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Understanding canopy radiation regimes is critical to successfully modeling vegetation growth and function.
For instance, the vertical distribution of photosynthetically active radiation (PAR) affects vegetation growth,
informative upon carbon and energy cycling. Availing upon advances in information capture and computing
power, geometrically explicit modeling of forest structure becomes increasingly possible. A primary chal-
lenge however is acquiring the forest mensuration data required to parameterize these models and the relat-
ed automation of modeling forest structure. In this research, to address these issues we employ a novel and
automated approach that capitalizes upon the rich information afforded by ground-based laser scanning
technology. The method is implemented in two steps: in the first step, geometric explicit models of canopy
structure are created from the ground-based laser scanning data. These geometric explicit models are used
to simulate the vertical range to first hit. In the second step, we derive canopy gap probability from full wave-
form laser scanning data which have been used in a number of studies for characterization of radiation trans-
mission (Jupp et al., 2009; Yang et al., 2010) and do not require any geometric explicit modeling. The
radiative consistency of the geometric explicit models from step 1 is validated against the gap probabilities
of step 2. The results show a strong relationship between the radiative transmission properties of the
geometric models and canopy gap probabilities at plot level (R = 0.91 to 0.97), while the geometric models
suggest the additional benefit to serve as a bridge in scaling between shoot level and canopy level radiation.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Canopy structure encompasses the spatial distribution of foliage as
well as the architecture of the supporting woody components such as
stems and fine branches. For coniferous canopies, the distribution of fo-
liage elements is typically described around three levels of organization
(Oker-Blom, 1986): 1) the clumping of needles into shoots, 2) the
clumping of shoots around branches, and 3) the clumping of the canopy
into crowns. This complex arrangement of foliage elements increases
radiation penetration to lower canopy strata (Oker-Blom, 1985, 1986;
Stenberg, 1995b) and affects the adaptation of foliage elements to
their immediate radiation environment with important implications
for forest growth and productivity (Field, 1983; Givnish, 1988). Over
large spatial scales, an exponential decay in radiation with canopy
depth is observed. This rate of decay increases with leaf area and
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decreases with clumping; However, profound deviations from an expo-
nential relation or even abrupt changes (lumiclines) in canopy radiation
can be observed over finer spatial scales or along vertical canopy
transects (Parker et al., 2001).

Canopy radiation can be computed using radiative transfer models
that relate the absorption, reflection, and transmission of radiation to
the biophysical characteristics of foliage elements and their spatial ar-
rangement within the canopy. Radiative transfer models range from
high spectral resolutions (Jacquemoud et al., 2009) to fine spatially
explicit models of canopy structure (Ross & Marshak, 1991; Welles
& Norman, 1991). These finer levels of geometric detail enable the
comparison of simulated radiation budgets against in situ measure-
ments (Mariscal et al., 2004), facilitate coupling with leaf or shoot
level functional models (Van der Tol et al., 2009; Wang & Jarvis,
1990), and provide for a benchmark that can be used to evaluate
model performances that operate at wider scales (Widlowski et al.,
2006). The parameterization of the latter models is challenging and
costly, due to the large number of structural parameters.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.rse.2013.04.019&domain=f
http://dx.doi.org/10.1016/j.rse.2013.04.019
mailto:vanleeuwen.martin@gmail.com
http://dx.doi.org/10.1016/j.rse.2013.04.019
http://www.sciencedirect.com/science/journal/00344257


287M. van Leeuwen et al. / Remote Sensing of Environment 136 (2013) 286–300
Ground based laser scanning is a recent technology that has signifi-
cant potential for direct and cost-efficient measurement of forest struc-
ture at very high resolutions. Canopy structure is digitized by emitting
laser pulses across a wide field of view andmeasuring the time of flight
between each emission, reflection off any scanned targets, and return at
the instrument (Aschoff & Spiecker, 2004). The recorded laser returns
may be digitized as fullwaveformdata,where the full return of laser en-
ergy is recorded at a nanosecond bandwidth, or as discrete returns,
where data is represented as point clouds. In forestry, these data have
been used for the modeling of stem volume and taper (Maas et al.,
2008), branching structures (Bucksch et al., 2010), and – in combination
with tree modeling techniques such as L-systems (Prusinkiewicz &
Lindemayer, 1990) – the reconstruction of individual trees at levels of
detail beyond the shoot scale (Côté et al., 2009, 2011).

The high level of structural detail of these data provides an impor-
tant opportunity to parameterize geometrically explicit radiative trans-
fer models. Modeling approaches have primarily focused on using point
cloud information and generally require various assumptions on
growth patterns and foliage characteristics. Methods typically start
with the segmentation of returns into woody material and foliage, e.g.
based on return intensities (Côté et al., 2009) after which geometries
of tree trunks and branching can be obtained. To address effects of
data obscuration and roughness of object surfaces (Côté et al., 2011;
Liang et al., 2012) least squares optimization (Maas et al., 2008) and hy-
pothesis testing and generating techniques such as Hough transform
(Fleck et al., 2004) have been adopted. Coarse topological graphs of
branching structures may be created using skeletonization algorithms
such as provided by Verroust and Lazarus (2000) and Bucksch et al.
(2010). More recent developments in modeling tree structure have
combined laser scanner data with tree architectural software to repre-
sent levels of detail beyond the shoot. This is achieved by simulating
the growth of fine woody structures that follow the spatial distribution
of foliage returns or that adapt to simulations of the internal canopy
radiation regime (Côté et al., 2009, 2011; Runions et al., 2007; Van der
Zande, 2011).

A number of challenges remain in modeling of canopy structure at
scales ranging from individual shoots to the crown level. Data obscu-
ration makes the automation of the modeling pipeline challenging
(Côté et al., 2011) and the level of detail of crown and canopy recon-
structions needs to be balanced with computational tractability while
remaining able to simulate canopy radiation profiles.

In this paper we present a methodology for the automated recon-
struction of canopy structure from ground-based laser scanning data
into three-dimensional mesh models that provide for modeling
radiation transmission with canopy depth. The data used in the re-
construction pipeline are discrete but the point clouds are derived
from full waveform data. We then compare and evaluate this method
of reconstruction against an established method for deriving canopy
radiation transmission from the full waveform data and evaluate the
radiative consistency between these two approaches. We conclude
the paper with a discussion on the use of these modeling techniques
and opportunities for analysis of shoot level functioning.

