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A comparison of small-area estimation techniques
to estimate selected stand attributes using LiDAR-
derived auxiliary variables

Michael E. Goerndt, Vicente J. Monleon, and Hailemariam Temesgen

Abstract: One of the challenges often faced in forestry is the estimation of forest attributes for smaller areas of interest
within a larger population. Small-area estimation (SAE) is a set of techniques well suited to estimation of forest attributes
for small areas in which the existing sample size is small and auxiliary information is available. Selected SAE methods were
compared for estimating a variety of forest attributes for small areas using ground data and light detection and ranging
(LiDAR) derived auxiliary information. The small areas of interest consisted of delineated stands within a larger forested
population. Four different estimation methods were compared for predicting forest density (number of trees/ha), quadratic
mean diameter (cm), basal area (m*/ha), top height (m), and cubic stem volume (m?/ha). The precision and bias of the esti-
mation methods (synthetic prediction (SP), multiple linear regression based composite prediction (CP), empirical best linear
unbiased prediction (EBLUP) via Fay—Herriot models, and most similar neighbor (MSN) imputation) are documented. For
the indirect estimators, MSN was superior to SP in terms of both precision and bias for all attributes. For the composite es-
timators, EBLUP was generally superior to direct estimation (DE) and CP, with the exception of forest density.

Résumé : Un des défis souvent rencontrés en foresterie est I’estimation des attributs forestiers pour de plus petites zones
d’intérét au sein d’une population plus large qu’est la forét. Les méthodes d’estimation pour petites zones sont des techni-
ques bien adaptées a I’estimation d’attributs forestiers sur de petites superficies pour lesquelles la taille de 1’échantillon exis-
tant est faible et I’information auxiliaire est disponible. Quatre méthodes d’estimation pour petites zones ont été
sélectionnées et comparées pour estimer une variété d’attributs forestiers sur de petites superficies a 1’aide de données terrain
et de données auxiliaires dérivées du lidar. Les deux premieres méthodes étaient indirectes (la prédiction synthétique (PS) et
I’imputation par les plus proches voisins (PPV)); les deux autres étaient composites (la meilleure prédiction empirique li-
néaire sans biais (PSB) basée sur les modeles de Fay—Herriot et la prédiction composite basée sur la régression linéaire mul-
tiple (PC)). Les petites superficies d’intérét étaient représentées par les peuplements délimités dans une forét. Les attributs
forestiers qui ont été comparés étaient la densité de la forét (nombre de tiges/ha), le diametre moyen quadratique (cm), la
surface terriere (m*/ha), la hauteur maximale (m) et le volume des tiges (m?/ha). La précision et le biais des quatre méthodes
d’estimation sont documentés. Dans le cas des estimateurs indirects, I'imputation par les PPV était supérieure a la PS en ter-
mes de précision et de biais pour tous les attributs. Dans le cas des estimateurs composites, la PSB était généralement supé-

rieure a I’estimation direct et la PC, excepté pour la densité de la forét.

[Traduit par la Rédaction]

Introduction

Generally, estimates of forest attributes for areas of interest
have been derived by using ground data extracted from plots
taken within the area. For forest management and planning
purposes, forest areas are partitioned into smaller stands
based on attributes such as species composition, forest age,
and management history. This partitioning can often make it
difficult to obtain precise attribute estimates within the small
areas of interest due to small sample sizes. The most basic
solution to this problem is to resample each small area using
appropriate sample sizes, which can be time consuming and
expensive. Small-area estimation (SAE) is an alternative set

of techniques well suited to this scenario, as it seeks to ob-
tain precise estimation of selected variables within small
areas of interest by incorporating information from the entire
population. Increased availability of remotely sensed auxili-
ary information derived from, e.g., light detection and rang-
ing (LiDAR) technology for entire populations has created
new possibilities for the effective use of SAE in estimating
selected forest attributes. This study focuses on the use of
SAE techniques to obtain precise estimates of selected forest
attributes for small areas of interest within a larger forested
population using LiDAR-derived auxiliary information.

SAE techniques can effectively increase the precision of
forest attribute estimates in many situations where there are
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insufficient ground data to achieve the desired level of preci-
sion for direct estimates (Petrucci et al. 2005; You and Chap-
man 2006). There are different types of SAE techniques, the
validity of which greatly depends on the structure and com-
position of both the small area and the available covariates
and auxiliary information. Generally, SAE has been divided
into three categories: (i) direct estimation, (if) indirect estima-
tion, and (iif) composite estimation (Costa et al. 2003, 2004).
A direct estimator is an estimator that only uses data taken
directly from the small area of interest. This implies that
there needs to be an adequate sample of data from each area
to effectively use direct estimation. Indirect estimators do not
necessarily require that there is an adequate sample taken for
each area of interest but can “borrow” strength from the aux-
iliary information within the area and (or) beyond the area to
derive a vital component to the estimation process, typically
a regression coefficient (Heady et al. 2003). Composite esti-
mation typically combines a direct estimator and an indirect
estimator for the particular small area of interest.

