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CAPILLARY FLOW IN AGRICULTURAL DRAINAGE

Edited by Harold R. Duke

with further contributions by
Royal H. Brooks, Arthur T. Corey, Delbert W. Fitzsimmons,

and Richard R. Tebbs

ABSTRACT

The process of drainage of soil water is customarily treated as a fully saturated
flow phenomenon. Recent work of several cooperating scientists is reported to illus-
trate that the partially saturated zone can significantly influence the overall per-
formance of agricultural drains, particularly with respect to maintenance of a desir-
able root environment and when the soils encountered are either quite shallow or very
fine textured.

In the first section, the capillary properties of soils pertinent to drainage are
described. Both laboratory and field measurement techniques are proposed. Experimen-
tal data illustrate the utility of these techniques. The second section details
necessary considerations for modelling capillary flow systems and presents models
successfully used to predict both vertical drainage of the soil profile and horizon-
tal flow associated with a sloping water table. The final section describes results
of numerical analyses of both sloping aquifers and parallel drain systems. The cap-
illary region is shown to have considerable influence upon both the predicted water
table position and the relation between water table depth and depth of soil which is
adequately aerated to allow root development.
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INTRODUCTI ON

The existence of a region within the soil profile in which capillarity dominates
the movement and storage of water is well recognized. It is primarily within this
region that water is infiltrated, redistributed, stored, and recovered by plants for
transpiration. This region must also transmit gases produced and consumed by respir-
ation of plant roots.

Although the capillary region is the source of virtually all water removed by
subsurface drainage systems, its importance to the drainage flow regime is often
debated. Because of the extremely nonlinear nature of the capillary functions, their
inclusion complicates the flow equations, often to the point of rendering analytic
solutions virtually impossible.

Because their methods of evaluating soil parameters force parameter values to
fit a solution which neglects the capillary region, groundwater engineers and hydrol-
ogists have generally met with reasonable success in designing drains by ignoring the
partially saturated zone.

It is not the intent of this paper to discourage use of this idealized design
procedure, but rather to illustrate its limitations and provide the practicing de-
signer with tools to judge whether neglecting the capillary region can be expected to
give satisfactory results. Examples presented, which are typical of conditions not
infrequently encountered, illustrate that, with certain geometric and soil property
limitations, neglecting the effects of the capillary region can result in considerable
error.
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SECTION I.

CAPILLARY PROPERTIES PERTINENT TO DRAINAGE

The capillary properties of soils pertinent to drainage are those that relate
to a soil's ability to retain, release, and transmit water. These properties also
determine the soil's ability to exchange gases between the atmosphere and all points
within the root zone of crops.

Part of the water held in soils immediately following precipitation or irriga-
tion may be removed by downward flow in response to a finite hydraulic gradient.
Water more tightly held by capillarity can be removed by plants. That remaining after
plants have wilted can be removed only by evaporation and subsequent diffusion in
the vapor phase. It is the first mentioned part, called "drainable" water, that is
of direct concern to drainage engineers.

Briefly, the engineer needs to know how much water will be released under spec-
ified hydraulic conditions and how fast it will be released. He also needs to know
how much water must he removed to provide sufficient aeration within the root zone.

Although soil textural classification conveys a vague quantification of such
parameters as capillary fringe and hydraulic conductivity no visual test has yet been
developed to adequately quantify the capillary properties pertinent to drainage.
Thus, we must still rely on experimental evaluation of these properties. In this
section, the pertinent properties are described, the most recent laboratory measure-
ment techniques are outlined, and the most successful methods of estimating these
properties in field soils are discussed.

1.1 MEASURABLE SOIL PROPERTIES by A. T. Corey

1.1.1 WATER RETENTION CHARACTERISTICS

The characteristics of soils with respect to their storage and release of water

are described by the functional relationship between water content and the pressure

of the water. In the past, drainage engineers usually have characterized this rela-

tionship by a single parameter called "specific yield." However, as Duke (1972) has

pointed out, this parameter has been vaguely defined. For example, Todd (1959) de-

fines specific yield as "the volume of water that an aquifer releases from or takes

into storage per unit change in the component of head normal to that surface." This

definition implies that specific yield is independent of water pressure (i.e., water

table depth or flux) and, therefore, is a constant. Such an assumption is a valid

appro'ximation only if the water table is already at a safe depth and the flux of

water through the region above the water table is negligible with respect to the sat-

urated hydraulic conductivity.



It is preferable to describe the relationship (between water retained and water

pressure) over the ranges of pressure existing during significant drainage. These

pressures range from atmospheric to considerably less than atmospheric. That is, the

gauge pressure of the soil water during drainage is usually negative. As the pressure

of water becomes more negative, water content decreases. However, the relationship

between water content and gauge pressure is subject to hysteresis; that is, water

content is greater as a soil drains to a particular pressure than when it undergoes

imbibition to the same pressure. In fact, an infinite number of relationships are

possible, depending on the water content at the time a soil starts to drain or to im-

bibe.

Drainage engineers are concerned with describing the relationship (between water

retained and water pressure) primarily during drainage. Such a relationship is shown

in Figure 1-1. In this figure, the water content is expressed as a volume ratio,

called saturation, which is defined
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Figure I-i. Relationship between water content and negative water pressure head on
a drainage cycle.

as the ratio of volume of water to volume of pore space. The negative pressure is

expressed as the difference in pressure between air and water divided by the specific

weight of water. This quantity is called capillary pressure head, c'
, and has a

positive sign. It is similar to what soil scientists call "suction" head, "tension",

or matrix suction, which they usually express in centimeters of water.

The relationship shown in Figure 1-1 is a type that can be obtained in a labora-

tory for a soil sample that is initially fully saturated with water by evacuating



all of the air. It is not probable that such a relationship applies often in a field

soil because a mechanism for evacuating all of the air does not exist. We would ex-

pect, therefore, to find (in the field) a water retention relationship somewhat simi-

lar to Figure I-i, except that the water saturation at zero gauge pressure would be

less than 1.0. Experience indicates that a maximum saturation of 0.85 to 0.90 could

be expected. However, it is convenient to define nother ratio to express the water

content for the field saturation. In this case, saturation is defined as the ratio of

volume of water to the maximum volume of water following imbibition, entrapped air

being regarded as part of the soil matrix. With this definition of saturation, the

field retention characteristics are typically similar to that shown in Figure 1-1.

Several characteristics of the water retention relationship should be noted.

For example, the soil remains essentially fully saturated over a finite range of

p/y . The curve shown in Figure I-i indicates a gradual transition from the fully

saturated state to a condition of rapid desaturation with respect to change in p/y

However, White, et al (1970) have shown that this transition is produced by the rela-

tively large boundary effect on small laboratory samples. In the field, where only

the surface of the soil constitutes an exposed boundary, the transition region of the

curve can be expected to be greatly reduced. In this case, a valid approximation

might be represented by the dashed line shown in Figure 1-1.

In any case, it is important to consider the magnitude of the maximum p/y at
which the soil remains essentially fully saturated. Brooks and Corey (1964) have

called this value of p/y the "bubbling" pressure head,
b'

They defined it

as the value of
c'

at which an extrapolation of the retention curve (shown by the

dashed line) intersects the abscissa representing a saturation of 1.0. Brooks and

Corey believed that at values of p/y greater than
b'

, the gas phase is con-

tinuous within the soil and aeration is possible. However, White, et al (1970) ob-

served from very refined experiments that continuity of the gaseous phase first occurs

at a slightly higher value of ply , represented by the pressure at which the dashed

extrapolation intersects the measured curve.

Another aspect of the retention curve which needs to be noted is that saturation,

S , appears to approach a minimum value and further increases in p/y produce a

very small decrease in S . Brooks and Corey (1964) have called this limiting value

of S the "residual" saturation, Sr When this water content is expressed as a
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fraction of the dry weight of the soil, it should correspond to a standard laboratory

evaluation of "field capacity." The water that drains from the soil (from the maxi-

mum saturation S to the minimum saturation Sr ) should be a measure of "specific

yield", provided that the latter is evaluated by lowering the water table from an

already great depth.

Another significant aspect of the retention curve is the way in which S varies

with and the
c'

corresponding to Sr According to Brooks and Corey

(1964) this characteristic of soils depends on their "pore-size" distribution. They

characterized the pore-size distribution in terms of an index A , obtained from

data such as are shown in Figure 1-2.

To obtain A , Brooks and Corey replotted these data on a log-log plot after

first "normalizing" the variable S . The water saturation is normalized by defining

a new variable, called "effective" saturation S , as
e

S-S
r

- S - Sm r

where Sr is the residual saturation and Sm is the maximum saturation. When

log 5e is plotted as a function of log ply , the result, typically, is as shown in

Figure 1-2. This plot is usually linear except within the region of Se influenced

1.0
Iogp/Y

log Se

Figure 1-2. Logarithmic plot of effective saturation as a function of capillary
pressure head used to determine pore size distribution index, A

by the previously mentioned boundary effect. Consequently, it is easy to determine

a value of
b'

by extrapolating the linear portion of the plot to the abscissa
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representing Se = 1.0. Moreover, the negative of the slope of this plot gives the

value of X . From theoretical considerations, Brooks and Corey thought that this

slope is a measure of the relative range of pore dimensions, being larger the more

uniform the pore size. For example, it is clear that if the pore size were completely

uniform, all pores would drain at the same value of and the slope would be

infinitely large. They, therefore, called X the pore-size distribution index.

In making a plot such as Figure 1-2, Brooks and Corey recommended first estimat-

ing Sr from a plot such as Figure I-i. The estimated value of Sr is then modified

until a plot of log Se vs. log Pc/I is as nearly linear as possible (within the

range 5e < 1.0). The definition of Sr is then implicit in the way it is determined.

It is also convenient to use a computer program to determine
b' Sr and X dir-

ectly from data for S as a function of
c'

Such a program has been developed

by Corey and Stauffer and is presented in Appendix C.

Once these three parameters have been determined, the only other parameter need-

ed to describe the pertinent water retention characteristics of the soil is the

t?effectivett or "drainable't porosity
e

The latter parameter is related to the total

porosity by the relation

= (S-S) . (1-2)

The value of Se is given by

5

for
'c b

and

S = 1.0 (1-4)

for p
- b

These expressions for Se obviously neglect the transition portion of

the curve shown in Figure I-i, that is, the portion representing saturations greater

than that for which the gaseous phase is continuous. The rationale for neglecting

this portion of the measured data is that it is probably not applicable to large

masses of soil in the field, as suggested by White, et al (1970).

S (1-3)
e



1.1.2 WATER TRANSMISSION CHARACTERISTICS

The transmission of water through soils during drainage usually can be described

by combining Darcy's equation for flow of water with a continuity equation. The re-

suit is

e
div [K V (p/i - z)]

= e t (1-5)

in which K is the soil water conductivity, a function of saturation and probably

aeration and position in space. Time is represented by t , and z is the veitical

ordinate. In order to apply this equation (or any analagous equation), it is neces-

sary to describe the functional relationships among Se P' , and K

The relationship between Se and p/ is approximated by equations (1-3) and

(1-4) which are functions of the pore-size distribution index. From theoretical con-

siderations it is to be expected that the relationships among K
, Se and Pc/I

are also functions of A . Brooks and Corey (1964) have presented experimental as

well as theoretical evidence that this is the case.

