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We investigate the value of the correlation function of an inhomogeneous hard-sphere fluid at contact. This
quantity plays a critical role in statistical associating fluid theory, which is the basis of a number of recently
developed classical density functionals. We define two averaged values for the correlation function at contact
and derive formulas for each of them from the White Bear version of the fundamental measure theory functional,
using an assumption of thermodynamic consistency. We test these formulas, as well as two existing formulas,
against Monte Carlo simulations and find excellent agreement between the Monte Carlo data and one of our

averaged correlation functions.
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I. INTRODUCTION

There has been considerable recent interest in using sta-
tistical associating fluid theory (SAFT) to construct classical
density functionals to describe associating fluids [1-10]. This
approach has been successful in qualitatively describing the
dependence of surface tension on temperature. A key input
to these functionals is the correlation function evaluated at
contact, which is identical to the contact value of the cavity
correlation function for hard spheres, and is required for both
the chain and association terms in the SAFT free energy. The
chain term describes the chain formation energy in polymeric
fluids, while the association term describes the effects of
hydrogen bonding, both of which can be large. Yu and Wu
introduced in 2002 a functional for the association term of
the free energy, which included a functional for the contact
value of the correlation function (described in Sec. IIIE) [8],
which has subsequently been used in the development of other
SAFT-based functionals [9,10]. Two functionals for the chain
contribution have recently been introduced, one which uses
the correlation function of Yu and Wu [10] and another which
introduces a new approximation for the contact value of the
correlation function [7].

Here we will briefly describe how the contact value of
the correlation function has been used in two of these recent
papers introducing SAFT-based classical density functionals.
For simplicity, we will use our own notation to describe
the work of these authors. In his paper presenting a density
functional based on the PCP-SAFT equation of state [ 7], Gross
introduces the chain free energy in SAFT as

Achain
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where n4(r) is a weighted density defined in Eq. (8) and
g?(r) is the local value of the correlation function at
contact, which we define in Eq. (7). In Sec. IIID, we
describe Gross’s approximation for this function. In a paper
describing a classical density functional for inhomogeneous
associating fluids [8], Yu and Wu define the association free
energy as
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where X;(r) is the fraction of interaction sites of type i at
position r that are unoccupied, no(r) is a weighted density
defined in Eq. (6), {(r) is a nonlocal measure of the density
gradient defined in Eq. (32), and gg(r) is a form of the
correlation function at contact, which we define in Eq. (5). In
Sec. IILE, we present the approximation to g (r) introduced
by Yu and Wu. Given these differing approaches, it seems
valuable to examine this property of the hard-sphere fluid
through direct simulation, in order to establish the advantages
and disadvantages of each approach.

Although these recent works have introduced approximate
functionals for the contact value of the correlation function
for an inhomogeneous hard-sphere fluid [7,8], there has not
been a study that specifically addresses this functional. In this
paper, we introduce two definitions for the locally averaged
correlation function of an inhomogeneous system. Given these
definitions, we will present a thermodynamic derivation for
each correlation function from the free energy functional. We
will then discuss the correlation functions of Yu and Wu and of
Gross and will end by comparing all four approximations with
Monte Carlo simulations of the hard-sphere fluid at a variety
of hard-wall surfaces.

II. CORRELATION FUNCTION WITH INHOMOGENEITY

We define our terms using the two-particle density
n®(ry,ry), which gives the probability per unit volume squared
of finding one particle at position r; and the other at position
r;. The pair correlation function is defined by

n(ry,ry)
n(r)n(r)’

In a homogeneous fluid, the pair correlation only depends on
the distance |r; — r| and can be expressed as a function of a
single variable, and the contact value of the correlation func-
tion is its value when evaluated at a distance of the diameter
o . The pair correlation function of an inhomogeneous fluid is
not as simple, but it is desirable for reasons of computational
efficiency to construct classical density functionals using only
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FIG. 1. Set of hard spheres that are included in ny(r), which
consist of those which just touch the point r.

one-center convolutions. Moreover, a local function is helpful
when defining functionals based on perturbation theory, such
as those in Egs. (1)—(3). This leads us to seek a local value for
g, that is dependent upon only one position variable r. There
are two reasonable options for defining such a local function:
a symmetric formulation such as that used in Egs. (2) and (3)
(which we refer to as S) and an asymmetric formulation such
as that used in Eq. (1) (which we refer to as A).

