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Abstract. The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased

capabilities in image processing, computing, and inferential techniques, have enabled the development and implemen-

tation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we

(i) describe the conceptual basis of multilevel sampling, (ii) provide a detailed review of several previously implemented

multilevel inventory designs, (iii) describe several important technical considerations that can influence the efficiency of a

multilevel sampling design, and (iv) demonstrate the application of a modern multilevel sampling approach for estimating

the forest biomass resources in a remote area of interior Alaska. This approach utilized a combination of ground plots,

lidar strip sampling, satellite imagery (multispectral and radar), and classified land cover information. The variability in

the total biomass estimate was assessed using a bootstrapping approach. The results indicated only marginal improvement

in the precision of the total biomass estimate when the lidar sample was post-stratified using the classified land cover layer

(reduction in relative standard error from 7.3% to 7.0%), whereas there was a substantial improvement in the precision

when the estimate was based on the biomass map derived via nearest-neighbor imputation (reduction in relative standard

error from 7.3% to 5.1%).

Résumé. L’émergence d’une nouvelle génération de technologies de télédétection et de géo-positionnement de même que

les progrès réalisés dans les domaines du traitement d’images, de l’informatique et des techniques inférentielles ont permis

le développement et l’implantation de plans d’échantillonnage multiniveaux de plus en plus efficaces et économiques pour

les inventaires forestiers. Dans cet article, (i) on décrit la base conceptuelle de l’échantillonnage multiniveaux, (ii) on

présente une revue détaillée de plusieurs plans d’inventaire multiniveaux déjà développés, (iii) on décrit plusieurs aspects

techniques importants qui peuvent influencer l’efficacité d’un plan d’échantillonnage multiniveaux et (iv) on démontre

l’application d’une approche contemporaine d’échantillonnage multiniveaux pour l’estimation des ressources en biomasse

forestière dans une région isolée de l’intérieur de l’Alaska. L’approche est basée sur l’utilisation d’une combinaison

de parcelles au sol, d’échantillons de bandes lidar, d’images satellite (multispectrales et radar) et de l’information classifiée

sur le couvert. La variabilité des estimations de biomasse totale a été évaluée à l’aide d’une approche d’amorçage

« bootstrapping ». Les résultats montrent seulement une amélioration marginale de la précision de l’estimation de la

biomasse totale lorsque l’échantillon lidar était post-stratifié à l’aide de la couche de couvert classifié (réduction de

l’erreur type relative de 7,3 % à 7,0 %), tandis qu’on observait une amélioration substantielle de la précision lorsque

l’estimation était basée sur la carte de la biomasse dérivée de l’imputation par le plus proche voisin (réduction de l’erreur

type relative de 7,3 % à 5,1 %).
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Introduction

Monitoring of the boreal forests is critical to under-

standing the global carbon cycle and quantifying the

possible effects of climate change on rates of carbon loss

and storage (Le Quere et al., 2009). The ecological impacts

of climate change are expected to be particularly acute in

the boreal forest biome, which is expected to experience

the greatest rates of temperature increase over the next

century, possibly leading to significant changes to ecosys-

tem processes including thawing permafrost, increasingly

severe and extensive fires, decreased tree productivity due

to drought stress, and large-scale shifts in vegetation

composition and structure (Christensen, 2007; Barrett

and Gray, 2010; Beck et al., 2011). At the same time,

there is increasing demand for more accurate and extensive

information on the availability of forest biomass resources

to support bioenergy production in rural communities

of interior Alaska that are disproportionately impacted

by the rising costs of fossil fuels (Crimp, 2007). The

development of an innovative forest monitoring design

for interior Alaska, making extensive use of remote

sensing data collected at a variety of resolutions and

scales to offset the reduction in the number of highly

expensive ground plots, has been identified as a strategic

priority of the Forest Inventory and Analysis (FIA)

program which is the national forest inventory (NFI)

program of the United States (USDA Forest Service,

2007).

The primary objectives of this paper are as follows: (i)

describe the conceptual basis of multilevel inventory

systems in statistical sampling terms; (ii) provide a detailed

review of several previously implemented multilevel forest

inventory systems, with particular emphasis on two inven-

tory designs used in interior Alaska in the 1950s and 1980s

and the Canadian NFI program; (iii) describe several

important considerations (ground plot design, ground

data collection protocols, and types of remote sensing

data collected at various levels) that can significantly affect

the efficiency of multilevel inventory programs; and (iv)

present a specific example of a novel, multilevel forest

inventory system designed to provide precise estimates

of aboveground biomass resources over a relatively large

and remote area within the boreal forests of interior

Alaska.
This design used a combination of ground plot data

and multiple sources of remote sensing data, collected at

different scales and resolutions (airborne lidar, multi-

spectral satellite imagery, and satellite dual-polarization

synthetic aperture radar). In addition, we describe an

approach to estimate the uncertainty of the total biomass

estimate obtained from this design using a bootstrapping

technique.

Background

Statistical sampling considerations in multilevel forest

inventories

Sampling at several different levels, where the sampling

intensities, size of the sampling units, as well as the level of

detail or cost-per-unit vary at each level is a well-known

approach to increase the precision of a forest inventory for a

given cost. According to Schreuder (2004), ‘‘multilevel

sampling’’ is defined as ‘‘a sampling design where more

than one phase or stage of sampling is used. The first levels

are used to collect information on covariates useful for more

efficient estimation of the ultimate parameters of interest for

which information is usually collected at the last stage or

phase.’’ As indicated in the above statement, multilevel

sampling usually takes one of three forms, (i) ‘‘multiphase

sampling’’, (ii) ‘‘multistage sampling’’, or (iii) a combination

of these two approaches. In multiphase sampling for ratio or

regression estimation, information is collected on a relatively

large number of sampling units in the earlier phases (at a

relatively low cost per unit) and then the parameter of interest

is measured on a subsample of these units in the final phase

(Schreuder et al., 1993). Alternatively, the data collected in

earlier phases can be used to stratify the data from the final

phase to increase precision of overall estimates. The design

used in the USDA Forest Service FIA program is a good

example of ‘‘two-phase sampling for stratification’’, where a

large number of photo plots (or increasingly, satellite-image

plots) are used to determine the proportion of forested plots

in the population, and these forested plots are then sampled

on the ground (Reams et al., 2005).

The gain in precision from using a multiphase sampling

design for regression estimation (over a single level design) is

directly related to the strength of the correlation between

(low-cost) information collected at early stages and the

parameter of interest. In multistage sampling, the popula-

tion is divided into groups of population elements (clusters)

which are then subsampled. The gain in precision from using

multistage sampling is directly related to the variability

within the clusters compared with the overall variability

within the population; if within-cluster variability is high

and between-cluster variability is relatively low, then there

can be substantial advantages to multistage sampling over

single-level sampling. In some cases, a multilevel approach

can incorporate elements of both multistage and multiphase

sampling (Särndal et al., 1992).