Brooks and Corey measured the relative conductivity, K/K10 , as a function of

for a variety of soils and porous rocks, K10 being the maximum value of K

that is, when 5e = 1.0.. They presented their data as plots of log (K/K1 vs.

log p/y , an example of which is shown in Figure 1-3. They noted that such plots,

log I)'
1.0

log K/K10

Figure 1-3. Relative conductivity as a function of p/y
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typically, were also linear over all except the region influenced by the sample boun-

dary, that is, values of p/y close to or less than
b'

It was observed that

the linear portion of the plot, when extrapolated to a zero value of log (K/K10)

provided another evaluation of
b'

yielding the same result as obtained from the

S
- c''

function.

Consequently, it is possible to express the relationship between K/K1
0

and

PC
by the equation

K

K - (1-6)

1.0 Pc

for c1b , and

K -1.0K10

for
- Pb

. This again obviously ignores the transition portion of the measured

curve, which is justified on the basis that the transition is presumed to be a result

of sample boundary effects.

Brooks and Corey reasoned that r should be related to A . They presented the

theoretical relationship

fl=3A+2 (1-8)

which was found experimentally to be a valid approximation. According to these results,

the only parameter needed to describe the water transmission characteristics of soils

during drainage (other than those needed to describe the retention characteristics) is

the value of K10 , obtained after the soil has imbibed a maximum amount of water.

1.1.3 PROPERTIES OF SOIL PROFILES

A distinction is made between the capillary properties of soils and those of soil

profiles. A soil profile frequently consists of layers of soil, either distinct or

gradually varying, each layer having properties different from others in the profile.

The response of a soil profile during drainage can be determined only by analyzing the

7
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flow through a system of layers, the properties of each individual layer having been

specified.

The thickness and slope of the individual layers, as well as their hydraulic

properties, must be taken into account in any valid analysis of drainage of hetero-

geneous soil profiles. It is not possible to describe such systems in terms of aye-

rage properties of the profile, no matter how such an average is obtained.
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1.2 LABORATORY EVALUATION OF SOIL CAPILLARY PROPERTIES by A. T. Corey

As pointed out in the previous section, the capillary properties of soils can be

evaluated in terms of the following parameters:

porosity -

maximum conductivity - K1
0

residual saturation - Sr

air-entry or "bubbling pressure" -

pore-size distribution index - A

Methods of evaluating the parameters listed above (on laboratory samples) have

been described by Brooks and Corey (1964) and Laliberte and Corey (1967). A more con-

venient and faster variation of their methods recently has been developed by Corey.

The latter method is described here.

The method involves a determination of all five of the parameters listed by a

single experiment in which p , S and the flow rate, q , are measured directly

while the sample is continuously draining. Downward flow is established through a

short cylindrical sample of undisturbed soil under conditions such that p (therefore

S ) is nearly uniform throughout. The rate of inflow is allowed to decrease gradually

with time so that the outflow from the bottom of the sample is always slightly greater

than the inflow. The average discharge through the sample is measured along with
PC

and S at intervals of time until the inflow has practically stopped.

Undisturbed soil samples are obtained using a sleeve-type sampler similar to that

described by Laliberte and Corey (1967). With this procedure the soil sample is re-

tamed in a thin-walled acrylic inner sleeve that fits inside the sampler and is re-

moved after the sampling operation. The inner sleeve contains two 90 degree openings

cut in the sleeve wall which may be about 5 cm apart longitudinally. During the samp-

ling operation, the openings are filled with plastic inserts. Afterwards, the inserts

are replaced by tensiometers consisting of capillary barriers mounted in acrylic plas-

tic curved tO fit the sample over a 90 degree segment of its surface at the sleeve

wall openings.

The inner sample sleeve should have an internal diameter of about 2.5 - 5 cm, the

exact diameter depending upon the strength of the source used for gamma attenuation
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measurements to obtain the water saturation. It should be about 13 cm in length,

allowing about 4 cm of sample length beyond each of the tensiometers.

When the sleeve containing a sample is removed from the sampler, it is first

dried in a vacuum oven at not more than 70°C. After drying, the dry weight of the

sample is determined. This, along with the particle density of the soil and volume

of the cylinder, permits calculation of the porosity, $

Figure 1-4 illustrates schematically the apparatus used to evaluate the capillary

properties og the soil core. The sleeve containing the sample is placed on a saturat-

ed capillary barrier that is mounted on an acrylic end plate to which a siphon tube

is attached. Initially, water in the capillary barrier is maintained at a negative

pressure such that imbibition into the dry sample will proceed at a negligible rate.

Good contact between the sample and the barrier is important. It is also important to

use a barrier which has a minimum impedance, but with an air-entry value permitting

desaturation of the sample without air getting into the outflow siphon. An unconsoli-

dated barrier consisting of very fine sand resting on several thin layers of progress-

ively coarser sand has proved ideal for many soil types. Good contact between sample

and barrier is more easily obtained with unconsolidated barriers than with rigid plates

such as fritted glass or ceramic.

A beam of gamma rays is directed at the column. The gamma rays are collimated so

that they pass through a thin longitudinal slice of the sample midway between the two

tensiometers. An Americium source (about 100 mc) is ideal for this purpose provided

the column diameter is not more than about 4 cm. The gamma count is then recorded for

the dry state.

Next, the tensiometer barriers are placed in contact with the soil and held by a

device such as rubber bands so that they will remain in contact as the soil swells and

shrinks during imbibition and drainage. The tensiometer barriers and leads should be

presaturated and connected to pressure transducers before being placed in contact with

the soil. It should be possible, however, for air to enter the sample in the vicinity

of the tensiometers.

The soil is then allowed to imbibe water through the bottom barrier to its maximum

capacity or until the capillary pressure is nearly zero. The maximum water saturation

10
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Figure 1-4. Schematic diagram of equipment for laboratory evaluation of soil
properties.
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is considered to be that which is obtained about 30 minutes after the top of the sample

is entirely wet and the rate of increase of water saturation becomes very slow. It is

useful to record the volume of water imbibed by the sample so that the value of the

maximum water content can be computed. For this purpose, it is important to keep the

pressure of water in the barrier slightly less than atmospheric so that no water is

lost from the air vents.

After the sample has reached maximum saturation, the gamma count rate is again

determined. The difference in count rate between the dry state and maximum saturation

respectively provides the basis for computing the saturation at intermediate satura-

tions. It is desirable to relate the count rate through the sample to the count rate

through a standard absorber for each measurement in order to correct for drift of the

gamma system due to a variety of causes.

In some cases, the air entry pressure of the sample may be sufficiently small

that the top of the sample will not reach its maximum saturation by imbibition from a

barrier at zero pressure, since the sample is about 13 cm in length. In that case,

the maximum saturation will be obtained only after downward flow through the sample

has been established. In any case, the establishment of downward flow through the

sample is the next step.

Inflow to the top of the sample is provided by a siphon from a reservoir with a

falling head. The reservoir consists of a vertical acrylic tube with a diameter that

depends on the maximum conductivity of the soil being investigated. A tube with a

diameter in the range of 3-5 cm is suitable for many soils. A larger diameter might

be preferable for very permeable sands. The length of the tube should be about 1-2

meters.

The reservoir is positioned so that the bottom is at least slightly below the

level of the sample surface. At the beginning of the experiment, the reservoir is

filled. A small diameter tube is used to siphon water from the reservoir to the top

of the sample, which is covered with a pad of blotting paper to buffer the discrete

drops of water. The top of the sample sleeve is fitted with a short empty extension

to retain excess water during the initial adjustment period when the inflow rate may

momentarily exceed the outflow rate.
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The siphon tube is selected of such diameter and length that the rate of inf low

will equal the outflow when the hydraulic gradient is unity and the reservoir is full.

This hydraulic gradient is obtained by adjusting the level of the outflow siphon. Ny-

lon tubes are suitable for the siphons since they minimize the accumulation of air by

diffusion through the tube walls. Air bubbles may seriously affect the operation of

siphons especially at very small flow rates. For this reason, it is also important to

de-aerate the water used in the reservoir.

The reservoir should preferably be filled with drainage water from the site where

the sample was obtained. The water should be filtered as well as de-aerated before

filling the reservoir. This procedure is followed so that the degree of swelling of

the clay minerals will be similar to that which occurs in the field.

It is necessary to provide a means for measuring both the inflow and outflow in-

dependently. This can be accomplished by calibrating the drops from the inflow and

outflow siphons. It is convenient to provide tips for both siphons which are cut from

the same section of tubing so that the drop size from the two siphons will be identical.

It has been found that drop size will vary depending on the angle at which the tip is

oriented. It is good practice to always orient the tips downward. The drop size will

also vary somewhat with the flow rate so that one should calibrate the drop size at

intervals of time as the flow rate decreases.

The inflow drop rate will start decreasing immediately, of course, because the

level of water in the reservoir falls continuously. In the beginning, however, the

outflow may remain constant or possibly even increase slightly if the water piles up

at the surface of the sample. During this period, only the outflow rate needs to be

recorded since the sample is not desaturating. This rate, along with the measured

hydraulic gradient is used to compute K1
0

It is good practice to obtain several

measurements of K10 so that a valid average can be determined.

As soon as the inflow drop rate decreases sufficiently to permit a negative water

pressure to develop at the top of the sample, the hydraulic gradient within the sat-

urated portion will decrease abruptly. It will be necessary to lower the outflow

siphon to maintain the hydraulic gradient close to unity during this period, so that

when the sample begins to desaturate, it will desaturate more or less evenly from top

to bottom. The sample cannot desaturate completely evenly, of course, because the air
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can enter only at the top of the sample and around the tensionieters. Furthermore, it

is not likely that the sample will be completely homogeneous.

It is necessary for the operator to work rather quickly during the period of ini-

tial desaturation to obtain the necessary measurements of the gamma count rate, in-

flow, outflow, and the two tensiometer readings. In fact, during this period, it may

be necessary to have two operators.

As soon as the sample has undergone significant desaturation, the outflow siphon

is lowered to its final position. This position should be such as to create a nega-

tive pressure at the bottom of the sample at least equal to the maximum negative

pressure for which one needs to measure the water saturation. For most agricultural

soils, this will usually not be greater than 150-200 cm of water.

Lowering the outflow siphon will affect the tensiometer readings only slightly

if the bottom capillary barrier is, at least, 4-5 cm below the bottom tensiometer, and

if the sample has already reached the stage at which a continuous air phase exists.

Thereafter, the tensiometer readings will be affected only by the inflow rate and the

homogeniety of the sample, not by the position of the outflow siphon.

The hydraulic gradient within the test section will automatically adjust itself

to a value close to 1.0 provided the sample is relatively homogeneous. A greater neg-

ative pressure will be measured at the tensiometer where the soil has the smaller

pores. Thus, the hydraulic gradient may be greater or less than 1.0 depending upon

where the smaller pore-size exists in the sample. In any case, it will not be possible

to adjust the hydraulic gradient to 1.0 by changing the level of the outflow siphon.

This level should remain the same throughout the remainder of the experiment. For

non-homogeneous samples, it will be necessary to assign a value of conductivity to

the average negative pressure measured at the two tensiometers. This procedure should

give satisfactory results provided the difference in pressure head is not more than

1-2 cm of water.

After the flow rate has decreased to about 1/2 to 1/3 of its initial value, the

experiment will usually proceed smoothly and one may obtain data at intervals of time

as short or as long as desired in order to define the necessary functional relation-

ships. Ordinarily, it is possible to obtain all the conductivity data necessary in
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a single 8-hour work day. It is usually desirable to allow the column to drain over

night to obtain a saturation corresponding to a higher negative pressure so that a

better definition of the residual saturation is obtained.

