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IMPLICIT DEGENERATE EVOLUTION EQUATIONS AND
APPLICATIONS*

EMMANUELE DI BENEDETTOt AND R. E. SHOWALTER$

Abstract. The initial-value problem is studied for evolution equations in Hilbert space of the general
form

d
se(u)+ N(u) l:,

dt

where and are maximal monotone operators. Existence of a solution is proved when 1 is a subgradient
and either is strongly monotone or 9 is coercive; existence is established also in the case where 1 is
strongly monotone and is subgradient. Uniqueness is proved when one of or is continuous self-adjoint
and the sum is strictly monotone; examples of nonuniqueness are given. Applications are indicated for various
classes of degenerate nonlinear partial differential equations or systems of mixed elliptic-parabolic-pseudo-
parabolic types and problems with nonlocal nonlinearity.

1. Introduction. Let and 3 be maximal monotone operators from a Hilbert
space V to its dual V*. Such operators are in general multi-valued and their basic
properties will be recalled below. We shall consider initial-value problems of the form

(1.1) deg(u) + (u) f, egu(O) vo,
dt

where f
is a compact operator from V to V*. In applications to partial differential equations this
assumption limits the order of the operator to be strictly lower than that of . Both
operators will be required to satisfy boundedness conditions, and one or the other is
assumed to be a subgradient.

The objective of this work is to prove existence of a solution of (1.1) when
are possibly degenerate. Observe that we must in general assume some condition of
coercivity on the pair of operators. T.o see this, we note that if one of them is identically
zero then (1.1) is equivalent to a one-parameter family of "stationary" problems of the
form M(u (t)) F(t), whereM is maximal monotone. But ifM is, e.g., a subgradient in a
space of finite dimension, it is surjective only if it is coercive. Thus it is appropriate to
assume that at least one of or is coercive. In accord with this remark our work will
proceed as follows. First we replace by the coercive operator s + e, where e > 0
and V V* is the Riesz isomorphism determined by the scalar product on V, and we
solve the initial-value problem for the "regularized" equation

d
(1.2) d-- (g + eY)(u) + (u)

Here we may take e 1 with no loss of generality and we make no coercivity
assumptions on either or . Next we assume is coercive and let e 0+ in order to
recover (1.1) with (possibly) degenerate . Since is of the same order as this
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732 E. DI BENEDETTO AND R. E. SHOWALTER

regularization is analogous to the Yoshida approximation. The operator is assumed
to be a subgradient in the above. Finally, we show the initial-value problem can be
solved for (1.2) when Y3 (but not necessarily 4) is a subgradient.

We mention some related work on equations of the form in (1.1). The theory of
such implicit evolution equations divides historically into three cases. The first and
certainly the easiest is where 5o-1 is Lipschitz or monotone in some space [6], [23].
The second is that one of the operators is (linear) self-adjoint, and this case includes the
majority of the applications to problems where singular or degenerate behavior arises
due to spatial coefficients or geometry [2], [25]. These situations are described in the
book [9] to which we refer for details and a very extensive bibliography. The third case is
that wherein both operators are possibly nonlinear. This considerably more difficult
case has been investigated by Grange and Mignot [12] and more recently by Barbu [4].
In both of these studies a compactness assumption similar to ours is made. Our
boundedness assumptions are more restrictive than those in the papers above, but they
assume f is smooth and that both operators are subgradients. By not requiring that 5 be
a subgradient in (1.1) we obtain a significantly larger class of applications to partial
differential equations, especially to systems.

Our work is organized as follows. In 2 we recall certain information on maximal
monotone operators and then state our results on the existence of solutions of the
initial-value problems (1.1) and for (1.2). The proofs are given in 3 and 4. Section 5
contains elementary examples of how nonuniqueness occurs, and we show there that
uniqueness holds in the situation where one of the operators is self-adjoint. Section 6 is
concerned with the structure and construction of maximal monotone operators
between Hilbert spaces which characterize certain partial differential equations and
associated boundary conditions. These operators are used to present in 7 a collection
of initial-boundary-value problems for partial differential equations which illustrate the
applications of our results to the existence theory of such problems.

2. Preliminaries and main results. We begin by reviewing information on maxi-
mal monotone operators. Refer to [1], [3], [11] for additional related material and
proofs. Then we shall state our existence theorems for the Cauchy problem (1.1).

Let V be a real Hilbert space and A a subset of the product V V. We regard A as
a function from V to 2v, the set of subsets of V, or as a multi-valued mapping or
operator from V into V; thus, fA(u) means [u,f]A. We define the domain
D(A) {u V: Au nonempty}, range RE(A U{Au: u e V} and inverse A-(u)=
{v V: u A(v)} ofA as indicated. The operatorA is monotone if (fl f2, u u2) v --> 0
whenever [uj, f.]e A for f 1, 2. This is equivalent to (I + &A)-1 being a contraction for
every > 0. We call A maximal monotone if it is maximal in the sense of inclusion of
graphs. Then we have a monotone A maximal monotone if and only if Rg(I + hA) V
for some (hence, all) > 0. If A is maximal monotone we can define its resolvent
Jx -(I + &A)-, a contraction defined on all V, and its Yoshida approximation Ax
,-a(I-Jx), a monotone Lipschitz function defined on all V. For u e V we have
Ax(u)A(Ja(u)). We denote weak convergence of xn to x by xn---x.

LEMMA 2.1. LetA be maximal monotone, [x,, y, A for n >-_ 1, x x, y, y and
lim inf (yn, x,) v --< (y, x) v. Then Ix, y A. Ifin addition lim sup (yn, x)v --< (y, x) v, then
(y,, x,) v (y, x) v. We observe that A induces on L(0, T; V) a maximal monotone
operator (denoted also by A) defined by v cA(u) if and only if v(t)A(u(t)) for a.e.
t[0, 7"].

A special class of maximal monotone operators arises as follows. If q: V (-, ]
is a proper, convex and lower semicontinuous function, we define the subgradient
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0qc Vx V by

Oq(x)={z V: o(y)-q(x)-> (z, y-x)for all y V}.

The operator Oq is maximal monotone. Furthermore it is useful to consider the convex
conjugate of o defined by

q*(z)-=sup {(z, y)v-q:(Y), Y e V}.

