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Abstract

Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and
biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams.
Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon
(Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia)
habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also
sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia
habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of
macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except
insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone
and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate
declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate
density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other
variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during
salmon spawning in a Southeast Alaskan stream.
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Introduction

The idea of the refuge is critically important and some argue

that it should be considered an integrating concept in ecology and

evolution [1]. This is because it encompasses a variety of

phenomena including: enemy-free space, cover, crypsis, functional

responses, factors of predator and prey behavior, competition for

resources and shelter [1]. Past investigations of macroinvertebrate

utilization of refugia in response to disturbance have largely

focused on flow [2–4], while the use of refugia in response to

salmon spawning is less well studied [5]. Macroinvertebrate

distributional changes during salmon spawning could have

important implications for the management and conservation of

benthic macroinvertebrates and the organisms that consume them,

both within streams and the adjacent riparian forests.

As anadromous and semelparous organisms, Pacific salmon

(Oncorhynchus spp.) offer annual nutrient pulses to streams when

they return to spawn and these subsidies can have ecological

effects on lotic organisms over time [6,7]. Salmon resource

subsidies have been documented to positively influence benthic

macroinvertebrates [5,8], perhaps by the provision of nutrients

and carbon that have been shown to increase during salmon runs

[9]. Stream environmental factors such as sediment size and large

wood recruitment [9–11] along with spawning disturbance

intensity [5,12] can alter the degree of marine-derived nutrient

transfer available to benthic communities.

In strong contrast to the nutrient enrichment effect, adult

salmon disturb benthic communities in spawning habitat by

redistributing substrata during redd (nest) construction [5,14].

Spawning disturbances can change the distribution, abundance

and community composition of macroinvertebrates, causing

substantial reductions in riffles where the redds are built [15–

18]. Salmon redd construction can cause disturbances locally by

displacing macroinvertebrates into drift at the excavation site due

to suction and frictional forces; and also can disturb invertebrates

downstream of the excavation site as displaced fine sediments can

abrade and fill in interstitial spaces [5].

Habitat heterogeneity in streams is important as it sustains high

biological diversity [13,19,20]. For example, riffles are often

dominated by scrapers, such as heptageniid mayflies, that feed on

benthic biofilm and collector filterers, such as simuliid dipterans,

that collect fine particulate organic matter from stream drift. Pools

however, typically sustain more shredders, such as limnephilid case
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building caddisflies, and collector gatherers, such as some genera

of Chironomidae [21]. Heterogeneity in streams can also offer

organisms refugia, which we define here as distinct non-spawning

habitats that are not normally disturbed [22,23].

Areas that are less likely to be influenced by spawners include:

pools or other slack water habitats unusable for salmon eggs [7],

stream margins which are too shallow for redd construction [2],

and the hyporheic zone which is too deep to be disturbed [5,7].

Macroinvertebrates could use such habitats as refugia, avoiding

the effects of bioturbation [14]. Organisms may inhabit refugia

temporarily during disturbances and then disperse once it has

passed [22,24,25], or they may stay within refugia after

disturbances.

We investigated the spatial and temporal variability of

macroinvertebrates in spawning and non-spawning habitats in

a stream where salmon were spawning. We hypothesized that

during spawning there would be: i) a reduction in the density,

biomass and taxonomic richness of macroinvertebrates in riffles; ii)

increased macroinvertebrate density, biomass and taxonomic

richness in pools, margins and the hyporheic zone; and iii)

increased daytime macroinvertebrate drift.

Results

The estimated density of adult salmon in our 300 m reach was

0.88 m22 during this study (2008), compared to 0.51 m22 in 2007

and 0.36 m22 in 2006 [10,11]. Chlorophyll a was not statistically

tested, but we observed a decline in pools and an increase in riffles

and margins during the salmon run (Table 1).

Macroinvertebrates in Riffles
Macroinvertebrate assemblages in riffles significantly changed

during salmon spawning. Regression analysis showed that in-

vertebrate density was negatively correlated with that of salmon

density (R2=0.84, p,0.001). A sharp decline was observed in

macroinvertebrate density and insect biomass in riffles upon the

arrival of salmon spawners (Figs. 1a, 1b). Repeated measures

analysis of variance (rmANOVA) showed that macroinvertebrate

density (p,0.001, Fig. 2a), insect biomass (p,0.001, Fig. 2b) and

taxonomic richness (p=0.009, Fig. 2c) declined in riffles during

spawning.

