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The authors analyze electromagnetic modes in multilayered nanocomposites and demonstrate that
the response of a majority of realistic layered structures is strongly affected by the nonlocal effects
originating from strong field oscillations across the system, and is not described by conventional
effective-medium theories. They develop the analytical description of the relevant phenomena and
confirm their results with numerical solutions of Maxwell equations. Finally, the authors use the
developed formalism to demonstrate that multilayered plasmonic nanostructures support high-index
volume modes, confined to deep subwavelength areas, opening a wide class of applications in
nanoscale light management. © 2007 American Institute of Physics. �DOI: 10.1063/1.2737935�

Nanolayered composites have been recently proposed to
serve as negative index systems, super- and hyperlenses,
photonic funnels, and other nanophotonic structures.1–11 The
typical thickness of an individual layer in these “artificial”
�meta�materials is of the order of 10 nm. Since this size is
much smaller than optical �or IR� wavelength, it is com-
monly assumed that the properties of the multilayered com-
posites are well described by the effective-medium theory
�EMT�.13,14 In this letter, we analyze the modes of realistic
multilayered structures and show that the conventional EMT
fails to adequately describe these modes due to the metama-
terial analog of spatial dispersion—strong variation of the
field on the scale of a single layer. We derive a nonlocal
correction to EMT, bridging the gap between metamaterial
and photonic crystal regimes of multilayered media, and use
numerical solutions of Maxwell equations to verify our re-
sults. Finally, we use the developed technique to identify
volume metamaterial modes confined to nanoscale areas.

While the formalism developed below is applicable to
the composites with arbitrary values of permittivities operat-
ing at different frequency ranges �UV, visible, IR, terahertz�,
here we illustrate our approach on the optical response of a
two-component plasmonic nanolayered composite, which
has been suggested for a variety of future beam steering and
imaging systems.3,4,11 The schematic geometry of such a
structure, containing alternating layers of materials with per-
mittivities �1 ,�2 and �average� thicknesses a1 and a2 is
shown in Fig. 1. In the analytical results presented below, we
mostly focus on the propagation of TM waves, which are
responsible for plasmon-assisted phenomena; and only
briefly discuss the implications for TE modes. It is straight-
forward to generalize the presented technique for hybrid
modes as well as for multicomponent structures. In the se-
lected geometry, x coordinate axis is perpendicular to the
plane defined by layer interfaces, while y and z axes are
parallel to this plane; the direction of z axis is chosen so that
the electromagnetic waves propagate in x ,z plane.

The majority of realistic designs of layered nanoplas-
monic structures3,4,11,12 rely on the metamaterial regime,
when the typical layer thickness is much smaller than the
free-space wavelength � so that surface plasmon polaritons

propagating on different metal-dielectric interfaces are
strongly coupled to each other. The optical properties of the
metamaterial structure in this strong coupling regime could
be related to some effective permittivities. The existence of
these effective parameters is important from both fundamen-
tal and applied standpoints. Thus, effective-medium descrip-
tion provides one with an insight into the physics behind the
optical response of the structure; it also significantly reduces
the computational efforts needed to simulate the electromag-
netic response of the system, simultaneously increasing the
accuracy of these simulations; finally, it can be easily utilized
to provide an important link between the properties of �easily
fabricatable� systems with a few layers, with the ones of
�more practical� macroscopic multilayered structures.

Apart from the wavelength, two more independent
length scales can be identified in the system—the one of the
typical layer thickness a�a1 ,a2, and the one of the typical
field variation L. Since the introduction of effective permit-
tivity �eff requires some kind of field averaging, indepen-
dence of L and � yields to a fundamental difference between
the metamaterial13 and “conventional” effective-medium14

responses of nanocomposites. As we show below, in nano-
plasmonic layered structures L�� so that �eff will have non-
local corrections.