2. Methods

2.1. Study area

The study area is a coastal coniferous forest in the dry maritime
Coastal Western Hemlock subzone (Humphreys et al., 2006) on the
east coast of Vancouver Island, British Columbia, Canada, approximately
20 km south of Campbell River. The stand chosen consists mainly of
Douglas-fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco], and a
minority of western red cedar [Thuja plicata Donn. ex D. Don], and west-
ern hemlock [Tsuga heterophylla (Raf.) Sarg.] that comprises 17% and 3%
respectively (Morgenstern et al., 2004). Trees are around 60 years-old,
between 30 and 35 m in height with a stand density approximating
1100 stems ha−1 (Jassal et al., 2009). The understory is sparse and
mainly consists of salal [Gaultheria shallon Pursh.], Oregon grape [Berberis
nervosa Pursh.], and vanilla-leaf deer foot [Achlys triphylla DC], with a
shallow layer of ferns and mosses. A total of four 30 × 30 m plots are
established based on representativeness of the stand of which one
(plot 7) was nitrogen enriched (Hilker et al., 2012).

2.2. Data

Field data collected at all four plots included diameter at breast
height (DBH), tree height, and stem locations. Stem locations and
heights were measured using a vertex (Haglöf, Sweden) hypsometer
and compass bearing and DBH was measured using a diameter tape
measure. Laser scanning data was acquired using the Echidna™
Validation Instrument (EVI) (Strahler et al., 2008). This laser scanner
features a 1064 nm laser light source and digitizes full returned ener-
gy at 2 Giga samples per second (Gs/s) and covers a field of view of
360 degrees azimuth and 130 degrees zenith. Data was collected in
August 2008 using an angular sampling interval of 4 mrad and
beam divergence of 5 mrad and range measurements were cut off if
values exceeded 100 m. Five scans per plot were acquired comprising
the four plot corners and the centre. North was marked in the scans
using a reflective marker that was placed using a compass and coor-
dinates of scan locations were recorded using GPS.

2.3. Data processing

2.3.1. Preprocessing
The full waveform digitization from the EVI instrument is benefi-

cial for analyzing surface scattering where the size of the scatterers
is fine compared to the instrument footprint, as this leads to a degree
of porosity of the medium to the laser beam that can be used for
modeling the transmission of radiation through the canopy (Jupp et
al., 2009; Yang et al., 2010). In this study, the full-waveform data
was used to derive foliage profiles and canopy gap fraction, the latter
is used as a measure of radiation transmission. Single and last returns
were used for creating virtual geometric models of the forest plots.
These returns were obtained from the full waveform information
using methods described by Yang et al. (2013). The single and last
returns were projected using the recorded azimuth and zenith angles
of the respective laser shots into the 2D image domain (Andrieu et al.,
1994). The same projection was then used to produce a suite of addi-
tional EVI outputs including return intensity, range, Cartesian coordi-
nates and radial distance that was defined as the horizontal component
of range.

All scans were aligned to north using the reflective target, then six
degree of freedom offsets between corner scans and the centre scan
were determined manually by interactively shifting and rotating the
point clouds, acknowledging that automated routines for coregistration
already exist (e.g. Gruen&Akca, 2005). A Digital ElevationModel (DEM)
and Canopy Height Model (CHM)were created using co-registered data
of five scans per plot and using a grid cell size G (40 cm) and smoothing
using a 1.5 m Gaussian kernel (σK = 1 m) in accordance with values
previously used in similar forest types (Ferster et al., 2009). Additionally,
local maxima were derived from the CHM using the level set method
(e.g. Kato et al., 2009) and a Parametric Height Model (PHM)was creat-
ed using these local maxima and the CHM (Van Leeuwen et al., 2010).
The PHM model outlines individual crowns by fitting cones to a CHM
or to raw LiDAR data so that the number of returns within threshold
distancem (10 cm) from the cone surface is maximized. Transmittance
of the DEM was set to zero. A list of variables and symbols used in the
modeling is presented in Table 1.

Subsequent processing addresses the detection of stem locations
and the retrieval of stem diameters (§2.3.2.), and the derivation of
geometric models of the forest plots (§2.3.3.). The virtual plots are
then used to simulate canopy radiation transmission (§2.3.4.).



Table 1
Definition of parameters and symbols used in processing laser scanning data and the
simulation of radiation transmission. Where applicable, parameter values are stated
in italics.

Fdist, Fdist,ind Distance transformation, indices of nearest feature pixels
d Cumulative Manhattan distance
pMAT Medial axis pixel (medial atom)
pleft , pright Boundary pixels left and right of the medial axis
k Number of medial axis pixels
D Stem diameter
R Range
αspan Angular width of objects in the panoramically projected EVI data
δi, j Range tolerance between neighbouring pixels i and j applicable

to hard-targets (0.3 m)
r Correlation coefficient (filtering criterion for stem detection) (0.95)
ξ Change in angle along the medial axis (15°)
n The minimum number of pixels contained in a medial axis (24)
G Grid cell size of surface model (0.4 m)
K Size of Gaussian smoothing kernel (1.5 m)
σK Standard deviation of Gaussian smoothing kernel (1 m)
m PHM threshold distance for voting ‘True’ (0.1 m)
Δzl - Δzu Parameter boundaries for z-displacement relative to local

maximum (−1 to 2 m)
αl – αu Parameter boundaries for cone opening angle (10 to 24°)
L Length of occlusion measured along the stem
w Connecting segment, used in bridging occlusion along stems
LZ, LZ,MAX z-component of L, user defined maximum for LZ (10 m)
s, sMAX Angle between paired tangent vectors, user defined maximum

for s (10°)
g(θi) Directional gap fraction of a branch (0.15 at normal angle)

Fig. 1. Schematic representation of the stem detection algorithm showing the individual
steps of processing. See text for explanations about the individual processing steps.
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2.3.2. Stem detection and reconstruction
Tree stems were segmented from single scans. The segmentation

was implemented using theMedial Axis Transformation (MAT) and re-
gression analysis of object boundaries. Themedial axis of a polygonal or
polyhedral shape is a thin curve or curved plane centred within the
boundaries of that shape (Das et al., 2011; Martinez-Perez et al., 1999;
Yuan et al., 2011). A large number of methods exist for the derivation
of the MAT (Siddiqi & Pizer, 2008). In this study, the MAT was derived
from a distance transformation. First, using radial distance, solid objects
such as stems, branches, and ground hits were crudely separated from
permeable targets (foliage) by identifying pixels whose range did not
deviate from all 8-connected neighbouring pixels by more than a toler-
ance, δ (Fig. 1, step 1). In this binary image, apparent edges in the range
image are zero while surfaces in the range image are non-zero. Second,
from this binary image the Distance Transformation (DT) was comput-
ed (Fig. 1, step 2) that represents the distance from any surface pixel to
their nearest edge pixel (e.g. Shih & Pu, 1995). Segments of surface
pixels in the DT show an elevation in values towards the segment cen-
tres, resulting in the appearance of ridge-lines along the long axis of tree
stems. Third, the MAT was derived from the distance transformed
image using the sign-change of the image derivative thatwas computed
along image lines (Siddiqi & Pizer, 2008) (Fig. 1, step 3). Association of
surface pixels to their nearest edge pixels allows for the conversion
from a medial representation (MR) to a boundary representation (BR)
(Siddiqi & Pizer, 2008) (Fig. 1, step 4). A set of boundary pixels was
obtained and classified into Pleft, and Pright relative to the medial axis
(PMAT). An illustration of the method for stem detection is provided in
Fig. 3.

