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ABSTRACT 

Turechek, W. W., Madden, L. V., Gent, D. H., and Xu, X.-M. 2011. 
Comments regarding the binary power law for heterogeneity of disease 
incidence. Phytopathology 101:1396-1407. 

The binary power law (BPL) has been successfully used to characterize 
heterogeneity (overdispersion or small-scale aggregation) of disease 
incidence for many plant pathosystems. With the BPL, the log of the 
observed variance is a linear function of the log of the theoretical 
variance for a binomial distribution over the range of incidence values, 
and the estimated scale (κ) and slope (b) parameters provide information 
on the characteristics of aggregation. When b = 1, the interpretation is 
that the degree of aggregation remains constant over the range of 
incidence values observed; otherwise, aggregation is variable. In two 
articles published in this journal in 2009, Gosme and Lucas used their 
stochastic simulation model, Cascade, to show a multiphasic (split-line) 
relationship of the variances, with straight-line (linear) relationships on a 
log-log scale within each phase. In particular, they showed a strong break 
point in the lines at very low incidence, with b considerably >1 in the first 
line segment (corresponding to a range of incidence values usually not 

observed in the field), and b being ≈1 in the next segment (corresponding 
to the range of incidence values usually observed). We evaluated their 
findings by utilizing a general spatially explicit stochastic simulator 
developed by Xu and Ridout in 1998, with a wide range of median 
dispersal distances for the contact distribution and number of plants in the 
sampling units (quadrats), and through an assessment of published BPL 
results. The simulation results showed that the split-line phenomenon can 
occur, with a break point at incidence values of ≈0.01; however, the split 
is most obvious for short median dispersal distances and large quadrat 
sizes. However, values of b in the second phase were almost always >1, 
and only approached 1 with extremely short median dispersal distances 
and small quadrat sizes. An appraisal of published results showed no 
evidence of multiple phases (although the minimum incidence may 
generally be too high to observe the break), and estimates of b were 
almost always >1. Thus, it appears that the results from the Cascade 
simulation model represent a special epidemiological case, corresponding 
primarily to a roughly nearest-neighbor population-dynamic process. 
Implications of a multiphasic BPL property may be important and are 
discussed. 

 
The binary power law (BPL) defines, through a simple power 

function, the relationship between two variances, the observed 
variance of a proportion (such as disease incidence) and the 
theoretical variance of this random variable if it were distributed 
according to the binomial distribution (18,24). Generally, the 
relationship is written as 

b
binobs ss )( 22 ⋅κ=  (1) 

where 2
obss  is the observed variance, 2

bins  is the theoretical bi-
nomial variance, and κ and b are model parameters. A logarithmic 
transformation of equation 1 produces a linear relationship: 

)ln()ln()ln( 22
binobs sbs ⋅+κ=  (2) 

with a slope of b and an intercept of ln(κ), which allows the 
power law’s parameters to be estimated with simple linear regres-
sion (28). This is directly analogous to Taylor’s power law for 
unbounded counts (39), which relates the observed variance (vobs) 
to the population mean (m), because the variance is equal to the 
mean for the Poisson distribution (39). A plot of )ln( 2

obss  versus 
)ln( 2

bins  for a set of observations—either from different times in 
the same epidemic or from single times from a collection of epi-
demics—nearly always results in a straight line. The fit of 
equation 2 to observed data (18,24) and to data from stochastic 
simulators (47,48) is often very good, with R2 values typically 
>0.9 and with estimated slope values typically >1 and <2. 

The value of b is a fundamental parameter in characterizing the 
spatial pattern of incidence at a small scale (at the scale of the 
sampling unit or smaller), which is manifested by overdispersion 
or extra-binomial variation in disease incidence among the samp-
ling units (24). When b = 1, the magnitude of overdispersion does 
not change with incidence, and the value of κ then represents the 
constant (on average) index of dispersion (i.e., κ== 22 / binobs ssD ). 
When b does not equal 1, the index of dispersion changes sys-
tematically with disease incidence and )1(222 )(/ −⋅κ== b

binbinobs sssD  
(24). The relationship between the observed and theoretical 
variance, in general, and the value of b, in particular, are of 
critical importance in several applications, including (i) the 
development of sequential and nonsequential sampling protocols 
both for estimation purposes and for decision making (10,11, 
26,40), (ii) the proper weighting of incidence values in gen-
eralized linear mixed models for analysis of treatment effects 
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(29), (iii) the characterization of the relationship between inci-
dence at different scales in a spatial hierarchy (e.g., leaflet, leaf, 
plant) (21,25,43), (iv) the selection of a variance stabilizing trans-
formation for analysis of variance (ANOVA)-type data analysis 
(18), and (v) the description of spatial dynamics of disease 
incidence during epidemics (28) (Table 1). 

No particular single mechanism has been proposed for the 
BPL, and it is likely that several mechanisms based on environ-
mental and epidemiological stochasticity are responsible for the 
realized relationship between the observed and theoretical vari-
ances that is commonly found. Stochastic simulation models have 
been useful for addressing epidemiological effects, such as 
infection rates and dispersal gradients, on the small-scale patterns 
of disease incidence (13,14,45,47). Xu and Ridout (48) showed 
that the BPL, as represented by a version of equation 2 (with b > 
1), arises naturally over a wide range of epidemiological condi-
tions. More recently, Gosme and Lucas (13) developed a stochas-
tic simulation model, called “Cascade”, and found relationships 
between the observed and theoretical variances that have not been 
observed yet with real-world data sets, leading to speculation about 
the processes that generated these new results. This letter addresses 
the issues raised about the BPL by Gosme and Lucas (13). 

Cascade is a model designed to simulate disease spread in a 
spatial hierarchy (13,14). The overall structure of the model is 
complex but a description of it can be found in the original set of 
publications found in the July 2009 issue of Phytopathology. In 
the first publication reporting on Cascade by Gosme and Lucas 
(13), a set of simulations was performed, and a plot of the 
logarithms of the observed (i.e., simulated) versus the theoretical 
variances did not result in the characteristic simple linear relation-
ship across all disease incidence values; rather, a relation that 
consisted of two or more phases or segments was found, with a 
straight line within each segment (on the log scale) connected at 
break points (or switch points). The authors differentiated four 
distinct phases in the BPL relationship; this can be seen in their 
Figure 4 (13). The four phases are described by the authors as 
follows: (i) “[T]he beginning of the epidemic, the simulated vari-
ance increased more than the theoretical variance resulting in a 
slope greater than 1”; (ii) “[T]he second phase, the slope was 
equal to one, indicating a constant level of aggregation”; [note: in 
later communications with Dr. Gosme, she indicated that “b was 
not (mathematically) equal to one, but it was close to one” 
(personal communication)]; (iii) “The third phase corresponded to 
a phase where the logarithm of the simulated variance decreased 
at almost the same rate as the logarithm of the binomial variance, 
resulting in a slope only slightly greater than one”; and (iv) “The 
fourth segment corresponded to a phase when the simulated vari-
ance decreased more quickly than the theoretical variance.” In 
general, the largest phase was the second one, or the second and 
third phases combined, comprising a large range in disease inci-
dence values. The fourth phase may not be seen unless incidence 
is very large (e.g., >0.98), or may look the same as the first phase. 
In many cases, therefore, the four phases are reduced to two 
(segments one and two/three) (14). The authors suggest that this 
discovery of a bi- or multiphasic relationship could not have been 
made without simulation because experimental data often have 
too few observations, particularly at the beginning and end of the 
epidemic where disease incidence is at its lowest and highest, 
respectively, and that real-world data have too much uncertainty 
in their estimated incidence values to detect this full theoretical 
relationship. In their following article (14), the authors expanded 
upon their results and ran a number of additional simulations to 
support their original findings. Some of their additional analyses 
were based on the assumption that b was reasonably close to 1 in 
phase two/three, so that b = 1 could be used as an approximation 
(e.g., Table 2 in literature citation 14). 