The following are equivalent: z Oq(x), x Oo*(z), and p(x)+q*(z)=(x,z)v; thus
0q* is the inverse of 0q. We mention the following chain rule [1]. Let Ha(0, T; V)
denote the space of absolutely continuous V-valued functions on [0, T] whose deriva-
tives belong to L2(0, T; V).

LEMMA 2.2. I ueHa(O, T; V), vL2(0, T; V) and [u(t)v(t)]Oq for a.e.
e [0, T], then the function t- q(u(t)) is absolutely continuous on [0, T] and

d
d-- p(u(t))= (w, u’(t)v), all w Oq(u(t)),

for a.e. [0, T].
There is a version of a monotone operator from V to its dual space V* which is

equivalent to the above through the Riesz map :V- V*. Thus, c V V* is
monotone if and only if A ---Y-lo is monotone in V V and maximal monotone if
and only if Rg(5 + sO)= V* in addition. We shall use these two equivalent notions
interchangeably. Our applications to partial differential equations will lead to opera-
tors on V V*. Also the subgradient is naturally constructed in the W- W* duality of
a Banach (or topological vector) space W. Finally we cite the following chain rule.

LEMMA 2.3. Let V and W be locally convex spaces with duals V* and W*. Let
A:V W be continuous and linear with dual A*: W* V*. If q: W (-o, o] is
proper, convex and lower semicontinuous then so also is q A: V (-, ], and if q is
continuous at some point of Rg(A) we have [11]

O(q oA) A*o0q: oA.

Our results on the existence of solutions of the Cauchy problem (1.1) are stated as
follows.

THEOREM 1. Let W be a reflexive Banach space and V a Hilbert space which is
dense and embedded compactly in W. Denote the injection by i" V- W and the dual
(restriction) operator by i* W* V*. Assume the following:

[Aa] The real-valued q is proper, convex and lower semicontinuous on W, continu-
ous at some point of V, and Oq i: V W* is bounded.

[Ba] The operator 9: V- V* is maximal monotone and bounded. Define sg =-
i*oOqoi. Then for each given fL(O, T; V*) and [Uo, Vo]S4 there exists a triple
u e Ha(0, T; V), v Ha(0, T; V*), and w L2(0, T; V*) such that

d
(2. la) d--- (u(t) + v(t)) + w(t) f(t),

(2.1b) v(t) sg(u(t)), w(t) Y(u(t)), a.e. [0, T],

(2.1 c) 9u (0) + v (0) 9Uo + Vo.

THEOREM 2. In addition to the above, assume:
[A] Opoi:L(O, T; V)L(0, T; W*) is bounded.
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[B2] :L2(0, T; V) L2(0, T; V*) is bounded and coercive, i.e.,

lim o v(t)(u(t)) dt= +.
[u,v]

Then foreach given fL2(O, T; V*) and Vo Rg() there exists a triple u 6 L2(0, T; V),
v Ha(0, T; V*), w L2(0, T; V*) such that

d
(2.2a) dS v(t) + w(t) (t),

(2.2b) v(t) (u(t)), w(t) (u(t)), a.e. [0, T],

(2.2c) v(0) vo.

Remarks. From Lemma 2.3 it follows that =0(lv) where ely oi is the
restriction of to V. Since : V V* is bounded it follows that D()= V; hence,

v =D() = dom () = W,

and is continuous on the space V. Also, since (0) < we may assume with no loss of
generality that (0) 0 and thus *(z)0 for all z V.

From the compactness of i* W* V* it follows that : V V* is compact, i.e.,
maps bounded sets into relatively compact sets.

Since is bounded and maximal monotone we have D() V. It is important for
our applications that we .have made no assumptions which directly relate and .
Specifically, we do not compare (x) and (x) in angle or in norm.

Finally, we give a variation on Theorem 1 in which only the second operator is a
subgradient. The compactness assumption on is retained.

THEOREM 3. Let the spaces V and W be given as before. Assume the following:
[m3] The operator: V V* is maximal monotone with Rg() W* and: V

W* is bounded.
[B3] The real-valued is proper, convex and lower semicontinuous on V and
0: V V* is bounded.
Then for given f6L2(O,T; V*) and [Uo, Vo] there exists a triple u

Ha(O, T; V), v H(O, T; V*) and w L2(0, T; V*) satisfying (2.1).

3. Proofs oi Theorem 1 and Theorem 3. These proofs are very similar; let us
consider first Theorem 1. We formulate (2.1) in the space V. Set A -o, B
-o, etc., and consider the equivalent equation

d
(3. la) d(U(t)+v(t))+ w(t)=(t),

(3.1b) v(t)eA(u(t)), w(t)eB(u(t)), a.e. re[0, T].

Let A > 0 and consider the approximation of (3.1) by

d
(3.2a) d- (ux (t) + vx (t)) + Bx (ux (t)) f(t),

(3.2b) vx(t)A(ux(t)), t6[0, T].

Since (I + A)-1 and B are both Lipschitz continuous from V to V, (3.2) has a unique
absolutely continuous solution ux with ux (0) + v (0) Uo + Vo. Since (I + A)-I is a
function, we have ux (0)= Uo and vx (0)= Vo.
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We derive a priori estimates on ux. Take the scalar product in V of (3.2a) with ux (t)
and note

d
(v’ (t), u (t)), - *(v

by Lemma 2.2, where q* is the conjugate of qlv in V. Integrating the resulting identity
gives

1 .Ilu (t)[I]+ (v (t))

-<-Iluoll,/ *(,o) / (ll(s)llv / IIB (0)ll,)llu (s)llv ds, 0 < <= T.
2

Since {Bx (0)} is bounded bythe fact that 0 D(B), q* ->0 and fG L2(0, T; V), we have
proved the first part of the following lemma.

LEMMA 3.1. The following are bounded independent of )t > 0:

(b) [lull=0,;,,), IIvll
Proof. The second and third terms of (a) are bounded because the operators

1: V W* and Jx -= (I + 1B)-1 V V are bounded. Since Bx (ux) B (Jx (ux)) and B is
bounded, the last term in (a) is bounded.