Tree stems were detected using the MR and BR based on three
filtering criteria: 1) a measure of normalized cross-correlation, r, be-
tween the paired boundary lines, 2) change in local orientation
along the medial axes, ξ, and 3) the number of pixels contained in
the medial axis, n (Fig. 1, step 5). The normalized cross-correlation,
r, was computed between corresponding pixel y-coordinates of the
paired boundary lines:

∑k
j

Pleft;y;j � Pleft;y

� �
Pright;y;j � Pright;y

� �

σPleft ;y
;σPright;y

:k
ð1Þ
where k is the number of paired boundary pixels associated with the
medial axis and σPleft ;y

;σPright;y
the standard deviations of y-coordinates.

The normalized cross correlation is frequently used in image processing
and computer vision, for example, to match stereo pairs (Fua, 1993).
The local orientation was computed for every medial axis pixel as the
slope, in the image coordinate frame, of the line through the associated,
paired boundary pixels (Pleft,j,Pright,j). The parameter ξwas computed as
the change of orientation between two adjacent medial axis pixels
((PMAT,j,PMAT,j + 1) and medial axis pixels for which the local orientation
changed by more than a user specified threshold were removed. After
filtering for ξ, the parameter n was used to filter any small objects that
were considered too short to reliably compute a normalized cross-
correlation. Filtering for r, ξ, and n, detects tree stems. A sensitivity anal-
ysis around stem detection parameters was conducted by varying one
parameter at a time over specified ranges (Appendix A.1.1). Stemdiam-
eters were computed along unobscured, detected stems following
Strahler et al. (2008):

t ¼ sin αspan=2
� �

¼ D=2
Rþ D

2

ð2Þ

D ¼ 2R
t

1� t
ð3Þ



Fig. 2. A schematic of the complete processing pipeline used for reconstructing plots.
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where R is the range, D the stem diameter, and ∝span is the angular
width spanned by the tree trunk. Stem centres were computed from
the original radial distance that relate to the stem surface (i.e. bark),
and derived stem diameters.

2.3.3. Mesh modeling
Stem segments detected in the single scans, that overlapped in

co-registration were merged into a single stem object. To reduce im-
pacts of co-registration errors as well as errors in diameter attribution
between scans, the merged data were smoothed by averaging stem
attributes along 0.5 m height intervals. Gaps in stem representation
may occur, however, due to the effects of occlusion in ground-based
laser scanning data. To bridge these gaps, B-splines were fitted through
all stem segments (Dierckx, 1993) and tangent vectors were computed
at every spline node. For every possible pair of segments, a connecting
spline was fitted using the same nodes as contained in the individual
splines combined, and from the paired nodes the angles (s) between
tangent vectors (connecting spline vs. the two separate splines) were
computed, except for a number of six nodes centered around the joint
of the two segments, due to sensitivity of splines towards the extremes
(Daniels et al., 2008). If a pair of segments was shorter than six nodes in
length, the pair was skipped. If these angles or the z-component of the
gap length (LZ) exceeded user specified values sMAX, LZ,MAX, respectively,
the two segments were interpreted as not belonging to the same tree.
Alternatively, any two segments were assessed to belong to the same
tree stem if segment wj was the smoothest connecting segment for wi

and if wi was the smoothest connecting segment for wj too; this is
analogous to stereo matching criteria used in Fua (1993).

After this step, data occlusion near the trunk base and tree top may
remain. To recover these final missing parts, an approach was devel-
oped where the trunks were extended towards the ground and the
tree tops. Liu et al. (2005) describe an approach that reconstructs curves
from point cloud information based on the tangential flow. Their
algorithm produces a B-spline that grows along its two end-points
using a cylinder that is aligned with the spline’s tangent and that is
used to follow apparent curves in the point cloud. Given that tangential
vectors of trees are generally vertical, a solution of reduced complexity
was sought in this study. The point cloud was compressed along the
z-axis (i.e. height-axis) by a factor 20 and a cylinder with radius 2.5 m
was placed around the top of the detected stem segment. Iteratively,
the nearest return within 30 cm above the stem top and within the
cylinder was added to the sequence of spline nodes and using the
new top additional returns were added until no additional returns
were found. The sameprocedurewas used to extend the stem segments
towards the ground. The set of cones derived from the PHM, each
representing an individual, dominant tree crown, was matched with



Fig. 3. Binary image showing clusters of pixels with 8-connected neighbors within range, δ (A). Distance transformation and projection of the Medial Axis Transformation overlaid
in red (B). Stem detection overlaid on laser intensity image (C).
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the tree stems by locating, for every cone tip, the nearest stem top and
for every stem top the nearest cone tip. If matches were mutual, a con-
nectionwas registered (Fua, 1993). Stem diameters were then assigned
using linear extrapolation towards the stem tops, while diameters were
kept constant towards the DEM. The transmittance of the stems and the
forest floor was set to zero.

Tree crowns were modeled using a combination of laser derived
crown dimensions and Arbaro, an open source treemodeling software
(Weber & Penn, 1995) that provides for the modeling of deciduous,
coniferous, as well as herbaceous vegetation. Plants modeled in
Arbaro behave as if they were solitary, and do not exhibit competition
for light with neighboring vegetation. Arbaro uses an extensive list of
parameters including branch lengths in relation to parent branches,
the number and curvature of branches, as well as random variations
around each parameter. To reduce the number of modeling parame-
ters, no random variation was considered and a template coniferous
tree crown was created whose dimensions and shape could be
adapted to fit the stem shapes and crown outlines derived from the
point clouds. The template tree was defined with a crown depth of
60% of tree height and a constant internode distance (0.25 cm), and
a distribution of branch insertion angles and branch curvature that re-
semble the plagiotropic and heliotropic distribution of branches in the
lower and top canopy strata, respectively (Hallé et al., 1978). Crown
depth was estimated from field observations of dominant trees and
was computed as the height of first living branch to the total tree
height. Internode distance was chosen to balance the frequency of
first order branching with computing resources, while ensuring that
canopy layering was abundantly sampled. Heights and opening angles
of cones in the PHMwere used to define tree height and lengths of first
order branches and the crowns were draped over the laser-
reconstructed stems to account for sweep and lean. To avoid crowns
intersecting one another and to ensure they resemble natural compe-
tition in stands, branches were scaled to individual tree growing
spaces that were computed by tessellating the plot space to the
nearest tree stem based on the rationale that locations within the
plot are likely to be populated by foliage from the nearest stem, rather
than a stem located further away. To simplify canopy representation
without comprising the radiative consistency, clumping of foliage
around each branch was abstracted from the Arbaro output by fitting
planar polygons to clusters of first and second order branches. The
use of planar surfaces to represent clumping of shoots around
branches builds on traditional concepts used in layered crown and
canopymodels (Oker-Blomet al., 1991; Ross &Marshak, 1991) and re-
tains information about shoot normal angle distributions. After recon-
struction of the plots, the mesh models were decimated to 50,000
triangles to reduce computing costs of radiative transmission simula-
tions (§2.3.4.). A sensitivity analysis around Arbaro parameters was
conducted (Appendix A.1.2).