A form of indirect estimation that uses information inde-
pendent of the population of interest is synthetic prediction
(SP). In the context of this study, SP pertains to using pre-
existing models that relate ground-measured forest attributes
to LiDAR metrics at either the plot or stand level. There are
two primary approaches for predicting forest attributes using
LiDAR metrics: (i) relating LiDAR metrics to tree-level at-
tributes through single-tree remote sensing (STRS) (Popescu
et al. 2003; Chen et al. 2006), and (i) relating LiDAR met-
rics to area-level forest attributes (Means et al. 2000; Brei-
denbach et al. 2008). When the goal is to estimate area-level
attributes for either a small area or larger population, it has
been shown that area-level prediction models are generally
more efficient and can also have greater precision than sin-
gle-tree models, which tend to omit intermediate and sup-
pressed trees within the forest landscape (Popescu 2007;
Goerndt et al. 2010). Indirect SAE can include many model-
ing techniques that are commonly used for estimating forest
attributes using auxiliary information, including imputation
techniques such as nearest-neighbor (NN) imputation (Rubin
1976; Van Deusen 1997; Moeur 2000).

A method that can incorporate strength from both direct
and indirect estimation is a composite predictor (CP), which
usually consists of a weighted sum or mean of a direct esti-
mator and indirect estimator for the particular small area of
interest. A useful form of indirect SAE is a linear mixed-
model known as a Fay-Herriot model (Fay and Herriot
1979; Prasad and Rao 1990; You and Chapman 2006). This
is an area-based model in that both the auxiliary and re-
sponse information used in the modeling process are at the
small-area level (e.g., stand level) rather than at a unit level
(e.g., plot level). This form of estimator is particularly useful
when it is difficult to match unit-level response variables
with unit-level auxiliary data. This is a common characteris-
tic when using LiDAR information to estimate forest attrib-
utes where the forest inventory plots either have a variable
radius or lack accurate spatial coordinates. As a linear mixed
model, the Fay—Herriot model incorporates a random effect,
which is usually dependent on the small areas within the
population of interest. The ultimate objective of using this
type of model is to derive empirical best linear unbiased pre-
dictions (EBLUP) of the attributes of interest. As a special
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form of composite prediction, EBLUP depends on incorpora-
tion of a direct estimator via a weighting factor and is there-
fore sample dependent in that it cannot be applied to small
areas that lack any ground sample.

The primary goal of this study is to compare selected SAE
methods to obtain precise and accurate estimates for selected
forest attributes in small areas (stands) of interest within a
larger domain. The specific objective is to examine the per-
formance of four synthetic prediction (SP) and composite
prediction (CP) methods: synthetic prediction (SP), most sim-
ilar neighbor (MSN) imputation, empirical best linear un-
biased prediction (EBLUP) via Fay—Herriot models, and
multiple linear regression-based composite prediction (CP).
The performance of the commonly used MSN imputation
method is included in this study as a means of comparing
CP and SP with a fairly standard method of estimation. The
attributes of interest for this study are total stem volume
(CuVol, m3-ha!), mean height of largest 100 trees per hec-
tare (Ht-ha™!), quadratic mean diameter (QDBH, cm), basal
area (BA, m%-ha!), and density (number of live stems-ha-!).

Methods

Study area

The study was conducted in Clatsop State Forest, located
in Clatsop County in northwestern Oregon. The forest covers
approximately 32000 ha, with an elevation range of 60—
500 m above sea level. The main tree species found are coni-
fers, including Douglas-fir (Pseudotsuga menziesii (Mirbel)
Franco), grand fir (Abies grandis (Dougl. ex D. Don) Lindl.),
western hemlock (7suga heterophylla (Raf.) Sarg.), and west-
ern red cedar (Thuja plicata Donn ex D. Don) as apex spe-
cies. The primary deciduous species are bigleaf maple (Acer
macrophyllum Pursh) and red alder (Alnus rubra Bong.). A
map showing the location and relative size of the study area
can be seen in Fig. 1.

Field data

The stand level inventory (SLI) system, as developed by
the Oregon Department of Forestry (ODF), consists of split-
ting all of the state-owned forest land area into homogeneous
individual stands or groups that are represented by spatial
polygons (Oregon Department of Forestry 2008). The classi-
fication of the landscape into stands was based primarily on
dominant tree species, average tree size (diameter at breast
height (DBH)), and stand density. Data used in this study
were collected in the Clatsop State Forest from 2002 to
2007. The stands utilized in this study were natural stands
that were older than 20 years. Of the 315 existing SLI stands
within the Clatsop Forest LIDAR coverage area, 190 stands
contained a ground sample. A summary of selected stand at-
tributes is given in Table 1.

All stands were sampled using systematic grid sampling.
Variable-radius (prism) plots were used in most stands to
measure trees greater than 11.4 cm DBH. Fixed-radius plots
were also used in some stands. DBH and species were re-
corded for each sampled tree, whereas total height and height
to crown ratio were measured only on a subsample of trees.
Using the subsampled trees, total heights were subsequently
estimated using regression equations for trees not sampled
for height and height to crown base (SLI 2008).

Published by NRC Research Press



Can. J. For. Res. Downloaded from www.nrcresearchpress.com by TEMESGEN HAILEMARIAM on 05/30/11
For personal use only.

Goerndt et al.

Fig. 1. Map of northwestern Oregon showing location and relative
size of Clatsop State Forest.
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LiDAR data

Area-based LiDAR metrics

The LiDAR data were collected in April 2007 using a Le-
ica ALSS50 II laser system. The sensor scan angle was +14°
from nadir, with a pulse rate designed to yield an average
number of pulses of >8 points-m? over terrestrial surfaces.
Classification of ground and vegetation points was performed
by TerraScan v.7.012, as well as spatial interpolation of
ground-classified points to create the digital terrain model
(DTM). The data were collected using opposing parallel
flight lines with a >50% overlap. All area-based LiDAR met-
rics used in this study were extracted from the raw point data
using LiDAR FUSION (McGaughey 2008). A summary of
the LiDAR metrics with corresponding descriptions is given
in Table 2.