Multilevel sampling can also utilize either ‘‘model-based’’

or ‘‘model-assisted’’ designs. In model-based designs, all

inferences are conditional on the assumption that the

model is correct, while model-assisted designs depend upon

probability sampling at each level to ensure that resulting

estimators are design unbiased. This is usually a desirable, or

even necessary, property in national forest inventory pro-

grams, which are often used to establish baseline and trend
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data to support national and even international resource

policy (e.g., carbon accounting, etc.).

‘‘Spatially balanced’’ sampling, where sampled points are

more or less evenly distributed over the spatial extent of the
population of interest, is often another desirable property of

multilevel designs for resource inventories. For example, very

large disturbance patterns, such as fires in interior Alaska,

can lead to a high degree of correlation between sampled units

that are relatively close to each other, and it is therefore

desirable to ensure some minimum spacing between units to

increase the efficiency of the inventory (Stevens and Olsen,

2004; Barrett and Gray, 2011). Another potential advantage
to multilevel designs is that auxiliary mapped information can

be collected over the entire spatial extent of a cluster, in which

case the mapped clusters themselves can be used to measure

spatial (e.g., ecological) patterns that occur over a much

different spatial scale than can be measured on a much smaller

population unit (e.g., ground plot) (Hunsaker et al., 1994).

Multilevel sampling designs are particularly well suited

for inventories of large, remote regions of the world, where
logistical difficulties and high costs typically limit the

number of ground plots that can be established, and this

limited ground sample must be supplemented with remote

sensing information to attain the level of precision required

for the inventory. For these reasons, there is a long history of

utilizing multilevel sampling designs to support forest

inventory in the boreal forests of Alaska, a vast sparsely

populated region with very little transportation infrastruc-
ture. In the following sections, we provide a review of

several previous multilevel forest inventory programs, with

particular emphasis on two historical forest inventories in

interior Alaska and the current NFI program in Canada.

Examples of multilevel sampling approaches in previous forest

inventories of interior Alaska

The 1950s Alaska Forest Survey

In the late 1950s and early 1960s, the Alaska Forest

Survey carried out a highly ambitious plan to inventory the

forest resources of the entire state (Hutchison, 1968). As

Geier (1998) stated, this inventory was designed to minimize

the labor requirements, maximize speed, and maximize the

usefulness of the data for managers interested in commercial
forest development.

The interior Alaska component of this inventory design

consisted of three levels of sampling, and incorporated

elements of both multistage and multiphase design. The first

phase consisted of large scale (1:5000) aerial photography

collected along strips flown at 48 km intervals, where the strips

were collected in 10 major river basins and oriented perpen-

dicular to the dominant drainage systems. The aerial photo
strip sampling resulted in 17 700 km of flight lines and 31 000

photographs. The first level of sampling involved interpreta-

tion of a half-acre area near the center of the each aerial photo,

where forest classes and volume estimates were interpreted for

each plot. A second level of sampling consisted of an air check

of approximately 10% of the aerial photo plots. The air check

was a intermediate phase that involved flying an aircraft at a

very low flying height (300 m above ground level) above the
selected photo plot and checking the photo-interpreted

information on the plot from the air (Geier, 1998). The third

level of the sample consisted of avery limited subsample of the

air-checked plots that were visited and measured on the

ground. For the interior Alaska inventory, the total number of

photo plots was 37 177, the total number of air-checked plots

was 3774, and the total number of ground plots was 355. The

air checks were used to the develop correction factors that
were applied to the photo-interpreted forest classes and areas,

while ground plots were used to correct photo-interpreted

volume estimates. In this sense this inventory used elements of

both multiphase (i.e., strip and (or) cluster sampling) and

multiphase designs (ground plots used to correct remote

sensing estimates). This inventory allowed for estimation and

reporting for a wide variety of forest characteristics across the

entire region of interior Alaska, including forest area, size

class, species composition, and volume, and although the
sampling errors associated with these estimates for interior

Alaska were not reported, they were likely quite large, given

the relatively small number of plots measured at each level.

The Alaska Integrated Resource Inventory System

A four-phase, multilevel inventory design (the Alaska

Integrated Resource Inventory System (AIRIS)) was imple-

mented in another inventory of the Tanana valley of interior

Alaska in the 1980s. The different levels of this inven-

tory consisted of a 5 km � 5 km regular grid of thirty-six

50 m � 50 m pixels (approx. 8 ha) extracted from multi-
spectral Landsat MSS imagery, a 10 km � 10 km grid of

photo plots using high-altitude (1:60 000) color infrared

(CIR) aerial photography, a 20 km � 20 km regular grid

of photo plots using low altitude (1:3000) CIR stereo aerial

photography, and a 40 km � 40 km regular grid of ground

plots (Li et al., 1984; Winterberger, 1984; LaBau and

Winterberger, 1989; Schreuder et al., 1995). Vegetation class

was interpreted at all remote sensing levels, and a larger set of

variables including volume, stand size class, foliar cover by
vegetation class, understory component, tree crown dia-

meters, tree and (or) shrub heights, and land use were

estimated only in the low altitude photographs. Low-

altitude photos were located using LOng RAnge Navigation

(LORAN) and OMEGA radio-based geolocation systems

(AIRIS was implemented before the advent of the satellite-

based GPS program). The standard suite of inventory

variables (tree species, diameter, height, understory vegeta-

tion, damage, etc.) was then collected at the ground plots.
Due to a variety of factors, including shifting inventory

objectives (i.e., multiresource to timber), inability to accu-

rately register remote sensing data to ground plots, and

very small sample sizes for some important forest types, the

results obtained from this sampling design were largely
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disappointing (Schreuder et al., 1993). One important

conclusion from Schreuder et al. (1993) was that the

sampling strategy was probably too ambitious given the

technology available at the time; the design may be much
more cost-effective today, given the dramatic improvements

in remote sensing, geopositioning, image processing, and

computing that have taken place over the last 20�25 years

(Schreuder et al., 1995).

Examples of multilevel forest inventory designs

outside of Alaska

There are numerous other examples of multilevel sampling

designs for forest inventory elsewhere in the United States

and in other countries. The Canadian NFI system is one of

the more noteworthy examples of a modern large-scale,

multilevel forest resource monitoring program designed to

‘‘assess and monitor the extent, state, and sustainable

development of Canada’s forests in a timely and accurate
manner’’ (Gillis et al., 2005). The basic design of the

Canadian NFI system has the following components: (i) a

systematic grid of photo plots (each 2 km � 2 km in size)

across Canada to ensure comprehensive coverage, with a

preferred spacing of 20 km � 20 km; (ii) a stratification of the

entire country into terrestrial ecozones where the sampling

intensity of plots varies by strata to meet standards for

statistical reliability; and (iii) a subsample of photo plots
visited on the ground to measure attributes unattainable from

remotely sensed data, where the ratio of ground to photo

plots is 1:10 and the minimum number of ground plots per

ecozone is 50. Satellite imagery is used as a surrogate for

aerial photos to reduce the costs of plot acquisition in the very

remote northern regions of Canada (Falkowski et al., 2009).