The results are genuinely interesting and may have important 
theoretical and practical implications. Given the importance of the 

BPL for the reasons summarized above, it is essential to explore 
the likelihood that the results generated by the Cascade model can 
be found with observed data and to explore the epidemiological 
conditions that could produce their results. In particular, attention 
should be focused on (i) the multiphasic (break-point) relation-
ship between the observed and theoretical variances on a log scale 
and (ii) the slope in their second and third phases being equal to 
or close to one. In this letter, we summarize the estimates of b 
(and a transformation of κ) found for a wide range of studies pub-
lished in the literature and perform additional simulations with the 
model by Xu and Ridout (47) to address these issues. Our results 
below show that, although a multiphasic relationship can occur, as 
predicted by Gosme and Lucas (13), the slope of the line segment 
for the range of disease incidence values commonly observed in 
empirical data will be >1 under most circumstances. 

MATERIALS AND METHODS 

Basic notation and model formulations. The expected prob-
ability of a plant or plant unit (e.g., leaf) being diseased is given 
by p. There are N sampling units and n plants or plant units in 
each sampling unit; n can be considered the size of the sampling 
unit. The expected number (count) of diseased plants per samp-
ling unit is np. An estimate of p is the proportion of plants or plant 
units that are diseased ( X , where each unit is recorded as X = 0 or 
X = 1). For convenience here, we do not distinguish between the 
true and estimated p in the equations. 

There are (at least) four common (and interchangeable) expres-
sions of the BPL (equation 1), depending on whether the variance 
of the counts or variance of the proportions across the N sampling 
units is used in the formulation, or whether n is written as part of 
the theoretical variance or absorbed into the κ scale parameter. 
The exponent b is unaffected by all of these formulations but the 
scale parameter is directly affected; thus, a different symbol is 
used in place of κ for each model. Details are given in the 
Appendix. 

Simulation study. Simulations were performed using a two-
dimensional stochastic spatial contact model (47), where the dis-
tance that spores are dispersed follows a half-Cauchy distribution 
with median dispersal distance µ (37). Full details of the simu-
lation model can be found in Xu and Ridout (47). Epidemics were 
started with one or nine initially infected leaves. For epidemics 
initiated with a single infection, the initial infection was located at 
the center of a 200-by-200 simulation grid of plants. Each plant 
had a total of 30 susceptible units (leaves) and, thus, this model 
simulated epidemic development at two hierarchical levels (with-
in and between plants). For epidemics initiated with nine infected 
leaves, the leaves were regularly spaced in the grid to obtain the 
maximum separation distance. Simulation conditions were chosen 
here to generate results for very small disease incidence values in 
order to explore the results found by Gosme and Lucas (13,14). 
Five median dispersal distances values (µ) were used: 0.25, 0.5, 1, 
2, and 4. Twenty simulations were run for each dispersal distance 
on a daily time step and an infection rate of 0.4 per day was 
assumed. Only a single epidemic failed to establish in one run 
when µ = 0.25. Four different quadrat sizes were used to sample 
the central 160-by-160 grid: 2 by 2, 4 by 4, 5 by 5, and 8 by 8  
(n = 4, 16, 25, and 64, respectively). All the plants in the central 
160-by-160 grid were assessed daily for disease and a plant was 
considered diseased if ≥1 of its 30 susceptible units/leaves were 
diseased. Depending on the dispersal distance, the model was run 
for a certain time period of 102 to 172 days to ensure that final 
disease incidence was >0.95 for all the simulations, for most of 
which it was >0.98. 

For each simulation run, three different models were fitted to 
the quadrat (sampling unit) data across all times. Each model was 
fitted separately to the data for each of the 20 simulation runs for 
each dispersal parameter value. The first model was the log trans-
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formation of the usual (symmetric) BPL defined in equation A2 of 
the Appendix: 

]/)1(ln[)ln()ln( 2 nppbAs pobs −⋅+=  (3) 

where the parameters ln(Ap) and b are the intercept and slope, 
respectively, of a straight line on a log-log scale. The second 
model was the log transformation of the asymmetric binary power 
law (ABPL) defined in equation A5 and explained in the 
Appendix: 

)1ln()ln()ln()ln( 211
2 pbpbasobs −⋅+⋅+=  (4) 

where ln(a1), b1, and b2 are the parameters. The third model, 
labeled a split-line (SL) or broken-stick model, is written as 

][))(ln(][))(ln()ln( *44*33
2 ttItbAttItbAs ppobs >⋅++≤⋅+=  (5) 

where t is the log of the binomial variance (i.e., t = ln(p(1 – p)/n)), 
t* is a constant (t* = ln(p*(1 – p*)/n), and I[·] is an indicator func-
tion taking on the value of 1 when the condition is true and 0 
otherwise. Equation 5 defines two straight-line segments on a log-
log scale that meet at a join-point binomial variance (t*) deter-
mined by the data. The parameters b3 and b4 are the slopes of the 
two segments and ln(Ap3) and ln(Ap4) are the intercepts. The 
parameter p* is the join-point (break-point or switch-point) inci-
dence, calculated from a back-transformation of t*, between the 
two different line segments (35). In order for the two lines to meet 

at an incidence of p*, the intercept for the first line segment 
[ln(Ap3)] is constrained to be an exact function of the other param-
eters; thus, there are four parameters in equation 5 (b3, b4, ln(Ap4), 
and p*). 

Equations 3 and 4 were fitted using ordinary linear least 
squares regression, and equation 5 was fitted with nonlinear least 
squares regression. All equations were fit using Genstat (VSNI 
Ltd., England). It was assumed that there was an additive residual 
term in each model (not shown for convenience) with a mean of 0 
and a variance of σ2. 