All LiDAR metrics were extracted using only first returns
above a height of 3 m off the ground, with the exception of
the cover metrics and canopy transparency, which used a va-
riety of predetermined height thresholds, because a high
number of first returns from the ground and low-lying vege-
tation may introduce confounding noise in the LiDAR met-
rics (Strunk 2008). The raw LiDAR intensities extracted in a
particular scan were passed through a proprietary algorithm
by the vendor to account for several variables such as local-
ized trends in intensity values, scanning angle, and target dis-
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Table 1. Summary of selected forest attributes in Clatsop State
Forest (n = 190).

Minimum  Maximum  Mean  SD
Density (trees/ha) 257.1 4201.3 9453  678.7
Quadratic mean diameter 9.8 52.8 29.5 9.2
(QDBH, cm)
Basal area (BA, m*/ha) 19.7 86.3 50.2 129
Top height (Ht, m) 15.7 54.5 32.7 8.5
Cubic stem volume 125.2 1318.4 568.7 244.7

(CuVol, m*/ha)

Note: SD, standard deviation.

tance resulting in intensity values per return that were
calibrated to an eight-bit value with a range of 0 to 255.

Grid-level LiDAR metrics

In addition to the aforementioned stand-level metrics, an-
other set of LiDAR metrics was created to facilitate the syn-
thetic prediction portion of this study. These metrics were
created by dividing the entire area of sampled stands into
30 X 30 m grid cells simulating square-plot areas on the
landscape. A separate LiDAR file was created using LiDAR
FUSION for each individual grid cell. Finally, LiDAR FU-
SION was used once again to compute the relevant area-level
LiDAR metrics for each grid cell.

Statistical analysis

Simulation

The primary assumption for SAE is that there is an insuffi-
cient sample size within each small area of interest to obtain
precise direct estimates. The individual stands used in this
study contain anywhere from 10 to 36 plots, depending on
the stand area. It was necessary to simulate smaller sample
sizes to assess the performance of the estimators as the sam-
ple size increased and to facilitate validation of the estimators
using direct stand estimates of the attributes from the full
samples as a surrogate for census information. To this end,
only the 134 stands containing at least 20 plots were consid-
ered for the analysis. The simulation of reduced sample sizes
was done by randomly selecting measured plots from each
stand with replacement using 10%, 20%, 30%, 40%, and
50% sampling intensities for 500 iterations. Direct estimates
(DE) in the form of stand-level means were calculated for
each attribute at all sampling intensities, as well as for the
full samples. With the exception of synthetic prediction (SP),
which relied on external linear regression equations, all of
the estimators were assessed for five sampling intensities sep-
arately. Stand-level DEs for each attribute based on the full
sample (FS) were retained as validation data for each estima-
tor in the absence of census information. All validation statis-
tics including root mean squared error (RMSE), relative root
mean squared error (RRMSE), bias, and relative bias (RB)
were calculated using the full-sample DEs as the “observed”
values for each stand.

Synthetic prediction (SP)

For the attributes of interest, SP were obtained by applying
linear regression models that were previously developed by
Goerndt et al. (2010) from plot-level ground-truthed data
within in the same region but outside the population of inter-
est. Past studies have indicated that relationships between for-
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Table 2. Summary of LiDAR metrics computed using LiDAR FUSION.

Can. J. For. Res. Vol. 41, 2011

Metric Description

Height Distribution of all first-return heights > 3 m
Percentile height, e.g., 5th, 10th, 20th, ..., 95th Height distribution by deciles of first returns > 3 m
Intensity Distribution of all first-return intensities > 3 m

Percentile intensity
Canopy cover (Cover_3, ..., Cover_24)

Canopy transparencies

Intensity distribution by deciles of first returns > 3 m

Percentage (0-100) of first returns equal to or greater than a specified height (3, 6, ..., 24 m)
above the ground

Percentage (0—100) of first returns above a specified height after the removal of returns below

a lower specified height

est attributes and LiDAR metrics at the plot level can be po-
tentially different at the area or stand level (Nesset 2002;
Means et al. 2000). Therefore, the plot-level linear models
from Goerndt et al. (2010) were applied to each 30 X 30 m
grid cell to obtain estimates of the forest attributes of interest.
Prior to computing stand-level attributes, each stand boun-
dary cell (sliver cell) having an area of <675 m? was re-
moved from the data set based on an assumption that cell
size affected the relationship between field measurements
and LiDAR metrics (Nasset 2002). The estimates of stand-
level forest attributes were obtained by taking a weighted
mean of the values from all of the remaining grid cells within
each stand using cell areas as weights.

Imputation (MSN)
MSN imputation was assessed as an alternative form of in-
direct estimation of forest attributes in this study. The dis-

tance metric used for MSN imputation had the following
form (LeMay and Temesgen 2005; Eskelson et al. 2009):

dj = (X, — X) TA’T'(X, - X)

where X; is the vector of standardized auxiliary variables for
the ith target stand, X; is the vector of standardized auxiliary
variables for the jth reference stand, I' is a matrix of standar-
dized canonical coefficients for the X variables, and A2 is a
diagonal matrix of squared canonical correlations. The set of
X variables for this analysis consisted of a matrix of the Li-
DAR-derived auxiliary variables described in Table 2,
whereas the set of Y variables was a matrix of the DE for all
five attributes of interest for every small area. All calcula-
tions for MSN were performed using the “yalmpute” tool for
R (Moeur et al. 1999; R Development Core Team 2008;
Crookston and Finley 2007).