Schreuder and Czaplewski (1993) proposed a complex

multilevel design for a forest health monitoring system
in the state of Minnesota that utilized satellite imagery (e.g.,

15 000 km2), strip samples of aerial videography (e.g.,

0.5 km � 500 km), aerial photo plots (e.g., 4�40 km2),

and ground cluster plots (e.g. 10 m2 � 100 m2 plots). This

design was intended to address three objectives, including

(i) generation of descriptive statistics, (ii) detection of

changes in these statistics, and (iii) possible identification

of cause�effect relationships.
Lee et al. (2002) described a multilevel sampling design

to monitor forest condition in heterogeneous woodlands

of Australia, which consisted of (i) wall-to-wall mapping

with Landsat Thematic Mapper (TM) imagery and other

regional-scale vegetation classifications, (ii) systematic

(4 km � 4 km) grid sample of airborne lidar sampling units

(e.g., 500 m � 150 m), with large-scale stereo photography

(1:4000) centered on each lidar sampling unit, and (iii) strati-
fied random sampling of fixed-area ground plots (33.25 ha)

collected within a subset of lidar plots.

Asner et al. (2011) used multiple levels of remotely sensed

data, including airborne lidar and a Landsat TM-based

vegetation classification layer, in combination with ground

plot data to map forest carbon over the island of Hawaii.

Important technical and procedural considerations when

implementing multilevel forest inventory systems

Accurate spatial registration of ground plots

One of the more important considerations in the imple-

mentation of a modern multilevel inventory system is

ensuring the accurate registration of the plot data to remote

sensing data. In the four-phase AIRIS sampling design

implemented in Alaska in the 1980s, there was considerable

difficulty in accurately registering the ground plots to other

levels of information, which contributed to disappointing

results of the program (Schreuder et al., 1995). With the

advent of the global positioning system (GPS) in the 1990s,

this goal has become much more achievable.

However, the use of GPS in forestry applications has

always been negatively impacted by the interaction (attenua-

tion and multipathing) between the satellite radio signals

and the woody components of the forest canopy. Recent

studies have indicated that much of the error due to forest

canopy can be reduced through the use of dual-frequency

survey-grade GPS receivers that incorporate sophisticated

filtering algorithms to reduce multipathing and also have the

capability to observe signals from the Russian (GLONASS)

and eventually, European (GALILEO) satellite geoposition-

ing systems (Næsset, 1999; Næsset et al., 2000; Andersen

et al., 2009b). The use of additional satellite constellations

increases the number and the geometric configuration of

available satellites observed through canopy gaps, and

therefore increases the accuracy of the positions obtained

under canopy. These studies have shown that, in general, it is

possible to consistently obtain positions with sub-metre

error under forest canopy using survey-grade GPS receivers.

It should be noted that the use of survey-grade GPS requires

the availability of nearby base station data that are used to

differentially correct the roving receiver data (i.e., remove

errors due to atmospheric delay and clock errors); however,

a recent study in a remote area of interior Alaska showed

that sub-metre geopositioning errors in various forest

canopy conditions can still be obtained even with baselines

up to 100 km (Andersen et al., 2009b). Although the relative

importance of accurate plot locations is a function of the

spatial variability of the forest, accurate plot locations are

generally much more important in heterogeneous canopies,

where even a few metres of error can lead to dramatic

decorrelation between field and remote sensing based

measurements, recent studies confirmed that error in plot

location can have deleterious effects on the statistical

precision of inventory estimates in a multilevel inventory

design (McRoberts, 2010; Andersen et al., 2011).
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Ground plot size and measurement protocol

There are other characteristics of the ground sampling

design and protocol that can influence the efficiency or

the relationship between the sample size and the precision of

the estimate of multilevel inventory, including the size

of the ground plot and the type of tree measurements

collected on the plot. The influence of plot size on the

efficiency of multilevel sampling designs has been documen-

ted in previous studies (e.g., Gobakken and Næsset, 2008).

Plot size affects the efficiency of multilevel designs in several

ways. First, larger plots are less susceptible to influence of

edge effects, which can lead to discrepancies between the

measurement of tree crowns (in remote sensing data) to

tree stems (measured in the field); therefore, the use of

large, single fixed-area plots will typically strengthen the

correlations between various phases of a multilevel design,

leading to a higher overall statistical precision for inventory

estimates. On the other hand, the use of large plot clusters

(possibly involving many relatively small subplots distrib-

uted over a large area) can be a very efficient design in a

multistage design but can be susceptible to the same edge

effect problems mentioned previously when used in a

multiphase design. For example, in the AIRIS design the

ground plots consisted of a cluster of 19 subplots spaced

75 m apart and distributed over 8 ha, while the current

FIA cluster plot consists of four 1/60 ha subplots spaced

approximately 36 m apart (Bechtold and Scott, 2005).

Research in interior Alaska indicated that use of a smaller

(1/60 ha) plot will contribute to lower precision for

inventory estimates than larger plots (1/30 ha) in a multilevel

sampling design, most likely due to edge effects (Andersen

et al., 2011). Other elements of the plot protocol can also

contribute to the overall efficiency of a multilevel sampling

design, such as the diameter thresholds for tree measure-

ments. In some cases, the choice of diameter threshold, to

reduce the number of small trees measured on the main

inventory plot, can lead to a significant loss of spatially

explicit forest structure information over the extent of the

field plot. For example, in the standardized ground sampling

protocol for the FIA program, only trees larger than 12.5 cm

(5 inches) are measured on the 1/60 hectare subplots (trees

less than 12.5 cm are measured on a much smaller 1/742 ha

microplot). In the context of a multiphase inventory design,

the diameter threshold for trees measured over the larger

plot area (versus a much smaller microplot area), introduces

another source of sampling error in the estimation of plot-

level forest structure. This can further contribute to dis-

crepancies (or lack of correlation) between measurements

obtained from high-resolution remote sensing and those

obtained in the field. This effect is obviously most pro-

nounced in forests where the mean stem diameter for the

forest is relatively close to, or less than, the diameter

threshold (in many black spruce stands in interior Alaska,

the mean stand diameter is well under 12.5 cm). In such

cases, the use of a modified plot protocol with a lower

diameter threshold will likely improve correlations with

remotely sensed data (Andersen et al., 2011).

