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Foreword

Increasing awareness of groundwater enrichment with agricultural chemicals, specifi-
cally nitrates, herbicides and pesticides, has led to proposals for restoration of water quality.
Many of the proposed strategies involve the use of microorganisms to transform harmful
chemicals to a less harmful form. One such process is the removal of nitrates by denitri-
fication. This is the microbially mediated process of converting NO 3 to the gases N20
and/or N2. After oxygen depletion the reduction of nitrate to nitrous oxide or elemen-
tal nitrogen is a metabolic process used by a wide variety of bacteria as an alternative
to aerobic respiration. The proposed remediation strategy seeks to use existing popula-
tions of microorganisms for enhanced denitrification by injecting a carbon source into the
aquifer. The technologies are being evaluated in laboratory scale models of aquifers. This
report presents a mathematical model that describes the transport and fate processes in
the laboratory models. The model provides a basis for extrapolation of laboratory find-
ings. Further developments will add microbiological processes to the physical and chemical
processes addressed in this report.
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Transport and Fate of Water and Chemicals in
Laboratory Scale, Single Layer Acquifers

Volume I. Mathematical Model

Abstract

A two-dimensional mathematical model for simulating the transport and fate of or-
ganic chemicals in a laboratory scale, single layer aquifer is presented. The aquifer is
assumed to be homogeneous and isotropic with respect to its fluid flow properties. The
physical model has open inlet and outlet ends and is bounded by impermeable walls on all
sides with fully penetrating injection and/or extraction wells. The inlet and outlet ends
have user-prescribed hydraulic pressure fields. The hydraulic pressure field, in the steady
state, as a function of the space coordinates in the horizontal plane, is estimated first by
using the classical two-dimensional Darcy flow law and the continuity equation, with the
time partial derivatives being set to zero. The x and y components of the Darcy velocity
are estimated by using Darcy's law. The chemical transport and fate equation is then
solved in terms of user-stipulated initial and boundary conditions. The model accounts for
the major physical processes of dispersion and advection, and also can account for linear
equilibrium (Freundlich) sorption, five first-order loss processes, including microbial degra-
dation, irreversible sorption and/or dissolution into the organic phase, radioactive decay,
metabolism in the sorbed state, and radioactive decay in the sorbed state. The chemical
may be released internally via distributed leaks, sources that do not perturb the flow field,
or from fully penetrating injection wells. Chemical compound may also enter at the inlet
boundary. Chemical mass balance type inlet and outlet boundary conditions are used.
The solution to the field equation for hydraulic pressure is approximated by the classical
space-centered finite difference method using a modified alternating direction, iterative
implicit, procedure adapted from the classical Peaceman-Rachford concept. A solution to
the transport and fate equation is approximated with a forward in time Euler-Lagrange
time integrator applied to the chemical transport and fate semi-discretization.



Chapter 1

Introduction

Aquifer pollution is an emerging and rapidly growing problem in the United States
(Pye et al. , 1983). Groundwater contamination is insidious because measurements of the
problem have only recently been made on a consistent basis. As the data base increases,
the pollution problem continues to increase.

Pollution can result from catastrophic events such as spills of toxic or otherwise
hazardous compounds. Other important point sources include leaking storage facilities
(Barcelona and Naymik, 1984; Thomas et al. , 1987) and waste product disposal (Canter
and Knox, 1985). A growing concern in many areas is the effect of agricultural practices
on groundwater quality (Fairchild, 1987). This form of contamination, generally described
as nonpoint source pollution, is a cumulative effect both across a land area and in time.
Nitrate contamination of groundwater is an example of agricultural pollution. The problem
is increasing (Fairchild, 1987) and, partly because the source of pollutant is poorly defined,
it is likely to continue to grow.

Methods to decrease aquifer nitrate levels include decreasing or eliminating the pol-
lutant source (Canter and Knox, 1985; Fairchild, 1987). This approach is reasonable since
loss of nitrate from agricultural systems constitutes an economic loss to producers. This
quantitative factor and the more qualitative factor of decreasing environmental pollution
have direct benefits to society. A second, more expensive method to improve groundwater
quality is to remove the pollutant from the groundwater.

A variety of methods have been used to restore the quality of groundwater. The two
major categories are physical containment and chemical and/or biological treatment (Lehr
and Nielsen, 1982). Physical methods, including placement of barriers or hydrodynamic
control by pumping, have been used with some success but are most effective when used to
isolate point sources of pollution. Removal of the pollutant from the groundwater is a more
reasonable strategy for pollutants contributed by nonpoint sources or by widely distributed
sources. Chemical and biological methods are commonly used in situations where water
is pumped out, treated, and used (e.g. van der Hoek and Klapwijk, 1987). This class of
methods is used extensively for drinking water supplies where the end product is important
enough to justify the expense.
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A significant advantage of chemical and biological methods is the possibility of in situ
aquifer restoration. A number of chemical techniques have been used in situ (Brown et
al. , 1985) and there is considerable interest in the rapidly growing field of biorestoration
(Alexander, 1980; Lehr and Nielsen, 1982; Brown et al. , 1985). The challenge of in situ
methods is maintaining appropriate conditions in the aquifer itself. For biorestoration, the
important factors affecting rate and efficiency of contaminant degradation are 1) presence
of microbes suitable for degrading the pollutants; 2) energy sources and electron acceptors
to sustain adequate microbial growth; 3) distribution of pollutant, substrate, and organisms
in the aquifer; and 4) flow properties of the aquifer, including well locations and flow rates.

A number of studies have demonstrated that there is microbial activity in aquifers
(Wilson et al. , 1983; Balkwill and Ghiorse, 1985; White et al. , 1985). Such organisms
are generally considered to be substrate limited, particularly in anaerobic environments
(Beeman and Suflita, 1987). In fact, pollutants have probably stimulated microbial activity
by increasing substrate concentrations (Wilson et al. , 1983). Biological denitrification has
been observed in aquifers (Lowrance, 1987) and in saturated sediments (Dodds and Jones,
1987). Findings from low-temperature environments indicate that denitrifiers can function
under normal aquifer conditions. There are also limited data that suggest that carbon
substrate additions may increase nitrate utilization (Obenhuber et al. , 1987).

Several studies provide evidence that biorestoration processes occur in aquifers. The
evidence is clear for degradation of hydrocarbons in aerobic aquifer environments (Borden
et al. , 1986; Brown et al. , 1985) where microbial counts, oxygen consumption, and
hydrocarbon loss all increase. Denitrification has been observed in aquifers (Lowrance,
1987), artificial aquifers (Betz et al. , 1983), and in microcosms constructed of aquifer
materials (Obenhuber et al., 1987). In addition, biological denitrification is commonly
observed in reactors designed to treat groundwater after it has been pumped to a surface
treatment site (van der Hoek and Klapwijk, 1987).

The experiments listed above indicate the potential for aquifer restoration by bio-
logical denitrification. The utility of biorestoration methods depends on establishing the
proper conditions for microbial population growth. In addition, field-scale restoration de-
pends on the distribution of microbes, substrate, and nitrate. The limiting factor among
these is usually substrate concentration. Therefore, effective biorestoration methods re-
quire injection of a carbon source (Lehr and Nielsen, 1982; Brown et al. , 1985).

Aquifer injection and plume movement have been studied extensively, particularly
using solute transport models. Naymik (1987) provides a good review of the literature
and important issues. Models have been useful for developing an understanding of basic
processes affecting solute distribution in aquifers but are generally not precise enough to
predict field situations reliably (Naymik, 1987). Other reports are by Beccari et al. , 1983;
Bodvarsson, 1984; Gorelick et al. , 1984; Kissel et al. , 1984.

The common failing of models for field situations is the treatment of dispersion (De-
vary and McKeon, 1986; Molz et al. , 1983; Pickens and Grisak, 1981; Smith and Schwartz,
1981). If inadequate data are available to characterize aquifer hydraulic conductivity, the
dispersion coefficient must be increased to include the apparent dispersion caused by vari-
ation in aquifer material properties. This results in a scale-dependent dispersion coefficient
based on the specific properties of the flow system under investigation rather than the
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properties of the porous medium. Predictions of substrate spreading are only as good as

the theoretical understanding and the field data that are available. This includes under-
standing dispersion and availability of hydraulic conductivity coefficients applicable to field
situations. Understanding of the flow field at an aquifer restoration site is critical because
methods for spreading added constituents through the aquifer depend on reliable predic-
tion of the effects of injection rate and concentration, injection pulsing, and pumping from
adjacent wells.

If biological denitrification is to be used as an effective technique for restoration, a
fundamental understanding of the transport and fate processes is required. In addition,
knowledge about the important limiting factors or limiting system properties must be
acquired. Therefore, the immediate objective was to develop a conceptual model and
computer code to describe substrate injection into an aquifer and to use the model in a
sensitivity fashion to assess the magnitude of the physical and biological factors controlling
aquifer denitrification processes and identify those which can be manipulated to enhance
the process.

The mathematical model addresses aquifer fluid transport phenomena, including in-
jection and withdrawal wells. Solute movement includes advection, dispersion, molecular
diffusion and both chemical and biological reactions in the aquifer. The mathematical mod-
eling effort presented here is part of an ongoing aquifer restoration study being conducted
by the Environmental Protection Agency in cooperation with Oregon State University
(R. S. Kerr Environmental Research Laboratory, of the USEPA, Ada, Oklahoma). One
of the long-term goals of this study is development of a mathematical model of aquifer
denitrification processes by stimulation of microbial populations.
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Chapter 2

Statement of the Problem

Two large-scale (4 ft wide, 4 ft high, 16 ft long), three-layer physical aquifers were
constructed at the USEPA Robert S. Kerr Environmental Research Laboratory in Ada,
Oklahoma. These are to be used for experimental evaluation of proposed remediation
scenarios (Fig. 2.1). These two aquifers, each containing three horizontal layers of mate-
rial, with each layer assumed to be homogenous and isotropic with respect to water flow,
can be used for validation of mathematical models that simulate hydrodynamic pressure
distribution (Yates, 1988a,b), the transport and fate of chemicals, and evaluation of the
growth characteristics of indigenous microbial populations. Basic transport, fate, growth,
and decay process laws are used as building blocks for the mathematical model.

