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1. Introduction

ABSTRACT

Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags
depends on size and decay stage, snag density estimation without any information about snag quality
attributes is of little value for wildlife management decision makers. Little work has been done to develop
models that allow multivariate estimation of snag density by snag quality class. Using climate, topogra-
phy, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis
plots in western Washington and western Oregon, we evaluated two multivariate techniques for their
abilities to estimate density of snags by three decay classes. The density of live trees and snags in three
decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing;
D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) > 12.7 cm
was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a
parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a
Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1,
D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags
with DBH > 50 cm was predicted using a logistic regression and RF imputation. Because of the more
homogenous conditions on private forest lands, snag density by decay class was predicted with higher
accuracies on private forest lands than on public lands, while presence of large snags was more accurately
predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed
the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean
square errors in predicting snag density by decay class. The logistic regression model achieved more
accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the
decision threshold to account for unequal size for presence and absence classes is more straightforward
for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in
this study, which can be attributed to the poor predictive quality of the explanatory variables and the
large range of forest types and geographic conditions observed in the data.

© 2011 Elsevier B.V. All rights reserved.

species depends on snag characteristics such as tree species, diam-
eter, height, decay stage, and proximity to other snags and live

Detailed information about the density of standing dead trees
(snags) and their quality attributes (e.g., size, decay class) are not
only important for carbon storage and fire effects but also essential
for managing biodiversity and wildlife habitat. Many wildlife spe-
cies depend on snags occurring across the landscape in a variety of
sizes and decay classes for nesting, roosting, denning, foraging, or
shelter (Bull et al., 1997). The potential use of snags by wildlife
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trees (Bull et al., 1997).

Size and decay stage are two prominent characteristics of dead
wood that influence habitat suitability for individual wildlife spe-
cies. Many species prefer large snags with diameter at breast
height (DBH) greater than 50 cm for nesting, roosting, and foraging
(Marcot et al., 2010; Bull, 2002). The number of species provided
with suitable habitat, reproductive output of cavity-nesters, secu-
rity of nest and roost sites from predators and weather, and the
longevity of available habitat all increase with snag size (Hagar,
2007). In addition to snag size, decay stage is considered one of
the most important attributes that affects snag use by wildlife
species associated with dead wood (Vaillancourt et al., 2008) and
vertebrates in general (Harmon et al., 1986). The decay stage of
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snags influences the ability of cavity-using species to excavate nest
sites (Lundquist and Mariani, 1991), and the extent of colonization
by arthropods, an important food resource for many species of ver-
tebrate wildlife.

Forest management effects on snag density have been well doc-
umented (Graves et al., 2000). Snag density tends to be low in areas
of intensive timber harvest and increased human access (Wisdom
and Bate, 2008), while large snags are more abundant in unhar-
vested stands (Marcot et al.,, 2010). Snag density also differs by
ownership, ecoregion, and forest type. For Coastal Oregon,
Kennedy et al. (2008) and Ohmann et al. (2007) reported more
snags on public lands than on private lands. In Oregon and Wash-
ington, Ohmann and Waddell (2002) found lowest snag densities
in dry habitats east of the Cascade crest of Oregon and Washington
and greatest snag densities at high elevations.

To successfully conserve forest structure and biodiversity and
manage forests for broad ecological goals including wildlife, infor-
mation about snag density along with snag quality attributes is
necessary. While research has focused on modeling snag density
ignoring snag quality attributes (e.g., Frescino et al., 2001; Eskelson
et al.,, 2009a; Pierce et al., 2009), few studies have attempted to
model snag density by decay class (Bater et al., 2009) or snag pres-
ence by size class (Martinuzzi et al., 2009).

The aim of this study was to (1) apply nearest neighbor imputa-
tion and a two-stage parametric model to predict snag density by
decay class; (2) predict the presence/absence of large snags
(DBH > 50 cm) in western Oregon and Washington with logistic
regression and nearest neighbor imputation; and (3) evaluate the
performance of the different approaches on private and public
lands in western Washington and western Oregon.

2. Material and methods
2.1. Data

Data from forested Forest Inventory and Analysis (FIA) plots, lo-
cated in western Oregon (OR) and western Washington (WA) and
collected between 2001 and 2008, were used in this study. A de-
tailed description of the FIA inventory data is available in Bechtold
and Patterson (2005). Only plots (n = 2356) for which all four sub-
plots belonged to the same condition class were used in this study,
which allows using plot-level variables as explanatory variables.
The number of live trees per hectare (LTPH) and number of dead
trees per hectare (DTPH) by three decay classes (DTPH.D1,
DTPH.D2, DTPH.D3) were used as response variables (Table 1).
These variables were based on trees with DBH greater or equal to
12.7 cm. Snags that had recently died, showed little decay, and re-
tained bark, branches, and top belonged to decay class 1 (D1).
Snags that showed evidence of decay and had lost some bark,
branches, and sometimes the top belonged to decay class 2 (D2),
and snags with a broken top and extensive decay with missing
bark and most branches belonged to decay class 3 (D3).

