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Abstract

We extend the Pukthuanthong and Roll (2009) measiuirgtegration to provide an estimate of
systemic risk within international equity markefsir measure indicates an increasing likelihood
of market crashes. The conditional probability ofirket crashes increases substantially
following increases of our risk measure. High level our risk measure indicate the probability
of a global crash is greater than the probabilityadocal crash. That is, conditional on high
levels of systemic risk, the probability of a severash across multiple markets is larger than the
probability of a crash within a smaller number airiets.
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1. Introduction

International systematic risk exposure varies acoosintries and through time.
Consequently, periods in which aggregate systemakiexposure is high across multiple
countries will correspond to periods in which tiek of a negative shock propagating
internationally, and of multiple markets jointlyashing, is the greatest. To develop a time-
varying measure of systemic risk within internaibequity markets, we extend the integration
analysis of Pukthuanthong and Roll (2009). Thetufis measuring time-varying integration,
however, their setting provides a unique framewonkhich an underlying world market factor
is identifiable, and average loadings across casion this factor can vary through time. From
this unique setting, we aggregate time-varying ilogslon the world market factor across
countries to create a measure of systemic riskitimely, a negative shock to the underlying
world factor is likely (unlikely) to lead to sevemgarket declines across multiple countries if the
shock occurs during a period in which average exgow this factor is high (low). From this
intuition, we name our systemic risk measure ttagffity Index (Fl), as periods in which the
measure is high identify periods in which interoatl equity markets are much more susceptible
to a negative shock to the world market factor. fike that increases in systemic risk lead
periods in which the probability of market crasheseases substantially. Further, conditional on
high levels of risk, the probability of a globabhsh across multiple markets often exceeds the
probability of local crashes confined within a sleahumber of markets. This finding is very

consistent with the concept of our risk measurd,iadicates that if a shock occurs during



periods in which multiple markets share a high agkosure to a common factor, then these
multiple markets will experience simultaneous madexlines.

This study relates to research that consideraitieenational propagation of financial
shocks. Given that financial shocks, as well agagiaon, may have significant impacts on
investor wealth, these topics have received sicgmii attention within the literature. In general,
studies of contagion test if a shock in one masketads to other markets, with multiple studies
providing mixed results. The mixed results witHue existing literature suggest that certain
crises propagate internationally, while others rienecal. As examples, Forbes and Rigobon
(2001) study several emerging market crises artldindence of high levels of interdependence,
but not contagion. On the other hand, AsgharianNogsman (2011) provide evidence of risk
spillovers from the U.S. to European countrieserestingly, Longstaff (2010) finds evidence of
contagion within the subprime asset-backed dexigatmarket. Our study builds on the existing
literature by identifying periods in which natiorstbck markets exhibit a high degree of inter-
relation, and consequently identifying periods imat a shock in one market may be more
likely to spread internationally.

Existing research also considers the probabilitgaxdr returns across markets. For
example, Christiansen and Ranaldo (2009) findclweter economic linkages following EU
entry may increase the probability of co-exceedanigarkwat, Kole, and van Dijk (2009) find
support for a domino effect, in which local andiog@l crashes increase the probability of a
subsequent global crash. Our approach builds srrésearch by indicating periods of high

systemic risk prior to an initial crash, and ousustness analysis shows Fl contains significant



predictive information regarding initial, unprecedghocks. Kumar, Moorthy, and Perraudin
(2003) find that economic and financial data caedmt an increasing likelihood of emerging
market currency crashes. Finally, Bartram, Browrd Hund (2007) study risk within the global
banking system during international crises. Weraktie existing literature by presenting a
parsimonious risk measure, in which aggregate systask is captured by loadings on the
underlying world market factor, and by consideramgextensive sample of international markets.

Kritzman et al. (2011) also study market crashiégy create their absorption ratio (AR)
from the proportion of return variance explaineciprincipal component (PC) framework. Our
approach focuses on underlying factor loadingsy@el portion of an asset’s return may be
explained by PCs, even if the asset has a smabkgative exposure to the underlying economic
factors (cf. Pukthuanthong and Roll, 2009). Retatw Kritzman et al. (2011), by extending the
Pukthuanthong and Roll (2009) framework, our pggpevides stronger economic justification
for our systemic risk measure. Further, Kritzmaaletocus their results on five domestic
markets and measures of systemic risk within eachedtic market, and only briefly investigate
international events by highlighting levels of thgiobal AR prior to four identified international
events. Contrasting their focus, our study consid@ernational risk dynamics across a lengthy
sample with a focus on joint co-exceedances aenaskets. Finally, in Section 4.4 we compare
our results with a measure comparable to the AR.aDalyses that include both FI and AR
show a strong and significant relation betweenriel market crashes, but fail to provide

evidence of a similar relation for AR. Within Sexti4.4, we also show that the relation between



Fl and future crashes is robust to controllingdonditional volatility, and within Section 4.5 we
show that FI does not require an initial shock.

We find that high levels of FI precede dramatia@ases in the conditional probability of
severe international equity market declines. Asglas of our results, the probability of the
return to our world index falling below its fifthepcentile is 3.8% and 4.4%, conditional on FI
falling below its 98' and 98 percentiles, respectively. However, these conufitiprobabilities
increase to 15.8% and 32.4% when Fl exceeds the 8assholds in question. We further
classify country market indexes into three cohtiréd approximate levels of market
development, and analyze the probability of jomHexceedances. Conditional on extreme high
realizations of Fl, the probability of each of theee cohorts simultaneously exhibiting a return
below their tenth percentile is 27%, while the esponding probability is approximately equal
to 4% when Fl is below the same threshold. In gdneonditional on high levels of systemic
risk, we find the probability of severe global metrkrashes (crashes across a majority of
cohorts) increases dramatically, and frequentbiss significantly greater than the probability of
minor or local market crashes (crashes confinetime smaller number of cohorts). Continuing
the above example, while the probability of a staous crash within all three cohorts
conditional on high levels of fragility is 27%, tkkenditional probabilities of just one or two
cohorts crashing are 11%, and 9%, respectivelyfu&ker examples of our results, in a logistic
regression setting, the odds of all three cohalxes simultaneously exhibiting a return that
falls below their second percentile increase bgaghand nine times, respectively, as Fl increases

by one and two standard deviations. Although crasine a greater concern than ubiquitous



increases in prices, we show in Section 4.3 thaildel measures a greater likelihood of
simultaneous large price increases. Evidently,gladal factor drives the returns in many
countries, then when those countries are moretseng that factor, both increases and
decreases in the global factor should be refleictéarger returns (in absolute value.) That is, FI
can predict both negative and positive extrememstu

Our study makes several important contributionsstFive present an ex ante measure
that exhibits a strong and positive relation wite tonditional probability of extreme market
crashes, and with the probability of crashes prapag across markets. This measure has
implications for portfolio management, as well asgolicy makers. Second, we extend the
contagion literature by identifying an importanttiar that relates to the likelihood of a shock in
one market propagating internationally. Third, weead the systemic risk literature by
presenting a generalizable measure. Existing relséacuses on crises stemming from specific
risks, while our index is flexible and able to aagtany economic variable that increases
loadings on the world market factor, which als@al inclusion of a large international sample

of countries in our study.

2. Economic framework
Our focus is creating a generalizable measuresiényic risk across countries. To create
this measure, we extend the integration analysikuéthuanthong and Roll (2009) who regress

country returns on ten global factors. These factne estimated by out-of-sample PCs based on

1. We thank an anonymous referee for suggestisgatialysis.



the covariance matrix in the previous calendar geanputed with the returns from 17 major
countries, the “pre-1974 cohort” described in tipaiper. In their analysis, tiiesquare from the
regression provides a measure of world market ratem. Further, they provide substantial
empirical evidence indicating that the first PCjethexplains the greatest proportion of
variance, represents an underlying world markdébfaConsequently, loadings on the first PC
represent exposures to the world market factore¥fend their model to aggregate loadings on
the world factor at a point in time as a measurgystemic risk. Arguably, periods in which
exposure to the world factor across multiple markethigh, may precede crashes as a negative
shock to the world factor would have relativelygiar impacts across all of these markets,
relative to periods in which average systematic eiposure is lové.In this setting, the
occurrence of negative shocks to the world factay e unpredictable, but the impact and
spillover effect of a given shock will vary withvels of systemic risk. Specifically, we assume
that given forward-looking market participants,msfggant negative market shocks will occur
randomly through time, but our approach will idgnperiods in which a shock of a given
magnitude will have a greater likelihood of impagtmultiple markets.

We explain the economic framework of our risk measand differentiate this from
measures of integration. Pukthuanthong and Ro092describe a model in which ‘Salt’ and

‘Water’ are two underlying economic factors. Instsetting, two countries could exhibit high

2. To clarify terminology, we use ‘systematic’ rigkrefer to loadings on the first PC which représposure to
the world factor, and we use ‘systemic’ risk toereb the probability of simultaneous market downsuacross
many countries. Consequently, periods in which ayersystematic risk across countries is high, spoed to
periods of significant ‘systemic’ risk, as a shackhe world factor during these periods would eansirket
declines across all countries within the system.



integration if both share a high exposure to owéofa Salt, for example. Alternatively, two
countries could also exhibit high integration ifeoexhibited a high exposure to Salt, and the
other was exposed to Water, and even negativedyeato Salt. In the first example, systemic
risk is high because both countries have a higlogxe to a common risk factor (Salt), and a
negative shock to this risk factor would be exp@dbtepropagate across both countries, leading
to simultaneous market declines. In the second pkgralthough integration is high, the
negative shock to Salt would impact only the fastintry, and may benefit the second country
due to its negative exposure to the risk factoonfthis example it is clear that general levels of
integration do not distinguish between the two saaad consequently do not provide a
complete picture of systemic risk. Our study gelieza the above example by focusing on an
important underlying factor, the world market faattentified by Pukthuanthong and Roll
(2009), and then creating a risk measure by agtinggexposure to this factor across many
markets.