Sources of remote sensing data for multilevel inventory

systems

Airborne lidar sampling

Airborne lidar has emerged as the preeminent remote
sensing tool for forest measurement in recent years (Lefsky

et al., 2002). Structural metrics derived from the three-

dimensional lidar point cloud have been shown to be highly

correlated with various forest inventory parameters (volume,

biomass, basal area, etc.), across a wide variety of forest

biomes and conditions. Furthermore, because lidar is

delivered as a directly georeferenced and digital product, it

lends itself to automated (i.e., batch) processing, even over
very large areas (i.e., millions of hectares). Although lidar is

still largely unable to provide detailed information on

species, progress has been made in this area in recent years

(Kim et al., 2009; Ørka et al., 2009).

Lidar data is still relatively expensive to collect wall-

to-wall over a large area (at a cost of approximately

US$2�3 per hectare); however, there has been increasing

interest in the use of airborne laser scanning (lidar) as a
sampling tool and a component of a multilevel inventory

design (Andersen et al., 2009a; Andersen et al., 2011;

Gregoire et al., 2011; Ståhl et al., 2011). As lidar is a

scanning system typically mounted on a fixed-wing aircraft

platform, it is highly efficient to collect lidar over

continuous linear swaths. When lidar is collected in single

swaths spaced several kilometres apart covering the entire

area of interest, this sample can be considered a systematic
probability sample. Ground plots can then be established

within the lidar coverage, which are then used to develop

models for predicting forest inventory variables over the

entire extent of the lidar coverage. From a statistical

standpoint, the multilevel data collected in this manner

has been treated as a model-based sampling design

(Andersen et al., 2011; Ståhl et al., 2011) and a model-

assisted sampling design (Andersen et al., 2009a; Gregoire
et al., 2011). Model-based approaches do not require a

probability (i.e., random) sample of ground data which can

reduce costs in remote and inaccessible areas, but will not

provide design-unbiased estimators. In contrast, model-

assisted designs require a probability sample (where each

population element within the lidar coverage has a known,

nonzero, probability of being sampled in the field), and will

provide (approximately) design-unbiased estimators, albeit
with higher variances (Särndal et al., 1992).

Multispectral satellite imagery

Wall-to-wall satellite imagery provides spatially compre-

hensive information across the entire area of interest and

therefore represents an important component of a multilevel
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# 2012 CASI 5

Pagination not final/Pagination non finale

C
an

ad
ia

n 
Jo

ur
na

l o
f 

R
em

ot
e 

Se
ns

in
g 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ca

si
.c

a 
by

 $
{i

nd
iv

id
ua

lU
se

r.
di

sp
la

yN
am

e}
 o

n 
04

/1
2/

12
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



inventory design. Several types of satellite imaging systems

are typically used for land cover classification. Multispectral

satellite imaging systems, such as NASA’s Landsat TM and

the SPOT (System Pour l’Observation de la Terre), can
provide relatively low-resolution, two-dimensional informa-

tion on species class, forest condition, and canopy cover over

very large areas (Cohen et al., 2001). In fact, the LAND-

FIRE program uses a combination of LANDSAT and

auxiliary mapped information to develop several layers

(existing vegetation class, canopy cover, canopy height)

that are currently used for forest fire risk assessment

throughout the United States (Rollins at al., 2006). FIA is
making increasing use of LANDSAT TM-based forest cover

classifications for determining forest versus nonforest, a

critical component of the post-stratification component that

is used to improve the precision of inventory estimates

(Reams et al., 2005). Recent work indicated that spectral

trajectories developed from a time series of Landsat TM

imagery can be used to accurately predict various inventory

parameters, including biomass (Powell et al., 2010). Satellite

imagery has been used along with other spatial layers to map
several forest inventory variables over the landscape using

various nearest-neighbor (NN) methods, including gradient

NN (Ohmann and Gregory, 2002) and k-NN (Franco-

Lopez et al., 2001; Katila and Tomppo, 2002; McRoberts

et al., 2006). Hudak et al. (2008) evaluated several different

NN methods in the forest inventory context using structural

metrics derived from airborne lidar. The statistical proper-

ties of inventory estimates obtained from NN techniques are

continuing to be developed (McRoberts et al., 2007,
Magnussen et al., 2009). However, to our knowledge the

use of NN methods within a multilevel inventory sample

design (i.e., with intermediate layer(s) of sampled remote

sensing information) has yet to be explored.

Dual-polarization synthetic aperture radar

Synthetic aperture radar (SAR) operates in the microwave

portion of the electromagnetic spectrum and can provide

two-dimensional information on biomass over a large area.

Microwave energy transmitted from the satellite interacts

with the canopy and ground, with some of the energy
reflected (backscattered) back to the satellite receiver. The

magnitude of the radar backscatter will depend upon the

electromagnetic interaction between the microwaves and the

features in the scene. With a wavelength of approximately

23 cm, L-band radar is especially sensitive to features in the

canopy at the scale of large branches and tree stems (Waring

et al., 1995). Therefore, analyzing the correlation between

backscatter strength and the number of branches and stems

allows for estimation of tree biomass within the imaged area.
One significant disadvantage of SAR is that the relation-

ship between biomass and radar backscatter saturates

at biomass levels that depend on wavelength. Previous

studies have indicated that the biomass saturation levels

are 100 Mg/ha for P-band (0.44 GHz), 40 Mg/ha for L-band

(1.25 GHz), and 20 Mg/ha for C-band (5.3 GHz), although

more recent studies have shown that dual-polarization

L-band SAR saturates at biomass levels of approximately

150 Mg/ha in boreal forests of Alaska (Suzuki et al., 2007;

Atwood and Andersen, 2010).

Fusion of multiple data sources

There have been relatively few previous studies that

have utilized multiple sources of remotely sensed data in

an imputation context. Poso et al. (1999) used a combina-

tion of aerial photography, satellite imagery, and historical

stand information to estimate stem volumes in Finland.

Holmström and Fransson (2003) utilized a combination

of SPOT multispectral satellite imagery and airborne

CARABAS-II VHF SAR to estimate forest variables in

Sweden via a k-NN imputation procedure, demonstrating

the potential for employing multiple sources of remotely

sensed data, including both passive optical and active

microwave systems, within the statistical estimation frame-

work of NN imputation.

In the next sections, we present a case study that demon-

strates the application of a multilevel inventory system,

employing both regression and NN imputation techniques,

that was designed to provide precise estimates of above-

ground biomass resources over a relatively large and remote

region of interior Alaska.

