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Deploying initial attack resources for wildfire suppression: spatial
coordination, budget constraints, and capacity constraints
Yohan Lee, Jeremy S. Fried, Heidi J. Albers, and Robert G. Haight

Abstract:We combine a scenario-based, standard-response optimizationmodel with stochastic simulation to improve the efficiency
of resource deployment for initial attack on wildland fires in three planning units in California. The optimization model minimizes
the expected number of fires that do not receive a standard response — defined as the number of resources by type that must arrive
at the fire within a specified time limit — subject to budget and station capacity constraints and uncertainty about the daily number
and location of fires.Weuse theCalifornia Fire Economics Simulator to predict thenumber of fires not containedwithin initial attack
modeling limits. Compared with the current deployment, the deployment obtained with optimization shifts resources from the
planning unit with highest fire load to the planning unit with the highest standard response requirements but leaves simulated
containment success unchanged. This result suggests that, under the current budget and capacity constraints, a range of deployments
may perform equally well in terms of fire containment. Resource deployments that result from relaxing constraints on station
capacity achieve greater containment success by encouraging consolidation of resources into stations with high dispatch frequency,
thus increasing the probability of resource availability on high fire count days.

Résumé : Nous combinons un modèle d'optimisation de la réponse standard basée sur différents scénarios à une simulation
stochastique pour améliorer l'efficacité du déploiement des ressources lors de l'attaque initiale des feux de forêt dans trois unités
de gestion en Californie. Le modèle d'optimisation minimise le nombre attendu de feux qui ne reçoivent pas une réponse
standard (définie comme la quantité de ressources de chaque type qui doit être déployée à l'intérieur d'une certaine limite de
temps) à cause de contraintes de budget et de capacité des stations et de l'incertitude quant au nombre quotidien de feux et à leur
localisation. Nous utilisons le simulateur de l'aspect économique des feux en Californie pour prédire le nombre de feux qui ne
sont pas maîtrisés à l'intérieur des limites déterminées par la modélisation de l'attaque initiale. Comparativement au déploie-
ment actuel, le déploiement obtenu par optimisation déplace des ressources de l'unité de gestion qui a le fardeau d'intervention
le plus lourd vers l'unité de gestion qui a les exigences de réponse standard les plus élevées mais laisse le succès simulé de la
maîtrise des feux inchangé. Ce résultat indique que dans les conditions actuelles de contraintes de budget et de capacité,
différents déploiements peuvent avoir une aussi bonne performance en termes de maîtrise du feu. Les déploiements de
ressources qui résultent de la réduction des contraintes de capacité des stations ont plus de succès dans la maîtrise des feux en
favorisant la consolidation des ressources dans les stations qui ont une fréquence élevée de déploiement, augmentant par
conséquent la probabilité que les ressources soient disponibles les jours où le nombre de feux est élevé. [Traduit par la Rédaction]

Introduction
Large wildfires in the United States pose significant challenges

to firemanagement agencies charged with protecting human life,
property, and natural resources. Since 1990, the area burned by
large wildfires and suppression costs have increased significantly
(Calkin et al. 2005; Littell et al. 2009). Further, the synchrony of
large wildfires across broad geographic regions contributes to
budget shortfalls when suppression costs exceed Congressional
funds appropriated for suppression (Holmes et al 2008).

As a strategy for preventing large and costly wildfires, firemanag-
ers prioritize aggressive initial attack of fire ignitions especially in
places where high densities of people live in areas that have rela-
tively high likelihood of high-intensity wildfire. It has long been
understood that vigorous, rapid initial attack can contain a fire
quickly before it becomes large and causes substantial damage
(Parks 1964). Initial attack is generally defined as the first 1−8 h offire
suppression effort, duringwhich the primary objective is containment
of the fire at a small size in the shortest possible time. Examples of fire
suppression resources used for initial attack include fire engines, bull-
dozers, hand crews, andwater-dropping helicopters.

Fire planners and managers make two types of allocation deci-
sions for initial attack resources (Martell 1982). First, they deploy
resources to meet expected demand for fire suppression in com-
ing days, weeks, or months. Then, as fires occur, they dispatch
those resources to achieve the earliest possible containment
while taking into account the contingency of synchronous fire
ignitions. While most fire managers have a clearly defined goal of
minimizing the number of escaped fires, they face substantial
uncertainty about the number, location, and intensity of fires and
they have limited funds to acquire suppression resources or con-
struct operating bases. As a result, fire managers must efficiently
deploy costly firefighting resources across dispersed locations
with considerable uncertainty about where fires will occur and
how difficult they will be to control.

Both simulation and optimization models aid resource deploy-
ment and dispatch decisions (see Martell 1982, 2007 for reviews).
Location-specific deployment and dispatch rules are evaluated using
simulation models that account for the stochastic properties of fire-
fighting tactics, dispatch policies, fire behavior, and fireline produc-
tion rates (Fried and Gilless 1999; Fried et al. 2006).While simulation
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models are excellent for exploring the impact ofmarginal changes to
the system, or even for “test-driving” entirely new system designs,
they generally arenot suited for identifyingoptimal deployment and
dispatch policies because their complex nonlinear and stochastic
structures are difficult to include in optimization algorithms.

Optimizationmodels determine deployment and dispatch rules
that attain specific fire management objectives. For example, de-
ployment models assign suppression resources to stations to
minimize operating costs while meeting predefined resource re-
quirements in surrounding areas (Hodgson and Newstead 1978;
Greulich and O'Regan 1982). Models of dispatch determine the
number and type of suppression resources to dispatch to a given
fire tominimize suppression cost plus damage subject to resource
availability constraints (Kourtz 1989; Mees et al. 1994; Donovan
and Rideout 2003). A few models address deployment or dispatch
problems that account for uncertainty in fire occurrence or be-
havior (MacLellan and Martell 1996; Hu and Ntaimo 2009). Haight
and Fried (2007) developed a model that optimizes both seasonal
deployment and daily dispatch decisions while accounting for
uncertainty in the number, location, and intensity of fires. In their
model, ignition uncertainty is characterized with a set of fire
scenarios, each listing the location and intensity of fires that
could occur in a single day. Each potential fire also has an associ-
ated standard response — defined as the required number of re-
sources thatmust reach the firewithin amaximum response time
(Marianov and ReVelle 1991) — based on fire location and inten-
sity. Resources are deployed to fire stations before the number,
location, and intensity of ignitions are known, and resources are
dispatched to fires contingent on the standard response require-
ments of the fires that occur in each scenario. The objective is to
minimize the expected number of fires that do not receive a stan-
dard response subject to a resource deployment budget.