To estimate loadings on the world market factor steet with the Pukthuanthong and
Roll (2009) framework, in which country returns aegressed on ten PCs. We specify
R = Xi21BjiPCit + €, (1)
in which R; , represents the US dollar-denominated return fexp during day, andPC; .
represents thigh PC during day. PC; . is estimated based on Pukthuanthong and Roll (2009)
Implementing the above specification requires sdegree of estimation and parameterization.
We now discuss how we specify our risk measure wgipect to important parameters that

define FI, including estimation of factor loadindsctor loading aggregation, and definition of



co-exceedances. Importantly, in Section 4.5, wevgthat results of our study, and the related
inferences, are robust to multiple alternative gpmations for each of the parameters discussed.
To aggregate the estimated factor loadings, wettakeross-sectional average of
loadings on the world market factor across cousitateeach point in time; we argue that this
provides the measure of systemic risk that is nmbsitive and consistent with the economic
framework of Pukthuanthong and Roll (2009). We rib& this approach would not be feasible
in the restrictive international CAPM, as betasraged across the component indexes of the
world market portfolio would be constrained to quee in all cases. The Pukthuanthong and
Roll (2009) PC analysis allows flexibility and caglect a subset of component portfolios, or
even place extra weight on some portfolios, whitdhwas average loadings on the first PC to
vary though time. Further, the Pukthuanthong anltl &proach creates the PCs from the 17
countries that enter the database prior to 197d ttsen CAPM cross-sectional average restriction
only applies to assets that are included withinniaeket portfolio. Therefore, while the first PC
proxies for a world market factor, even in the nieitte CAPM setting, variability in average
loadings across the remaining post-1974 countreadahstill be feasible. All in all, we argue
that the framework of Pukthuanthong and Roll presithe flexible setting that is necessary to
allow time-variation in average factor loadingsaameans of measuring international systemic
risk, which would not be possible in the more riestre international CAPM setting.
Importantly, our robustness results in Sectionidchide two alternative approaches to factor
loading aggregation that would be feasible underdstrictive international CAPM setting, and

both approaches further indicate FI contains sicgnit predictive information.



To estimate Eq. (1) and calculate average loadingsjse a 500-day rolling window for
each country and place a decaying weighting sclemnprevious daily observations such that
the weight placed on daily observatiex is equal td.995*1, This approach is similar to
Kritzman et al. (2011), allows the impact of laggkys to decay through time, and places an
approximate 50% weight on the observation halfvimgugh the rolling window. Countries are
excluded from the analysis at a given point if ve@dnless than 100 usable daily observations for
the country within the specific rolling window. Oapproach, which allows time-varying
loadings, is also similar to international asseétipg studies of contagion (cf. Bekaert, Harvey,
and Ng, 2005). For a given dgywe take the average of the loading on the fiGtwhich is
estimated across day$00 through day-1. We define this variable as., ., which represents
FI. In our later analyses, we consider resultsstevels of market development (developed,
developing, emerging, and frontier), and in thesayses, we defingp,, for specific cohort
indexes such that these variables measure avexpgsuee to the world factor within a specific
market classification. We note that loadings onatiditional PCs may also contain predictive
information, however, we focus our measure anditesa the first PC only, as this is identified
by Pukthuanthong and Roll (2009) as the world facto

Our analysis requires identification of risk statwsd specification of market crashes.
Initially, we specify full-sample percentiles of tal identify risk states, and for notation, we
define fragility based oppcq ¢ > Pk(upcy) in WhichPk(upcq¢) represents thith percentile of
Upc1, While latter analyses implement logistic regressithat do not require this specification.

Finally, we identify the crash subsample for ingi@s all days in whicl; . < Pk(R;) for



arbitrary return percentile threshdddWithin this settingR; ; represents the return to index
during dayt and Pk(R;) represents a specified threshold percentile éffhple returns for
indexj. Our 'bad return’ day is thus defined as a dayth@aindex return falls below a given
threshold percentile. This approach is consistettt Bae, Karolyi, and Stulz (2003) who
identify contagion based on full-sample percentifasalyses across cohorts define return
percentiles specific to each cohort.

A final consideration for the construction of Bltrading day synchronicity. In the
international context, non-synchronous trading arkets across time zones creates a potential
concern. By matching returns based on calendar, dagy/take a conservative approach to the
non-synchronous trading issue in which the potémtipact of non-synchronous trading would
bias our results against the predictive ability-bfTo illustrate, if a shock occurs during trading
hours early in the day (before western hemisphendkets open), and this shock propagates
internationally, then we would expect the shockntinifest in the western markets when they
open, and our methodology would capture this syaitolf a shock occurs later in the day (after
eastern hemisphere markets close), then we wopleicexhe shock to manifest during the next
trading day within those markets, and the appraemhid not capture any potential spillover.
However, potential lead/lag approaches attempbraapture these types of spillovers could also
lead to a spurious relation across Fl and craditessefore, our results present a conservative
measure, and may understate the true predictiVigyadfi FI. Our analyses covering the world

index as well as market classification indexes,ciwhinclude countries across the globe and trade
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throughout the calendar day, further mitigate ngmekronous trading concerns, as a given

shock may manifest within the markets open atithe of the shock.

3. Data

We consider a broad selection of national equityketandexes. Daily data are extracted
for 82 countries from DataStream, a division of fson Financial. The data consist of broad
country indexes converted into a common currertoy (S dollar). The Appendix lists the
countries, identifies the indexes, reports the tap@n of daily data availability, and provides the
DataStream mnemonic indicator. If the mnemonic @imistthe symbol “RI,” the index includes
reinvested dividends; otherwise, the index reprissam average daily price. Similar to
Pukthuanthong and Roll (2009), we assign countadlree specific cohorts based on each
country’s initial appearance in the database. Wimeleountries appearing prior to 1984 as
Cohort 1, countries appearing from 1984 through31&9Cohort 2, and the remaining countries
as Cohort 3.1n this classification, Cohort 1, Cohort 2, anch@x 3 represent developed,
developing, and emerging/frontier markets, respebti(cf. Pukthuanthong and Roll, 2009;
Berger et al., 2011). Throughout the study we dateltequal-weighted returns to the all-country
index, and to the three market classification ctshosing countries with available data at each
point in time. The focus on equal-weighted retyrevides a cleaner measure of joint co-

exceedances, as equal-weighted indexes are melhg tikdetect crashes that occur across

3. Our cohort classification is similar in approashPukthuanthong and Roll (2009), but combineso@eH and 2
from their study into our Cohort 1. Consequently; study considers three cohorts, while their pases four.
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multiple countries. A focus on value-weighted indexvould lead to results that are driven by
the largest markets within the sample.

To consider co-exceedances across all cohort grawgstart the sample on December
29, 1994 which corresponds to the entry of Cohauntries. The sample ends on November
30, 2010. Although results are based on the saaiee, calculation of FI for the initial part of
this sample utilizes available observations thatmror to the start of the return analysis. Daily
returns are calculated as log index relatives fvaird index observations. An index observation
is not used if it exactly matches the previous reggbday’s index. When an index is not
available for a given trading day, DataStream itssiie previous day’s value. This happens
whenever a trading day is a holiday in a country also, particularly for smaller countries,
when the market is closed or the data are simplyawailable. Our daily returns are thus filtered
to eliminate such invalid observations. This apphoia consistent with Pukthuanthong and Roll
(2009) and further mitigates concerns regardingsynithronous trading.

We present a general picture of the relation betwdeand returns in Table 1. The mean,
median, and standard deviation of the world ind&forts 1, 2, and 3 are shown across the full-
sample, as well as across deciles of fragilityFAscreases from the first to the tenth decile,
mean returns tend to decline. A plunge in retusnmaast drastic in Cohort 3 where the mean
returns appear negative starting from the seveethedto the tenth decile of Fl. Finally, the
analysis suggests an increase in volatility asliftagncreases. For example, the standard
deviation of the all-country index conditional amadility above the 8dor 90" percentiles is

over twice the standard deviation conditional @uility falling in the first, second, or third
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deciles. This provides support for the conceptlofB risk exposure becomes concentrated on
the world factor, diversification benefits will dimsh, as returns reflect this common factor.
***Insert Table 1 about here***

Although not detailed in Table 1, when measuredseall countries, the time-series
median of Fl is 0.137 with a standard deviatiof.6082. FI thresholds based on th&'gad",
95" and 98' percentiles are 0.170, 0.346, 0.372, and 0.38petively. Finally, we have
argued that the flexible PC approach allows timeati@n in cross-sectional average loadings
within the 17 pre-1974 component which would nopbssible in the restrictive international
CAPM setting. We find that the time-series standddation of loadings on the first PC
averaged across the 17 pre-1974 countries is 0TI03 value appears larger than the time-series
standard deviation of 0.078 for the countries notuded in the PC construction. We argue that
this provides further support of our approachha&sRC estimation is empirically selecting
weights that allow significant time-series variépiln average loadings on the first PC, even

within the countries that make up the PCs.

4. Fragility Index and probabilities of market crashes
4.1. Empirical crash probability conditional on FI

We analyze the conditional probability of markegshes across levels of Fl. In the initial
analysis, we consider returns to the world indexictvis comprised of all countries within our
sample. Considering the all-country index, fragiltay manifest because this index likely

becomes more volatile and prone to extreme rea@izsags all component countries share similar
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risk-exposure, and consequently, diversificationdfigs are dampened as Fl increases. We
consider various thresholds of FI and definitiohearket crashes. Relatively low thresholds for
Fl provide a safety-first measure, which is likedydetect both major and minor events, while
higher FI thresholds detect periods of extremeesyst risk. Similarly, various crash definitions
consider the tradeoff between higher probabilitg Emver impact events, with lower probability
and higher impact events. Table 2 reports the égdauimber of crashes under the assumption
that crashes are independent fromBd(X | ppc1 ¢ > Pi%(upc1)) , the actual number of
occurrencesf (X | upc1t > Pi%(upc1)), and the empirical probability of a craghin(X |
Upc1t > Pi%(upce)), conditional on FI exceeding ti percentile. We also report the same
statistics conditional on FI falling below the givthresholds. Low levels of FI may indicate
periods of decreasing riskinally, we reporZ-scores testing that the probability of a crash is
constant across levels of FHg: d = 0.

***Insert Table 2 about here***

Across all specifications considered, there ig@ng and statistically significant relation
between high values of FI and subsequent markshesa For example, as fragility increases
from below the 88 percentile of FI to above this threshold, the eingl probability of crashes
increases from 16.6% to 33.4% (representing a 20t¥ase), 7.1% to 21.5% (287%), 3% to
13% (433%), and 0.9% to 6.3% (700%) for crashéiselt as returns below the 2Qtenth,
fifth, and second percentiles, respectively. Oyrapch also shows that for all high (low) risk

states, the frequency of market crashes is hidgéss)(than the expected number of market
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crashe$.Highlighting the 95 percentile of FI as a measure of periods of extregstemic risk,
we observe 147 days in which the return falls betosvfifth percentile and the preceding value
of FI fell below its 9%’ percentile. This corresponds to an empirical fezopy of 4.1%, and is
slightly below the 177.7 observations we would extpeFl and crashes were independent. On
the other hand, conditional on FI exceeding tH& @&rcentile, we would only expect 9.3 days in
which the subsequent return fell below the fiftlhgeatile, but instead observe 40 such
occurrences, corresponding to an empirical frequen@1.4%.