For the symmetric S case, the correlation function at contact
is given by:

/n(z)(r —rr+ I_/)5(0/2 - |r/|)dr/, (5)

N —
8,(r) = g
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where o is the hard sphere diameter and the density ng is
one of the fundamental measures of fundamental measure
theory (FMT). The functional gg (r) is defined to treat the
geometrically symmetric possibility of spheres touching at the
position r as illustrated in Fig. 1:

no(r) = /n(r’)wdr’. (6)
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This functional ny(r) gives a density averaged over all spheres
that touch at the position r. Together, no(r) and g(f (r) are used
in the association free energy given in Eqs. (2) and (3).

In contrast, the asymmetrically averaged A correlation
function is given by

A _ 1 / 2) , 5(oc —1Ir']) ,
go‘ (l') - n(r)nA(r) n (r9r + r ) 47102 dr ’ (7)

where the density n4(r) is analogous to ny(r), but measures
the density of spheres that are touching a sphere that is located
at point r, as illustrated in Fig. 2.

nA(r) = f payde—Ir=rb . ®)

4ro?

Thus, g2 corresponds to an average of the two-particle density
over spheres touching a sphere that is located at the position
r. The functionals 7 4(r) and gZ(r) are used in the chain free
energy given in Eq. (1).
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FIG. 2. Set of hard spheres that are included in n4(r), which
consist of those that just touch a sphere centered at r. The dashed line
illustrates the surface over which contact is possible.

A. Fundamental measure theory

We use the White Bear version of the fundamental measure
theory (FMT) functional [11], which describes the excess
free energy of a hard-sphere fluid. The White Bear functional
reduces to the Carnahan-Starling equation of state for homo-
geneous systems. It is written as an integral over all space of a
local function of a set of “fundamental measures,” n,(r), each
of which is written as a one-center convolution of the density.
The White Bear free energy is thus

Ansin] = kyT / [®1(5) + Do) + D3@]dr, ()

with integrands
CD[ = —l’loln(l —I’l3) (10)
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using the fundamental measures

n3(r) = /n(r’)@ (0/2 — |r —r'dr’ (13)

ny(r) = /n(r/)(S(a/Z —|r = r'Ddr’ (14)
/ iy T — r /
ny,(r) = /n(r)8(0/2— |r—r|)Ir r’Idr (15)
ny; np ny
M= one " T e T 7o (16)

III. THEORETICAL APPROACHES

A. Homogeneous limit

In order to motivate our derivation of the correlation
function at contact for the inhomogeneous hard-sphere fluid,
we begin by deriving the well-known formula for g, for the
homogeneous fluid that comes from the Carnahan-Starling free
energy. The contact value of the correlation function density
can be found by using the contact-value theorem, which states
that the pressure on any hard surface is determined by the
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density at contact:
Psas(re) = kpTn(r.), (17)

where r, is a position of a sphere that would be in contact
with the hard surface, n(r,.) is the density at this point r., and
Psas(re) is the pressure that the spheres exert on the surface at
the same point. This pressure is understood as the ratio of force
to an infinitesimal element of solvent accessible surface (SAS)
area. In the homogeneous fluid, the contact-value theorem
implies that

psas = kpTng,, (18)

where psas is the pressure on a hard sphere’s solvent accessible
surface. This pressure can be readily computed from the
dependence of the Carnahan-Starling free energy on hard
sphere radius,

4n — 3n?
Aps = NkpT ———, 19
HS sl 7 19)
where n = %a3n is the filling fraction. We compute the

pressure using the total force with respect to a changing radius
of all the spheres. To find the pressure, we divide this force by
4mo?, which is the SAS area of a single hard sphere, illustrated
in Fig. 2. Finally, we divide by N to account for the total area
of all the spheres in the fluid:

1 dAgs

- 2ams 20

PSAS = Naro? dR 0
1 1dA

- LY Q1)
Ndno??2 do

kT 1-3 22

B 22

Using the contact-value theorem, we thus find the well-known
correlation function evaluated at contact:

_ 1o
(1—ny
Extending this derivation to the inhomogeneous fluid requires

that we find the pressure felt by the surface of particular
spheres.

