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Abstract

Marine protected areas (MPAs) are increasingly being used as a conservation tool for highly mobile marine vertebrates and
the focus is typically on protecting breeding areas where individuals are aggregated seasonally. Yet movements during the
non-breeding season can overlap with threats that may be equally as important to population dynamics. Thus
understanding habitat use and movements of species during the non-breeding periods is critical for conservation. Glacier
Bay National Park, Alaska, is one of the largest marine mammal protected areas in the world and has the only enforceable
protection measures for reducing disturbance to harbor seals in the United States. Yet harbor seals have declined by up to
11.5%/year from 1992 to 2009. We used satellite-linked transmitters that were attached to 37 female harbor seals to quantify
the post-breeding season migrations of seals and the amount of time that seals spent inside vs. outside of the MPA of
Glacier Bay. Harbor seals traveled extensively beyond the boundaries of the MPA of Glacier Bay during the post-breeding
season, encompassing an area (25,325 km2) significantly larger than that used by seals during the breeding season
(8,125 km2). These movements included the longest migration yet recorded for a harbor seal (3,411 km) and extended use
(up to 23 days) of pelagic areas by some seals. Although the collective utilization distribution of harbor seals during the
post-breeding season was quite expansive, there was a substantial degree of individual variability in the percentage of days
that seals spent in the MPA. Nevertheless, harbor seals demonstrated a high degree of inter-annual site fidelity (93%) to
Glacier Bay the following breeding season. Our results highlight the importance of understanding the threats that seals may
interact with outside of the boundaries of the MPA of Glacier Bay for understanding population dynamics of seals in Glacier
Bay.
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Introduction

Two common objectives for marine protected areas (MPAs) are

enhancement of commercial fisheries for sustaining or rebuilding

yield, and conservation of biodiversity [1–3]. Although the target

of biodiversity conservation is often specific habitat features or

sensitive ecosystems, increasingly MPAs are being utilized as tools

to conserve highly mobile pelagic taxa such as marine mammals,

seabirds, and turtles [4–8]. For example, the number and diversity

of MPAs designated for the conservation of marine mammals is

growing globally [9] with increasing calls for more and larger

networks of MPAs [10].

Nevertheless, MPA designation can be less than effective in

meeting conservation goals for highly mobile marine taxa for

a number of reasons. Although the timing and location of the

MPAs should correspond to the temporal and spatial distribution

of the threat, the actual designation of the MPA boundaries more

likely reflects trade-offs between sociocultural, economic, and

biological factors [11,12]. The vaquita (Phocoena sinus) provides

a good example where a clearly defined population threat such as

bycatch [13] can be mitigated with a simple MPA-based solution

by expanding existing MPA boundaries [14] but economic

constraints prevents its implementation sufficiently to meet the

conservation objectives. Additionally, MPAs may not meet species

conservation objectives because they may not correspond tempo-

rally or spatially with the most pressing threat to the population

[15]. For example, many MPAs are established to protect the

breeding aggregations of pinnipeds, sea turtles, seabirds, and

cetaceans. While important, research demonstrates that major

threats may actually occur during post breeding migrations [16] or

during dispersal of juveniles [17].

Recognizing that MPAs are a means to a conservation end,

monitoring and research for understanding threats and reducing

uncertainty into population responses is not just fundamental to
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understanding MPA effectiveness [18] but also central to

conservation efforts for all highly mobile vertebrates [19].

Glacier Bay National Park (Figure 1) is a Biosphere Reserve and

World Heritage Site, encompassing over 600,000 acres (242,811

hectares) of marine waters [20]. Although the park was not created

solely to protect marine mammals, it functionally serves as the one

of the largest marine mammal protected areas in the world [9]

with a suite of regulations intended to minimize threats to these

species and to sustain a healthy ecosystem for their conservation.

For example, regulations require large ships to reduce speed in

areas of contemporary and historically high concentrations of

endangered humpback whales (Megaptera novaeangliae) to reduce the

probability of a collision. Glacier Bay is also home to the only

enforceable regulations in United States waters aimed at

protecting harbor seals (Phoca vitulina richardii) from vessel and

human-related disturbance [21]. Spatial and temporal regulations

for vessels transiting in and near harbor seal breeding areas, and

operating regulations once in those areas, are all aimed at reducing

impacts of human visitation. Furthermore, subsistence hunting of

harbor seals has been prohibited in the park since 1974 [22] and

commercial fishing within the MPA boundaries of Glacier Bay is

being phased out [23].

By most measures the populations of marine mammals that

utilize Glacier Bay are healthy and increasing. Populations of

humpback whales using Glacier Bay and surrounding areas are

increasing by 5.1% per year [24]. Steller sea lions (Eumetopias

jubatus) have increased in the Glacier Bay region by 8.2%/year

from the 1970’s to 2009, representing the highest rate of growth

for this species in Alaska [25]. In addition a Steller sea lion rookery

and several haul outs have recently been established in the Glacier

Bay region [25,26]. Sea otters (Enhydra lutris), once hunted to

extirpation in southeastern Alaska [27] have increased exponen-

tially in Glacier Bay from just a few animals in 1995 to greater

than 2,300 in 2004 [28].

In sharp contrast, harbor seals have been rapidly declining

[29,30] despite stable or slightly increasing trends in nearby

populations [31]. A suite of recent studies suggest that (1) harbor

seals in Glacier Bay are not significantly stressed due to nutritional

constraints [32], (2) the clinical health and disease status of seals

within Glacier Bay is not different than seals from other stable or

increasing populations [33], and (3) disturbance by vessels does not

appear to be a primary factor driving the decline [34].

Collectively then, harbor seals in Glacier Bay may be one of the

most protected populations of marine mammals in the world, yet

the most recent population monitoring data suggest that the

declines have not abated or reversed [30]. Here we explore the

extent to which harbor seals may be using habitat outside the

MPA of Glacier Bay. Although evidence suggests that substantially

fewer seals occur in Glacier Bay in late-summer and autumn [35],

it is unknown if seals move beyond the boundaries of Glacier Bay,

the regions that they may travel to, and the potential threats

encountered. Thus, a first fundamental step is to identify

movement patterns and habitat use of harbor seals in relation to

the boundaries of the MPA of Glacier Bay. Our primary objectives

were to quantify the (1) spatial distribution of seals during the post-

breeding season (September2April), (2) estimate the utilization

distribution of seals relative to the boundaries of the MPA of

Glacier Bay, (3) quantify the degree of individual variability in

residency patterns of seals in Glacier Bay, and (4) and assess the

degree of inter-annual fidelity of seals back to Glacier Bay the

following breeding season (May–June).