It is obvious that the procedure described, although it provides a direct measure-

ment of the variables involved, is not a "steady state" method. The sample drains

continuously and, therefore, one might describe the procedure as a "pseudo" steady

state or, more properly, a dynamic method.

Although one might question the rigor of the procedure, it has many advantages

over all direct measuring procedures previously employed. The major advantage is that

the experiment is finished before trouble is encountered from air collecting in the

outflow siphon, capillary barriers becoming plugged, algae accumulating in the soil

sample, etc. Also, as compared to steady state methods, the tendency for the sample

to inadvertently jump to an imbibition cycle (at some time during the experiment) is

avoided. Consequently, the results are more likely to be consistent and reproducible

than those obtained by other methods. Furthermore, the results are obtained for con-

ditions similar to those existing during drainage of the soil profile in the field.

The curves of K VS. PC obtained by the method described are similar to those

obtained by steady state methods except in the range of initial desaturation. In this

range the curves differ in that with the dynamic method, the values of K and S both

remain unchanged until
PC

exceeds
b

at which time K and S are reduced abrupt-

ly. During this abrupt desaturation, the values of
PC

may actually decrease slightly;

that is, pressure hysteresis takes place. A typical log-log plot of K vs. p is

shown in Figure 1-5.

An explanation for the pressure hysteresis is that under dynamic conditions, air

will have to replace water by bulk flow. There is not time for significant air to

enter by diffusion or to escape from solution. Consequently, no significant desatura-

tion can take place until the air entry pressure of the sample is reached. Once a con-

tinuous air phase exists, however, air is free to enter numerous larger pore spaces

that may previously have been isolated by water. When these start to empty, the value

of
PC decreases measurably. The decrease is more noticeable for soils having a large

range of pore sizes. The decrease for sands having a very uniform pore size may be

very small.
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Figure I-S. Typical experimental relation between hydraulic conductivity and
capillary pressure.

During the period when the value of
PC

is actually decreasing, the value of K

continues to decrease rapidly, but accurate measurements are not possible because the

water pressure changes too rapidly. By the time
PC

has resumed its upward climb,

the value of K will have dropped to about .5 K10 . Therefore, a typical curve ob-

tained by the dynamic method indicates a constant K equal to K10 over a range of

PC
less than or equal to the air entry pressure. At this pressure the value of K

drops abruptly to about 50 percent of K10 , usually without any change of c
that

can be accurately recorded.

This type of behavior is clearly not in accordance with predictions based upon

present theories of soil water tdiffusivity.ht It can be understood only by a consider-

ation of flow of the air phase as well as the water. The resistance to the entrance

of air is significant during a laboratory drainage situation and there is no reason

to suppose that this is not also the case in the field. Nevertheless, the measured

curves of K as a function of i
usually can be described with reasonable accuracy

by the empirical approximation of Brooks and Corey, that is,

Kb (1-6)

1.0 C

for c1b , and

16
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K

K10 = 1.0 (1-7)

for
PC - Pb

. However, the approximation may not be sufficiently accurate for ex-

tremely heterogeneous soils.

At the end of the experiment described above, data are available for the calcula-

tion of all of the parameters listed at the beginning of the section. The value of

A may be approximated by the relationship of Brooks and Corey (1964) (1-8), that is,

or it may be obtained directly from plots of the log Se as a function of log
1c

Such plots require the determination of S which also is needed for the determina-

tion of the "drainable" porosity.

Brooks and Corey (1964) and Laliberte et al (1968) have described a trial and

error graphical method for determining Sr such that the relationship between log 5e

and log
PC

is most nearly linear. However, a more convenient method of calculating

and A from data for S as a function of
PC

has been developed recently by

Stauffer and Corey. The method employs a Fortran program (shown in Appendix C) to do

more or less the same thing as the graphical procedure. This program computes Sr

, A and a correlation coefficient for the fit of the actual data with the

empirical function computed. The data input for this program include values of satura-

tion corresponding to values of
PC

greater than an estimated value of
b

Instruc-

tions for using the program are included in Appendix C.

17
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1.3 CAPILLARY PROPERTIES OF FIELD SOILS by D. W. Fitzsimmons

The importance of the capillary region to water movement is emphasized in other

sections of this paper. However, before these principles can be applied to field

problems, the necessary capillary parameters must be evaluated for the soil in situ.

Relations between water pressure and soil water content have been measured routinely

since the conception of the tensiometer. Although these data are not obtained with-

out questionable accuracy, nor without difficulty, it will be assumed that the water

content-pressure function can be measured.

Measurement of flow characteristics, however, is not so readily dismissed. Many

techniques have been devised for estimating the saturated hydraulic conductivity,

ranging from infiltrometer tests through various groundwater pumping schemes, depend-

ing on the region of the profile of interest. Several attempts have been made to

develop methods for measuring unsaturated hydraulic conductivity in situ. So far,

these attempts have met with limited success due to difficulties encountered in making

precise measurements under field conditions. Laboratory methods such as described in

the previous section are of limited use, due in part to the uncertainty of obtaining

samples which are actually undisturbed.

Because of the difficulties involved in obtaining hydraulic conductivity data

either in the field or in the laboratory numerous attempts have been made to relate

the hydraulic conductivity of a soil to other soil characteristics which are easier

to measure. Most methods of calculating hydraulic conductivity do not work well for

a range of soil types. One method seems to work quite well for one type of soil while

another works well for a different soil. Some investigators have had to use factors

of twenty or more in order to match calculated hydraulic conductivities with experi-

mental values for some types of soil.

Relating the hydraulic conductivity to desaturation characteristics appears to

be the most promising of these methods. Rose (1949), Burdine (1953), Millington and

Quirk (1961), Brooks and Corey (1964) and Brutsaert (1968) are among those who have

developed equations for calculating the hydraulic conductivity from desaturation data.

The study reported here describes a method for calculating unsaturated hydraulic

conductivity of field soils from the desaturation characteristics of disturbed samples

of the same soil.
18



1.3.1 BASIC EQUATIONS

Carman (1937) modified the Kozeny (1927) equation to obtain an equation for the

permeability of a soil which can be expressed as

k
R24)S

(1-10)

where R is the hydraulic radius of a pore, S is the saturation, 4) is the poros-

ity, c is a shape factor and T is a tortuosity factor. Assuming that the pores

are cylindrical, the hydraulic radius, R , of a pore is r/2 , where r is the

radius of the pore. Defining relative permeability, k. , as k/k10 where k is

the permeability at any given saturation and k1
0

is the saturated permeability of

the soil (permeability when S = 1), Equation (1-10) becomes

(r) 4)S/cT
k. =

(r) 4)/cT10

According to Burdine (1953), the average value of r2 should be used for porous

media, and T10/T5 can be expressed as

T S-S 2
1.0 r

T - 1-S
S r

(1-12)

k. =

-2
Sr

19

where Sr is the residual saturation of the soil as defined by Brooks and Corey (1964).

Using Burdine's work, Equation (I-li) can be expressed as

2

2 (1-13)

r10

where r is the average value of r for all pores filled with water at saturation,

S . Although Equation (1-13) is presented in terms of permeability, it is equally

adaptable to calculating hydraulic conductivity, since it represents the value rela-

tive to its saturated value.

Equation (1-13) can be used to calculate the unsaturated hydraulic conductivity

of a soil from its desaturation characteristics. The saturation values taken directly

from the capillary pressure head-desaturation relationship for the soil and the values

of
2

can be calculated using the equation presented in the following paragraphs.



A computer program for carrying out these calculations has been presented by Sinclair

(1973).

The incremental change in the volume of water in the pores of a soil associated

with an incremental change in saturation can be expressed as

dV = 4) V5 dS (1-14)

where is the bulk volume of the soil. The number of pores, F , which desaturate

or saturate due to an incremental change in saturation can be expressed as

4(2cr) II r d( )

Pc/I

where y is the specific weight of water, a is the surface tension of water and

d('1) is the incremental change in the reciprocal of the capillary pressure head

coresponding to a given incremental change in saturation. The values of dS and

d(11) can be obtained from a capillary pressure head saturation relationship for

theCsoil. The rest of the values are constant for a given soil and fluid.

A typical capillary pressure head-saturation relationship is shown in Figure 1-6.

This curve can be divided, as shown, into arbitrary increments of capillary pressure

head (p1/y, p2/y, , ply) and corresponding increments of saturation

S2,
, Si). The average capillary pressure head (PA) and saturation (SA)

for each increment are

and

PA = (p
+n-1 n-i

SA =(S +S)/2.
n-i n-1 n

The average radius of the pores corresponding to the average capillary pressure head

for each increment can be calculated using the equation

n-i
= (2 cmos c)/PA

n-i
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Figure 1-6. Typical capillary pressure head-saturation curve showing panel points
for calculating distribution of pore sizes.

where ci. is the contact angle of water against the wall of a pore. These values are

used in Equation (1-15) to determine how many pores in an increment would desaturate

for a given incremental change in saturation. A hypothetical curve showing the num-

ber of pores, F , plotted versus the average radius, RA , of the pores in each panel

is shown in Figure 1-7. This plot shows the pore size distribution of the soil and is

used to determine the values of to be used in Equation (1-13).

Before the values of
2

can be determined, the pore size distribution function

must be normalized so that it will represent a probability density function. This can

be done by dividing each F1 by the area under the curve in Figure 1-7. The area

under the curve (FNORM) can be calculated using the trapezoidal formula on each panel

and summing the areas of each panel; that is,

FNORM

n =ND-1

(F1 + Fn)(n+l_fl)/2 (1-19)

n= 1
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I

The average value of can be calculated using the formula

n = ND-1
(RA)(F) + (RA+i)(Fn+1)}(RAn+1_RAn)-2

a 2 (FNORM)
r =

n= a

where a is the subscript of the capillary pressure head at which the hydraulic con-

ductivity is to be calculated using Equation (1-13).

1.3.2 LABORATORY EXPERIMENTS

Experimental data were gathered for seven agricultural soils. Both hydraulic con-

ductivity and desaturation data were obtained for undisturbed samples of each soil.

Desaturation data were also obtained for disturbed samples of these soils. These data

22
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r RA1 RA5 RA2 RA1

Pore radius

Figure 1-7. Hypothetical pore size distribution curve showing the panel points
calculated from the saturation curve.

where ND is the number of increments chosen to divide the curve in Figure 1-6.



made it possible to calculate the hydraulic conductivity of the soils from the desat-

uration characteristics of both disturbed and undisturbed samples of a soil, and to

compare these calculated values with experimentally determined values.

Undisturbed cores of the field soils were taken with a soil sampler developed by

Hayden and Heineinan (1968). This is a double tube, split sleeve type sampler which

takes 7.5 cm diameter cores up to 23 cm in length.

Once the cores were obtained, they were encased in heat shrinkable plastic tubing

for protection and to prevent fluid from flowing along the walls of the samples during

the hydraulic conductivity tests.

Once the samples were prepared, the relation between hydraulic conductivity and

capillary pressure head was determined using a technique similar to that of Brooks and

Corey (1964). Saturation-capillary pressure head data were obtained by a technique

similar to that described by Sinclair (1970).

Desaturation data were obtained from disturbed soil samples in a similar manner.

Soil from undisturbed samples was crumbled carefully to avoid destroying the small peds,

then passed through a No. 10 sieve. The soil was then placed in a sample container

and packed by the dropping method described by Reeve and Brooks (1953).

These desaturation data were used, with Equations (1-13) and (1-15) to calculate

the p/y - K relationships for the seven soils. The calculated values are compared

with corresponding relationships obtained from undisturbed cores.