Evaluation of published data sets. A search of the literature 
was conducted to identify a representative set of studies that 
utilized the BPL as a descriptor of overdispersion (small-scale 
pattern) in epidemics. Because authors do not necessarily cite the 
original article by Hughes and Madden (18) or one of the standard 
reviews or syntheses (27,28), it was not possible to retrieve all 
articles that used this model. Nevertheless, the articles obtained 
reflect a wide diversity of pathosystems and experimental or sur-
vey methods. The list of the studies identified and various 
characteristics associated with each of the studies is shown in 
Table 1. The BPL results from the studies shown in Table 1 were 
assembled and the scale parameters were transformed to the 
common value a (Appendix). When multiple power law results 
were provided, only the summary or overall fit to the data are 
given in Table 1 if those results were provided. Otherwise, all 
results are provided. 

For the analysis here, we excluded studies that involved arti-
ficial inoculation (e.g., citation 22); in other words, only naturally 
occurring epidemics were considered. Furthermore, we only 

TABLE 1. Plant pathology-based studies identified from a search of the literature that utilized the binary power law (equation 1) and various characteristics 
associated with each of the studies (the power-law scale parameter was standardized to a common a for each study [equation A3]) 

Ref.a Disease      Crop Organism Mode of dispersal T b n a b 

7c Apple scab Apple Fungus Aerial 100 12 0.2542 1.12 
5 Fire blight Apple Bacterium Insect 211 4 0.3990 1.10 
46 Powdery mildew Apple Fungus Aerial 62 4 0.2751 0.95 
36 Alfalfa mosaic virus (AlMV) Bean Virus Insect 24 5 0.3183 1.05 
36 Cucumber mosaic virus (CMV) Bean Virus Insect 24 5 0.3302 1.07 
36 AlMV and CMV Bean Virus Insect 24 5 0.3229 1.05 
38 Black spot Citrus Fungus Rain 303 5 0.6010 1.06 
16d Citrus canker Citrus Bacterium Rain 321 9 0.4804 1.21 
2e Citrus sudden death Citrus Virus Graft 98 4 0.3765 1.07 
2e Citrus sudden death Citrus Virus Graft 98 16 0.1758 1.20 
       (continued on next page)

a References for the study are provided in the Literature Cited section. Only studies that identified the sampling unit (quadrat) size (n) are included. When there 
were several intercepts and slopes reported for the same pathosystem but with equal quadrat sizes (e.g., from different locations or years), the average is shown
here. Different versions of the estimated scale parameter (“intercept” for linear log-log model) were presented in different publications. We converted all of these 
to the a parameter shown here (equation A3) based on the value of n and the functions given in the Appendix for a, Ap, and Ax. 

b T = number of data sets used to fit the power law model. 
c Parameter a was calculated from Ap, not Ax as reported in text, based on the binary power law model fit provided in their Figure 3. 
d Parameter a was calculated from Ap, not Ax as reported in text, based on the binary power law model fit provided in their Figure 1. 

e Data are reported for quadrat sizes of 4 (2 by 2), 16 (4 by 4), and 64 (8 by 8) trees. The causal pathogen has not been established definitely but is known to be
graft transmissible. An insect vector is considered likely. Parameter a was calculated from Ap based on the binary power law model fit provided in their Figure 4. 

f Data are reported for quadrat sizes of 4 (2 by 2) and 16 (4 by 4) trees. The causal pathogen has not been established definitively but is known to be graft 
transmissible. An insect vector is considered likely. Parameter a was calculated from Ap based on the binary power law model fit provided in their Figure 2. 

g Data are reported for leprosis-diseased plants from quadrat sizes of 4 (2 by 2), 9 (3 by 3), 16 (4 by 4), and 25 (5 by 5) trees. 
h Actually mite transmissible. 
i Data are reported for quadrat sizes of 4 (2 by 2) and 16 (4 by 4) trees. Parameter a was calculated from Ap based on the binary power law model fit provided in 

their Figure 2. 
j Data are from analyses conducted at the row level (T = 1,606) and yard level (T = 770) as reported by Gent et al. (12). 
k Data are from analyses conducted at the row level (T = 578) and yard level (T = 198) as reported by Turechek and Mahaffee (44). 
l Estimate of n was obtained by averaging n from the quadrats reported in each of the five plots (P1 to P5). Parameter a was calculated from Ap based on the 

formulation provided in the text and their Figure 3. 
m Data are reported for quadrat sizes of 4 (2 by 2), 9 (3 by 3), and 16 (4 by 4) trees. Parameter a was calculated from Ap, not Ax as reported in text, based on the 

binary power law model fit provided in their Figure 1. 
n Parameter estimates are provided separately for analysis of different sampling approaches for leaves and leaflets. 
o Unpublished data collected by W. W. Turechek from a 0.4-ha strawberry field located at the United States Department of Agriculture–Agricultural Research 

Service Beltsville Area Research Center in Beltsville, MD. 
p TEV = Tobacco etch virus; TvmV = Tobacco vein mottling virus. 
q Unpublished data collected by W. W. Turechek, S. Adkins, and P. D. Roberts from a 1-ha watermelon field located at the University of Florida SW Research and 

Education Center in Immokalee, FL. 
r Combined the 2003 and 2004 data sets and calculated the average nh to recalculate parameters (data provided by M. Gosme). 
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utilized studies where the sampling unit size (n) was identified (or 
was identified after contacting the authors), so that a bivariate 
analysis of the two parameters of the usual BPL could be 
performed (e.g., citation 34 was excluded because the value of n 
was not provided). In some cases, it was discovered that the in-
correct formulation (Appendix) or the incorrect logarithmic trans-
formation was specified in a publication to the point where it was 
difficult to correctly interpret the parameters (e.g., citation 33). 
This was determined by plotting the power-law function as 
written in a given publication, and then comparing this with the 
original plot in the article. Appropriate adjustments were made 
when the error could be identified; otherwise, the study was 
dropped from the analysis. Regression analyses were conducted 
to determine whether the power law parameters varied predictably 
relative to each other and to n; a one-way ANOVA was used to 
determine if the parameters were affected by the common factors 
listed in Table 1 (crop, causal pathogen type, and pathogen dis-
persal mechanism). Analyses were conducted using Minitab  
(v. 15; Minitab Inc., State College, PA) and TableCurve 2D  
(v. 5.0; Systat Software Inc., San Jose, CA). 

RESULTS 

Simulation study. As found in previous studies with field ob-
servations and simulations, there was a strong relationship be-
tween the observed variance and the theoretical variance for a 
binomial distribution on a log-log scale (Figs. 1 and 2). The 
relationships were clearly linear over different ranges of the 
theoretical variance (and, hence, different ranges of incidence), 

although a break point could be seen in some graphs. The break 
point was at a very low incidence (0.001 < P < 0.01 for most con-
ditions). The break point incidence, p*, increased as sampling unit 
(quadrat) size increased (Tables 2 and 3; Fig. 2) and the SL 
property was only very apparent with more local dispersal (i.e., 
small values of µ) (Fig. 1) and larger sampling units (Fig. 2). 