Project description and data sources

Tok study area

The study area was a 201 226 ha area (of which

163 913 ha are forested) in the upper Tanana valley of

interior Alaska, surrounding the communities of Tok and

Tanacross (Figure 1). The forests in this area are character-

istic of the boreal forests of interior Alaska, with lowland

forests primarily composed of white spruce (Picea glauca) in

well-drained areas and black spruce (Picea mariana) in

poorly drained areas. Upland forests are predominantly

composed of paper birch (Betula papyrifa) and quaking

aspen (Populus tremeloides). Recently burned areas are

composed of remnant spruce snags, and in some cases a

blanket of regenerating young aspen. Balsam poplar

(Populus balsamifera) is common along rivers.

Multilevel sampled data

Three levels of data were collected for this study, including

ground plots, airborne lidar strip samples, and wall-to-wall

Landsat TM multispectral imagery and ALOS PALSAR

dual-polarization synthetic aperture radar (PolSAR) satel-

lite imagery (Figure 1).
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Ground plot data

In August and September 2009, 79 ground plots were

established within the coverage of the lidar strips (Figure 1).

At each plot, each tree with diameter at breast height (dbh)

greater than 7.62 cm (3 inches) was measured within a

circular 1/30 ha (1/12 acre) plot with a fixed radius of

10.36 m (34 ft). Trees with dbh between 2.5 cm and 7.62 cm

(1 inch and 3 inches) were measured within a smaller

1/422 ha (1/171 acre) circular plot with a fixed radius

of 2.74 m (9 ft). To maximize the efficiency of the

ground data collection, plots were collected in pairs spaced

approximately 600 m apart. Details related to the ground

data collection are provided in Andersen et al. (2011).

A summary of the ground plot data is shown in Table 1.

The locations of the plot centers were measured with sub-

meter error using a survey-grade GPS�GLONASS receiver

(Javad Maxor GGD), and data were post-processed using a

dedicated local base station (Andersen et al., 2009b).

Because most of the area is inaccessible without a helicopter,

all ground plots were located within reasonable hiking

distance (1 km) of a road, trail, or river. Within these

accessible areas that overlapped the coverage of the lidar

strips, the location of plots were randomly located across

different forest stand types (based on a polygon geographic

information system layer provided by the Alaska Depart-

ment of Natural Resources) and historical forest fire

perimeter data. Using individual tree-level data collected

for all common species by researchers at the University of

Alaska-Fairbanks (Yarie et al., 2007), we developed allo-

metric equations to estimate total aboveground biomass for

each tree species based on measurements of dbh, squared

dbh, and height, using a stepwise regression model devel-

opment procedure in the R statistical software environment

(http://www.r-project.org/). These equations were applied to

the trees measured on each plot to obtain a plot-level

estimate of aboveground tree biomass.

Airborne lidar

High-density airborne lidar data were collected along

27 single swaths spaced approximately 2.5 km apart

(Figure 1). The sampling intensity for the lidar flight

acquisition was based on the available funding; however,

it was felt that this spacing would provide adequate coverage

to characterize the range of variability present across the

study area. Because of flight safety considerations, the

strips in the northern part of the study area were oriented

in a northwest�southeast direction, whereas strips in the

southern part of the area were oriented in the southwest�
northeast direction (so as to avoid flying perpendicular

to steep mountainous slopes). Specifications for the lidar

acquisition are shown in Table 2. The total cost of the

lidar acquisition was approximately US$61 000. Previous

experience has shown that approximately 10% of this total is

Figure 1. Multilevel sampling framework for estimation of biomass, Tok study, Alaska.

Table 1. Summary of ground plot data on forested plots (78 ground plots*) established in the

study area, located in the upper Tanana valley of interior Alaska, USA.

Plot variable Minimum Maximum Mean Standard deviation

Biomass (Mg/ha) 1.1 253.5 78.1 65.9

Mean dbh (cm) 3.3 26.8 9.1 4.4

Mean tree height (m) 2.9 17.2 7.8 3.1

Trees per ha 59 18078 3233 3302

* One ground plot was nonforested and was excluded from this summary table, as all values were zero.

However, this nonforested plot was included in the analysis, as it was a valid observation.
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fixed costs (mobilization, etc.) and the remainder is linearly

related to flight time.

Multispectral satellite imagery

A Landsat TM scene (path 65, row 16, acquired 3 August

2002) covering the study area was geometrically and radio-

metrically calibrated in the ENVI software environment

(Chavez, 1989; ITT, 2009). We used six Landsat TM bands

in our analysis, including bands 1�3 (visible), band 4 (near

infrared), and bands 5 and 7 (middle infrared).

Dual-polarization satellite SAR data

The Alaska Satellite Facility at the University of Alaska-

Fairbanks provided dual-polarization L-band PALSAR

satellite radar images covering the study area, consisting of

HH and HV polarizations. A multitemporal data stacking

technique was used to reduce the noise in the radar
backscatter for both HH and HV images (Atwood and

Andersen, 2010). Previous analysis showed that both HH

and HV polarimetric radar backscatter (so) were correlated

with aboveground tree biomass for biomass levels below

150 Mg/ha. (Figure 2).

Canopy cover classification map

Often there are existing vegetation classifications that

can be used to support a multilevel inventory effort. For
example, the LANDFIRE project in the United States, a

joint program supported by both the US Forest Service

and US Department of Interior, generates digital maps of

current vegetation composition and structure (height, cover)

over the entire United States at a 30 m resolution (Rollins

et al., 2006). In this project, the LANDFIRE canopy cover

layer was used to stratify the landscape into four different

forest canopy cover classes: 0�10% (nonforested), 10�25%,
25�60%, and 60�100%. The forest�nonforest stratification

was used to define the sampling frame for all estimates,

and the more detailed classification was used for post-

stratified estimates.

Project methodology

Prediction of biomass within lidar strip samples

Lidar-derived structural metrics, which collectively pro-

vide a detailed quantitative summary of the 3-D distribution

of all canopy components, are generally highly correlated to

aboveground biomass (Means et al., 2000; Andersen et al.,

2006). In this study, we generated lidar structural metrics

from the lidar point cloud extracted from the 1/30 ha ground

plot areas. In addition, the area covered by the lidar strips

was divided into grid cells of equal area (18 m � 18 m) and

the same set of lidar structural metrics were extracted from

each grid cell. These structural metrics included maximum

height, mean height, coefficient of variation of height, 10th

percentile height, 25th percentile height, 50th percentile (or

median) height, 75th percentile height, 90th percentile

height, canopy cover above 2 m, and canopy cover above

5 m. Canopy cover values were calculated as the percentage

of first returns above a given threshold height (i.e., 2 or 5 m

in this case, where these thresholds correspond to overstory

and understory canopy layers as defined in the FIA Phase 2

vegetation profile protocol (Schulz et al., 2009)). We applied

a square-root transform to the dependent variable (above-

ground biomass) to linearize the relationship with the lidar

structural metrics (the functional form of the allometric

relationship between tree height and biomass is curvilinear)

and to homogenize the error variance. Because the ground

plots were not a true probability sample over the entire

extent of the lidar strips, the estimate of biomass within the

Table 2. Specifications for lidar strip sampling flights over the

study area, located in the upper Tanana valley of interior Alaska,

USA.