A typical
c'

- K relationship for a uniform porous medium, such as glass beads,

is shown in Figure 1-8. The features of such a relationship are discussed in detail

in a previous section of this paper.

Experimental and calculated
c'

- K relationships for the Ritz silt loam are

compared in Figure 1-9. The experimental data were obtained for two different samples

of the same soil. The fact that the data plot as essentially one curve is an indication

that the method used to determine hydraulic conductivity gives reproducible results.

23



101

1
00

10-1

1
o_2

100

Invariant zone

Transition zone

Straight line zone

101

24

io2

cm

Figure 1-8. Typical capillary pressure head-hydraulic conductivity relationship
for uniform porous media.

Referring to Figure 1-9, it appears that the saturated hydraulic conductivity

of this soil is about .001 cm/sec and is essentially constant until a capillary pres-

sure head of about 40 cm is reached. Compared to the p/y - K relationship for a

uniform soil, the experimental relationship has a long transition zone and a poorly

defined straight-line zone. The long transition zone and continuously curving plot

of the data points at the higher capillary pressure heads seem to be characteristic

of undisturbed agricultural soils. This is the reason that some theories developed
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cm

Figure 1-9. Capillary pressure head hydraulic conductivity relationships for Ritz
silt loam soil (calc.-calculated value, exp.-experirnental value,
dist.-disturbed sample, undist.-undisturbed core)

for uniform materials such as glass beads do not predict the hydraulic characteristics

of agricultural soils very well.

The - K relationship calculated using the - S data for the undisturbed

sample of this soil (solid line) seems to predict the saturated hydraulic conductivity

of this soil reasonably well. As pointed out above, it also predicts the shape of the

experimental relationship quite well. It does not however, predict the hydraulic

conductivity well at the higher values of capillary pressure head.

The - K relationship calculated using the p/y - S data for the disturbed

soil samples (dashed line) predicts the experimental hydraulic conductivity values quite
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well at higher values of capillary pressure head. It does not do a good job, though,

of predicting the saturated permeability of this soil. Even so, either of the calcu-

lated
c'

- K relationships shown in Figure 1-9 would be quite useful in making

unsaturated flow calculations for this soil. For making flow estimates, the ease of

obtaining these
c'

- K relationships might easily justify their use.

If more accurate flow estimates are needed, the agreement between the calculated

and experimental relationships can be improved by scaling. In this study it was found

that scaling the relationships by dividing the hydraulic conductivity by the saturated

hydraulic conductivity and the capillary pressure head by the bubbling pressure head

of the soil produced the best results. Scaled
c'

- K relationships for the Ritz

silt loam soil are shown in Figure 1-10. As can be seen, the calculated scaled

Pc/I - K relationship for the disturbed soil samples fits the scaled experimental

data just as well as the
c'

- K relationship calculated for the undisturbed sample.

K/K1
.0

100

10-1

Caic. ,dist.
Caic. ,undist.

Exp. ,undist.
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Figure 1-10. Scaled capillary pressure head-relative hydraulic conductivity

relationships for Ritz silt loam soil.
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Thus it appears that this method provides a means of calculating the capillary

properties if bubbling pressure head and saturated hydraulic conductivity can be meas-

ured in the field.

Once these two parameters are known, the
c1

- K relationship for the field

soil can be determined by multiplying scaled values by the scaling parameter. The

time required to measure the bubbling pressure head and saturated hydraulic conductiv-

ity of a soil in the field is partially offset by the fact that only the - S

relationship for disturbed samples of the soil is needed to calculate the
c'

- K

relationship for the field soil.

Scaled capillary pressure head-hydraulic conductivity relationships for the other

five soils are presented in Figure I-il. In general, the results obtained for these

soils were essentially the same as those for the Ritz silt loam soil.

K/K1
.0

100

10-1

K/K10 -2

Figure I-il. Scaled capillary pressure head-hydraulic conductivity relationships
for five soils.
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Figure I-li. (Continued) Scaled capillary pressure head-hydraulic conductivity relationships
for five soils.
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It should be noted that calculated - K relationships presented in Figure

1-12 for Chard non-calcareous fine sandy loam soil do not fit the experimental P/T - K

relationship for this soil very well. The slopes of the calculated - K rela-

tionships are not nearly as steep as the slope of the experimental relationship ap-

parently because this soil is anisotropic. Scaled
c'

- K relationships have not

been presented for this soil since the methods of calculating these relationships are

apparently valid only for isotropic soils.
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Figure 1-12. Capillary pressure head-hydraulic conductivity relationships for
the Chard non-calcareous very fine sandy loam.



SECTION II.

MODELING CAPILLARY FLOW SYSTEMS

The objective of model construction, whether physical or mathematical, is to
predict the performance of a full-sized system without the expense and time required
to observe the response of the full-sized system to the range of stimuli that may be
expected to occur naturally. Such models must necessarily be simplifications of
nature's system in order to quantify the parameters considered pertinent to the de-
sired results.

Whenever one constructs a physical model for observing fluid flow in porous
media, it is immediately obvious that the geometric dimensions of the model must be
somehow related to those of the prototype if the model is to behave similarly. Yet,

mathematical models are very often constructed without regard tosiinilitude, or
formulation in terms of dimensionless parameters, which allows extension of results
to prototypes of similar geometry.

This section describes procedures for satisfying criteria of similitude in
cases of both saturated and partially saturated flow, and describes the dimensionless

variables necessary for consideration of the effects of the partially saturated region.

11.1 SIMILITUDE CRITERIA by R. H. Brooks

The literature is replete with the solution of various boundary value problems

that have application only to one prototype situation. Some of these solutions were

obtained with mathematical models while others were obtained using a physical model.

Extrapolation of results to other specific conditions are virtually impossible because

the solutions have not been presented in terms of scaled variables or scaled boundaries

that satisfy similarity criteria.

By satisfying similarity criteria, one not only may extend the results to a similar

prototype, but generalizations can be made that provide an insight into the physical

nature of the performance of the system. Without similar criteria it becomes nearly

impossible to make generalized conclusions.

There are two generally accepted methods for establishing criteria of similitude.

The first is usually called dimensional analysis and is commonly used by hydraulic

engineers. The second method is called inspectional analysis and requires that the

differential equation describing the physical processes be known.
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The purpose of this section is not to review or discuss the various methods of

establishing similitude requirements, but rather to apply criteria that have been

previously developed to the flow of fluids in porous media.

The similitude requirements proposed by Brooks and Corey (1964) will be reviewed

and applied to the mathematical model described herein. They found that by applying

the method of inspectional analysis to the general flow equation of one fluid moving

in a homogeneous medium, a set of similitude requirements could be established. They

discovered that if these requirements were satisfied, the solutions of the differential

equations yielded identical particular solutions in terms of scaled variables.

The basic equation for the flow of fluids in porous media is obtained by combining

Darcy's Law with the continuity equation. The basic units in this equation are force,

length, and time. The properties of the fluid and the medium can be defined in terms

of these three basic units. For example, permeability can be expressed in terms of

length.

If the basic equation is written in terms of energy per unit volume, then the

equation may be appropriately scaled by using a standard unit of energy that contains

standard units of force and length. Since hydraulic conductivity may be a variable,

then a standard unit of hydraulic conductivity must be chosen also.

The basic flow equation, Darcy's Law, may be expressed in terms of energy per

unit volume as

-q- V(-p +yz)
it c

where q is the volumetric flux per unit area and p is fluid dynamic viscosity.

The standard units of energy and hydraulic conductivity are chosen for the present

as p and K respectively. This standard energy unit is a standard pressure.

The physical significance of these terms will be pointed out later in the development.

By dividing each energy term by the standard energy and hydraulic conductivity by the

standard hydraulic conductivity, the standard units for the other terms in the equation

may be deduced. Thus, Equation (11-1) becomes
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q/K0 =

kp0

K V(p/p + -r p0

Ki.'since k = - , then Equation (11-2) may be expressed as

K (p0) PCq/K =-
o K (i) P p0 0 0

The standard unit of length for the gradient, V , must be p/y and the standard

flux, q , must be K , the saturated hydraulic conductivity.

Using simplified notation and rewriting, Equation (11-3) becomes

q. = K. V.(-p. + Z.) (11-4)

which is identical in form to Equation (11-1). The dot notation is defined as:

q. = scaled flux, q/K0

V. = scaled gradient, L0V

p. = scaled pressure, p/p0
Z. = scaled elevation above an arbitrary datum, z/L0 , and L0

is the standard length, ply

Obviously, if one chooses a standard pressure as the standard unit of energy,

the characteristic length for similitude must be ply or some characteristic pres-

sure head.

For saturated media, K0 is a constant and the standard pressure head p0/y
may be any characteristic pressure head related to the flow geometry or any char-

acteristic length. The properties of the medium do not become part of the similitude

criteria. As long as the medium is always saturated, the only similitude criteria

that must be satisfied are those for geometric similarity, i.e.,

The macroscopic boundaries of the model must have a shape and orientation

similar to the prototype.

The size of the model must be such that the ratio of all corresponding

lengths must be the same for model and prototype,

(11-2)

(11-3)

(it.) = (p.)Dm p
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where L and D are any arbitrary length dimensions and the subscripts p and

m denote prototype and model respectively.

If at any time in the flow system the medium becomes partially saturated so that

K = f(p ) (11-6)c

then a geometric characteristic length is not sufficient for use as a standard pres-

sure head or as a standard length. In other words, for the general case, the standard

pressure head and standard permeability cannot be arbitrarily chosen. If the relative

flux, q. , in Equation (11-4) must be the same for both prototype and model, the func-

tional relationship given by Equation (11-6) must be identical for both model and

prototype.

Even though the relationship given by Equation (11-6) is different for wetting

and drying of media, the standard units used in Equation (11-6) should be intrinsic

media properties and independent of the type of flow. If the standard units for af-

finity and similarity are to be practical, they should also be measurable properties.

In studies dealing with the drainage of liquids from porous media, Brooks and

Corey (1964) found that effective saturation and capillary pressure could be related

by a power function. These relationships are described in Section I of this paper.

If the functional relationships given by Brooks and Corey are valid, the bubbling

pressure head
b' and the saturated hydraulic conductivity K10 reduce the function-

al relationship among the variables to one that is the same for all soils having iden-

tical values of A . Therefore, these two hydraulic properties of porous media log-

ically become the standard pressure head and hydraulic conductivity for satisfying

the general similitude and affinity requirements for flow in porous media. The require-

ments necessary and sufficient for two partially saturated systems to be affine are

that the pore size distribution index A must be the same for two media. Furthermore,

similarity criteria will be satisfied if the characteristic or standard length is the

bubbling pressure head. In other words, the size of the model must be such that

L
(11-7)
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where L is any geometric dimension. Corey, Corey, and Brooks (1965) demonstrated

that if the above requirements were satisfied for the drainage cycle, the two systems

would be affine on the imbibition cycle as well.

The general scaled differential equation for imbibition or drainage is obtained

by combining scaled Darcy's Law with the scaled continuity equation. The continuity

equation is scaled in a manner similar to Darcy's Law and in dimensional form it may

be written as

or

or

div() =
e

where cle is effective porosity.

If q is scaled by K1
0'

by to and div by
b'

, then Equation (11-8)

becomes

t0K10
1b

div q as. (11-9)
K t/t
1.0 0

as.
(div. q.)

-

where dots designate scaled dimensionless variables. Since Equation (11-10) must be

identical in form to Equation (11-8) and must yield identical particular solutions, let

t0K10y
- 1

eb

1be
to - yK10

as.

at

34

(11-8)

and

A =A (11-7)
m p



Thus, for unsteady flow in porous media, the standard time is given by Equation (11-12)

and the general scaled equation for flow of a fluid in partially saturated media be-

comes

div.[K.V.(-p. + Z.)} = (11-13)

where the dots designate scaled variables or operators with respect to scaled var-

iables.