In Figure 1, the natural logarithm of the observed variance of 
disease incidence among the 1,024 quadrats (based on 5 by 5 
individuals for each quadrat) at each sampling time was plotted 
against the corresponding theoretical binomial variance for all 
simulation runs at a given median dispersal distance. Note (as 
mentioned in Materials and Methods) that the BPL (equation 3), 
ABPL (equation 4), and the SL (equation 5) models were fitted to 
each individual simulated epidemic separately. From these, the 
averages of the model parameters and other fit statistics were 
calculated (Tables 2 and 3). In general, the SL provided the best 
fit, particularly for the smaller dispersal distances (µ < 2), where-
as the ABPL provided better fit for larger dispersal distances. 
However, it should be noted that the SL model failed to fit many 
data sets (Table 4), especially for smaller quadrat size and large 
dispersal distance. In other words, convergence often could not be 
achieved for those simulation conditions, probably because there 
was less evidence for two line segments in those cases. For 
individual runs, the improvement of fitting an SL or ABPL model 
over a BPL was marginal (Tables 2 and 3) and is unlikely to be 
apparent visually when plotted for a single simulation run. 

For data where the SL model (equation 5) provided a good fit, 
the initial slope (b3) was greater than the secondary slope (b4)  
at small dispersal distance. This can be partially understood by  

TABLE 1. (continued from previous page) 

Ref.a Disease Crop Organism Mode of dispersal T b n a b 

2e Citrus sudden death Citrus Virus Graft 98 64 0.2446 1.54 
4f Citrus sudden death Citrus Virus Graft 55 4 0.3372 1.05 
4f Citrus sudden death Citrus Virus Graft 55 16 0.1553 1.17 
3g Citrus leprosis virus Citrus Virus Insecth 161 4 0.4894 1.13 
3g Citrus leprosis virus Citrus Virus Insecth 161 9 0.3360 1.23 
3g Citrus leprosis virus Citrus Virus Insecth 161 16 0.3210 1.34 
3g Citrus leprosis Virus Citrus Virus Insecth 161 25 0.2773 1.40 
4i Citrus tristeza virus Citrus Virus Insect 49 4 0.4871 1.15 
4i Citrus tristeza virus Citrus Virus Insect 49 16 0.1678 1.25 
21 Citrus tristeza virus Citrus Virus Insect 54 4 0.3220 1.05 
17 Citrus tristeza virus Citrus Virus Insect 17 4 0.3853 1.07 
27 Downy mildew Grape Fungus Aerial 100 15 0.2546 1.30 
20 Eutypa dieback Grape Fungus Aerial 22 9 0.1480 0.97 
24 Maize chlorotic dwarf virus Maize Virus Insect 7 100 0.0912 1.45 
10 Powdery mildew Hop Fungus Aerial 104 10 0.2545 1.14 
12j Powdery mildew Hop Fungus Aerial 1,606 10 0.1893 1.10 
12j Powdery mildew Hop Fungus Aerial 770 10 0.2278 1.12 
9 Powdery mildew Hop Fungus Aerial 201 25 0.1470 1.22 
44k Powdery mildew Hop Fungus Aerial 578 10 0.1738 1.09 
44k Powdery mildew Hop Fungus Aerial 198 10 0.1984 1.10 
30 Verticillium wilt Olive Fungus Soil 29 2 0.6179 1.06 
30 Verticillium wilt Olive Fungus Soil 29 4 0.2923 1.02 
30 Verticillium wilt Olive Fungus Soil 29 8 0.2131 1.12 
30 Verticillium wilt Olive Fungus Soil 29 16 0.1340 1.19 
32l Bacterial blight Onion Bacterium Rain 30 65.2 1.0105 1.48 
8m Plum pox Peach Virus Insect 35 4 0.5648 1.22 
8m Plum pox Peach Virus Insect 35 9 0.4610 1.34 
8m Plum pox Peach Virus Insect 34 16 0.3972 1.48 
23 Pear scab Pear Fungus Rain 59 4 0.4794 1.15 
19 Armillaria root rot Spruce Fungus Soil 4 4 0.4383 1.06 
42n Leaf blight Strawberry Fungus Rain 121 15 0.2697 1.18 
42n Leaf blight Strawberry Fungus Rain 121 5 0.2874 1.07 
42n Leaf blight Strawberry Fungus Rain 15 15 0.2247 1.12 
42n Leaf blight Strawberry Fungus Rain 8 15 0.2231 1.11 
41 Leaf spot Strawberry Fungus Rain 59 15 0.4515 1.23 
n/ao Angular leaf spot Strawberry Bacterium Rain 63 5.87 0.7558 1.33 
18p TEV & TVMV Tobacco Virus Insect 188 40–60 0.1200 1.21 
n/aq Squash vein yellowing virus Watermelon Virus Insect 18 4 0.7985 1.07 
n/aq Cucurbit leaf crumple virus Watermelon Virus Insect 18 4 0.5381 1.03 
15r Take-all Wheat Fungus Soil 36 20.59 0.2811 1.18 
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Fig. 1. Relationship between the logarithms of the observed variance and theoretical binomial variance from epidemic data generated from simulations of a two-
dimensional stochastic spatial contact model where the distance that spores were dispersed followed a half-Cauchy distribution with median dispersal distance µ. 
Five dispersal distances were used (i.e., 0.25, 0.5, 1.0, 2.0, and 4.0). Twenty simulations were run for each dispersal distance on a daily time step and an infection
rate of 0.4 per day was assumed. Epidemics were started with one initially infected leaf. Incidence was assessed daily and only data collected from the 5-by-5 
quadrat is shown. The model was run until final incidence for most simulations was >0.95. Gray circles represent incidence >0.5 and black crosses represent
incidence ≤0.5. The gray line represents the binomial line (i.e., when the observed variance equals the binomial variance). For interpretation of the horizontal
scale, p = 0.001 corresponds to a binomial variance (with n = 25 here) of –10.11 and p = 0.01 corresponds to a binomial variance of –7.83. Top right graph: 
relationship between the ratio of the observed and theoretical variances (D) and disease incidence. 
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visualizing a plot 22 / binobs ss  against p, where a sharp increase in the 
ratio is observed at the start of the epidemic (Fig. 1). However, the 
difference between slopes for the two line segments decreased as 
the dispersal distance, µ, increased (Tables 2 and 3). For large 
dispersal distances and small quadrat sizes, b4 was often greater 
than b3. Thus, b3 does not have to be greater than b4. In the 
majority (≈95%) of cases, b4 was significantly >1 according to a t 
test, and the value of b4 generally increased as the Cauchy 
parameter increased (Fig. 3). This is actually an indication of 
reduced overdispersion (small-scale aggregation) with a fixed 
intercept because, for a given value of ln(Ap4), smaller values for 
the slope parameter indicates greater aggregation (because 

,)(/ )1(222 −⋅= b
binpbinobs sAss  but 2

bins  < 1). With our simulations, b4 

was closest to 1, primarily for small µ and small n. Thus, the fact 
that b4 = 1 for certain phases of the BPL in the simulations 
generated by Cascade is an indication of extreme local dispersal 
(small µ) or a very small quadrat size for a given intercept. In our 
simulations, b4 was almost always >1.0 and, in >50% of cases, 
>1.1 (Fig. 3). 