To obtain (b) we take the scalar product of (3.2a) by u’x(t), note that (v’(t),
u’ (t))v >= 0 by (3.2.b) and the monotonicity of A, and thereby obtain

Ilu (t)llv--< (llf(t)ll v / liB. (u. (t)llv)llu’

so we bound the first term in (b). The second follows from (3.2.a).
Note that we have {Ytvx} bounded in LZ(0, T; W*) and {Ytv[} bounded in

L2(0, T; V*). Since W* is compact in V* it follows from 1-17, p. 58] that {Ytvx} is
(strongly) relatively compact in LZ(0, T; V*). From this observation and Lemma 3.1 it
follows that we may pass to a subsequence, again denoted by ux, vx, for which we have

(3.3a) ux u, Bx (ux) w, ux u

’v’ inL2(0, T" V),(3.3b) vx v (strongly), vx

(3.3c) ux(t)---u(t) and vx(t)-v(t), allt[0, T].

Since ux -Jx (ux) ABx(ux)O there follows

(3.3d) Jx (ux) u in L2(0, T; V).

It remains to show that u, v, w satisfy (3.1) and the initial condition. First we use
(3.3a) and (3.3b) and Lemma 2.1 to obtain v cA(u). Next we take the scalar product of
(3.2a) with any x e V and integrate to get

(ux(t)+va(t),x)v+ (Bx(ux(s)),x)vds= (f(s),x)vds+(uo+vo, x)v.

Taking the limit as A 0 gives (since x is arbitrary)

u(t)+v(t)+ Io (w-f) ds uo+vo, O<=t<= T.
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From this identity we obtain (3.1a) and u(0)+ v(0) Uo+Vo; since v(O)A(u(O)) and
(! + A)-1 is a function we have u(0) Uo. In order to show w B(u), and thereby finish
the proof of Theorem 1, it suffices by Lemma 2.1 to show

lim sup (Bx(ux),J,(ux)-u)(o,7-;v<-O.

We note further that

(B(ua),J(ux))= (Bx(ux),Jx(ux)-u)+(B(ux), ux)

=-,(Bx(ux),Bx(ux))+(Bx(ux), ux)

so it suffices to show

(3.4) lim sup (Bx (ux), u U)L2(O,T;V) O.

By (3.2a) it follows (3.4) is equivalent to

(3.5) lim inf (u +v, u- u)(o.r;v-> 0.
AO

Define O(x)- 1/211xll+ q,(x), x g so that 0, I +0q. From (3.2b) and Lemma 2.2
we obtain

d
(ui(t)+vi(t), ux(t))v=- q*(ux(t)+vx(t)),

and integrating yields

(ux +vx, ux)L2(o.7;v) (ux(T)+vx(T))-*(Uo+Vo).

Similarly we have from (3.1a)

’, *(u(T) + v(T))- *(Uo + Vo)(u’+v u)(o,r;v

By (3.3c) and weak lower semicontinuity of * we have

O*(u(T)+v(r))<-lim inf O*(ux(T)+vx(T)),
hO

and our preceding calculations show that this is equivalent to (3.5).
Remark 3.1. From Lemma 2.1 we find that

(Bx (ux), Jx (ux))L2(o,r;v)- (w, u)(o,r;v.

If we also have B (or Y3) strongly monotone then we can take the limit in the estimate

2(B (u w, J (u u =(o,; v) >- cllJ (u u II=o,;v)

to conclude that {Jx (ux} and {ux} converge strongly to u in LZ(0, T; V).
Remark 3.2. It is clear that we actually have v(t)A(u(t)) for every t[0, T].
The proof of Theorem 3 closely follows the preceding pattern. That is, formulate

(2.1) as the equivalent initial value problem for (3.1) and approximate this by (3.2) with
ux (0) + vx (0) u0 + Vo for each X > 0.

To derive a priori bounds we take the scalar product of (3.2a) with u’(t) and
integrate to obtain

T T

(3.6) Io Ilu’xllv+O(u(T))<=O(u)+Io (f(t),u’x(t))vdt.
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Here 0h is the Yoshida approximation of 0. We may assume , is nonnegative and the
same holds for 0, so we have the first part of the following.

LEMMA 3.2. The following are bounded independent of A > 0:

(b) II’IIL,O,T;V),

Proo[. The bound on the first two terms in (a) follow from (3.6) and the remaining
terms in (a) are bounded by [A] and [B3]. Next we take the scalar product of (3.2a) with
v’ (t), and obtain (b) as was done in Lemma 3.1.

We may pass to a subsequence satisfying (3.3) and we obtain as in Theorem 1 the
triple u, v, w satisfying the equation (3.1a) and initial condition and v(t)Au(t),

[0, T]. It remains to show w B(u) and this is equivalent to showing (cf. (3.5))

(3.7) lim inf (u + vx, UX)L2(O,r;V) >--_ (U + V’, U)L2(O,T.V).,0
Since U[ L2(0, T; V) we may integrate by parts to compute

+(vx(T), ux(T))v-(Vo, Uo)

and similarly, since u’e L2(0, T; V),

(u /v u)=(o,;v)-1/2(liu(T)ll-Iluoll)-(v, u ) (o,;v)
(3.8b)

+(v(T), u(T))v-(Vo, Uo)v.

Finally we observe that (3.7) follows immediately from (3.3) and (3.8).
Remark 3.2. If in addition B is strongly monotone, then {ux } converges strongly to

u in L2(0, T; g).

4. Proof of Theorem 2. Choose uoA-l(Vo). For each A >0 let u, v
Hi(0, T; V), w L2(0, T; V)satisfy

(t) + v’ (t) + wx (t) f(t),(4.1a) Au

(4. lb) vx (t) A(ux (t)), wx (t) B(ux (t)), a.e. e [0, T],

(4. lc) Aux (0) + vx (0) AUo + Vo.

The problem (4.1) has a solution by Theorem 1, and our plan is to show that we may
take the limit as A 0 in (4.1) to obtain a solution u, w e L2(0, T; V), v e Hi(0, T; V) of

(4.2a) v’(t) + w(t) f(t)

(4.2b) v(t)A(u(t)), w(t)B(u(t)), a.e. t[0, T],

(4.2c) v(0) v0.

With our notation A -oM, etc., (4.2) is equivalent to (2.2).
We proceed to derive a priori estimates. Consider first the initial condition. Since

(AI + A)-a is a function it follows from (4.1c) that

(4.3) u (0) Uo, v (0) Vo, A > 0.
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(a)

(b)

LEMMA 4.1. The following are bounded independent of > 0:

Proof. Take the scalar product of (4.1a) with ux (t) and integrate to obtain

(4.4) - ][ux (t)]lv+ q va (t)) + (wx, Ua)v

’ Io-<-Iluoll/,*(vo)/ (I; u)v,
-2

O<=t<_T.