Lidar system Optech Gemini

Flying height 750 m

Pulse repetition frequency 125 kHz

Scan angle 9 9 degrees

Scan rate 103 Hz

Speed 160 knots

Swath width 240 m

Point spacing 5 0.4 m cross track and down track

Beam divergence 0.3 mRad

Figure 2. Relationship between field-based biomass and PALSAR

L-band radar backscatter coefficent (so) for HV and HH

polarizations, Tok study area, Alaska. Blue points represent HH

polarization, and red points represent HV polarization (from

Atwood and Andersen, 2010).
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lidar strips is a model-based estimate (Schreuder et al.,

1993). In the model-based sampling framework, the so-

called superpopulation of biomass values at each lidar grid

cell i is therefore distributed according to the regression
model

Y i ¼ ðaþ b1X 1 þ . . .þ bpX p þ eiÞ
2

where Variancem(ei) � s2, the subscript m indicates condi-

tioning on the underlying superpopulation model, Yi,

denotes the total aboveground tree biomass for a given

grid cell area, the subscript p indicates the number of

predictor variables in the model, X indicates the various

lidar structural parameters that are correlated with biomass,
and a, b indicate the coefficients of this superpopulation

model. The coefficients of this model were determined using

a stepwise automated variable selection procedure in the R

statistical package (R Development Core Team, 2008). As

we were interested in predicting biomass in the original units

(Mg/ha), we back-transformed the predicted ‘‘sqrt’’ (bio-

mass) values and then applied a correction factor to remove

the bias that is introduced in the backtransformation
(Miller, 1984). Figure 3 shows the relationship between

lidar-predicted biomass and the field-based values at the

plot level (R2 � 0.74). This regression model was then

used to predict biomass at each 18 m � 18 m (1/30 ha)

grid cell over all forested areas covered by the lidar strip

samples (where forest area was defined by the LANDFIRE

canopy cover classification). However, it should be noted

that the lidar strips themselves are a probability (systematic)
sample over the entire extent of the study area, and can

be viewed as a single-stage cluster sampling design,

with model-based biomass estimation within each cluster

(Andersen et al., 2011; Ståhl et al., 2011). The total bio-

mass for all forested area within the study area, Ŷtotal, can

be estimated by applying the ratio-to-size estimator as

described by Cochran (1977)

Ŷtotal ¼M0

Xn
Ŷk

.Xn
Mk

� �

where n is the number of lidar strips,Ŷk is the estimated total
biomass for the kth lidar strip, Mk is the total number of

elements in the kth lidar strip and M0 is the total number

of elements in the population (total number of forested

grid cells within the study area), and lidar strips are

randomly distributed and selected with equal probabilities.

In this study, the total size of the study area was 201 227 ha

(Figure 1), and the total forested area was estimated to be

163 913 ha. Andersen et al. (2011) provided details on a
resampling-based variance estimator for this lidar-based

estimate of total biomass. In Andersen’s study, the estimate

of total biomass within the study area was reported to be

8 138 278 Mg. The estimated precision of this estimate

(standard deviation) in the single-stage cluster sampling

framework, obtained via resampling (bootstrapping) infer-

ence, was reported to be 377 626 Mg (4.6%), and when the

modeling error was incorporated into the estimate of
variability, the standard deviation of the bootstrap distribu-

tion increased to 691 825 (8%).

Post-stratification with the LANDFIRE canopy cover layer

Because the lidar strip samples only cover a limited

portion of the entire study area, the precision of the lidar-

based estimate of total biomass could potentially be

improved by incorporating the estimates of the total propor-

tion of area in various canopy cover classes provided by the

LANDFIRE classification. If the canopy cover classifi-

cation explains a significant amount of the total variability

in lidar-derived biomass, then the post-stratification can
increase the precision of the total biomass estimate consider-

ably. The ratio-to-size estimator (described above) can be

modified to provide a post-stratified estimate of total

biomass

Ŷtotalps
¼
Xh

Mh

PnhŶkPnh Mh

where h denotes the various canopy cover strata (10%�25%,
etc.).

Nearest-neighbor imputation of biomass using satellite

imagery

The concept of post-stratification described previously

can be extended to incorporate the use of wall-to-wall

coverage provided by satellite-based image data (Landsat

TM and PALSAR polarimetric SAR) in the context of a

multilevel inventory system. The use of satellite imagery,

Figure 3. Relationship between lidar-based biomass predictions

and field-based values, Tok study area, Alaska.
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where forest structure is measured indirectly at the scale

of an individual pixel either through the multispectral

signature or the magnitude of the radar backscatter,

provides the capability to estimate (i.e., map) biomass in a

spatially explicit manner across the entire landscape. In a

multilevel sampling context, this provides an opportunity to

potentially increase the precision of parameter estimates by

extending the post-stratified model-based sampling frame-

work to incorporate this mapped information. Although

either parametric (e.g., regression) or nonparametric

approaches could be used in this case to predict a univariate

response variable (biomass), we chose to employ a nonpara-

metric NN approach to develop a mapped estimate of

the biomass distribution over the entire landscape. This

approach, implemented through the yaimpute package in R,

provides a straightforward means to develop a map and

allowed us to clearly demonstrate the extension of our

model-based estimation to multiple levels of remotely sensed

data (Crookston and Finley, 2008). In addition, the use of a

nonparametric approach allows for relatively easy extension

to the multivariate context in future studies.

Following McRoberts (2007), in NN imputation we had

a dataset Y of response variables (e.g., biomass values)

with sample size n drawn from a population of size N.

For each element Yi, we had an associated set of ancillary

variables X, and the geometric space defined by this vector

is termed the ‘‘feature’’ space. This dataset, composed of

elements with values for both response variable Y and

ancillary variables X, is considered to be the ‘‘reference’’

dataset. Often the reference dataset consists only of plot

data, but in our case the reference data were the entire set of

grid cells within the lidar strip samples. At each of these grid

cells, we have a lidar-predicted biomass value (Yi,) and a

vector of ancillary variables (Xi,) obtained from the Landsat

TM multispectral image and the polarimetric SAR image. In

this case, the Xi, included the spectral reflectance value from

Landsat TM bands 1�5 and band 7 (i.e., thermal band 6

excluded), and PALSAR HH and HV backscatter values. In

NN parlance, the set of units at which predictions are

desired, and for which only ancillary variables X are

available, is termed the ‘‘target’’ dataset. The NN prediction

for the ith element in the target set is the Y value associated

with the ‘‘nearest’’ element in the reference dataset, where

‘‘nearest’’ is defined as having the smallest value of a

distance metric d between the respective X vectors in feature

space, or: dij¼ðXi�XjÞ
0
MðX i�XjÞ, where M is a square

matrix. There are several choices for the matrix M, inclu-

ding the identify matrix, where d becomes the squared

Euclidian distance, or the Mahalanobis distance, where M

is the inverse of the covariance matrix of the X values

in feature space. In our case, the Mahalanobis distance

was used because it is scale-invariant and takes into account

the covariance structure of the X ancillary variables. The

result of the NN imputation in our case was a continuous

map of biomass over the entire study area (Figure 4), which

could then be used to develop an estimate of total biomass.