The scaled partial differential equation, (11-13), may be rearranged in terms

of other dependent variables, e.g., scaled saturation, S. , or scaled hydraulic

head, H

Equation (11-13) may be solved using any suitable relationship among saturation,

capillary pressure, and permeability provided these variables are scaled with the

standard quantities previously mentioned. If the pore size distribution index is

known, then the results will have application to other similar boundary conditions

having the same pore size distribution index. The relationship among saturation,

capillary pressure, and permeability need not be in functional form. They may be a

set of tabular values and they may be for either imbibition, drainage, or a combina-

tion of various types of flow.

The standard units of permeability, capillary pressure, and saturation are in-

trinsic properties of the medium and one need not be concerned with the type of func-

tion (or tabular data) used to describe the flow process so long as the media proper-

ties described by Brooks and Corey are definable. If they cannot be defined, then

the solutions are not transferable to other similar conditions.

A suimnary of the standard units used in Equation (11-13), and other hydraulic

properties of media, is given in Table 11-1 below. Other standard units may be de-

fined from those given in Table 11-1, e.g., diffusivity and hydraulic head.
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Table IT-i. Standard Units and Hydraulic Properties of Media

Length L0
= 1b/'1

Time to = PbehI'1KiO

Permeability K = K10

Capillary pressure
=

Pore size distribution index A

Effective porosity = al-S)

Residual saturation S
r
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11.2 VERTICAL DRAINAGE OF SOIL PROFILE by R. H. Brooks

An application of the concept of similarity to drainage of one-dimensional soil

profiles is presented to illustrate the usefulness of this concept in studying the

drainage characteristics of soils.

If the soil is homogeneous and the soil profile of interest is nowhere saturated,

then the combined continuity equation and Darcy's Law may be transformed into a dif-

fusivity-type equation where soil-water content is the only independent variable.

The transformation assumes capillary pressure and hydraulic conductivity are single

valued functions of water content. The unscaled diffusivity equation for one-dimen-

sional vertical drainage is expressed as

e_
{D(e)__! +K]ez

in which the variables 0 , z , and t are: the effective volumetric water content

of the soil, the elevation above a boundary of constant water content such as the cap-

illary fringe, and time, respectively. Effective volumetric water content is defined

as

0-0
r

e -G
r

where is the residual water content and is the porosity of the soil. The

diffusivity function, D(0) , is defined as the product of the capillary conductivity

function and the slope of the capillary pressure-water content curve, i.e.

Bp /1
D(0) = -K

The equations of Brooks and Corey (1969) for relating capillary pressure and hy-

draulic conductivity can be expressed in terms of water content as

K K10 (e)(2 + 3X)/A

and

- 1/ X

PC = b °e
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in which K10 = the saturated hydraulic conductivity; ®e = the effective water

content defined earlier;
b
= the bubbling pressure of the media, and A = the pore-

size distribution index.

Substituting Equations (11-16) and (11-17) into Equation (11-15) yields

D(0)

K10
b (1 + 2X)/X

(0 ) '-e

Equation (11-18) maybe scaled by letting D0 = K10 Pb/(4eXI) therefore

or

D(®)
-

1 + 2A)/A

D
0

D. = (0)(1 + 2A)/A

in which D. = D(e)/D0 and ®
= 0e

By scaling the diffusion equation (11-14), identical particular solutions may be

obtained for a large number of drainage systems that have specified absolute boundaries

provided that the initial and boundary conditions and media of the system are similar

to those of the mathematical model. Vhen the standard units are chosen to satisfy the

similarity criteria discussed in the previous section, and making use of Equations

(11-16, 17 and 18), Equation (11-14) reduces to the appropriate scaled diffusivity

equation, i.e.

ae. 1 3
3t. - 3 3Z.

(1 + 2A)/A L. +
+ 3A)/X
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(11-20)

It is apparent that for Equation (11-21) to yield identical particular solutions, the

pore-size distribution index, A , must be the same for any two systems. If Equation

(11-21) is solved using specific boundary and initial conditions, and for several soils

having various values of A , one can determine how pore-size distribution affects

water content above the water table during vertical drainage.

The initial and boundary conditions imposed upon Equation (11-21) are as

follows:



0. (Z. ,O) = 1 for 0 < Z. < L. (11-22)

in which L. = L/L and L = the height of the soil profile measured from the water

table to the soil surface:

0. (Z. ,t) = 1 for 0 < Z. < 1.0 (11-23)

0.(L.,t.) = 1 - q. fort. > 0 (11-24)

where L. > 1.0

The predictor-corrector finite-difference scheme introduced by Douglas and Jones

(1963) was used to solve the one-dimensional diffusion equation (11-21) shown previous-

ly. The advantages of this numerical method over various other finite-difference meth-

ods are that it is algebraically explicit, it is second order accurate in both the

space and time variables, and it is unconditionally stable. The development of this

method of solution for the one-dimensional diffusion equation is not within the scope

of this section. For the details of the development, the reader is referred to the

thesis by Ng (1968).

Equation (11-21) was solved for various soil profile depths and various pore-size

distribution indices. A total of 58 soil profiles were investigated. With scaled pro-

file depth and A as parameters, scaled water content was plotted as a function of

scaled elevation above the water table, and scaled time. Some of the data are shown

in Figures Il-i and 11-2. The scaled profile depths are 2.0 and 7.0, respectively.

Scaled elevation above the water table begins with unity on each set of curves since

0. = 1.0 for 0 < Z. < 1.0 . The equilibrium value of 0. , or the static distribution

of water content is represented by the curve t. = . This curve was obtained from

Equation (11-17) by letting Z. = P. which results in 0. = (Z.) . The numerical

solution converges to the equilibrium value as noted by the coincidence of the curves

in Figure 11-2(a) for t. = 590. In most cases it was not practical to carry the

numerical solution to times approaching infinity. The largest scaled time used was

590.

To convert scaled variables to dimensioned variables, one must multiply by the

standard units. For example, if Figure 11-2 represents a soil profile with a bubbling
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Figure 11-2. Scaled water content as a function of scaled elevation above the
water table for three pore-size distribution indices, Z. = 2.

40

0.2 .4.6 .81.0 0.2.4.6 .81.0 0.2 .4 .6 .8 I .0

SCALED WATER CONTENT - e

Figure 11-1. Scaled water content as a function of scaled elevation above the
water table for three pore-size distribution indices, Z. = 7.



pressure head of 1 foot, hydraulic conductivity of 1 foot per day, and effective

porosity of 0.25, then a scaled time of unity is equal to 6 hours of real time. If,

for the example given above, A is 6.0 and the profile depth is 7 feet, (see Figure

11-2(c)) after 30 hours (t. = 5.0) the profile is approximately 50 percent drained.

On the other hand, if X= 0.167 (Figure 11-2(a)), then equilibrium is closely ap-

proached in 48 hours (t. = 12, curve not shown).

Field capacity has been defined as the equilibrium water content after 48 hours

of drainage. The definition is used often without qualification. In the above exam-

ple where drainage of similar profile depths are compared with soils of two different

pore size distributions, field capacity is a function of the type of soil as well as

the profile depth. If agricultural soils tend to have small values of A and small

values of P!P , then the term field capacity as defined above may have general

application. However, one should recognize its limitations.

In addition to obtaining the aforementioned data, volume of water drained was

obtained as a function of time. Scaled volume may be obtained by integrating under

the curves of Figures 11-1 and 11-2. Accumulative scaled volume may be expressed as

V. = (L. - 1)
1L.

0.(Z., t.)dZ. (11-25)

in which the i subscript refers to a particular time. The results of V. as a

function of t. shown in Figures 11-3 and 11-4 were obtained by numerical integra-

tion. The curves are for various pore-size distribution indices and for various

scaled profile depths. Experimental data points for six soil columns are shown also

in the figures.

An increase in the profile depth has a similar effect to an increase in the pore-

size distribution index, other things being equal.

All of the theoretical curves seem to be linear for small values of scaled time,

i.e., V. t. In other words, the scaled volume seems to be independent of the pore

size distribution and profile depth during early stages of drainage.

The scaled mathematical solution is compared with experimental results from a

physical model in Figures 11-5 and 11-6. The results from these two systems, as
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measured by volume as a function of time, are in close agreement. The hydraulic

properties (standard units) of the physical model were obtained in separate experi-

ments from the experiment of volume vs time.

Discrepancies between the mathematical model and the physical model may be due

largely to the inadequacy of the Brooks-Corey equations to describe exactly the

relationships among capillary pressure, water content and capillary conductivity,

especially in the so-called "transition" zone, i.e., the downward concavity of the

curve of P vs S. However, the differences between the mathematical model and the
c

physical experiment are not great and these data lend support to both the similitude

criteria presented by Brooks and Corey and to the Brooks-Corey approximations for

predicting fluid flow in porous media.

The assumption that drainage occurs instantaneously in the partially saturated

region above the water table is simply not valid and will result in inadequate design of

subsurface drainage systems when the flow region is relatively shallow. The specific

yield or volume associated with drainable porosity may not be obtained from a drainage

profile for a considerable period of time.
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11.3 HORIZONTAL FLOW ABOVE THE WATER TABLE by H. R. Duke

Most drainage research investigators have recognized the existence of horizontal

flow above the water table and delayed drainage of soils as the water table recedes.

Donnan (1947), for example, found that increasing the flow depth by the height of the

capillary fringe improved the results of equilibrium drainage calculations. Many sub-

sequent investigations have followed similar lines of reason. However, the contribu-

tion of the capillary region is not uniquely dependent upon the height of the saturated

region above the water table, but depends as well upon the distribution of pore sizes,

the flux through the partially saturated region, the celerity of the water table, and

the depth of the water table below the soil surface. In the following analysis, it

will be assumed that water table movement is sufficiently slow that the soil water can

be considered in equilibrium with the water table, that the soil is uniform and stable,

and that only mechanical potential gradients exist.

Based on the Dupuit-Forchheimer assumptions and the assumptions enumerated above,

the mass continuity equation can be expressed as

S B= -i: (1(
k + Q (11-26)

where
e

is the effective, or drainable, porosity; is the saturated hydraulic

conductivity; Q is the strength of the distributed water source; x is the horizon-

tal space coordinate; and t is time. The horizontal gradient, BY/Bx , (Y is the

water table elevation referred to the impermeable lower boundary) is assumed to be uni-

form along a vertical line, both above and below the water table. If this equation is

to represent both partially saturated and saturated flow, the storage term, and

horizontal flow term,
k

must account for the effects of capillary storage and

capillary conductivity, respectively. Since the flow problem is analyzed as a one-

dimensional problem, the effect of the capillary region is incorporated in the form

= Y + Hk (11-27)

where Hk is a fictitious depth of saturated soil having the same capacity for horizon-

tal flow as the capillary zone, and
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(11-28)

Dimensionless variables H. and Hk are defined by dividing by the bubbling

pressure head, a characteristic parameter of dimension length, so that H. = H/(pbIy)

In ternis of these scaled variables, the effective permeable height is

z = b'
in Equation (11-29)

1

and equating

1 dz
K1

0 +

p/r
H

I
I b"

to

z

Zr

dz]

gives

(11-30)
Hk - K [

1.0 J .1

which, when integrated results in

- H1
(11-31)H-

k y n- 1 1.

where H is a fictitious depth of saturated soil having a volume of drainable water

equal to that in the capillary zone. The concepts of an equivalent permeable height,

as suggested by Myers and van Bavel (Bouwer, 1964) and of an equivalent saturated

height used by Hedstrom, et al (1971) are employed.