To analyze the predictive content of Fl in the exhbf co-exceedances across markets,
we present the empirical probabilities of multiptéhorts falling below crash thresholds on a
given day. The potential number of cohort indeximes falling below the return thresholds
ranges from zero, for a day in which no cohort grotashes, to three, representing a day in
which all three cohorts jointly crash. Table 3 s the frequency and probability of market
crashes for different thresholds of FI and badrretuusing the same notation as Table 2. The
table also reports chi-squared statistjc’s,and associatgotvalues, for each event. Entries for
each outcome in thg?cell report that occurrence’s contribution to aem¥ chi-square statistic,
and thep-value for the given chi-square statistic in isalat We report only the expected

number of crashes and the chi-square statistiahéhigh risk states.

4. Even with the assumption that crashes are indkge from Fl, the expected number of crashes stilll vary

with the threshold of FI specified. For example, veee 3,744 daily observations, and by definitidrdaily returns
will fall below the second percentile (3,744 * 0.8274). If FI was independent from subsequent dagtyrns, we
would expect to have 7.4 (= 3,744 * 0.02 * 0.10) &7 (= 3,744 * 0.02 * 0.05) observations in whtble return
during dayt fell below the second percentile and FI calculaterbugh dayt-1 exceeded the $0and 9%'

percentiles, respectively, simply due to chanceawig that we actually have 27 and 18 of these mbsiens,
respectively, suggests a strong relation betweemélsubsequent crashes.
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*** Insert Table 3 about here ***

Consistent with the results in Table 2, the redulfBable 3 show that the frequency of
market crashes increases with high levels of Fithfew, high levels of FI precede increases in
the probabilities of multiple cohorts jointly cras). Frequently, conditional on high levels of Fl,
the probability of all three cohorts jointly crasgiexceeds the probability of one or two cohorts
crashing. For example, conditional on FI fallinddvethe 95" percentile, the probability of one,
two, and three cohorts jointly exhibiting returreddw their tenth percentile are 10%, 4%, and
3%, respectively. The corresponding probabilitiesditional on Fl exceeding the‘@ﬁercentile
are 11%, 7%, and 19%. Comparing probabilities aslees across risk states indicates that
conditional on high levels of FlI, the probabilitielstwo or three cohorts jointly crashing increase
substantially. Further, conditional on low levetd=t, the probability of just one cohort crashing
(10%) exceeds the probability of two or three ctdorashing combined (4% + 3%). However,
conditional on high levels of Fl, the probabilitiyal three cohorts jointly crashing (19%) is
greater than the probability of just one or two @ crashing (11% + 79%).

4.2. Logistic regression models

This section presents logistic regression modelsdhktimate the relation between Fl and

subsequent crashes. Existing research also utibgestic models to estimate the likelihood of

market crashes (cf., Markwat, Kole, and van DifiQ2; and Christiansen and Ranaldo, 2009). In

5. We conduct a similar analyses as above basethemroportion of country indexes that jointly drasnd
continue to find similar results. For example, dgrour sample there are 22 days in which more 5i0d6 of Cohort

3 countries experience a return below their fifthgentile. Of these 22 days, 20 follow days in \uHit exceeds the
80" percentile, and only two follow days in which Blkielow this cutoff. Therefore, conditional ongiitiy falling
above (below) the 8Dpercentile, the probability of this level of sewedpint crash across countries is 2.74%
(0.07%). This equates to a difference of approxifyad0 times in magnitude.
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the initial logistic analysis, we define the depenidvariable for various return thresholds and
consider separate analyses across the world iagexell as across our cohort-specific indexes.
In this analysis, the dependent variable takesahee of one for any day in which the return to
the given index falls below the given return thiddhand takes the value of zero otherwise.
Therefore, a positive coefficient on Fl indicatgsositive relation between fragility and
subsequent crashes. Table 4 reports coefficiemaists on Fl, as well as odds ratios which
indicate the increase in the odds of a crash fareaand two standard deviation increase in Fl.
For notation, we us@ to represent the coefficient estimate on Fl.

***Insert Table 4 about here***

The analysis in Table 4 presents how the risk glatameter impacts the probability of
market crashes. The coefficients on the risk gfatameter are positive and highly significant in
every case considered. For example, considerin@€8land returns below the fifth
percentile, the coefficient estimate of 8.7 and associated oalilss of 2.0 and 4.2 indicate that
the odds of Cohort 3 crashing double, and more tluadruple, as Fl increases by one and two
standard deviations, respectively. The results ssigipat the most dramatic relation between Fi
and market crashes exists for extreme crash defisiatnd emerging markets. That is, the
increase in crashes conditional on an increaséismmost dramatic for Cohort 3 and for returns
lower than the second percentile.

We extend the logistic regression setting to exarhiow Fl impacts the probability of
simultaneous market crashes across cohort indardspresent results in Table 5. Panels A

through C present results from logistic regressioitis dependent variablé; = Iy x,>,, Which
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is an indicator variable equal to one for any dawhich the number of market crashes across
cohorts equals or exceeds the specified numpand equal to zero otherwise. Panel D presents
an ordered logit model in which the dependent Wweid; = ). X;, is equal to the number of
cohort returns falling below the return threshotdgiven dayt, and Panel E presents a similar
analysis in a generalized logistic setting. Columadings of Table 5 identify the return
thresholds.

***Insert Table 5 about here***

Logistic regressions in Table 5 indicate a stragigtion between Fl and the likelihood of
international crashes across multiple markets. fidoefit estimates are again all positive and
highly significant. The impact of Fl is greategten all three cohorts jointly crash. For example,
defining crashes based on returns falling belowfifttepercentile, coefficient estimates on Fli
monotonically increase from 6.6 to 10.3 as the ddpet variable takes the value of one on a
day in which at least one cohort crashes (Pandio®anel C in which the dependent variable
takes the value of one on a day in which all tlo@®orts crash. Finally, Panel E presents
generalized logistic regressions which comparetbbeability ofi cohort indexes crashing, each
relative to the state of the world in which no cdb@rash. For this analysis, we introduce the
subscript i’ in which i represents the number of cohorts that crash oe@fgpday. As an
example@; represents the coefficient related to the chahderee cohorts jointly crashing,
relative to the chance of no cohorts crashing. rfEselts indicate that high levels of Fl
dramatically increase the chance of two, or akéhicohorts crashing, and either marginally

increase, or in some cases even decrease, theecbignst one cohort crashing. For example,
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defining crashes as returns falling below th& pércentile, the coefficient of 7.4 for,

indicates the likelihood of all three cohorts joyntrashingncreases dramatically with FI, while
the estimate of -1.8 fa#, indicates that high FI actualtecreases the chance that just one
cohort will crash. In other words, when fragilig/high, if a shock occurs, then it tends to
propagate across a majority of markets. Speciboatin which the threshold for returns is lower
do indicate that high levels of FI predict an iragiag risk of just one cohort crashing. For
example, a one standard deviation increase indelsl¢éo a 1.8 times increase in the odds of one
cohort exhibiting returns below its second perdentihile also leading to a 3.1 times increase in
the odds of all three cohorts crashing. In thel fineee rows of Panel E, we present statistical
tests,@; = @;, comparing coefficient estimates across levels aketacrashes, testing that the
impact of FI on number of markets crashing is equal to the imp&Et onj number of markets
crashing. For example, defining crashes basederdbond percentile of returns, the statistic of
9.6 indicates that an increase in Fl has a largpact on the probability of all three cohorts
jointly crashing, compared to its impact on thelyadaility of just one cohort crashing. These
tests indicate that in all cases, the increaselgtitity of all three cohorts crashing together is
greater than the increased probability of one ar¢ohorts crashing. This analysis supports the

earlier results that high levels of FI increaseptmbability of severe crash@s.

6. In unreported analyses, we conduct similar tagitegressions across country indexes, rather dggregate
cohort indexes. The results are consistent withtwe central previous findings. The first, increase Fl lead to
increasing probabilities of market crashes. Fongda, defining crashes as returns below the teetbamtile, a one
standard deviation increase in Fl leads to a 31884 increase in the chance that over 75% of alhttaes will
simultaneously crash. Second, we continue to firad tonditional on high FI, global crashes are niiady than
smaller crashes. Continuing the above example gastandard deviation increase in Fl only leadsntinarease of
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4.3. Fragility index as a predictor of positive extreme returns

Although crashes are a greater concern than ubiggiincreases in prices, we show in
this section that FI also measures a greater tikelil of simultaneous large price increases.
Evidently, if a global factor drives the returnshmany countries, then when those countries are
more sensitive to that factor, both increases @&utledses in the global factor should be reflected
in larger returns (in absolute value). To consitierrelation between Fl and positive joint co-
exceedances, we perform logistic regressions sitail&able 5. In this analysis, the dependent
variables are comparable to the earlier variallesare based on cohort returns exceeding the
80", 90", 95" or 98" percentiles. Table 6 reports results with retbnegholds detailed in the
column headings, and with the dependent variablestified in the panel headings. The results
show there is a strong relation between Fl andiffséde, and similar to the earlier results, the
relation between FI and the co-exceedances isgasbifior all three cohorts jointly increasing,
relative to just one or two cohorts increasing.

***Insert Table 6 about here***

4.4, Fragility index and volatility comparison

Within this section we compare FI to standard vitaestimates to ensure that Fl
contains predictive information beyond conditionalatility. Specifically, it is well-known that
volatility is persistent, and volatility may alsafluence the PC coefficient estimates used to
construct Fl. For the comparison, we estimate tbbability of a crash on dayas a function of

Fl and volatility, both calculated through da¥. This analysis will reveal whether FI contains

1.60 times in the odds that between 25% and 5084 ebuntries will simultaneously crash, and arréase of 2.16
times in the odds that between 50% and 75% ofaaihtries simultaneously crash.
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predictive information regarding the likelihoodfature market crashes, after controlling for
conditional volatility. As an additional compansave also consider the predictive ability of FI
relative to levels of international integration. donduct the comparison of Fl relative to
volatility and integration, we conduct logistic regsions using several of the dependent
variables defined in Table 5, with the fifth perttknof returns defined as the crash threshold.
We then regress these dependent variables on Fditlonal control variables. We present
coefficient estimates and odds ratios in Tableith wach panel containing an alternative control
variable. Specifically, Panel A contains resultsvimch we estimate a generalized autoregressive
conditional heteroskedasticity (GARCH) model of diional volatility for our all-country index
return using observations through ddly, and use these estimates to calculate a foesetaatue

of volatility for dayt. Panels B and C contain results in which we useseime rolling-window

and weighting scheme as FI calculation, and cateuke cross-sectional average of country
index return standard deviations across all coasthrough dat-1, as well as the rolling-
window standard deviation of the all-country indeturn through dat+1, respectively. Finally,
following Pukthuanthong and Roll (2009), we measategration as the cross-sectional average
of the adjustedR-square from each PC regression used to calculaiéhis measure is also
comparable to the absorption ratio, and is consttler Panel D of Table 7The variance

inflation factors (VIFs) between Fl and the altdivewvariables all fall well below the acceptable
benchmark of ten, indicating multicollinearity istra concern. For notation, within this analysis

we use subscript§], o, andAR to define coefficient estimates and odds ratiog-fofor the
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given volatility measure identified in the specifianel, and for the market integration measure,
respectively.
*** Insert Table 7 about here***