While optimization models deploy resources based on assump-
tions about potential fire location and intensity, they do not model
interactions among fire-fighting tactics, fireline production rates,
fire intensity, and suppression. In contrast, stochastic simulation
models of initial attack simulate fire intensity and containment
based on fire-fighting tactics and fireline production (e.g., Fried and
Gilless 1999). Therefore, combining optimization and simulation
analyses of initial attack may improve the information available to
decision makers (Haight and Fried 2007; Hu and Ntaimo 2009).

We combine a scenario-based, standard-response optimization
model with a stochastic simulation model of initial attack to as-
sess and potentially improve the deployment of fire suppression
resources among three central Sierra planning units adminis-
tered by the California Department of Forestry and Fire Protection
(CALFIRE). First, we use the optimization model to determine the
joint deployment of resources among the three planning units.
Then, we simulate the initial attack success of each deployment
obtained from the optimization model using the California Fire
Economics Simulator version 2 (CFES2), a stochastic simulation
model of initial attack (Fried and Gilless 1999; Fried et al 2006).We
use these models to assess how deployment and dispatch deci-
sions obtained with the optimization model affect initial attack
success relative to the performance of an existing resource deploy-
ment that is based on expert knowledge and experience. Then, we
assess how changes in station capacity and budget constraints
affect resource deployment decisions and initial attack success.
Finally, we develop a simple deployment heuristic using CFES2
simulations and assess its performance relative to the deploy-
ments obtained with optimization.

Methods

Study area and simulation framework
The 1.2 million hectare study area consists of the central por-

tions of three adjacent CALFIRE administrative units in the cen-
tral Sierra region of California — Amador-El Dorado (AEU),

Nevada-Yuba-Placer (NEU), and Tuolumne-Calaveras (TCU) —
where CALFIRE is responsible for wildfire suppression (Fig. 1).
Topography includes rolling hills and steep, rugged river canyons
with elevations rising 300–1200 m west to east and vegetation
ranges from annual grasslands, shrublands, oak savannas, and
open pine woodlands to mixed conifer and true fir forests along
this elevation and precipitation gradient. Stratified by life form,
dominant vegetation cover is 42% herbaceous, 39% shrub, and
19% forest (Franklin et al. 2000). Before European settlement,
these vegetation types supported low-intensity fires with fre-
quent return intervals (2–16 years) (Barbour et al. 2007). Since
1900, fuel loadings have increased owing to fire suppression, so
wildfires burn with high intensity. Low fuel moisture and se-
vere fire weather combine to create the greatest potential for
large fires during high fire season (June−October). Rapid popu-
lation growth during the 1990s greatly increased the value at
risk in buildings and infrastructure. From 2005 through 2008,
CALFIRE deployed engines and dozers in 45 stations, hand
crews in four camps, and aircraft from six air bases to initial
attack fires (Fig. 1).

To conduct strategic planning using CFES2, CALFIRE stratified
this area into 27 firemanagement analysis zones (FMAZ) described
by broad fuel type and population density class. Within each
FMAZ, fires are simulated at representative fire locations (RFLs),
each characterized by a National Fire Danger Rating System fire
behavior fuel model (narrative descriptions can be found in
Deeming et al. 1977), slope class, representative fire weather sta-
tion (Wolf Creek, White Cloud, Bald Mountain, Georgetown,
Groveland, or Eliza Mountain), value at risk, and ease of access by
firefighting resources, as represented by travel times. There are a
total of 173 RFLs in the three units (Fig. 1), and each is assigned
a weight consistent with the frequency of fires occurring at
locations within the FMAZ that approximately match the RFL's
characteristics.

Simulating initial attack
It is essential to understand that we use CFES2 at two points

during this analysis, and for very different purposes: (1) to gener-
ate a set of fire scenarios and parameters that drive the optimiza-
tion and (2) to simulate initial attack on fires in those scenarios to
evaluate the performance of alternative resource deployments
produced by the optimization. The CFES2 model uses stochastic
simulation of fire occurrence and behavior and a mathematical
model of perimeter containment (Fried and Fried 1996). It in-
cludes considerable operational detail designed to support deci-
sion making in wildland fire protection through quantitative
analysis of the potential effects of marginal changes to the wild-
land fire management system. Examples of parameters that can
be varied include availability and stationing of resources, rules for
how many resources to dispatch, by kind, at each fire dispatch
level, criteria for setting the fire dispatch level, schedules for
when firefighting resources are staffed and available, and fireline-
building tactics. The CFES2 model can be used to evaluate the
contribution to initial attack effectiveness of several types of ini-
tial attack resources, alternate deployment of and dispatching
rules for suppression resources, and multiunit and multiagency
cooperation (Fried et al. 2006).

The occurrence model contains random variables for whether
and how many fires occur on a given day, along with the location
(RFL) and the ignition time for each fire (Fried and Gilless 1988).
The behaviormodel contains randomvariables for fire spread rate
and fire dispatch level depending on weather and time of day
(Gilless and Fried 1999). To build a data set for the optimization
model (described below), we used the CFES2 fire occurrence and
behaviormodels, parameterized with data from 15 years of histor-
ical fire occurrences and fire weather observations between 1990
and 2010. Using this parameterization, CFES2 simulated 400 years
of daily fire patterns with each day representing a particular com-
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bination of weather, fire count, fire locations, fire ignition times,
fire behavior (intensity and rate of spread), and consequent de-
mand for firefighting resources. On days where fire count is at
least four in a unit, fires that occur later in the day frequently do
not receive a full complement of resources, or some of the re-
sources that they do receive have later arrival times, owing to
close-by resources having already been committed to suppress
earlier fires. We identified 5814 high fire season days with high
fire counts (four or more in any one planning unit and no more
than one fire at any RFL), representing 16% of the days on which
any fire occurred in any of the three units and accounting for
42 835 simulated fires (7.35 fires per day on average), of which 43%
were in NEU, 28% in AEU, and 29% in TCU. We use these 5814 high
fire count and high fire season days as the fire scenarios to evalu-
ate alternative deployment and dispatch decisions because these
are the dayswhen the initial attack resourceswill be challenged to
meet demands for fire suppression and because escaped fires may

cause catastrophic damage and may be very expensive to extin-
guish. To reiterate the pointmade at the beginning of this section,
we use the 5814 scenarios in two ways: (1) to generate a resource
deployment using the standard response optimizationmodel and
(2) to simulate the performance of the resource deployment using
CFES2.