We drop the second (nonnegative) term in (4.4) and note by the monotonicity of B that
(wx, u)v >= (, Ux)v for some B(0). Thus (4.4) gives

T

(W, u)v <=llfllo,T;>llullO,T; / c,

and the coercivity of B implies the boundedness of the first term in (a). The second now
follows from (4.4) and now part (b) follows from our assumptions fAll and [B1].

LEMMA 4.2. The following are bounded independent of , > 0:

live’ La0.T; v>, IIu L20,T; v>

Proof. Take the scalar product of (4.1a) with v (t). Since (u’ (t), v’ (t))v >=0 bythe
monotonicity of A, we obtain

IIv i (t)l[ ],--< (lift t)ll / IIw (t)ll v)llv i (t

from which the first bound is immediate. To obtain the second we take the scalar
product of (4.1a) with u (t) and drop the nonnegative term (u’ (t), v’ (t))v. This gives

Ilu i (t)[["-< (llflt)ll v / IIw (t)llv)llu i (t)l[ v,
and hence the desired bound.

We have now shown that {Yv} is bounded in L2(0, T; W*) and that {Yv[} is
bounded in LZ(0, T; V*). Since W* is compact in V* it follows that {vx} is strongly
compact in L2(0,,T; V*). From this observation, Lemma 4.1 and Lemma 4.2 it follows
we may pass to a subsequence (which we denote again by {ux}, {vx}, {w}) for which in
L2(0, T; V) we have

L/ t/ WA W VA V) V A V

Note that ,ux 0 and it follows that Au x 0 by standard arguments. Furthermore, we
may assume v(t) v(t) in V for all [0, T] by equicontinuity of {vx}, and similarly
Aux (t) 0 in V for all [0, T].

It remains to show that the triple u, v, w obtained above constitutes a solution of
(4.2). Let x V, take the scalar product of x with (4.1a) and integrate to obtain

i0 i0(Xu(t)+v(t),x)v+ (w(s),x)= (f(s),x)vdS+(Uo+Vo, X).

Since weak convergence in L2(0, T; V) implies weak convergence in L:(0, t; V) letting
A 0 gives that

(v(t),x)v+ (w(s),x)vds= (f(s),x)vds+vo, xV, t[0, T].
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That is,

v(t)+Io w(s)ds= fof(S)ds+vo, a.e.t[0, T],

and this implies (4.2a) and (4.2c). From Lemma 2.1 there follows v A(u) so it remains
only to establish w B(u). For this it suffices by Lemma 2.1 to show

(4.5) lim sup (wx, UX)L2(O,T;V) (W, LI)L2(O,T;V).
h0

In order to prove (4.5) we first note by (4.1a) and (4.2a) that it is equivalent to

> (v’, U)L2(O,(4.6) lim inf (/Uh -[-VX, Llh)L2(O,T;V) T;
h0

Since ux (t) A-a(vx (t)) &p*(vx (t)) a.e. on [0, T], where q* is the conjugate of qlv, we
obtain from Lemma 2.2

A
*(vx (r))

A ,(Au /, u)=O,T;V=-llu(T)ll/ -lluoll- (o)

_-> q*(vx(T))- Iluoll
Similarly we compute

(v’, U)C2(0,T;V q*(v(T))-q*(Vo).

Since {v } are equi-uniformly-continuous we have vx (t) --> v(t) at every [0, T], so the
lower semicontinuity of q* gives

lim inf o*(vx(T))>=q*(v(T)).
A0

In view of the preceding computations this is exactly (4.6).
Remark 4.1. If B is strongly monotone then {ux} converges strongly to u in

L2(0, T; V).

5. Remarks on uniqueness. We first present an example which shows that gross
nonuniqueness of solutions of (1.1) can occur, even if both operators are strongly
monotone subgradients. Moreover the nonuniqueness occurs in each term of the triple
u, v, w, not just in the latter two terms selected, respectively, from A(u) and B(u). Next
we shall show that uniqueness does hold for (1.1) when at least one of the operators is
continuous, linear and symmetric and the sum of the operators is strictly monotone. Our
last example shows that symmetry of the linear operator is essential.

Example 1. Let V W R, the space of real numbers, and define

where
A(s)=B(s)=s+H(s-1),

r>0,

H(r) [0, 1], r O,

0, r<0

denotes the Heaviside function and f= 0. Consider the initial-value problem (1.1),
which takes the form

(5.1)
v’(t)+w(t)=O, v(0) 2,

v(t)- u(t) e H(u(t)- 1), w(t)- u(t) H(u(t)- 1).
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Let g be any maximal monotone graph or continuous function from R to R such that
g(s) s for s [1, 2] and g(s) c [1, 2] for s [1, 2]. Then, if v is a solution of

(5.2) v’(t) + g(v(t)) O, >--_ O, v(O) 2,

it follows that with u(t)=-A-(v(t)) and w(t)---v’(t) we have a solution of (5.1). This
procedure yields an abundance of solutions.

We display some special cases of the above. Pick c [, 1] and define g to be the
maximal monotone graph such that g(t) {c-}, (1, 2), and g(t) {t}, t [1, 2]. The
corresponding solution v of (5.2) is given by

Vc(t)=2 -t, 0<t<c, v(t)=e c-’ t>=c.

With the two functions u and w given by

u(t) 1, w(t) =-1 for 0-< < c,

Uc(t)=w(t)=e-t, t>=O,

this provides a continuum of solutions of (5.1).
We can give the following elementary sufficient conditions for uniqueness to hold

for (1.1) or, equivalently, for (4.2).
THEOREM 4. Let A and B be monotone operators on a Hilbert space V. Suppose

A +B is strictly monotone and that one ofA or B is continuous, linear and symmetric.
Then ]:or each function f: [0, T] V and Vo V there is at most one solution u, v, w of
(4.2).

