IOPcorr�∕IOPcorr � 100,
where IOP is any retrieved IOP and the subscripts
uncorr and corr refer to IOPs estimated from reflec-
tance spectra that are uncorrected or corrected for
Raman, respectively. As a control, simulated spectra
with and without Raman scattering explicitly in-
cluded are substituted in place of uncorrected and cor-
rected reflectances, respectively. Results from these
control runs (black lines in each panel of Fig. 3 shows
that (1) the relative error in each IOP due to Raman
scattering differs greatly between each IOP, (2) errors
differ between inversion models (GSM versus

QAA), (3) errors are greatest at low Chl and decrease
with increasing Chl, and (4) errors are greatest in the
retrieval of bbp�443� [Figs. 3(a)–3(f)].Chl andaph�443�
are overestimated by ∼15%–25% under the most
oligotrophic conditions �Chl < 0.02 mgm−3�, and
decrease to ∼5% when Chl > 0.3 mgm−3 [Figs. 3(a)
and 3(d)]. Errors in aCDM�443� are negligible across
all trophic conditions [Figs. 3(b) and 3(e)]. Errors
in bbp�443�, however, can be >100% under ultraoligo-
trophic conditions and are still ∼20% when Chl >
0.3 mgm−3 [Fig. 3(c)].

C. Evaluation of Raman Contribution Removal Scheme

The steps outlined in Section 2.C [Eq. (7)] result in an
estimate of Rrs;R�λ�. We can provide a measure of val-
idation for the approach using the simulated dataset
by comparing estimates of Rrs;R�λ� with the absolute
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Fig. 2. IOPs from inversion of HydroLight Rrs�λ�with and without Raman scatter included. Values plotted on the abscissae in each panel
are taken from HydroLight and considered the “true” IOP value. (a) Chl from GSM (bottom and left axes) and aph�443� from QAA (top and
right axes); (b) aCDM�443�; (c) bbp�443�. In each panel, “x” and “o” represent GSM and QAA retrievals, respectively. Red and blue symbols
represent inversions of Rrs�λ� with and without Raman scatter included, respectively.

Chl (mg m-3) 

B
ia

s 
(%

) 
in

 C
hl

Chl (mg m-3) Chl (mg m-3) 

B
ia

s 
(%

) 
in

 a
ph

(4
43

)

B
ia

s 
(%

) 
in

 a
C

D
M

(4
43

)
 

B
ia

s 
(%

) 
in

 a
C

D
M

(4
43

)

B
ia

s 
(%

) 
in

 b
bp

(4
43

)
B

ia
s 

(%
) 

in
 b

bp
(4

43
)

(b)(a) (c)

(f)(e)(d)

GSM 

QAA 

Fig. 3. Relative error in inverted IOPs due to Raman scatter as a function of chlorophyll concentration. Bias is calculated as normalized
difference (%) between each retrieved IOP fromRrs�λ�with and without Raman scatter included. In each panel three curves are shown that
represent: error in retrievals using uncorrected Rrs (black line), error in retrievals after correction of Rrs with exact IOPs (blue line), and
error in retrievals after correction of Rrs with estimated IOPs from either GSM or QAA (red lines) IOPs in the top and bottom row,
respectively. (a) GSM Chl; (b) GSM aCDM�443�; (c) GSM bbp�443�; (d) QAA aph�443�; e, QAA aCDM�443�; and (f) QAA bbp�443�.
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difference in Rrs�λ� taken from consecutive runs with
and without Raman scattering included �ΔRrs�
(Fig. 4). In the best case scenario, exact IOP inputs
from HydroLight can be used to estimate Rrs;R�λ�
and the resultant agreement with ΔRrs is very good
across the whole range of anticipated Rrs and over all
visible satellite wave bands r2 � 0.95, slope � 1.08,
mean bias � 19%). When Rrs;R�λ� is estimated using
inverted IOPs rather than those taken directly from
HydroLight, predictability is slightly degraded with
differences depending upon which inversion model is

used (red versus blue dots in Fig. 4). For example,
application of GSM IOPs results in good linear
correlation �r2 � 0.93�, but with a tendency to
underpredict ΔRrs (slope � 0.82, mean bias � 43%).
If QAA IOPs are used to estimate Rrs;R�λ� the
pattern is similar, but with slightly greater tendency
to underestimate ΔRrs (r2 � 0.94, slope � 0.69,
mean bias � 50%).