Uncollided transmission of radiation through the planar polygons
was expressed as the gap fraction, g(θi), a measure similar to the foliage
silhouette to total area ratio used in modeling shoot level albedos
(Stenberg et al., 1995a). This gap fraction is a function of illumination



Fig. 4. Detection rate as a function of radial distance from the scanner's location.
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geometry relative to the normal angles of the branch facets. For incom-
ing rays under a 0° normal angle, the gap fraction was set to 15% based
on photographical measurements perpendicular to the predominant
shoot direction that generally ranged between 10 to 20%, and the
value of gap fraction decreased linearly with the cosine of the
ray-normal-angle. The sensitivity of this parameter was assessed by
changing g(θ0) from 5 to 30% in steps of 5% (Appendix A.1.3).

2.3.4. Modeling the internal canopy radiation regime
The radiative consistency of the produced mesh model was vali-

dated against EVI derived measurements of gap probability (Jupp et
al., 2009). Gap probability, Pgap(θ,R), is the probability of having no
scattering material (e.g. foliage, woody material) between the laser
scanner and a point at a specified range (R) under a specified zenith
angle (θ) and is derived as:

Pgap θ;Rð Þ ¼ 1� 1
ρa

∫ρapp⋅r⋅dr ð4Þ

where ρa is the normal reflectance of a face and ρapp is the apparent
reflectance that is determined from the recorded waveform of
returned light energy as:

ρapp ¼ I R; θð Þ⋅R2

K Rð Þ⋅Φ0
ð5Þ

where I(R,θ) is the measured intensity at the range R, and angle θ.
K(R) is a telescope efficiency factor and Φ0 is the outgoing energy
(Jupp et al., 2009). Pgap is computed in zenith angle bands that are
typically between 5 to 20° in width. A vertical profile of Pgap was com-
puted from Eq. (4) for each plot using the center scans.

Pgap provides for the derivation of foliage profiles as:

L′ zð Þ ¼ �log Pgap
′ zð Þ

� �
ð6Þ

Foliage profiles were computed for zenith angles ranging from 55
to 60 degrees (Lovell et al., 2003) and were compared against the ver-
tical distribution of facet areas of the mesh models.

Measurements of radiation transmission were derived from the
mesh models by forward ray tracing (Appendix A.2). Hemispherical ir-
radiance was simulated using 5000 light sources that each emitted a
single beam of collimated light directed towards the plot origin. The
number of light sources was to balance the resolution of directional
variation in hemispherical illumination such as caused by cloud
cover, with computational cost of the model simulations (one light
source corresponds to 1.26 milli-steradians). In this study, a 100%
diffuse sky was simulated by assigning equal intensities to all light
sources, and this relates to the condition of a complete overcast. At
every ray-mesh intersection, the probability of uncollided transmis-
sion, T, through the facet (i.e. ground, stem, foliage) was determined
from the directional gap fraction, g(θi), (§2.3.3) using the angle be-
tween the ray and the facet normal angle. Vertical hit distributions
were derived as the fraction of hits within 10 cm height bins and
were compared with the EVI Pgap profiles derived from a below-
canopy perspective. As indication of correspondence, 50 samples at
heights ranging between 0 and 30 m were randomly drawn from the
simulated and full waveform derived profiles centered at 57.5° and
Pearson correlation coefficients were computed for each plot. The pro-
cessing pipeline is summarized in Fig. 2.

3. Results

3.1. Stem detection

Stem detection was calculated on average within 3 to 5 s per
scan, making the technique extremely computationally efficient. The
threshold parameters used for stem detection were δ = 0.30 m, r =
0.95, ξ = 15°, and n = 24. Detection was limited to stems covering a
minimum cross section of 3 to 4 pixels. Fig. 4 shows the detection rate
by radial distance measured over all 20 scans, from which cumulative
detection rates can be obtained through integration. For distances up
to 10 m, 93% of trees were detected. In general, trees not detectedwith-
in 10 meters showed excessive branching, or were snags. At distances
up to 15 m, 85% of trees were detected, while at distances up to 20
and 25 m only 67% and 56% of the trees were detected, respectively.
This rapid reduction in detection rate with distance is a result of de-
creasing spatial point density with distance and effects of occlusion.
Using the co-registered data, an average of 9.25 trees per plot totaling
9.8 % of trees detected in the field inventory were not located in the
EVI derived stem map as a result of occlusion or decreasing resolving
powerwith range. Themethodwas insensitive against returns obtained
from branches, albeit trees around this geographical location generally
have sparse branch densities along the lower bole sections. Themethod
was unable to detect some younger trees with heavy branching struc-
ture and foliage along the entire visible stem, and distant trees. Errors
of commission were few and limited to objects close to the scanner
and were eliminated later in the modeling pipeline as stems need to
have a certain length. DBH estimates were found to correlate well
with field observations (R2 = 0.82; Fig. 5); however, a decrease in ac-
curacy was observed, as expected, with distance from the scanner.
Field measured DBH was underestimated (p b 0.05) by EVI (EVIDBH=
22.5 cm vs. FieldDBH = 27.3 cm), consistent with findings of Strahler
et al. (2008) and Yao et al. (2011). Fig. 6 shows field detected and EVI
detected tree stems for plot 1, with the size of themarkers representing
DBH.Mis-registration between compass (vertex) determined tree loca-
tions and EVI derived stem locations may be attributed to individual
scanner setups as well as distance from the plot centre.
3.2. Mesh modelling

Accuracy of the stem modelling was assessed by interpreting the
co-registered point clouds, and showed that themerging of individually
detected tree stems and stem parts overcamemany of the major issues
associated with occlusion. Fig. 7 provides an illustration of the stem re-
constructions and shows that stemsweremodelledwell into the higher

image of Fig.�4


Fig. 5. Linear regression of EVI derived-, and tape measured diameter at breast height
indicates an underestimation of diameters derived from EVI data.