Results in Table 7 reveal a strong relation betwdeand subsequent market crashes that
is robust to controlling for conditional volatilityAll coefficient estimates on Fl are large in
magnitude, and with only one exception in whichabefficient estimate on Fl is significant at
the 5% level (row two, Panel C), all remaining ¢m&fnt estimates on Fl are significant at the
1% level. For example, the estimate of 5.9 and@at odds ratio of 1.6 in Panel A indicates
that, after controlling for forecasted volatilipom the GARCH specification, a one standard
deviation increase in Fl leads to a 1.6 times iasedn the odds that one or more cohort indexes
will exhibit a subsequent return below the fifthrgantile. Interestingly, this is comparable in
magnitude to the value of 1.7 reported in Tableokfthe analysis that does not control for
volatility. For comparison, a one standard deviaticrease in the GARCH forecast only leads
to a 1.2 times increase in the odds of one or rmoherts crashing. Interestingly, the comparison
of Fl relative to the volatility measures is mostmatic with the dependent variable that takes
the value of one only on days in which all threarts jointly crash. In Panel A, the odds ratio
of 2.2 indicates a one standard deviation increasé¢ more than doubles the odds that all three
cohorts will jointly crash, while a one standardidéon increase in the GARCH conditional
volatility forecast only increases the odds bytings. Further, in Panels B and C, the odds
ratios from FI remain approximately equal to 2.0tfee odds of all three cohorts jointly

crashing, while the corresponding coefficient eaties for the alternative volatility measures are
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insignificant. This is very consistent with our cept of Fl, as high volatility may precede
isolated market crashes, but Fl reveals perioggich risk is concentrated, and if a shock
occurs, it would be expected to propagate acrosspieumarkets. Finally, in all specifications
considered with both FI and the adjusRdquare measure, tiesquare coefficients are
insignificant with associated odds ratios thatsamall in magnitude, while FI coefficients remain
positive and highly significant. Unreported speazations using totdR-square as well d&-

square from regressions with only the first PCrasndependent variable, yield qualitatively
similar results.

Next, we perform an alternative robustness cheakpawing FI to volatility. We split our
sample into three-month and six-month calendaoperiand assess if crashes during the current
period relate to FI calculated through the previpesod. This analysis will control for both
previous and current volatility. For each perigdve estimate the PC regressions across each
country with sufficient data during the period. Tdeerage loading on the first PC during period
T provides a measure of fragility during the speqpferiod; thus, we define this measurd s
To compare FI to volatility, the realized volatfliapproach of Andersen et al. (2001, 2003)
provides a good benchmark. They show that aggregatgh-frequency squared returns creates
a good measure of longer-horizon second momentanfscample, Berger and Turtle (2009)
use daily cross-products to estimate quarterly stas@&variances for many portfolios. For each
periodT, we calculate the volatility of our all-country vid index by summing daily squared
returns within the period. We note that inferenaesunchanged if the simple standard deviation

of return replaces the realized volatility meas&@m our approach, we have variables
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representing fragility and volatility during peridd To facilitate comparisons, both variables are
standardized with zero mean and unit standard tlenigEinally, for each period, we create
three dependent variablé%, = Y. Iys1, Y = ). Ixs,, andY; = Y Ix_5, which are count variables
equaling the number of days within peribéh which one, two, or three cohort daily retural f
below their fifth percentile, respectively. Tabl@&sents Poisson regression results in which we
regress the number of daily occurrences during padbdT, on FI calculated during the
previous periodFI;_,. The regression analyses consider volatility duperiodT, o7, as well as
during periodT-1, o;_,. The analysis based on contemporaneous volatligates whether Fl,
calculated only through peridd1, contains predictive information concerning nerérashes
during periodT, even after controlling for realizaablatility during periodT. This comparison
may also be interpreted as an analysis of a naieedst of Fl relative to a volatility forecast
based on perfect foresight. The analysis basedgied volatility during period-1 provides an
additional comparison of FI relative to volatilignd will indicate if FI estimation simply
captures periods of high volatility.

***|nsert Table 8 about here***

The results in Table 8 further verify that aftentrolling for volatility, FI contains
significant predictive information regarding futurearket crashes. Given that both FI and
volatility are standardized, comparisons acrossfictent estimates indicate the differential
impact of FI and volatility on crashes. Compariagded FI to contemporaneous volatility, we
note that FI is significant, and large in magnitugdeach possible case. For example, with three-

month periods and the dependent variable baseddeomumber of days in which all cohorts

24



simultaneously crash, the coefficient estimate Qi 6, is over twice the magnitude of the
estimate on volatility, 0.2. Overall, these resuit$icate that even with perfect knowledge of
future volatility, FI contains important predictiugformation. Finally, the results based on
lagged FI and lagged volatility reveal a much gjgnrelation between FI and market crashes,
relative to volatility. Specifically, we find a pitise relation between lagged volatility and future
market crashes only when using three-month peaodsn the case in which the dependent
variable is based on days in which at least onertahdex crashes. However, even in this case,
the coefficient estimate is marginally significaaud a fraction of the size of FI coefficient. The
remaining cases indicate an insignificant or evegative relation between lagged volatility and
future crashes. Contrasting the insignificant refabetween lagged volatility and future crashes,
lagged FI remains positively and significantly tethto future crashes. In general, the results
based on Fl and volatility suggest that FI is ddvgiredictor of future crashes, even when
compared to future volatility.
4.5. Alternative specifications

Overall, we have shown a strong predictive relabetween FI and subsequent market
crashes, or international co-exceedances. Howsegeeral potential concerns regarding the
implementation of our measure exist. In this secti@ show that the central results of our study

are very robust to multiple alternative specifioas that address key concerns. Panel D of Table

7. As an additional analysis of volatility and Kl results available upon request, we conduct Gra@gusality
tests using Fl and volatility from the three-moatid six-month periods. In each case, we considéo tgur lags.
In the case of six-month periods and four lagsfime that both FI influences volatility, as well aslatility
influences FI. In every remaining case, we find #lasignificantly influences volatility, but there an insignificant
impact of volatility on FI. These results are catesnt with the concept of FI, as when Fl is high,eeuld expect
risk exposures to be concentrated and volatilitntoease.
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5, with negative co-exceedances defined basedeofiftin percentile of returns, and a dependent
variable set equal to the number of cohorts tHab&ow this threshold on each day, provides a
good example of the central results of the studgrefore, we conduct our robustness analyses
with this as a baseline specification. We note ihaimreported analyses, we find that the results
throughout the paper are also robust to the altiemapecifications considered. In Table 9 we
present results from multiple alternative spectfmas. Specifically, each row in Table 9
describes how the approach differs from the basalpecification, and presents the coefficient
estimate on Fl, associatpdralue, and odds ratio, under the alternative agogro

***|Insert Table 9 about here***

Results in Table 9 indicate that the earlier rtssale robust to all alternative
specifications considered. We initially considesulés relating to calendar periods and rolling-
window estimation. First, our specific sample pennay be of concern for two reasons. The
global financial crisis beginning in 2008 coulddr@ unique instance that is driving our results.
Alternatively, data for our third cohort group added to the sample as the data are available,
therefore, data are relatively thin for Cohort 8yea our sample period. However, the
coefficient estimates of 15.3 and 7.6 for the soljda that ends on December 31, 2007 and the
subsample that begins on December 1, 2000, regpbgtalleviate these concerns, and show the
relation between Fl and subsequent crashes istrabalernative samples. Furthermore, a
potential concern might be that the decreasing g scheme used to estimate loadings on a
500-day rolling window artificially induces varidity in average loadings that would not exist if

we had weighted observations equally in our PCassions. The significant result of 5.9 from
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the specification with an equal-weighting schemeads that variability in average loadings is
not created by our weighting scheme. The signiticaefficient estimates of 6.3, 3.8, and 4.0
indicate that Fl is robust to a 60-day rolling-wad calculation which measures Fl as a short-
run, rather than long-run measure, robust to comgahort-run relative to long-run Fl which
captures increases in short-run relative to longfisk, and to creating Fl such that the
composition of the PCs, which is updated annualgpnstant for each rolling window used to
estimate FI, respectivefy.

The robustness results in Table 9 also addresomirelating to aggregation of factor
loadings. As discussed earlier, our approach toeggging factor loadings would not be feasible
in the restrictive international CAPM. As one aftative, we define Fl as the cross-sectiondl 75
percentile of loadings on the world factor; thipagach identifies periods in which 25% of the
countries within our sample exhibit high loadingstbe world factor, and would also be feasible
in the international CAPM. The coefficient estimafet.1 indicates that high levels of this FlI
measure precede market crashes. Interestinglylsodiad a positive coefficient estimate on
dispersion of factor loadings, measured by crosties®al standard deviation, which is equal to
6.4. Overall, the combined results based on tffepgscentile of loadings, and the standard
deviation of loadings suggest that periods in wlactumber of countries exhibit extreme

loadings on the underlying world factor reveal pdsi of high risk.

8. In the 60-day rolling-window specification, waimtain our decaying weighting structure such that
observation halfway through the rolling window isighted approximately 50%.

9. In unreported results we regress the dependeiatble on the average of factor loadings, thedstethdeviation
of factor loadings, and an interaction term. Thernaction term enters with a negative loading,dating that when
average exposure is already high, then high digpesestually reduces the likelihood of a crash.
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A final concern is that FI does not capture angahmarket shock; rather, an initial
unpredicted shock leads to an increase in volaaktwell as an increase in Fl. Table 9 presents
results conditional on no cohort return fallingdaelits fifth percentile in the previous ten, 20
and 50 trading days. In this way, we measure tla¢ioa between Fl and co-exceedances that are
not preceded by an initial crash. The coefficiestineates conditional on no preceding crash
within the previous ten and 20 trading days ofdnél 6.8, respectively, are highly significant
and similar to the full-sample benchmark of 6.8ctimditionally, we would expect a cohort
return to fall below its fifth percentile in one e¥ery 20 trading days. Therefore, conditioning
our results on no cohort experiencing a returnwels fifth percentile in the preceding 50
trading days reduces the sample to only 821 tradi@yg, but the coefficient estimate of 11.0,
which is significant at the 5% level, indicates gredictive ability of FI does not require an

initial shock.