Table 2
Number of plots for which snags with DBH > 50 cm are present and absent.
Presence Absence
WA PUB 308 (61%) 199
WA PRI 175 (42%) 240
OR PUB 536 (61%) 339
OR PRI 175 (31%) 384

The FIA plots were grouped by state and ownership (Table 1).
The percentage of plots without snags was higher on private lands
(PRI) than on public lands (PUB) for both OR and WA. The range
and variability of the response variables was larger on private
lands in WA than on private lands in OR, while the range and var-
iability of the response variables on OR public lands exceeded that
of WA public lands (Table 1).

Large snags (DBH > 50 cm) were present on 61% of the public
land plots in WA and OR, while large snags only occurred on 42%
and 31% of the private land plots in WA and OR, respectively (Ta-
ble 2). The range and variability of large snags was higher on public
lands than on private lands (Table 1).

Climate, remote sensing, and topography data as well as stand
age (STDAGE) and three broad forest type groups (Douglas-fir for-
ests, other conifer forests, and hardwood forests) were available as
explanatory variables (for details see Table 3). The range and vari-
ability of STDAGE was larger on public lands than on private lands
(Table 4). Private lands were typically located at lower elevation
than public lands (Table 4). Mean % canopy cover (CANOPY) was
lower on private lands and more variable than on public lands (Ta-
ble 4). Climate data were derived from PRISM (http://
www.prism.oregonstate.edu) and were interpolated from 800 m
normals (1971-2000) to 30 m resolution. The values of the climate,
remote sensing, and topography data for the FIA plots were deter-
mined by overlaying each FIA plot with nine 30 m pixels, with the
center plot falling in the center pixel, and calculating a mean of the
nine pixel values.

2.2. Snag density by decay stage

Snag density by decay class was estimated by the non-paramet-
ric nearest neighbor (NN) imputation method randomForest (RF)
(Crookston and Finley, 2008) and a parametric two-stage model
(QPORD). For QPORD the total number of trees per hectare (TPH)
was estimated with a Quasipoisson regression model in the first
stage and the probability of belonging to either live trees or dead
trees in decay classes one through three was estimated with an
ordinal regression model (ORD) in the second stage. Because of dif-
ferences in snag density on public and private lands (Kennedy
et al.,, 2008) and its more accurate prediction in coastal OR than
in northeastern WA (Pierce et al., 2009), the models were devel-
oped by ownership group (PUB vs. PRI) within state (WA vs. OR).
Separate models that provide accurate model predictions for each
state/ownership combination will be useful for forest managers.

Table 1
Summary of response variables for public and private forest lands in Washington and Oregon.
WA PUB (n =507) WA PRI (n =415) OR PUB (n =875) OR PRI (n =559)
Range Median %2 Range Median % Range Median % Range Median %
LTPH 0-1903 416 1 0-1770 449 7 0-1442 349 3 0-1338 389 11
DTPH.D1 0-476 0 60 0-877 0 72 0-684 0 63 0-387 0 71
DTPH.D2 0-372 30 20 0-223 2 48 0-654 17 26 0-268 0 50
DTPH.D3 0-166 5 41 0-104 0 53 0-456 2 48 0-109 0 65
Large snags 0-99 5 39 0-52 0 58 0-104 2 39 0-44 0 69

Note: WA = Washington; OR = Oregon; PUB = public land; PRI = private land; LTPH = live trees/ha; DTPH.D1 = snags/ha in decay class 1; DTPH.D2 = snags/ha in decay class 2;
DTPH.D3 = snags/ha in decay class 3; Large snags = snags/ha with DBH > 50 cm; TPH variables include trees with DBH > 12.7 cm.

¢ Percent plots with zero observation.
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Table 3
Explanatory variables used to model response variables.

Variable Description

Climate®

ANNPRE Annual precipitation (natural logarithm, mm)

CONTPRE  Percentage of annual precipitation falling in June-August

SMRPRE Mean precipitation (natural logarithm, mm) in May-September

CVPRE Coefficient of variation of mean monthly precipitation of
December and July (wettest and driest month)

ANNTMP Mean annual temperature (°C)

AUGMAXT Mean maximum temperature in August (°C) (hottest month)

DECMINT  Mean minimum temperature in December (°C) (coldest month)

DIFTMP AUGMAXT-DECMINT (°C)

SMRTMP Mean temperature (°C) in May-September

Remote sensing®

TMx Landsat Thematic Mapper™ band, where x = 1-5 and 7

R43 Ratio of TM4 to TM3

R54 Ratio of TM5 to TM4

R57 Ratio of TM5 to TM7

BRT Brightness axis from tasselled cap transformation

GRN Greenness axis from tasselled cap transformation

WET Wetness axis from tasselled cap transformation

CANOPY % canopy cover from NLCD 2001 (Homer et al., 2004)

Topography

SLOPE Slope (%), from digital elevation model

ASPECT Cosine transformation of aspect (°) (Beers et al., 1966)

PRR Potential relative radiation

STDAGE Stand age

ForTyp1 Indicator variable Douglas-fir forests

ForTyp2 Indicator variable other conifer forests

2 Climate data were derived from PRISM (http://www.prism.oregonstate.edu)
and were interpolated from 800 m normals (1971-2000).

b Remote sensing data were obtained by RSAC (http://www.fs.fed.us/eng/rsac)
from GloVis (http://glovis.usgs.gov), except where noted, and a seamless mosaic
was compiled for western Oregon and Washington for the year 2006.