Figure 4. Example of biomass predictions within sampled lidar strips overlaid on PALSAR satellite L-band HV

image (middle image) and map of predicted biomass obtained using nearest-neighbor imputation applied to

Landsat TM and PALSAR data (right image). (Dark green, high biomass; brown, low biomass).
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Estimating the precision of total biomass estimates

The resampling approach described in Andersen et al.

(2011) can be extended to estimate the variability associated

with both the post-stratified estimator using LANDFIRE

canopy cover and the estimate obtained from the NN

imputation approach using Landsat TM and PALSAR. In

a sense, it is a resampling-based analogue to the analytical

formulation of the variance estimator for model-based lidar

sampling provided by Ståhl et al. (2011). In the case of post-

stratification via LANDFIRE canopy cover layer, the

resampling occurs at the level of the plot data (with

replacement) and the lidar strip samples (without replace-

ment from a pseudo-population according to Andersen et al.

(2011) to account for finite population of strips), while the

strata totals are considered to be fixed constants (i.e., there

is no sampling or modeling error associated with the canopy

cover classification). Although in reality there is certainly

error associated with the LANDFIRE canopy cover classi-

fication, for purposes of clarity this component of the error

was ignored in our study.

Several techniques for estimating the variability of esti-

mates derived via NN imputation in a forest inventory

context have emerged recently (McRoberts et al., 2007;

McRoberts, 2009; Magnussen et al., 2009). While most of

these techniques for variance estimation have been deve-

loped analytically, several resampling-based approaches

have also been proposed that rely on either bootstrapping

or jack-knifing. Franco-Lopez et al. (2001) developed a

bootstrapping approach to estimate the precision of esti-

mates of forest stand density and volume using k-NN.

McRoberts (2007) developed the statistical basis for resam-

pling-based variance estimators in the context of NN

imputation. These approaches were not directly applicable

to the multilevel inventory framework used in our study.

In this sense, we attempted, for each draw of the bootstrap

sample, to simulate the variability that would be introduced,

or potentially reduced, by each component of the multilevel

inventory design. Specifically, two sources of random

variability were introduced in the resampling procedure:

variability in choice of model form and coefficients of the

lidar biomass model, and sampling error in the systematic

lidar strip sample. In addition, another level of information,

either a mapped biomass layer obtained via NN imputation

or a classified LANDFIRE canopy cover layer, was also

incorporated into the bootstrapping procedure to assess its

potential utility in decreasing the variability of the total

biomass estimate. In all cases, the number of bootstrap

replications was 500 (according to Efron and Tibshirani

(1994), it is rare that more than 200 bootstrap replications are

necessary for estimating a standard error). The following

steps of the bootstrap procedure were used in this analysis:

1. Draw a sample (with replacement) from a ground plot

sample.

2. Use this sample to develop a regression model via

stepwise regression.

3. Draw a sample of lidar strips (without replacement)

from a ‘‘pseudopopulation’’ of lidar strips (replicate

each lidar strip N/n times, where n is the number of

sampled strips and N is the population of strips).
This ‘‘without replacement (WOR) bootstrapping’’

helps account for sampling from a finite population

(which is usually not assumed in traditional ‘‘with

replacement (WR) bootstrapping’’).

4. Use the regression model obtained in Step 2 to predict

biomass at each grid cell within the lidar strips

selected in Step 3.

5. (Use this step only for NN approach.) Use k-NN
nearest-neighbor imputation (k�1; Mahanalobis dis-

tance metric) to predict biomass within each (forested)

grid cell over the entire study area, using lidar grid

cells as the reference data and the satellite/PolSAR

data as the target data (Figure 4).

6. For the NN approach, sum the biomass predictions

over all grid cells to obtain an estimate of total

biomass; or for the LANDFIRE post-stratification
approach, use the stratum areas obtained from the

LANDFIRE canopy cover layer to generate a

weighted estimate of total biomass (Cochran, 1977).

7. Repeat steps one to six 500 times to obtain a bootstrap

distribution.

Results

The bootstrap distributions corresponding to the various

sampling frameworks are shown in Figure 5, and the sum-

mary statistics for these distributions are shown in Table 3.

As discussed in Andersen et al. (2011), Figure 5a and the

first two rows of Table 3 indicate that the bootstrap

distribution incorporating lidar sampling error only corre-

sponds very closely to the theoretical sampling distribution

for the estimate of the population total using a single-stage

cluster sampling design (Cochran, 1977). Incorporating the

error associated with modeling error into the bootstrap

variance estimate increases the variability of the bootstrap

distribution significantly (relative standard error increases

from 5.3% to 7.3%). It should be noted that variability due

to both sampling error and modeling is incorporated into all

subsequent bootstrapping results (i.e., post-stratified using

LANDFIRE and NN imputation). Using the LANDFIRE

canopy layers to post-stratify the estimate obtained from the

lidar strip sample (Figure 5c, fourth row in Table 3) results in

a marginal decrease in variability (relative standard error

decreases from 7.3% to 7.0%).

The result of the NN imputation is a continuous map of

biomass over the entire study area (Figure 4). The results

indicate that using the Landsat TM and PALSAR dual-

polarization radar backscatter images to post-stratify the

lidar strip sample (Figure 5d, last row in Table 3) results in a

significant decrease in the variability of the total biomass

estimate (from 7.3% to 5.1%). It should also be noted that the
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# 2012 CASI 11

Pagination not final/Pagination non finale

C
an

ad
ia

n 
Jo

ur
na

l o
f 

R
em

ot
e 

Se
ns

in
g 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ca

si
.c

a 
by

 $
{i

nd
iv

id
ua

lU
se

r.
di

sp
la

yN
am

e}
 o

n 
04

/1
2/

12
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



mean of the bootstrap distribution was fairly similar for the

estimate using lidar strips only and that obtained using lidar
strips post-stratified by the LANDFIRE canopy cover layer

(7 941 35l Mg vs. 7 940 091 Mg), while the mean obtained

from NN imputation using Landsat TM and PALSAR

satellite radar was substantially lower (7 568 641 Mg).

However, Efron and Tibshirani (1994) caution that estimates

of bias obtained from bootstrapping are usually less reliable

than estimates of standard errors.