Materials and Methods

Ethics Statement
All harbor seal capture, handling, and research was conducted

under Marine Mammal Protection Act (MMPA) permit numbers

358-1787-00 and 358-1787-01 issued to the Alaska Department of

Fish & Game and MMPA permit number 782-1676-02 issued to

the National Marine Mammal Laboratory by National Oceanic

and Atmospheric Administration (NOAA) -Protected Resources

Division. Harbor seal capture, handling, and research was also

authorized by Glacier Bay National Park under Scientific Re-

search and Collecting permit numbers GLBA-2007-SCI-0003,

GLBA-2008-SCI-0004, and associated Glacier Bay National Park

and Preserve Waivers to park regulations. Animal use protocols

used in this research were reviewed and approved by the

Institutional Animal Care and Use Committee at the State of

Alaska Department of Fish & Game (protocol 07-16).

Study Area
Glacier Bay is an estuarine fjord in southeastern Alaska that

constitutes a part of Glacier Bay National Park (Figure 1). Distinct

oceanographic and circulation patterns [36,37], as a result of rapid

and repeated advances and retreats of tidewater glaciers over the

past 225 years [38–40], have resulted in sustained levels of mixing,

high levels of primary productivity, and abundant communities of

forage fish [41,42]. Johns Hopkins Inlet (58u 50.896’ N, 2137u
6.121’ W), an expansive (12 km long 6 2.5 km wide) tidewater

glacial fjord in the upper West Arm of Glacier Bay (Figure 1), was

chosen as the capture location for seals because the inlet hosts the

largest aggregation of seals (.2,000) in Glacier Bay during the

summer months and represents one of the primary glacial ice

pupping sites for harbor seals in Alaska [29,30,43]. In Johns

Hopkins Inlet, seals rest upon glacial ice and icebergs that have

calved from two advancing tidewater glaciers, the Johns Hopkins

glacier and the Gilman glacier.

Harbor Seal Capture and Instrument Deployment
Juvenile and adult female harbor seals were captured using

monofilament nets deployed from inflatable skiffs in September of

2007 (n = 15 seals captured) and 2008 (n = 22 seals captured)

(Table 1). Following capture, seals were transported to a research

vessel (R/V Steller) where they were weighed and curvilinear body

length and axial girth were measured. Seal age was determined via

morphometrics; seals .3 years old were classified as adults, seals

#3 years of age were considered as juveniles [44].

To quantify the spatial and temporal distribution of harbor seals

from September through June, we attached satellite-linked

transmitters (Spot5, 71.5 mm6 34 mm6 26 mm, 78 g, Wildlife

Computers, Redmond, Washington, U.S.A.) to the fur on the

heads of juvenile and adult female harbor seals using Devcon 5-

minute epoxy adhesive. The instruments were only attached to

seals that had obviously completed molting. Instruments were

deployed over a 5-day period (11–15 September) in 2007 and over

a 7-day period (13–19 September) in 2008. The transmitters were

powered by two AA batteries and included a 0.5 w transmitter

with a transmission repetition rate of 45 seconds. Conductivity

switches inhibited transmissions while seals were in the water and

quantified the percent time per hour that the seal was out of water.

Instruments were shed during the annual molt which began the

following June after capture and varied depending upon the age of

the animal, with younger seals molting earlier than older seals

[45].

Post-Breeding Season Migrations of Harbor Seals
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Figure 1. Study site in Glacier Bay National Park, Alaska, United States of America. The map includes harbor seal haulout sites (black
circles), closures associated with harbor seal haulout sites (red areas), non-motorized area closures (green areas), dates of closures for each area, and
the boundary of marine protected area of Glacier Bay National Park (grey outline). Harbor seals were tagged at the glacial ice haulout site in Johns
Hopkins Inlet.
doi:10.1371/journal.pone.0055386.g001

Post-Breeding Season Migrations of Harbor Seals
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Track Analysis Using State-Space Models
Locations from each satellite-linked transmitter were estimated

by Service Argos (Collecte Localisation Satellite, CLS America,

Inc., Largo, Maryland) and downloaded. The Argos locations

were filtered with the Douglas Argos-Filter Algorithm v. 7.03 [46]

using the following parameters: spatial redundancy (5 km) and

maximum sustained rate of movement (10 km/hr).

Following filtering, hourly positions between observed locations

were predicted using a continuous-time version of the correlated

random walk model (CTCRW) [47]. The CTCRW model

incorporates a covariate for Argos location error which is

comprised of 6 location classes (Location Class 3, 2, 1, 0, A, B).

In addition, a continuously-valued covariate for the percent of

each hour spent out of the water for a seal was included in the

Table 1. Percentage (%) of grid cells (25 km2) that occurred in the 10 (highest intensity), 50, 80, and 100% (lowest intensity)
utilization distributions in the marine protected area of Glacier Bay.

Months Season
Sum of Area (km2) of all
Grid Cells in 100% UD

10% UD in
GB (%)

50% UD in
GB (%)

80% UD in
GB (%)

100% UD
in GB (%)

September–October Non-breeding 25,325 14 62 40 11

November–December Non-breeding 22,025 38 44 31 12

January–February Non-breeding 20,300 38 39 33 12

March–April Non-breeding 13,975 20 44 34 17

May–June Breeding 8,125 100 58 41 28

doi:10.1371/journal.pone.0055386.t001

Figure 2. Utilization distribution of female harbor seals (Phoca vitulina richardii) during September and October. Boundary of the
marine protected area (MPA) of Glacier Bay is shown as black line. JHI indicates tagging location in Johns Hopkins Inlet.
doi:10.1371/journal.pone.0055386.g002

Post-Breeding Season Migrations of Harbor Seals
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movement model to account for haulout behavior of seals. The

CTCRW model was fit using the Kalman-filter on a state-space

version of the continuous time stochastic movement process using

the CRAWL package [47] in R (version 13.1). The CTCRW

model resulted in an estimate of the most probable track of a seal

at hourly intervals, while accounting for Argos location error [47].

Locations that fell on land were removed to establish the final set

of locations that were used for subsequent analyses.

Utilization Distribution of Harbor Seals Relative to MPA of
Glacier Bay
Utilization distributions [48] were used to quantify space use of

seals relative to the boundary of the MPA of Glacier Bay National

Park. A utilization distribution depicts the intensity of use of an

area by an animal or a group of animals [49] and is defined as the

probability distribution of detecting an animal in given grid cell

within a specified time period [50].

The tracks for all seals were pooled to collectively estimate the

utilization distribution of seals during the post-breeding season.

Utilization distributions for seals were estimated at two-month

intervals, or five different time periods, from September through

June. The two-month time intervals groupings were based upon

similarities in the average distance moved per day per month. Grid

cells were chosen as the spatial unit of analysis as they often

perform better than other methods, such as minimum convex

polygons and kernel density estimation, for quantifying space use

of animals [51]. A grid cell size of 25 km2 was chosen to allow for

detection of individual-scale movements while also providing

relatively smooth contours between grid cells [52]. Seal locations

were spatially joined with grid cells in ArcGIS and the total

number of seal locations per grid cell was summed. The number of

seal locations per grid cell was normalized by dividing the number

of seal locations per grid cell by the total number of locations for

that time period which yielded the proportion of total locations per

grid cell for each time period. Proportions of locations per grid cell

were sorted from largest to smallest and the cumulative

proportions of locations per grid cell were determined to create

utilization distributions using custom tools in ArcGIS [52].