Multiple linear regression (MLR)

MLR models were developed both as an indirect estima-
tion component for CP and as an initial basis for creating the
Fay—Herriot models for EBLUP derivation. These models
were designed to estimate stand-level values of the attributes
of interest using stand-level LiDAR metrics as the independ-
ent variables. Because of the impracticality of reassessing the
MLR models for each of the 500 simulation runs, transforma-
tions and variable selection were assessed using the full-
sample DEs as the response values for each attribute. After
examination of residual plots, Shapiro—Wilk test results, and
quantile—quantile (gq—q) plots, it was determined that log
transformation of QDBH was beneficial to correct for hetero-
skedasticity. Supersets of important explanatory variables
were selected using a subset regression technique that iden-
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tifies the explanatory variables that create the best-fitting
linear regression models according to Bayesian information
criteria (BIC). This was performed using the ‘“regsubsets”
tool available in the “leaps” package for R (R Development
Core Team 2008; Lumley 2008). The resulting output con-
tained the information for a total of 70 possible supersets
ranked by BIC. Any superset with a resulting model that
had a variance inflation factor (VIF) score greater than 9.5
was automatically dropped from the final list. Of the final
list, one superset was chosen for estimating each attribute.
The supersets were then used to fit separate MLR models
for each of the 500 simulation runs.

Composite prediction (CP) — Fay—Herriot models and
EBLUP

Fay and Herriot (1979) models are a special case of linear
mixed models (Rao 2003, p. 115; Slud and Maiti 2006). The
purpose of using a linear mixed model is to incorporate ran-
dom effects dependent on the small area of interest to explain
random variation between small areas that cannot be ex-
plained by the fixed effects of the model. The Fay—Herriot
models used in this study had the following format (Fay and
Herriot 1979; Rao 2003, p. 77; You and Chapman 2006):

[1] b\i = z;rﬂ + biv,- + e;

where the individual error effects e; are iid N(0,¥;), the ran-
dom area effects v; are iid N(O,U%), z; 1s a vector of fixed
area-level covariates for small area i, B is a vector of regres-
sion coefficients for the fixed effects of the model, and b, is a
known positive constant typically assumed to be b; = 1. The
Fay—Herriot model can be motivated as follows. Let 6; be a
parameter of interest from small area i. Assume that it is re-
lated to a set of variables, z;, though the following linear
model:

[2] 0,‘ = z;rﬂ + biV,'

under the assumptions described in eq. 1. We assume that
there is a direct estimator, 6;, available for 6,, so that

[3] b\i = 0,‘ + e;

Combining eqs. 2 and 3 yields eq. 1.

As previously stated, the Fay—Herriot model is a special
case of a linear mixed model in that there is only one obser-
vation per small area. This means that the random effects
cannot be calculated using standard ML or REML proce-
dures for individual variables as is done with a standard
nested-error model. After selecting the auxiliary variables to
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include in the linear model, there are three steps that must be
completed to calculate an EBLUP via the Fay—Herriot model:
(i) estimation of sampling error variance (¥;), (ii) estimation
of random error variance (03) using the estimated ¥;, and

(iii) calculate the area-level EBLUP (@f]).

Sampling error variance estimation

There are two sources of error that must be accounted for
to create an EBLUP, random-error variance o2 and sampling
variance ;. This partitioning of the error requires prior
knowledge of one source of error to estimate the other.
Although the individual sampling variances s? calculated di-
rectly from the ground data can be used as estimates of ¥, it
is often not desirable because of the instability that it can in-
troduce into the composite estimator (Datta et al. 2005; Riv-

est and Vandal 2003; Ybarra and Lohr 2008). Therefore, @i
is typically a smoothed estimator based on a constant mean
variance (V,) and the area-level sample sizes (n;). Smoothed

estimates (¥,;) were calculated using the following equation
(Williams 2007):

~ 'V
[4] v, = -
1
where V, is a constant mean variance from the population
and n; is the sample size in stand i.

The constant V, was calculated using a generalized var-
iance function (GVF), which is a mathematical model that
describes the relationship between the variance of a survey
estimator and its expectation (Wolter 1985, p. 201). GVFs
can take many different forms and are often used to derive
weighted estimates of variance for complex populations. The
simplest approach for estimation of a mean variance for the
population in this study would be to take the variance of all
of the observations within the population. Two major prob-
lems with this approach are as follow: (7) it assumes that all
areas of the population are weighted equally, which is invalid
given that the individual stands within the Clatsop vary
greatly in size, and (i) it ignores the segmentation of the
population with regard to individual stands, which would
likely cause an inflated variance estimate. The ultimate goal
was to calculate a smoothed estimator that accounts for the
varying weight of attribute values throughout the population
of interest. After assessing a number of approaches, we used
a form of weighted mean variance based on the size (ha) of
each small area relative to the total size of the population.
Therefore, V, was calculated using the following equation:

m

Z aisiz
i
m

> a
i

where a; is the size (ha) of small area i, and m is the total
number of stands within the population.