Proof. Suppose A is continuous, linear and symmetric. For ] 1, 2 let u., v, w. be a
solution of (4.2). Take the scalar product of the difference of (4.2a) with u-u2 to
obtain

1 d
---(A(u(t)-u2(t)), u(t)-ua(t))v+(W(t)-w2(t), u(t)-u2(t))v=O.
2 dt

Integrating this identity and using (4.2c) gives

l(A(ua(t) u2(t)),Ul(t) u2(t))V+fo(W W2,/,/1 Uz)vds O, 0<t<T,
2

and this implies

aua(t) auz(t), (w(t)- w2(t), ua(t)- Uz(t))v 0 a.e. [0, T].

Since A +B is strictly monotone we have ux(t) Uz(t); hence va(t) Au(t) Au2(t)
v2(t) and, by (4.1a), Wl(t)= w2(t) a.e. on [0, T].

Suppose now B is continuous, linear and symmetric. Starting with two solutions as
above we integrate the corresponding equations (4.2a) to obtain

(5.3) vi(t)+B(Oi(t)) Vo+ f, j= 1, 2,

where Oi(t) o ui. Taking the difference of (5.3) for f 1, 2, then the scalar product with
0 -0 and integrating gives us

Io zl(5.4) (Ol-/)2, 0-O)v+-(B(O(t)-Oz(t)), 01(t)-O2(t))v=O.
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Since v.(t) A(O(t)) a.e., each term is nonnegative. It follows that B(O(t)-O2(t))- 0
on [0, T], and thus from (5.4) that

(Vl(t)--v2(t), ul(t)--U2(t))v--O a.e. t[0, T],

so the desired results follows by strict monotonicity of A + B.
Finally we cite an example to show that the symmetry condition cannot be

eliminated from Theorem 4.
Example 2. Let Hi(0, 1) be the Sobolev space of those absolutely continuous

functions on the interval (0, 1) whose first derivatives belong to L2(0, 1); set V
{vHl(0,1)’v(1)=0} and note that VL2(0,1)cV*. Define ’VV* by
sO(v) -v’. Clearly is linear and we have

(v)(v)-- v’vds--lv(O) cO,

so is monotone. Let/3 be given by

r
r<0or r> 1

/3(r)
r2-, 0 <_-- r _--< l,

and define " V V* by

(u)(v) Io (u’(s))v’(s) ds, U, vEV.

It is easy to check that is a strictly monotone subgradient on V.
Consider the Cauchy problem

d
s4(u) + 9(u) 0, 4u(0) -1(5.5)

with the above operators. A solution u of (5.5) is a weak solution of the initial-
boundary-value problem

(5.6a)

(5.6b)

(5.6c)

(--Ux)t--((Ux))x -"0, O<x < 1,

Ux(O,t)=u(1, t)=O,

--Ux(X,O)----1,

0< t,

where the subscripts denote partial derivatives. Consider the following two functions:

2 2
X +

(1)(X, t) 2t
-1, 0<x<t<l,

0<t<x <1,

u(2)(x, t)= fI- 1,

--1, O<<x<l, t<l.



742 E. DI BENEDETTO AND R. E. SHOWALTER

It is a straightforward computation to check that both u (1 and//(2) are solutions of (5.6),
hence, both are solutions of (5.5). Note that the only condition of Theorem 4 not met in
this example is the symmetry of s4. It shows also that being a subgradient is not a
satisfactory substitute for 5 to be continuous and self-adjoint.

6. Construction of differential operators. We have been discussing evolution
equations which contain a pair of nonlinear operators from a Hilbert space V to its dual
V*. In our applications the generalized solutions obtained in our theorems may satisfy
natural or variational boundary conditions (e.g., of Neumann type) which are implicit in
the functional identity

d
eg(u(t))+ Y3(u(t))f(t)(6.1) d-

in V*. Such boundary conditions are classically recovered by Green’s formula so we
shall describe an appropriate extension of this formula which requires a minimum of
regularity of the generalized solution. The objective is to resolve each term in (6.1) into
two parts, a differential operator in distributions over a region , the formal operator,
and a constraint on the boundary F, the boundary operator. Then we briefly recall basic
facts on Sobolev spaces and construct a rather general nonlinear operator Y3 which will
be used in the next section to illustrate theorems in some examples of initial-boundary-
value problems.

Assume we are given a linear surjection y" V --> T, called a "trace" operator, which
is a strict homomorphism onto its range T, called "bound,ary values" of V. Let V0 be the
kernel of y and note that the dual operator, y*(g) go T, is an isomorphism of the dual
space T* onto the annihilator V- in V*. Suppose there is given a continuous seminorm
[. [on V for which Vo is dense in the seminorm space U---{ V,[. [}. Then we naturally
identify U* simultaneously as a subspace of V* and of V0*.

We resolve the operator d" V- 2 v* into a formal part in V0* and a boundary part
in T*. For each u e Did] set Ao(u) {Flvo: F e s4(u)}, the set of restrictions to Vo of
functionals in d(u). Then set D[d0]={u V" Ao(u)f’l U* s } and define do" V
2er* by o(U)= Ao(u)71U*. That is, s40 is the set of those functionals in Ao(u) which
have (unique) continuous extensions in U* c V*. Now let u D[4o] andF (u) with

Fo=Flvo U*; hence, Fo4o(U). Then in V- we have F-Fo= y*(g) for a unique
g T*, so we can define O(u) T* to be the set of all such g. Thus, for each F 4(u)
for which F0 FI Vo U*, there is a unique g T* for which

F(v) Fo(V) + g(yv), v V,
and we indicate this by

(6.2) 4(u) S4o(U) + V*(0a (u)), u Dido].

In our applications Vo* is a space of distributions over f and T is the space of boundary
values of the Sobolev space V, so (6.2) is the abstract Green’s formula for the
operator

In many examples the solutions of (6.1) will have the additional regularity
properties described below.

LMMa 6.1. Let vH(O, T; V*) with v(t)eg(u(t)) a.e. on [0, T], and set
Vo(t)=v(t)lvo for each t[0, T]. Let Vo(t) U* and define g(t).T* by v(t)=
Vo(t)+y*(g(t)) [ort[O, T]. I[v’o(t) U* a.e. on [0, T], then gH(O, T; T*) and

v’(t)=Vo(t)+y (g’(t)), a.e. t6[O, T].
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The preceding situation occurs, for example, in the case of linear symmetric and in
certain other special eases [2,], [9], [17], [25].

Suppose the operator is given as above and let a second operator " V 2v* be
given. Resolve it likewise into two parts"

(6.3) (u) o(U) + y*(O(u)), u O[Y3o].