We observed a change in functional feeding group structure in

riffles during spawning. The density of collector-gatherers (p,0.001,

Fig. 3b), collector-filterers (p,0.001, Fig. 3c) and scrapers (p,0.001,

Fig. 3d) declined in riffles during spawning. Genus-specific changes

were also observed during spawning in riffle habitats (Fig. 4a–f). The

dominant taxa were: Chironomus (19.9% of total taxa), Sweltsa (7.6%),

Ameletus (5.6%), Baetis (5.3%), Cinygmula (5.1%) and Suwallia (3.2%).

Sweltsa density (p,0.001) was the only genus that increased in riffles

during thesalmonrun (Figs.4e).Ameletus (p=0.019),Baetis (p=0.038),

Cinygmula (p,0.001) and Suwallia (p,0.001) densities all declined,

whereas Chironomus density did not change in riffles during spawning

(Figs. 4a–f).

Macroinvertebrates in Drift
Drift density was positively correlated with salmon density

(R2=0.61, p,0.01). The density (p=0.049, Fig. 1c, Fig. 2a) and

taxonomic richness (p=0.001; Fig. 2c) of macroinvertebrates

increased in stream drift during salmon spawning. The densities of

collector-gatherers (p=0.05, Fig. 3b), collector-filterers (p=0.02,

Fig. 3c) and predators (p,0.001, Fig. 3e) increased in stream drift

during spawning. Sweltsa density (p,0.001, Fig. 4e) increased,

while all other dominant genera did not significantly change in

stream drift during spawning.

Community Structure
The NMDS ordination and MRPP revealed a significant

(p,0.001) difference in macroinvertebrate community structure

before and during the run (Fig. 5). A total of 83% of the variation

in macroinvertebrate community structure was explained by

a three axes solution: 1st axis = 36%, 2nd = 29% and 3rd = 18%

and the mean stress was 15.3. We ran separate ordinations for the

invertebrate assemblages in all habitat types before and during

spawning, and did not find a significant difference. We therefore

show the more robust ordination comparing overall before and

during salmon invertebrate communities. The dominant indicator

taxa in each habitat type before and during the salmon run are

listed in Table 2.

Macroinvertebrates in Refugia
Macroinvertebrate density in margins, pools and the hyporheic

zone were not correlated to salmon density. Within stream

margins, macroinvertebrate density, biomass and taxonomic

richness did not change (Figs. 2a–c). In pool habitats, the biomass

of insects declined (p=0.002, Fig. 2b), while invertebrate density

(Fig. 2a) and richness (Fig. 2c) did not change during spawning.

The hyporheic zone showed an increase in invertebrate density

(p=0.019, Fig. 2a) but no change in insect biomass (Fig. 2b) or

taxonomic richness (Fig. 2c) during the salmon run.

Functional feeding group structure changed in non-spawning

habitats during the salmon run. In stream margins, there was an

increase in shredder (p=0.02, Fig. 3a) and predator (p,0.001,

Fig. 3e) densities during the salmon run. In the hyporheic zone,

collector-gatherer (p=0.007, Fig. 3b) and predator (p=0.02,

Fig. 3e) densities increased. In stream margins, Baetis (p,0.001),

Cinygmula (p=0.012) and Suwallia (p,0.001) densities declined,

while Sweltsa (p,0.001) density increased during the salmon run

(Figs. 4b–e). In pools, the density of Suwallia (p,0.001) declined

and the densities of Sweltsa (p,0.001) and Chironomus (p,0.001)

Table 1. Characteristics of riffles, margins and pools in Twelve Mile Creek, Alaska.

Avg. Area (m2)
Avg. Temp.
(uC)

% Dissolved
Oxygen pH

Mean Sediment
Size
(mm)

% Canopy
Cover

Mean Chlorophyll a
(mg m22) Before
Salmon

Mean
Chlorophyll a
(mg m22) During
Salmon

Riffle 185.2 (0.25) 9.7 (0.09) 99.2 (0.54) 8.1 (0.02) 30.9 (3.03) 19 (5.79) 8.4 (1.22) 10.3 (1.15)

Margin N/A 10.8 (0.54) 97.9 (0.85) 8.1 (0.06) 21.9 (5.1) 26 (7.04) 10.1 (1.8) 10.2 (1.6)

Pool 35.5 (0.23) 9.8 (0.16) 85.3 (9.7) 7.8 (0.2) 23.8 (3.49) 69 (12.39) 14.9 (1.78) 10.3 (1.08)

Means are presented and numbers in parenthesis represent standard errors.
doi:10.1371/journal.pone.0039254.t001

Macroinvertebrate, Disturbance, Refugia, Salmon
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increased (Figs. 4d–f). In the hyporheic zone, Suwallia (p=0.004)

density declined and the density of Sweltsa (p,0.001) increased

during the run (Figs. 4d–e).