8o (23)

B. Asymmetrically averaged correlation function

We will begin our derivation of the locally averaged
correlation function with the asymmetric definition of g(r)
given in Eq. (7), which is averaged over contacts in which one
of the two spheres is located at position r. This correlation
function is related to the contact density averaged over the
solvent accessible surface of a sphere located at r and can thus
be determined by finding the pressure on that surface. We find
this pressure from the change in free energy resulting from an
infinitesimal expansion of spheres located at position r. From
this pressure, we derive a formula for the correlation function
g? (r) as was done in the previous section:

1 15Ans 9
Psas() = 0?2 30 (1) @4

I 154
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where o (r) is the diameter of spheres located at position r.
Details regarding the evaluation of the functional derivative
31 are discussed in the Appendix. Equation (25) is an exact

So(r)
expression for g(‘:‘ (r) as defined in Eq. (7). However, since we
do not know the exact hard-sphere free energy, we approximate
Aps using FMT. The equation for g2 found using FMT
requires finding convolutions of local derivatives of the free
energy, making this formulation computationally somewhat
more expensive than the free energy itself.

C. Symmetrically averaged correlation function

We now address the symmetrically averaged correlation
function, which is defined in Eq. (5). This corresponds to the
correlation function averaged for spheres touching at a given
point. In this case, we conceptually would like to evaluate the
pressure felt by the surface of spheres where that surface is
located at point r. We can approximate this value by assuming
that this pressure will be simply related to the free energy
density at point r. Through a process similar to the previous
derivations, this leads to the expression

11 190
no(r)? 4mo?2 do

where ®(r) = ®(r) + P,(r) + P3(r) is the dimensionless
free energy density. This expression is an approximation—
unlike the analogous Eq. (25)—because it assumes that
we have available a local functional ®(r) whose derivative
provides the pressure needed to compute g, (r). Equation (26)
requires that we evaluate the derivatives of the fundamental
measures 7,(r) with respect to diameter, which leads us to
derivatives of the § function, which we can simplify and
approximate using an assumption of a reasonably smooth

density:
on,(r) _ l/y(i - I‘/|)n(l‘/)dr/ 27

g = , (26)

Jo 2 2
_ 20 1/6 2 v
=2 2 2
r—r
- Va(r)dr (28)
r — 1|
2
~ —ny(r). (29)
o

In the systems that we study, the density is not reasonably
smooth, but we can state empirically making this approxima-
tion nevertheless improves the predictions of our functional
g5, while at the same time reducing its computational cost
by avoiding the need to calculate any additional weighted
densities or convolutions.

D. Gross’s asymmetrically averaged correlation functional

One approximation for the correlation function is that
of Gross [7], which is of the asymmetrically averaged
variety (g?):

— l”—203nA(r)

Gross,A
o ’ (r) = 9
¢ [1—Zo3nam)]’

(30)
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where n4 is the averaged density defined in Eq. (8). This
formula is arrived at by using the density averaged over all
spheres that could be touching a sphere at point r in the
Carnahan-Starling equation for the correlation function at
contact, given in Eq. (23).

E. Yu and Wu’s symmetrically averaged functional

Yu and Wu developed a functional for the correlation
function evaluated at contact, which is symmetrically averaged
[8]. However, instead of using n as the corresponding density,
they use a density given by

nyu(r) = no(r)s (r) €29
c=1- Ilvz;;lm, (32)
n

where the function ¢ is ameasure of local inhomogeneity at the
point of contact and has the effect of reducing this density at
interfaces. Because of this difference, the correlation function
of Yu and Wu cannot be directly compared with g5 as defined
in Eq. (5). Therefore, in order to make a comparison, we move
the factors of ¢ in Eq. (31) from the density into the correlation
function itself,

gt =g (33)

2 1 l onyt i ozn%C
=¢ [1—n3+4(1—n3)2 72 (1 —n3)® |’ 34

where g;{“ is the correlation function as defined in Ref. [8],

and gY*S is the function we will examine in this paper.