Let there be given/o L2(0, T; U*), go e L2(0, T; T*), Vo Rg[Ao] and go e T* with

Vo + y*(go)e Rg[so]. Consider a solution of the Cauchy problem

d
(u(t)) + (u(t)) ]o(t) + y*(go(t)), a.e [0 T],

dt

/(u (0)) vo + v*(go),

that is, a triple u, v, w for which

v(t) (u(t)), w(t) Y3(u(t)),

(6.4) v’(t) + w(t) ]o(t) + y*(go(t)), a.e. [0, T],

v(0) Vo + *(go).

By restricting the above functionals to Vo we obtain

vo(t) e ao(u(t)), Wo(t) e Bo(u(t)),

(6.5) V’o(t)+Wo(t)=fo(t) in Vo*, a.e. te[0, T],

vo(0) vo.

If Lemma 6.1 applies, then we obtain Wo(t) U* and the identities (6.2) and (6.3) give

g(t) o(u(t)), g(t) o(u(t)),

(6.6) g’(t) + ga(t) go(t) in T*, a.e. e [0, T],

g(0) go.

Thus (6.4) implies (6.5) and, in the situation of Lemma 6.1, also (6.6), so we call a
solution of (6.4) a weak solution of the pair (6.5), (6.6). The first will give a partial
differential equation and the second yields variational boundary conditions in our
examples.

Let 1" be a bounded open set in R which lies locally on one side of its smooth
boundary F. HI(I) is the space of functions q in L2(fl) for which each of the partial
derivatives Diq Oq/Oxi belongs to L2(’), 1 -- ]" n. Letting Do denote the identity on
L2(I)), we can express the norm on Ha(O) by

1/2

We shall let V be a closed subspace of Ha(fl) containingC (1) and let y" V L2(1-’) be
the indicated restriction to V of the trace map [19]. We let T be the range of y (a
subspace of Ha/2(F)) and denote the kernel by Vo -=H (1). Since F is smooth there is a
unit outward normal vector n(s)= [n(s), , n,(s)] at each point s F. Note that the
test functions C (fl) are dense in Vo so the dual Vo* is the space of (first order)
distributions on 1". We refer to (19) for information on these Sobolev spaces.
Specifically, we shall use the trace operator between Sobolev spaces of fractional order.
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We shall construct an operator ’V2v* which will occur in many of our
examples. For each integer k, -1 _-< k-< n, let there be given a continuous, convex
function Ok R R whose subgradient,/3k 0Ok, satisfies

(6.7) Iwl--< C(Isl / 1) if w /3k(s), s R, -1 -< k _-< n,

where C is some large constant. Then define " V R by

0(.)= fa tk(DkH(X))dx+ Ir 0-(y(u(s)))ds, u V.

From the estimates (6.7) it follows that 0 is a sum of continuous convex functions so we
can compute its subgradient term by term. Recall that the subgradient F of the convex
function v Ia k(V) dx at w e L2(II) is determined by F(x) k(W(X)), a.e. x e f.
Since Dk" VL2(f) is continuous linear, the subgradient of the convex function
v a Ok(DkV) dx at u e V is given by {D’F" F e g(Dku) a.e.}. See [11, pp. 26-28] and
[1, p. 47] for proofs of these facts. These observations show that the subgradient of 4’ is

(6.8) t(u)=OO(u)= D’k(Du)+y*-l(yU), u V.
k=0

To be precise, we have F (u) if and only if there exists fg k(OkU) in L2(),
0 _-< k <_-n, and f-1 /-l(yu) in LE(F) for which

F(v) In ,=o f(x)Dv(x)dx+Irf-l(S)V(s)ds’ v6V.

By restricting the above to v Vo Ho(f) we see the formal part is the distribution

FI Vo Okfi, +fo V*o.
k=l

We denote this by the equality (of sets)

(6.9) Bo(u)=- i Dkfl(Du)+o(U).
k=l

Let us interpret (6.3) with U* L2(). First, if Df U* for 1 -< k <- n, then by the
classical Green’s theorem we have, from above,

Thus u D(@) and we have shown

i fknk +f-1 C O(U) with fk fl(Du).
k=l

That is, when the terms are as regular as indicated we have

(6.10) 0(u)= 8(Dku)n +fl-l(U).
k=l

Furthermore, Oa(u) is defined without these regularity assumptions on the individual
terms; it is sufficient to have Flvo U*. Finally, we note that from (6.7) it follows that
satisfies the assumptions [B1] of Theorem 1 and [B3] of Theorem 3. It is also bounded
from L2(0, T; V) to L2(0, T; g*) and it will satisfy [B2] of Theorem 2 if, in addition,
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there is a pair of numbers K, c > 0 such that

clk(S) ClSI2--K S E R, 1 <= k <-_ n and one of the following:

Ja o(v(x)) dx + Jr q-l(y(v(s)))ds, v E W,

a continuous and convex function : W--> R with subgradient

se(u o, (u o(u)+ ,*(-(vu)),

bounded from W to W*. That is, F s(u) if and only if there exist f0 ao(U) in L2(tq)
and f-1 o_(y(u)) in L2(F) for which

(7.1) F(v)= Info(x)v(x) dx + IFf-I(S)V(S) ds, v V,

so the formal and boundary parts of s are given, respectively, by

(7.2) Ao(u) Ceo(U), O(u) o_(yu).

From Theorem 2 we obtain the existence of a weak solution of the initial-boundary-
value problem

0
--Ao(u)+Bo(u)fo
Ot

in L2(0, T; H-a(f)),

(7.3)
Aou(O)vo,

0
-o(u)+oa(u)go
Ot

in L2(0, T; H-a/2(1-’)),

0au (0) bo.

This is made precise in the form (6.5) and (6.6), where the operators are specified in
(6.9), (6.10) and (7.2).

(a) the estimate holds for k 0, or

(6.11) (b) the estimate holds for k 1, or

(c) v E V and v constant imply v 0.

From (6.11) we can show that

O(v)>-callvll- gx, v v,
and this implies the coercivity condition in [B].

7. Examples of partial differential equations. We shall describe some examples of
initial-boundary-value problems for partial differential equations to illustrate the
applications of our results. These examples were chosen merely to suggest a variety of
problems that can be resolved by our Theorems, and they are not intended to be best
possible in any sense.