5. Conclusions and discussion

In this paper we argue that the probability of aldwide financial crash is highest
during periods in which many countries share a leigbosure to the world market factor.
Specifically, we extend the Pukthuanthong and R6lD9) integration analysis to develop Fl.
This risk measure is defined as the average loamhinfe world factor across countries at a point
in time. There is substantial evidence that Fl idies periods of systemic risk. When a country
has a high loading on the first PC from Pukthuanghand Roll (2009), it is heavily exposed to

the world factor and thus may not offer diversifica. Consequently, when exposures are high
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across multiple countries and the world factor Ipee® volatile or is subject to negative shocks,
multiple markets will simultaneously crash. Thesgest relation between Fl and subsequent
crashes exists for crashes defined as simultaremagceedances across all markets, for the
emerging market cohort, and for extreme crash disiirs.

The results are robust across multiple dimensidfesfind that FI predicts crashes across
each cohort index individually, as well as acrdssahorts jointly. Further, robustness analyses
reveal that FI does not simply capture volatilitypacts, or levels of worldwide integration, and
also does not require an initial shock. Finallg thlation between Fl and subsequent crashes is
robust to all of the alternative parameterizatitoig=1 considered.

Our study lays down a fundamental for future stsidi®olicy makers should adopt FI to
predict the period during which the economy is ni@ggile and systemic risk is high. Future
researchers can explore why our fragility indeansexample of systemic risks. Can it be
explained by frictions as other papers on crise® laagued? Greenwood and Thesmar (2011)
study institutional ownership and “fragility” of dividual stocks while Jotikasthira, Lundblad,
and Ramadorai (2011) define “capital at-risk” aalhte it to fire sales. There should be more
studies showing the underlying asset pricing madel explanations behind the results of our

study.
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Appendix. Country index sample periods and index identification

Eighty-Two countries have index data availabilitgnh DataStream, a division of Thomson Financiabm& countries have several
indexes and the index chosen has the longest pefiddta availability. All index values are contegt into a common currency, the
US dollar. An index with the designation “RI” ig@tal return index (with reinvested dividendsheTdesignation “PI” denotes a pure
price index. When calculating log returns from thdexes, neither the beginning nor the endingxnadue can be identical to its
immediately preceding index value; (this eliminategdidays, which vary across countries, and dayk wbviously stale prices).

Cohorts 1, 2, and 3 include countries appearirigataStream prior to 1984, from 1984 through 1998, post-1993.

DataStream availability

DataStream

Country Begins Ends Cohort Index identification mnemonic
Argentina 2-Aug-93 30-Nov-10 2 ARGENTINA MERVAL RGMERV(P1)~U$
Australia 31-Dec-79 30-Nov-10 1 AUSTRALIA-DS MARKET TOTMAUS$(RI)
Austria 1-Jan-73 30-Nov-10 1 AUSTRIA-DS Market TRKOE(RI)~U$
Bahrain 31-Dec-99 30-Nov-10 3 DOW JONES BAHRAIN BHAHRS$(PI)
Bangladesh 1-Jan-90 30-Nov-10 2 BANGLADESH SE AIHARE BDTALSH(P)~U$
Belgium 31-Dec-79 30-Nov-10 1 BELGIUM-DS Market OTMKBG(RI)~U$
Botswana 29-Dec-95 30-Nov-10 3 S&P/IFCF M BOTSWAO. IFFMBOL(P)~U$
Brazil 7-Apr-83 30-Nov-10 1 BRAZIL BOVESPA BRBO\&PI)~U$
Bulgaria 20-Oct-00 30-Nov-10 3 BSE SOFIX BSSOMRKEUS$
Canada 31-Dec-79 30-Nov-10 1 S&P/TSX COMPOSITE INDE TTOCOMP(R)~U$
Chile 2-Jan-87 30-Nov-10 2 CHILE GENERAL (IGPA) GPAGEN(PI)~U$
China 3-Apr-91 30-Nov-10 2 SHENZHEN SE COMPOSITE HZCOMP(P)~U$
Colombia 10-Mar-92 30-Nov-10 2 COLOMBIA-DS Market TOTMKCB(RI)~U$
Céte d'lvoire 29-Dec-95 30-Nov-10 3 S&P/IFCF M CODBVOIRE IFFMCIL(RI)~U$
Croatia 2-Jan-97 30-Nov-10 3 CROATIA CROBEX CTCREIBI)~U$
Cyprus 3-Sep-04 30-Nov-10 3 CYPRUS GENERAL CYPMAPI~U$
Czech Republic 9-Nov-93 30-Nov-10 2 CZECH REP.-DSNNFINCIAL TOTLICZ(RI)~U$
Denmark 31-Dec-79 30-Nov-10 1 MSCI DENMARK MSDNMRI)~U$
Ecuador 2-Aug-93 30-Nov-10 2 ECUADOR ECU (U$) ECTIA(PI)
Egypt 2-Jan-95 30-Nov-10 3 EGYPT HERMES FINANCIAL EGHFINC(P)~U$
Estonia 3-Jun-96 30-Nov-10 3 OMX TALLINN (OMXT) HALSE(P)~U$
Finland 2-Jan-91 30-Nov-10 2 OMX HELSINKI (OMXH) HEXINDX(RI)~U$
France 31-Dec-79 30-Nov-10 1 FRANCE-DS Market ™MXFR(RI)~U$
Germany 31-Dec-79 30-Nov-10 1 DAX 30 PERFORMANCE DAXINDX(RI)~U$
Ghana 29-Dec-95 30-Nov-10 3 S&P/IFCF M GHAO. IFEML(P)~U$
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Greece 26-Jan-06 30-Nov-10 3 ATHEX COMPOSITE GEAG(RI)~U$
Hong Kong 2-Jan-90 30-Nov-10 2 HANG SENG HNGKN&)-U$
Hungary 2-Jan-91 30-Nov-10 2 BUDAPEST (BUX) BUXIN[PI)~U$
Iceland 31-Dec-92 30-Nov-10 2 OMX ICELAND ALLSHARE ICEXALL(P)~U$
India 2-Jan-87 30-Nov-10 2 INDIA BSE (100) NATIONAL IBOMBSE(PI)~U$
Indonesia 2-Apr-90 30-Nov-10 2 INDONESIA-DS Market TOTMKID(RI)~U$
Ireland 1-Jan-73 30-Nov-10 1 IRELAND-DS MARKET TOMRS$(RI)
Israel 23-Apr-87 30-Nov-10 2 ISRAEL TA 100 ISTAA®1)~U$
Italy 31-Dec-79 30-Nov-10 1 ITALY-DS MARKET TOTMI¥(RI)
Jamaica 29-Dec-95 30-Nov-10 3 S&P/IFCF M JAMAICA IFFMJAL(P)~U$
Japan 31-Dec-79 30-Nov-10 1 TOPIX TOKYOSE(RI)~U$
Jordan 21-Nov-88 30-Nov-10 2 AMMAN SE FINANCIAL MARET AMMANFM(PI)~U$
Kenya 11-Jan-90 30-Nov-10 2 KENYA NAIROBI SE NSEIX(PI)~U$
Kuwait 28-Dec-94 30-Nov-10 3 KUWAIT KIC GENERAL WKICGN(PI)~U$
Latvia 3-Jan-00 30-Nov-10 3 OMX RIGA (OMXR) RIGBERI)~U$
Lebanon 31-Jan-00 30-Nov-10 3 S&P/IFCF M LEBANON IFFMLEL(P)~U$
Lithuania 31-Dec-99 30-Nov-10 3 OMX VILNIUS (OMXV) LNVILSE(RI)~U$
Luxembourg 2-Jan-92 30-Nov-10 2 LUXEMBURG-DS MARKET LXTOTMK(RI)~U$
Malaysia 2-Jan-80 30-Nov-10 1 KLCI COMPOSITE KLPEP(PI)~U$
Malta 27-Dec-95 30-Nov-10 3 MALTA SE MSE - MALTAIRN~US$
Mauritius 29-Dec-95 30-Nov-10 3 S&P/IFCF M MAURITSJ IFFMMAL(PI)~U$
Mexico 4-Jan-88 30-Nov-10 2 MEXICO IPC (BOLSA) NPC35(PI)~U$
Morocco 31-Dec-87 30-Nov-10 2 MOROCCO SE CFG25 CHB25(P)~U$
Namibia 31-Jan-00 30-Nov-10 3 S&P/IFCF M NAMBIA FRMNAL(P)~U$
Netherlands 31-Dec-79 30-Nov-10 1 NETHERLAND-DS Kir TOTMKNL(RDN~U$
New Zealand 4-Jan-88 30-Nov-10 2 NEW ZEALAND-DS MKRRT TOTMNZS$(RI)
Nigeria 30-June-95 30-Nov-10 3 S&P/IFCG D NIGERIA IFGDNGL(PI)~U$
Norway 2-Jan-80 30-Nov-10 1 NORWAY-DS MARKET TOTNYB(RI)
Oman 22-Oct-96 30-Nov-10 3 OMAN MUSCAT SECURITIESKNL OMANMSM(P)~U$
Pakistan 30-Dec-88 30-Nov-10 2 KARACHI SE 100 PHB&PI)~U$
Peru 2-Jan-91 30-Nov-10 2 LIMA SE GENERAL(IGBL) EBENRL(P)~U$
Philippines 2-Jan-86 30-Nov-10 2 PHILIPPINE SE IE)S PSECOMP(PI)~U$
Poland 16-Apr-91 30-Nov-10 2 WARSAW GENERALINDEX POLWIGI(P)~U$
Portugal 5-Jan-88 30-Nov-10 2 PORTUGAL PSI GENERAL POPSIGN(PI)~U$
Romania 19-Sep-97 30-Nov-10 3 ROMANIA BET (L) REBRL(P)~U$
Russia 1-Sep-95 30-Nov-10 3 RUSSIA RTS INDEX RSRI(P1)~U$
Saudi Arabia 31-Dec-97 30-Nov-10 3 S&P/IFCG D SAURRABIA IFGDSB$(RI)
Singapore 1-Jan-73 30-Nov-10 1 SINGAPORE-DS MARKEX TMT TOTXTSG(RI)~U$
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Slovakia 14-Sep-93 30-Nov-10 2 SLOVAKIA SAX 16 SKX16(P)~U$
Slovenia 31-Dec-93 30-Nov-10 2 SLOVENIAN EXCH. STR(CSBI) SLOESBI(P)~U$
South Africa 31-Dec-79 30-Nov-10 1 SOUTH AFRICA-DVARKET TOTMSAS$(RI)
South Korea 31-Dec-79 30-Nov-10 1 KOREA SE COMP@S(KOSPI) KORCOMP(PI)~U$
Spain 31-Dec-79 30-Nov-10 1 MADRID SE GENERAL MRIDI(PI)~U$
Sri Lanka 2-Jan-85 30-Nov-10 2 COLOMBO SE ALLSHARE SRALLSH(P)~U$
Sweden 28-Dec-79 30-Nov-10 1 OMX STOCKHOLM (OMXS) SWSEALI(P)~U$
Switzerland 31-Dec-79 30-Nov-10 1 SWITZ-DS Market TOTMKSW(RI)~U$
Taiwan 31-Dec-84 30-Nov-10 2 TAIWAN SE WEIGHTED AWGHT(P)~U$
Thailand 2-Jan-87 30-Nov-10 2 THAILAND-DS MARKET T THS(RI)
Trinidad 29-Dec-95 30-Nov-10 3 S&P/IFCF M TRINIDA® TOBAGO IFFMTTL(PI)~U$
Tunisia 31-Dec-97 30-Nov-10 3 TUNISIA TUNINDEX TWNIN(P)~U$
Turkey 4-Jan-88 30-Nov-10 2 ISE TIOL 100 TRKISPB-U$
Ukraine 30-Jan-98 30-Nov-10 3 S&P/IFCF M UKRAINE IFFMURL(P)~U$
Utd. Arab Emirates 1-Jun-05 30-Nov-10 3 MSCI UAE SVAEI$