For NN approaches the imputed response is a value that was ob-
served for another unit (=reference unit) that is similar to the unit
for which the response is imputed (=target unit). Similarity of the
units is determined by the explanatory variables. Instead of using
a single value of the nearest neighbor, a simple or weighted aver-
age of several nearest neighbors is sometimes imputed (e.g., see
LeMay and Temesgen, 2005). For a more detailed description of
NN imputation methods see Eskelson et al. (2009b). The RF impu-
tation approach employed in this study was implemented in the
yalmpute R package (Crookston and Finley, 2008). RF is based on
a classification and regression tree method (Breiman, 2001), for
which the data and variables are randomly and iteratively sampled
to generate a large group of classification and regression trees. Two
units are considered similar if they tend to end up in the same ter-
minal nodes in a group of classification and regression trees. The
measure of similarity equals one minus the proportion of classifi-
cation and regression trees where the target unit is in the same ter-
minal node as a reference unit (Crookston and Finley, 2008). The
response variables LTPH, DTPH.D1, DTPH.D2, and DTPH.D3 were
imputed simultaneously.

We used a two-stage method (QPORD) for estimating the den-
sity of snags by decay stage. In the first stage, we estimated TPH
with a Quasipoisson regression model (QP). The QP model is a gen-
eralized linear model (GLM) with Poisson-like assumptions that

Table 4
Summary of three explanatory variables.

accounts for overdispersion in the data and uses a quasi-likelihood
approach (for details see McCullagh and Nelder, 1989, pp. 200-
204, p. 323 ff.). The QP model was chosen because overdispersion
and strong positive skew were observed in the response. The mean
1; = E(Y;) for the ith observation is related to p explanatory vari-
ables through a monotonic, differentiable log link function so that:

W = exp(Bo + P1Xui + - + Bp1Xpi) (1)

This can be generalized as the vector of mean parameters
=g 'pTX, where g~(.) is the exponential function, X is a design
matrix of explanatory variables, and g is a vector of parameters
(regression coefficients). Alternatively, this can be written as
g(u) = BTX, where g(.) is the log link function. The QP models were
fit in R (R Development Core Team, 2010) using forward variable
selection.

TPH is equal to the sum of all live and dead trees (TPH =
LTPH + DTPH.D1 + DTPH.D2 + DTPH.D3). Since LTPH, DTPH.D1,
DTPH.D2, and DTPH.D3 can be considered ordinal data with the
first class representing live trees and the following three classes
representing dead trees with increasing amounts of decay, ordinal
regression can be employed in the second stage of the QPORD
model to estimate cumulative proportions of the k = 4 tree status
classes (live, D1, D2, D3) in each FIA plot using the available
explanatory variables. We used a proportional odds model with
log-log function to predict the cumulative proportions of live trees
(P(k =1|x) =71 =m), live trees and dead trees in D1 combined
(P(k < 2|x) =y, = 11 + 73), live trees and dead trees in D1 and D2
combined (P(k < 3|Xx)=7y3=m +mp+m3), and all live and dead
trees combined (P(k < 4|x) =74 = 1), using the following equation:

Tk = 1 —exp [—exp(0 — (Bixui + - + ByXpi))] (2)

where y,; is the cumulative probability of tree status class k occur-
ring on plot i, 6, is the intercept for class k, and x;; is the value of the
jth explanatory variable on plot i and the f;'s are the corresponding
p parameter coefficients, respectively (McCullagh and Nelder, 1989,
pp. 149-155). The probability m; of tree status class k occurring on
plot i can then be calculated as 7y = 7,; — y,_,;- Ordinal regression
was implemented with the R package ‘ordinal’ (Christensen, 2010)
using forward variable selection in combination with a likelihood
ratio test to assess a model’s improvement when an explanatory
variable was added.

For each tree status class k, TPH could then be estimated for plot
i by multiplying g, (Eq. (1)) and 7y (Eq. (2)) so that:

LTPH, = Ui * Ty
DTPHDL = ;i * Ty
DTPH.D2; = i, * Tt3;

DTPH.D3; = i, * Tty

2.3. Presence of large snags

The presence of large snags was estimated using the RF imputa-
tion approach as well as a logistic regression model. The conditional

WA PUB (n = 507) WA PRI (n = 415)

OR PUB (n = 875) OR PRI (n = 559)

Mean SD Range Mean SD Range Mean SD Range Mean SD Range
STDAGE 130 117 0-500 32 23 0-150 120 108 0-610 36 25 0-150
Elevation (m) 745 449 22-1905 288 290 4-1385 832 435 8-2172 452 302 10-1648
CANOPY 83 23 0-98 73 30 0-100 76 22 0-97 65 33 0-98