Fig. 7. 3D map of stem reconstructions (A). Detail of one reconstructed tree and its
neighboring point cloud (B). (The neighboring tree visible in the point cloud was
also detected.)
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strata of the canopy allowing consistent matching with the individual
crown tops. In some cases, however, coregistration-errors caused that
individual trees could not be correctly merged for the final mesh
model, and these cases resulted in the reconstruction of two stems, in-
stead of one. The implications of this on the formation of tree growing
spaces seemed minimal as the combined set of growing spaces for
these trees and their reconstructed crowns would act in the sameman-
ner as that it would for a single tree (Morsdorf et al., 2004). The creation
Fig. 6. Co-registration of TLS stem locations for the north-east (blue), south-east (purple),
north-west (yellow), south-west (magenta) and centre (red) locations within the plot,
against fieldmeasured stem locations (green) for plot 2. Diameter estimates are indicated
by the size of the markers. Trees that were detected in the TLS scans and for which no
DBH information was derived as a result of occlusion around breast height are shown
in their respective scan colours as plus-signs (+).
of tree growing spaces was effective in delineating both dominant as
well as suppressed trees (data not shown). The method does not guar-
antee that individual branches always get assigned to their true parent
stem. In all cases, however, the foliage gets assigned to their nearest
stems. In Fig. 8, a demonstration is provided of the fitting of planar poly-
gons to the crowns of the Arbaro tree models, the fitting the modelled
crowns to the reconstructed tree stems, and scaling of the crowns to
the growing spaces. Fig. 9 shows the reconstructed virtual forest plots
using the Arbaro tree models parameterized with tree height, and
crown taper, that were derived from the EVI data set. The Arbaro tree
model output coarsely resembled the clumping of foliage around
branches and into crowns, typical for conifers (Oker-Blom, 1986), al-
though the exact placement of foliage material could not be validated
at tree level against the current data set.

It was found across all plots that tree heights in the mesh model
were considerably shorter than field measured heights; this is also
reflected in Fig. 10 showing facet area profiles of the mesh models
against height vs. EVI derived leaf area profiles against height. Some of
this underestimationmay be explained fromdecreasing ability to detect
discrete returns with increasing path length through the canopy, while
additional contributions were associated with the creation of the CHM,
and PHM, and decimation of the Arbaro tree crownmodels that resulted
in the removal of fine branches located at the tree tops. In contrast to
the EVI foliage profiles, the facet area profiles include a profound ground
peak that is due to the inclusion of the ground terrain in the mesh
models. Significant differences between foliage profiles and facet area
profiles remain for the mid-canopy (around 15 m) that can be
explained from differences in definition between these two profiles
and thatmay be resolved by foliage density attribution to the individual
facets.
3.3. Modeling radiative transmission properties

Fig. 11 shows the modeled hit distribution against height. Individ-
ual data points represent fractions of hits within 10 cm height bins,
while the fitted lines show a polynomial fit and moving median
(1 m window size) through these data points. A sixth order polyno-
mial fit was chosen to capture peaks in absorption by the canopy
volume as well as ground vegetation. Simulated hit distributions
showed an increase around the mid-canopy where foliage and facet
area densities are highest and also showed increasing variation in
light interception with canopy depth (Fig. 11). The highest probability
Phit for single facets was observed near the tree tops and around cano-
py gaps.
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Fig. 8. Fitting of planar polygons to Arbaro branch models and scaling of crowns to the
tree growing spaces.
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Vertical profiles of Pgap were computed using zenith angles cen-
tered around 17.5°, 27.5°, 37.5°, 47.5°, and 57.5° using a 5° bandwidth
(Fig. 12). A strong dependence of the Pgap profiles on the zenith angle
was observed. For larger zenith angles, values of Pgap were consider-
ably smaller than corresponding values at smaller angles as a result
of path length through the canopy. Fig. 12 also shows the simulated
hit distribution profile as a function of height (thicker black line)
and shows consistent behavior with trends in the full waveform de-
rived profiles. The Pearson correlations coefficient computed between
50 random samples taken from the simulated hit distribution and full
waveform Pgap distribution centered at 57.5° was 0.97, 0.95, 0.97 and
0.91 for plot 1, 2, 3, and 7, respectively (P bb 0.01). A noticeable dif-
ference is observed at heights over 20–25 m that can be addressed
to the difference in illumination geometries between the real and
simulated results. While the EVI has a below-canopy perspective,
Fig. 9. Illustration of reconstructions for all four plots. Shown are the woody skeletons produc
polygons to simulate the layering of foliage elements in coniferous canopies (B).
the simulated results are obtained from an overhead perspective
and resemble the down welling radiation from the sky.

4. Discussion and conclusions

4.1. Stem detection

The presented method for stem detection provided accurate re-
sults in a highly computationally efficient approach and provides an
alternative solution to circle fitting approaches (e.g. Maas et al.,
2008) with a comparative advantage for lower resolution data sets
(e.g. 0.25° angular resolution). Future research will also apply stem
detection to deciduous species with more complex branching struc-
tures. A current concern is that the 3 × 3 kernel test effectively erodes
the width of the trunk that has important impacts on diameter re-
trieval, which may be mitigated through incorporating other algo-
rithms such as connected component labeling that preserved
contours in the segmented image. Stem detection was insensitive to
the parameter ξ for a large number of scans, hence reproduction
over a range of forest types may reveal if this parameter could be
omitted or its function substituted, for example, by a bivariate regres-
sion filter, instead of the current univariate correlation r.

4.2. Mesh modeling

Architectural tree modelling software has predominantly been
used within the fields of computer graphics and visualization and
only more recently in remote sensing and image processing (Côté et
al., 2009; Widlowski et al., 2007b). Challenges in adopting these
models in remote sensing largely relate to the parameterization that
is geared towards graphical display rather than physiological func-
tioning (see also Table 2 for a comparison). Arbaro provides for the
modelling of a large variety of tree species from coniferous to
broadleaved trees and grasses through a common set of variables. A
modification of Abraro was used in this study with an emphasis on
physiological functioning and radiation transfer by modelling
branches as planar polygons that possess the average radiation attri-
butes derived from field observations. The model parameterizations
required default settings that were considered species-specific, and
effects of stocking density and age on the radiative characteristics of
ed by Arbaro software and fitted to the tree growing spaces (A) and the fitting of planar
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Fig. 10. Facet area profiles (bars) derived frommesh reconstructions and point cloud information and full waveform EVI derived leaf area profiles (solid black line) per square meter
ground surface area for the four plot reconstructions.
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the foliage needs to be further investigated. The current implementa-
tion is of a modular form that allows substitution of field observations
with laser derived geometrical attributes. For example, shoot level
structure acquired through laser scanning of shoot samples can be
included in the canopy representation as attribute data or can be
used to substitute the planar polygons entirely, for example for estab-
lishing benchmark scenes for model intercomparison (Widlowski et
al., 2007a).