[5] Ve =

Random error variance estimation

After deriving smoothed variance estimates for the sam-
pling errors, the next step was to estimate a%. A number of
estimation procedures exist for the error variance of the Fay—
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Herriot model including the actual Fay—Herriot method based
on method of moments (Fay and Herriot 1979; Prasad and
Rao 1990; Wang and Fuller 2003; Ybarra and Lohr 2008),
maximum likelihood (ML) (Datta and Lahiri 2000; Wang
and Fuller 2003; Slud and Maiti 2006), and restricted maxi-
mum likelihood (REML) (Das et al. 2004). In this study, o2
was estimated using both the Fay-Herriot method and the
ML method. Both methods involve an iterative process that
converges to an estimate for both o2 and B. These estimates
were obtained via the Fay—Herriot method using the follow-
ing iterative solution (Fay and Herriot 1979; Rao 2003,
p. 118):

2(a+1) __ 2(a 2(a
6] oyt =oll +W[m—l? — h(o7)]
where o2(+1) > 0,

7] h(o}) =D B~ 5 B I + o)

(8] sz (0, — 27 B)/ (¥, + o2B7)?

and

[9] [Z 2 /(¥ +02b2)] lz 20 (¥, +02b2)]

where a is the iteration number, /4’ (0?)) is an estimated deri-
vative of i(0?)), and B is adjusted for each iteration.

Note that because an adjusted estimate of B is obtained
through the process of estimating o2, even if the algorithm
converges to a negative value for 83 (in which case, it is set
to zero), the resulting EPLUP will be different from that ob-
tained from standard MLR. The same holds true for the ML
method for which estimates of o2 were obtained using the
following iterative process (Prasad and Rao 1990; Rao 2003,
p. 119):

[10] o2t =

where
l m b4
1] (X)) == '
[ ] ( ! ) 21—1 (G%(a)bzz+¢1)2
and

" —~ .
Jrlz b2 (2 2z ' B)?
= (o b; + ;)

Both iterative methods were initiated at af = 0 and re-
quired less than 10 iterations before convergence. It is possi-
ble to obtain a negative estimate of cr% through these
methods, especially if estimates of ¥; are very high relative
to @ — leE However, this typically did not occur in the anal-
ysis.
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EBLUP estimation

The EBLUP @7 was derived using the following formula
(Slud and Maiti 2006):

~H —~ ~
[13] 6, =y +(1—y)z B

where

82
14 yi= v__
H 5+ ¥,

Notice that the EBLUP is actually a special case of a com-
posite estimator that uses both the adjusted fixed effects of
the Fay—Herriot model and the DE for the area of interest de-
rived from the inventory data (Slud and Maiti 2006; Ybarra
and Lohr 2008; You and Chapman 2006). A positive weight
y; for the EBLUP is dependent on having a positive value for

83. In the case of a zero value for y;, the EBLUP simply re-
verts back to a prediction based on the population-level, mul-
tiple linear regression, excluding local information from the
stand.

The primary purpose of calculating an EBLUP is to reduce
bias in the estimator from a regression-based model for indi-
vidual stands, via a weighting function based on sampling
variance and variance of model random effects as is seen in
eq. 14. Because, the random error variance was estimated us-
ing two different methods, two EBLUPs were calculated for
each attribute and sampling intensity combination. The first
(EBLUP_A) was calculated using the Fay—Herriot method of
moments and the second (EBLUP_B) was calculated using
the ML method. Before back transformation from log scale,
all EBLUP estimates for QDBH were bias corrected using a
factor of 0.5 times the mean squared error as calculated in
Rao (2003, p. 117):

~H

[15]  MSE(9; ) = gli(ai) +g2i(3f)

where

[16] gli(ag) = 83b,‘2¢i/('ﬁi + aibiz) = y:¥;

and

-1
[17] gzl'(ai) =(1- Vi)zziT [Z ZiZ,'T/('ﬁi + C’Eb?)] k4
i=1

Composite prediction (CP) — MLR and SP

Aside from the EBLUPs, two other composite estimators
were analyzed in this study. The first (CP_A) was a compo-
site between SP and DE, and the second (CP_B) was a com-
posite between MLR and DE. Both estimators were
developed using the following equation:

~C o~ ~ ~ o~
18] Y, =¢; Yo+ (1-¢,)Y;

where f/,-l is the DE of the attribute for the ith stand, /f/,-z is
the regression-based estimator of the ith stand, and ¢; is the
weight calculated for the ith stand. The weights were calcu-
lated using a variation of the James—Stein method similar to
that presented by Rao (2003, p. 58):
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As with the EBLUP, it is possible to estimate the weights
for the composite estimator using s?. However, although
more conventional, the estimation method for the composite
weights shown in eq. 18 is considered to be less stable than
that for EBLUP as it constitutes estimation of weights on an

area-by-area basis. Therefore, i&i was used instead of s? to
add stability to CP_A and CP_B. As with EBLUP, this
method essentially uses the information regarding one source
of error to estimate the other, namely the mean squared errors

(MSE) of f/,-l and f/,-z. As such, eq. 19 could also be ex-
pressed as

- v,
20 =
20] ¢ 7.+ MSE,

where
21  MSEp= (Vi — Vi) — 9,

Equations 20 and 21 illustrate that the MSE of the regres-
sion-based estimator (MSEy;,) is estimated by using MSE of
DE, which for the purposes of this study is considered to be

1/AIi. Therefore, the estimated weight for a small area is com-

pletely dependent on the size of @i relative to the squared
difference between the DE and regression-based estimator
for that particular small area. The primary goal in using CP
via regression-based estimators is to balance the potential
bias of the regression-based estimator with the instability of
the DE. For CP_B, the regression component of the estima-
tors were bias corrected using a factor of 0.5 times the re-
gression mean squared error prior to back transformation
before eqs. 18-21 were applied.