Note: WA = Washington, OR = Oregon, PUB = public land, PRI = private land, STDAGE = stand age, DEM = elevation, CANOPY = % canopy cover, SD = standard deviation.
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probability that large snags are present on plot i is denoted by
P(Y = 1]x) = ;, and the logistic regression model is:

. exp(fo + PrX1i + - - 4 BpXpi) 3)
" T+ exp(Bo + Bixai + -+ BpXpi)

where x;; is the value of the jth explanatory variable on plot i and
the gys with j=1,..., p are the corresponding p parameter coeffi-
cients (Hosmer and Lemeshow, 2000, p. 32). Logistic regression
models were fit separately for private and public lands in WA and
OR using backwards variable selection based on Akaike’s Informa-
tion Criterion (AIC) in R (R Development Core Team, 2010). In order
to classify a predicted probability (continuous between 0 and 1) as
either absence or presence of large snags, a decision threshold 7
needs to be chosen. The decision threshold T was chosen to reflect
the prevalence of large snags (proportion of plots in which large
snags are present), which results in balancing the values of sensitiv-
ity (proportion of correctly classified presences) and specificity
(proportion of correctly classified absences) (Chen et al., 2006).
Hence, 7 =0.61 for public lands in both WA and OR, and 7 =0.42
and 0.31 for private lands in WA and OR, respectively (see Table 2).

The RF imputation method (Crookston and Finley, 2008) was
employed to impute a single response: absence or presence of large
snags. NN methods such as RF, when used to produce a binary out-
come of either 0 or 1 as in the given case, cannot be used in com-
bination with a threshold adjustment that takes prevalence of large
snags into account (Chen et al., 2006). In order to apply an adjusted
decision threshold 7 to the RF imputation approach, we used a sim-
ple average of the values observed for the five nearest neighbors to
determine presence or absence of large snags. The mean of the five
nearest neighbors could result in imputed probabilities of snag
presence equal to {0, 0.2, 0.4, 0.6, 0.8, 1}. If the imputed probability
of snag presence was greater or equal to 7 (for threshold values see
Table 2 as described above), presence of large snags was predicted.

2.4. Model validation

The predictive performance of the RF and QPORD models was
assessed by using leave-one-out cross-validation. For RF, one
observation at a time was used as target unit while the remaining
n-1 observations were used as reference units. For the parametric
models, one observation at a time was used for the validation pro-
cess based on the models fitted with the remaining n-1 observa-
tions. Based on the cross-validation results, the Spearman
correlation coefficient between predicted and observed values
and the root mean square error (RMSE) were calculated:

RMSE = ¢Z(predicted — observed)?/n 4)

where n is the sample size. Additionally, scatterplots of observed vs.
predicted values were generated to visually show the distribution
error (as in Frescino et al., 2001). Predicted values within 30% of
the observed value were considered accurate and the percentage
of accurate predictions (% accurate predictions) falling within
+30% of the observed values was reported in the scatterplots. The
level of £30% was chosen somewhat arbitrarily for this study and
needs to be adjusted based on specific management objectives on
a case-by-case basis.

The accuracy of predicted presence/absence of large snags was
assessed with confusion matrices. The confusion matrices were
used to calculate overall accuracy, sensitivity, specificity, and the
kappa statistic () (see e.g., Allouche et al., 2006). x is a measure
of improvement of the model over random predictions (Cohen,
1960).

3. Results
3.1. Snag density by decay stage

For both states and both ownership types, CANOPY, STDAGE,
TM7, WET and the forest type indicator variables were significant
explanatory variables in the QP model for estimating TPH. Other
significant variables that were selected in three of the four QP
models were R54, R57, and TM5. For the OR private land model,
no climate variables were significant, while the other three models
included both temperature and precipitation variables among the
significant explanatory variables (Table 5).

Explanatory variables that were significant for the four ORD
models that estimated the proportion of live trees and dead trees
by decay stage were STDAGE, R43, R54 and the forest type indica-
tor variables. BRT, GRN, and TM5 were included in three of the four
ORD models. All ORD models included at least one climate variable
among the explanatory variables (Table 5).

QPORD models outperformed the RF imputation approach in
terms of RMSE for all response variables on public and private
lands in both OR and WA (Table 6). QPORD resulted in larger Spear-
man correlation coefficients than RF for LTPH in both states on pri-
vate and public lands as well as for DTPH in all three decay classes
on private lands in WA and OR. For DTPH across the three decay
classes RF outperformed QPORD in terms of the correlation coeffi-
cient on public lands in WA and OR (Table 7).

The scatterplots of observed versus predicted values depicted
the poor fit of both the QPORD models and the RF imputation ap-
proach. QPORD models overpredicted LTPH, DTPH.D1, DTPH.D2,
and DTPH.D3 for small observed values and highly underpredicted
large observed values (Figs. 1 and 2). On the contrary, the RF impu-
tation approach resulted in large over- and underpredictions of
LTPH, DTPH.D1, DTPH.D2, and DTPH.D3 across the whole range
of observed values in OR (Fig. 1) and WA (Fig. 2).