Evaluation of published data sets. In the representative 
studies listed in Table 1, the estimate of b for the fit of the BPL 
(equation 2) was numerically >1 in all but two cases; 50% were 
>1.175 and 90% were >1.05. Because disease incidence is 
determined with measurement error in actual studies, it is likely 
that the true values of b are somewhat larger than those deter-
mined in these studies. That is, it is well known that measurement 

 

Fig. 2. Relationship between the logarithms of the observed variance and theoretical binomial variance from epidemic data generated from simulations of a two-
dimensional stochastic spatial contact model where the distance that spores were dispersed followed a half-Cauchy distribution with median dispersal distance µ = 
1. Four different quadrat sizes were used to sample the central 160-by-160 grid: 2 by 2, 4 by 4, 5 by 5, and 8 by 8. Twenty simulations were run for each dispersal 
distance on a daily time step and an infection rate of 0.4 per day was assumed. Epidemics were started with one initially infected leaf. The model was run until
final incidence for most simulations was >0.95. Incidence was assessed daily. Gray circles represent incidence >0.5 and black crosses represent incidence ≤0.5. 
The gray line represents the binomial line (i.e., when the observed variance equals the binomial variance). For ease of comparison, p = 0.01 occurs at the binomial 
values –6.00 (n = 4), –7.39 (n = 16), –7.83 (n = 25), and –8.77 (n = 64); and p = 0.001 occurs at the binomial values –8.28 (n = 4), –9.66 (n = 16), –10.11 (n = 25), 
and –11.05 (n = 64). 
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error results in somewhat negatively biased estimates of the slope 
in a linear regression analysis (31). Inspection of the graphs from 
the articles (for the cases where graphs were shown) indicated no 
departure from linearity of the observed and theoretical variances 
on a log-log scale (unpublished). For most data sets, the smallest 
value of p in these studies was ≈0.0003 to 0.01 and only a limited 
number of data points had incidence <0.03 for any given data set. 
Thus, the first line segment identified originally by Gosme and 
Lucas (13), and confirmed by our simulations above, would gen-
erally not be observed with these datasets. In some data sets—
namely Gottwald et al. (16) and Gent et al. (12)—the minimum p 
was on the order of 0.0001, and no evidence of two (or more) 
phases of the power law relation was seen in the graphs. 

There was a very general tendency for the scale parameter (in 
the a formulation of equation A3 in the Appendix) to increase 
with b based on a regression analysis (Fig. 4A), although the 
relationship was weak. Except for one outlier, the a parameter 
decreased with the inverse of n (Fig. 4B). The slope parameter 
increased in proportion with n  (Fig. 4C). The general increase 
in b with n is consistent with the results of simulations performed 
as part of this study, as well as in other studies (48). These results 
do not provide evidence to support the assertion of the slope 
tending toward the value 1 during the so-called second and third 
phases of epidemics. 

There were significant relationships between plant species and 
pathogen type and the BPL parameters according to ANOVA 
(Table 5). Epidemics caused by bacteria had a significantly higher 
values for a than those caused by fungi or viruses, whereas epi-
demics caused by fungi had a significantly smaller b than those 
caused by either bacteria or viruses. There were significant 
differences associated with the crop for both parameters but there 
was no clear pattern in their differences, with the exception of the 
onion bacterial-blight outlier having a significantly higher value 

of a than all the other crop species except watermelon, and a 
value for b that was significantly higher than all other crop 
species except for maize, peach, tobacco, and wheat. The mode of 
dispersal, as characterized in this study, had a significant effect on 
a but not b. Mean separation using Fisher’s least significant 
difference produced three overlapping groups for a. The rain-
dispersed, insect-transmissible, and soilborne pathogens formed 
the upper group (i.e., the largest values for a); the insect-trans-
missible, soilborne, and graft-transmissible pathogens formed the 
middle group; and the soilborne, graft-transmissible, and aerially 
dispersed pathogens formed the bottom group. 

DISCUSSION 

The BPL has found many applications for characterizing over-
dispersion of disease incidence data in epidemics since its intro-
duction in 1992 (18,27,28 [chapter 9]). Our interest in this study 
was focused on investigating two results of Gosme and Lucas 
(13,14): (i) a bi- or multiphasic relationship between the log of 
the observed variance and log of the theoretical binomial vari-
ance, with straight line segments found for each phase, and a 
break point (switch point) separating each line segment; and (ii) 
the slope of the BPL on a log-log scale being close to the value of 
1 in what Gosme and Lucas (13) call the second and third phases 
of the relationship (corresponding to the range of incidence values 
typically observed in field studies). With respect to the break-
point issue, an inspection of the literature did not reveal examples 
of two or more line segments in binary power-law graphs (log-log 
scale) for a wide range of published data sets. Using the very 
general stochastic spatio-temporal model of Xu and Ridout (47), 
we ran an independent set of simulations over a wide range of 
conditions (i.e., varying pathogen dispersal distance, initial 
disease level, and quadrat [sampling unit] size) to determine what 

TABLE 2. Average slope and scale parameter estimates and average percentage of variance accounted for by the binary power law (BPL; equation 3), asymmetric 
binary power law (ABPL; equation 4), and split-line (SL; equation 5) models, and the break point incidence for the SL model for simulated epidemics initiated
with one initial infectiona 

 BPL ABPL SL 

nb b a R2 b1 b2 a1 R2 p* b3 b4 a4 R2 

Cauchy = 0.25             
4 1.06 0.764 99.6 1.07 1.16 0.835 99.8 0.0013 1.32 1.04 0.711 99.7 
16 1.16 0.806 98.9 1.17 1.32 0.932 99.4 0.0024 1.50 1.08 0.635 99.4 
25 1.21 0.815 98.8 1.22 1.37 0.980 99.1 0.0031 1.56 1.09 0.626 99.5 
64 1.32 0.971 98.6 1.34 1.50 1.162 98.9 0.0073 1.62 1.13 0.589 99.4 

Cauchy = 0.50             
4 1.08 0.773 99.3 1.09 1.18 0.844 99.5 0.0032 1.24 1.04 0.703 99.5 
16 1.18 0.817 98.9 1.19 1.34 0.923 99.3 0.0031 1.53 1.08 0.635 99.5 
25 1.23 0.870 98.6 1.24 1.40 0.990 98.9 0.0050 1.56 1.10 0.625 99.3 
64 1.34 1.028 98.4 1.36 1.53 1.174 98.7 0.0095 1.64 1.13 0.595 99.3 

Cauchy = 1.0             
4 1.08 0.736 99.7 1.09 1.24 0.844 99.8 0.0055 1.21 1.02 0.661 99.8 
16 1.18 0.770 99.0 1.21 1.46 0.970 99.4 0.0045 1.49 1.06 0.560 99.7 
25 1.22 0.829 98.8 1.26 1.54 1.062 99.2 0.0053 1.54 1.06 0.548 99.6 
64 1.33 0.969 98.5 1.37 1.71 1.297 99.0 0.0079 1.66 1.09 0.542 99.6 