As any optical system, the multilayered composite can
be described by the behavior of its resonant �eigen�modes.
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FIG. 1. Schematic geometry of a planar nanolayer-based metamaterial, sur-
rounded by two cladding layers.
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Each such mode is characterized by its effective modal index,
given by neff=kzc /�, with kz and c being the modal wave
vector and speed of light in the vacuum, respectively. An
arbitrary wave propagating through the system can be repre-
sented as a linear combination of different modes. Note that
when neff

2 �0 exceeds that of both cladding layers, the elec-
tromagnetic field of a mode is confined inside the layered
structure, which behaves like a waveguide.

To analyze the electromagnetism in the metamaterial, we
numerically solve three-dimensional Maxwell equations in
the layered geometry using the transfer matrix method. In
this technique, described in details in Ref. 15, the field in
each layer is represented as a combination of two �plane�
waves having the same dependence in z direction and propa-
gating in the opposite x directions, followed by the construc-
tion of a transfer matrix describing the collective response of
the multilayered structure. The modes of the metamaterial
are then related to the eigenvalues and eigenvectors of the
transfer matrix.

To understand the evolution of multilayered system be-
tween metamaterial and effective-medium regimes, we used
the transfer matrix techniques to identify the modes of a
200-nm-thick layered composite with perfectly conducting
cladding layers representing a waveguide with deep sub-
wavelength cross section. This technique allows us to control
the field variation in the direction perpendicular to the wave-
guide, and simultaneously enforce the “metamaterial condi-
tion” a1,2��=1.55 �m for all nanolayered structures in our
work.

We generated �100 ensembles of nanocomposites with
�1=−100 and �2�2 �Au/SiO2 composite�. In each en-
semble, we fixed the total thickness of the composite
h=200 nm, total concentration of metal, and randomly var-
ied thickness of individual metal layers. The variation in
layer thickness was about �10% of average thickness. The
idea behind the ensemble generation is twofold. First, we
aim to understand the response of realistic multilayered sys-
tems, where the total number of layers is relatively small;
second, this approach gives us the opportunity to assess the
tolerance of the composite properties with respect to fabrica-
tion defects.

The profiles of several eigenmodes are shown in Fig. 2.
Note that the field across an individual layer is exponential
rather than oscillatory in nature, so that high-precision arith-
metic is required to find the accurate numerical solution of

Maxwell equations. As the number of layers is increased
�and correspondingly the thickness of an individual layer is
decreased�, the field distribution in the system converges to
the one of the mode in a waveguide with homogeneous core.
Therefore, in this regime the behavior of a multilayered com-
posite is essentially identical to the behavior of a uniaxial
anisotropic system with effective permittivity tensor �eff,
given by �D��=��	

eff �E	�, with Greek indices corresponding
to Cartesian components and � � being the average over the
multilayer subwavelength area.14 Due to axial symmetry,
�eff is diagonal, its optical axis coincides with x, and
�y

eff=�z
eff	�yz

eff.
The dispersion relations of the TM and TE waves propa-

gating in such a metamaterial,11
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respectively �as noted above, ky =0�.
We calculated waveguide modes for each composite in

an ensemble. The results of our numerical solutions of Max-
well equations and their comparison to conventional EMT
�Ref. 14� with
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are summarized in Fig. 3. It is clearly seen that similar to
what has been shown for fiber geometry in Ref. 6, the planar
multilayered composite supports highly confined volume
modes. It is also seen that while the response of all structures
in a single ensemble is very alike, and therefore the introduc-
tion of effective permittivity is justified, conventional EMT

FIG. 2. �Color online� Transfer matrix method �solid lines� and EMT
�dashed lines� calculations of Ez field of TM1 ��a� and �b�� and TM2 ��c� and
�d�� modes for metal �white�-dielectric�yellow� composites with Nl=10 ��a�
and �c�� and 20 ��b� and �d�� layers. FIG. 3. �Color online� Effective refractive index of waveguide modes as a

function of number of layers in the core region Nl=2h / �a1+a2�, calculated
using transfer matrix method �dots�, “conventional” EMT �dashed lines�,
and the “non-local EMT” derived in this work �solid lines�, for h=200 nm
waveguide with perfectly conducting ��a� and �b�� and air ��c� and �d��
claddings; a1=a2 /3 ��a� and �c��; a1=a2 ��b� and �d��; top panels correspond
to 
1=−100; size of black bars correspond to standard deviation in neff as
determined from our numerical simulations; bottom panels represent
Au–SiO2 composite with 
1=
Au=−114.5+11.01i.
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fails to describe the behavior of majority of realistic nano-
layered composites. A reasonable agreement is present only
when the number of layers Nl=2h / �a1+a2� is very large.
Note that the EMT does not work despite the fact that the
condition a1,2�� is met.