Discussion

In this study, we quantified macroinvertebrate distributional

changes in spawning (riffle) and non-spawning (pool, margin,

hyporheic) habitats during a pink salmon (Oncorhynchus gorbuscha)

spawning run. Consistent with the results of previous studies,

macroinvertebrate density, biomass and taxonomic richness

declined in riffles during the salmon run [5,11,13,26–28]. We

speculate that the precipitous decline in riffle macroinvertebrate

density and biomass was due to spawning-related activities. This

explanation is bolstered by a controlled field experiment where

we installed mesh exclosures in spawning habitat that prevented

salmon disturbance, which were compared to areas where

salmon had access. We found a greater abundance of

macroinvertebrates in exclosure plots relative to control plots

during spawning, suggesting that salmon were the causal

mechanism for the observed invertebrate decline within

spawning habitat [29].

We observed an increase in macroinvertebrate drift density,

biomass and taxonomic richness during spawning as compared to

pre-salmon related drift. This effect has been demonstrated in

several other studies [5,15,30]. The sharp increase in drift density

and biomass that occurred shortly after salmon arrival in this study

is likely due to salmon nest construction which displaced

macroinvertebrates into drift at the excavation site due to suction

and frictional forces [5]. There are other possible explanations

however, for example, macroinvertebrates in Alaska may have

prolonged drift periods in the summertime due to the long

photoperiod causing higher drift densities. Additionally, the flood

that occurred on 23 August could have accounted for the observed

increase in invertebrate drift.

In comparison to riffle habitats, the macroinvertebrate com-

munities in pool, margin and hyporheic habitats remained

relatively stable throughout the salmon run. Invertebrate density

and richness did not change in stream margins and pools, but

insect biomass declined in pools during the salmon run. We

propose that this was due to an emergence event. Insect

emergence is high in the late summertime in Alaska and in high

latitude streams in general, so it is possible that natural emergence

could explain the reduction of insect biomass in pools during the

run [30]. Overall and taxa-specific invertebrate density increased

in the hyporheic zone during spawning, these results may be

explained by invertebrates avoiding the physical disturbances from

salmon spawners, but could also be due to insect life history cycles

or food limitations in disturbed riffles causing invertebrates to

vertically migrate into the hyporheic zone to feed.

Disturbance is a central organizing factor in stream communi-

ties [31] and is fundamental to the concept of patch dynamics,

whereby the temporal and spatial variability of ecosystems are

established by disturbance impacts [32]. We demonstrate that

Figure. 1. Invertebrates in riffles and drift throughout the salmon run. Invertebrate density (a) and insect biomass (b) in riffles, and
invertebrate density (c) and insect biomass (d) in drift plotted against salmon density (right-hand axis). Note the differences in scale on the y-axis in all
figures.
doi:10.1371/journal.pone.0039254.g001

Macroinvertebrate, Disturbance, Refugia, Salmon
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invertebrate assemblages undergo spatial shifts within the stream

channel during spawning and suggest that adult salmon are the

cause of the observed invertebrate reductions in patches (riffles)

where spawning activities are greatest [15,17]. Managers can use

these data as incentive to maintain channel complexity which may

be an important factor regulating invertebrate persistence during

disturbances [11]. The concept of a refuge is important in both

basic and applied ecology, particularly as a stabilizing force during

natural and anthropogenic disturbances [1]. Certain in-stream

habitats may offer refuge to macroinvertebrates and be a funda-

mental determinant of macroinvertebrate resilience to bioturba-

tion from spawning salmon in Southeast Alaska.

Materials and Methods

Study Sites
This study was conducted within a 300 m reach of Twelve Mile

Creek (N55u482, W132u631) on Prince of Wales Island within the

Tongass National Forest, Southeast Alaska, USA (Table 1).