The abstraction of crown architecture to meet computation power
and functional representation is a key challenge that needs to be
addressed in forming radiative transfermodels that need to be operat-
ed over considerable spatial scales or where extensive analysis of
parameter sensitivity is required using conventional computer hard-
ware. The current choice of using planar polygons closely resembles
the organization of foliage into layers that has been frequently used
for modeling radiative transfer (Ross & Marshak, 1991); However,
other abstractions such as shoot cylinders (Oker-Blom et al., 1991)
or convex volumes of foliage (Strahler and Jupp, 1991) could be
applied to pine or a broad variety of deciduous species. Abstracting
the actual crownmorphology introduces, however, model parameters
that are effective in describing canopy radiation (e.g. Asrar & Myneni,
1991), yet their actual real-life meaning is lost. An example of such a
parameter is the effective LAI that provides for the application of
Lambert–Beer's Law to clumped canopies, but its value does not
equate to the real canopy LAI. The current processing pipeline at-
tempts to address concerns around the use of effective parameters
by avoiding them where possible and adopting easy-to-measure
forest inventory parameters relating to stem and crown dimensions
and architecture.

While of less importance in radiative transfer modeling, stem loca-
tions form a significant aspect in the current automation pipeline
(Côté et al., 2009) as stems are used to segment the plot into individ-
ual tree growing spaces and constrain the distribution of foliage ele-
ments. It is anticipated that the presented modeling pipeline works
equally for other species that have a monopodial trunk. For species
with trunks that split into different directions, a similar processing
pipeline can be envisioned where growing spaces are derived around
the individual stems and branches and scaling of the tree regenera-
tions revolves around these individual growing spaces. For these
cases, a similar ordering of parameter sensitivities as listed in Fig. 13
(Appendix A) may be expected in that lower order stems (e.g. main
branches) have greater influence on the radiation profile, yet further
research is needed to confirm these assumptions. Future studies may
also investigate the use of tree (stem) vigor and dominance as
weighing criteria in defining growing spaces, as well as adaptation
of foliage densities and biophysical properties to the modeled radia-
tion regime (Côté et al., 2011).

4.3. Radiative transmission

This paper presents a reconstruction method with which 3D ex-
plicit models were derived from a point cloud of a coastal Douglas fir
forest. From these models, the range to first hit for a given irradiation
geometry can be studied and compared with full waveform derived
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Fig. 11. Hit distributions for the four plot reconstructions and fitted trend lines. The profiles show an increase in the mid canopy and an increase near the forest floor, and considerable
variation in absorption around the trend lines.
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Pgapmeasurements (Jupp et al., 2009). Awidely accepted theory on ra-
diation transmission in forest canopies is based on the Lambert-Beer
law that prescribes the exponential decrease in radiation with canopy
depth and assumes a random distribution of foliagematerial and a ho-
mogeneous layering of foliage. Under these assumptions, Pgap profiles
show an exponential decrease with the optical depth of the canopy,
while at spatially finer scales large deviations from the idealized
Lambert-Beer concept are expected (e.g. De Pury & Farquhar, 1997).
Exponential decay is also observed in our model at scales beyond the
plot-level (i.e. obtained through reproduction of the scenes in all
8-neighbouring directions; data not shown). Yet, howwell the current
model represents the fine spatial radiation patterns (i.e. sub-plot
level) could not be assessed with the current data set.

The EVI Pgap profiles corresponding to larger zenith angles show a
convex shape owing to the increase in path length and reflect that in-
formation about canopy structure enclosed in the EVI data is biased
towards lower canopy strata (Hilker et al., 2010b). Too small a zenith
angle is prohibitive, however, as the occurrence of canopy gaps is bi-
ased towards the zenith (Yang et al., 2010). It is thus assumed that the
range of zenith angles used in this study provides a level of confi-
dence around the true plot-level Pgap. Fig. 12 shows that Pgap ap-
proaches values close to zero towards the canopy top. This is due to
the stand reaching canopy closure and for more open canopies, the
values of Pgap may be much larger (Yang et al., 2010). All plots show
a strong similarity in Pgap profiles indicative of the homogeneity of
the stand. A maximum in the hit distribution can be observed for
heights around 15 m, as well as a ground peak that contributes to
around 5 to 10% of total incident radiation. Plot 7 shows the fastest in-
crease in hit distribution with canopy depth, albeit subtle, which may
be explained from its nitrogen enrichment.

Validation of our mesh reconstruction was achieved against the
EVI Pgap profiles and results indicate strong correlations between
the hit distributions derived from the mesh reconstructions and full
waveform Pgap profiles. The main difference between our simulation
and EVI Pgap is the geometry of illumination; while the ray tracing
simulations illuminate from the top of the canopy downward, the
EVI data is collected from a below-canopy perspective. Although sim-
ulations could use the identical illumination geometry as the EVI, this
was not done for two reasons: 1) The current processing pipeline is
limited in modeling the bottom of forest canopies, and for simulations
with a below-canopy perspective the parts of the canopy closer to the
instrument set-up would attract a greater influence on the modeling
results. 2) Moreover, from a physiological perspective it is more inter-
esting to simulate irradiance from the top of canopy downwards as
the largest contribution to forest productivity is provided by higher
canopy strata. The difference in illumination geometry may be re-
solved through the use of tower-based scanning instruments (Eitel
et al., 2012).

Future research should primarily address the tuning of parameter
values to a range of forest types, species and age compositions, as well
as resolving scaling issues and transfer of the presented method to
other instruments. The limited size of the current research plot
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Fig. 12. Cumulative hit distribution against EVI Pgap measured around different zenith angles.

Table 2
Comparison of terminology and variables typically used in forest mensuration and
ecology vs. related parameters used in architectural tree models.