The utilization distribution identified the set of all grid cells

where a seal location occurred and quantified the probability of

detecting a seal in given grid cell within a specified time interval.

Grid cells included in the 100% utilization distribution represented

areas with the lowest intensity of use by seals whereas grid cells in

the 10% utilization distribution represented areas with the highest

Figure 3. Utilization distribution of female harbor seals (Phoca vitulina richardii) during November and December. Boundary of the
marine protected area (MPA) of Glacier Bay is shown as black line. JHI indicates tagging location in Johns Hopkins Inlet.
doi:10.1371/journal.pone.0055386.g003

Post-Breeding Season Migrations of Harbor Seals
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intensity of use [52]. Utilization distributions of seals for each two-

month interval were evaluated with respect to the boundaries of

the MPA of Glacier Bay (Figure 1) by estimating the percentage of

grid cells that occurred in the 10 (highest), 50, 80, and 100%

(lowest) utilization distributions that occurred in the MPA. For the

purposes of these analyses, the MPA of Glacier Bay was defined as

Glacier Bay proper or all waters inside a line drawn between Point

Gustavus (58u2.7489 N, 135u54.9279 W) and Point Carolus

(58u22.6949 N, 136u2.5359 W) as all NPS seasonal closures and

protection measures focused on harbor seals occur within these

boundaries (Figure 1). There were three grid cells that overlapped

with the boundary of the MPA of Glacier Bay between Point

Gustavus and Point Carolus. If greater than 50% of the area of the

grid cell fell inside the boundary of the MPA then the grid cell was

considered to be inside the MPA. If greater than 50% of the area

of the grid cell fell outside of the boundary of the MPA then the

grid cell was considered to be outside of MPA.

Individual Residency Periods of Harbor Seals in Glacier
Bay
The residency periods of individual harbor seals were estimated

by determining the proportion of days that a seal spent in Glacier

Bay during the post-breeding period, from September through

April, using the Douglas Argos-Filter Algorithm (v. 7.03) [46]

which selected the best location for each seal per day based on the

distance, angle, and rate to the previous and subsequent locations

[53]. Residency periods were estimated by plotting the best daily

location for each seal in ArcGIS and then assigning each daily

location to inside or outside of the MPA of Glacier Bay. The

number of days that individual seals spent inside of Glacier Bay

was summed to estimate residency periods for individual seals. We

only considered seals with complete records, which included seals

with tags that transmitted from September through April (n = 27

seals), encompassing 8 months of the post-breeding season.

Multi-response permutation procedures (MRPP), based on

a rank-transformed Sørenson distance matrix [54,55], were used

to test for differences in the percentage of days spent by seals in

Glacier Bay and the cumulative distance traveled by juvenile and

adult seals using PC-ORD [56]. The Sørenson proportional

coefficient [57] was used as the distance measure and the A test

statistic, which ranges from 0 to 1, was reported as a measure of

effect size along with the corresponding p values.

Figure 4. Utilization distribution of female harbor seals (Phoca vitulina richardii) during January and February. Boundary of the marine
protected area (MPA) of Glacier Bay is shown as black line. JHI indicates tagging location in Johns Hopkins Inlet.
doi:10.1371/journal.pone.0055386.g004

Post-Breeding Season Migrations of Harbor Seals
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Results

Transmitters remained attached to harbor seals for the majority

of the post-breeding season (September – April) providing

excellent spatial coverage of seal distribution and totaling 8,836

seal tracking days. The average deployment period for satellite-

linked transmitters was 238.8 days 683.7 (SD) (range: 37–335

days) and in some cases transmitters provided location data on

individual seals for up 11 months (September to August).

Transmitters deployed on adult females (�xx=272.4 days 680.1)

(range: 106–335 days) transmitted slightly longer on average than

those deployed on juvenile seals (�xx=224.0 days 685.4) (range:

37–328 days) likely reflecting the differences in the timing of the

annual molt as juveniles molt earlier than adults. 73% (27 of 37) of

tags transmitted through May 1st (,8 months) of the following

year after capture.

Utilization Distribution of Harbor Seals Relative to MPA of
Glacier Bay
During the post-breeding season, both juvenile and adult female

harbor seals ranged extensively both within and beyond the

boundaries of the MPA of Glacier Bay. Whereas the glacial ice

breeding area of Johns Hopkins Inlet encompasses approximately

22 km2, the area used by seals during the post-breeding season

encompassed approximately 25,000 km2 of which only 2,400 km2

was in the MPA of Glacier Bay. Once the seals exited the MPA,

they ranged extensively to regions throughout the inside and

outside waters of the northern portion of southeastern Alaska and

to areas along the continental shelf region of the eastern Gulf of

Alaska from Sitka to Prince William Sound (Figures 2, 3, 4, 5).

Some seals traveled up to 900 km away (minimum one-way

distance) from Glacier Bay to areas in and near Prince William

Sound in south-central Alaska. The areas used by seals were

primarily restricted to waters along the continental shelf with a few

exceptions (Figures 2, 3, 4, 5). Several seals also visited other

glacial fjord habitats, including Disenchantment Bay and Icy Bay

near Yakutat, during the post-breeding season.

For harbor seals whose tags transmitted from September

through April (n = 27), the average cumulative straight-line

distance traveled was 2,011 km (6698 SD) (range: 804–

3,411 km). The average cumulative distance traveled by juvenile

seals (n = 18) was 2,018 km (6501 SD) (range: 1,237–3,239 km)

and by adult females seals (n = 9) was 1,198 km (61,025 SD)

(range: 804–3,411 km). There were three seals, one juvenile and

Figure 5. Utilization distribution of female harbor seals (Phoca vitulina richardii) during March and April. Boundary of the marine
protected area (MPA) of Glacier Bay is shown as black line. JHI indicates tagging location in Johns Hopkins Inlet.
doi:10.1371/journal.pone.0055386.g005

Post-Breeding Season Migrations of Harbor Seals
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Figure 6. Percentage of tagged harbor seals in Glacier Bay National Park. The percentage of tagged harbor seals in the marine protected
area (MPA) of Glacier Bay decreased in mid- to late September in 2007 (A) and in 2008 (B). The percentage of tagged harbor seals in Glacier Bay began
to increase starting in late April and early-May in 2008 (A) and in mid-May in 2009 (B).
doi:10.1371/journal.pone.0055386.g006

Post-Breeding Season Migrations of Harbor Seals

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e55386



two adult females, whose cumulative distance traveled during the

post-breeding season exceeded 3,000 km. Differences were not

detected in the cumulative distance traveled between juvenile and

adult female seals (MRPP: A=0.04, p= 0.07).