The mathematical model, reported here, is part of an evolutinary process in modeling,
with the long-term goal of describing the transport and fate of chemicals in the full three-
dimensional, laboratory-scale physical aquifers, described above. An immediate objective
was to construct a two–dimensional, horizontal, water and chemical transport and fate
model. The model was developed for a situation which consists of a single layer representing
the aquifer portion of the three soil layers making up the RSKERL aquifers. Smaller–scale
mathematical models based on the same fundamental physical, chemical, and biological
process laws, believed to be operating in the larger aquifers, can and should also be tested
or validated first against simpler laboratory–scale physical aquifers, composed of the same
porous media. These smaller aquifers can be either destructively sampled or sampled
repetitively in continuous time. The RSKERL models are made with homogeneous and
isotropic soil slabs, have impermeable (no flow) side walls, and an impermeable bottom
boundary. The top boundary is assumed to be a "no-flow" boundary also. Hydraulic heads
at inlet and exit boundaries are prescribed. Injection and extraction wells are present.
This model should make it possible to validate most of the large number of the individual
transport and fate process laws, which will eventually be synthesized into the full three–
dimensional model structure. The important features of this particular model are:
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Figure 2.1: Schematic diagram of laboratory models used for the studies of acquifer restora-

tion at Robert S. Kerr Environmental Research Laboratory.
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1. Two-dimensional horizontal steady state fluid flow field defined by a hydraulic head
field which is dependent upon appropriate Dirichlet and Neumann boundary condi-
tions;

2. Two-dimensional transport and fate of chemicals in the aquifer. The distribution of
chemicals is affected by:

(a) advection and dispersion in longitudinal and transverse directions;

(b) linear equilibrium (Freundlich) adsorption/desorption processes on each of the
porous medium fractions;

(c) five different first-order loss processes, including

i. either metabolism by soil microbes or chemical reaction with other soil
components in the free phase,

ii. radioactive decay in the free phase,
iii. other irreversible processes in the free phase,
iv. either metabolism or chemical reaction in the sorbed phase, and
v. radioactive decay in the sorbed phase;

(d) the presence of zero order sources of chemical;

(e) appropriate Dirichlet and Neumann boundary conditions with a provision for
nonzero initial distribution of the chemical; and

(f) the presence of fully penetrating injection and/or extraction wells.

A complete listing of the mathematical symbols, their meaning and units used in the
model is given on the following pages.

Nomenclature and Notations Used for the Model
Fluid Flow Field

Symbol Description
	

Units

q	 Darcy velocity vector	 m/day
qz	x-component of Darcy velocity 	 m/day

qy	 y-component of Darcy velocity	 m/clay

U	 average intervoid velocity 	 (m/day)

U x	 x-component of average intervoid velocity 	 (m/day)

U y	 y-component of average intervoid velocity	 (m/day)

K8	 saturated hydraulic conductivity 	 (m/day)

H	 hydraulic head field 	 (m water)

Him	 hydraulic head field at y = 0	 (m water)

1 I out	 hydraulic head field at y = Ly	 (m water)
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Nomenclature and Notations Used for the Model
Fluid Flow Field

Symbol Description Units

Ny

A

b

aii

transverse spatial component

longitudinal spatial component

volume porosity of porous medium

density of water

injection well mass density rate

extraction well mass density rate

"del" or nabla vector operator

transverse width of aquifer

longitudinal length of aquifer

Laplace operator

{(x, y) in R2 I (0 < x < Ls ) x (0 < y < Ly)}

Number of subintervals into which the interval
[0, Lx] is partitioned.

There are Nx –1 internal nodes on the trans-
verse coordinate and Nx +1 total nodes along
this same coordinate.
Number of subintervals into which the interval
[0, Ls] is partitioned.

There are Ny –1 internal nodes on the trans-
verse coordinate and Ny + 1 total nodes along
this same coordinate.
a real symmetric positive definite (Nx – 1) •
(Ny – 1) by (Nx – 1). (Ny – 1) array used for
computing H

vector of boundary data in the hydraulic head
field
ijih correction factor used for correcting the
area estimate for adjacent injection and/or
pumping wells

x

y

Pw

Q inj

Qout

V

Lx

Ly
v2

V

Arx

(m)

(m)

(m3im3)

(k9/m3)
( kg water)

m3 —day )

( kg water)
m3 —day )

(1/m)

(m)

(m)
(1/m2)

none

(1/m—day)

(1/day)
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Nomenclature and Notations Used for the Model
Chemical Transport and Fate Field

Symbol Description Units

Dz.=

Dys,

Dxy

atort

DL0

adispx

adispy

'Uzi

Wyl

R

Amet

Airr

Arad

Afnet

A;ad

p%/sand

%sat

%org

Psand

Psiit

Porg

x-component of dispersion

y-component of dispersion

cross-component of dispersion

tortuosity factor (0.67 usually)

free-solution molecular diffusion coefficient of
compound

x-component of dispersivity

y-component of dispersivity

magnitude of x-component of velocity field

magnitude of y-component of velocity field

retention parameter

elapsed time in days from commencing injec-
tion and/or pumping of chemical field

total first-order free-phase loss rate constant
due to microbial action
total first-order free-phase loss rate constant
of all irreversible loss processes, e.g. chemical
reactions
total first-order free-phase loss rate constant
for radioactive decay

total first-order sorbed-phase loss rate con-
stant of all microbial action
total first-order sorbed-phase loss rate con-
stant for radioactive decay

decimal percent sand in porous medium

decimal percent silt in porous medium (in-
cludes clay fraction)

decimal percent organics in porous medium

average particle density of quartz sand

average particle density of silt (including clay)

average particle density of organics

(m2/day)

(m2/day)

(m2/day)

(dimensionless)

(m2/day)

(m)
(m)

(m/day)

(m/day)

(dimensionless)

(days)

(1/day)

(1/day)

(1/day)

(1/day)

(1/day)

(dimensionless)

(dimensionless)

(dimensionless)

(kg I m3)

(k9/m3)

(k9/m3)
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Nomenclature and Notations Used for the Model
Chemical Transport and Fate Field

Symbol Description Units

linear equilibrium Freundlich constant for
sand
linear equilibrium Freundlich constant for silt

linear equilibrium Freundlich constant for or-
ganics

free-phase chemical concentration distribu-
tion (field)

linear equilibrium sorbed-phase chemical con-
centration distribution (field)

chemical source rate density for buried sources

chemical concentration in inlet end mixing
tank
chemical concentration in outlet end mixing
tank

injection well chemical concentration

time increment t	 = to St_n

average dispersion coefficient in the inlet tank

average dispersion coefficient in the outlet
tank
longitudinal axis distance from the plane y =
0 to the center of the inlet-end mixing tank

longitudinal axis distance from the plane y =
Ly to the center of the exit-end mixing tank

inlet tank average axial velocity

exit tank average axial velocity

vertical thickness of the aquifer

length of the inlet end mixing tank

length of the exit end mixing tank

transverse coordinate width of aquifer

longitudinal coordinate length of aquifer

(m3/kg sand)

(m3/kg silt)

(m3/kg organics)

(kg1m3)

(kg1m3)

k q chem)
m3–day

(kg1m3)

(kg1m3)

(  kg chem 

kg solution
(days)

(m2/day)

(m2/day)

(m)

(m)

(m/day)

(m/day)

(m)

(m)

(m)

(m)

(m)

'sand

'silt
Kong

C

S

Q SO

Cin

Cout

C,

at

Dein

Dc.ut

Lyin

LYout

yin

Vout

Low

Lin

Lout

Lz

Ly
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Chapter 3

Fluid Flow Field

3.1 Statement of the Problem

Figure 3.1 shows a schematic diagram of the smaller single layer aquifer physical model
in the RSKERL laboratory. Water flows into and out from the soil via open ends and can
be extracted or injected through fully penetrating injection and/or extraction wells. The
transverse coordinate is x (meters) and the longitudinal coordinate is y (meters). The third
coordinate z (meters) measures aquifer thickness. The porous medium is homogeneous
and isotropic and has impervious walls on the sides and bottom. The upper boundary is
assumed to be a zero flux boundary as well. These conditions allow evaluation of two-
dimensional transport and fate.

The assumptions concerning the fluid flow field are:

1. The fluid flow field operates at steady state conditions at all times;

2. Any fluid flow perturbations introduced at either of the flow boundaries propagate ex-
tremely rapidly throughout the flow field, thus a new steady state is achieved rapidly
and the fluid storativity term in the fluid flow model may be neglected (Bodvarsson,
1984);

3. The aquifer material is homogeneous and isotropic;

4. Dirichlet boundary conditions hold at both the inlet and outlet ends; Hin, (m) and
Hoist (m), respectively, are specified and assumed to extend across, 0 < x < Lx;

5. Neumann or flux type boundary conditions are specified along the walls, i.e. the
x 0 and x = Lx planes;

6. The Darcy fluid velocity 'field components of the flow vector q (ml day) are defined
by

	

OH	 OH

	

q=(EUx, €14)= (—KB 797 ,	 w) (3.1)
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Figure 3.1: Schematic diagram of the physical model used for preliminary studies of trans-
port and fate problems. The mathematical model is based on the physical structure shown
here.

where K, is the saturated hydraulic conductivity (mIday) in the aquifer and H is
the hydraulic head (m).