For LTPH the QPORD models provided larger % accurate predic-
tions for OR (PUB = 41%, PRI = 45%) and WA (PUB = 49%, PRI = 41%)

Table 5
Explanatory variables selected for the Quasipoisson (QP) and ordinal (ORD) regression
models on public and private lands in western OR and WA.

QP ORD

WA PUB TPH = fn (CANOPY, STDAGE, yj = fn (STDAGE, BRT, GRN, TM5,
GRN, WET, TM5, TM7, R54, R57, R43, R54, R57, DECMINT,
AUGMAXT, CVPRE, PRR, ForTyp1, ForTyp1, ForTyp2)

ForTyp2)

WA PRI  TPH = fn (CANOPY, STDAGE, yj = fn (STDAGE, BRT, WET, TM2,
WET, TM7, R57, AUGMAXT, TM5, R43, R54, SMRPRE,
DIFTMP, SMRPRE, ForTyp1, ForTyp1, ForTyp2)
ForTyp2)

ORPUB TPH = fn (CANOPY, STDAGE, yj = fn (STDAGE, GRN, TM5, R43,
ANNTMP, CVPRE, SMRTMP, GRN, R54, R57, SMRPRE, ANNPRE,
WET, TM5, TM7, R54, R57, AUGMAXT. ForTyp1, ForTyp2)
ANNTMP, CVPRE, SMRTMP, PRR,
ForTyp1, ForTyp2)

ORPRI  TPH = fn (CANOPY, STDAGE, yj = fn (STDAGE, BRT, GRN, TM2,
WET, TM2, TM5, TM7, R54, TM3, R43, R54, DECMINT,
ForTyp1, ForTyp2) ForTyp1, ForTyp2)

Table 6
Root mean square error between the observed values and the model predictions.
WA PUB WA PRI OR PUB OR PRI
QPORD RF QPORD RF QPORD RF  QPORD RF

LTPH 237 296 250 310 218 254 213 265

DTPH.D1 28 33 48 51 47 52 25 33

DTPH.D2 57 64 34 40 70 80 31 38

DTPH.D3 25 28 16 20 29 31 14 17
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Table 7
Spearman correlation coefficient between the observed values and the model
predictions.

WA PUB WA PRI OR PUB OR PRI
QPORD RF QPORD RF QPORD RF QPORD RF
LTPH 0.52 034 0.65 053 048 044 0.64 0.56

DTPH.D1 0.11 0.05 0.25 0.05 0.15 0.17 0.25 0.08
DTPH.D2 0.09 0.28 0.40 023 0.16 021 0.37 0.26
DTPH.D3  0.05 028 0.26 0.07 0.02 0.14 0.26 0.08

than RF, which only achieved a maximum of 41% accurate predic-
tions for OR private lands and only 38% accurate predictions for OR
public lands as well as for WA private and public lands (Figs. 1 and
2). In both WA and OR and both private and public lands, the RF
imputation approach resulted in % accurate prediction values

between 21% and 59% for DTPH across all decay classes, while
the QPORD models only achieved% accurate prediction values be-
tween 6% and 18% for DTPH across the three decay classes. The
RF imputation approach achieved higher % accurate prediction val-
ues on private lands than on public lands (Figs. 1 and 2).

3.2. Presence of large snags

The accuracy of the large snag presence/absence classification
based on the logistic regression model was superior to the accuracy
of the RF classification in terms of overall accuracy and x for both
WA and OR on private and public lands (Table 8). For the logistic
regression model, overall accuracy and x ranged from 64% to 70%
and from 0.28 to 0.41, respectively, with the highest and the lowest
K values on public and private lands in WA, respectively. The RF
approach only achieved overall accuracy and « values ranging from
50% to 66% and —0.06 to 0.30, respectively. RF provided less
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Fig. 1. Scatterplots of observed vs. predicted snag densities by decay class on public (PUB) and private (PRI) lands in Oregon (OR), including % accurate predictions (% AP). The

solid line represents perfect correlation between observed and predicted values.



B.N.I Eskelson et al./Forest Ecology and Management 272 (2012) 26-34 31
WA PUB WA PRI
o o
§ 1 § QPORD 1 RF °
o %AP = 41 | %AP-=38
QPORD' RF
= %AP = 49 %AP=38 ] S ° °
H @ N o N o 0 ©
= ) o 4 %o a0
© 8 8 |o oQ:Q 8o o ) 0,8 o o o
884 o o g 2 9% | &g
o - - o ® ®° o i e @
To |8 %0 [¢] o |o o o Q
03 o S ®, © ) o S o 0O
= o o) 1) < o @ < o)
o c()) ° o — @ Qo
o o o o o 0%
T T T T T T T T T T T T T T T T 11
0 500 1000 2000 0 500 1000 2000 0 400 800 1200 0 400 800 1200
Observed LTPH
o o o o
o o o — o
=~ o QPORD o} RF = =
o %AP =12 %AP = 45 _| QPORD RF
T %AP =8 %AP = 59
Te : g :
Q8 7 8 |
o
2 ° g 8
o
,_5 8 | 8 (3] [$)
(O - _
s o o ) o) o) o o o o) o
T T T T T T T T T T T 1
0 100 300 500 0 100 300 500 300 600 900 0 300 600 900
Observed DTPH D1
8 8
NS QPORD 5 RF QPORD RF
o) N %AP =18 - %AP =21 3 %AP = 14 g %AP = 33
I @ o
o 3 o o °
= ]
No o oo o0
° & & 1,9 o o o go
b [5) ° /o ° S 1S3 oo oo A
2 ° =4 2
o8 o /o, © o g
[=} S o
52 o S % o o 000 o
3 g % o g o s} 82% 8o <800 s} 081)808 o
S ° ) ° ) ° ) 0000@® 0O
T T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400 50 100 200 0 50 100 200
Observed DTPH D2
o o
o & &
a QPORD RF o QPORD o RF
: o %AP = 15 o O%AP =34 S %AP =7 S o %AP = 39
E e} 2 2 = o
E ° g o o o o
o [o) o o o o o
o7 =T %0 o © ° © o ®
Q o Lo 8 ° o (o)
% 3 [¢] '% 000 o 8)
o % 080 I @ g ° Q o ° °
o o o
oo 80 o o ) o o o 08 oo
T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 20 60 100 0 20 60 100