Catchments on Prince of Wales Island are composed of coniferous

temperate rainforest that have been managed primarily for timber

harvest. Much (68%) of the Twelve Mile Creek catchment has

been harvested for timber, mostly in the 1960’s. Dominant

riparian tree species along the stream include red alder (Alnus rubra

(Bong)), western hemlock (Tsuga heterophylla (Rafinesque)) and Sitka

spruce (Picea sitchensis (Bongard)).

Macroinvertebrate Sampling and Processing
Macroinvertebrate samples were collected as five replicates each

from riffles, pools, stream margins and hyporheic wells every

10 days from 27 June until 20 September 2008. The 10 sampling

dates included five before the salmon arrived and five during their

spawning. A flood prevented sampling on 23 August.

For riffles, pools and margins, benthic macroinvertebrates were

collected using a large PVC pipe sampler (diameter, 36 cm; area,

0.4 m2). The pipe was pushed down into the sediments (approx. 10–

14 cm) to minimize water exchange. Samples were collected by

disturbing the substratum within the pipe to a depth of about 10 cm

for 30 s. A 250 mm mesh net was then used to filter out organic

matter and invertebrates and thematerial collected was preserved in

70% ethanol. A stream ‘margin’ was defined as the periphery of the

channel with a width approximately equal to 10% the total stream

width (mean channel width 13.05 m). ‘Pools’ were defined as low-

velocity (0–0.02 m/s) areas caused by large wood debris or boulders,

that were connected to the main channel at base flow, were not too

deep (,0.65 m) and were adjacent to spawning habitats.

Hyporheic macroinvertebrates were collected using 0.6 m long

PVC hyporheic wells installed 30 cm into the sediment at random

within each riffle (1 well per riffle, 5 wells total). All wells were

capped to avoid surface and water column invertebrates from

intruding. The bottom 0.15 m of the wells had 30 holes (8 mm

diameter) drilled into the sides to allow invertebrates to be

withdrawn from a larger volume of water surrounding the bottom

of the wells [33]. A bilge pump was used to pump 2 L of hyporheic

water per well, which was then filtered through a 250 mm sieve

and preserved in 70% ethanol.

Three drift nets (mesh, 250 mm) evenly spaced across the

channel and 3 cm above the bed [33] were used to collect

macroinvertebrate drift for 30 min. Mean current velocity (at

beginning and end of 30 min) and water depth were measured and

the volume of water filtered was estimated. Drifting material was

preserved in 70% ethanol. As behavioral drift is greatest at dawn

and dusk [34], drift was taken at noon to collect organisms

principally dislodged due to spawning activities. Insects were

identified to species or genus, non-insects to family or order and

functional group designation based on Merritt et al. [21]. The

lengths (nearest 0.5 mm) of insects were measured to allow

estimation of biomass based on INVERTCALC, using length-

weight regressions [35].

Salmon
Summer runs in Twelve Mile Creek were dominated by pink

(Oncorhynchus gorbuscha (Walbaum)) salmon, with chum salmon

(O. keta (Walbaum)) being the next dominate salmon species present

during the study. Resident juvenile coho salmon (O. kisutch

(Walbaum)), Dolly Varden char (Salvelinus malma (Walbaum)) and

sculpin (Cottus spp.) were also present. All live pink and chum salmon

Figure. 2. Invertebrates in all habitats before and during
spawning. Invertebrate density (a), insect biomass (b) and taxonomic
richness (c) before (dark grey bars) and during (white bars) the salmon
run in riffles, pools, margins, the hyporheic zone, and drift. Graphs
shows +/21 s.e. and * means p,0.05.
doi:10.1371/journal.pone.0039254.g002

Macroinvertebrate, Disturbance, Refugia, Salmon
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were quantified in 4 meter wide belt transects perpendicular to

stream flow every 10 m for the entire 300 m reach. These counts

were then scaled up to estimate the total number of salmonpresent in

the 300 m stream reach on each date. Salmon were counted

approximately twice weekly from the start of the spawning run on 5

August until only carcasses remained in the stream. Live salmon

density increased from the start of the run throughout most of the

summer and began to decline about 2 weeks before our last

sampling date on 24 September 2008.