Combining equation (3.1) with the steady state continuity equation for a representative
elementary volume (REV) in the aquifer obtains

	

V • (p., E y) = (Qin.; — (2 out)

	
(3.2)

where p,„ is the density of water (kg/m3), Qini is the fluid mass injection rate (kg/m3 —
day), and Qout is the fluid mass extraction rate (kg/m3 — day).

Substitution for U in equation (3.2) leads to the well known Poisson problem in
potential field theory:

(o (—Ks E) + a (—ICs t)  ) — pw (0(c Uz ) + e(€ Uy))
Ptv ex	 ay	 ex	 ay i

= +(Qin; — Q,,,,t) , 	 (3.3)

where c is the volumetric or area pore space (m3 voids/m3 soil).

Boundary conditions, to be satisfied at all times, are written according to assump-
tions 4 and 5 as follows:
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

00 co

+ E E onmcos(—nrx)
n=0 m=1	 Ls (

miry)
Ly

sin (3.9)

1. along y = 0 (inlet end),

H(x, 0) = Hin(x), 0 < x < Lx ,

2. along y = Ly (outlet end),

11(x , Ly) = Hout(s), 0 <x <

3. along x = 0,

OH =0

Ox

4. along x = Lx,

OH
= 0 .

As K, is.a constant for the physical model, equation (3.3) simplifies to

02H 02 H (Qin; — Qout) +	 =Ox2	0y2	 p,„

on (0 < X < Lx) x (0 < y < Ly).

The unique solution of equation (3.8) subject to the above stated boundary conditions
is

11(x, y) = Hin +
Hout /1171 

Ly	Y

ex

where

m = 1,2,3...	 (3.10)

n = 1,2,3 ..., m = 1,2,3... 	 (3.11)

and

2	 [Ls fLY
om = 

L L 	 (Qini(Co) — Qout(C,n))y 

sin 
M71 17)

sm — drick ,	 m = 1, 2, 3 .. .
Ly

(3.12)

L yL 2 aorn
ficon = Ks p„, 7r 2 rn2

nm
finm —

Kepw (Pit_ + 71242 ) 7
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OH
= (Ws) =	 = +K,	 E

n=0 n= 1

00 00 inr\

Tj

anm = L: L. 1:1 foLY (Qini(C,n) - Qout(Co))

sin ( 17=1 ) cos ( 7-irC ) dnd( .
L	 Ls

Equation (3.1) yields the Darcian velocity components

(3.13)

, nrx)	 miry
Onm (— sin

Ls	 LY
(3.14)

OH
qy = (cUy )	 -K8 = +K. Hin How)

Ly

(3.15)

These components are needed in the chemical transport and fate equation. It is possible to
show, for a broad range of bounded and measurable Qini and Qout functions, that solutions
to equations (3.14) and (3.15) exist, i.e. the double sums converge. However, the solutions
are usually very slow to convergence. Thousands, if not millions, of terms are necessary
to achieve the required number of significant digits in each velocity component. Thus,
the hydraulic head field on D, the interior of the long thin box, can be approximated via
finite-difference, space centered methods.

3.2 Approximation to the Fluid Flow Equations

Figure 3.2 shows a local region of D on which a lattice of nodal points has been
superimposed. D is the set of all (x, y) E R2 such that {[0 < x < Ls] x [0 < y < Lu]}, with
nonhomogeneous nodal spacing in both coordinates.

Integrate both sides of equation (3.3) over the rectangular subregion Dij where

Dij = {(x, y) in R2 1 x in [xj....1 Axi-1 ,	 + A2 `
J
 and

2	 2

y in [yi_ i 	 	 ,	 + 	 (3.16)

For notational purposes define the points y i-1/2 = yj- 1 + AYi-1/2, Ya +1 /2 = yj AY j/2,
and so forth, and similarly for the x coordinate so that,

00	 00
-K8 E E ( 

y

r-)
Ln=0 m=1

nrry)
(--

a	 nrx)
pnm cos ( 

z
—
L

cos
Ly

fyi+,,2 r+i,2	 (002H2 02H)

X8-1/2
	 02

=—lbw 
J 

J(Qinj - Qout)dxdy
Dij

dxdy

(3.17)

13



Y

Yj

Y j +1

Ay,„
NNil

2

•
Ay.'

N

L2

Axi., Axi
2 2

X 14

Figure 3.2: Local interior region of lattice points showing subregion Vii.
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fY

ilj+1/2
(Ks —OH 1	 -Ks OH

ex	 exx i41/2j-1/2 xi_112 dy

Hi+i(x)- Hj(x) +03(6,4)OH

8Y 1 1/j+1/2

(3.21)

Carrying out the indicated integrations yields

j:11:122 (Ks	-	 °HI	 )dx
ex l Yj-1/2- Yi-F1/2

= -Pw I IDij
(Qinj - Qout )dxdy	 (3.18)

Approximating the four indicated partial derivatives via the 2nd order correct ap-
proximations,

OH Hi-Fi (Y) - Hi(Y) + 01(6,4)
Ox Li+i/2 =	 Axi

OH'	 Hi(y) — Hi-1(y) 02(64.1)
ex Izi_i/2

(3.19)

(3.20)

OH I 	 Hi(x)- Hj-1(x) 
04(64-1)

ay
(3.22)

gives

	

fkii-1/2	 (	 Hics (Hi+i- H,'	(  i — Hi-1))
I 

A, 
8	 dy

	

14 _,./2	 k	 AXi	 /	 AXi-1

+ 1
°41/2 (Ks (Hj+1 — Hi) 

Ifs 
(Hi - Hil)

dx
Jzi _1/2	 Liyj	 AYj-i

= -05(6,4,6,4 1 , A4, Ayj_ i ) • Length (Vii)

— i 1 (Qini —Qout) dxdy ,	 (3.23)
./Di; J \	 PW

where length (Ai ) is the length of the positive oriented arc circumscribing the subregion
Dii.

Next, it is supposed that

Ht+i(Y) — Hi(Y) 
Axi

15



is held fixed at its respective value at y = yi . In like fashion the other three line integrals are
then treated so that upon dropping the error terms and defining Hid to be the approximate
hydraulic pressure at nodal point (xi ,yj ) in Dii obtains,

{K. (14+1J 
Oxi

(Ayi-i AYi
) 

+
2

•  

- 
K. 	 - 	 • ( AXi-1 Axi 

2 
= — Area(Dij) 6 (Qinj — Q out)ij I PIA) •

Multiplication of both sides by the reciprocal of the area of Dii

(3.24)  

Axi)AYi)
2	 2 

gives the "finite difference" form     

	 )-	 ( flii—fli_i,i)     

(Axi_14-11x; 
2

+ K8 ( 	 ) Ks ( Avi	 )  

(4Y.-9-2-1-AY")

(Qinj — Q out) (3.25)
Ptu	 ij

In anticipation of the use of the classical alternating direction iterative implicit method
(ADII method) of Peaceman and Rachford (Ch. 7, Varga, 1962), define the matrix elements
as follows:

K.1Azi—iainid = (Axj_i+Axi)
2	

KslAx;_i
adtlid = 	 yi_	 ) ,

2	

ICB /Ayi Ks/AYi-i adt2yii = Ft=LAy• 12+21y-

(3.26)

(3.27)

(3.28)

/CdAxi	 Axi_i 
adt2xsi =	 (3.29)(
	 2	 )

16



K3 1 AYi adt3i,j
2

K,/Axi
= (Axi_i+AxL

2

(3.30)

(3.31)

The coupled linear system of equations then results, for i = 1,2, ... 	 — 1, j = 1,2, ...
Ny — 1,

ctit2i,j 	adtli,i

(adt2xij adt2yii )	 adt3i,i

aut2i ,i	=
Qinj — Qout )

C Ptu	 ij
(3.32)

3.3 Boundary Conditions

Equations (3.4) and (3.5) are referred to as Dirichlet conditions because the total
hydraulic field along the planes y = 0 and y = Ly is specified. Hence,

H(x,o) = Hin (xi ) =	 0 < x < Ls .	 (3.33)

Similarly at y = Ly define

= Hout (x i ),	 0 < x < Ls .	 (3.34)

Equations (3.6) and (3.7) are referred to as Neumann conditions since the flux in the
direction normal to the surface is specified. In this case, impermeable walls along the
planes x = 0 and x = Ls exist, so that a zero or no flux boundary condition obtains. That
is, along x = 0, where OH/Ox = 0, approximate for j = 1,2, Ny — 1,

OH n , Ax2	Az2 ,	 Axi ,
2=o	-

= 0 =	 nohi -F (– -r

lxo	 Axi	 ax2

–
x2 

il2 j} / (Axi Ax2 ) ,	 (3.35)
A

a formula obtained by differentiating the Lagrange, degree 2 interpolating polynomial,

111 j 	 (x – x0)P2(x) =	 ' Oxi

(x — xo) (x — xo — Axi),	 (3.36)As2

setting x = xo (= 0) with P2 (x0) = 0, and simplifying the result. Since As i and Ax2 are
positive, possibly nonuniform, nodal spacings the definition of Ho ,j is obtained as a linear
combination of H1,a and 112,j ;

Axi Axe
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12+ 	 . _ 4.,
A	

EL	 .
Axi,	 x2)	 1t,	 px2	2,3

ko,j =

2+
(3.37)

It can be shown in like fashion that at x = Lx where

OH 1

Ox
= 0 ,

AXNx	
1'12-1) fINX-1,j-.1b12	 XA	 ANS 2,j	 'n XNx-1	 +

2 + 	

for j = 1,2, ... ivy - 1.