Optimizing strategic resource deployment
We develop a scenario-based, standard-response optimization

model to guide the annual, strategic deployment (or home-basing)
of initial attack resources to stations and dispatch them to fires.
The model minimizes the expected daily number of fires that do
not receive a standard response subject to budget and station
capacity constraints. The standard response is the number of re-
sources by type that must arrive at a fire within a specified time
limit. A standard response is defined for each of three fire dis-
patch levels by fire management experts in each unit and varies

Fig. 1. CALFIRE administrative units in the central Sierra region of California: Amador-El Dorado (AEU), Nevada-Yuba-Placer (NEU), and
Tuolumne-Calaveras (TCU). The study area is the CALFIRE-protected area (shaded) in the central portions of the three units. We excluded the
CALFIRE-protected area in the eastern portion of NEU (shaded area surrounding Truckee) because it is too far away from other CALFIRE-
protected areas to send or receive ground resources and depends primarily on US Forest Service and local suppression resources through
mutual aid agreements.
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among units due to differences in the number of resources by type
stationed in the unit and the degree of reliance on air resources.
To represent the uncertainty in fire ignition and behavior during
a single day, the model includes multiple fire scenarios, each
defining the number, location, and standard response require-
ments of fires thatmay occur. In aggregate, themultiple scenarios
approximate the probability distribution of fire locations and in-
tensities during a single day. The model deploys resources to sta-
tions at the beginning of the fire season or planning period before
the number, location, and intensity of fire ignitions are known,
and then resources are dispatched to fires contingent on the stan-
dard response requirements of the fires that occur in each sce-
nario. Themodel addresses strategic deployment decisions within
multiple fire management units and is described with the follow-
ing notation.

Indices
u, U = index and set of fire planning units (i.e., AEU, NEU, and

TCU)
i, I = index and set of suppression resource types
j, Ju = index and set of fire stations in unit u
k, Ku = index and set of potential fire locations in unit u
s, S = index and set of fire scenarios

Parameters
B = annual budget for total operating cost across all fire plan-

ning units
ci = annual cost of operating resource type i
Ciju = upper limit on number of resources of type i at station j in

unit u
ps = probability that fire scenario (fire day) s occurs
rikus = number of resources type i required at location k in unit u

during fire scenario s to satisfy requirements for a standard re-
sponse

tiju=ku = response time of resource type i from station j in unit u=
to fire location k in unit u

Tiku = maximum response time for resource type i to fire loca-
tion k in unit u to satisfy a standard response requirement

Niku
u ′

= set of stations j in unit u= from which resources of type i
can reach location k in unit uwithin themaximum response time,
i.e., Niku

u ′
� [j�Ju

′
�tiju ′ku � Tiku]

Decision variables
xiju = integer variable for number of resources of type i deployed

at station j in unit u
diju=kus = integer variable for number of resources of type i at

station j in unit u= that are dispatched to fire location k in unit u
during fire scenario s

zkus = binary variable: 1 if fire location k in unit u receives a
standard response during fire scenario s, 0 otherwise

The model is formulated as follows:

[1] Minimize: O � �
u�U ��s�S

ps�
k�Ku

(1 � zkus)�
Subject to

[2] �
u�U

�
i�I

�
j�Ju

cixiju ≤ B

[3] xiju ≤ Ciju for all i � I, j � Ju, and u � U

[4] �
u ′�U

�
k�Ku ′

dijuku
′
s ≤ xiju for all i � I, j � Ju, s � S, and u � U

[5] zkusrikus ≤ �
u'�U

�
j�Niku

u'

diju
′
kus for all i � I, k � Ku, s � S, and u � U

[6] zkus � [0, 1] for all k � K, s � S, and u � U

Equation 1 minimizes the weighted sum of the expected num-
ber of fires that do not receive the standard response across all
planning units, where the weight ps represents the probability of
the occurrence of fire scenario s. Inequality 2 requires that the
total annual cost of operating suppression resources across the
planning units is constrained to less than or equal to the budget
limit. Inequality 3 represents the capacity of each station for each
type of suppression resource. Inequality 4 requires that the num-
ber of each type of resource dispatched from each station during
each fire scenario is less than or equal to the number of that type
of resource deployed at the station. Inequality 5 represents
the condition for whether a fire receives a standard response. A
fire receives a standard response (zksu = 1) only if, for each resource
type i, the number of resources that are within the standard
response time and dispatched to the fire from all available
stations, �

u'�U
�

j�Niku
u'
diju ′kus, is greater than or equal to the number

of resources required, riksu. The variable diju=ku allows resources
to be dispatched to locations in planning units other than their
home unit. If riksu = 0 for all resource types i, there is no fire at
location k in unit u during fire scenario s and zksu may equal 1
with no resource commitment.

Our standard-response logic does rely on some simplification
relative to the real world. Themodel will not sendmore resources
to a fire than are defined in the standard response requirement
because once the requirement ismet, it is assumed that no further
benefit is attainable. Further, the model will not send a partial
response because benefit is contingent on the full standard re-
sponse having been delivered. Annual operating costs, ci, are fixed
for each resource type without accounting for any incident-
specific overtime pay or travel costs. Average values for these costs
are reflected in the annual operating cost parameters. In the op-
timization model, an initial attack resource can be dispatched to
at most one fire per day, while in the real world, and in CFES2
simulation, a resource may be used on multiple fires. Finally,
while the standard response is a predefined number of resources
arriving within a response time threshold for each fire, the dis-
patch decisions that comprise a standard response to a fire can
vary: identical fires (location, severity, etc.) on different days may
receive resources from different stations and planning units, de-
pending on the other fires on those days.