11.3.1 EQUIVALENT PERMEABLE HEIGHT

The effectiveness of the capillary region in conducting water horizontally toward

a drain is given by an expression suggested by Myers and van Bavel (Bouwer, 1964) as

= K10

JH
.K dz (11-29)

where K is the capillary conductivity as a function of capillary pressure; z is

elevation above the water table, and H is the distance from the water table to the

soil surface. When H is less than the bubbling pressure head,
b'

, the soil re-

mains saturated to the surface and Hk = H . If H
> b'

the conductivity depends

upon elevation and any vertical flux which may exist.

11.3.1.1 Static equilibrium. When the soil profile is in static equilibrium

with the water table, as is assumed here for the case of transient drainage, z =

where r1 is the capillary pressure head and z can be substituted for p/y in

the Brooks-Corey relations. Substituting the Brooks-Corey relation for K when



0

49

pc/I

Figure 11-7. Capillary pressure profile in a soil with a steady downward flux of
water

As elevation increases above Z' , capillary pressure increases, and conductivity

decreases. Thus, the gradient of capillary pressure must decrease. If the soil pro-

file is sufficiently deep, the hydraulic conductivity continues to decrease with in-

creasing elevation until it approaches the flux in magnitude. That elevation at

which K = -q , is defined as Z" , where q is the volumetric flux rate, positive

upward, and is a constant greater than, but arbitrarily near unity.

After evaluating the elevations Z' and V' , at which the conductivity function

changes form, the equivalent permeable height is evaluated from Equation (11-29),

H (11-32)

11.3.1.2 Steady downward flow. During steady percolation to a water table, the

capillary pressure head is, at every point, less than the elevation above the water

table. It is apparent from Figure 11-7 that the relation between capillary pressure

head and elevation above the water table exhibits three separate regions delineated

by Z' , Z" , and H . Before Equation (11-29) can be applied to this case, these

elevations and their corresponding capillary pressures must be evaluated. In the

region between the water table and the point at which the capillary pressure equals

the bubbling pressure, (0 < Z < Z') , the hydraulic conductivity remains constant

at the saturated value (see Figure 11-7).



which can be expressed as

Hk K10 JK1O dZ
+ J

K dZ
+ J

(-cq.) dZl

0 Z Z"

which in terms of scaled variables reduces to
-l/

ç-cq.)

Hk = 1 - Eq.H.
+ J

1 + cq.P
dP.

1
P(1+q.P

It is important to emphasize that q. is defined positively upward, so that for the

case considered here, values of q. are negative.

Since the effective hydraulic conductivity depends upon saturation, the shape of

the saturation profile strongly influences the ability of the capillary region to

transmit water toward the drain. Figures 11-8 and 11-9 show the effects of n and

scaled depth to water table, H. , upon the effective permeable height, Hk , for

static profiles and the case of steady downward flux, respectively. It is apparent

1.4

q. = 0

6

10

H.

Figure 11-8. Scaled effective permeable height as a function of scaled water table

depth, static equilibrium.

that the major contribution to Hk. occurs within a relatively short distance above

the water table. Hk. is influenced by water table depth to greater depth for small

values of r and is more sensitive to changes in r for small values of n . Regard-

less of the value of , Elk. is never less than unity when H. > 1
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H.

Figure 11-9. Scaled effective permeable height as a function of scaled water table
depth, steady downward flux.

As previously mentioned, when the flux is downward, the hydraulic conductivity is

nowhere less than the magnitude of the flux. Therefore, downward flux increases the

effective permeable height, as indicated by Equation (11-34) and shown graphically in

Figure 11-9. The same general observations apply to this case as to the case of static

equilibrium. However, Hk. does not approach a constant as water-table depth increases,

Rather, as indicated by the second term in Equation (11-34), Hk. increases linearly
with H. at higher values of H. (i.e., H. > Z."). Therefore, the entire depth of

profile can contribute to horizontal flow and the water table depth becomes an impor-

tant consideration in evaluating the total flow system.

Figure 11-10 shows the influence of q. upon Hk. for a selected value of H.

and r . The rate of increase of Hk. with increasing q. is not great, except

when q. is relatively large. This suggests that Hk. can be calculated from the

static equilibrium equation with little error as long as q. is small. The rate of



Hk.
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-q.

Figure 11-10. Effect of flux upon effective permeable height

change of Hk. with respect to q. is also dependent upon ii (and upon H. for

shallow water table depths). As r increases, the deviation from the equilibrium

value increases.

11.3.2 EQUIVALENT SATURATED HEIGHT

When the water table depth varies significantly with time, the capillary region

influences the flow in a second way. The volume of water released from storage for

a unit decrease of the water table is dependent upon the depth to the water table.

This dependence has been discussed by Childs (1960), Duke (1972), and others. Such a

dependence of the specific yield upon depth to the water table can be treated analo-

gously to the previously discussed effective permeable height. A fictitious column

of saturated soil of height H5 that contains the same volume of drainable water as

the partially saturated soil profile is defined by

H

f
S dZ (11-35)

0



where Se the effective saturation, is defined by 5e = (S - Sr)/(1 - Sr) The

volume of drainable water per unit area of soil in this fictitious-column is given

by

Vd = 4)(l - Sr)Hs (11-36)

where Vd is the total water volume; 4) is total porosity; and Sr the residual

saturation. Volume Vd is equal to the volume of drainable water in a unit area of

soil of height, H , above the water table. Thus, the volume of water, Vr released

per unit area from the soil by a unit decline in the water table is given by

Vr = 4)[l+(H)H - (Hs)H+l] (11-37)

where the subscripts refer to the depth to water table at which H5 is evaluated.

By applying the Brooks-Corey expression

=

A
(11-38)

where A is the pore-size distribution index, with the appropriate limits on Equation

(11-35), the effective saturated height is evaluated in the same manner as the effec-

tive permeable height.

Carrying out these evaluations gives

H
s A-1 (11-39)

for the case of static equilibrium, where H5. is the effective saturated height

scaled by the bubbling pressure, and A is the pore size distribution index defined

by Brooks and Corey.

For the case of steady downward flux,
-1/i

H.
l-(eq.) + (-cq.)H.

P.-(-Eq.)
dP. . (11-40)
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Since = 2 (according to Brooks and Corey, 1964), H. is always greater

than Hk. for a given soil and water table depth. This means that the effect of

differences in depth to the water table is more significant with respect to the effec-

tive storage height than to the effective permeable height.

Figure lI-li illustrates the influence of water table depth, H. , upon H.

as computed from Equation (11-39), when the soil profile is in static equilibrium with

the water table. The scaled effective saturated height, H. , exhibits much the same

relation to water table depth as does
ILK.

. However, since the exponent of capillary

pressure, p , is larger (i.e., a smaller negative number, A < r ) in the equation

relating Se to
PC

than in the equation relating relative conductivity, K10/K

H5.

5
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H.

Figure lI-il. Scaled effective saturated height as a function of scaled water table
depth, static equilibrium.

to
PC H. is much larger than at a particular water table depth. H. is

much more sensitive to H. and to than is . Therefore the effective spec-

ific yield continues to change as the water table declines to relatively large depths.

As in the case for Hk. , a downward flux can significantly increase the magnitude

of H. as shown in Figure 11-12. Because of the magnitude of A relative to n

H. is influenced by the vertical flux more than is Hk. . Therefore, use of the

equilibrium equation to calculate H. may result in significant errors. Since the

case of steady percolation with a falling water table was not considered in this study,
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Figure 11-12. Scaled effective saturated height as a function of scaled water table
depth, steady downward flow

the effects of q. upon H. have not been evaluated in detaii.

The value of H5 , itself, is not directly related to the specific yield of the

soil. The difference in H between two successive water table positions, as given

in Equation (II-37),corresponds with the ordinary conception of specific yield. That

is, the specific yield for a given water table depth is proportional to the inverse

slope of the curves of Figures Il-li and 11-12.
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SECTION III.

EFFECT OF CAPILLARY FLOW ON DRAIN PERFORMANCE

INTRODUCT ION

Mathematical evaluations of drainage problems have been utilized for drain
design for over a century. Colding, a Danish engineer, is credited as being the
first to develop such an analysis, which he applied to the case of drainage in
equilibrium with constant, uniform percolation. In the years since, many investi-
gators have contributed to drainage theory to bring it to the present state of
considerable mathematical sophistication. Except for very idealized cases, the
mathematical complexity of the differential equations has required very naive
consideration of the influence of soil water retained by capillary forces above
the water table. As proved by the successful use of such equations, neglecting
the capillary influence does not seriously impair the utility of these equations
for a great many instances to which they are applied.

As mathematical sophistication of drainage equations progressed, investigators
began attempts to account for flow above the water table. Most such attempts to
date have, by one means or another, approximated the capillary region by an equiva-
lent saturated region having the same capacity to transmit water.

The research committee feels, however, that an understanding of capillary
effects and acknowledgement of their existence can reduce the incidence of made-
quate drain installation and reduce drainage costs resulting from overdesign. This

section of the paper describes the work of the research committee toward describing
effects of the capillary region upon drain performance.

111.1 FLOW IN SLOPING AQUIFERS by R. H. Brooks and R. R. Tebbs

It appears that the criteria for determining whether capillary effects are

significant must be expressed in relative terms so that specific problems may be

compared with models having similar characteristics and whose performance can be

predicted.

The similarity criteria of Brooks and Corey may be used to establish criteria

for evaluating the importance of the flow region above the water table.

This section deals with an application of similarity criteria to the solution

of a very simple one-dimensional flow problem. The purpose is to establish, in

quantitative terms, conditions for which the capillary region should be considered.
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111.1.1 THEORY

The model under consideration here consists of a uniformly sloping aquifer

bounded on the lower surface by an impermeable layer and on the upper surface by

the soil-atmosphere, interface where no evapotranspiration is permitted as shown

in Figure 111-i. The aquifer may be homogeneous-isotropic or homogeneous-anisotropic

(homogeneous layers parallel to the boundaries). The. aquifer is assumed to be

infinite in extent and dips at an angle, , with respect to the horizontal. A

steady source of water is maintained at an infinite distance upstream such that

the flow within the aquifer is parallel to its boundaries. It is further assumed

that relationships among permeability, capillary pressure, and saturation are

known for the aquifer or for each layer within the aquifer.

The existence of a water table and its location in the aquifer as well as the

hydraulic properties of the aquifer will determine the relative importance of the

flow in the capillary region. This can be illustrated best by using the notation

and symbols shown in Figure Ill-i.

The variation of capillary pressure, along any direction, s , can be

expressed through Darcy's Law, i.e.

dPc q5i-'

a -.i- y sine . (111-1)

Using the Brooks-Corey scaling criteria (see Section II), Equation (111-1) reduces to

cIS
(111-2)

where p.
= c'b S. , q. = q/K1 , K1 is the saturated hydraulic

conductivity, and K. is the scaled conductivity, K/K1 . The derivative in

Equation (111-2) is valid for any element of width dw.

Since all characteristic lengths are scaled by Pb/I , the thickness of the

aquifer in Figure 111-1 becomes D. = D 'b and the position of the water table

above the lower boundary becomes h. = h 'b
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IMPERMEABLE
BOUNDARY

Figure 111-1. Definition sketch for flow in a sloping aquifer showing the coordinate

system and the water content distribution curve for a particular

water table position.
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then

If the direction s in Equation (111-2) is taken along x in Figure Ill-i,

q.