Discussion

The results indicated that the precision of total biomass
estimates in remote regions, such as interior Alaska, can be

significantly improved through the combined use of remo-

tely sensed and ground data, where remote sensing is

acquired in a multilevel framework (i.e., at several different

resolutions and sampling intensities). In contrast, and

somewhat surprisingly, using the LANDFIRE canopy cover

layer did not result in a substantial improvement in the

precision of the total biomass estimate, even though canopy

cover is generally correlated with biomass. This was likely

due to classification error in the LANDFIRE canopy cover

layer, although this result certainly warrants further investi-

gation. Given the very strong relationship between height

and biomass for most boreal tree species, it is possible that

including the LANDFIRE height layer could improve the

result, although it should be noted that that this layer is

inferred height, not a direct measurement of canopy height,

so it is unlikely to result in substantial improvements.

In contrast, the use of NN imputation applied to lidar

biomass estimates acquired along strip samples and a

combination of Landsat TM and PALSAR satellite radar

led to substantial improvements in precision of total biomass

Figure 5. Bootstrap distributions for estimates of total biomass representing: a) lidar

sampling error only (theoretical sampling distribution for single-stage sampling is shown by

red dashed line); b) lidar sampling error and modeling error; c) lidar sampling, post-stratified

using LANDFIRE canopy cover layers; and d) lidar sampling and modeling error, post-

stratified using nearest-neighbor imputation with LANDSAT TM and PALSAR radar.
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estimates. In a sense, a map derived from NN imputation

can be thought of as an optimal post-stratification, as the

imputation procedure simply estimates the proportion of

the overall landscape that is associated with each lidar

grid cell. Therefore, in effect, each lidar grid cell is its

own stratum and the within-stratum variance is likely

very low due to the large number of lidar grid cells that are

well-distributed across the full range of forest conditions

within the study area.

In addition, the inclusion of both spectral (Landsat TM)

and L-band SAR backscatter information provided a highly

complementary set of ancillary data that contained informa-

tion on three-dimensional forest structure (L-band) and

species composition (Landsat TM), probably the two most

important attributes in quantifying aboveground forest

biomass. It should also be noted that the L-band SAR

data used in this study was a multitemporal stack of

PALSAR scenes from snow-free months (Atwood and

Andersen, 2010). Using a multitemporal data stack likely

reduced the speckle noise component inherent to SAR

imagery, in essence increasing the signal-to-noise ratio and

improved our ability to detect more subtle differences in

target dielectric properties, such as volume scattering

associated with dense branches and stems (Santoro et al.,

2011). The use of dual-polarization SAR also likely im-

proved the ability to measure more subtle variation in

biomass levels. Although the overall range of variability of

the cross-polarized HV backscatter was considerably lower

than for the HH SAR image, the relationship to biomass

linearly increased up to levels of 200 Mg/ha (Figure 2),

indicating that the use of multitemporal data stacks of

dual-polarization L-band SAR may be able to surmount the

saturation problem that has limited the utility of single-

polarization L-band radar in previous biomass and above-

ground carbon assessments. However, it should be noted

that, in general, there will be much lower sensitivity even in

the dual-polarization L-band SAR signal to variability in

biomass levels above 200 Mg/ha, and this may reduce the

accuracy of the mapped biomass estimates within forest

areas with higher biomass levels. At the same time, the

biomass levels observed in the plot data indicated that a

relatively small proportion of the total study area contains

forests with biomass levels exceeding 200 Mg/ha, so it was

unlikely that radar saturation issues had a significant effect

on the statistical results reported in this study.

Given that the allometric relationships between tree

dimensions and biomass can differ significantly between

boreal species (Yarie et al., 2007), the inclusion of Landsat

TM multispectral information likely enabled us to capture

complex interactions between dual-polarization L-band

SAR backscattering characteristics and species composition

that would have been difficult to model using a parametric

approach.

It should be noted that the ground data collected in this

study can be considered a representative sample, but cannot

be considered a true probability sample, as inaccessible areas

were excluded from the ground sampling frame. Therefore,

the design used in this study must be considered model-

based, not model-assisted, and the resulting estimators

were not design-unbiased. Although the quality of design-

unbiasedness is certainly desirable in an operational inven-

tory context, these advantages might be offset by the lower

cost of an inventory design such as that described in this

paper, which combined a representative (but not probability)

ground sample with a design-based (probability) sample of

high resolution data and wall-to-wall coverage with satellite

imagery.

It should also be noted that the systematic sample of

high-resolution airborne remote sensing data (lidar strip

samples in this case) provided spatial balance, a highly

desirable feature of a large-area inventory design (Stevens

and Olsen, 2004). As is the case with many inventory

programs using a systematic sample (e.g., the FIA program

in the United States), our assumption that the lidar strips

are a simple random sample from the finite population,

instead of a systematic design, in the variance estimation

procedure will lead to an overestimation of the variability of

the total biomass estimate. Although outside the scope of

the current study, explicitly accounting for the systematic

sampling design in the bootstrapping algorithm would be an

interesting topic for future work.

Conclusions

The combined use of (i) characteristic, and accurately

georeferenced, ground data covering the full range of

variability within a study area, (ii) sampled high-resolution

airborne lidar, and (iii) wall-to-wall satellite multispectral and

dual-polarized L-band SAR imagery provided a powerful set

Table 3. Summary statistics for theoretical sampling distribution and bootstrap distributions of total biomass.

Mean Standard deviation

Relative

standard error

Theoretical single-stage cluster sampling 7 978 372 355 199 4.5%

Bootstrap distribution, lidar sampling error only 7 941 351 423 132 5.3%

Bootstrap distribution, lidar sampling error and modeling error 7 980 615 585 669 7.3%

Bootstrap distribution, lidar sampling, post-stratified with LANDFIRE

canopy cover layer

7 940 091 555 577 7.0%

Bootstrap distribution, post-stratified using nearest-neighbor imputation

with LANDSAT and PALSAR

7 568 641 388 114 5.1%

Canadian Journal of Remote Sensing / Journal canadien de télédétection
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of data within the framework of a multilevel biomass

inventory. Given the extremely high cost of establishing

ground plots in remote areas of the world (e.g., approximately

US$8000 per plot in areas of interior Alaska (R. Koleser,

Team Leader, Alaska FIA Data Collection, personal com-

munication, 2007)) and the increasing demand for accurate

carbon and biomass stock assessment and monitoring in

these remote regions, the inventory solution will require

the innovative use of combined sources of remotely sensed

data. In addition, modified ground protocols, such as the

use of more accurate geopositioning equipment, that facil-

itate direct comparison to remotely sensed information

and enable model calibration and validation, will help to

make precise biomass assessments more cost-effective in

remote regions.
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