Parameter values of the optimization model
Ideally, we would solve the optimization model with the com-

plete set of 5814 fire scenarios generated with CFES2; however,
due to computational limits, we use a set of 100 fire scenarios for
the optimization model to approximate the probability distribu-
tion of days during the high fire season on which four or more
fires occurred. Each of the 100 scenarios is randomly selected
(without replacement) from the set of 5814 scenarios. Each sce-
nario includes the location and dispatch level of each fire during
a single day when there are at least four fires in any one of the
three fire planning units and no more than one fire at any RFL.
Mean daily number of fires for these 100 scenarios is 7.43, with a
range of 4−12. Although we assume that the scenarios are equally
likely (i.e., ps = 0.01, s = 1. . .100) (MacLellan and Martell 1996;
Haight and Fried 2007), their random selection from the larger set
of 5814 implies that more likely fire scenarios are better repre-
sented in this sample of 100 than less likely fire scenarios. By
assuming equal probability and aggregating the results, we can
approximate the distribution of outcomes.
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The standard response to each fire depends on the fire's dis-
patch level, which ranges from 1 (low) to 3 (high) (Table 1). The fire
dispatch levels are derived from the day's maximum burning in-
dex and scaled by a diurnal adjustment factor specific to the time
of fire occurrence (Gilless and Fried 1999). The dispatch levels
assist CALFIRE personnel in determining how many resources of
each type to dispatch for initial attack given the level of fire dan-
ger. In general, the higher the dispatch level, the more resources
are required in the standard response. The standard response is
zero for any location that does not have a fire.

The optimization model deploys engines, bulldozers, hand
crews, and helicopters among stations owned and operated by
CALFIRE. Response times for ground resources to travel between
their home station and every RFL were estimated using Google
Earth. Response times for helicopters were made using airspeed
and distances between air bases and RFLs. In consultation with
CALFIRE unit leaders, we established response time thresholds of
30 min for engines and 60 min for dozers, hand crews, and
helicopters, beyond which a response would be considered un-
satisfactory. Rapid response is critical because fast-spreading
fires are likely to escape and cause considerable damage if
concerted initial attack is not applied within the first 30 min
(Arienti et al. 2006; Haight and Fried 2007). For application, we
estimate the unit cost (i.e., annually operating costs) for each
resource by type (Table 2).

Applications of the optimization model are solved on a Dell
Pentium 4 desktop computer (CPU 2.4 GHz) with GAMS/CPLEX
Solver. The termination criterion for the optimization runs is a
combination of time limit and optimality: the solver is instructed
to stop and report the solution after 16 h of runtime or after
proven optimality is achieved, whichever happens first.

Computing bounds on the objective function value
Because the optimal solution of the problem (eqs. 1–6) with 100

fire scenarios is an approximation of the optimal solution of the
problem with the complete set of 5814 scenarios, we compute
bounds on the unknown optimal objective function value of
the larger problem (Mak et al. 1999). The bounds are used to eval-
uate the quality of the approximation. For the upper bound (U), we
take the deployment for the optimal solution with 100 scenarios
and compute the daily number of fires not receiving a standard
response using all 5814 scenarios. For the lower bound (L), we
solve 20 replicates of the optimization problem with 20 indepen-
dent sets of 100 scenarios. The lower bound is the mean of the
objective function values from the 20 replicates. Finally, we com-
pute the gap (U – L)/U, which represents the relative percentage
difference between the upper and lower bounds on the unknown
optimal objective function value for the problems (eqs. 1–6) with
the complete set of 5814 fire scenarios.

Estimating the effects of employing a standard response
objective

The first issue we address is how deployment and dispatch de-
cisions obtained with an optimization model that minimizes the
number of fires not receiving a standard response affect initial
attack success. To address this issue, we formulate a base case
using the CALFIRE resource deployment during the years 2005–
2008 (Case A, Table 3). The deployment includes a total of 51
engines and seven dozers divided among 32 of the 45 stations in
the study area (Case A, Fig. 2). In addition, 15 hand crew teams are
deployed at four camps and eight helicopters are deployed at six
air bases. The total annual operating cost of this deployment is
$55.7 million. We assume that resources may be dispatched be-
tween units to suppress fires. This CALFIRE resource deployment
has remained relatively stable for many years despite changes in
fire load, fire severity, values at risk, and access. Small changes in
deployment do occur from year to year as CALFIRE adapts to
changes in funding.

For comparison with this CALFIRE deployment case, we use the
standard-response optimization model to deploy resources
among the three planning units given the same budget level
($55.7 million) and capacity constraints of the CALFIRE deploy-
ment, which we call the low capacity/current budget case (Case B,
Table 3). The engine and dozer stations could each house up to two
engines and two dozers. Conservation camps could each house up
to five hand crews. Air bases could each house up to three heli-
copter crews. The optimizationmodel also assumes that resources
may be dispatched between planning units.

We measure the performance of the CALFIRE deployment and
the deployment obtained with optimization by simulating initial
attack using CFES2 and counting the number of fires that are not
successfully contained. CFES2 is parameterized with the same
inputs (e.g., for occurrence, fire behavior, fire locations, resource
productivities, and response times) used in the simulations that
generated the 5814 fire scenarios. Performance ismeasured by the
number of fires that are not contained before they exceed simu-
lation limits (ESL) on fire size or time, becoming “ESL” fires. The
size limit is 50, 100, or 300 acres, depending on fuel and popula-
tion density of the FMAZ where the fire occurs. The time limit is
2 h. These limits can be thought of as addressing both a goal (no

Table 1. Dispatch policy (number of resources by fire dispatch level) for initial attack in planning
units Amador-El Dorado (AEU), Nevada-Yuba-Placer (NEU), and Tuolumne-Calaveras (TCU).