A standard Taylor series based error analysis leads to the errors:

• at x = 0,

01 (0xi 0x2)

which-if Ax i = 0x2 = Ax is 01 (0x2); and

• • at x = Lx,

(3.38)

(3.39)

02 (AxNx AxNx-1)	 (3.40)

which if AxArx =	 = Ax is 02(0x2).

It is good practice to choose Ax i , Ax2 , AxNx_i , bap'. equal to about 1/10 the intradomain
lattice node spacing.

3.4 Solution of the Linear System of Equations

A "vertical" or "horizontal" ordering of the nodes may be chosen in equation 3.32.
In either case, when using the boundary data, as indicated, the system may be written in
Matrix form

Ali b ,	 (3.41)

where A is a real, possibly symmetric, Nx — 1 • Ny - 1 by Nx — 1 • Ny — 1, 5-band array,

which is irreducible, weakly diagonally dominant, and positive definite, an M—array in the
sense of Varga (1962, pp. 186-188), and b is the vector of boundary data. H then exists

uniquely' as

18



OH	 ,Ny	 ,Ny-1

aY ly=Ly	AYNy

= A- 1 b.	 (3.42)

Here we find II via the classical Peaceman-Rachford ADII method which involves alter-
nating between x and y directions (Varga, 1962).

3.5 Velocity Components

Once all components of H are known, the x and y components of the fluid velocity
field, namely the pore velocities, can be computed using equation (3.1). However, since
the hydraulic head field H(x, y) is known only approximately and only on a finite set of
grid points, the two velocity components must be numerically estimated at each (xi , xi).

Two 3-point Lagrange polynomials, one in x and the other in y, similar to those
stated in equation (3.36), are differentiated at the intranode points. Differentiation is done
first along the x-coordinate to provide an estimate of OH 18xl ij and secondly along the
y-coordinate to provide an estimate of OH I eyl i,j . For those nodes inside V and adjacent
to the impervious walls as well as those nodes inside D but adjacent to the inlet and outlet
boundaries, simple, 2-point-based velocity estimates are used. The formulas used are:

• at y = 0, for i= 1,2,... Nx - 1,

OH. Ai,l - 
ly=0

OH

ex ly=o	

Axi
Hi-1 0

Axi)

(

1	 1	 -,.
Axi_i —Axi) 11

Axi-1
Axi (Axi _ i Axi) fti+1,0

• at y = Ly , for i = 1,2, ... Nx - 1,

(3.43)

(3.44)

(3.45)

OH'

ex ly=Ly

AXi
	  1-4-1 ,N y
AX i_i (AX i_ i + Axi)

(  1	 1
+	 —)AXi_i AXi 

fti,Ny

AXi-1
+	 fti+1,Ny /

AXi(AXi_i + Axi)
(3.46)
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• at x = L„ for j = 1,2, ...	 - 1,

= 0 according to equation (3.7),
OH

ax x=Lx
(3.49)

• at x = 0, for j = 1,2, ... Ny - 1,

OH

Ox x=0
 = 0 according to equation (3.6),	 (3.47)

ay ..0	 AY3-1(.49-i + y.i
AD

(  1	 1 	
Hod

	

+	 "ft0,i+1
	

(3.48)

011	 .6•Yi

OH I 	 Ayj 
fiNx,j-1

lx=Lx	 AYi-i(AYi-1 + Ayi)
( Ayl	 l. _1 Ayi)

n Nx,j

AYi-1 
x j+1

AY.i(AY:7-1	
fiN

For the remainder of the internal nodes write:
OH.I 	 Axi 

Or IAxi_i (Axi_ i Axi)xity,

C1
	 1 ) „-

-F	 11 i ti
AZil. AXi

Axi-1
+ 	 	 14+1i

Axi(Axi_ i + Axi)

(3.50)

(3.51)

H' '-1
4:7-1(AYJ-1 Ayi) '

j
▪ AYi-i

1	 1

i-Fi •	 (3.52)
AYi) '

With the exception of the formulas approximating OH18y along the open portions at y = 0
and y = Ly , which are 0(Ay) correct, the remaining approximations are 0(Ax i Ax i_ 1 ) and
O(dyi Ayi_i ) correct. These results are easily confirmed by means of standard Taylor series
analysis. In preliminary work it has been found experimentally that to obtain Ux and Uy

to three or four significant digits, H(x,y) must be computed to about eight significant
digits. This is so because of the loss of significant digits which occurs with numerical
differentiation of tabular data.

and
OH

ay 	 4/3
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(M2 	 (Uy )2 (m2/day)Dyy = atortD1,0 + adispx TT + adisPY pi 1 (4.2)

(4.3)

Chapter 4

Chemical Transport and Fate
Model

4.1 Transport and Fate Equations

This section contains basic equations for chemical and/or substrate transport and
fate. The assumptions which form the basis for transport and fate model are as follows:

1. Mass transport is via advection (convection) and dispersion;

2. The x and y dispersion components are linearly dependent upon the moduli of the
fluid velocity field components, i.e. for two-dimensional flow in an isotropic and
homogeneous aquifer,

(u.)2 

+ adispx (uy)2 (m2/day)D= = atortp LO + adisPY	 i

	

lUi	 IUI

and

(4.1)

where the magnitude of the local seepage velocity vector U is defined by

I U I = (Mr + (UO2)1/2

and the "longitudinal" axis coincides with the y—axis (Konikow and Bredehoeft,
1978). The cross—axis dispersion coefficient Dxy is symmetrical so that Dyx = Dxy
and

, Ux U .
Dsy = (adispy — adispx)TuT

y

 9
(4.4)
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(4.6)

(4.7)

3. The porous medium can be partitioned into three distinct fractions:

(a) weakly sorbing sand particles,

(b) sorbing particles (clay minerals, etc.), and

(c) strongly sorbing organic fraction,

with the following Freundlich sorption rule assumed to hold for the porous medium

S = (%sand Psand Ksand + %silt Psilt Ksilt %org Porg Korg)C ;	 (4.5)

4. Chemical, which may be substrate, can be introduced into the aquifer with the "feed
stream" at the inlet end (y 0) or from constantly emitting sources in the aquifer;
fluids added by these methods must be of low volumetric concentration and low flow
rates (m3 /day) so that the previously established fluid flow field is not disturbed.
It is assumed that density gradients, density stratification, or local change in the
transport and/or fate properties of the porous medium does not occur;

5. Water containing chemicals can be introduced via fully penetrating injection wells or
extracted from similar wells by pumping; and

6. Loss of chemical can occur via first-order loss processes including microbial and/or
irreversible processes in both the free and sorbed phases and by radioactive decay in
both phases.

Consideration of the balance of chemical mass in the REV leads to the linear two-
dimensional transport and fate equation

M
OC 0 (	 OC) , 0	 OC)

E (1	 = — t Avxx 	 — (E D
at	 Ox	 Ox	 ay	 YY ay

0 Dzy OaCy ) + 0 (€ Dyr 
8ax)

, Tr 
U	

TT pf

x
Ox	 ay

('met Airr + Arad + R ( A net + Arad))C Q so

Q out
Qinj Cs	 C,

Pw

where

1- E

R = ( 	 (%sand Psand Ksand + %silt Psilt K sat + %org Porg Korg)

is frequently called the retention coefficient (dimensionless) in the gas chromatography
literature, while defining Rd = 1-FR results in the retardation coefficient in the soil science
literature. Since

0W1,0 0(Etly) — (Qinj Qout) 
Ox	 ay	 Pw
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(4.8)

(4.9)

from equation 3.3, we have upon substitution into equation 4.6,

	

OC	 OC`
+	 E D C )€ (1 +	

(
=	 C AVxx ax 	ex ( xY oyC7t 	 ax

	

(	 OGy _O	 OC\

	

+ 5 jjYY ay) 1- ay \E 	 ax)
OC	 OC

— (EUx )ax

	

w	 Q,,,

+ Qin; (Cs— CIA.) ,

where the overall first—order loss coefficient A is defined

A = Amet Airr + Arad + R ( A net + Arad)

Even though equation 4.7 is linear and Dii is a simple rectangular domain, the fact
that Us , Uy , Dss , and Dsy can all vary quite widely over D id has made it impossible to
obtain closed—form solutions except for the case of constant coefficients with a dial= = adispy.

Analytic solutions could not be found for the following initial and boundary conditions of
this problem. This made it necessary to approximate C(x, y, t) by means of a type of finite
difference Euler—Lagrange procedure (Cheng et al. , 1984), which is a type of characteristics
method.

In anticipation of this Euler—Lagrange solution procedure, the advection terms are
brought to the left-hand side of equation 4.6 and the expression is multiplied by the factor
1/(41 + R)) to obtain

OC	
Ox
	 OC

U; + U; + A*C
et

0 (.14s OaCx ) 4.	 D ;I/ eaCy ) +	 (D;s eaCx)

(D4 —0-8C ) + 	 +	 (C.— CIA.),	 (4.10)y 

where the "effective" transport and fate coefficients are defined

ux.	 Tr*	 uy
u; = 	 	 (4.11)

1 + R	 = + R

A 
A*

	

	 (4.12)
1 + R '

D'; =  Dss D* — DxY D* —	 YY	 (4.13)
1 + R	 'y 1+ R	 YY 1 + R

and the "effective" source/sink mass rates are defined

Q.0 = 1- R
	 (4.14)
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and

Qinj
Qini = 1 + R

(4.15)

Since the "effective" material or total derivative dC/dt is

dC_ 	 OC . 8C
dt  et +	 (Iv ay

we obtain

dC	 0(D. OC) 0 ( Th. OC ) 8
dt + 

A xx	 —	 (D* ‘r_)
ay " 8Y	 OX xv ay

0 1 D. OC\	 QL.
?ix 79-x +	 + 71 (C. - CI p,„)

for the transport and fate equation.