(a) Elliptic-parabolic equations. For k 0 and -1, let qk" R R be convex and
continuous with subgradient, ak --Oqk, satisfying

Iwl<=C([s[+l) ifwc(s), sR,

Set W Hr(D,), 1/2 < r < 1, V H(fl), and note that V--> W is compact and y" W-->
Lz(F) is continuous [19]. Thuswe can define by
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Remarks. By our choice of V HI(Iq), all boundary conditions in (7.3) are of
variational type. Dirichlet-type constraints are obtained by taking subspaces of

We require that fo and go be square-summable, with values in H-I(Iq) and
H-1/2(F) respectively, and we assume (6.11) to obtain coercivity of . The bounded-
ness assumptions on ak (k 0,-1) can be relaxed somewhat by using embedding
theorems, e.g., of W into LP(f).

There is no bound on the degeneracy permitted in the operator; we include even
the (uninteresting) elliptic case sO-= 0. The case of A0 0 leads to an evolution on the
boundary subject to an elliptic equation in the interior; such problems arise from
diffusion in a medium bounded by material of markedly lower diffusivity [25].

The classical porous-media equation and the weak form of the two-phase Stefan
free-boundary problem are included in (7.3). In the latter, the enthalpy is given by
ao(S) (1 +cH(s))s +LH(s), where L >0 is the latent heat of fusion and H(. is the
Heaviside function 14], 16]. Such problems arise in welding, with the nonlinear term
rio(U) representing a source of heat due to electrical resistance.

Note that each solution of (5.1) is also a (spatially independent) solution of (7.3), so
there is much nonuniqueness in (7.3).

(b) Pseudoparabolic equations. Here we set V H(I)), so T {0} and all boun-
dary conditions are of Dirichlet type. The operator is given as above by (7.2); the
operator is also given as before but we shall only assume (6.7), not (6.11). On the
space V we take the (equivalent) scalar product and corresponding Riesz map

u(v) In =" Du(x)Dv (x) dx, u, v V,

so we have =-A, ----_ -y=a D. Assume 1o 6 LZ(0, T; H-(fl)) and Vo 6 Ceo(Uo), Uoe
H (fl) are given. Then either from Theorem 1 or from Theorem 3 we obtain existence
of a solution of the problem

u n(0, T; H(fl)),
v H(0, T; H-()),
w L2(0, T; H-(fl)),

(7.4)

u(O) uo,

v(O) vo,

0
(v(t)- A,u(t)) + w(t) fo(t),

Ot

v(t) Ao(u(t)), w(t) Bo(u(t)).

The operators Ao and B0 are given by (7.2) and (6.9) respectively.
Remarks. The partial differential equation in (7.4) is of the form of a nonlinear

parabolic plus the term (O/Ot)A,u(x, t). Such equations are known to arise in various
diffusion problems and are called pseudoparabolic [9], 15], [28]. Similar problems with
variational boundary conditions can be considered; we obtain weak solutions in the
form (6.4). However, since Rg(Ao+Y)=H-I(F), we cannot use Lemma 6.1, in
general, to deduce (6.6). This situation occurs even in the linear case [26].

The operator -A, in (7.4) can be replaced by the Riesz operator of any equivalent
scalar product onH (I1). This trivial observation is useful in introducing elliptic linear
operators in its place.

We have not made use of the fact that only one of the operators sO, need be a
subgradient. In particular, we are free to add to one of or Y3 any linear combination of
first order derivatives. (See Example (d) below.)
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Nonuniqueness of solutions of (7.4) follows from that of solutions of (5.1).
In the preceding examples the nonlinearity arises from the local dependence on the

solution, e.g., from nonlinear functions of the values of u or Vu at each point of f. We
next display examples of global nonlinearity arising from the "total energy" or the
"total flux" in the system. The following preliminary result will be useful.

LEMMA 7.1. Let a (.,.) and b(.,.) be continuous, bilinear, symmetric and non-
negative real-valued functions on the Hilbert space V. Then for a, R, the function

q(u)---1/2 max {a(u, u)+ a, b(u, u)+ [3), ueV

is convex, continuous and its subgradient is given by

{A(u)}
oo(u) J{(aa + (1 a)B)(u), 0 <- a <- 1}

/

{B(u)},

where Au(v)= a(u, v), Bu(v)= b(u, v), v V.
Proof. We need only to compute 0q (u). For the first and last cases we compute the

Gateaux derivative limt_,o {(q(u+tv)-o(u))/t} to obtain the desired results. Now
assume a(u, u)+a b(u, u)+. An easy computation gives

ira(u, u)+a > b(u, u)+,

if a(u, u)+a b(u, u)+,

ira(u, u)+a <b(u, u)+,

{ }t-l(q(u + tv)-q(u))=max a(u, v)+- a(v, v), b(u, v)+- b(v, v)

so we have the equivalence off 0q(u),

and of

f(v) <= t-l(q(u + tv)- o(u)), v V, t>0,

/(v)<_-max {a(u, v), b(u, v)}, veV.

This is equivalent to f hAu + (1 h)Bu for some h, 0 -<_ h _-< 1.
(c) Energy-dependent elliptic-parabolic equation. We shall use Theorem 2 with the

operator given by (6.8), so we agsume (6.7) and (6.11). Choose V H1(12) so the
space of boundary values is T H1/Z(F). Define on WL(f) the function

q(u) max 1, [u(x)[ dx uW.

The subgradient s4 0q is given by Lemma 7.1 and we have s Ao S4o, Rg(C)--
LZ(fl). Finally, let Vo L2(), foL2(O, T; L2()), go L2(0, T; H-1/Z(F)) be given and
define

f(t)(v) Ja fo(X, t)v(x) dx + go(t)(yv),

Then we obtain a weak solution of

vV.

(7.5)

OV
--+Bo(u) f0Ot

v (x, o) vo(x)

o(u)go

in L2(0, T; H-l(fl)),

in L(II),
in L2(0, T; H-1/2(F)),
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where v is determined by

"(0}, if lu dx < 1,

{Au" 0_-__ _-< 1} if In u 12 dx 1,

{u}, if Jn [ul2 dx > 1.

Thus, the type of the equation is either elliptic (with parameter t) or parabolic and
depends on the total energy n [ul2 dx.