Resource type and planning unit

Engine Dozer Hand crew Helicopter

Fire
dispatch
levela AEU NEU TCU AEU NEU TCU AEU NEU TCU AEU NEU TCU

1 3 4 2 0 0 1 0 0 1 0 0 1
2 4 6 4 1 1 2 1 1 3 0 1 2
3 5 8 6 1 2 3 2 2 5 1 2 3

aFire dispatch level, derived from modeled fire behavior parameters, ranges from 1 (low) to 3 (high) and is
designed to ensure a suppression response that is well matched to the challenge (e.g., growth rate or fire intensity)
posed by a fire (Gilless and Fried 1999).

Table 2. Crew size and operating costs of initial attack resources.

Attribute

Resource type

Engine Dozer Hand crew Helicopter

Crew 3 1 17 6
Hourly cost ($) 143 188 390 1051
Annual cost ($)a 750 164 162 432 402 480 1 286 424

aAnnual cost is based on hourly cost and estimated annual operating hours of
each resource type obtained from consultation with CALFIRE personnel. Com-
pared with engines, dozers have a higher hourly cost and lower annual cost
because dozers are operated for fewer hours than engines.

60 Can. J. For. Res. Vol. 43, 2013

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
O

re
go

n 
St

at
e 

U
ni

ve
rs

ity
 o

n 
03

/1
8/

13
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



fires above a size limit or no fires with duration above a time limit)
and a modeling constraint. A fire that exceeds either limit has
likely transitioned from initial attack mode to extended attack
mode, in which resources beyond the standard response are dis-
patched and the control strategy adjusted (e.g., pulling back to the
next ridge or setting backfires rather than direct containment). The
performances of resource deployments are estimated using the 5814
fire scenarios with high fire counts (defined as at least four fires in
any unit in one day and no more than one fire at any RFL) and high
fire season. The difference in performance between the CALFIRE
deployment case and the optimizationmodel's low capacity/current
budget deployment case represents the effect of changing the num-
ber and type of resources in administrative units to minimize the
number of fires not receiving the standard response requirements

for those units. In both the simulation model and the real world, a
standard response does not guarantee that a fire will be contained
(beprevented frombecominganESLfire), although thevastmajority
of fires that receive a standard response are contained. Conversely,
not receiving a standard response does not guarantee that a fire will
become anESLfire. From the perspective of firemanagers andmuch
of the public, however, ESL rates are far more germane than stan-
dard response achievement.

Note that CALFIRE relies on ESLs as a performance measure
rather than a potentially more useful economic statistic like area
burned in part because no initial attack model yet devised is ca-
pable of accurately predicting the size of fires that exceed initial
attack, and these fires almost always account for nearly all of the
area burned. Past attempts to assign average historic escaped fire

Table 3. Cases used for analysis.

Station capacity

Casea Engine Dozer Hand crew Helicopter
Budget
($million)

A. Base (CALFIRE deployment) 2 2 5 3 55.7
B. Low capacity, current budget 2 2 5 3 55.7
C. High capacity, current budget Unlimited Unlimited Unlimited Unlimited 55.7
D. Low capacity, high budget 2 2 5 3 69.6
E. High capacity, high budget Unlimited Unlimited Unlimited Unlimited 69.6
F. Low capacity, low budget 2 2 5 3 41.8
G. High capacity, low budget Unlimited Unlimited Unlimited Unlimited 41.8
H. Heuristic, current budget Unlimited Unlimited Unlimited Unlimited 55.7

aThe base case represents the current (2005–2008) deployment of resources in each planning unit with dispatch
allowed between units. The other cases are resource deployments found by solving the scenario-based, standard-
response optimization model with dispatch allowed between units and different budget and station capacity
constraints.

Fig. 2. Deployment of engines and dozers in relation to representative fire locations in the current CALFIRE deployment (Case A), obtained
with the optimization model with low station capacity and current budget (Case B), and obtained with the optimization model with high
station capacity and current budget (Case C).
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sizes to ESLs (e.g., USDA Forest Service 1985) generated arbitrary
results because such assignments are unavoidably an artifact of
the period for which the average ESL size was computed. With
increasing evidence that annual area burned is nonstationary,
such assignments are also prone to bias.

Estimating the effects of station capacity constraints and
annual operating budgets

The second issue we address is how changes in the station
capacity constraints and budget affect resource deployment
and initial attack success. To address this issue, we formulate
and solve five additional optimization models with different
combinations of constraints (Cases C–G, Table 3). In the first
model (Case C), we remove the station capacity constraints
while keeping the existing budget of $55.7 million. The other
four models (Cases D–G) are formulated with a different set of
capacity and budget constraints in which budgets are increased
or decreased by 25% and capacity constraints are included, or
not. We use CFES2 to simulate the performance of the resource
deployments obtained with each of these five models for com-
parison with the performance of the CALFIRE resource deploy-
ment. Performance is measured by the number of ESL fires per
day based on the set of 5814 fire scenarios with high fire counts
and high fire season.

Testing the performance of the optimization relative to a
simulation-based heuristic

The standard responsemodel does not attempt tominimize the
number of ESL fires because optimization cannot be directly ap-
plied to that inordinately complex problem. Adopting the practi-
cal perspective of the analysts who routinely rely on CFES2 to
conduct strategic fire planning, we developed a straightforward,
iterative, simulation-based heuristic, well within the capabilities
of a seasoned fire protection planning analyst, to seek ESL-
reducing resource allocations that could be compared with allo-
cations obtained with standard response optimization:

(1) Use CFES2 to simulate the number of ESL fires for the current
resource deployment.

(2) Identify the least-used engine, dozer, and hand crew and re-
deploy them to stations nearest the RFLs with high frequen-
cies of ESL fires.

(3) Return to step 1 and repeat.
(4) Stop and produce a solution (termination condition: 1% gap of

improvement).

We apply this heuristic using the current CALFIRE deployment
as the starting point and assuming that the number of resources

by type remains fixed (Case H, Table 3). Thus, we consider trade-
offs among resource deployments at different stations but not
among resource types.