United Kingdom 31-Dec-79 30-Nov-10 1 UK-DS MARKET TOTMUKS$(RI)
United States 31-Dec-79 30-Nov-10 1 S&P 500 COMPAGSI S&PCOMP(RI)~U$
Venezuela 2-Jan-90 30-Nov-10 2 VENEZUELA-DS MARKET TOTMVES$(RI)
Zimbabwe 6-Apr-88 6-Oct-06 2 ZIMBABWE INDUSTRIALS IRINDS(PI)
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Tablel
Average returns across risk states

The table presents summary statistics of equalitedyreturns, in percentage form, to the all-couimdex, as well as to the Cohort
1, 2, and 3 indexes. Cohorts 1, 2, and 3 are sStatgkxes of countries that appear in DataStreanr ppid 984, from 1984 through
1993, and post-1993, respectively. Panel A presstatsstics based on full-sample returns, whiledPdh presents returns across
levels of fragility. Fragility is based on the cbeient, §;;., on the first PC according to Pukthuanthong antl 0609), in which
country stock returns are regressed on ten i&igy daily observations from d&p00 through day-1. We restrict the analysis to
countries with at least 100 usable observationsxduany particular period, and use weighted legasaiges in which the weight placed
on daily observatiotrx is equal t.995*1. Panel B presents results across deciles of iiyafpkmed from the mean of loadings on
the first PC across countries at a given poininret In Panel B, average loadings and subsequeiiesi®f fragility are specific to
countries included within each cohort. The sammgits December 29, 1994 and ends November 11, ZDdintries included
within the sample, and their cohort assignmentsjrarluded in the Appendix.

World index Cohort 1 Cohort 2 Cohort 3
Mean Median Std Mean Median Std Mean Median Std arMe Median Std
Pand A: Full-sample summary statistics

0.0254 0.0719 0.8046 0.0234 0.0875 1.1217 0.0210070@ 0.7731 0.0344 0.0569 1.1814
Panel B: Satistics across deciles of fragility

1% decile  0.1075 0.1515 0.5164 0.0532 0.1343 0.99101208 0.1224 0.4605 0.0617 0.0591 0.5212
2"decile  0.0235 0.0538 0.5153 0.0520 0.0875 0.56510190. 0.0060 0.3860 0.0978 0.0896 0.4669
3%decile  0.1052 0.1040 0.3931 0.0304 0.0686 0.6249028B. 0.0795 0.5357 0.2122 0.0689 2.2370
4Mdecile  0.0991 0.0737 0.7785 0.0436 0.1199 0.71840625 0.0801 0.5019 0.0777 0.0703 0.4693
5" decile -0.0107 0.0404 0.4755 -0.0562 0.0235 0.9391 -0.0209012 0.6566 0.0669 0.0566 0.4900
6"decile  -0.0006 0.0329 0.6113 -0.0209 -0.0134 0.9605.0180 0.0288 0.6902 0.0749 0.0684 0.6476
7"decile  0.0224 0.0725 0.6760 0.1093 0.1818 0.8595048%. 0.1441 0.8113 -0.0362 0.0541 0.6742
8" decile  -0.0276 0.0578 0.9863 0.0752 0.1564 0.81@00447 0.1314 0.8280 -0.1280 -0.0300 2.2038
9"decile  -0.1170 0.0224 1.0872 -0.1291 -0.0442 1.7080.0992 -0.0042 0.9887 -0.0697 0.0189 0.9673
10" decile 0.0524 0.1538 1.3939 0.0771 0.1779 2.0568 0.0247135Q. 1.3536 -0.0138 0.0553 1.1322
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Table?2

Conditional market crash probabilities

The table presents conditional probabilities of keacrashes for the equal-weighted all-country
index. Risk states are determined by Fl, whichhis average of;;. across all countries at a
given pointt, and defined agpcy:. fj; for each country and each point in timeis the
coefficient of the first component (PC1) and estedafrom daily observations from d&p00
through dayt-1. The coefficient of PC1 is estimated by regressountry stock returns on ten
PCs constructed according to Pukthuanthong and R6I09). We restrict the analysis to
countries with at least 100 usable observationgnguany particular period, and use weighted
least squares in which the weight placed on dailyeovationt-x is equal t00.995*~1. Market
crashes are defined as a daily return falling beflogvpercentile listed in the column heading.
Table rows present the expected number of cratie$sequency of crashes, and the percentage
of crashes. The final row in each subpanel preseBtscore and associat@evalue testing that
the probability of a crash is equal across riskestarhe sample is daily from December 29, 1994
through November 30, 2010. The Appendix lists thentries included in the sample.

R, <P20% R <P10% R;<P5%  Rj,<P2%

Ex(X | upcy,r < P80%(tpc1)) 598.36 299.18 149.59 59.20
fX1 Upcie < 80%(upc1)) 498 213 90 27
F/n(X | irer e < P80%(iper)) 16.63 7.11 3.01 0.90
Ex(X | ttpere > P80%(ipc1)) 149.64 74.82 37.41 14.80
FOX | pere > P80%(tpcr)) 250 161 97 47
F/n(X | oerr > P80%(ipcr)) 33.38 21.50 12.95 6.28
Hy:d =0 9.042 9.145 7.857 5.952
(0.000) (0.000) (0.000) (0.000)
Ex(X | ftper < P90%(ttpcy)) 673.28 336.64 168.32 66.61
FOX 1 pene < 90%(uper)) 627 288 128 47
F/n(X | ftpere < P90%(pet)) 18.61 8.55 3.80 1.39
Ex(X | upcy,e > P90%(tpc1)) 74.72 37.36 18.68 7.39
FOX 1 tpere > P90%(ipcr)) 121 86 59 27
F/n(X | ner e > P90%(iper)) 32.35 22.99 15.78 7.22
Hy:d =0 5.477 6.483 6.260 4.304
(0.000) (0.000) (0.000) (0.000)
Ex(X | ppc1e < P95%(Upc1)) 710.64 355.32 177.66 70.30
FOX 1 pene < 95%(per)) 673 319 147 56
F/n(X | tper e < P95%(pcy)) 18.92 8.97 4.13 1.57
Ex(X | upcy,e > P95%(tpc1)) 37.36 18.68 9.34 3.70
FOX 1 pere > P95%(ipcr)) 75 55 40 18
F/n(X | rer e > P95%(iper)) 40.11 29.41 21.39 9.63
Hy:d =0 5.815 6.073 5.720 3.716
(0.000) (0.000) (0.000) (0.000)
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Table?2
Cont'd

Ex(X | upc1,e < P98%(1pc1)) 733.22 366.61 183.30 72.54
FX | tpere < 98%(upct)) 715 345 163 64
F/n(X | per e < P98%(pcy)) 19.48 9.40 4.44 1.74
Ex(X | upc1e > P98%(upc1)) 14.78 7.39 3.70 1.46
f(X | upca,e > P98%(1pc1)) 33 29 24 10
f/n(X | upcre > P98%(upc1)) 44.59 39.19 32.43 13.51
Hy:d =0 4.318 5.23 5.13 2.957
(0.000) (0.000) (0.000) (0.002)
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Table3

Conditional probabilities of joint crashes

The table presents the probability of joint mark@ishes across cohorts, conditional on market
states. We consider equal-weighted returns tohilee tcohorts within our sample. Countries
included in the sample and their cohort assignrasntisted in the Appendix. Risk states are
indicated in the initial column, and return threlslsathat define crashes are indicated in the panel
headings. Risk states are determined by FI, wisithé average d¢; ; , across all countries at a
given pointt, and defined agpc, .. B} for each country and each point in timeis the
coefficient of the first component (PC1) from Pukdhthong and Roll (2009). Estimation of

Bj i is described in Table 2. We present the frequéfi€y)) and empirical probabilities

(f /n(X)) of X cohort indexes jointly crashing on a given dayasirisk states, witK labeled in
the column headings. For the high risk states, nieegnt the expected number of joint
occurrencesHx(X)), and the chi-squared statistic and associatealue testing for
independence between risk states and crashesafesis daily from December 29, 1994
through November 30, 2010.