Observed DTPH.D3

Fig. 2. Scatterplots of observed vs. predicted snag densities by decay class on public (PUB) and private (PRI) lands in Washington (WA), including % accurate predictions (%
AP). The solid line represents perfect correlation between observed and predicted values.

accurate classifications of presence/absence of large snags on pri-
vate lands than on public lands (Table 8).

For both modeling approaches, overall accuracy and x were
smaller when the decision threshold was set to 7=0.5 than for
the adjusted 7 values. Additionally, sensitivity was far greater than
specificity on public lands for both modeling approaches while
specificity was far greater than sensitivity on private lands. For
the adjusted 7 values, sensitivity and specificity values were more
balanced with values fairly close to each other. For RF, specificity
was still larger than sensitivity on private lands and sensitivity
was greater than specificity on public lands. However, this trend
was reversed for the logistic regression model, which resulted in
larger specificity values on public lands and larger sensitivity val-
ues on private lands (Table 8). Sensitivity was lowest for WA pri-
vate lands, which had large proportion of plots without large
snags and the smallest number of observations (Table 8).

4. Discussion
4.1. Snag density by decay stage

The results of our study indicate that STDAGE was the most
important explanatory variable in all QP and ORD models, since
TPH tends to decrease with stand age and the proportion of DTPH
is larger in old forests than young and pole-sapling stands (Bater
et al., 2009) and hence, increases with STDAGE. CANOPY, however,
was only significant in the QP models, but did not explain much
variability in the ORD models for estimating the proportion of
LTPH and DTPH by decay class. This is due to CANOPY being able
to capture openings in the canopy that are important in determin-
ing the density of standing trees, but CANOPY fails to describe the
vertical variability of the canopy that Bater et al. (2009) showed to
be important in estimating the proportions of standing dead trees.
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Table 8

Accuracy statistics for the different models of the presence/absence of large snags

(DBH > 50 cm).
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Logistic Regression

Observed
Present Absent Sum
WA PUB
Predicted Present 194 38 232
Absent 114 161 275
Sum 308 199 507
OA=70%; SN=63; SP=81; k=0.41
WA PRI
Predicted Present 118 93 211
Absent 57 147 204
Sum 175 240 415
OA =64%; SN =67, SP=61; k=0.28
OR PUB
Predicted Present 335 93 428
Absent 201 246 447
Sum 536 339 875
OA=66%; SN=62; SP=73; k=0.33
OR PRI
Predicted Present 121 119 240
Absent 54 265 319
Sum 175 384 559
OA = 69%; SN = 69; SP = 69; k = 0.35
RF
Observed
Present Absent Sum
WA PUB
Predicted Present 200 71 271
Absent 108 128 236
Sum 308 199 507
OA= 65%; SN = 65; SP = 64; k = 0.28
WA PRI
Predicted Present 53 86 139
Absent 122 154 276
Sum 175 240 415
OA =50%; SN = 30; SP =64, x = —0.06
OR PUB
Predicted Present 363 126 489
Absent 173 213 386
Sum 536 339 875
OA = 66%; SN = 68; SP = 63; k¥ = 0.30
OR PRI
Predicted Present 73 86 159
Absent 102 298 400
Sum 175 384 559

OA=66%; SN=42; SP=78; k=0.20

Note: OA = overall accuracy; SN = sensitivity; SP = specificity; x = Kappa statistic.

Although Ohmann and Waddell (2002) had reported large
snag densities at high elevations, we did not include elevation
in our models since elevation is a proxy for temperature and
moisture gradients that should be captured by the available
climate variables. Additionally, the occurrence of greater snag
densities at higher elevations may be explained by ownership,
since federal lands are predominately located in the Cascades,
Olympics, and Klamath mountain ranges at higher elevation than
private lands.