Validation

As previously stated, all residuals used in this study were
calculated using the FS direct estimate of each attribute and
stand as the observed value or “truth”. Because most of the
estimators were evaluated over 500 subsamples, the perform-
ance statistics needed to be calculated accordingly. Precision
was assessed using relative root mean squared error
(RRMSE) as presented by Rao (2003, p. 62), averaged over
all the stands:

I B
22 RRMSE = — RMSE//Y;
22 3 0

i

with

R 2

%Z(i’m ~ Yo)

r=1

[23]  RMSE; =

where RMSE, is the root mean squared error for stand i, m is
the number of stands, R is the number of iterations, Yp is
the predicted value for stand i, and Y; is the full sample di-
rect estimate for stand i. Similarly, overall bias was assessed
using relative bias calculated as
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m

24 RB= %Z(RB,-)

with

IS (Yip — Vi
25]  RBi=_3" <PA7°>
r=1

Yo

where RB; is the relative bias for stand i. Because SP was not
resampled, the same statistics were calculated based on the
one estimate for each stand. This was necessary to properly
compare the performance of SP with the other estimators
that were dependent on subsampling.

Results and discussion

The initial MLR models created through subsets regression
using stand-level attributes and LiDAR metrics varied some-
what from the plot-level models presented in Goerndt et al.
(2010). The five models for each forest attribute were fairly
consistent in terms of the LiDAR metrics that were chosen
in that each model used a similar number of LiDAR height
and cover metrics. Although the MLR models performed rea-
sonably well in terms of indirect estimation of the forest at-
tributes, they had a tendency to underestimate for stands
with high attribute values. Not unexpectedly, this feature was
most prevalent for attributes that have lower correlation with
LiDAR cloud metrics, e.g., tree density and BA. Although
bias in regression analyses can be caused by many factors,
in this study, it is most likely caused by a weakening of the
relationship between LiDAR cloud metrics and forest attrib-
utes for stands with high vegetative density. This hypothesis
is reinforced by the fact that underestimation usually occurred
for the same group of stands regardless of the attribute being
estimated. This denotes a drawback with using LiDAR data
for forest attribute estimation, as many point-density LiDAR
cloud metrics such as canopy cover and transparency can be-
come less informative as forest density increases and the laser
does not penetrate the forest canopy as well. As will be seen
later, this was an important factor in assessing the perform-
ance of many of the estimators used in this study.

The computation of EBLUPs required the most informa-
tion of any method in the analysis, necessitating estimation
of the sampling variance of the direct estimator and the var-

iance of the random effects. The estimates of 83 using the
EBLUP_A and EBLUP_B methods were virtually identical
and, therefore, so were the EBLUP weights and estimates of
the variables of interest. Consequently, EBLUP_A and
EBLUP_B will be referred to jointly as EBLUP for the re-
mainder of this paper.

As shown in eq. 5, the weighting strategy for both CP_A
and CP_B was different from that of EBLUP in that it ac-
counted for the proportion of sampling variance to the
squared difference between the synthetic-type estimator and
the DE separately for each observation. Although not as sta-
ble as EBLUP, this weighting strategy provided more flexi-
bility in composite estimation as the weight for each small
area was not dependent on a constant value such as 83.

Because there were five different forest attributes included
in the canonical correlation for MSN, there were five canon-
ical covariates (axes) created for determining distance. The

RIGHTSE LI MN iy

1195

analysis for each method indicated that four of the axes were
highly significant. CuVol, TpHt, and BA had the highest can-
onical correlation with the auxiliary data, whereas density
and QDBH had the lowest. Performance statistics (RRMSE,
RB) for each attribute of interest by estimation method and
sampling intensity are given in Tables 3 and 4.

General comparison

Direct (DE) and indirect estimation

Direct estimators are design unbiased, whereas indirect or
composite estimators can be biased due to the potential bias
introduced by the model-based components. Consequently,
comparisons between DE and other estimators are restricted
to precision (RRMSE) and not bias (RB). Note that DE was
considerably more precise than SP and MSN regardless of
sample size (Table 3).

One noticeable characteristic is the poor overall perform-
ance of SP. SP yielded the highest RRMSE values for all of
the attributes. These results show how sensitive models relat-
ing forest attributes and LiDAR metrics can be when applied
to a different population, even within the same region. Of
course, unlike the other estimators, SP did not change across
the sampling intensities as it was not dependent on ground
data from within the Clatsop. In terms of indirect estimation,
the performance of MSN was far superior to that of SP in
both precision and bias. Whether the superior performance
was due to the method itself or to a better fit based on data
from the study region cannot be determined from this study.
The only attribute for which there was a similarity in preci-
sion of prediction between SP and MSN was QDBH, and
that was only for 10% sampling intensity.

Composite prediction

The overall results indicate that EBLUP and CP_B are
superior to CP_A in terms of RRMSE and RB. The results
in Tables 3 and 4 also show how CP_B and EBLUP compare
with DE based on the reduced sample sizes. Note that all CP
methods were a substantial improvement over indirect esti-
mation with regard to precision. EBLUP produced lower RB
values than CP_B at low sampling intensities for all attributes
except BA and Ht. Table 3 shows that with the exception of
CuVol, CP_B and EBLUP yielded higher precision than DE
at small sample sizes (10%-20%) and lower precision at
higher sample sizes (30%—50%). The fact that EBLUP typi-
cally yielded higher precision than CP_B indicates that the
weighting strategy used for EBLUP can usually provide
greater stability for the estimator in terms of precision.