Forest mensuration/ecology Architectural tree models

Clumping factor Distributions of 1st, 2nd and 3rd order branches
Leaf area Number of leaves per branch
Foliage profile Crown shape
Diameter derived from
pipe model

Ratio branch width to length or branch order
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introduces edge affects that impact the hit distributions in that larger
portions of radiation are received at lower heights compared to what
would have been absorbed if the plot was not isolated from its envi-
ronment. These edge effects need to be addressed through acquisition
of laser scanning data over larger areas (e.g. 100 × 100 m) or by
using subsamples of extensive wall to wall airborne LiDAR data sets.
In addition, results of the current study are simulated at plot level, al-
though computations include approximations at a much finer scale.
Future work will examine the three dimensional consistency of radi-
ative transfer at around a 1 m3 scale against an in situ sensor network
that captures diurnal as well as seasonal changes in canopy radiation
and narrow waveband data that relate to the efficiency of solar
energy capture and primary production (Garrity et al., 2010). Future
research is also needed to investigate the influence of stocking densi-
ty, crown dimensions and foliage distributions on the evolution of the
canopy radiation regime with stand development and its implications
for forest growth and management.
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Appendix A

A.1. Sensitivity Analysis

A.1.1. Stem detection
The sensitivity of stemdetection to changes in parameter valueswas

analysed using the plot-centre scans and varying one parameter over
specified ranges (δ = 0.1, 0.2, 0.3, 0.4, 0.5 m; r = 0.7, 0.8, 0.9, 0.99,
0.995; ξ = 5, 10, 15, 20, 35°; n = 6, 12, 24, 36, 42), while the remaining
parameterswere keptfixed (δ = 0.3 m; r = 0.95; ξ = 15°; n = 12) to
capture commission and omission errors. Table 3 summarizes the sen-
sitivity around δ, r, and n. Filtering for ξ only reduced errors of commis-
sion in some scans, whereas it had no effect in others including the
plot-center scans.
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Fig. 13. Arbaro parameter sensitivity analysis. Variation induced by the six most important parameters is displayed along the diagonal of the matrix of plots, while effects of
co-varying two parameters on the cumulative hit distribution is displayed in the upper half, and the observed range in model outcome in the lower half.

Table 3
Sensitivity analysis of parameters δ, r, and n on percentage of correctly detected stems,
and errors of commission and omission. Values for either δ, n, or r were changed while
remaining parameters were kept constant. Constants used for sensitivity analysis were
δ = 0.3 m, n = 12, r = 0.95.

δ (m) 0.1 0.2 0.3 0.4 0.5 Trend

Correctly detected 73.97% 82.53% 82.88% 83.90% 83.90% +
Errors of commission 19.52% 14.73% 14.73% 12.67% 8.90% −
Errors of omission 26.03% 17.47% 17.12% 16.10% 16.10% −

n 6 12 24 36 42

Correctly detected 89.73% 81.85% 75.34% 66.78% 64.04% −
Errors of commission 61.30% 16.10% 0.34% 0.00% 0.00% −
Errors of omission 10.27% 18.15% 24.66% 33.22% 35.96% +

r 0.7 0.8 0.9 0.99 0.995

Correctly detected 82.88% 82.88% 82.88% 82.88% 82.88% 0
Errors of commission 32.53% 32.19% 25.68% 15.41% 2.74% −
Errors of omission 17.12% 17.12% 17.12% 17.12% 17.12% 0
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A.1.2. Arbaro parameters
A listing of the Arbaro parameters that were not derived from

point cloud data is provided in Table 4. The sensitivity of these Arbaro
parameters on radiative transfer simulations was assessed by
conducting a set of simulations using an arbitrary stem and tree
height map, and changing Arbaro parameter values by +20% and −
20% (in steps of 10%). One Arbaro parameter was changed at a time,
Table 4
Parameter values used in the Arbaro architectural tree modeling software.

level 0 trunk Value⁎ Level 1
branches

Value⁎ Level 2
branches

Value⁎

Shape conical
(n/a)

1DownAngle 90° (16%) 2DownAngle 45 ° ⁎⁎

levels 3 (n/a) 1DownAngleV −50 (8%) 2Rotate −90° (3%)
BaseSize 0.4 (30%) 1Rotate 140° ⁎⁎ 2CurveRes 5 ⁎⁎

AttractionUp −0.1 ⁎⁎ 1CurveRes 25 (1%)
1Curve −40° (2%)

⁎ Parameter sensitivity is shownbetween parenthesis and is expressed as the difference
in cumulative hit distribution (x100%) caused by a +20% and −20% change of the listed
parameter value. Sensitivities were computed for one parameter at a time, while
remaining model parameters were kept constant.
⁎⁎ Parameters for which sensitivity was less than 1%.
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while remaining parameters were kept constant. The sensitivity anal-
ysis shows that base size, defining the height of the branch free bole
section and canopy depth, is the most sensitive parameter. First
order down angle (1DownAngle) and its distribution (1DownAngleV)
with canopy depth, both parameters regulating the angle between a
branch and the main stem, causes estimates of cumulative hit distri-
butions to vary by 16% and 8% of total absorbed radiation, respective-
ly. Effects of individual parameters and their interactions are shown
in Fig. 13 for the six most important parameters. Along the diagonal
the effect of changing one parameter is shown. The cumulative hit
distribution using the reported values is presented by a thick line
and the two thinner lines indicate the range in simulation outcomes
caused by changing the respective parameter value. The upper half
of the matrix lists these effects for changing two parameters at a
time. The lower half of the matrix plots the range in simulation out-
comes against canopy depth so that the black line in the lower-half
plots (i,j) correspond with plots (j,i) in the upper-half of the matrix
and the blue and red lines correspond with the variables listed in
row and columns, respectively. For example, a change in base size
of ±20% (0.32 to 0.48) causes a change in the cumulative hit distribu-
tion from 0.18 to 0.47 around 21 m height, indicating the significance
of this parameter on the derived hit distribution profiles. In addition,
varying both the value of BaseSize and 1DownAngle simultaneously
causes a greater range in model outcomes than changing either of
the parameters alone. Plots in the lower half of the matrix show the
two individual and combined effects, for the variables listed in rows
and columns. The graphs show a decrease in parameter sensitivity
with branching order.

A.1.3. Gap fraction
Besides the geometry of the mesh model, gap fraction is an impor-

tant parameter regulating uncollided transmission through the planar
polygons and thus the hit distribution. Varying g(θi) from 5 to 30%
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H
ei

gh
t (

m
)

H
ei

gh
t (

m
)

plot 1

plot 3

Fig. 14. Effect of altering distributions for gap fraction g(θ
resulted in a maximum difference in hit distribution at 18 m of 0.02
suggesting that most transmission occurs between crowns and out-
side the branch silhouettes. Values used for g(θi) are among the
lower bound observed for 30 year old Norway spruce in Sweden
(Stenberg et al., 1995a).