The differences in RMSE, correlation coefficient, and % accurate
prediction values between the QPORD and RF approaches demon-
strate the importance of choosing appropriate measures to validate
model performance. Many studies only present a single model
validation criterion which may be misleading, especially if visual-
ization of the modeling results is omitted. Based on the coefficient
of correlation between observed and predicted values, QPORD
clearly outperformed RF on private lands in WA and OR for all

response variables. However, the correlation coefficient provides
no insights on the actual accuracy of model predictions, but only
indicates the degree of correlation between observed and pre-
dicted values. The RMSE values suggested that the QPORD models
outperform the RF imputation in predicting LTPH and DTPH across
the three decay classes (Table 6). However, the scatterplots (Figs. 1
and 2) show that the QPORD models resulted in smaller RMSE val-
ues because fairly small overpredictions were consistently made
for small observed values and very large underpredictions were
made for large observed values of the four response variables. In
the given case, this resulted in smaller RMSE values than those ob-
tained from the RF approach, although RF resulted in higher %
accurate prediction for DTPH in all three decay classes, suggesting
that the RF approach was superior at least for predicting DTPH.D1,
DTPH.D2, and DTPH.D3. Typical for all NN imputation methods, RF
provided large over- and underpredictions across the whole range
of the response variables but also a large number of accurate pre-
dictions which explains why RF outperforms QPORD in terms of %
accurate prediction. It is noteworthy that the distribution of pre-
dicted values using NN imputation methods like the RF approach
is more like the observed distribution in terms of variability than
the distribution of predicted values generated by parametric
regressions like QPORD, which tend to exhibit much smaller vari-
ability than the distribution of observed values. The ultimate deci-
sion to use one method over the other depends on the evaluation
criteria and the intended use of the model results.

The QPORD model provided poor results in this study for two
reasons: (1) the QP model tended to underpredict TPH for large ob-
served TPH and overpredict TPH for small observed TPH. This trend
carried over to the next stage of the model for which TPH was mul-
tiplied by the estimated proportions of tree status class; (2) The
ORD model highly underestimated the proportions of DTPH.D1,
DTPH.D2, and DTPH.D3 when large proportions were observed.
Multiplying low predicted proportions with low predicted TPH, re-
sulted in extremely low density predictions of DTPH by decay
class.

The poor performance of the ORD model can be attributed to the
lack of explanatory variables in our data set that described the dis-
turbance history as well as the lack of explanatory variables that ex-
plained the vertical variability in the forest canopy. Canopies
become more structurally variable with the presence of snags (Bater
et al., 2009; Martinuzzi et al., 2009). Since our set of explanatory
variables did not include a remote-sensing variable that described
the vertical variability in canopy structure, we were not able to pre-
dict the proportions of tree status class well, and hence, our model
predictions were of lesser quality than the results presented by Bater
et al. (2009) who used LiDAR-derived metrics of variation in canopy
height. It can be assumed that, once the predictions of the ORD mod-
el are improved, the accuracy of the QPORD model will improve for
all four response variables. Given that the QPORD model already
provides predictions of LTPH that are superior to those of the RF ap-
proach in terms of % accurate prediction, it can be expected that
QPORD may also provide comparable predictions for DTPH.D1,
DTPH.D2, and DTPH.D3, once the ORD model provides improved
predictions of the proportions of tree status class.

The predictive abilities of RF and QPORD rely on the assumption
that a strong relationship exists between snag density and the
explanatory variables. Weak relationships were present in the data
of this study, and both RF and QPORD may be more effective if a
stronger relationship was present.

The results of our study indicate that density of snags by decay
class is easier to model and predict on private lands than on public
lands, which can be attributed to private forest lands typically
being dominated by even aged stands with similar stand origin
that exhibit less variability than forests managed for multiple re-
sources on public lands (Hansen et al., 1991).
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4.2. Presence of large snags

Explanatory variables that describe the variation in canopy
height, topography as well as disturbance history and forest succes-
sion are important for predicting the distribution of diameter classes
of snags (Martinuzzi et al., 2009). The accuracy of our large snags
presence/absence classification was not very high compared to the
accuracy reported by Martinuzzi et al. (2009) who achieved overall
accuracy >72% and x > 0.43, which are similar to the maximum
values that we achieved with our models. These discrepancies may
be explained by a variety of differences in the data. STDAGE, which
represents forest succession, was the most important explanatory
variable in our models. Without the use of LiDAR-derived metrics,
we lacked remote-sensing explanatory variables that described
the vertical canopy variation in our data. Metrics describing vertical
forest structure may be the key to predicting snag density by size or
decay class with high accuracies (Bater et al., 2009; Martinuzzi et al.,
2009), which cannot be achieved with explanatory variables derived
from Landsat TM data. Even though we had some information about
topography (elevation, SLOPE, and ASPECT) available in our data,
these variables were not nearly as powerful explanatory variables
as the LiDAR-derived metrics describing landform employed in
Martinuzzi et al. (2009). Information about disturbance history,
which has a major effect on snag abundance and snag characteris-
tics, may also improve model performance.