K.
= sine , (111-3)

x

since dp./dx. along a streamline parallel to the boundary is zero. The total

relative flux through the aquifer is obtained by integrating Equation (111-3)

over the thickness of the aquifer, i.e.,

=
q.dz. = sine K.dz.

where K. = K. . It should be noted that for a particular value of z.x z

and K. are both constants in that direction x , but in the z.-direction

= 0 and K. is a function of z

An approximation for the variation of hydraulic conductivity in the z. -direction

may be obtained by writing Darcy's Law in the z.-direction and using the Brooks-

Corey equation of permeability as a function of capillary pressure as shown in the

following development.

Equation (111-2) written along the z.-direction reduces to

= sin(90°-)

or after separating the variables,

dp. = cosdz.

The variation of p. in the z.-direction is obtained by the equation

p. rz.

Jdp. = cos
J

dz.

0 h.
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The locus of points where p. = 0 (water table) is given by z. = h. Integrating

the above produces

p. = cos(z.-h.) (111-5)

From the Brooks-Corey equations

K. = (p.1 for p. > 1.0

and (111-6)

K. = 1.0 for O<p. <1.0

When Equation (111-5) is substituted into Equation (111-6) and redefining the limits

according to Figure 111-1 the result is

K. = [cos(z.-h.)} for z. > (h.+sec)

and

K. = 1.0 for (h.+sec) > z. > 0 (111-8)

The total scaled flux in the aquifer may be expressed in terms of the aquifer

properties and boundary conditions by substituting Equations (111-7) and (111-8)

into (111-4). The result is

(h.+sec) D.

Q. = sine
J

dz. + sin8
J

[cos(z.-h.)]dz . (111-9)

0 (h.+sec)

Integrating (111-9) and rearranging yields

Q. = sine [h. ( (D.-h.)1 - (sec)
+5ec8+
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(i-ri) (cos)

where Q. is the total scaled quantity of liquid flowing in the aquifer per unit



width. In terms os the scaling quantities already used,

Q. = Qy/K1

where Q is the actual volume flow per unit time in the aquifer per unit width.

It is convenient to reduce Equation (111-10) to a form that relates to the

aquifer thickness. This is accomplished by dividing Equation (111-10) by D. sine

The result is

h. 1-fl]

= sec
(l---) - (sec)

. (111-11)
D. sins D. D.

(l-)(cos/D) J

The maximum possible flow in the aquifer for a given thickness and dip is

= D. sine . Obviously then, Q./D. sine is the ratio of the scaled flow in

the aquifer to the maximum scaled flow and the sum of the 3 terms on the right side

of Equation (111-11) must be equal to or less than unity. If they are equal to

unity, the maximum aquifer thickness for a given water table position aquifer dip

is

and

D. = h. + sec
m

= D. sine

The three terms on the right side of Equation (111-10) are the ratio of the

flow in the three regions of the aquifer to the maximum flow, These three

regions are designated: Q. , the saturated region, Q.f , the capillary fringe

region and
c

the capillary region, i.e.,
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and

Q.f sec

Q. D.

(1
(sec\T1

D.J \ D. /

(i-n) (cos/D)

111.1.2 THEORETICAL RESULTS

It will be useful to compare the quantity of flow in each of the three regions

of the aquifer to the total flow in the aquifer for a given pore size distribution,

aquifer thickness, D. , and angle of dip, . The relative flow in each

region was obtained by summing Equation (111-13) and dividing each by the sum.

Inasmuch as h./D. is the relative position of the water table with respect

to the aquifer thickness as well as being proportioned to the flow in the saturated

region, it was selected as a boundary condition along with the aquifer thickness

and angle of dip. The pore size distribution, n , is the only aquifer property.

The relative flow in each region of the aquifer is plotted as a function of

aquifer thickness for various water table positions, angles of dip and pore size

distributions. These results are shown in Figures 111-2 through 111-4.

In Figure 111-2, the effect of the relative position of the water table upon

the flow in the three regions is shown for r=2 , and lO° . When n=2 , the

pore size distribution for the aquifer is the widest distribution possible. For

this aquifer property, the flow in the capillary region is very significant when

the water table is in the lower half of the aquifer. If the water table is coin-

cident with the lower boundary, the flow in the capillary region becomes as large

as the flow in the capillary fringe region when the aquifer becomes large.

Figure 111-3 is for the same aquifer geometry but for a pore size distribution

that is much more narrow, i.e., r=8 . If the water table does not occupy less than
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one-tenth of the thickness of the aquifer, the flow in the capillary region is less

than 10 percent. The curve for the saturated region and the capillary fringe region

is nearly symmetrical for all water table positions.

In Figure 111-4, the angle of dip has been increased to 450 for aquifers having

the same water table positions and pore size distribution as for Figure 111-2. The

angle of aquifer dip does not substantially change the disiribution of flow within

the three regions. The greatest reduction of flow in the three regions of the

aquifer when the angle of dip is increased occurs for relatively thin aquifers.

In Figure 111-5, the water table position in the aquifer may be obtained for

a particular aquifer thickness that will produce the maximum flow in the aquifer.

The maximum flow will occur in an aquifer when
c

is zero. For example, if an

aquifer has a scaled thickness of 5 and its dip is 10°, the water table must

occupy 0.8 of the aquifer to eliminate the flow in the capillary region.

111.1.3 CONCLUSIONS

Most subsurface agricultural drainage occurs in relatively thin aquifers having

little or no slope and the total flow toward the drains passes thru the three regions

mentioned above.

The relative flux in the capillary region is less for aquifers with uniform

pore size distributions than for aquifers with a wide range of pore sizes.

For relatively thin aquifers, the flow in the "fringe" region may be a signifi-

cant part of the total flow, particularly when the water table occupies less than

half of the total relative thickness of the aquifer. The effect is changed only

slightly by a more narrow range of pore sizes in the aquifer.

In general, for relatively thin aquifers, when the water table occupies a

position less than half of the relative thickness of the aquifer, the flow above

the water table will make a significant contribution to the total flow.
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For example, if the bubbling pressure head is 1.0 feet, then an aquifer six

feet thick will have a relative thickness of 6.0 and if the water table is 0.6

feet above the impermeable layer or occupies one-tenth of the aquifer thickness,

then the flow above the water table will be from 48 to 77 percent of the total

flow depending upon the pore size distribution. The flow in the capillary region

above the "fringe" on the other hand will be from 6 to 35 percent of the total

flow.

When one considers the importance of flow above the water table, it must be

considered in relative terms. Hopefully, this simple flow geometry will provide

engineers with an additional qualitative tool for making a decision as to the

importance of considering flow above the water table.
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111.2 WATER TABLE RESPONSE TO PARALLEL DRAINS by H. R. Duke

A preceding section illustrated how the effects of capillary conductivity and cap-

illary storage can be evaluated from measurable soil properties. This analysis pro-

vides a method by which the shape and position of the water table can be evaluated

even when the capillary region significantly influences the distribution of flux.

This section of the paper describes the results of a mathematical model, based

upon the Dupuit-Forchheimer assumptions, used to analyze the combined effects of sat-

urated and partially saturated flow on the performance of drains in shallow aquifers.

Admittedly, current technology could provide a more rigorous mathematical approach

than has been attempted here, since this approach accepts the Dupuit-Forchheimer

approximation. In later sections of this paper, the predicted performance is shown

to agree quite well with experimental data. This observation is accepted as evidence

of the adequacy of the approach used.

This study is limited to shallow, horizontal aquifers underlain at uniform depth

by an impermeable boundary. The drainage systems considered are restricted to fully

penetrating, parallel, open ditches of sufficient length that fluxes have components

in only two dimensions. The soils encountered are assumed to be homogeneous, iso-

tropic, and stable with time.

Under these conditions, the position of the water table is evaluated as affected

by the depth of tailwater in the ditch, rate of uniform infiltration, bubbling pres-

sure head, and distribution of pore sizes in the soil.

111.2.1 INADEQUACY OF CLASSICAL DRAINAGE THEORIES

A series of laboratory experiments was performed using a large sand-filled flume

to illustrate the effect of the capillary region, and to verify the results of the

numerical model. The experimental data are compared with two analytical solutions;

one typical of the classical solutions to equilibrium drainage and the other to trans-

ient drainage problems. The ellipse equation and Glover's equation for the case of

the drain on the impermeable boundary, respectively, are compared with experimental

data to illustrate that neglecting the effects of the capillary region can lead to
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significant errors. Figure 111-6 shows a comparison of the solution to the ellipse

equation with the steady state water table measured in the large flume. The measured

Poudre Sand

Yd/D=O

70

Distance from Drain-cm

Figure 111-6. Comparison of solution to the ellipse equation with experimentally
determined equilibrium water table position

water table is lower at the centerline than predicted by the ellipse equation. This

observation indicates that the ellipse equation results in an underestimation of the

spacing which will maintain the desired water table position.

Figure 111-7 compares the solution of Clover's equation with the experimental

data of Hedstroni et al (1971). Clover's equation predicts a significantly slower de-

cline of the water table than observed experimentally. Thus, like the equilibrium

equation, the classical equation for transient drainage underestimates the spacing for

a given water table response.

The degree of deviation of experimental data from theory shown in Figures 111-6

and III-? may not be observed in field installations designed by an experienced drain-

age engineer. The design values of specific yield and water table depth are usually

based upon previous experience with similar drainage systems in similar soils. As a

result, the value of specific yield normally used in design calculations is an artifi-

cial value, which forces the fit between experimental data and theory. Duke (1972)

discussed the hazard of using such artificial values of specific yield when the depth

to water table differs significantly from that at which the specific yield was evaluated.
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Figure 111-7. Comparison of solution to Glover's equation with experimentally
observed decline of the water table

Such "rule of thumb" practices undoubtedly give satisfactory results in areas where

considerable past experience is available, but fail to give due consideration to those

parameters that can result in significant differences in the flow situation.

111.2.2 SHAPE AND POSITION OF THE WATER TABLE

The numerical model was used to simulate 156 combinations of boundary and initial

conditions, soil properties, and infiltration rates. The numerical results discussed

represent typical examples of the cases evaluated.

111.2.2.1 Steady state. The effect of the capillary region upon the equilibrium

position of the water table depends on the effective permeable height of the capillary

region. Figure 111-8 indicates the effect of increasing Hk by increasing the bubbling

pressure head.

The upper curve of this figure represents the solution to the ellipse equation,

i.e., capillary flow is neglected. As the effective permeable height, Hk , is
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Figure 111-8. Relative effect of bubbling pressure head upon equilibrium water table
position

increased, the area, through which horizontal flow can occur, is increased. Since the

uniform flux is constant, the result of increasing Elk is that smaller gradients are

required and the water table becomes flatter. Since is directly proportional to

the effect of increasing
b'

is significantly reflected in the water table

position.