Results

Effects of employing a standard response objective
In the base case, the CALFIRE deployment of initial attack re-

sources in 2005–2008 results in an average of 0.522 ESL fires per
day for the days in which at least four fires occur in a single unit
(Case A, Table 4). The average of 0.522 ESL fire per day represents
7.10% of the 42 835 fires included in the 5814 scenarios. The 51
engines and seven dozers are divided among 32 of 45 stations
(Fig. 2) with the largest amount (40%) located in NEU, which has
43% of the fires.

The deployment obtained with the optimization model given
the current budget and station capacity (low capacity and current
budget, Case B in Table 4) uses more dozers and helicopters and
fewer engines than does the CALFIRE deployment in Case A. More
dozers and helicopters are deployed to meet the relatively high
standard response requirements in TCU (Table 1). Engines and
dozers are deployed in 29 of the 45 stations, and they are shifted
from NEU, which has the highest fire load, to AEU and TCU to
meet the standard response requirements in those units (Fig. 2).
The optimal deployment averages 0.526 ESL fire per day (Table 4),
which is not significantly different (p < 0.05) from the mean num-
ber of ESL fires per day for the Case A deployment. However, the
optimal deployment reduces the expected number of fires per day
that do not receive a standard response by 40% from 2.86 to 1.97
(Table 4), primarily because of the increased number of dozers and
helicopters and the redeployment of engines and dozers from
NEU to AEU and TCU.

To evaluate the quality of the deployment obtained in Case B,
which is the optimal solution to the problem (eqs. 1–6) with 100
scenarios, we compute upper and lower bounds on the unknown
optimal solution to the problemwith the complete set of 5814 fire
scenarios. The upper bound is the daily number of fires not cov-
ered (1.97), which is computed for the deployment obtained in
Case B using the complete set of 5814 scenarios. The lower bound
is the mean of the objective function values of 20 replicate solu-
tions to the problem in Case B with 20 independent sets of 100
scenarios. The gap (relative percentage difference between upper
and lower bounds, Table 4) is relatively small (0.08), suggesting
that the optimal deployment obtained for the problem with 100
scenarios performswell relative to the unknown optimal solution
to the problem with 5814 scenarios.

Table 4. Performance and cost of alternative initial attack resource deployments.

Casea

Number of resources deployed
Daily number
of fires Cost ($million)

GapdEngine Dozer Hand crew Helicopter ESLb Not coveredc AEU NEU TCU

A. Base (CALFIRE deployment) 51 7 15 8 0.522 2.86 16.9 20.7 18.1
B. Low capacity, current budget 45 11 15 11 0.526 1.97 16.2 18.7 20.8 0.08
C. High capacity, current budget 46 11 13 11 0.478 1.92 15.4 23.9 16.4 0.10
D. Low capacity, high budget 57 16 22 12 0.488 1.80 21.5 21.7 25.3 0.05
E. High capacity, high budget 58 13 18 13 0.477 1.69 19.8 28.9 20.8 0.18
F. Low capacity, low budget 34 9 11 8 0.537 2.23 13.5 13.0 15.2 0.01
G. High capacity, low budget 35 10 9 8 0.531 2.22 13.7 18.9 9.2 0.02
H. Heuristic, current budget 51 7 15 8 0.490 2.50 17.4 22.6 15.7

aThe Base case (A) represents the current (2005–2008) deployment of resources in each planning unit with dispatch allowed between units. Cases B−G are resource
deployments found by solving the scenario-based, standard-response optimization model with dispatch allowed between units and different budget and station
capacity constraints. The optimization model is solved with a set of 100 randomly selected fire scenarios. Case H is the resource deployment found with the CFES2
simulation heuristic.

bESL (exceed simulation limits) fires are computed using CFES2 and the complete set of 5814 fire scenarios.
cDaily number of fires not covered (fires that do not receive a standard response) is computed over the complete set of 5814 fire scenarios.
dThe gap is calculated as (U – L)/U and represents the relative percentage difference between the upper bound (U) and lower bound (L) on the unknown optimal

objective function value (daily number of fires not covered) for the problems (eqs. 1−6) with the complete set of 5814 fire scenarios.
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To investigate how the number of scenarios used to compute
the approximate solution affects the gap, we solve four sets of 20
replicates of the optimization problem for Case B. The 20 repli-
cates in each set are constructed with N independent scenarios,
withN equal to 30, 50, 100, and 200 scenarios to form the four sets.
The lower bound estimate (L) for each set is the mean of the
objective function values over the 20 replicates (Table 5). The up-
per bound estimate for each set (U) is the mean of the daily num-
ber of uncovered fires for the solutions to the 20 replicate
problems with N scenarios, each computed using 5814 scenarios.
Once we have the lower and upper bounds, we compute the gap
(G) and its confidence interval (Mak et al. 1999). The size of the gap
is reduced 43%when the number of scenarios increases from 30 to
100. The size of the gap is reduced 12% when the number of sce-
narios increases from 100 to 200. This small reduction suggests
that performance improvements will be small when increasing
from 100 to 200 scenarios and beyond. An explanation is our 16 h
limit on execution time: few of the problems with 100 or 200
scenarios are solved to a proven optimum within 16 h. Neverthe-
less, the gap we obtain using 100 scenarios is relatively small and
the best bound we can obtain within resource limits.

Effects of station capacity constraints
When the current aggregate budget ($55.7 million) is reallo-

cated without station capacity constraints, the new deployment is
designated as the high capacity and current budget Case C in
Table 4. This deployment generates fewer ESL fires per day (0.478)
and has fewer fires per day not receiving a standard response (1.92)
comparedwith Case B. The 9% reduction in ESL fires is statistically
significant (p < 0.05) and represents an improvement in the pre-
dicted performance of a deployment for which station capacity is
not limiting.