The large variability in geographic range and forest types in our
data set, that covered all of western WA and western OR, may also
have contributed to fairly low accuracies of our classification mod-
els. We attempted to predict the presence and absence of large
snags (DBH > 50 cm), which is inherently difficult because snags
of that size have low prevalence, especially in heavily managed
and harvested forests. The results of our study suggest that it is
more difficult to predict presence/absence of large snags on private
lands, which are heavily managed, than on public lands. This may
be explained by the lower prevalence of large snags on private
lands than on public lands (Table 2). The RF and logistic regression
models for WA private lands had the lowest accuracy, which may
be due to the data set having the smallest number of observations
(n=415) in combination with small prevalence of large snags. The
K = —0.06 value for the RF imputation approach indicates that RF
did not achieve higher accuracy than a classification by chance
could have achieved for private lands in WA.

Sensitivity and specificity can depend on the prevalence of large
snags, because classification methods tend to favor the larger class,
when the size of presence and absence classes is unequal (Chen
et al., 2006). When the decision threshold t = 0.5, we found that
sensitivity was high on public lands where prevalence of large
snags was high, but low on private lands where prevalence of large
snags was small, thus favoring the larger presence class. Similarly,
specificity was large when prevalence was low, but low when
prevalence was high. This indicates that when prevalence is low,
the models tend to falsely predict absence of large snags where
large snags are actually present, and when prevalence is high the
models tend to falsely predict large snags being present although
they are not. Similar results on specificity and sensitivity were re-
ported by Martinuzzi et al. (2009) who found lower sensitivity for
snag classes >25cm and >30cm than for snag class >15cm,
which can be explained by the lower prevalence of snag classes
with larger diameters. By adjusting the threshold value 7 so that
it accounts for the prevalence of large snags, we were able to coun-
teract the tendency of the classification methods to favor the larger
classes which resulted in similar sensitivity and specificity values.
Although this did not necessarily increase overall accuracy, k val-
ues increased by balancing sensitivity and specificity. Adjusting t
is fairly easy for logistic regression models that predict probabili-

ties. If three or more nearest neighbors are used in the RF approach,
T can also be adjusted (see Chen et al., 2006).

The logistic regression model provided higher accuracies for the
classification of large snag presence/absence than the RF approach.
This may suggest that the parametric regression model may be
superior over the non-parametric RF approach. While NN imputa-
tion methods such as the RF approach have many advantages for
predicting multivariate responses (LeMay and Temesgen, 2005;
Eskelson et al., 2009b), it can be assumed that a parametric regres-
sion model tends to outperform non-parametric NN imputation
methods when only one response variable is of interest, as in the
case of presence/absence of large snags.

4.3. Management implications

Management decisions must consider the availability of snags by
size and decay classes, in order to ensure habitat availability and
suitability. Large snags (=50 cm DBH) are critical habitat elements
for many wildlife species. Hence, monitoring their presence or
absence is fundamental to habitat management. Similarly, monitor-
ing and managing decay stages of snags is necessary to provide the
range of habitat functions associated with dead wood. Models that
allow the prediction of existing snag density by size and decay class
will help forest managers and planners evaluate wildlife habitat
suitability.

This study shows the importance of the accurate presentation
and validation of modeling results, since some validation measures
can be misleading. We recommend that forest managers critically
examine the reported model validation criteria and if possible visu-
alize the results when they choose a model to predict DTPH by de-
cay class. Relying on a single model validation criterion, may be
misleading.

Higher accuracies in predictions of snag density by decay class
were achieved on private lands which show less variability than
public forest lands. Managers of public forest lands may be able
to improve the performance of the models by fitting models on
small subsets of homogenous data (e.g., fit separate models for dif-
ferent forest types).

The models presented in our study achieved low accuracies,
which was attributed to the poor predictive abilities of the avail-
able explanatory variables and the highly variable nature of dead
wood populations. LiDAR-derived metrics describing the vertical
variability in forest canopy structure have been shown to be valu-
able explanatory variables for predicting snag size class distribu-
tions and proportions of snag density classes. Hence, the
incorporation of LiDAR-derived metrics into snag density models
promises to improve model accuracies in the future when LiDAR-
derived metrics become more readily available. Including mea-
sures of disturbance history may also improve model performance.

Since large snags are rare in highly managed forests, which are
prevalent on private lands, presence/absence of large snags is more
difficult to model on private lands than on public lands. Forest man-
agers of private lands should be aware that the presence classifica-
tion tends to be low while the absence classification tends to be
high, when prevalence of large snags is low. Forest managers of
public lands should be aware that prevalence is higher on public
lands and hence absence classification tends to be low. By adjusting
the decision threshold, we were able to balance sensitivity and spec-
ificity. When choosing the decision threshold, managers can either
favor sensitivity or specificity depending on whether falsely predict-
ing large snags where they are absent or falsely predicting absence of
large snags where they are present has a larger impact on manage-
ment decisions. For example falsely predicting absence of large
snags where they are present may result in managers investing in
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artificially creating snags although it may not be needed. The deci-
sion threshold can more easily be adjusted in logistic regression
models than in NN imputation methods such as RF.

Models to predict snag density by decay class and presence of
snags by size class will become increasingly important for making
management decisions with regards to wildlife habitat. Managers
need to be aware of the advantages, disadvantages and trends
inherent to some of the modeling approaches, when they use mod-
el results in their decision making.
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