(d) A ]tux-dependent equation. Take V Ho (12), W L2(Iq) and T {0}. Let the
convex function qo and its bounded subgradient ao 0(o be given as above in Example
(a), and define M Co in L2(f); cf. (7.2). Denoting the gradient of u by Cu, we define
the continuous convex

4’(u) max N, Iu(x)l2 dx uV.

Let/ R" and define " V- 2v* by

b Vu + O O(u).

Note that is maximal monotone, bounded and coercive. Let Vo Rg(M) and 1o
L2(0, T; H-l(f)). From Theorem 2 we obtain existence of a solution of the problem

u L2(0, T; H(f)), v Hi(0, T; H-a(fI)),

--+ b Vu -K Iu dx A,U=fo,(7.6)
Ot

v(x, t) Oo(U(X, t), v(x, O) Vo(X),

where the maximal monotone K" R R is given by

{o}, s < N,
K(s) [0, 1], s N,

{1}, s>N.

Remarks. In the region where Ia Iu[2 dx <N the equation in (7.6) is a conser-
vation law of the form

(7.7) --+bVg(v)fo,
Ot

where the maximal monotone g: RR is the inverse to c0. Thus (7.6) suggests a
penalty method [18] to approximate solutions of (7.7). We shall develop these obser-
vations elsewhere.

In order to consider (7.6) in the form (6.1) it is essential that is not required to be
a subgradient.

(e) Elliptic-parabolic systems. Our final example consists of a pair of equations of
the type given above in Example (a) that are (nonlinearly) coupled. For 0, 1 and
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k=O,-1, let k’RR be convex and continuous with subgradient, Ol.kO(k
satisfying

(s) sR.(7.8) Iwl<-C(Isl/a) forwag

On the product space W--Hr(fl) Hr(l), } < r < 1, we have the continuous trace
operator y([u 1, u2]) [y(u 1), y(u2)] which maps W into L2(F) L2(F). Thus we define
by

q(v) Y qio(vi(x)) dx + q_ (yv (s)) ds, v =[/)1,/92]E W,
i=1

a continuous and convex function whose subgradient is given by

(U) 0(U) [C (U 1) _t_ ,(0/1 2) ,(21
_

(,(u’))), (u + , (v(u=)))],
b/ [Ul, U2] E W.

The operator s4" W2W* is bounded; its formal and boundary parts are given,
respectively, by (see (7.2))

(7.9) Ao(u) [a(u’), a2o (uZ)], o(u)=[ -1 (’(U 1)), -1 ((U2))]

Hereafter we restrict y to the product space V Ha(fl) x HI(’)). Assume we are given
a set of continuous and convex functions 0k’R-*R for l, 2, -l <_- k _-< n, whose
subgradients/3 k 00 all satisfy the estimate (6.7). For 1, 2 we define 0i" Ha(fl) -* R
as in 6; its subgradient is then given by (see (6.8))

i(u i) oOi(u i) Dfli (Dgu
k=O

U HI(I").

The formal and boundary parts of Y3 are given by (6.9) and (6.10) for each of 1, 2.
Thus we have two pairs of operators similar to the pair in Example (a). The coupling of
the corresponding equations will be attained by a maximal monotone graph/z" R 2R

which is bounded, i.e., (7.8) holds for w /z (s). Then we define a maximal monotone
operator M on R x R by

M([s, sz])= {[w,-w]: w m x(s- sz)}, [sa, s2] e R x R.

This operator M induces a corresponding operator on L2(’) L2(I’), hence, from V
into V*, which we also denote by M. Finally we define

([Ul, U23)--[l(ul), 32(u2)]+M(u1, U2), [Ul, U2]E V,

This is the sum of maximal monotone operators, each of which is defined on all of V,
so 5 is maximal monotone. Similarly is bounded, and we note that 5 is coercive if
both of and Y32 are coercive.

Assume that we are given the following data:

i=1,2,
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If the functions {k"-1 _-< k _-< n} satisfy (6.11) for both 1 and 2, then from
Theorem 2 it follows that there exists a weak solution of the system

--a(u (x,t))+B(u (x,t))+tx(u (x, tl-u2(x,t)lfo(X,t),
Ot

(7.10)

0 2 2aZo(U (x, t)) +B(u (x, t))- Ix (u (x, t) uZ(x, t)) f(x, t)
Ot

in L2(0, T; H-I(f)),
19

ila_ (yu (s, t)) +O,(u (s, t)) v go, 1, 2, in L2(0, T; H-1/(F)),
Ot

i(x) i=l 2, inLZ(f),co (u (x, 0)) vo
ogi---I (’yU i(S, 0)) V/--I (S), 1, 2, in L2(F).

Remarks. All of the operators in this system are (possibly) multi-valued, so each of
the "equations" should be made precise as was done in our preceding examples. See
(6.9), (6.10), (7.2) and (7.9) for related computations.

The only requirement on the a k is that they be maximal monotone graphs in R
which satisfy the bound (7.8). Thus much degeneracy is possible in the leading operator
given by (7.9). Related Stefan-type free-boundary problems can be so considered.

Interesting examples of the coupling term arise in applications to diffusion prob-
lems. These include problems with a semipermeable membrane,/z(s) s + (where s +

denotes s if s > 0 and 0 otherwise), or those with a threshold phenomenon /x(s)=
(s-e)+-(-s-e)+. The operator M as given above is a subgradient; this is easily
verified by showing it is cyclic monotone 1]. However we may add to M nonsymmetric
monotone terms, for example, [-s2, s], and thereby obtain systems of the form (6.1) in
which is not a subgradient.

Systems of equations of pseudoparabolic type can be resolved similarly by
Theorem 1. For example, we can choose V H0 (f)x H0 (11) with scalar product on
each factor as given in Example (b), and obtain existence of a solution of the problem

O--(a(ua(x, t))-A.ua(x, t)) + B(ua(x, t)) + lx(u(x, t)-u(x, t))f(x, t),
Ot

0--(aoZ(U2(X, t))-Anu2(x, t))+ BZo(uZ(x, t))-tx(u(x, t)-uZ(x, t))/2o(X, t)
(7.11) 19t

in L(0, T; H-I(I)),
u H(0, T;Ho(f)), uJ(x, 0)=ui(x), aio(Ui(X, O))vi(x)

f 1, 2, in Le(f)
where the data are given as above with v Ao(u) for f 1, 2.
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