IV. COMPARISON WITH SIMULATION

We performed a Monte Carlo simulation of the hard sphere
fluid to measure the contact value of the correlation function
for several simple inhomogeneous configurations. For each
configuration, we compute the mean density, and the contact
values of the correlation function, averaged as defined in
Egs. (7) and (5). We compare these with the functionals
presented in Secs. III B-III E. We constructed our functionals
using both the original White Bear functional [11] as well as
the mark II version of the White Bear functional [12], but the
results were essentially indistinguishable on our plots, so we
exclusively show the results due to the original White Bear
functional.

We simulate the inhomogeneous hard sphere fluid at four
hard-wall interfaces. The first and simplest is a flat hard wall.
We then study two convex hard surfaces. One is an excluded
sphere with diameter 2o, which corresponds to a “test particle”
simulation with one of a hard sphere at the origin with diameter
o . The second is an excluded sphere with diameter 60, which
demonstrates behavior typical of mildly convex hard surfaces.
Finally, we study a concave surface given by a hard cavity in
which our fluid is free to move up to a diameter of 160, which
demonstrates behavior typical of mildly concave surfaces. In
each case, we performed a low-density (filling fraction 0.1) and
high-density (filling fraction 0.4) simulation. We performed
additional computations over a wider range of curvatures and
densities but chose these as typical examples.

PHYSICAL REVIEW E 86, 061201 (2012)

A. Low density

We begin by presenting our low-density results, correspond-
ing to a filling fraction of 0.1, which are shown in Fig. 3. At
this low density, the contact value of the correlation function
in the bulk is only 1.3, indicating that correlations are indeed
small and that the fluid should be relatively easy to model.
Indeed, the contact density at the hard surface is only around
50% higher than the bulk, and the FMT predicted density is
close to indistinguishable from the true density for each of the
four configurations, as seen in the bottom subpanel of each
subfigure within Fig. 3.

The g2 correlation function in each configuration (plotted
in the top panel of each subfigure within Fig. 3) is very flat,
with only small, smooth changes as the surface is approached.
Our functional g2 very closely matches the Monte Carlo
predictions in each case, while that of Gross consistently
underestimates the correlation at the interface by a significant
margin. We note that the theoretical curves extend into the
region from which the fluid is excluded. This value corresponds
to the correlation function that would be observed in the
vanishingly unlikely scenario in which there was a sphere
present at that location. Naturally, we are unable to observe
this quantity in our Monte Carlo simulations.

The g5 correlation function (plotted in the middle panels
of Fig. 3) shows considerably more structure, as well as
additional variation due to the curvature of the hard surface.
The symmetric correlation function is nonzero at locations
where spheres may touch, which for a convex hard surface
means that g5 may be nonzero in the volume in which
hard spheres are excluded. In every configuration studied,
the agreement between the theoretical predictions and the
Monte Carlo simulation in each case is very poor in the
region where there should be no contacts at all. Because
nog is comparable to its bulk value in this region, this
means that these functionals predict a significant number
of contacts in the region where there should be none. The
correlation function of Yu and Wu [8] and ours, described in
Sec. III C, give similar results, with slightly larger errors in our
prediction.

B. High density

At ahigher density corresponding to a filling fraction of 0.4,
correlations are much stronger, with the bulk contact value of
the correlation function of 3.7, as seen in Fig. 4. This results
in larger oscillations in the density at the hard surfaces and
correspondingly more interesting behavior in the correlation
function near the interface, as shown in the bottom panels
of the plots in Fig. 4. The density predicted by the White
Bear functional agrees reasonably well with the simulation
results, although not so well as it did at lower density. The
discrepancies are largest in the case of the spherical cavity
[Fig. 4(d)], in which the DFT considerably underestimates the
range of the density oscillations.