Habitat Characteristics
In each habitat, we measured pH, % dissolved oxygen and

specific conductivity using a Hydrolab MS 5 Mini Sonde (HACH

Environmental, Loveland, Colarado, USA). Habitat area was

measured with an electronic distance measurer (EDM), % canopy

cover using a spherical densiometer, sediment size using a Went-

worth scale gravelometer and water velocity and depth using

a digital flow meter [33], each three times throughout the study.

Additionally, we estimated benthic algal biomass (as chlorophyll a)

by randomly selecting five cobbles which were immediately

transported in a cooler to the laboratory and processed within

6 hours. The cobbles were scrubbed across their entire surface

onto pre-ashed glass filters (0.7 mm) type A/E (Pall Corporation,

Ann Arbor, Michigan, USA) and then analyzed with a Trilogy

Turner Design Fluorometer (Turner Designs, Inc., Sunnyvale,

California, USA). Surface area of the cobbles was estimated by

measuring length, width and depth and assuming an ellipse. The

chlorophyll a per unit area was then pooled across the five cobbles

to obtain a mean.

Figure. 3. Functional feeding group differences before and during spawning. Shredder (a), Collector-gatherer (b), Collector-filterer (c),
Scraper (d), and Predator (e) densities before (dark grey bars) and during (white bars) the salmon run in riffles, pools, margins, the hyporheic zone,
and drift. Graphs shows +/21 s.e. and * means p,0.05.
doi:10.1371/journal.pone.0039254.g003

Macroinvertebrate, Disturbance, Refugia, Salmon
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No specific permits were required for the described field of

studies. The study location is not privately-owned or protected in

any way and the field studies did not involve endangered or

protected species.

Statistical Analysis
Linear regression was performed to analyze whether salmon

density influenced macroinvertebrate density in the different

habitat types and in the drift. The density and biomass of

invertebrates in riffles and in the drift were plotted over the course

of the salmon run to determine how invertebrates responded to

salmon in different habitats and the drift. The densities of the six

dominant genera: Chironomus (Diptera: Chironomidae), Sweltsa

(Plecoptera: Chloroperlidae), Ameletus (Ephemeroptera: Ameleti-

dae), Baetis (Ephemeroptera: Baetidae), Cinygmula (Ephemeroptera:

Heptageniidae) and Suwallia (Plecoptera: Chloroperlidae), were

also plotted over the course of the sampling period to determine

how specific taxa responded to spawning salmon.

Figure. 4. Genus-level differences throughout the salmon run. Densities of the six dominant taxa: Ameletus (a), Baetis (b), Cinygmula (c),
Suwallia (d) Sweltsa (e) and Chironomus (f) throughout the salmon run in riffles, pools, margins, the hyporheic zone and drift.
doi:10.1371/journal.pone.0039254.g004

Macroinvertebrate, Disturbance, Refugia, Salmon
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Repeated measures analysis of variance (rmANOVA) was

performed with a Bonferroni correction to determine whether

salmon presence (before and during) altered macroinvertebrate

abundance and taxonomic composition. The two main effects

were presence of salmon and habitat, where salmon was treated as

the repeated factor and the replicates of each habitat were treated

as random effects. A compound symmetric covariance structure

was specified using SAS (Version 11; SAS Institute, Cary, North

Carolina, USA). Macroinvertebrate response variables were total

density, total biomass, taxonomic richness, the densities of

shredders, collector-gatherers, collector-filterers, scrapers and

predators, and the densities of the six dominant genera. Violations

of the assumptions of ANOVA were corrected by transforming the

data (logarithmic or exponential, as appropriate). Results were

considered significant when a ,0.05.

A Non-Metric Multi-Dimensional Scaling (NMDS) ordination

was carried out to evaluate differences in macroinvertebrate

community structure among the different habitats, and in the drift,

before and during the salmon run [36] using PC ORD (version 5;

MJM software, Gleneden Beach, Oregon, USA). We ran a total of

250 iterations for the real data with a random seed start. A multiple

response permutation procedure (MRPP), using Sørensen distances,

was performed to test for significant differences in community

structure among habitat types before and during the salmon run.

When significant differences were found in macroinvertebrate

community structure, Indicator Species Analysis (ISA) was used to

determine which taxa were significant indicators of the communities

in the different habitat types. Taxawere considered significant in the

ISAwhen indicator values (%of perfect indication) were.55%with

p,0.001.All aquatic insect taxa that represented.3%of all samples

were used in the ordination procedures.
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