An analysis of the effects of varying foliage densities on the radia-
tion transmission properties of the virtual canopies was conducted
after separating sun and shade facets. This was achieved by computing
for every facet in the scene the probability of a direct line of sight in di-
rections from a set of 1064 uniformly distributed directions across the
hemisphere. Using computed sun azimuth and zenith angles, a stratifi-
cation of facets into sun and shade was made based on whether the
facets were in direct line of sight with the sun (Hilker et al., 2010a).
The effects of different foliage densities on the hit distribution were
then investigated by altering the gap fractions of sun and shade facets
(Fig. 14). The lower value is the gap fraction for sun facets and the
higher value for shade facets. We can see that the impact of changing
the effects of different foliage densities is small compared to some of
the effects of other parameters in our model. This indicates that the
crown shape is causing the observed radiation profiles, and to a lesser
extent the foliage densities of the individual facets in the crowns.

A.2. Ray Tracer details

To provide a better understanding of the ray tracer developed for
this study, this appendix provides a brief overview of its main compo-
nents and underlying algebra of radiation transport.

A.2.1. Radiation transport
When computing reflectance from a certain surface element into

directions (ϕr,θr), the intrinsic scattering properties of the material
under consideration in combination with the projected solid angle
(Arecchi et al., 2007) are of principle importance. In the current ray
Sun & shade = 0.15

Sun = 0.10; Shade = 0.35

Sun = 0.05; Shade = 0.55

Sun and shade GF values 

Simulated hit distribution

plot 2

plot 7

i) on the cumulative hit distribution for all four plots.
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tracer, reflectance and transmittance are described for a Lambertian
surface, that is a surface that reflects the same amount of radiation
[W m−2 sr−1] in all directions, and its intensity [W m−2] drops
with the cosine normal angle (Schaepman-Strub et al., 2006). Thus,
the probability of a photon hitting a Lambertian surface and reflecting
(transmitting) in a certain direction is a probability density function
whose values decrease with the cosine of the angle between the
incident path of the photon and the surface normal.

The bidirectional reflectance distribution function (BRDF) [sr−1]
of a surface describes the distribution of reflection over a hemisphere
of outgoing directions (ϕr,θr) for a beam that is incident on the surface
under direction (ϕi,θi). The BRDF is defined as the ratio of radiance Lr
[W m−2 sr−1] that is reflected from the surface and irradiance Ei
[W m−2] that is incident on the surface. For any given surface the
BRDF integrated over the viewing hemisphere sums to the surface re-
flectance, ρd [unitless]. A Lambertian surface has a constant BRDF of
ρd/π, so that when integrated over the full hemisphere (Suffern,
2007):

∫2π
ϕ¼0∫

π=2
θ¼0 f Lambert⋅sin θð Þ⋅cos θð Þ⋅dθ⋅dϕ⋅dA ¼

2π⋅ρd=π⋅∫
π=2
θ¼0sin θð Þ⋅cos θð Þ⋅dθ⋅dA ¼ 2π⋅ρd=π⋅

1
2
⋅dA ¼ ρd⋅dA

The reflected radiance into any one direction (ϕr,θr) from such a
surface is:

Lr ¼
1
π
⋅ρd⋅Ei ¼

1
π
⋅ρd⋅∫ωLi⋅dA⋅cos θið Þ⋅dω

Where the integration over dω substitutes the double integral over
azimuth and zenith angles. The reflected intensity of a Lambertian sur-
face decreases with increasing normal angle:

dΦr

dA
¼ 1

π
⋅ρd⋅Ei⋅cos θrð Þ ¼ 1

π
⋅ρd⋅cos θrð Þ⋅∫ωLi⋅dA⋅cos θið Þ⋅dω

The bidirectional reflectance of a Lambertian target can thus be
described by the intensity of photons hitting a surface element and
a cosine-weighted probability of reflecting into the direction (ϕr,θr).
Transmittance is described similarly using a Bidirectional Transmit-
tance Distribution Function (BTDF), that for a Lambertian target
equals to 1

π ⋅τd, where τd is the materials collided transmittance.

A.2.2. Monte Carlo ray tracing
The ray tracer is implemented in the Python programming language,

follows object-oriented coding design and was developed specifically
for computing Phit and Pgap but has been extended to compute absorp-
tance and transmittance for model validation purposes. The ray tracer
simulates absorptance and transmittance by tracing individual photon
paths within a virtual scene of Lambertian targets that are all a circular
or triangular shape. Intersections of photon paths with the scene ele-
ments are computed largely following Möller and Trumbore (1997)
and methodology explained by D. Sunday (http://geomalgorithms.
com/a06-_intersect-2.html). Photons originate from a reference plane
that is oriented horizontally and that is just above the highest element
in the scene. When photons collide with the scene elements, their fate
as to being absorbed or scattered is evaluated from the materials prop-
erties ρd, and τd and in the case of either reflection or transmission a
new direction vector is sampled from a cosine weighted hemispherical
distribution (Suffern, 2007). A newphoton is generated each time a pre-
vious photon is absorbed or bounced outside the scene. Alternatively,
the ray tracer provides for the simulation of Phit and Pgap by generating
rays that upon intersection with the scene are partially obstructed and
for which uncollided transmittance can be computed based on a gap
fraction assigned to each surface element.
A.2.2.1. Validation. Validation of the ray tracer was achieved against
the Radiative Transfer Model Intercomparison (RAMI) Online Model
Checker (ROMC) (Widlowski et al., 2007a) that was designed to
find consistency among existing radiave transfer models through
the development and analysis of benchmark data sets. The models
performance was evaluated against four heterogeneous baseline sce-
narios: HET01_DIS_UNI_RED and HET01_DIS_UNI_NIR and using ze-
nith angles of 20 and 50 degrees. For all scenes, the fraction of
absorptance by foliage elements (fabs) and the fractions of radiation
impinging on the background surface (ftran) were computed from a
number of photons varying between 4 and 10 million per scene. All
fabs simulations showed consistency with the ROMC-Reference to
within ~1%. Differences with the ROMC baseline for ftran were
observed for the Near-Infrared case and the simulations showed a
constant bias of around 4%.
A.2.2.2. deriving gap/hit probability. The ray tracer can be used to derive
gap and hit probabilities from scenes that have materials specified with
certain gap fractions, i.e. the degree of porosity of a surface when ob-
served orthogonally. Individual elements that are intersected by a ray
are ordered with respect to their distance from the ray's source and a
hit probability is computed at every intersection based on the cosine
angle with the element. At every intersection, in sorted order, the
transmitted portion of the ray is computed as Ii ⋅ (1 − Phit), where Ii
is the remaining payload after the previous intersection and I0 is the
payload of the primary ray, so that values I0 of all primary rays originat-
ing from a hemisphere of light sources are equal and sum to one.
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