The asymmetric version of the correlation function (plotted
in the top panels of Fig. 4) once again displays relatively
smooth behavior with a few small oscillations near the
interface and a somewhat elevated value within a diameter
of the hard surface, with the magnitude of this elevation
somewhat different in each configuration. As was the case
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FIG. 3. (Color online) Density and correlation function in systems with a “low-density” bulk filling fraction of 0.1. The subplots each show
a different system: (a) next to a flat hard wall, (b) around a hard sphere with an excluded diameter of 6o, (c) around a hard sphere with an
excluded diameter of 20, and (d) within a spherical cavity with an included diameter of 16¢. In the top and middle panels of each subfigure,
respectively, are the asymmetrically averaged correlation function g [defined in Eq. (7)] and the symmetrically averaged correlation function
g;f [defined in Eq. (5)]. The results of Monte Carlo, our functional, and one previously published functional [7,8] are compared in each case.
The bottom panels show the density computed with Monte Carlo and with DFT.

at low density, our correlation function g matches very
closely the Monte Carlo data, reproducing quite well the
structure near the interface in each configuration, although
in the spherical cavity there is a small but significant dis-
crepancy, comparable to the discrepancy found in the density
itself. In each case, the correlation of Gross dramatically

underestimates the correlation at the interface, at one extreme
by 40% in the case of the spherical cavity [Fig. 4(d)] and
at the other extreme by 15% in the test-particle scenario
[Fig. 4(c)].

The symmetrically averaged correlation function (plotted
in the middle panels of Fig. 4) shows considerably more

061201-5



SCHULTE, KREITZBERG, HAGLUND, AND ROUNDY

e, e - g7 this work

Ar ',\W**—«—m

E] A 1
% ol ngx — g5 MC |

S e—o g2 this work

r % % Gross |

0 : ; ; : ‘

8l s .

— g5 MC * = Yu and Wu

6 m

4

2

filling fraction
=
Ul

/a«:%ww
o : X
3c7 x7 1
x 7 A
- o — r5 MC
A e e g thiswork |
% % Gross
0 : ‘ ‘
LA
4,
3t _ 5
I 1 2 mC
aroox e o g5 this work |
. % > Yu and Wu
Py : : : : : : -
c ! — MCn
S ]
IS] -- DFTn
e
&1t
()]
£
0
25

PHYSICAL REVIEW E 86, 061201 (2012)

4 - m
3
D — 1"54 MC
< ol - |
o o ¢; this work
r % < Gross |
O 1 L L
4,
3+ v 1
. 3 — g5 MC
= 2 | . . 4
o | e o g5 this work
L X H
1.7 : * = Yu and Wu
0 | : : : : :
c — MCn
S 10l i
gl -~ DFTn
o
>
£

— gd MC 3
e o g2 this work
*x x Gross

10 — g5 MC % = Yu and Wu 1
o o g5 this work :

filling fraction

FIG. 4. (Color online) Density and correlation function in systems with a “high-density” bulk filling fraction of 0.4. The subplots each
show a different system: (a) next to a flat hard wall, (b) around a hard sphere with an excluded diameter of 60, (c) around a hard sphere with an
excluded diameter of 20, and (d) within a spherical cavity with an included diameter of 16¢. In the top and middle panels of each subfigure,
respectively, are the asymmetrically averaged correlation function g2 [defined in Eq. (7)] and the symmetrically averaged correlation function
g5 [defined in Eq. (5)]. The results of Monte Carlo, our functional, and one previously published functional [7,8] are compared in each case.
The bottom panels show the density computed with Monte Carlo and with DFT.

structure near the interface at high density, and this structure
varies considerably depending on the curvature of the hard
surface. In each case, this structure is not reflected in the
theoretical predictions, neither that of this paper, nor that of Yu
and Wu [8]. As was the case at low density, both functionals

give significant and finite values in the region in which there
are no contacts, but at high density they also miss the large
oscillations that are present near the flat wall and the concave
surface [Figs. 4(a) and 4(d)]. As was the case at low density,
the functional of Yu and Wu [8] gives slightly better agreement
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with the simulation results than that which we derive in
Sec. IIIC.