Correction of Rrs for Raman scattering based upon
IOPs from an initial inversion does not remove as
much of the bias in each retrieved IOP as when exact
HydroLight IOP input is used (compare red and blue
lines in each panel of Fig. 3). For example, at low
Chl�< 0.3 mgm−3� biases in aph�443� (QAA) and
Chl�GSM� of approximately 12% and 7% remain, re-
spectively. Biases in aCDM�443� for both inversion
models change by only a few percent upon correction
for Raman, but are only a few percent even without
correction. The largest changes between IOPs before
and after correction for Raman are found in bbp�443�
retrievals [Figs. 3(c) and 3(f)]. Large reductions in
bias are achieved for QAA and GSM bbp�443�, but
significant errors are still present, particularly at
lower Chl concentrations. In the most oligotrophic
examples �Chl < 0.03 mgm−3� Raman bias >40%
is still unaccounted for by the existing correction
(see Discussion).

D. Application to Remote Sensing Data

Figure 5 shows the Raman contribution to Rrs�λ� for
a single monthly composite of MODIS data from
October 2004. Results are shown for all MODIS
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Fig. 4. Estimation of Raman component of Rrs�λ�. Rrs;R is directly
estimated from Eq. (7). ΔRrs is the arithmetic difference between
radiative transfer simulations with and without Raman scattering
included. Results for all visible satellite wave bands are shown to-
gether. Diagonal line is 1:1 line.
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2004). Values are expressed as a percentage (%) and each panel shows different MODIS wave bands in the visible.

1 August 2013 / Vol. 52, No. 22 / APPLIED OPTICS 5557



ocean visible wave bands, except in the red (667 and
678 nm), where the contribution from Chl fluores-
cence can be significant. Three general observations
are evident and are consistent with results from the
simulated data: (1) values range from <1% to 10%,
(2) contributions from Raman increase at longer
wavelengths, and (3) contributions from Raman tend
to be a decreasing function of biomass. The latter
point can be seen as higher relative contribution to
Rrs�λ� from Raman scatter in the oligotrophic gyres
and lower values in productive high latitude waters
and areas of strong upwelling (Fig. 5). Further, if the
global data are binned into three broad Chl ranges,
which can loosely be categorized as oligotrophic,

mesotrophic, and eutrophic (Chl < 0.05 mgm−3,
0.1 < Chl < 0.5 mgm−3, and Chl > 1.0 mgm−3, re-
spectively), we can collapse the spatial information
and look at results across all wave bands (Fig. 6).
The spectral variability is similar to that seen in
the simulated data presented in Fig. 1, where the
Raman component contributes very little (∼2%) to
Rrs at 412 nm, but then increases more rapidly for
clearer water. Maximal Rrs;R∕Rrs is observed at
547 nm (formerly referred to as 551 nm) among
the bands analyzed here and is approximately
11%, 7%, and 2% for oligotrophic, mesotrophic, and
eutrophic waters.

Last, we remove the estimated Rrs;R�λ� from satel-
lite Rrs�λ� and re-invert the global fields to provide
Raman-corrected IOP estimates (Fig. 7). The global
distribution of IOPs before and after correction show
varied responses. For the GSM model, median Chl
decreases only slightly (∼8%) from 0.12 mgm−3 to
0.11 mgm−3 after correction for Raman [Fig. 7(a)].
Median phytoplankton absorption �aph�443�� esti-
mated from the QAA decreases similarly (8%) follow-
ing correction [Fig. 7(d)]. Retrievals of CDOM and
detrital absorption, aCDM�443�, are particularly in-
sensitive to the presence of Raman scattering and
only change by <3% for either inversion model
[Figs. 7(b) and 7(e)]. The largest differences resulting
from the Raman correction are observed in bbp�443�,
similar to that seen in the simulated dataset. Global
distributions of bbp�443� from GSM and QAA, precor-
rection and postcorrection are shown in Figs. 7(c) and
7(f). The distributions for each model are shifted
downward after Raman correction, and the overall
distributions become flatter. The changes in
bbp�443� are further examined in Fig. 8, which shows