(4.16)

(4.17)

4.2 Initial Data, Boundary Data, and Total Chemical Mass

Completion of the conditions on C over the space-time cylinder V U (o,T), requires
firstly that C be prescribed at time t = 0, i.e.,

C(x,y,o+ ) = g(x, y)	 (4.18)

(x,y) in V so that

Li. J 	 C(x,y,o+ )dxdy < oo .	 (4.19)

Recall from Figure 3.1 that at each of the two planes y = 0 and y = Ly the total
hydraulic head is prescribed rather than the fluid fluxes. The fluid velocity field can vary
across these planes, depending upon the presence or absence of injection and/or extraction
wells in the interior. Conservation of chemical mass in the system is also desired. A
complete accounting of all the chemical mass which enters and exits the aquifer via the
inlet and exit ports is required. Simply fixing C(x,o,t) and C(x, Ly ,t), 0 < x < Lx , for all
time t > 0 will not satisfy this condition (Parker and Van Genuchten, 1984). In order to
satisfy the requirement, a "flux-type" concept along the inlet and exit port boundaries is
introduced. This concept more closely approximates the conservation of mass than would
be obtained from fixing the inlet and exit port chemical concentrations. Figures 4.1 and
4.2 show aspects of the concept of the mass conserving boundary conditions at the inlet
and exit ports.
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outlet end
mixing chamber

open face to
porous medium	 injection/extraction well

x =

x _ 0

Figure 4.1: Schematic diagram of experimental arrangement used for testing the mathe-
matical model, showing mixing chambers at inlet and outlet ends.

001

Figure 4.2: Details of the use of the "Gaussian pill box" concept in mixing chambers, flow
orientation, and positions where mathematical terms were defined.
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and

grout = –Dcout 
(Gou t – C(x,Ly,t))

Vyou t C(x,Ly,t)
AYout

(4.24)

Since the chemical field flux vector can be written as

n ac
gc = (-- E 	 ox -

ac
(— E Dyx

ac
E Dzy	 c	 i

OC
DYY ay

E 	, (m2—day
kg  ) (4.20)

the standard Gaussian concept of continuity in the normal component can be written for
the inlet port as

cicix,o,t • (.i cicin • (-3) = 0	 (4.21)

and for the exit port as

ciclz,Lo • ( L 7) grout • (3) = 0 ,	 (4.22)

where the inlet port and exit port fluxes are defined by

-ucin	 v—=nic	
C(x, 0, t) — Cin) + Vyin Gingrin (4.23)

The additional requirements for continuity of the chemical fields themselves at the bounding
planes y = 0 and y = Ly have been included in equations (4.6) and (4.8).

Since, by assumption, H is constant along the inlet and exit interfaces, Us E--* 0,

making Dn = Dys = 0 as well. Therefore, along y = 0, we have

OC
qc(x,O, t) = [(–E Dzzd	 Ux C)

+ (--€ Dxy ---8C + E Ux	 ,
ay	 y=o

which when "dotted" with the unit normal vector j obtains

OC
CIC(X,O,t) • =Dyy- E	 .

ay	 y=o

Along y = Ly , we have Dxy = Dys = 0 as well and

OC
qc(x, Ly , t) = [(— E Dzxwi- E Ux c) I

(-€ Dyy-
DC 

c Uy C)
Oy	 y=L„

which when "dotted" with the unit normal vector --) obtains

(4.26)

(4.27)

(4.25)
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OC
qc(x,Ly ,t) • (1.7) = ( -FE Dyy — – c U c)	 •ay 	 Y	 (4.28)

y=Ly

Assuming that water is an incompressible fluid, at the inlet end

lryin(X,t) = (E Uy)1y=0 ,	 (4.29)

and at the outlet end

nout(x, t ) = (c Uy)ly=Ly •
	 (4.30)

Substitution of these fluxes into the two continuity equations (4.21) and (4.22) obtains

–Din C(x,0,t) – Cin) , Tr	 D Li)(e Vy)y=0	 =	 YY h.,AYin	 y=o
-1-(E Uy)y= 0 C(x, 0,t)	 (4.31)

for the inlet end and

OC

DYY Taay=Ly-F 
(E Uy)ly=Ly C(x,Ly – AYNy)t)

n	 (Cout – C(x,Ly,t))
= — cout	 (E	 C(x,Ly,t)	 (4.32)y

AYout

for the outlet end conditions, respectively.

In anticipation of solving the chemical transport problem by means of a finite differ-
ence approximation, the supposition is made that

°

• C(x,Ayi ,t) – C(x,0,t)
(4.33)ay y=0 AY1

and

O

ly=Ly
C(x, Ly ,t) – C(x,Ly – AyNy,t)

(4.34)
AYNy

Substituting these two approximations into equations (4.31) and (4.32), respectively, ob-
tains

and

c(soul,t)	 (E Uy)=0 Cin(E Dyy iy=0	 y].	 Ayer' C(x, 0, t) 	
Dyy)y=0	 (E My=0

Yin

(4.35)
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(cull + 1•222-AyN ) y=Ly C(x,Ly - AyNy,t) + tdt Gout

(cuy-Fer1117)
C(x,Ly,t)

11=4 + .12,21LL

Al/Ny	 6•Yout

(4.36)

It is easily seen from equations (4.35) and (4.36) that in the limit Dcin and Dcout large,

then C(x,0,t) -> Gin and C(x,Ly ,t) -+ Coo, i.e. with the assumption of well-stirred
conditions in both the inlet and outlet port mixing tanks, the diffusion gradients vanish.
However, a nonzero chemical gradient may exist just inside the bounding planes y = 0 and
y = Ly in the porous medium itself.

Back substitution for C(x, 0, t) in the gradient portion of equation (4.6) obtains

(i • 4:kin)	
( Din	 Dyy I C(

AYin AY1 I y=0)	
iay_ I 

0
y+ Din_ (

X 7	 t) Cin

Uy)y=0
A1/1 l=	 AYin

(E Uy )y=0 Gin

Clearly, when Din -+ large, equation (4.37) reduces to

E Dyy I
	 M(3 • CICin) =	 A	 {C(x, A , t ) – Gin} + (E UY)Y=0 Gin •
11=0

(4.38)

If Gin were known, equation (4.35) could have been used as an internally consistent bound-
ary condition. However, in most laboratory-scale aquifer situations C in is not known. At

best Cin is known indirectly, as demonstrated by the following mass balance concept.

Assuming that the constant hydraulic head boundary condition holds along the inlet
face y = 0 and that water is incompressible, the principle of mass balance applied to the
chemical mass in the well-stirred inlet tank yields

dMin	 L.	 L.
= Co Lw	 (EUOly=odx + Lw	 (-2 • Clcin )dX	 (4.39)

dt

where Co is the constant concentration of chemical in the feed stream entering the inlet
end mixing tank. Substituting for qcin in equation (4.39), from equation (4.38) obtains

dMin = Co Lw I
L.	 Lx E Dyy , A

(E Uy )ly=odx + L w Jo	 Ayi u kX 7 yi , t)dx
dt	 o

{Lw iLs (cDn 4_ € u 	 (4.40)
- io	 AM.	 II)	

dx Gin ,
 y=0

where relationship (4.29) has also been used. Since

Min = Lx Lin Lw Gin
	 (4.41)

(4.37)
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and Lx , Lin , and L„ are constant in time and space, the definition of Cin is obtained as
the first—order differential equation,

dCin = C
o r 1 r 11'2 (E Uy )y=odx	 fLx 6 DYY C (x ,	 Otisdt	 0	 Lin Lx o	 Am.

—	 Lx 6 DYY	 14	 dx Cin ,	 (4.42)1 Li,1,Lx {10 ( AY1 + 6 ) y=0

where Cin(0) must be specified to obtain the unique, continuous solution Cin (t). Since,
with the assumption of well—stirred inlet and outlet chambers, C(x, 0, t) = Cin (t), equa-
tion (4.42) becomes the "inlet boundary condition."

Back substituting for C(x, Ly , t) in the gradient portion of equation (4.24) obtains at
the outlet end

(3 • qcout
E Dyy	 I ft(Cout C(x, Ly AYNY1t))

AYNy y = L y	 (elf; c

y=Ly

(€11y)y.4 C(x, Ly – yNy, t) .	 (4.43)

Clearly, as pout becomes large in equation (4.43) we have

E Dyy 
(C out – C(x, Ly – Aymi,t))

YlVy v=Ly

(€ Uy)y=Ly C(x, Ly – yNy, t ) .	 (4.44)

The argument for the inlet end also applies to the outlet end of the laboratory—scale aquifer.

Assuming that the constant hydraulic head boundary condition holds along the inlet
face, y = 0, and that water is incompressible, applying the principle of mass balance to the
chemical mass in the well-stirred outlet tank yields equation (4.45):

dMout L. 	 L.
= Lw	 (i •• qcout)dx — {Lw 	 (e Uyly=4 )dx} C outdt

Substituting in this equation for grout from equation (4.44) obtains

(4.45)

dMout = La„ fLx [ (-6 DYY + E Uy)dt	 0	
C(x, Ly – AyNy,t)dx

AYNy
Y=Ly

Lw fLx	 __E Dyy + E uu)
dx 	 Clout •	 (4.46)_

– (	 0	 A Ply	 - y=Ly

Observe that coefficients in the integrand of equation (4.46) are equal and opposite in sign.
Recall that

Mout(t) = Lout Lx Lw Cout (t) ,	 (4:47)

(3 • qcout
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fLS [(E
A "	 C(x, Ly – AyNy , t) dx

JO	 "YTly Y=Ly

dC out	 1
dt
	

LoutLX

a simple first—order ordinary differential equation defining Cout(t),

1	 iLs € D....