V. CONCLUSION

We investigated several approximations to the contact
value of the correlation function for inhomogeneous fluid
distributions corresponding to flat, concave, and convex walls.
We defined and simulated two averages of the correlation
function, an asymmetric A average centered at the location
of one of the two spheres that is in contact and a symmetric S
average centered at the point of contact of touching spheres.
For each average, we derived a functional form from FMT
and also found an approximation that has been used in
the literature. When compared with essentially exact Monte
Carlo simulations, the A correlation function derived from
fundamental measure theory in Sec. IIIB gives excellent
results for each surface, at both high and low density. The other
three approximations that we studied all showed significant
and systematic deviations under some circumstances. Thus,
we recommend that creators of SAFT-based classical density
functionals consider using the gZ functional defined in
Sec. III B.

APPENDIX

The expression for the asymmetric correlation function
g?(r) [Eq. (25)] involves the functional derivative g:g‘)
In this appendix we will explain how this derivative is

evaluated. We begin by applying the chain rule in the following

way:
J
8Aus _ / [Z SAps Sng(r )} " AD
8o (r) - dngy(r') éo(r)
This expression requires us to evaluate siA?:’) and 5(;’;((:)) The
former is straightforward, given Eqs. (10)-(12), and we will
write no more about it. The functional derivatives of the
fundamental measures, however, require a bit more subtlety,
and we will address them here.

We begin with the derivative of ns, the filling fraction, which
we will discuss in somewhat more detail than the remainder,
which are similar in nature. Because the diameter o (r) is the
diameter of a sphere at position r, we write the fundamental
measure n3(r’) as

n3(r/) — /i’l(l‘”) ® <0(;//)

where we note that o(r”) and n(r”) are the diameter and
density, respectively, of spheres centered at position r”. Thus,

—r - r”|> dr’, (A2)
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the derivative with respect to the diameter of spheres at position
ris
(Sl’l3(l'/) 1 f ' (I'”) / Z /7 /7
—_— 8 - 8(r —r")d
o) 2 n(r’) — =17 |8(r —r')dr
(A3)
= n(r)8[o(r)/2 — |r' —r|]. (A4)

This pattern will hold for each fundamental measure: because
we are seeking the change in free energy when spheres at
point r are expanded, the integral over density is eliminated.
To compute the correlation funtion g2, we convolve this delta
function with the product of the density and a local derivative
of ®(r):

§Aus / ad((r')

so(r) ) dns()
As we shall see, there are only four convolution kernels,
leading to four additional convolutions beyond those required
for FMT.

The functional derivative of n, introduces our second
convolution kernel, which is a derivative of the delta function:

Sny(r) 1 ,

= —n(r)é r)/2 —
5o () zn( )8 [o(r)/
The derivatives of the remaining scalar densities n; and ng
reduce to sums of the terms above:

dm(r')  n(r)

n()s(e/2 — |t —r))dr +---  (AS)

¥’ —r[]. (A6)

o (r) T Ano (l.)(S [o()/2 —|r' — 1]

- MRVS[“VZ—H-—n] (A7)

and
Sno(r) __n(®)
so(r) 2mo(r )25[ r)/2 —|r' —r|]
AL ,
B lo@)/2 =1 —rl].  (A8)
wo(r)?

The vector-weighted densities ny; and ny, give terms

analogous to those of n; and n;:
/

Sny,(r') 1 5 5 , r—r A9
o) _En(r) (o(r)/2—|r — 1'|)|r_ ol (A9)
Sny () n(r) -r
o) dno( )5( o(r)/2 —|r —l’|)| vl
()S(awz P L NN
7o (r)? r—r|

Thus, there are four convolution kernels used in computing

gg‘: one scalar and one vector delta function, and one scalar

and one vector derivative of the delta function.
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