Panel A: Crash definedasR;; < P20%

Risk state Statistic X=0 X=1 X=2 X=3
Urcre < P80%  f(X) 2038 531 270 156
F/n(X) 68.05 17.73 9.02 5.21
Upcre = P80%  f(X) 436 79 76 158
Ex(X) 494.93 122.03 69.22 62.82
F/n(X) 58.21 10.55 10.15 21.09
x? 7.02 15.78 0.66 144.23
(0.071) (0.001) (0.883) (0.000)
Urcre < P90%  f(X) 2253 576 309 232
f/n(X) 66.85 17.09 9.17 6.88
Upcre = P90%  f(X) 221 34 37 82
Ex(X) 247.14 60.94 34.56 31.37
F/n(X) 59.09 9.09 9.89 21.93
x? 2.76 11.91 0.17 81.74
(0.430) (0.008) (0.982) (0.000)
Urcre < P95%  f(X) 2378 593 324 262
F/n(X) 66.85 16.67 9.11 7.37
Ex(X) 123.57 30.47 17.28 15.68
F/n(X) 51.34 9.09 11.76 27.81
x? 6.15 5.95 1.29 84.10
(0.105) (0.114) (0.732) (0.000)
Upere < P98%  f(X) 2442 600 339 289
F/n(X) 66.54 16.35 9.24 7.87
Ex(X) 48.90 12.06 6.84 6.21
f/n(X) 43.24 13.51 9.46 33.78
x? 5.84 0.35 0.00 56.91
(0.120) (0.950) (1.000) (0.000)
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Table3

Cont'd
Panel B: Crash defined asR; ; < P10%
Risk state Statistic X=0 X=1 X =2 X=3
Upcre < PB0% f(X) 2540 296 107 52
f/n(X) 84.81 9.88 3.57 1.74
Upc1e = PB0% f(X) 538 66 45 100
Ex(X) 615.76 72.42 30.41 30.41
f/n(X) 71.83 8.81 6.01 13.35
x? 9.82 0.57 7.00 159.27
(0.020) (0.903) (0.072) (0.000)
Upcre < P90% f(X) 2816 328 127 99
f/n(X) 83.56 9.73 3.77 2.94
Upcie = P90% f(X) 262 34 25 53
Ex(X) 307.47 36.16 15.18 15.18
f/n(X) 70.05 9.09 6.68 14.17
x? 6.72 0.13 6.35 94.18
(0.081) (0.988) (0.096) (0.000)
Upcre < P95% f(X) 2961 342 138 116
f/n(X) 83.24 9.61 3.88 3.26
Upc1e = P95% f(X) 117 20 14 36
Ex(X) 153.74 18.08 7.59 7.59
f/n(X) 62.57 10.70 7.49 19.25
x? 8.78 0.20 5.41 106.30
(0.032) (0.978) (0.144) (0.000)
Upcie < P98% f(X) 3039 354 145 132
f/n(X) 82.81 9.65 3.95 3.60
Upce = P98% f(X) 39 8 7 20
Ex(X) 60.84 7.15 3.00 3.00
f/n(X) 52.70 10.81 9.46 27.03
x? 7.84 0.10 5.31 96.15
(0.049) (0.992) (0.150) (0.000)
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Table3

Cont'd
Panel C: Crash defined asR; : < P5%
Risk state Statistic X=0 X=1 X =2 X=3
Upcre < PB0% f(X) 2807 119 45 24
f/n(X) 93.72 3.97 1.50 0.80
Upc1e = PB0% f(X) 606 58 33 52
Ex(X) 682.78 35.41 15.60 15.20
f/n(X) 80.91 7.74 4.41 6.94
x? 8.63 14.41 19.39 89.05
(0.035) (0.002) (0.000) (0.000)
Upcre < P90% f(X) 3123 143 56 48
f/n(X) 92.67 4.24 1.66 1.42
Upcie = P90% f(X) 290 34 22 28
Ex(X) 340.94 17.68 7.79 7.59
f/n(X) 77.54 9.09 5.88 7.49
x? 7.61 15.06 25.91 54.86
(0.055) (0.002) (0.000) (0.000)
Upcre < P95% f(X) 3283 152 63 59
f/n(X) 92.30 4.27 1.77 1.66
Upc1e = P95% f(X) 130 25 15 17
Ex(X) 170.47 8.84 3.90 3.80
f/n(X) 69.52 13.37 8.02 9.09
x? 9.61 29.54 31.65 45,93
(0.022) (0.000) (0.000) (0.000)
Upcie < P98% f(X) 3373 163 66 68
f/n(X) 91.91 4.44 1.80 1.85
Ex(X) 67.46 3.50 1.54 1.50
f/n(X) 54.05 18.92 16.22 10.81
x? 11.18 31.52 70.95 28.11
(0.011) (0.000) (0.000) (0.000)
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Table3

Cont'd
Panel D: Crash defined asR; ; < P2%
Risk state Statistic X=0 X=1 X=2 X=3
Upcre < PB0% f(X) 2933 39 18 5
f/n(X) 97.93 1.30 0.60 0.17
Upc1e = PB0% f(X) 677 35 14 23
Ex(X) 722.19 14.80 6.40 5.60
f/n(X) 90.39 4.67 1.87 3.07
x? 2.83 27.55 9.02 54.04
(0.419) (0.000) (0.029) (0.000)
Upcre < P90% f(X) 3277 54 25 14
f/n(X) 97.24 1.60 0.74 0.42
Upcie = P90% f(X) 333 20 7 14
Ex(X) 360.61 7.39 3.20 2.80
f/n(X) 89.04 5.35 1.87 3.74
x? 2.11 21.50 4.53 44.87
(0.550) (0.000) (0.210) (0.000)
Upcre < P95% f(X) 3452 59 28 18
f/n(X) 97.05 1.66 0.79 0.51
Ex(X) 180.31 3.70 1.60 1.40
f/n(X) 84.49 8.02 2.14 5.35
x? 2.76 34.57 3.61 52.90
(0.430) (0.000) (0.307) (0.000)
Upcie < P98% f(X) 3554 64 30 22
f/n(X) 96.84 1.74 0.82 0.60
HUpcit = P98% f(X) 56 10 2 6
Ex(X) 71.35 1.46 0.63 0.55
f/n(X) 75.68 13.51 2.70 8.11
x? 3.30 49.83 2.96 53.60
(0.348) (0.000 (0.398) (0.000)
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Table4

Logistic regressions within cohort indexes

This table presents logistic regression resultghicth the occurrence of market crashes is
regressed on Fl. For each subpanel, the dependgable takes a value of one if the return to
the equal-weighted index given in the column hegd#atis below the threshold identified in the
panel heading. We report coefficient estimates lpdénotedd, as well as associatpevalues.
Flis the average ¢;; . across all countries within the given cohort gtwen pointt. g;; . for
each country and each point in timieis the coefficient of the first component (PC13ian
estimated from daily observations from deB00 through day-1. The coefficient of PC1 is
estimated by regressing country stock returns oriPtés constructed according to
Pukthuanthong and Roll (2009). We restrict the BICutation to countries with at least 100
usable observations during any particular periadi e weighted least squares in which the
weight placed on daily observatiox is equal t@.995*1. OR,, andOR,, represent the odds
ratio of a crash when Fl increases by one and tammdard deviations, respectively. Cohort 1,
Cohort 2, and Cohort 3 are formed from country kegewith available data beginning prior to
1984, from 1984 through 1993, and post-1993, rasfbg. The sample is daily from December
29, 1994 through November 30, 2010. The Appendixides the list of countries included in
the sample and their cohort assignment.

World index Cohort 1 Cohort 2 Cohort 3
R;: < P20%
(0} 4.450 2.376 5.240 4,192
(0.000) (0.000) (0.000) (0.000)
OR.,s 1.438 1.332 1.483 1.407
OR,, 2.069 1.775 2.198 1.980
R;: < P10%
(0} 6.378 3.741 7.520 6.063
(0.000) (0.000) (0.000) (0.000)
ORy 4 1.684 1.571 1.760 1.639
OR,, 2.835 2.468 3.096 2.687
R;: < P5%
(0} 8.125 4,938 8.416 8.736
(0.000) (0.000) (0.000) (0.000)
ORy, 1.942 1.815 1.882 2.038
OR,, 3.771 3.294 3.542 4,153
R < P2%
(0)} 9.808 6.829 8.568 10.587
(0.000) (0.000) (0.000) (0.000)
ORy, 2.228 2.280 1.904 2.370
OR,, 4.964 5.200 3.624 5.617
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Table5

Logistic regressions across cohorts

The table presents logistic regression resultshithvco-exceedances are regressed on Fl.
Column headings define return thresholds that deter market crashes. In Panels A through C,
the dependent variables are indicator variablestéka the value of one for any diay which

the number of market crashes across the three tsofwareeds the specified value, and the value
of zero otherwise. For example, in Panel B the ddeet variable takes the value of one for any
day in which at least two of the three cohort indetarns fall below the percentile given in the
column heading. Panel D presents ordinal logigtigassions in which the dependent variable is
set equal to the number of cohorts experiencingshoon the given day. Panel E presents
generalized logistic results in which the dependaniable is as defined in Panel D. The final
three rows of Panel E present statistical tesexjaflity across coefficients. We ugé¢o

represent the coefficient estimate on Fl, and fse@ateg-value is reported below. Fl
estimation and row headings are defined in Tabkarally, the notatio®; andOR,,; in Panel

E refers to parameter estimates, and associatedratids for a one standard deviation increase
in FI, for the state in whichcohorts jointly crash. Cohort 1, Cohort 2, and GQoBaare formed
from country indexes with available data beginrpnigr to 1984, from 1984 through 1993, and
post-1993, respectively. The sample is daily froec@nber 29, 1994 through November 30,
2010. The Appendix provides the list of countriesuded in the sample and their cohort
assignment.

R;: < P20% R;: < P10% Rj: < P5% Rj: < P2%
Panel A'Y; = Iy x,»1
1) 2.192 4.256 6.623 8.159
(0.000) (0.000) (0.000) (0.000)
OR,, 1.196 1.416 1.718 1.947
OR,, 1.431 2.004 2.950 3.792
Panel B: Y; = Iy x,»»
1) 4.979 7.186 8.525 9.244
(0.000) (0.000) (0.000) (0.000)
OR, 1.502 1.798 2.006 2.128
OR,, 2.255 3.235 4.025 4.527
Panel C:Y; = Iy x,—3
1) 7.569 9.942 10.364 13.543
(0.000) (0.000) (0.000) (0.000)
OR, 1.856 2.252 2.331 3.023
OR,, 3.443 5.073 5.435 9.136

43



Pand D: Y, = Y X;

) 3.430 4.917 6.828 8.229
(0.000) (0.000) (0.000) (0.000)

OR:, 1.323 1.494 1.747 1.958

OR,, 1.751 2.233 3.051 3.835
2 153.291 99.602 18.978 11.804
X (0.000) (0.000) (0.000) (0.003)

Panel E: Generalized logistic regression

@ 7.441 10.250 10.908 13.873
(0.000) (0.000) (0.000) (0.000)

OR:s 3 1.836 2.310 2.437 3.105
@, 1.352 3.891 6.812 6.023
(0.051) (0.000) (0.000) (0.000)

OR142 1.117 1.374 1.744 1.635
0, -1.846 0.787 4.480 7.081
(0.006) (0.260) (0.000) (0.000)

OR161 0.860 1.066 1.442 1.783
05 =0, 134.410 93.441 25.568 9.569
(0.000) (0.000) (0.000) (0.002)
05 =0, 55.659 33.416 7.937 9.696
(0.000) (0.000) (0.005) (0.002)
0, =0, 13.013 8.600 3.400 0.304
(0.000) (0.003) (0.065) (0.581)
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Table6

Fragility index and right tail joint co-exceedances

The table presents logistic regression resultshithvpositive co-exceedances are regressed on
FIl. Column headings define return thresholds tleéeminine extreme positive market returns. In
Panels A through C, the dependent variable talesdtlue of one for any dayn which the
number of market positive exceedances across the tohorts exceeds the specified value. For
example, in Panel B the dependent variable talkesgdhue of one for any day in which at least
two of the three cohort index returns fall above plercentile given in the column heading. Panel
D presents ordinal logistic regressions in whiaghdlependent variable is set equal to the number
of cohorts experiencing positive return exceedaonoethe given day. Panel E presents
generalized logistic results in which the dependaniable is as defined in Panel D. The final
three rows of Panel E present statistical tesexjatlity across coefficients. We ugé¢o

represent the coefficient estimate on Fl, and fse@ateg-value is reported below. Fl
estimation and row headings are defined in Tabkarally, the notatio®; andOR,,; in Panel

E refers to parameter estimates, and associatedratids for a one standard deviation increase
in FI, for the state in whichcohorts jointly increase. Cohort 1, Cohort 2, &uthort 3 are

formed from country indexes with available dataibemg prior to 1984, from 1984 through
1993, and post-1993, respectively. The sampleiig fitam December 29, 1994 through
November 30, 2010. The Appendix provides the listountries included in the sample and their
cohort assignment.