Note that MSN often achieved slightly lower bias than
EBLUP, CP_A, and CP_B, especially at low sampling inten-
sities. However, EBLUP, CP_B, and CP_A are far superior
to SP and MSN in terms of precision (Table 3). One draw-
back to the CP methods for application is they all require a
ground sample in the small area of interest. This is a charac-
teristic not shared by SP and MSN.

Stand-level comparison (bias)

Although the performance statistics shown in Tables 3 and
4 are informative as to the overall performance of the estima-
tors across the stands, it does not provide the whole picture
with regard to individual stands. When using SAE, the main
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Table 3. Estimated precision (RRMSE) from final validation of all
estimation methods for each attribute of interest by sampling inten-
sity (%). See Table 1 for attribute descriptions.
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Table 4. Estimated RB from final validation of all estimation
methods for each attribute of interest by sampling intensity (%).
See Table 1 for attribute descriptions.

10% 20% 30% 40% 50%

10% 20% 30% 40% 50%

Density (trees/ha)

DE 38.9 26.9 20.8 16.6 13.9
Sp* 64.7 64.7 64.7 64.7 64.7
MSN 60.1 47.9 42.1 38.8 36.6
CP_A 40.8 30.2 24 19.7 16.7
CP_B 29.3 23.4 20 17.6 15.8
EBLUP 27.7 22.5 19.2 16.5 15.1
BA (m%*ha)

DE 24.1 16.7 12.8 10.2 8.6
SP* 58.7 58.7 58.7 58.7 58.7
MSN 38.8 31.2 27.6 254 24.4
CP_A 31.9 21.9 16.7 13.2 11
CP_B 18.2 15 13.3 11.9 11
EBLUP 17.3 14.3 12.3 10.7 94
CuVol (m*ha)

DE 25.8 17.7 13.7 10.9 9.2
SP* 84.3 84.3 84.3 84.3 84.3
MSN 43.4 36 32.1 30.5 29.5
CP_A 42.1 27.8 20.8 16.2 13.2
CP_B 22.7 18.9 17 154 14.3
EBLUP 18.3 15 13 11.1 9.9
QDBH (cm)

DE 19.6 13.6 10.4 8.4 7
SP* 27.8 27.8 27.8 27.8 27.8
MSN 30 25.4 23 21.8 20.7
CP_A 22.1 16.6 13.4 11.2 9.5
CP_B 16.3 12.6 10.5 9.1 8.1
EBLUP 14.9 11.9 9.6 8 6.8
Ht (m)

DE 16.2 11.3 8.7 6.9 5.7
SP* 26.7 26.7 26.7 26.7 26.7
MSN 23.6 19.7 17.8 16.9 16.2
CP_A 19.8 14.2 11.1 9 7.5
CP_B 12.2 9.8 8.5 7.5 6.8
EBLUP 114 9.3 8 6.8 6

*No simulation

objective is to obtain estimates for each of the small areas.
Therefore, the best way to assess the performance of small-
area estimators such as CP_B and EBLUP is to observe the
bias for each small area. The stand-level mean residuals for
the two best estimators (CP_B, EBLUP) were compared for
a sampling intensity at which EBLUP and CP_B were more
precise than DE (20%) using residual plots. As with all vali-
dation in this study, these residuals were calculated as the
full sample estimate minus the predicted value from the esti-
mator of interest. The values used for assessment were stand-
level means of the residuals across the 500 subsamples. Fig-
ures 2 and 3 illustrate residual plots for CP_B and EBLUP
for each attribute at 20% sampling intensity. The attributes
are ordered by their degree of correlation with standard Li-
DAR cloud metrics, with density being the lowest and Ht
the highest.

One of the most noticeable characteristics of the estimates
shown in Figs. 2 and 3 is the poor performance of both
methods for prediction of tree density. Both CP_B and
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Density (trees/ha)

Sp* 41.2 41.2 41.2 41.2 41.2
MSN -7.8 -6.7 -6.5 -6.3 -6.1
CP_A -10.3 54 -3.7 -2.6 -1.8
CP_B -10.9 -8.1 -7.2 -6.5 -5.7
EBLUP -8.7 -6 -5.1 —4.1 -3.5
BA (m%ha)

SpP* 57.5 57.5 57.5 57.5 57.5
MSN 4.2 34 -3.2 -2.9 -2.8
CP_A -18.9 -11.7 -8.6 -6.6 -5.4
CP_B -39 -3.2 -29 -2.5 2.2
EBLUP 4.7 3.6 29 2.4 1.9
CuVol (m*ha)

SP* 84.1 84.1 84.1 84.1 84.1
MSN -5.5 —4.8 4.3 -4 -3.9
CP_A -28.2 -16.8 -12.1 -9.2 -7.4
CP_B -59 -5 4.9 4.8 4.6
EBLUP -0.98 -0.48 -0.5 -0.36 -0.4
QDBH (cm)

SP* -20.4 -20.4 -20.4 -20.4 -20.4
MSN -1.9 -1.6 -1.5 -1.3 -1.2
CP_A 73 5.7 4.7 3.9 3.3
CP_B 4.2 -3.2 -2.5 2.1 -1.9
EBLUP 3.4 1.7 1.3 0.93 0.69
Ht (m)