The percentage of tagged seals inhabiting Glacier Bay de-

creased substantially in mid- to late September in 2007 (Figure 6a)

and 2008 (Figures 6b). The median date of departure of seals from

Glacier Bay was 25 September in 2007 (range: 15 Sept to 4 Nov

2007) and 19 September in 2008 (range: 14 Sept to 19 Oct 2008).

Tagged seals were largely absent from Johns Hopkins Inlet for

extended periods ranging from 27 October 2007 to 22 April 2008

(173 days or ,5.7 months) and from 6 November 2008 to 2

February 2009 (88 days or ,3 months). The percentage of tagged

seals in Glacier Bay began to increase starting in late April and

early-May in 2008 (Figure 6a) and in mid-May in 2009 (Figure 6b).

Collectively, the utilization distribution of seals was most

expansive in September and October (25,325 km2), November

and December (22,025 km2), and January and February

(20,300 km2) (Table 1) demonstrating that some seals ranged

extensively from the breeding area in Johns Hopkins Inlet to areas

far outside the MPA of Glacier Bay during the post-breeding

season (Figures 2, 3, 4). Although the utilization distribution of

seals from September through February collectively encompassed

an extensive area ranging from northern Southeast Alaska through

the eastern Gulf of Alaska and up to Prince William Sound, high-

intensity use areas were consistently concentrated in a region

spanning from mid-Glacier Bay (inside the MPA) into the adjacent

region of Icy Strait (outside of MPA) (Figures 2, 3, 4). A sizeable

fraction of the areas most heavily used by seals (the 10% utilization

distributions) occurred inside the MPA of Glacier Bay from

September through April (Table 1). High-intensity use areas that

occurred outside of Glacier Bay were found in Icy Strait, Cross

Sound, Lynn Canal, and near Dry Bay along the Yakutat

Forelands (Figures 2, 3, 4, 5).

In contrast, during the breeding season (May-June) the size of

the area used by seals (8,125 km2) was substantially reduced and

was concentrated primarily in the MPA of Glacier Bay (Figure 7),

specifically in Johns Hopkins Inlet. Areas that were used by seals

during the breeding season that were outside of Glacier Bay

included Disenchantment Bay, a known glacial ice harbor seal

pupping site near Yakutat, as well as areas in Icy Strait-Cross

Sound, Dry Bay, Lynn Canal, and Taku Inlet (Figure 7).

Figure 7. Utilization distribution of female harbor seals (Phoca vitulina richardii) during May and June (breeding season). Boundary of
the marine protected area (MPA) of Glacier Bay is shown as black line. JHI indicates tagging location in Johns Hopkins Inlet.
doi:10.1371/journal.pone.0055386.g007

Post-Breeding Season Migrations of Harbor Seals
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Individual Residency Periods of Harbor Seals in Glacier
Bay
Although the collective utilization distribution of harbor seals

during the post-breeding season was quite expansive, there was

a substantial degree of individual variability in the residency

patterns or percentage of days that seals spent in the MPA of

Glacier Bay. Some seals were more resident to Glacier Bay

spending the majority of the post-breeding season inside the MPA

whereas other seals were more migratory (Figure 8). Two seals,

both juvenile females, spent 100% of time in Glacier Bay and

several seals (6 juveniles and 1 adult) spent $75% of time in

Glacier Bay. Juvenile female seals spent on average 43% (636%

SD) of days in Glacier Bay during the non-breeding season,

significantly more than adults (19.8% 636% SD) (MRPP:

A=0.13, p = 0.005) (Figure 8).

There were several seals that exhibited more non-resident

behavior and traveled extensively to regions outside of Glacier

Bay. Eleven seals spent greater than 90% of days, and 16 seals

spent greater than 75% of days outside the MPA of Glacier Bay.

Seals that exhibited more non-resident behavior spent extended

periods of time in Icy Strait-Cross Sound (4 adults), Lynn Canal (3

juveniles), and the eastern Gulf of Alaska (2 juveniles, 2 adults). In

general, once seals arrived at a post-breeding area, they remained

primarily in the same region for the majority of the post-breeding

period.

Of particular interest were four seals that spent .70% of their

time in the eastern Gulf of Alaska along the continental shelf

between an area just north of Sitka Sound to Prince William

Sound. In the eastern Gulf of Alaska, seals were focused in

nearshore areas as well as near the margin of the continental shelf

in more pelagic habitat. One adult female seal (PV08GB21) spent

.200 days in the eastern Gulf of Alaska region. From September

till February, she made several extended forays up to 23 days in

length to a pelagic region near the continental shelf margin,

approximately 95 km from shore. From late February through

mid-May, PV08GB21 transitioned to nearshore areas and

exhibited a high degree of fidelity to the Alsek and Dangerous

rivers where eulachon (Thaleichthys pacificus), an energy-rich forage

fish, aggregates for spawning (Figure 9). Similarly, seal#
PV08GB22, also an adult female, spent .130 days in the eastern

Gulf of Alaska and made repeated visits to the Fairweather

Grounds (,170 kilometers southwest of Yakutat) near the

continental shelf margin. PV08GB22 also traveled along the

continental shelf to the Copper River Delta and Cape St. Elias just

east of Prince William Sound.

Site Fidelity of Harbor Seals to Glacier Bay
Despite extensive migration and movements of seals away from

the MPA of Glacier Bay during the post-breeding season, there

was a high degree of inter-annual site fidelity (return rate) of seals

to Glacier Bay the following pupping/breeding season (defined as

Figure 8. Percentage of days spent inside and outside of the marine protected area (MPA) of Glacier Bay National Park by harbor
seals (Phoca vitulina richardii) during the post-breeding season. There was a substantial degree of individual variability in the percentage of
days that harbor seals spent in the MPA of Glacier Bay. Some harbor seals were more resident to Glacier Bay spending the majority of the post-
breeding season inside the MPA whereas other seals were more non-resident spending extended periods of time outside of Glacier Bay.
doi:10.1371/journal.pone.0055386.g008
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May 1st). For seals with tags that transmitted through May 1st of

the year after capture (27 of 37 or 73%), 93% (16 of 18 juveniles; 9

of 9 adults) returned to Glacier Bay and 78% returned to Johns

Hopkins Inlet (14 of 18 juveniles; 7 of 9 adults) (Table 2). For those

instruments that stopped transmitting before May1st, 80% (8 of

10) were last located in Glacier Bay National Park; however, it is

unknown if the instruments stopped transmitting due to in-

strument failure, instrument loss, or seal mortality.