" dx Gout
y=Ly

(4.48)
L out Ls JO

+ €1
\AYNy

is obtained. In order to solve for Cout (t) uniquely, knowledge of Cout (0) is required. Anal-
ogous to treatment of the inlet boundary note that

C(x, Ly ,t) = Cout(t)

is the boundary condition on the outlet end of the aquifer. Along the planes x = 0 and

x = Lx the Neumann (no chemical flux) conditions

OC	 8C
= u = —

8x1,0
(4.49)

are required. These two conditions obtain directly from applying a Gaussian pill box
concept to the impervious bounding walls and recalling that Ux = 0, along both walls as

well.

The total chemical mass in the system at time t (days) following initiation of the
transport and fate processes is defined by

L„ i Ls

MAq (t ) = Lw	 €(1 .R) C (x , y, t)dxdy ,
0

(4.50)

where L to is the vertical thickness (m) of the aquifer system.

The total cumulative chemical mass entering (-I-) or leaving (–) the inlet port is
defined by

t iLs

MInlet(t) = Lw Jo
	 (cOly=0 • (9)dxdr	 (4.51)

The total cumulative chemical mass leaving or entering (-I-) or leaving (–) the exit
port is defined by

Jot

 11.1

MOutlet(t) = Lw	 (-3 • –qc)iy=4)dxdr (4.52)

The total chemical mass "lost" via all first—order processes operating in the system is
defined by
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MLost(t ) = Li„ ft I
Ly fLz 

{c A C(x,y,r) Qout C p„,}dsdydr	 (4.53)
0 0	 0

The total cumulative chemical "gained" from distributed zero order sources, e.g. from
injection wells or leaking storage tanks, is defined by

t fLy iLx
MSource( t) =

JO JO JO 
{Qso(x, Y, 7)-F Qin.; Cs}dxdydr

These five scalar mass quantities give a complete mass balance for the aquifer.

(4.54)

4.3 Approximate Solution for the Transport and Fate
Equation

Recall the subregion in space 	 C D, which contains the i, jth nodal point of both
the flow field and the chemical transport field. Partition the time coordinate [0, T] into
a set of adjoining time subintervals so that time t o = -n-1 + Ain, n = 1,2,3,... Nmax•
Define

= Dij URI,T)
	

(4.55)

to be a space—time subcylinder so that

D* =
	

(4.56)

is the global space—time cylinder. Then,

14 	 U,n+1 =
	

U	 44-1}
	

(4.57)
',2

is that portion of D* made up of the generators of the space—time cylinder lying between
the two planes t = to and t = Our goal is to set up the domain for a two time
level computing procedure in anticipation of choosing an explicit but conditionally stable
method, such as a "forward Euler" time integrator. Figure 4.3 shows a sketch of the region
of interest in DI'.t3(n,m-Fl)'

Integration of both sides of equation (4.17) with respect to a time convolution t over
[tn , tn+ i ] obtains

tn+1
C(s, y, tn+ i ) — C(4, y,„ t" ) + A* j. 	C(x,y,r)dr

t"
= /in-" 0( D. OC)	 ( D. VC\

An 15-; " Ox Ox	 ay
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Figure 4.3: Relations among the various subregions of the overall space–time cylinder and
the superimposed set of lattice points, of which one is shown at each time level.
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* OC)	 (D* LC) 
di-+	 D	 yv ayyx	 + 

tn-1- 1 (Q:0 + Q;Cii C I pw )) dr ,	 (4.58)
ftn	 E	 E

where the point (xn* , yn*) is that point in Dij at which the particle of interest resided at time
level to and the particle moves along a material flow path connecting points (xn* g ) and
(xi, xi ) at time tn+1 . Konikow and Bredeheoft (1978) describe a method for estimating
xn* , yn*, called the particle tracking method. The procedure for estimating (4 ,yn*) used
here differs from the procedure of Konikow and Bredeheoft and follows more closely that
of Cheng et al. (1984). A fa discussion of the particle tracking method used here follows
the remainder of the development of the finite difference equations by the integral method.

Next, integrate both sides of equation (4.58) over Dii which is assumed to be station-
ary in time. This obtains, analogous to the spatial integration of the fluid hydraulic field
equation over Di j,

+A*	
tn+i

ftn	
C(x, y, r)dxdy dr

tn+1	 f Yj+1/2 OC
Dx* D* OCx - X

tn	 41-1 /2 OX x4 112 ax xi-1/2

OC OC
dydr+Dx*y —

UY1Xi+1/2

—

fin+i	 ili+1 /2

Oy

OC
Xi-1/2

D* aC
Yr OX

-
Yr 8xto Yj+1 /2 Y3-112

OC	 OC

	

+D*	 - D*	 dx dr

	

YY	 L/2	 YY YI I/-1 /2 }

C(x, y nt + i )dxdy -	 I C(4,y,„tn)dxdy1	 Dii

tn+1
Q 	 IQ' •

fps, I HS°	 1n3 (C, - C Ipw )) dxdy dr .
E	 E

(4.59)

Approximations, which have not been made so far, are now stated as follows:

1. Let

= (xi, Yj in) = c(xi,yi ,tn)	 (4.60)

be the approximate distribution of the chemical field concentration, where 01 1j is
defined at each lattice point of D*.

2. Approximate the first group of space derivatives by

OC
Ox

+1,j — 

xi+1/2	 AXi
(4.61)

33



ac I
ax Ixi-1 /2	

ASi_i
(4.62)

Oc
ex 1,_1/2 

(4.63)
ci+1/2,j+1/2 Oi+1/2,j-1/2 

2

Oi-1/2,j+1/2 Oi-1/2,j-1 2
(LLEj=1._

2

(4.64)

The second group of first partial derivatives in equation (4.
accordingly. Since Ci_1/2,j+1/2 5 Ci-1/2,j-1/2 7 Ci+1/2,j+1/2/ and
ical concentration values at points which are not lattice points
approximate these values as follows

59) are approximated

Ci+1/2,j-1/2 are chem-
of the subdomain Dij,

fr,-
0i-1/2,j-1/2 =	 lui,j + 01,j-1) / (4.65)

Oi-1/2,j+1/2 =
-c„

Oi-1,j+1 ei,j+1) (4.66)

Ci+1/2,j+1/2 = i(Ci,j Ci,j+1 Oi+1,j+1 + 01+1,j) 7 (4.67)

041/2,j-1/2 = Oi,j-1 ai+1,j+1	 Oi+1,j) • (4.68)

Substituting these estimates for the midpoint values shown in equations (4.63) and

(4.64) as well as the two corresponding x-axis partial derivatives which are not shown,

obtains

aci
ay

ac I

8Y ixi-1/2

8C 1

8x I„aj+1/2

OC 1

ex 1
1/j-1/2

-1-Oi+1,j+i)(0i,j+
2 2

(4.69)
AYj-1 Ay.;

(oi-1,j+1+6i,j4.1
2 2

(4.70)
AYi

(4.71)

Ci+1,j+041,i+1
2 2

Xi...1 AXi

(4.72)
(Oi+Li-/

2 2

Axi_1 AXi
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3. The effective dispersion coefficients, evaluated at the midpoints, are estimated as
arithmetic means as follows:

. D;xi+1,j + D ; xi,j 
DLi+112,) =	 2	 7	 (4.73)

. Ds*si,i + D x* xi-1,j 
DLi-1/2,j =

	

	 (4.74)2

D,  ;0+1,i + 14Yij 
-544;yi-F1/2,3 

=
	 2	 ,	 (4.75)

D*yi7j
Dx*yi-1/2,3	

x
	  7	 (4.76)2

14Y,j Dy*xi,j+112 DZyi,j+1/2	 2	 (4.77)

D:yid Dx* yi J-1- 
D;xi,j-1/2 DZyi,j-1/2	 2	 (4.78)

D;yi, j+1/2	 D;vi,j--/
2
+ D:yi,i (4.79)

D	 D
;yi,j-1/2	

134;111iLi 	Yij-1 
2	 (4.80)

4. Q8° is constant over Di.; and takes on the value (2.0ii at (xi, y3 ) for all (x, y) in

5. fpii	 C(x, y, t)dxdy Area (Ai ) • Oij (t) .	 (4.81)

6. The time convolution integral for the first-order fate term is approximated at the
forward-in--time point tn+ i , the dispersion terms are all evaluated at the backward-
in-time point tn , and the source/sink terms are evaluated at the backward-in-time
point tn.

Putting all these approximations together into equation (4.59) yields:

Area(Dii) elii-Fi - On(p:i)+ A* At 6-72,i + At QpI n .7. :.? ez

= At ( AYi-1+ AYi ) D:si+1/2,3 °11+1 'i - 671i2	 A X i

qi - 67/ Li 
-DLi-112,3	 Azi_i )](

D[	 O11-1-1/2,j+1/2 - 671-1-1/2,j-1/2 +	 z.%i+1/2,i _jAY 12+AYL
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( 671-F1/2,j+1/2 — 67 1/2,j1-1/2
Axi-1-FAxi

2

°T1- 1 /2 ,j+1/2 °It-1/2,j-1/2 
- D:yi-1/2,3

2

+At (Axi_i AXi [D*
	2 

	 • •Yxs,3+1/2

O4112,j-1/2 671-1/2,j-1/2 
13;xi ,j-1/2	 -I-Axi 

2

+ D.	 61-9	 tv- 11,j 61-1,j-1 l l

	

yys,3+1/2  Ayi	 yyij-1/2	 ZA-1 )
[( 

where

Q:0.•	 (21.-. •
+At	 " +	 Area(Dii) , (4.82)

Area(Dij ) =
2
+ Axi ) ( AN-1

2
+ AN ) ,

and	 in Dii , is viewed as the position, at time t„, of that particle of compound which
lies on the trajectory or fluid flow path, passing through (x i , y3 ) at time tn+1.