SP* 26.7 26.7 26.7 26.7 26.7
MSN -1.6 -1.4 -1.4 -1.3 -1.5
CP_A -11.2 -7.5 -5.8 —4.8 -39
CP_B -0.2 -0.34 -0.44 0.35 -0.28
EBLUP 1.5 09 0.72 0.66 0.6

*No Simulation

EBLUP tend to overestimate for stands with high density val-
ues and underestimate for stands with low density values.
This was not directly the result of a similar tendency in DE.
This characteristic of EBLUP and CP_B was driven by the
poor fit of the model relating tree density to LiDAR metrics.
In an assessment of the MLR models developed for calculat-
ing CP_B and EBLUP, the models for density had the lowest
adjusted R? value (20.9%) of any linear model in this study.
Previous studies such as Goerndt et. al. (2010) have also
shown that estimation of density using area-level LiDAR
metrics was difficult because of the lack of correlation be-
tween density and canopy height characteristics. This prob-
lem seems less severe for CP_B because the weighting
strategy described by eq. 19 resulted in CP_B relying heavily
on DE. Ultimately, DE provided more precise estimates of
density than either CP_B or EBLUP.

Although the difference in RB is very subtle for BA and
Ht, it is still apparent from Figs. 2 and 3 that CP_B is supe-
rior to EBLUP in terms of bias. As seen with BA and CuVol,
CP_B tended to rely on DE more than EBLUP. However,
CP_B weighed the DE component more heavily for many
observations; this was not true for all observations, because
the weighting method for CP_B is not dependent on a con-

stant value of 83 and can therefore take on a wide range of
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Fig. 2. Residual plots of CP_B at 20% sampling intensity for (A) density, (B) BA, (C) CuVol, (D) QDBH, and (E) Ht. See Table 1 for
attribute descriptions.
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values depending on the stand. Although more stable,
EBLUP is more limited with regard to the range of weights
that can be used for estimation. As long as 85 is a nonzero
value, every stand will be assigned a weight for EBLUP
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whether it actually needs one or not. Through the versatility
of its weighting method, CP_B was better able to achieve the
proper balance between the regression synthetic component
and DE with regard to bias (Tables 3 and 4).
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Fig. 3. Residual plots of EBLUP at 20% sampling intensity for (A) density, (B) BA, (C) CuVol, (D) QDBH, and (E) Ht. See Table 1 for
attribute descriptions.
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Although CP_B tended to give higher weight to the DE
component when compared with EBLUP, this was not the
case for all subsamples. To assess this, two subsamples for
20% sampling intensity were chosen from the 500 represent-
ing a case in which RB was higher for CP_B than DE and
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one in which it was lower. RB was used simply as a way to
identify cases in which the residuals were similar between
CP_B and DE and cases in which they were not. As with
Figs. 2-3, the residuals were calculated as the full sample es-
timate minus the predicted value from the estimator of inter-
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Fig. 4. Residual plots of selected 20% sample with relative bias of (A) DE less than that of (B) CP_B. BA, basal area.
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Fig. 5. Residual plots of selected 20% sample with relative bias of (A) DE greater than that of (B) CP_B. BA, basal area.
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est. Figures 4 and 5 illustrate BA residual plots of CP_B and
DE for the chosen subsamples at 20% sampling intensity
with the full sample estimate set at zero.

In Fig. 4, CP_B has an obvious tendency for overestima-
tion, denoting either a low dependency on the DE compo-
nent, a weak correlation in the MLR component, or both.
However, the subsample illustrated in Fig. 5 shows the high
degree of similarity between the residuals for CP_B and DE,
indicating that the DE component was probably weighted
very heavily. The success of composite prediction depends
on how well the LiDAR-based MLR component fits the par-
ticular small sample that is available and the weight that is
put on the DE component.

Although each original MLR variable superset was devel-
oped using the full sample from the population of interest,
there are obvious bias issues, particularly for stands with very
high attribute values. More importantly, because the models
did not change from one subsample to another in terms of
auxiliary variables used, there were definitely subsamples for
which the general model was less precise than for others.
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Conclusion

Estimating forest attributes for small areas within larger
populations of interest is a primary focus of forest researchers
and practitioners. Estimation of forest attributes in forest
stands using within-population information, whether it is
through composite estimators, linear models, or imputation,
has gained prominence over the last few decades. With rapid
advances in the acquisition and processing of remotely
sensed data such as LiDAR, these methods have reached
new standards in terms of accuracy and precision of forest at-
tribute prediction. This study has demonstrated how the inte-
gration of LiDAR metrics and SAE techniques can facilitate
precise estimation of stand-level forest attributes by effi-
ciently using available information from within the popula-
tion of interest.

Of the composite estimators assessed in this study, EBLUP
was superior to CP_B in terms of overall precision and bias
(Tables 3 and 4). On a stand-by-stand basis, CP_B was less
biased for stands with higher attribute values than EBLUP,
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particularly for density. Although CP_B provided less biased
estimates at the stand level than EBLUP, DE was still supe-
rior to all regression-based estimators for density. For all
other attributes, EBLUP provided more precise estimation
than CP_B and DE, though the advantage of using EBLUP
was much greater for QDBH and CuVol than for BA and Ht.
This study has shown that although SAE through composite
prediction can often be beneficial, its use needs to be tailored
specifically to the attribute of interest based on the auxiliary
information being used. Ultimately, the performance of any
form of SAE that relies on a regression component such as
the ones in this study depends greatly on the strength of the
relationship between the specific attributes being estimated
and the auxiliary information that is used.
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