Discussion

Relative to most other MPAs, the size of the MPA of Glacier

Bay is extensive (2,400 km2) and seals generally stayed within the

protected area during the breeding season. In contrast, during the

post-breeding season harbor seals traveled extensively beyond the

boundaries of the Glacier Bay encompassing an area of

approximately 25,325 km2. Some harbor seals undertook rela-

tively extensive migratory movements ranging up to 900 km away

(one-way distance) to areas in Prince William Sound in south-

central Alaska and a few seals traveled cumulative distances

Figure 9. State-space modeled track for adult female harbor seal #PV08GB21. Seal #PV08GB21 spent .200 days in the eastern Gulf of
Alaska region and exhibited a high degree of fidelity to a region approximately 95 km from shore on the continental shelf from September 2008 to
February 2009. Beginning in late February, PV08GB21 transitioned to a nearshore area at the Alsek River where eulachon (Thaleichthys pacificus)
aggregate for spawning. Seal #PV08GB21 was tagged in Johns Hopkins Inlet in September of 2008.
doi:10.1371/journal.pone.0055386.g009

Table 2. Estimates of site fidelity and return rates of harbor seals (n = 37) to Glacier Bay and Johns Hopkins Inlet (JHI) the following
breeding season (defined as May 1st) after seals were captured.

Year
# of Transmitters
Deployed

# of Transmitters working
on May 1st

# of seals (%) that returned
to GLBA

# of seals (%) that returned
to JHI

Juvenile Seals 27 18(66.6%) 16(88.8%) 14 (77.7%)

Adult Seals 10 9 (90.0%) 9 (100.0%) 7 (77.7%)

All Seals 37 27(73.0%) 25 (92.6%) 21 (77.7%)

doi:10.1371/journal.pone.0055386.t002
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exceeding 3,000 km during the post-breeding season. Such

extensive post-breeding season migrations and extended use of

pelagic areas has not been previously reported for harbor seals

from glacial fjords in Alaska or elsewhere and is in contrast to

movement patterns of seals reported from most terrestrial breeding

areas [58–61].

Although seals ranged extensively beyond the MPA during the

post-breeding season there was a high degree of inter-annual

fidelity (93%) back to Glacier Bay the following breeding season

(May-June). Such a high degree of site fidelity is consistent with

genetic studies that suggest that philopatry occurs at smaller scales

in harbor seals [62,63]. The high degree of site fidelity of harbor

seals to Glacier Bay during the breeding season also supports the

recent designation of harbor seals in the Glacier Bay and Icy Strait

region as one of twelve stocks of harbor seals in Alaska [64].

Fidelity to breeding sites or philopatry is not uncommon in

pinnipeds [65–67] or harbor seals [59,68–70] and may confer

benefits such as familiarity with local conditions or reduced risk of

predation. However, such a high degree of breeding site fidelity

may also come at a cost as threats that seals may encounter during

the post-breeding season may influence the population dynamics

of seals in Glacier Bay.

Most harbor seals traveled extensively; however, there was

a substantial degree of individual variability in residency patterns

of seals in Glacier Bay. Some seals spent greater than 90% of the

post-breeding period outside of the MPA of Glacier Bay whereas

other seals remained in Glacier Bay for the entire post-breeding

season. Although the relatively high degree of intra-population

variation suggests that individual seals may employ different

strategies, it is unknown if differences in behavioral strategies of

seals may confer fitness advantages. However, populations that

exhibit variability in migratory and residency patterns can create

challenges for identifying and managing for different behavioral

ecotypes [71–72]. Ultimately it will be important to ensure that

both migratory and resident behaviors are accounted for in the

context of designing and monitoring the effectiveness of MPAs.

Although harbor seals are primarily thought to forage in more

nearshore shallow coastal areas, some seals exhibited fidelity to

more offshore regions. Use of more offshore and pelagic regions

near the continental shelf edge suggests that these habitats may be

of substantial ecological significance to harbor seals as foraging

areas (Figure 9). The presumed foraging trips (n = 5) by seal#
PV08GB21 to the pelagic region near the continental shelf-edge

were on average 14.4 days in length and ranged up to 23 days.

Such persistent use of focal regions by seals and other highly

mobile taxa can present opportunities for conservation of

important habitats [4]; however, spatial protections are currently

limited for pelagic regions and dynamic oceanographic features

that are used by highly mobile marine species [73–75].

Our study focused only on the post-breeding season migrations

of juvenile and adult female harbor seals as females are

particularly important in terms of population productivity.

However, previous studies have demonstrated that the behavior

of male harbor seals may differ from that of females. For example,

female harbor seals captured in Prince William Sound, Alaska,

typically had larger home ranges than males from September to

March [58]. In contrast, during the breeding season, male harbor

seals typically traveled greater distances than females in the Pacific

Northwest and Scotland [61,76]. Collectively, these studies

demonstrate that sex-specific differences occur and emphasize

the importance of understanding and accounting for such

differences to ensure effective conservation strategies [75].

The extensive post-breeding season distribution of seals coupled

with the high degree of breeding site fidelity to Glacier Bay

suggests that a more thorough understanding of the distribution of

seals that comprise this stock relative to human-related threats may

provide a better understanding of potential factors that may be

driving population trajectories in Glacier Bay. However, spatially

explicit data regarding human-related threats and the extent to

which seals from Glacier Bay interact with these threats are

generally lacking.

Commercial and subsistence gillnet fisheries for salmon

(Oncorhynchus spp.) occur in several areas in southeastern Alaska,

including Yakutat Bay, along the coast of the Yakutat Forelands in

the eastern Gulf of Alaska, Lynn Canal, and in the Taku Inlet-

Stephens Passage area. Many of these areas are also used by

harbor seals from Glacier Bay during the post-breeding season;

however, the extent to which harbor seals interact with gillnet

fisheries in southeastern Alaska is largely unknown. Evidence from

other regions of Alaska and from studies elsewhere suggests that

gillnet fisheries and their potential impact on pinnipeds may be

significant [77,78]. An estimated 20,867 pinnipeds were caught as

bycatch in commercial fisheries in the Pacific Ocean from 1990–

1999 and approximately 98% of bycatch of pinnipeds occurred in

gillnet fisheries [77]. Similarly, studies in Norway documented

substantial interaction between bottom-set gillnets and young-of-

year harbor seals [79,80]. Although there has been limited

observer effort associated with marine mammal and gillnet fishery

interactions in southeastern Alaska, interactions have been

observed in other regions of Alaska [81,82], suggesting that such

interactions may warrant further attention.