Chl < 0.05 mg m-3

Chl >1.0 mg m-3

0.1<Chl < 0.5 mg m-3
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Fig. 6. Fractional contribution of Raman scattered radiance to
total Rrs�λ� for various ranges of observed satellite Chl (October
2004). Chl bins are for values <0.05 mgm−3 (top curve), 0.1 <
Chl < 0.5 mgm−3 (middle curve), and Chl > 1.0 mgm−3 (bottom
curve). Error bars represent ranges of variability within each
Chl bin. Results for MODIS wave bands >551 nm not shown,
due to contamination by Chl fluorescence.
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Fig. 7. Histograms of global IOP retrievals for a single L3 monthly composite (October 2004). Top panels show GSM retrievals of (a) Chl;
(b) aCDM�443�; (c) bbp�443�. Bottom panels show QAA retrievals for (d) aph�443�; (e) aCDM�443�; (f) bbp�443�. In each panel, the black histo-
gram is from monthly values estimated without any correction for Raman scattering (the default), and the red line is from inversion after
removing the Raman contribution to Rrs�λ�.
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the overall distribution of the difference due to
Raman correction (expressed as a relative bias, %),
as well as the spatial distribution of this bias.
Differences are consistently higher for GSM
bbp�443� retrievals [Fig. 8(a)] than for the QAA.
Raman correction results in values that are much
lower across most of themid-latitudes, and to a lesser
extent at high latitudes. The median bias is ∼30%
and 20% for the GSM and QAA, respectively, and
suggests that bbp�443� is significantly overestimated
over much of the ocean when using either model.
While these “average” biases may not seem too large
on their own, it is important to note that up to 30% of
the ocean has errors due to Raman in excess of 50%
[see CDF in Fig. 8(c)].

4. Discussion and Conclusions

Failure to account for Raman scattering can lead to
large errors in some semianalytically inverted prop-
erties (e.g., particulate backscattering). Here, we
have developed a straightforward approximation
for the contribution of Raman scattering to remote
sensing reflectance in satellite ocean color wave
bands (e.g., MODIS). This method can be applied in
conjunction with inversion of ocean color reflectance
data to yield more accurate IOPs which are related
only to the elastically backscattered component of
Rrs�λ�. In addition to the observed Rrs�λ�, the only ex-
ternal inputs that are required are spectral irradi-
ance in the Raman excitation and emission bands,
Ed�λex� and Ed�λem�. These values can be obtained
directly from a solar irradiance model (e.g., [41]) with
knowledge of atmospheric properties, such as that
carried out for operational ocean color processing.
As an example in the work presented here, we have
used combined irradiance data in the UV region
from the OMI sensor with spectrally decomposed

irradiances in the visible which are derived from
the standard MODIS iPAR product.

The approach presented here is not without its
limitations, and significant biases due to Raman re-
main in inverted quantities even after correction.
However, nearly all of the error due to Raman scatter
can be corrected for, and removed if all inherent and
apparent optical property input data is known accu-
rately, such as the example shown with simulated
data (blue lines in Fig. 3). This suggests that inability
to completely correct for the Raman scattering is not
due to the method presented in Eq. (7), but rather to
the inversion schemes themselves. Conceptually, this
procedure should be run iteratively, with each itera-
tion removing slightly more Raman-associated bias.
What we found in doing so, however, is that the ex-
ercise converged after a single iteration. Inspection
of Eqs. (7) and (8) show that the IOPs required to
estimate Rrs;R�λ� are total absorption, a�λ�, and back-
scattering, bb�λ�. Since a�λ� ≫ bb�λ� in the oligotro-
phic ocean, Rrs;R�λ� is primarily dependent upon
total absorption, which is retrieved relatively well,
particularly when including pure seawater absorp-
tion. So, while errors in bbp�λ� may remain relatively
large, the correction cannot improve them with sub-
sequent iterations. Similar findings were reported by
Loisel and Stramski [23]. Interestingly, inversion es-
timates of aCDM�443� are relatively insensitive to the
presence of Raman and its correction. This is most
likely because aCDM�λ� is weighted toward short
wavelengths (UV and blue/violet) and there is very
little inelastic contribution to Rrs�λ� in this region
(Fig. 1). This, in turn, results from the strongly
attenuated excitation irradiances for these emission
bands at the sea surface (peak excitation wave-
lengths for the 412 and 443 nm MODIS bands are
at ∼365 and 387 nm, respectively).