Cauchy = 2.0             
4 1.08 0.721 99.7 1.08 1.18 0.763 99.9 0.0164 1.19 1.05 0.640 99.7 
16 1.20 0.750 99.2 1.21 1.36 0.827 99.6 0.0159 1.40 1.10 0.589 99.5 
25 1.26 0.814 99.3 1.28 1.43 0.914 99.6 0.0182 1.43 1.14 0.589 99.6 
64 1.36 0.918 99.1 1.37 1.53 1.062 99.4 0.0180 1.56 1.16 0.569 99.6 

Cauchy = 4.0             
4 1.11 0.632 97.7 1.11 1.18 0.670 97.7 0.0141 0.93 1.11 0.685 97.7 
16 1.25 0.634 98.6 1.26 1.40 0.719 98.7 0.0417 1.18 1.16 0.514 98.7 
25 1.29 0.987 98.1 1.29 1.49 0.763 98.4 0.0337 1.27 1.20 0.581 98.3 
64 1.37 0.829 97.9 1.38 1.51 0.905 98.2 0.0326 1.35 1.22 0.575 98.1 

a Intercept term in equations 3 to 5 was converted to the a parameter in the table based on the interrelations of scale parameters described in the Appendix. Note
that a4 was derived from ln(Ap4). The initial infection was located at the center of a 200-by-200 simulation grid of plants. R2 values in bold type indicate the best-
fitting model for a given dispersal distance (µ) and quadrat size (n). 

b Four different quadrat sizes were used to sample the central 160-by-160 grid: 2 by 2, 4 by 4, 5 by 5, and 8 by 8. Simulations were performed using a two-
dimensional stochastic spatial contact model, where the distance that spores are dispersed follows a half-Cauchy distribution with median dispersal distance µ
(47). Twenty simulations were run for each dispersal distance on a daily time step and an infection rate of 0.4 per day was assumed (note: the epidemic failed to
establish in one run when µ = 0.25). 
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conditions could lead to multiple line segments with different 
slopes (log-log scale) with the BPL. The results of our simula-
tions revealed that, under some circumstances, a break point can, 
indeed, be identified, with two line segments and different slopes 
being found; these results can help to explain the results gen-
erated by Cascade and explain why the two segments are not 
found with most observed data sets, as discussed below. With 
respect to the second point, it is very unusual for b = 1 with 
published data sets (Table 1), although our simulations show 
some (extreme) conditions—very local dispersal coupled with 
small sampling quadrat size—where b may approach 1. Thus, it 
appears that the results generated by Cascade (13,14) apply only 
to epidemics with a very specific set of characteristics, as dis-
cussed below. 

In our set of simulations, a two-line-segment relationship with 
a break point was clearly evident in generated data corresponding 
to small dispersal distances (µ), consistent with a small length 

scale of the contact distribution (28). This was based on the 
goodness of fit of the SL model compared with the usual BPL, 
and the differences in magnitude between b3 and b4 of equation 5. 
A break point was less evident in generated data corresponding to 
larger dispersal distances or, if a break point was found, the 
differences in slopes between the two line segments (b3 and b4) 
were very small. The evidence for a break point was also stronger 
for large rather than small quadrat size (n). Based on our results 
here, it appears that the simulations run by Gosme and Lucas 
(13,14) are characteristic of epidemics with overall small dis-
persal distances, of the nearest-neighbor type (28), with some-
thing akin to transmission characteristics of soilborne diseases. 
This was acknowledged in their article, where take-all disease of 
wheat was used as an example of the dispersal process typical of 
the simulations that were run in Cascade (13). 

In defining how the infection process is implemented in 
Cascade, Gosme and Lucas (13) write “…the model relies on the 

TABLE 3. Average slope and scale parameter estimates and average percentage of variance accounted for by the binary power law (BPL; equation 3), asymmetric
binary power law (ABPL; equation 4), and split-line (SL; equation 5) models, and the break point incidence for the SL model for simulated epidemics initiated
with nine initial infectionsa 

 BPL ABPL SL 

nb b a R2 b1 b2 a1 R2 p* b3 b4 a4 R2 

Cauchy = 0.25             
4 1.10 0.737 99.7 1.11 1.16 0.795 99.8 0.0065 1.29 1.04 0.649 99.9 
16 1.21 0.715 99.1 1.22 1.31 0.795 99.3 0.0048 1.63 1.09 0.542 99.7 
25 1.31 0.813 99.1 1.32 1.39 0.896 99.2 0.0148 1.57 1.11 0.515 99.8 
64 1.41 0.832 99.1 1.41 1.45 0.887 99.2 0.0149 1.69 1.19 0.512 99.8 

Cauchy = 0.50             
4 1.10 0.730 99.7 1.11 1.17 0.787 99.8 0.0056 1.33 1.05 0.647 99.8 
16 1.21 0.694 99.1 1.22 1.32 0.779 99.4 0.0053 1.56 1.11 0.539 99.6 
25 1.31 0.789 99.2 1.32 1.39 0.861 99.3 0.0144 1.54 1.14 0.522 99.7 
64 1.41 0.832 99.2 1.42 1.46 0.878 99.2 0.0162 1.67 1.20 0.511 99.8 

Cauchy = 1.0             
4 1.11 0.720 98.4 1.10 1.12 0.719 98.4 0.0326 1.17 1.03 0.620 98.4 
16 1.24 0.699 96.4 1.23 1.25 0.698 96.5 0.0153 1.41 1.11 0.523 96.7 
25 1.31 0.781 96.3 1.31 1.30 0.756 96.4 0.0264 1.46 1.12 0.504 96.6 
64 1.41 0.815 96.1 1.41 1.37 0.771 96.3 0.0306 1.58 1.18 0.483 96.5 

Cauchy = 2.0             
4 1.11 0.638 99.9 1.10 1.11 0.638 99.9 0.0471 1.13 1.07 0.587 99.9 
16 1.24 0.614 98.9 1.23 1.23 0.600 99.0 0.0272 1.38 1.15 0.497 99.0 
25 1.31 0.666 99.3 1.31 1.28 0.638 99.4 0.0282 1.45 1.18 0.488 99.5 
64 1.42 0.694 98.6 1.42 1.35 0.664 98.9 0.0252 1.59 1.24 0.488 98.9 

Cauchy = 4.0             
4 1.08 0.498 96.1 1.09 1.08 0.497 96.1 0.0212 1.00 1.09 0.506 96.1 
16 1.21 0.405 94.5 1.21 1.19 0.399 94.6 0.0104 1.19 1.21 0.397 94.5 
25 1.28 0.415 94.5 1.28 1.25 0.415 94.6 0.0316 1.18 1.24 0.386 94.5 
64 1.38 0.423 95.5 1.40 1.31 0.423 96.0 0.0497 1.29 1.31 0.376 95.6 

a Intercept term in equations 3 to 5 was converted to the a parameter in the table based on the interrelations of scale parameters described in the Appendix. Note
that a4 was derived from ln(Ap4). The nine initially infected leaves were regularly spaced in the grid to obtain the maximum distance apart from each other. R2

values in bold type indicate the best-fitting model for a given dispersal distance (µ) and quadrat size (n). 
b Four different quadrat sizes were used to sample the central 160-by-160 grid: 2 by 2, 4 by 4, 5 by 5, and 8 by 8. Simulations were performed using a two-

dimensional stochastic spatial contact model, where the distance that spores are dispersed follows a half-Cauchy distribution with median dispersal distance µ
(47). Twenty simulations were run for each dispersal distance on a daily time step and an infection rate of 0.4 per day was assumed (note: the epidemic failed to
establish in one run when µ = 0.25). 