Another potential source of mortality is associated with the

subsistence harvest of harbor seals by Alaska Natives which is

authorized under the Marine Mammal Protection Act. Although

subsistence harvest of harbor seals has not been permitted in

Glacier Bay National Park since 1974 [22], the extensive post-

breeding season distribution of seals from Glacier Bay may expose

seals to subsistence harvest outside of the park. Harbor seals are an

important cultural and subsistence resource for Alaska Natives,

particularly in southeastern Alaska, and harvest has taken place for

many generations [83]. Harvested seals are used for meat, oil,

skins, and handicrafts as well as for an important item for trading

and cultural exchange [83–85]. Subsistence surveys and anthro-

pological studies demonstrate that harbor seals may be harvested

during all months; however, there are typically two distinct

seasonal peaks for harvest of seals which occur during spring and

in autumn/early winter [84,85]. These time periods co-occur with

the time period during which seals travel beyond the boundaries of

Glacier Bay; however, it is currently unknown whether or not

either of these potential threats may have population-level effects

on harbor seals in Glacier Bay.

This study advances our understanding of the distribution of

a pinniped of conservation concern, the harbor seal, relative to

boundaries of one of the largest MPAs in the northern hemisphere.

Our results have several implications not only for the conservation

of harbor seals in Glacier Bay and other glacial fjord habitats in

Alaska but also for evaluating and improving the design of MPAs

for other wide-ranging species, such as seabirds, cetaceans, and

other pinniped species. First, MPAs are often created in the

absence of spatially explicit data for species throughout the annual

cycle. The use of discrete areas for breeding and non-breeding

activities by highly mobile pelagic taxa highlights the challenges

and complexities associated with designing protected areas for

species that may inhabit dramatically different regions over the

course of the annual cycle [6,52,86]. Second, individuals may

exhibit a high degree of variability in residency patterns,

movements, and migratory behavior thus creating challenges for

identifying and managing for different behavioral ecotypes [71–
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72]. Finally, the high-degree of fidelity to breeding areas highlights

the importance of understanding the spatial distribution of species

of conservation concern throughout the annual cycle as threats

encountered during the post-breeding season may influence

population dynamics.

Similar to other large marine vertebrates, harbor seals are long-

loved and relatively late-reproducing species and these life history

characteristics make them particularly sensitive to late-stage or

adult mortality [87]. Although the MPA of Glacier Bay provides

special protection measures for harbor seals during the breeding

season, harbor seals have not recovered. Thus, before firm

conclusions regarding the effectiveness of the MPA for harbor seals

can be made, it will be important to identify the extent to which

harbor seals from the Glacier Bay/Icy Strait stock interact with

potential threats and how such threats may or may not impact the

population dynamics of harbor seals in Glacier Bay. Similarly,

quantifying survival and reproductive rates of seals along with

identifying the sources of age-specific mortality [88] for harbor

seals both inside and outside of the MPA would also be beneficial.

Our study highlights the challenges associated with managing

for highly mobile species that travel in and out of protected areas;

however, there are approaches that could be taken to facilitate

increased protection for these species. First, a more mechanistic

understanding of the relationship between habitat features, prey

availability, and the seasonal distribution of highly mobile species

is critical and would allow for a predictive approach that could be

used to identify features or areas (e.g., seamounts, canyons, eddies,

and fish aggregations) where highly mobile species may aggregate.

Second, a predictive model of species occurrence relative to

habitat features could be coupled with data regarding known and

potential threats to predict areas of likely interaction [75,89].

Coupling these two approaches would provide a mechanistic basis

for implementing dynamic time-area closures that could reduce

the likelihood of interaction between highly mobile species and

potential threats [73,75,90]. Finally, increasing the size of MPAs

may not necessarily result in complete protection for highly mobile

species and also may not be a feasible alternative for a variety of

reasons. However, a network of protected areas that collectively

encompasses important breeding, feeding, and migratory areas

could be a more viable approach that could result in increased

protection of highly mobile species throughout much of the annual

cycle [6,75].

Studies of this nature showcase the utility of coupling satellite

telemetry and geographic information systems as effective tools for

identifying the spatial and temporal distribution of species of

conservation concern relative to protected area boundaries

[52,73,78,89,91], which is an important first step in marine spatial

planning. Information regarding where species go and the habitats

they use is essential for designing protected areas, evaluating the

effectiveness of those protected areas, and ultimately for working

with stakeholders across jurisdictional boundaries in an attempt to

reduce or ameliorate potential anthropogenic threats for species of

conservation concern.

Acknowledgments

Numerous individuals provided essential field and logistical assistance

including G. Blundell, N. Bool, S. Conlon, R. Dziuba, J. Herreman, D.

Holcombe, J. Jansen, S. Karpovich, J. King, N. Lazzaretti, T. Ose, L.

Polasek, J. Prewitt, C. Schmale, and J. Wells. The captain (D. Foley) and

the crew of the R/V Steller provided exceptional field support. We thank J.

London for advice regarding tag programming, D. Gregovich for

assistance with programming, D. Douglas for guidance with Service Argos

and data filtering, and S. Maxwell for sharing scripts. The manuscript

benefitted greatly from constructive feedback provided by L. Ciannelli, C.

Epps, M. Horning, K. White, D. Wright, and three anonymous reviewers.

Author Contributions

Conceived and designed the experiments: JNW SMG. Performed the

experiments: JNW SMG. Analyzed the data: JNW. Contributed reagents/

materials/analysis tools: JNW SMG. Wrote the paper: JNW SMG.

References

1. Gerber LR, Botsford LW, Hastings A, Possingham HP, Gaines SD, et al. (2003)
Population models for marine reserve design: a retrospective and prospective

synthesis. Ecol Appl 13: S47–S64.

2. Lubchenco J, Palumbi SR Gaines SR, Andelman SR (2003) Plugging a hole in

the ocean: the merging science of marine reserves. Ecol Appl 13: 3–7.

3. Leslie HM (2005) A synthesis of marine conservation planning approaches.
Conserv Biol 19: 1701–1713.

4. Hooker SK, Whitehead H, Gowans S (1999) Marine protected area design and

the spatial and temporal distribution of cetaceans in a submarine canyon.
Conserv Biol 13: 592–602.

5. Hooker SK, Whitehead H, Gowans S (2002) Ecosystem consideration in

conservation planning: energy demand of foraging bottlenose whales (Hyperoodon
ampullatus) in a marine protected area. Biol Conserv 104: 51–58.

6. Hooker SK, Gerber LR (2004) Marine reserves as a tool for ecosystem-based

management: the potential importance of megafauna. BioScience 54: 27–39.

7. Notarbartolo-Di-Sciara G, Agardy T, Hyrenbach D, Scovazzi T, Van Klavern P

(2008) The Pelagos Sanctuary for Mediterranean marine mammals. Aquat
Conserv 18: 367–391.

8. Gormely AM, Slooten E, Dawson S, Barker RJ, Rayment W, et al. (2012) First

evidence that marine protected areas can work for marine mammals. J Appl
Ecol 49: 474–480.

9. Hoyt E (2011) Marine protected areas for whales, dolphins, and porpoises:

a world handbook for cetacean habitat conservation and planning. New York:
Earthscan. 464 p.