We now explain how the point is found and how Cn(Prj ) is estimated. Figure 4.4
shows the region Dii enclosing the point (x i , y,) and the eight surrounding nodes with
their positions defined accordingly. Apart from the obvious situations where either U;
or Uy* or both vanish identically at (xi , y3 ), U: or u; are signed quantities and they are
assumed to be continuously differentiable functions of the space coordinates everywhere,
except perhaps on top of the wells. The selection rules are defined as follows:

1. if U; > 0, u; > 0 , /1; lies in subregion I,

2. if U; < 0, U; > 0 , F lies in subregion II,

3. if U.; > 0, U; < 0 , /1'; lies in subregion III, and

4. if (4 < 0, U; < 0 , Pj lies in subregion IV.

Because of the similarity in argument, only details of the estimate for position of P•*i in
subregion I are shown.

Since U: and U; have been computed at every nodal point in D, they are known
at (xi , y,) and the eight surrounding nodal points, figure 4.4. Figure 4.5 shows an en-
largment of region I with flow lines sketched in. The velocity components U; and U; are
approximated with the following interpolation formulas:

Ux = + BI(x - xi ) + CRy - y j ) DI(x - xi)(y -	 ,	 (4.83)

U; = AI + BRx - xi ) + CRy -	 DRx - xi)(y - ,	 (4.84)
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Figure 4.4: Subregion Dii divided into four separate subregions, one of which contains P.
Flow orientation is also shown.
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Figure 4.5: Details of procedure used to find position of point Pij in region I.
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where the coefficients are defined as:

Ai =	 ,	 Ai = Uy*i ,	 (4.85)

Bi = Ux*ij Ux*i— 1 j 
B2 	 Utiij —	 (4

A yi-1	
.86)

CI = Ux*i,j 
1	 ,Ayi_i

U*. -GrI _  yi,j	 ,j-1 
2 A yj-i

(4.87)

_	 Ux*i,j-1 
-u1 -

AYi-i

Dr _ uy% + uy*i-1J-1 — uy*i-1,j 
2— Axi-i AYi-i

so that both U; and 0; interpolate U; and U; exactly at the four corner points.

Since

= U *dt U*
dt	 Cit

integrating both sides over [4,4+1 ] yields

(4.88)

(4.89)

tn+1
x(t,i+i ) = x(tn) U: dr ,	 (4.90)

fin

IY(tn-1-1) = y(tn) +	 u; dr ,	 (4.91)

where now [x(tn+i), Y(tni-i )] = (xi ,yi ) and (x(tn),Y(tn) = Prj = (4,,Y7n)- Using a low
order accuracy time quadrature approximation, which is consistent with that used in ap-
proximating the main transport and fate equation, the relationships (4.90) and (4.91) are
approximated by

xi = + At N. 	 (4.92)

and

yi = i + At U3,	 (4.93)
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where the i,j subscripts have been suppressed in the velocities. Substituting for 14" and
II; leads to the coupled system of nonlinear algebraic equations in (x7,4),

fl (x7,	 4 - x i + At(Ai BI(x7 - x i ) -F My; - yi)

Di(x7 - x i )(y; - y3)) = 0	 (4.94)

and

f2(x7,4) = y; - yi At(Al BI(xl - x i)+CRy; -

Di(xI - xi )(y; - yj )) = 0 .	 (4.95)

The classical method of Newton-Raphson-Kantorovich (Vemuri and Karplus, 1981) is then
used to find (x7,4) using (x i , yi ) as the initial guess and a relative error tolerance of 10-4.
The theorem, which states that for all finite values of Ai, AL BI, BI, CI, CI, Di, and
DI and At chosen,

At < min [&c'2U;	 2U;
(4.96)

the nonlinear system equations (4.94) and (4.95) have a unique solution inside subregion
I, can be proven rather easily.

With a good estimate of (4, y;) now available Cn (P:j ) is estimated, using the inter-
polation formula:

on(pi; )	 a/ + 01(x; - xi) + 7/(4 -

OI(x7 - x i ) (y; - yj ) ,	 (4.97)

where

ai =	 (4.98)

r 673 - Orfi	 (4.99
Q
	 )

Axi-1

`7!' -SJ 	 1,3-1	 (4.100)
=

aI - Or! + °r 1J-1	 -	 (4.101)
Axi_i

Equation (4.97) produces estimates which are easily shown by standard multivariate Taylor
series analysis to be 0(AxL 1 + Ay? 1 ) accurate, which is in line with the low order accuracy
of the approximate discrete transport and fate equation. The other three subregions yield
similar formulas with the particle tracking concept being carried over from one region to
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the next. The Fortran 77 encoded program LTRSKAQ2 contains the formulas for all four
subregions induced about every interior nodal point.

Now divide both sides of equation (4.82) by area (Dij ), substitute for the midpoint
approximations for the spatial derivatives wherever indicated, and group common terms
together to arrive at the explicit computing formula:

attl ij 67 1 J-1 + att2 ii Or Li

• aft3ij 	adtlij Or;j_ 1 + adt2i,j 611:j
adt3ij OT4J+1 autl ij 012+14_1

aut3ij 041,i+1 + At HQ soii Qinjii c 8,3)

▪ (P:i ) — At (A* + 	 0:1)
E lbw

where the coefficients are defined as:

(Dxyi-112,1 D4i,j-1/2)/4 attlij = At
(Azi--/-FAzi) 

2	 2
(4.103)

(4.102)

1
alt2ii = At (D

•
zsi-112,2 

2	 )
(''xi-1 1-Azi)

2

(D*▪ xyi,j-1 /2 
-Dr 	 /2)
4

}
(4.104)

2

aft3ij = —At (Dx*rij+112 + DzYi-112j)/4
(Azi--/A-Azi) (Ayi_i+Ayi) 

2	 2

(4.105)

1
adtl ij = At

(Azi–/ +Azi)

I
nyi,j-1 /2 

2
(D' AD	 vi)—D''▪ xyi-1 /2,j	 xyi+1 /2,j)

4
(Ay 

}
(4.106)  

2 2  

adt2ii = —At

( AV) –12+ Ay,  ) ( D;xat+ 1 /2, i + 13;ri)

( Ar i–i +Al'. ) ( A-Y.2 -1+A V)) 
2	 2

( Ari- 1 	 (2+Aze  )	 -13;yL4 4-1,12 + 132.. iy. ,j:1 /2 

(Lax,–i +Ari) (Ay,-1+Aki)	 ,
2	 2

(4.107)

2
+Pp;	 D; y ,. 741 /2 + ( D;vi+ , /2. j 4 D:v. _ i /2)

adt3ij = At 	
LAx,--1+Ax, ) 	

2	 2

(4.108)
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autlu = -At
{ (DrIi i+1 / 2,i + DzT vi, j_i /2)14

( AXi-] +Ali) (A.Y.1-11-Aki) 
2	 2

(4.1 09)

(4.110)
( ASij-1 A Yj	 D ri+112 j, (Dxyi,j+1/2 

4
-Dx*yi,j-1 /2)

aut24i = At 2	 Ox;

	  (ay,-1-Fay,) 
2	 2

(D yi-1-1 /2,j + 14yi,j+112)/4 aut34i = At
+AEA (AY.1-2-FAyi) 

2	 2

4.4 Chemical Source Concepts and Correction

One benefit of deriving the finite difference or discrete point set approximating equa-
tion to the chemical concentration field distribution [equation (4.102)] is that we observed
directly the average nature of the source rate density term Q3° at point (x i , xi ). Recall
from Figure 3.2 that evaluated at nodal point (xi, y2 ) is interpreted as being constant
over the region Dij . Hence, it is possible to chose several alternatives for representing small
buried sources and/or larger buried sources in D. Two such ways are discussed.

• Alternative 1. Alternative 1 is the easiest way to represent small diameter sources.
Figure 4.6 illustrates this alternative. Place nodal point (x i , yj ) at the center of small
region Dip The nodal points around (x i , yj ) are closely spaced to maximize accuracy.
The physical dimensions of the rectangular source are chosen to coincide with the
boundary lines of region Du, so that the well dimensions are (0X4.-1 0x4 )/2 by
(AYi-i Ayi)/2 with nodal point (x i , xi ) inside Du. If the true well size is smaller
than the numerical size indicated above, the source is numerically too large and must
be corrected by multiplying either Qs,ii or Qinij by the area correction factor given
by equation (4.112). For true well sizes exceeding the numerical size indicated above
the second alternative should be used.

actual area of Dij included in the source
=

area of Du
(4.112)

• Alternative 2. Alternative 2 is illustrated by Figure 4.7. Four nodal points are used
to define the four plan view corners of the single isolated source. The area of the
cross-hatched region shown in Figure 4.7 must coincide with the source. However,
four subregions are used in setting up the coupled system of equations approximating
transport and fate. When too much area is covered the source or sink rate density,
each well node must be corrected by multiplying each Q ij by the factor a 4j ,0 <
aii < 1, where au is the area quotient defined by equation (4.112). Larger sources
covering many nodal points can be built up in this fashion. By keeping the spacing
between nodal points small in the region of the wells, the two alternatives produce
quite similar approximate chemical concentration field distributions. Cisoij is found
as follows:
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Ax 1 . 1	Axi

X I-1	 XI	 Xi+1

Figure 4.6: Subregion Vii in the case of Alternative 1 for representing a single isolated
source.