TABLE 4. Number of individual simulation runs (out of 20 unless indicated otherwise) that cannot be fitted by a split-line (SL) model (equation 5) but can be well
fitted by the linear version of the binary power law (BPL, equation 3) and asymmetric binary power law (ABPL, equation 4) models 

 One initial infection, Cauchy parameter (µ)b Nine initial infections, Cauchy parameter (µ)b 

Quadrat sizea 0.25c 0.50 1.00 2.00 4.00 Total 0.25 0.50 1.00 2.00 4.00 Total 

4 9 8 6 14 9 46 3 2 6 8 8 27 
16 2 4 0 8 8 22 0 0 1 1 13 15 
25 4 1 0 2 6 13 0 0 0 1 12 13 
64 2 2 0 3 4 11 0 0 0 1 7 8 
Total 17 15 6 27 27 92 3 2 7 11 40 63 

a Four different quadrat sizes were used to sample the central 160-by-160 grid: 2 by 2, 4 by 4, 5 by 5, and 8 by 8. 
b Simulations were performed using a two-dimensional stochastic spatial contact model, where the distance that spores were dispersed followed a half-Cauchy 

distribution with median dispersal distance µ. Twenty simulations were run for each dispersal distance on a daily time step and an infection rate of 0.4 per day
was assumed (note: the epidemic failed to establish in one run when µ = 0.25). 

c Only 19 runs were used. 
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assumption that the host’s spatial structure is sufficiently strong 
so that interactions between holons from two different groups are 
negligible compared with interactions between holons of the same 
group.” In their model, which is not spatially explicit, infections 
between holons (= units) at one level (e.g., leaves) can only occur 
within previously infected units of the level above (e.g., plants) 
and, therefore, “long-distance” infections only occur at the 
highest level and must occur at a lower rate than infections at the 
lower levels (i.e., the dispersal distances must be short. Even 
though the infection rate between units at each scale was varied or 
investigated in their article, their results routinely produced the SL 
property, which was taken as evidence that the phenomenon is a 
(hidden or cryptic) characteristic of many epidemics. In contrast, 
our simulation results, where the spore dispersal function was 
explicitly represented, showed that the SL property for the BPL 
on a log-log scale is primarily a characteristic of epidemics with 
short dispersal distances. Again, however, such relationships were 

not apparent in published empirical studies conducted with 
pathogens that possess short dispersal distances (15,30). 

It is noteworthy that the break point occurs at a very low level 
of incidence, both with the Cascade model and in our simulations, 
in the vicinity of P ≈ 0.001 to 0.03 (for most situations). It also 
occurs at very high incidences with the Cascade model (their 
phase 4). The larger slope in the first phase (when it occurs) could 
have multiple causes. For the Taylor power law (for unbounded 
counts), compared with the overall relationship, unusual or arti-
ficial results can occur at extremely low densities, where the vast 
majority of quadrats are “empty” (i.e., 0 individuals of interest), 
and a very small number of quadrats have one or a small number 
of individuals (39). At such low densities, concepts of aggregation 
and heterogeneity may even be difficult to apply. Similar artifacts 
occur with the BPL in the case when only one diseased individual 
is observed among all N sampling units, yielding )ln()ln( 22

binobs ss =  
and a potentially high leverage point in regression models. 

Fig. 3. Slope (b4) of the second line in the split-line (SL) model fitted to describe the relationship between the logarithms of the observed variance and theoretical
binomial variance from epidemic data generated from simulations of a two-dimensional stochastic spatial contact model where the distance that spores were 
dispersed followed a half-Cauchy distribution with five median dispersal distances µ = 0.25, 0.5, 1, 2, and 4. Simulations were run for each dispersal distance on a
daily time step and an infection rate of 0.4 per day was assumed. The model was run until final incidence for most simulations was >0.95. Four different quadrat
sizes were used to sample the central 160-by-160 grid: 2 by 2, 4 by 4, 5 by 5, and 8 by 8. The SL model failed to fit a varying number of data sets (Table 4). Gray 
circles and black cross represent simulations with one and nine initial infected plants, respectively. 
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Furthermore, in a theoretical assessment of population demo-
graphics (birth, death, immigration, and emigration) on the (un-
bounded) Taylor power law, Anderson et al. (1) showed that the 
slope can vary with density for different demographic situations, 
and the slope at very low density can be either higher or lower 
than the overall slope. 

Gosme and Lucas rightly argued that the break-point discovery 
for overdispersion of disease incidence (or any binary variable) 
could not have been made without stochastic simulation model-
ing, because experimental data often have too few (if any) obser-
vations, particularly at the beginning and end of the epidemic, 
where disease incidence is at its lowest and highest. Sampling and 
measurement error at very low and high incidence also will result 
in estimates of the mean and variance with low relative precision 
when the number of sampling units is not large (28). Few investi-
gators monitoring single epidemics over time or many epidemics 
at a single time can commit resources to collect data on ≥1,000 
sampling units to obtain precise information on incidence and 
overdispersion near the extremes of the incidence scale. The 
minimum value of incidence in the data sets summarized in Table 
1 was typically >0.005, or there were few observations below this 
value to be able to visualize or model a break point. However, 
Gottwald et al. (16) show results for 321 data sets with minimum 
incidence values ≈0.001 (6 data sets with P < 0.001 and 95 with  
P < 0.01), and they did not observe the SL property. Thus, it 
remains uncertain how common an SL phenomenon is with actual 
epidemic data if sufficient data were available to quantify the 
process; however, we predict that it could be found when there is 
close to a nearest-neighbor dispersal process (small µ). The 
practical question arises, then, whether the SL property needs to 
be accounted for in developing sampling models for either 
incidence estimation or decision making (6,28), or in conducting 
other analyses dependent on the degree of overdispersion. It 
seems reasonable to answer “yes” if the SL property can be 
identified in observed data, the SL model fits the data better than 
the BPL model, and the objective is to sample or perform other 
analyses at very low or high levels of incidence (near 0 or 100%). 
Sensitivity analyses will have to be performed to determine the 
error introduced in these applications if the SL is ignored and 
analytical efforts focus on incidence near 0 or 100%. 