The origin of this effect lies in a strong variation of the
fields on the scale of a single layer, clearly visible in Fig. 2.
Similar to the strong field variation on the subatomic scale
that yields nonlocal corrections to permittivities of homoge-
neous materials,14 the scale separation L�� introduces non-
locality into �eff. Note that in contrast to the case of nonlocal
response in homogeneous structures, the microscopic �layer-
specific� field in metamaterial can still be described by “lo-
cal” �1,2; “effective” nonlocality is present only in the effec-
tive permittivity.

To find the nonlocal correction to the EMT, we start
from the layered metal-dielectric structure where all metallic
and all dielectric layers have the same thickness �a1 may be
still different from a2�. In this limit, the system essentially
becomes a one-dimensional photonic crystal �PC�. The dis-
persion of the modes of this case can be related to the eigen-
value problem for two-layer transfer matrix, yielding16

cos�kx�a1 + a2�� = cos�k1a1�cos�k2a2�

− � sin�k1a1�sin�k2a2� , �3�

where the polarization-specific parameter � is given by
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and k1,2
2 =�1,2�2 /c2−kz

2.
The conventional EMT regime �Eq. �2�� can be obtained

from Eq. �3� through the Taylor expansion up to the second
order in �k1a1��1; �k2a2��1; �kx�a1+a2���1 �see, e.g.,
Ref. 11�. Expanding the PC dispersion equation up to the
next nonvanishing Taylor term yields series of modes with
dispersion given by Eq. �1� and effective permittivities,
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where the nonlocal corrections are given by
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Note that since the components of the wave vector are re-
lated to each other via Eq. �1�, the choice of kx and � /c as
opposed to kz or ky �in Eq. �6�� is somewhat arbitrary and
primarily depends on the geometry. Here we use kx=2�j /h
and � as independent variables for jth mode.

The agreement between the nonlocal EMT with results
of numerical solutions of Maxwell equations is shown in
Fig. 3. It is clearly seen that Eq. �5� perfectly describes the
behavior of lower-order modes. The agreement tends to
worsen for neff�1, where �k ·a��1. To confirm that cladding
regions and material absorption have weak effect on nonlo-

calities, we have also simulated the modes of realistic
Au–SiO2 structures with vacuum cladding regions. The re-
sults of these simulations and their comparison to our non-
local EMT are shown in Figs. 3�c� and 3�d�.

An important note is that “real” parameter behind the
validity of effective medium response is �k ·a��1. In major-
ity of all-dielectric nanostructures ��1,2��1 or �kxc /���1,
and this parameter is identical to the commonly used crite-
rion a��. For the high-index TM modes in metal-dielectric
systems, the spatial dispersion provides a significant correc-
tion to the quasistatic EMT results. The effective nonlocality
will be present for all-dielectric materials provided that
�
1,2��1. Similar effect has been recently discovered for
microwave17 and optical18 nanowire structures.

To conclude, we have demonstrated that conventional
EMT fails to adequately describe the optical properties of
multilayered metal-dielectric metamaterials. We identified
strong variation of the field to be the cause of this disagree-
ment and derived an analytical correction to incorporate non-
local effects into EMT. We have also demonstrated that mul-
tilayered structures support high-index modes confined to
spatial areas as small as � /8. Our results, illustrated here for
TM waves in two-component optical structures, can be used
to design nanoguiding systems and to provide an efficient
link between the properties of realizable few-layer structures
and their multilayered macroscopic counterparts. The pre-
sented techniques are directly applicable to UV, IR, or tera-
hertz metamaterials and can be generalized to hybrid �HE,
EH� waves and to multicomponent systems involving aniso-
tropic materials using techniques of Ref. 15.
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