Relaxing the station capacity constraints in Case C changes the
location of initial attack resources while leaving the optimal mix
of resources across the three planning units almost the same as in
Case B, which has low station capacity and current budget
(Table 4). Engines and dozers are concentrated in 13 of the 45
stations (Case C, Fig. 2). They aremoved from TCU and AEU, which
have the highest deployments in Case B, to NEU, which has the
highest deployment in Case C. Further, with relaxed capacity con-
straints in Case C, seven of 11 helicopters can be deployed in a
centrally located air base in NEU. The concentration of engines,
dozers, and helicopters in stations in NEU is consistent with the
relatively large fire load in NEU. These resources are well posi-
tioned to contribute towards a standard response for many fires;
they are within 30 or 60 min, depending on resource type, of
many possible fire locations. This deployment also contributes to
the reduction in number of ESL fires and number of fires not
receiving a standard response relative to Case B (Table 4). More-

over, the improvement in containment success may be under-
stated because more concentrated basing may reduce costs of
maintaining station infrastructure and free up funds for suppres-
sion resources, although some of these funds might be needed to
cover the cost of adjusting capacity at stations hosting more re-
sources than current rated capacity (e.g., for additional buildings
to house equipment or staff).

The capacity constraints affect the optimal allocation of fund-
ing among the planning units. For the cases with high station
capacity (Cases C, E, and G, Table 4), NEU has the highest bud-
get allocation because NEUhas the highest fire frequency. In these
cases, more engines, dozers, and helicopters are deployed in NEU
to cover fires in NEU and across the border in AEU. For the cases
with low station capacity (Cases B, D, and F, Table 4), the optimal
budget allocation favors TCU. In these cases, the upper limits on
engines, dozers, and helicopters in NEU shift those resources to
TCU where there are more stations.

Effects of the budget constraints
We found clear impacts of budget constraints on the daily num-

ber of ESL fires and the number of fires not receiving a standard
response (Fig. 3). Increasing the budget level from 75% to 125% of
the current level reduces the daily number of ESL fires from 0.537
to 0.488 in the low station capacity cases and from0.531 to 0.477 in
the high station capacity cases. Increasing the budget also reduces
the daily number of fires not receiving a standard response.

The low budget cases provide guidance on how to reduce re-
sources in the event of a budget reduction. The cases with lower
budgets (Cases F and G, Table 4) have 11 fewer engines, one or two
fewer dozers, four less hand crews, and three fewer helicopters
than the cases with the current budget (Cases B and C, Table 4).
The case with low station capacity has nine fewer stations when
budget is reduced, while the case with high station capacity has
four fewer stations, although of course this case had fewer sta-
tions before the budget reduction. Thus, a budget cut in the ca-
pacity constrained case is more likely to cause a complete
shutdown of some stations by removing one or two deployed
engines. In contrast, a budget cut in the case with unconstrained
capacity reduces resources inmost stations without closing them.

With a 25% higher budget, the optimizationmodel increases all
four types of resources and their deployment depends on the
station capacity constraints. With capacity constraints, 17 engines
and dozers, seven hand crews, and one helicopter are added to the
three planning units (Cases B andD, Table 4). The new engines and
dozers are added to eight new stations, mostly in TCU, which has
29% of the fires in the study area and the highest per fire standard
response requirements for nonengine resources. Without station
capacity constraints, 14 engines and dozers, five hand crews, and
two helicopters are added to the planning units (Cases C and E,
Table 4). The new deployment of engines and dozers is scattered
among the 16 stations with no net gain in the number of stations.

Similar to Case B, we compute the gaps associated with the
deployments obtained for Cases C–G, which range from 0.01 to
0.18 (Table 4). Each of these gaps represents the relative percent-
age difference between upper and lower bounds on the unknown
optimal solution to the problemwith the complete set of 5814 fire
scenarios. While the gap for the deployment obtained with a high
budget (Case E) is relatively high (0.18), the gaps for the deploy-
ments with low budgets (Cases F and G) are relatively low (0.01 and
0.02). With a high budget, more resources are allocated across
stations, which produces high variation in the optimal deploy-
ment obtained for different sets of 100 fire scenarios. With a small
budget, fewer resources are allocated across stations in a broad
landscape, which produces relatively small variation in the opti-
mal deployment for different sets of 100 scenarios. With the ex-
ception of Case E, the gaps are relatively small (≤0.10).

Table 5. Means of the objective function value (expected number of
fires not receiving a standard response) for Case B (low station capacity
and current budget) computed with sets of 20 replicates with increas-
ing numbers of scenarios (N).

N

Lower bound (L)
95% confidence
intervala

Upper bound (U)
95% confidence
intervalb

Optimal
gap (G)c

95% confidence
intervalc

30 1.72 ± 0.18 1.99 ± 0.04 0.14 [0, 0.49]
50 1.77 ± 0.10 2.01 ± 0.04 0.12 [0, 0.38]
100 1.82 ± 0.05 1.97 ± 0.04 0.08 [0, 0.24]
200 1.84 ± 0.03 1.97 ± 0.04 0.07 [0, 0.20]

aThis average is obtained from the objective functions by solving eqs. 1−6 for
20 replicates with N scenarios.

bFor each of the 20 optimal deployments obtained with N scenarios, we com-
puted the associated expected number of fires not receiving a standard response
using the complete set of 5814 scenarios.

cThe optimal gap is calculated as (U – L)/U and the confidence interval is cal-
culated by using the method suggested by Mak et al. (1999).
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Testing the performance of a simulation optimization
heuristic

We applied the simulation optimization heuristic described
above using the CALFIRE deployment (Case A) as the starting
point. After eight iterations, the heuristic's solution involves shift-
ing eight engines and two dozers from stations on the edges of the
study area, where fire frequency is low, to centrally located sta-
tions near Auburn and Placerville, where fire frequency is high.
The new deployment (Case H, Table 4) reduced the number of ESL
fires by 6.6% relative to the performance of Case A. While the new
deployment violated the capacity constraints at four stations, it
allowed slightly more ESL fires than the optimal deployment in
Case C, which had no capacity constraints and involved more
complex changes to the mix of resources and deployment among
the fire planning units. In addition to not finding a superior re-
source allocation for reducing ESL fires over the optimization
model, the simulation optimization heuristic is time-consuming.
The deployment obtained after eight iterations required about
19.5 h of execution time (2.4 h per simulation times eight simula-
tions), slightly more than the execution time allowed for each
application of the optimization model.