Qsoi; = Qiniii • Csi; ,	 (4.113)

where Qin,j,, has the units (kg water/m3—day) and Csii , the concentration of the
substrate in the source region fluid, has the units (kg chemical/kg water) so that

kg water (kg chemical) (kg chemical)
Qsoij = 
	 kg water	 m3—day )

4.5 Boundary Conditions for Approximate Concentration
Field

To complete the description of the approximate chemical concentration distribution
field, CZ, the initial and boundary data must be specified.

4.5.1 Initial data

At time t = 0 days define

C73 = C(xi , yi Ok ) , (4.114)

31j+1

Yj

Ayi

•

43



Yo

Yj+1

Yj+2

X i-1 XI Xi+1 X1+2

Figure 4.7: Four subregions in the case of Alternative 2 for representing a single isolated

source.
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which complete specifies the initial data. Recalling the geometric interpretation of CTi , this
means that over each region Did and time t = 0, the discrete approximation begins with
the concentration being constant in the space-time cylinder, with that value of the true
concentration distribution evaluated at nodal point (x i , yi).

4.5.2 Data at inlet and outlet ends

Recalling the definition of the inlet boundary concentration, Cin (t), via equation (4.42),
define the constants and function

Uinl =

Uin2 =

1.1'.
(eUy )y=odx ,

Lx o

1 II,.	 D

Lx Jo \E 	 c Uy)	 dx ,
y=o

(4.115)

(4.116)

and

Uin3(t) =
1

 foLr (E ADyi ) y.0C (x, Ayi,t)dx
Lx

(4.117)

so that the differential equation defining Cin(t) becomes

dCin Uinl 	 Uin3(t) Uin2
= —	 Uindt	 ° Lin	 Lin	 Lin

(4.118)

This linear, first-order, Bernoulli class ordinary differential equation can be shown to have
the unique time convolution solution

Eizat r, /4 \
an Cin(tn+i) - e Li

 VI%)
tn+1	( C0 Uinl	 Uin3(t)) e4ftat

dt	 (4.119)
to	 Lin	 Lin=

between the two time levels tn and tn+ i . Assuming that over [tn , tn+i ], Uin3(t) is continuous

and one-signed, together with the known continuity and differentiability of e 
E t

W- , apply
the mean value theorem for integrals to the integral in equation (4.119). This yields, upon

_ Eina

m 

t
subsequently multiplying through both sides by e L , the formula

Eliza Ai
Cin(tn+i) = e L in	 Cin(in)

n Uinl A- Uin3 (Cn] 
(1 — e 4ifinlAt) ,+

	

	 (4.120)
Uin2

where (it is some value of time t in [tn, tn-Fl]. Since (n is not known, its value is approxi-
mated by setting (n, = tn, thereby making equation (4.120) an explicit time formula, which
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is in line with the explicit computing formula for the approximate free—phase chemical
concentration distribution, equation (4.102). The formula actually encoded is then based
upon the recursive scheme

n+1At
xin	 e L in	 xlin

[Co Uin1 Uin3 (in)] (1	 , (4.121)
Uin2

where )(I is the approximation to Cin at time tn . The initial condition required to get this
recursive scheme going is x& = cg„ where the zero argument of Cin stands for the zero
point in time.

Since we do not know Uy (x, 0) except at each nodal point, we approximate each of
the three integrals, stated in equations (4.115)— (4.117), by the classical trapezoidal rule.
That is,

Lx	 Nx-1

o 
(c Uy )y.,0dx = E

k=1

where

rK = A:k IE Uy(Sk,o) + c uy(sk+1,0)] ,

and

N. -1Lx
c	 + E Uy) dx E	 ,

y=0	 k=1

where

Dyy= °Xic [(El vy_ + E Uy) C UV)
yl 

	

(zh,O)	 Dyl (zh+1,0)

and

(4.122)

(4.123)

(4.124)

(4.125)

LLx (c Dyy )	 Nx-1
	 jy=0 C(x,Ayi , t)dx E

k=1
AnK (4.126)

where

•n  Axk (c Dyy 
= —2 Ayi C(xk,	 I)

Xik,0

C Dyy

AY].
C (xk+i , Ayi ,t)) . (4.127)



(E Uy))	 dx	 (4.128)
y=Ly	 Ly

Uoutl
Cont(tn-Fi) = e Lout	 Cout(tn)

Uout2(nn)
Uoutl

(1 — e Lout
U nun At )

(4.132)

Uini and Uin,2 are calculated only once in time, but Uin3 must be recalculated at every time
step. For the exit end tank and/or boundary condition, use equation (4.48) to define the
constant and the function

(

EDyy

AYNy

and

Uoutl
1

=
/'Lx

Jo

Uout2
1 fLso

(

EDyy

AYNy
(E Uy

y=Ly y=Ly

C(x , Ly — Ay Ny , t)dx ,	 (4.129)

so that the differential equation defining Cout(t) becomes

dC outV'Uoutl	
+ 

Uout2(t) = —	 uout	 rdt	 Lout	 Lout
(4.130)

This first-order Bernoulli ordinary differential equation (ODE) can be treated in the same

uoutt t

way as the ODE for the inlet tank. Over the two time-level interval [t it , tn+1],

et"ut t n" Cout(tn+1) — e Lout n Cout(tn)
tn+1

Lout
	  -auLLe uLout e dt .	 (4.131)= fin

Applying the mean value theorem again obtains, upon subsequently multiplying through
Uoutl 

Lout
	 ,both sides by exp

nwhere rin is a time point in the interval rt, _ n+1 j . As before, we choose Tin = to to generate
an explicit formula, approximating Cont(tn+i) by

„n+1
Aout

=	 ilea At _ne	 out	 out
Uout2(tn) (1 — e 14,a

ut At)Tr+
v pun

(4.133)

Initially set Ad and apply equation (4.133) recursively in conjunction with the evaluation
of Uout2(tn)•

As was done in the case of the inlet boundary, approximate

Nz —1foLX EDyy
(€ Uy ))	 dx = E	 ,AYNy

y=Ly	 k=1
(4.134)
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Dyy I + uy))

YNy

(Xi ,Ly)

(4.135)

and

where

E D
(E U)	 C (x , Ly — AyNy,t)dx E int),

Jo	 DyNy	 k=1y=Ly

where

(4.136)

lad (t) =	
Axk (( E Dyy (E 

U)) C (x i , Ly — AyNy,t)2	 A YNy (zi ,Ly)

(€ D
"+ (E Ily))+	 C (X 41 1 Ly – A YNy 1 t) 1	 (4.137)

AY Ny (xi+i ,Ly)
while Uoidi is a constant and calculated a priori with respect to time, Uottt2 is time depen-
dent and must be recalculated at each time step.

4.5.3 Zero flux walls

The conditions of zero chemical flux boundaries at x = 0 and x = Lx follow naturally
from equations (3.6) and (3.7):

(2+	 j_ 4EL) On	 AEI .
' 0x2 	1,3	 0x2 2,3 

OIL =	 2 + t2i-

and

aZAry  On	 (2 4_ „aut., + ALy-1) !'I

 -	
A x is Tx-1 N z— 2,j —I—	 AX N.	 411—1	 x N	 1‘1x	 1,.-1,j

axii,r -12 + z_
AxlnTx

for j = 1,2, ... Ny - 1.

(4.138)

(4.139)

4.6 Stability Consideration

Since the computing scheme defined by equation (4.102) is explicit, an additional
stability criterion arises. Many investigators, for example Richtmyer and Morton (1967),
Varga (1962), and Reddell and Sunada (1970), have considered that by choosing
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0.5
At < max (D •	D• ..)

1-51- + Z7Y •g

(4.140)

the computing scheme will be stable. However, Cheng et al. (1984) claim that a sufficient
condition for stability is

1
At < 	 cus..1	

D 	 D* 	 )yytiaj1 .4_ 2 (z. 2.	 AI/ )
YJ 

(4.141)

which is a tighter restriction than that given by equation (4.140). Because the flow field
is at steady state it is a simple matter to calculate this value of At prior to the beginning
of the chemical transport and fate computation. The At computed via equation (4.141)
clearly covers that computed via equation (4.140). The other At value which must be
considered is the requirement, equation (4.96), that the stream line, and the particle of
interest "riding" on that stream line, going through (x i , yj ) at time t 7L .1.1 must also pass
through PCi at time tn. The addition of distributed first-order losses and the presence of
any injection wells also further reduce the magnitude of At. These important restrictive
conditions will be satisfied by choosing At so that

At < 1 
(4.142)

TaT	 QT •, *	 21Usi .1
z,1 A	 AxicPw	 Yj

2 ( 14y. 1- D6fW 

Condition (4.142) is used as the stability criterion in this work.

4.7 Brief Summary Statement

In summary then, the approximate chemical concentration distribution O ini+1 at time
level tni. i is obtained at each interior nodal point (x i yj ) as a linear combination of the ad-
vected, dispersed, first-order processed, and reversibly sorbed chemical, transported and/or
operated upon during the time interval [t,,,,tn_Fi], together with any new chemical added or
removed via neighboring injection/extraction wells [equation (4.102)]. This distribution is
subject to initial data [equation (4.114)], boundary data for the inlet end [equation (4.121)],
and equation (4.133) for the outlet end and equations (4.137) and (4.138) along the walls
where the no transverse flow boundary conditions apply.
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