R;; > P80% R;; > P90% R;; > P95% R > P98%
Panel A'Y; = Iy x.»1
1) 1.656 3.869 5.965 7.270
(0.000) (0.000) (0.000) (0.000)
OR1, 1.145 1.372 1.628 1.811
OR,, 1.311 1.881 2.649 3.279
Panel B: Y; = Iy x,»»
1) 4.869 7.699 10.250 13.146
(0.000) (0.000) (0.000) (0.000)
OR, 1.488 1.875 2.310 2.926
OR,, 2.215 3.517 5.335 8.562
Panel C:Y; = Iy x,—3
(0} 8.145 11.713 15.599 15.048
(0.000) (0.000) (0.000) (0.000)
OR, 1.945 2.603 3.575 3.418
OR,, 3.783 6.776 12.782 11.682
Panel D: Y, = Y. X;
1) 3.008 4.630 6.403 7.455
(0.000) (0.000) (0.000) (0.000)
OR1, 1.278 1.460 1.687 1.838
OR,, 1.634 2.130 2.846 3.379
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Table6

Cont'd
Panel E: Generalized logistic regression
@ 7.982 12.061 16.079 15.441
(0.000) (0.000) (0.000) (0.000)
OR:s 3 1.919 2.678 3.718 3.529
@, 1.609 4.480 7.095 12.195
(0.011) (0.000) (0.000) (0.000)
OR142 1.140 1.442 1.785 2.707
0, -2.203 0.471 2.714 4.382
(0.001) (0.466) (0.000) (0.000)
ORi41 0.835 1.039 1.248 1.430
05 =0, 156.047 119.892 63.994 16.148
(0.000) (0.000) (0.000) (0.000)
05 =0, 61.763 42.281 24.417 1.093
(0.000) (0.000) (0.000) (0.296)
0, =0, 21.822 16.592 12.371 15.700
(0.000) (0.000) (0.000) (0.000)
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Table7

Logistic regressions controlling for volatility

The table presents logistic regression resultshithivco-exceedances are regressed on Fl. The
dependent variable is detailed in the initial colymand is based gy X;, which represents the
number of cohort indexes that experience a crasiagh In the first three rows of each panel,
the dependent variable is equal to an indicataabée that takes the value of one an anytday
which the number of cohort indexes that crashesigr than or equal to one, greater than or
equal to two, or equal to three, respectivelyhimfinal row of each panel the dependent variable
equals the number of cohort indexes that crashagn. dcor each cohort, a crash is defined as a
return that falls below the fifth percentile oflflglmple returns. The dependent variable in each
specification is regressed on Fl, calculated thihodayt-1, and a control variable. In Panel A the
control variable represents forecasted volatilitydayt of the all-country index return from a
GARCH specification. In Panels B and C the contaslable is the cross-sectional average of
country index standard deviations, and the standevdhtion of the all-country index,
respectively, each calculated through tdywith the same 500-day rolling-window and
weighting scheme as FI. In Panel D the controlalde is the cross-sectional average adjuBted
square from the FIl regressions. Table entries septecoefficient estimates, and associgted
values, as well as odds ratios for a one standartion increase in the given variable. Cohort
1, Cohort 2, and Cohort 3 are formed from counmdexes with available data beginning prior to
1984, from 1984 through 1993, and post-1993, rdsmbg. The sample is daily from December
29, 1994 through November 30, 2010. The Appendixides the list of countries included in
the sample and their cohort assignment.

Panel A: GARCH forecasted volatility

Dependent

variable Dy ORg, Oq OR,

Iy x,21 5.933 1.623 10.056 1.201
(0.000) (0.000)

Iy x,22 7.759 1.885 10.445 1.210
(0.000) (0.000)

Iy x,=3 9.428 2.160 12.428 1.254
(0.000) (0.000)

> X; 6.107 1.647 11.286 1.228
(0.000) (0.000)

Panel B: Cross-sectional average standard deviation

Dependent

variable Drr ORp; Dy OR,

Iy x ;21 4.188 1.408 1.427 1.384
(0.000) (0.000)

I5 .22 5.688 1.591 1.599 1.440
(0.000) (0.001)

Iy x,=3 9.778 2.222 0.305 1.072
(0.000) (0.674)

> X; 4.402 1.433 1.409 1.379
(0.000) (0.000)
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Panea C: World index standard deviation

Dependent

variable Drr ORg; D, OR,

Is x 51 2.950 1.272 1.753 1.442
(0.007) (0.000)

Is x ;52 3.467 1.327 2.397 1.650
(0.024) (0.000)

Iy x,=3 8.027 1.926 1.066 1.249
(0.002) (0.344)

> X; 3.149 1.293 1.749 1.441
(0.004) (0.000)

Panel D: Cross-sectional average adjusted R-square

Dependent

variable ) ORp, D ar OR4p

Is x 51 5.445 7.657 0.015 1.122
(0.000) (0.363)

Is x ;52 5.972 1.629 0.033 1.290
(0.003) (0.184)

Iy x,=3 9.307 2.139 0.014 1.112
(0.003) (0.721)

> X; 5.701 1.593 0.014 1.116
(0.000) (0.384)

48



Table8

Regressions of number of crashes on Fl and realiakdility

The table presents Poisson regression result®afumber of crashes within calendar periods.
The sample is divided into three-month and six-ramatiendar periods in Panels A and B,
respectively. For each peridd we calculate Fl as the average loading on tlse A€ across all
countries using observations only from period&imilarly, for each period, we calculate the
realized volatility of our all-country world inddxyy summing daily squared returns. Both FI and
volatility are standardized. We defihg. ,, as a daily indicator variable taking the valu®oé

for any day in which the number of cohort indexuras falling below their fifth percentile is
greater than or equal to The value of the dependent variables in the ssjpa models for
periodT are created by summing across all daily obsematid the given indicator variable
during the period. In this way, the dependent \des represent the number of occurrences of
daily co-exceedances during each pefiiodable entries represent coefficient estimates and
associated p-values on lagged Hl,_,, and contemporaneous, and lagged volatisityand

o:_1, respectively. In each panel, the sample statts the second period during 1995, such that
the first observation in Panel A is the three-mageghod from April through June, 1995 and the
observationT=1 in Panel B corresponds to the six-month peniothfJune through December,
1995. Cohort 1, Cohort 2, and Cohort 3 are formmeohfcountry indexes with available data
beginning prior to 1984, from 1984 through 1993] anst-1993, respectively. The Appendix
provides the list of countries included in the steygnd their cohort assignment.

Panel A: Three-month periods

Flr_y

oT

Or—1

Yr ::E:[Xz1

Yr ::zllxzz

Yr ::EILX=3

0.505
(0.000)
0.327
(0.000)
0.459
(0.000)
0.689
(0.000)
0.478
(0.000)
0.681
(0.000)
0.786
(0.000)
0.562
(0.000)
0.792
(0.000)

0.215
(0.000)

0.232
(0.000)

0.235
(0.000)

0.068
(0.084)

0.011
(0.839)

-0.008
(0.909)
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Panel B: Sx-month periods

Flr_q

or

Yr = Z Iy>q

Yr = Z Iys)

Yr = Z Iy_3

0.540
(0.000)
0.345
(0.000)
0.628
(0.000)
0.720
(0.000)
0.522
(0.000)
0.861
(0.000)
0.840
(0.000)
0.667
(0.000)
1.038
(0.000)

0.235
(0.000)

0.237
(0.000)

0.209
(0.015)

-0.115
(0.029)

-0.178
(0.010)

-0.246
(0.007)
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Table9

Logistic regressions for robustness

The table presents logistic regression results.dependent variable is based on the number of
cohort indexes that exhibit a crash on the given @ihe benchmark specification is detailed in
Panel D of Table 5 with crashes defined based efiifth percentile of returns. Results in each
row are based on the benchmark specification, thighonly difference in methodology
described in the first column of each row. Cohgi€ahort 2, and Cohort 3 are formed from
country indexes with available data beginning ptooit984, from 1984 through 1993, and post-
1993, respectively. The sample is daily from Decen#t®, 1994 through November 30, 2010.
The Appendix provides the list of countries incldde the sample and their cohort assignment.

Alteration Dr; ORy, ORys

Benchmark case: Table 5, Panel D, crashes defined 6.828 1.747 3.051

based on fifth percentile of returns (0.000)

Sample period: 12/29/1994-12/31/2007 15.284 1.311 1.720
(0.000)

Sample period: 12/01/2000 — 11/30/2010 7.635 2.115 4471
(0.000)

Fl estimation: 500-day rolling-window with equal- 5.865 1.594 2.541

weighting scheme for all observations (0.000)

Fl estimation: 60-day rolling-window 6.302 1.822 3.321
(0.000)

Fl specified as the difference between Fl estimated 3.773 1.220 1.488

from 60-day rolling-window and FI estimated from  (0.000)

500-day rolling-window

FI estimation: 60-day rolling-window. Results 3.958 1.234 1.524

analyzed only in months April through December (0.000)

FI specification: 7% percentile of beta 4.096 1.722 2.965
(0.000)

Fl specification: Standard deviation of beta 6.382 1.452 2.108
(0.000)

Crash definition: Absolute return below -5% 13.201 2.939 8.639
(0.000)

Only observations not preceded by a crash withjn an 5.854 1.401 1.964

cohort in the previous 10 trading days (0.000)

Only observations not preceded by a crash withjn an 6.823 1.376 1.893

cohort in the previous 20 trading days (0.001)

Only observations not preceded by a crash withyn an 10.974 1.341 1.798

cohort in the previous 50 trading days

(0.017)
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