Discussion
We combine a scenario-based, standard-response optimization

model with a stochastic fire simulation model (CFES2) to improve
the efficiency of the deployment of suppression resources for ini-
tial attack on wildland fires. We expand the optimization model
of Haight and Fried (2007), who focused on engine deployment in
a single fire planning unit, by exploring opportunities for im-
proved overall efficiency in multiple planning units where re-
sources can be shared among units. We also add three types of
resources to the mix — dozers, hand crews, and helicopters —
that differ from engines and one another with respect to response
time, fire line production, cost, and basing constraints, allowing
us to investigate the optimal deployment of initial attack re-
sources by type. We analyze the impacts of station capacity and
budget constraints on resource deployment patterns. Finally, we
evaluate the performance of the deployments obtained with opti-
mization by predicting numbers of escaped fires with CFES2 and
comparing the results with the performance of the current
CALFIRE resource deployment.

The results provide insight into the performance of the optimi-
zation model, which deploys resources to minimize the expected
number of fires that do not receive a standard response — defined
as the number of resources by type that must arrive at the fire
within a specified time limit — across multiple fire scenarios.
Compared with the current CALFIRE deployment, the deploy-
ment obtained with optimization and the current budget and
station capacities shifts resources from the planning unit with
highest fire load to the planning unit with the highest standard
response requirements. The new deployment is predicted to have

fewer fires that do not receive a standard response and no change
in the number of ESL fires. We conclude that, in this case, an
optimization model with a standard response objective provides
resource deployments that perform at least as well as the pre-
dicted performance of an existing resource deployment based on
expert knowledge and experience.

The results also provide insight into the performance of the
existing resource deployment. Using the optimization model to
deploy resources under existing budget and station capacity con-
straints, we did not find efficiency gains, in terms of reducing the
predicted number of escaped fires. This result suggests that the
current CALFIRE deployment is based more on fire loads and less
on standard response requirements across the fire planning units,
and the weight placed on fire load in determining resource de-
ployment does not greatly affect simulated performance. How-
ever, we did find significant performance gains with increased
budget and when station capacity was not bounded. While we
expected that performance would scale with budget, the perfor-
mance improvements associated with increasing station capacity
were unexpected.

Budget and station capacity constraints not only limit the num-
ber of initial attack resources but also influence the appropriate
mix of deployed resources due to the differences in cost and pro-
ductivity across resource types. The change in mix of resources
across management units and at particular stations as the budget
and station capacity change depends on attributes like unit cost,
productivity, response times, and abundance of each resource
type. A reduction in budget or station capacity may decrease the
use of some resources while increasing the use of others due to
interplay among these attributes among resources types. For ex-
ample, a budget cut that eliminates part of the funding for a
helicopter may result in the rest of the helicopter funding being
redirected into an increase in the number of dozers due to their
lower cost. Considering the deployment of all initial attack re-
sources simultaneously reveals complexities in the mix of re-
sources because of differences in the usefulness and unit cost of
each resource.

There are at least three important modeling assumptions that
may affect results. In our models, an RFL is a map point that
represents a proportion of the average annual fire load together
with a particular mix of fuels, topography, and distances to fire
stations. In practice, the mix of resources that are dispatched to
fires, and the timing of their arrivals, will differ among fires rep-
resented by a given RFL. Some fires will be more, and others less,
accessible to suppression resources than assumed by the RFL
point, which may affect the accuracy of fire simulations. While it
is conceptually possible to increase the number of RFLs without
limit, it can be challenging to assign historical fires to a very large
number of locations based on similarity acrossmultiple attributes
(e.g., geographic location, fuel, slope, resource arrival times, and
complicating factors such as homes, fences, or unique terrain

Fig. 3. Expected number of ESL fires (left) and number of fires not receiving a standard response (right) as the budget constraint is varied
relative to the current budget ($55.7 million).
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features), and historical fire locations that are distant from the
road network and lightning-prone ridges may not be useful pre-
dictors of future fire locations. Furthermore, simulation time in-
creases at least linearly with RFL count. The second assumption
involves edge effects. We assume that stations at the edge of our
three-unit study area only serve fireswithin the study area and not
outside. As a result, the optimization may deploy suppression
resources in the interior of the study area where they have access
to more fires. In practice, stations may serve fires in any adjacent
fire planning unit and our results do not account for these edge
effects. Third, this framework implicitly treats all fires that exceed
initial attack size limits as equal; the deployments and dispatches
described here do not reflect heterogeneity across space in the
magnitude of the damage or the eventual size of the escaped fire.
In practice, fires located near large populations or particularly
valuable resources may receive a higher priority for initial attack
than identical fires in other locations. In future work, we can
weight the RFLs by a metric of importance in terms of avoiding
ESL fires.

For comparison with results from the optimization model, we
develop a simple deployment heuristic to apply with CFES2 sim-
ulations. Similar to the results of the optimizationmodel without
capacity constraints, the results of the heuristic suggest that
we can improve the performance of initial attack resources by
allocating them to stations with high fire loads, as these are also
proximal to higher incidences of ESL fires. Considering the effect
of budget and trade-offs among resources of different types re-
quires developing more complex heuristics, which is beyond the
scope of this study but is potentially a fruitful area for future
study.

Our scenario-based, standard-response optimization model is
static in the sense that it determines optimal deployment given an
approximation of the probability distribution of fire locations and
intensities during a single day with four or more fire ignitions
during the high fire season. We solve for optimal deployment
given uncertainty about the number and location of fires during a
severe fire day because this is the type of day when the initial
attack resources will be challenged to meet demands for fire sup-
pression and because escaped fires may cause catastrophic dam-
age and be very expensive to extinguish. Our model is not
dynamic and does not account for a sequence of days during the
fire season where what happens during one day influences what
happens on the next. It may be possible to model fire days as a
Markov process and use stochastic dynamic programming to de-
termine optimal resource deployment.

Taken together, the results of our study emphasize the eco-
nomic trade-offs among resources and across locations. The re-
sults also suggest that combining optimization and simulation
models of initial attack can inform and supplement planners'
intuition regarding the efficient deployment of suppression re-
sources.
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