B
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B
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) 

Bias (%) Bias (%) 
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Fig. 8. Comparison of satellite bbp�443� inversions before and after removal of Raman component of remote sensing reflectance, Rrs;R�λ�.
(a) and (b) show the spatial distribution of error in bbp�443� due to Raman for the GSM and QAA inversions, respectively. (c) and (d) are
histograms of each respective image. Black lines are cumulative distribution functions of each field. Bias is calculated as normalized
difference between bbp�443� estimated from satellite Rrs�λ� with and without Raman scatter included (×100 to express as a percentage).
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There are other confounding factors for unraveling
the effect of Raman scattering on ocean color inver-
sion models. For example, field data that is used to
parameterize models (e.g., NASA’s NOMAD, [42]) al-
ready contain inelastic scattering contributions from
Raman. The process of optimizing the inversion mod-
els [27,31] should mitigate some of the Raman effect,
such that errors estimated here may be viewed as
upper bounds. Further, if inversion model coeffi-
cients have been optimized to match Rrs containing
Raman with coincident IOPs, then subsequent re-
moval of the Raman component will necessarily de-
grade the model’s ability to correctly retrieve the
IOPs. In this context, a more appropriate test for
Raman effects on inversionmodels would be to evalu-
ate the retrieval of IOPs from corrected Rrs with a
model that has been “re”-optimized with a dataset
that has had Raman contributions to Rrs removed.

Alternative approaches that employ varying de-
grees of complexity exist to correct Rrs�λ� for Raman
scattering (e.g., [22,23,43,44]). For inversion models,
such as the GSM, which rely on a minimization
scheme, the Raman terms could simply be included
explicitly within the inversion. Doing so may provide
a more compact, “eloquent” approach, but there is no
reason to expect any different results from those pre-
sented here. For models such as the QAA, this would
not be possible without significant reworking of the
model. A more common approach applicable to any
inversion scheme and which has been applied in pre-
vious studies [23,43,44] draws directly from radia-
tive transfer simulations. If a representative suite
of simulations with and without Raman scatter is
generated, it is possible to construct a lookup table
or to parameterize Rrs;R�λ� as a function of environ-
mental (e.g., Chl) or optical parameters (e.g., Rrs).
This approach can work well, but is subject to limi-
tations inherent in the radiative transfer model used
to generate the simulations (e.g., Case I-type as-
sumptions). Further, it is not straightforward to
evaluate how well this kind of approach works be-
cause simulated data are again required to do so.
In contrast, the approach presented here is free of
these constraints, but the trade-off is that the correc-
tion is limited by inaccurate IOP retrievals and their
extension to the excitation wavelengths as required
to estimate Rrs;R�λ� via Eq. (7). Empirical “band-
ratio” type algorithms for Chl [45] or diffuse attenu-
ation [38,46], which are not examined here, may also
suffer from biases due to Raman scatter.

The global patterns and conclusions drawn here
result from the analysis of an illustrative example
of a single monthly satellite composite. This ap-
proach must be applied to a longer time period in
order to better characterize the extent of bias
attributed to Raman scatter in the global ocean.
The steep dependence of the Raman bias on Chl dic-
tates how important it may be for a particular appli-
cation. For example, regional studies in highly
productive areas might ignore Raman effects with
only modest errors in retrieved IOPs. In contrast,

targeted studies of the oligotrophic gyres would be
well-served to consider Raman contributions to
Rrs�λ� and inverted IOPs. The results conveyed in
Figs. 7 and 8 provide an illustrative example of global
patterns. Last, the biases calculated must be propa-
gated through to the biogeochemical quantities of
interest to evaluate the significance of this process.
For example, relationships that estimate particle
stocks from bbp (e.g., [47,48]) will be affected in direct
proportion to the Raman bias. However, some appli-
cations [e.g., calculation of net primary production
(NPP)] will require more detailed sensitivity analy-
ses to understand the impact of the Raman bias.
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