10. Ballard G, Jongsomjit G, Veloz SD, Ainley DG (2012). Coexistence of

mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross

Sea marine protected area. Biol Conserv 156: 72–82.

11. Sala E, Aburto-Oropeza O, Paredes G, Parra I, Barrera JC, et al. (2002) A
general model for designing networks of marine reserves. Science 298: 1991–

1993.

12. Roberts CM, Branch G, Bustamante RH, Castilla JC, Dugan J, et al. (2003)
Application of ecological criteria in selecting marine reserves and developing

reserve networks. Ecol Appl 13: S215–S228.

13. Rojas-Bracho L, Taylor BL (1999) Risk factors affecting the vaquita (Phocoena
sinus). Mar Mamm Sci 15: 974–989.

14. Gerrodette T, Rojas-Bracho L (2011) Estimating the success of protected areas
for the vaquita, Phocoena sinus. Mar Mamm Sci 27: E101–E125.

15. Gerber LR, Estes J, Crawford TG, Peavey LE, Read AJ (2011) Managing for

extinction? Conflicting conservation objectives in a large marine reserve.

Conserv Lett 4: 417–422.

16. Shillinger GL, Palacios DM, Bailey H, Bograd SJ, Swithenbank AM, et al.
(2008) Persistent leatherback turtle migrations present opportunities for

conservation. PLoS Biol 6(7): e171. doi:10.1371/journal.pbio.006017.

17. Peckham SH, Diaz DM, Walli A, Ruiz G, Crowder LB, et al. (2007) Small-scale
fisheries bycatch jeopardizes endangered pacific loggerhead turtles. PLoS ONE

2(10): e1041. doi:10.1371/journal.pone.0001041.

18. Botsford LW, Micheli F, Hastings A (2003) Principles for the design of marine
reserves. Ecol Appl 13: S25–S31.

19. Martin TG, Chadès I, Arcese P, Marra PP, Possingham HP, et al. (2007)

Optimal conservation of migratory species. PLoS ONE 2(8): e751. doi:10.1371/

journal.pone.0000751.

20. National Research Council (2001) Marine protected areas: Tools for sustaining
ocean ecosystems. Washington, DC: National Academy Press. 288 p.

21. Jansen JK, Boveng PL, Dahle SP, Bengtson JL (2010) Reaction of harbor seals to

cruise ships. J Wildl Manage 74: 1186–1194.

22. Catton T (1995) Land Reborn Land reborn a history of administration and
visitor use in Glacier Bay National Park and Preserve. Anchorage: National Park

Service, United States Department of the Interior. 398 p.

23. Mackovjack J (2010) Navigating troubled waters: A history of Commercial
Fishing in Glacier Bay, Alaska. Harpers Ferry: National Park Service, United

States Department of the Interior. 258 p.

24. Hendrix AN, Straley JM, Gabriele CM, Gende SM (2012) Bayesian estimation

of humpback whale (Megaptera novaeangliae) population abundance and movement
patterns in southeast Alaska. Can J Fish Aquat Sci 69: 1783–1797.

25. Mathews EA, Womble JN, Pendleton GW, Jemison LA, Maniscalco JM, et al.

(2011) Population expansion and colonization of Steller sea lions in the Glacier
Bay region of southeastern Alaska: 1970s to 2009. Mar Mamm Sci 27: 852–880.

26. Womble JN, Sigler MF, Willson MF (2009) Linking seasonal distributions with

prey availability in a central-place forager, the Steller sea lion. J Biogeogr 36:
439–451.

Post-Breeding Season Migrations of Harbor Seals

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e55386



27. Kenyon KW (1969) The sea otter in the eastern Pacific Ocean. North America

Fauna, No. 68. United States Fish and Wildlife Service. 352 p.

28. Bodkin JL, Ballachey BE, Esslinger GG, Kloecker KA, Monson DH, et al.

(2007) Perspectives on an invading predator–Sea otters in Glacier Bay. In: Piatt

JF, Gende SM, editors. Proceedings of the Fourth Glacier Bay Science

Symposium. Reston: U.S.Geological Survey Scientific Investigations Report

2007–5047. 133–136.

29. Mathews EA, Pendleton GW (2006) Declines in harbor seal (Phoca vitulina)

numbers in Glacier Bay National Park, Alaska, 1992–2002. Mar Mamm Sci 22:

170–191.

30. Womble JN, Pendleton GW, Mathews EA, Blundell GM, Bool NM, et al. (2010)

Harbor seal decline continues in the rapidly changing landscape of Glacier Bay

National Park, Alaska, 1992–2008. Mar Mamm Sci 26: 686–697.

31. Small RJ, Pendleton GW, Pitcher KW (2003) Trends in the abundance of

Alaska harbor seals, 1983–2002. Mar Mamm Sci 19: 344–362.

32. Blundell GM, Womble JN, Pendleton GW, Karpovich SW, Gende SM, et al.

(2011) Use of glacial ice and terrestrial habitats by harbor seals in Glacier Bay,

Alaska: costs and benefits. Mar Ecol Prog Ser 429: 277–290.

33. Hueffer K, Holcomb D, Ballweber LR, Gende S, Blundell GM, et al. (2011)

Serological surveillance of multiple pathogens in a declining harbor seal

population in Glacier Bay National Park and a reference site. J Wildl Dis 47:

984–988.

34. Young C (2009) Master’s Thesis: Disturbance of harbor seals by vessels in Johns

Hopkins Inlet in Glacier Bay National Park, Alaska. [M.S.] Moss Landing

Marine Laboratory, California; San Jose State University. 112 p.

35. Mathews EA, Kelly BP (1996) Extreme temporal variation in harbor seal (Phoca

vitulina richardsi) numbers in Glacier Bay, a glacial fjord in Southeast Alaska. Mar

Mamm Sci 12: 483–488.

36. Etherington LL, Hooge PN, Hooge ER, Hill DF (2007) Oceanography of

Glacier Bay, Alaska: Implications for biological patterns in a glacial fjord estuary.

Estuaries Coast 30: 927–944.

37. Hill DF, Ciavola S, Etherington L, Klaar M (2009) Estimation of freshwater

runoff into Glacier Bay, Alaska and incorporation into a tidal circulation model.

Estuar Coast Shelf Sci 82: 95–107.

38. Cooper WS (1937) The problem of Glacier Bay, Alaska: a study of glacier

variations. Geogr Rev 27: 37–62.

39. Field WO (1947) Glacier recession in Muir Inlet, Glacier Bay, Alaska. Geogr

Rev 37: 369–399.

40. Hall DK, Benson CS, Field WO (1995) Changes of Glaciers in Glacier Bay,

Alaska using ground and satellite measurements. Physical Geogr 16: 27–41.