When the SL relationship occurs, it is clear that the ABPL 
(equation 4) and SL (equation 5) models are better choices for 
representing the power law relationship than the simpler BPL 
model (equation 3). However, the SL model must be fitted by 
nonlinear estimation methods and cannot always be fitted suc-
cessfully (when the data do not support two line segments). The 
ABPL model, first introduced by Hughes and Madden (18) in 
their original article on the BPL, may be a viable alternative to the 
SL model, because the former can be fitted using linear least 
squares. The ABPL generally provided a better fit to the simu-
lation data than did the usual BPL model. However, as mentioned 
above, the improved fit to the data by the ABPL and SL models is 
often marginal relative to the BPL model, so the gain tends to be 
minimal and the improved fit is unlikely to be apparent visually 
when the data are plotted. As demonstrated above, a wide range 
of incidence values, including many points with values <0.01 (as 
deliberately chosen with our simulations) would be needed to 
clearly distinguish among these model fits. Thus, it is not sur-
prising that the SL relationship for the variances on a log-log 
scale is not apparent for observed data sets. 

The property of the slope being ≈1 in what Gosme and Lucas 
(13) refer to as the second and third phases of the BPL log-log 
relationship (b4 in equations 5) was not generally seen in our 
simulations. The property also was not evident in the published 
data sets we evaluated, both those described in Table 1 and those 
not included because n was not given (unpublished). The slope for 
the second/third phase was clearly >1 under most circumstances 
in our simulations, and only came very close to 1 for small µ and 

small n. In fact, the range of b4 values (equation 5) in our simu-
lations was very similar to the values of estimated b (equation 3, 
or one of the equivalent formulations in the Appendix) in Table 1 
for observed data sets. This was expected because the BPL 
(equation 3) is usually fitted to data with incidence values >0.005 
or 0.01. Previous simulation results by Xu and Ridout (47,48) 
also resulted in b values >1 and generally <2, with many values 
between 1.05 and 1.5. Even values of b of 1.05 or 1.10 can have 
substantial effects on the index of dispersion (D) at a given mean 

Fig. 4. Relationships between A, the scale parameter (a) and slope (b) param-
eters of the binary power law (see equation A3 and equations 1 and 2); B, a 
and the sampling unit size (n); and C, b and n from the plant pathology-based 
studies listed in Table 1. Solid lines are model fits to the data; equation and fit
statistics are given in the individual panels. 
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incidence. Because the lowest incidence of disease in most of the 
published studies assembled here was greater than what is needed 
to recognize a break point between phases one and two/three, 
results from the published studies would generally correspond to 
the proposed phases two/three of Gosme and Lucas (13); b from 
the usual BPL (equation 3) would then directly correspond to b4 
from the SL model (equations 5 and 6b). Given the magnitude of 
b4 values in this study, and the fact that this parameter generally 
increased with increasing n, we conclude that slope in phase 
two/three will rarely equal or be very close to 1. 

Although the stochastic simulation model of Xu and Ridout 
(47) is more general than the Cascade model, especially in terms 
of the dispersal function (contact distribution) that is allowable, 
there is a limit to how far one can go in using one model to refute 
(or support) another model. However, the results from the Xu and 
Ridout model—both here and in previous publications (47,48)—
agree with the results from observed data sets for the range of 
incidence values typically found with disease in the field. The 
simulations in the current study, and those by Gosme and Lucas 
(13,14), were concerned with the effects of stochastic population-
dynamic (demographic and dispersal) factors and some sampling 
methods (i.e., size of sampling units) on binary power-law-based 
characterizations of overdispersion over time in epidemics. 
However, the BPL (equations 1 and 2, or any of the formulations 
in the Appendix), with a single slope on a log-log scale, also 
provides a good description of overdispersion for data points 
coming from different epidemics; that is, where each data point is 
a variance for a different field (with different incidence values) 
(Table 1). Several of the data sets in Table 1 correspond to this 
situation. For observed data sets, stochastic environmental effects 
influence the overdispersion results as much as population-dynamic 
effects. Using the collected data, we were unable to identify any 
biological factors that had a consistent effect on the BPL param-
eters. Hughes and Madden (18), in their original article and in 
subsequent publications (24), did not prescribe any particular 
mechanism to the BPL because of the likelihood that several 
mechanisms work together to produce the repeatable results. 

In conclusion, the SL results of Gosme and Lucas (13), with a 
break point at a low incidence, were confirmed using a more 
general simulator. However, the small values of the slope they 
found in the second/third phase likely reflect extreme short-range 
contact distributions and are not typical of most observed data. 
Accounting for the break-point relationship in data sets where 
they are apparent can be accomplished by fitting an SL or 
asymmetric form of the BPL, although the improved fit of these 
models may be marginal relative to the usual BPL. 

APPENDIX 

With a binomial random variable, the variance of the counts is 
given by np(1 – p), and the variance of the proportions is given by 
[p(1 – p)]/n; with the estimate of p, one substitutes these 
expressions for 2

bins  in equation 1 to obtain 

b
xxobs pnpAVs )]1([2 −==  (A1) 

b
ppobs nppAVs ]/)1([2 −==  (A2) 

The observed variance in these equations (left side) must be based 
on the number of diseased individuals per sampling unit in 
equation A1 (Vx) and the proportion of diseased individuals per 
sampling unit in equation A2 (Vp). When n is fixed for each 
sampling unit, one can write bnpp ]/)1([ −  as bb ppn )]1([ −− , and 
equation A2 can be written as 

b
pobs ppaVs )]1([2 −==  (A3) 

where a = Apn–b. Equation A3 was the form used originally by 
Hughes and Madden (18), although equations A1 and A2 have 
been more commonly used in subsequent years. Here, we prefer 
the versions based on proportions (equations A2 and A3), and we 
generally follow the nomenclature of Turechek and Madden (42) 
for the scale parameter. 

With fixed n, one can also write bpnp )]1([ −  of equation A1 as 
,)]1([ bb ppn −  and move n into the scale parameter for the vari-

ance of counts: 

b
xxobs ppaVs )]1([2 −==  (A4) 

where ax = Axnb. Because Vx = n2Vp, by definition, one can write  
a = axn–2, Ap = Axn2b–2, and a = Axnb–2. These conversions are 
essential to compare results from different studies (when authors 
use different formulations of the BPL) and to use formulas for 
calculating sample sizes and estimates of overdispersion (28). 

All of the equations in the Appendix describe a symmetrical 
relation between the observed variance and p (i.e., the same 
variance is specified for p and 1 – p). An asymmetrical relation 
can be defined by a generalization of equation A3 (or A4). For 
instance, consider the right-hand side of equation A3, which can 
be written as .)1( bb pap −  If the exponents for p and 1 – p are 
different (b1 and b2, respectively), then a more complex BPL can 
be written as 

21 )1(1
2 bb

pobs ppaVs −==  (A5) 

which allows for different variances at p and 1 – p (24). 
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