41. Robards MD, Drew GS, Piatt JF, Anson JM, Abookire AA, et al. (2003) Ecology

of selected marine communities in Glacier Bay: zooplankton, forage fish,

seabirds and marine mammals. Anchorage: United States Geological Survey-

Alaska Science Center, Department of the Interior. 156 p.

42. Arimitsu ML, Piatt JF, Litzow MA, Abookire AA, Romano MD, et al. (2008)

Distribution and spawning dynamics of capelin (Mallotus villosus) in Glacier Bay,

Alaska: a cold water refugium. Fish Oceanogr 17: 137–146.

43. Calambokidis JB, Taylor BL, Carter SD, Steiger GH, Dawson PK, et al. (1987)

Distribution and haul-out behavior of harbor seals in Glacier Bay, Alaska.

Can J Zool 65: 1391–1396.

44. Blundell GM, Pendleton GW (2008) Estimating age of harbor seals (Phoca vitulina)

with incisor teeth and morphometrics. Mar Mamm Sci 24: 577–590.

45. Daniel RG, Jemison LA, Pendleton GW, Crowley SM (2003) Molting phenology

of harbor seals on Tugidak Island, Alaska. Mar Mamm Sci 19: 128–140.

46. Douglas DC, Weinzierl R, Davidson SC, Kays R, Wikelski M, et al. (2012)

Moderating Argos location errors in animal tracking data. Methods Ecol Evol 3:

999–1007.

47. Johnson DS, London JM, Lea M-A, Durban JW (2008) Continuous-time

correlated random walk model for animal telemetry data. Ecol 89: 1208–1215.

48. Worton BJ (1989) Kernel methods for estimating the utilization distribution in

home-range studies. Ecol 70: 164–168.

49. Kie JG, Matthiopolous J, Fieberg J, Powell RA, Cagnacci C, et al. (2010) The
home-range concept: are traditional estimators still relevant with modern

telemetry technology? Philos Trans R Soc Lond B Biol Sci 365: 2221–2231.

50. Kernohan B, Gitzen RA, Millspaugh J (2001) Analysis of Animal Space Use and

Movements. In: Millspaugh J, Marzluff J, editors. Radio Tracking and Animal

Populations. San Diego: Academic Press. 126–168.

51. Getz WM, Wilmers CC (2004) A local nearest-neighbor convex hull

construction of home ranges and utilization distributions. Ecography 27: 489–

505.

52. Maxwell SM, Breed GA, Nickel BA, Makanga-Bahouna J, Pemo-Makaya E, et

al. (2011) Using satellite tracking to optimize protection of long-lived marine

species: olive Ridley sea turtle conservation in Central Africa. PLoS ONE 6(5):

e19905. doi:10.1371/journal.pone.0019905.

53. Kenow KP, Meyer MW, Evers DC, Douglas DC, Hines JE (2002) Use of

satellite telemetry to identify Common Loon migration routes, staging areas and

wintering range. Waterbirds 25: 449–458.

54. Mielke PW, Berry KJ, Johnson ES (1976) Multiresponse permutation procedures

for a priori classifications. Communications in Statistics A5: 1409–1424.

55. Mielke PW, Berry KJ (2001) Permutation methods: A distance function

approach. Springer Series in Statistics. New York: Springer. 439 p.

56. McCune B, Mefford MJ (2006) PC-ORD Multivariate Analysis of Ecological

Data Version 5.10. Gleneden Beach: MjM Software.

57. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust
measure of ecological distance. Vegetatio 69: 57–68.

58. Lowry LF, Frost KJ, VerHoef J, DeLong RA (2001) Movements of satellite

tagged subadult and adult harbor seals in Prince William Sound, Alaska. Mar
Mamm Sci 17: 835–861.

59. Small RJ, Lowry LF, VerHoef JM, Frost KJ, DeLong RA, et al. (2005)
Differential movements by harbor seal pups in contrasting Alaska environments.

Mar Mamm Sci 21: 671–694.

60. Peterson SH, Lance MM, Jefferies SJ, Acevedo-Gutiérrez (2012) Long distance
movements and disjunct spatial use of harbor seal (Phoca vitulina) in the inland

waters of the Pacific Northwest. PloS ONE 7 (6): e39046. doi:10.1371/
journal.pone.0039046.

61. Sharples RJ, Moss SE, Patterson TA, Hammond PS (2012) Spatial variation in

foraging behaviour of a marine top predator (Phoca vitulina) determined by
a large-scale satellite tagging program. PLoS ONE 7(5): e37216. doi:10.1371/

journal.pone.0037216.

62. Goodman SJ (1998) Patterns of extensive genetic differentiation and variation

among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite

DNA polymorphisms. Mol Biol Evol 15: 104–118.

63. Westlake RL, O’Corry-Crowe (2002) Macrogeographic structure and patterns of

genetic diversity in harbor seals (Phoca vitulina) from Alaska to Japan. J Mammal
83: 1111–1126.

64. Allen BM, Angliss RP (2012) Alaska marine mammal stock assessments, 2011.

United States Department of Commerce, NOAA Tech. Memo. NMFS AFSC-
234. 288 p.

65. Lunn NJ, Boyd IJ (1991) Pupping-site fidelity of Antarctic fur seals at Bird Island,

South Georgia. J Mammal 72: 202–206.

66. Pomeroy PP, Twiss SD, Redman P (2000) Philopatry, site fidelity and local kin

associations within grey seal breeding colonies. Ethology 106: 899–919.

67. Campbell RA, Gales NJ, Lento GM, Baker CS (2008) Islands in the sea: extreme

female natal site fidelity in the Australian sea lion, Neophoca cinerea. Biol Lett 2008

4: 139–142.

68. Yochem PK, Stewart BS, DeLong RL, DeMaster DP (1987) Diel haul-out

patters and site fidelity of harbor seals (Phoca vitulina richardsi) on San Miguel
Island, California, in autumn. Mar Mamm Sci 3: 323–332.

69. Thompson PM (1989) Seasonal changes in the distribution and composition of

common seal (Phoca vitulina) haul-out groups. J Zool 217: 281–294.

70. Härkönen T, Harding KC (2001) Spatial structure of harbour seal populations

and the implications therof. Can J Zool 79: 2115–2127.

71. Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, et al. (2003) The
ecology of individuals: incidence and implications of individual specialization.

Am Nat 161: 1228.

72. Lowther AD, Harcourt RG, Hamer DJ, Goldsworthy SJ (2011) Creatures of

habit: foraging habitat fidelity of adult female Australian sea lions. Mar Ecol

Prog Ser 443: 249–263.

73. Hyrenbach KD, Forney KA, Dayton PK (2000) Marine protected areas and

ocean basin management. Aquat Conserv 10: 437–458.

74. Game ET, Grantham HS, Hobday AJ, Pressey RL, Lombard AT, et al. (2009)

Pelagic protected areas: the missing dimension in ocean conservation. Trends

Ecol Evol 24: 360–369.
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