The water table position is not nearly as sensitive to n as it is to

since Elk is affected relatively little by n . The primary result of increased in-

filtration is to increase the water table elevation. This increase in water table ele-

vation reduces the fraction of the flow moving through the capillary region by increas-

ing the depth of saturated soil relative to Hk . As long as the water table is shal-

low,
11k

itself is little influenced by this increased flux, since increasing q.

tends to increase Hk , while the higher water table results in a smaller distance

from water table to soil surface and tends to decrease Hk . As a result, the magni-

tude of the error in water table elevation resulting from neglecting capillary flow is

relatively independent of flux. The relative error, however, decreases as the infil-

tration rate is increased.
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111.2.2.2 Transient flow. When the water table position changes with time, the

contribution of the capillary region depends on both the conductivity and the satura-

tion characteristics of the soil in the capillary zone. Hedstrom et al (1971) demon-

strated that the capillary region significantly affects transient performance of

drains. Their techniques, however, did not allow evaluation of the relative effects

of the effective permeable height, Hk , and the effective saturated height, H
upon transient drainage. The numerical model developed for this study is capable of

such analyses, and can simulate no capillary effects (Hk and assumed zero), the

influence of capillary conductivity only (H5 = 0) or the combined effects of capillary

conductivity and capillary storage. Figure 111-9 shows one such analysis, considering

each of the three alternatives for treating the capillary region.
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Figure 111-9. Comparison of the relative importance of capillary conductivity and

capillary storage to decline of the water table at the centerline

For the boundary conditions of the analysis shown, the effects of Hk and

are of the same order of magnitude. As in the steady state problem, the capillary

region tends to increase the depth through which flow can occur. This increased flow

depth tends to increase the rate of flow, and, consequently, increases the rate of

water table decline. Since H5 increases less rapidly than does water table depth,

the apparent specific yield increases with increasing water-table depth. The low ap-

parent specific yield at early time also increases the rate of water table decline,



since a smaller volume of water must be removed from the soil to obtain a given water

table decline.

Capillary flow is directly proportional to the magnitude of Hk . Therefore,

since Hk approaches a constant at relatively shallow water table depth, the conduct-

ivity contribution of the capillary region is little affected by water table depth, as

long as this depth is significantly greater than Pb/I . However, H5 is quite sen-

sitive to water table depth over a wide range. The influence of H5 upon release of

capillary water is not dependent upon the magnitude of H5 , but rather upon dH/dH

(i.e., rate of change of H5 with respect to water table depth). Since dH5/dH is

largest for small water table depth, the effect of capillary storage is more pronounced

when the water table is shallow.

The effects of increasing b'
upon the rate of water table decline are illus-

trated in Figure 111-10. As in the case of steady drainage, the capillary zone has a
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Figure 111-10. Effect of bubbling pressure head upon transient water table response

capacity to transmit flow toward the drain. As a result, increasing Pb/I increases

the effective permeable height, Hk , and drainage proceeds more rapidly. Since H5

is also directly proportional to b'
, the effect of capillary storage becomes more

pronounced as Pb/I 15 increased. For the initial condition illustrated in Figure III-9
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the soil was initially saturated to the surface for
b'

= 40 . As a result, the

water table decline at the centerline was almost instantaneous to the point where the

surface soil began to desaturate, thus accounting for the low water table at early

time.

The rate of water-table decline is not as sensitive to as to . The

sensitivity to changes in r decreases as r becomes large. So long as
b'

is

finite, the water table must drop more rapidly than indicated by analyses neglecting

capillary flow, regardless of the value of n . Note that as -* , H and H

approach
b'

rather than zero.

Because of differences in shape of drawdown curves, it is rather impractical to

compare the entire curve for various initial, boundary, and capillary conditions. Fur-

ther comparisons of water table response are based on the time required to achieve an

arbitrarily selected fraction of the total available drawdown. The relative drawdown,

selected for such comparisons is 0.8.

Figure Ill-li illustrates the time to reach this 80% of the initial water table

height relative to the corresponding time if capillary effects are neglected. Again,

this figure illustrates the reduced effectiveness of the capillary region at high bub-

bling pressures. The extremely fast response at high bubbling pressure for the case

Y/D = 2/3, Yd/D = 1/3 is because the soil profile remains saturated to the surface

during early time over a significant portion of the distance between drains. Figure

Ill-li also illustrates the effect of the initial water table level upon drain response.

At early time, the capillary region provides a larger flow area compared to the depth

below the water table as the initial water table depth is decreased. This larger area

for flow results in more rapid drawdown for the lower initial water table. As bubbling

pressure head is increased, this difference in effective flow depth is offset by in-

creased convergence losses in the capillary region.
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Figure Ill-il. Effect of bubbling pressure head upon relative time required to
lower water table to 80 percent of the initial drainable depth.
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111.3 SOIL PROFILE AERATION by H. R. Duke

Although aeration of the crop root zone is one of the primary objectives of agri-

cultural drainage, present method of design consider this factor only insofar as the

depth of water table is specified. In reality, the position of the water table is of

little direct importance. More important is the effect of the water table upon move-

ment of water and air within the partially saturated root zone. The results of inves-

tigations by Stegman et al (1966) implied that adequate soil aeration may be achieved

by maintaining the effective saturation below some maximum value within the root zone.

Thus, besides determining the position of the water table (considering both sat-

urated and partially saturated flow), adequate drain design should include evaluation

of soil water content above the water table and its effect on soil aeration.

111.3.1 REGION OF AERATION

A preceding section has indicated the manner in which the water table position is

affected by the capillary flow region. This section is devoted to a discussion of the

effects of the region of insufficient aeration above the water table upon drain design.

The effect of the capillary region upon design spacing of drains is evaluated by assuni-

ing that the upper limit of this zone of insufficient aeration satisfies the same aer-

ation requirements as the water table calculated by neglecting capillary flow. Thus,

an equivalent spacing is defined that will give a water table elevation (neglecting

capillary flow) equal to the elevation of the zone of insufficient aeration. For pur-

poses of this discussion, it is assumed that the soil is adequately aerated whenever

the effective saturation is less than 0.8.

For a given soil and flux of water, the ability of the soil to support a signifi-.

cant rate of gaseous diffusion is severely restricted for some distance above the water

table. In fact, the gaseous phase is not continuous below the elevation at which the

capillary pressure equals the bubbling pressure. Above this elevation, z' , the frac-

tion of air increases with elevation. At some distance above the water table, zA

the air phase may reach such a magnitude that gaseous transfer with the atmosphere is

sufficient to maintain plant growth.
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The critical effective saturation, SA , may be expressed in terms of its corres-

ponding critical capillary pressure,
A

by the Brooks-Corey expression, as

SA =
x (111-14)

Then

-l/X
PA/I b" SA

and the problem is to determine the elevation, ZA , above the water table at which

occurs.

111.3.1.1 Static equilibrium. When the soil water profile is in static equili-

brium with the water table z = p/y , and Equation (111-15) can be written employing

the previous scaling criteria, i.e., ZA. = IZA/pb , as

SZA. A

Note that this equation is valid only for H. > 1 , since no air phase exists when

c - "b

111.3.1.2 Steady downward flow. When steady percolation toward the water table

occurs, capillary pressures are reduced, and occurs at a greater elevation (if at

all) than in the case of static equilibrium. Since the surface capillary pressure

decreases with increasing flow rate, must be less than the surface capillary

pressure head if SA exists within the soil profile. Thus, a maximum percolation

rate exists, beyond which a suitable root environment is nonexistent. At this limit

(III- 17)
-

Substituting Equation (111-17) into (111-16) and solving for the maximum percolation

rate gives

A
-a. <- C
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(111-15)

(III- 16)

(111-18)

Assuming that this limitation of q. is satisfied, and noting that ZA can exist



only in the region Zt < ZA < z" , then the relation between elevation and pressure

is described by

d = dp.
(111-19)

(1 + qp,Ti)

Integrating Equation (111-19) between the limits z. = 1 at z = z' and

z. = SA at z = ZA , and expressing the result in terms of scaled variables gives

-l/X
1 ISA dp.

A l+q. J Ti

1
l+q.p.

where q. has a negative value.
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Figure Ill-il illustrates the effect of r upon ZA. when the vertical flux is

zero. Elevation ZA. is very sensitive to changes in r for small Ti , but changes

less than 20 percent as r increases from 6 to infinity. The effect of n upon ZA.

depends strongly on the selected value of SA . At large SA , ii has little effect

upon ZA. , but for smaller SA , the variation of ZA with n becomes very large.
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Ti

Figure 111-12. Effect of n upon scaled height of insufficient aeration, static
equilibrium

Figure 111-13 shows the relation between ZA and downward flux (-q.) for

SA = 0.8. From this figure, it is seen that ZA. differs from the static equilibrium

value in excess of 10 percent only for -q. greater than about 0.07. Therefore, the

static equilibrium value should be an adequate approximation to , over a wide

range of q. . Again, however, this relationship between q. and ZA. is dependent



upon the selected value of SA . For lower values of SA , the range of q. , over

which the equilibrium value is adequate, is considerably smaller.

When a downward flux persists, there is a minimum saturation that can exist.

Conversely, for any value of SA and r there is a maximum downward flow rate beyond

which the selected SA cannot exist. This maximum flow rate, given by Equation

(111-18) is shown graphically as a function of r in Figure 111-14. The maximum

flux is most sensitive to n at low values of i- . Unless a very low SA is requir-

ed (or the saturated hydraulic conductivity is quite low) this restriction on q. is

not likely to eliminate the zone of aeration under typical drainage conditions.

ZA.

q.

Figure 111-13. Effect of downward flux on height of zone of insufficient aeration
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111.3.2 AERATION ABOVE THE WATER TABLE

In the preceding discussions, it has been shown that the effect of ri upon HK

Hs , and ZA are relatively small for large values of r . However, the same conclu-

sion cannot be drawn regarding the effect of bubbling pressure head,
b'

Since

is the scaling parameter for the dimensionless form of each of these terms, the

effective permeable and saturated heights and the height of the zone of inadequate

aeration are directly proportional to
b'

Therefore, except for very low n val-

ues, such as may be characteristic of clay soils, the value of bubbling pressure head

is expected to be a more important parameter than is n

Having evaluated the height of the zone of insufficient aeration, we can determine

the adequately aerated root zone by adding ZA to the water table elevation discussed

in a previous section.

111.3.2.1 Steady state. Figure 111-iS illustrates the equilibrium position of

the surface where 0.8 for the water table profiles discussed in the previous
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Figure Ill-iS. Effect of bubbling pressure head upon aeration profile, steady state

drainage

section. In every case, the height of the zone of insufficient aeration, ZA , (cal-

culated from Equation (111-20)) is greater than the depression of the water table re-

sulting from consideration of capillary flow. As a result, increasing the bubbling

pressure head results in a decreased depth of adequately aerated soil, even though

the water table elevation is decreased.

The sensitivity to changes in r decreases with increasing i , just like water-

table response. The position of the aerated zone is much less sensitive to ri than

to
b'

, as indicated by Equation (111-20) (i.e., ZA is directly proportional to

'b"

Figure 111-16 illustrates the effects of b'
upon the height of the zone of

insufficient aeration, A , at the centerline between drains. Since the water table

decrease is always less than b' A
continues to increase with increasing bubbling

pressure head. The effect of
b'

upon
A

decreases somewhat as the water level

in the ditch is decreased. This results from the increased effect of
b'

upon

water table elevation for small d
and the fact that is independent of water

table depth.
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Figure 111-16. Effect of
b' upon height of zone of insufficient aeration at

centerline

As evidenced by the curve for d'0 = 2/3 , it is entirely possible that the soil

will have no zone of adequate aeration at the centerline, if the bubbling pressure is

sufficiently large and the water table is near the surface.

The effects of the capillary region upon drain design are presented in terms of

a relative spacing. This relative spacing is the effective spacing (the spacing cal-

culated by neglecting capillary flow, which will result in a water table at the same

elevation as
A calculated by considering capillary flow) divided by the actual drain

spacing. Thus, this relative spacing is an indication of the spacing error resulting

from neglecting the effects of the capillary region.

Figure 111-17 illustrates the effect of bubbling pressure head and of tailwater

level upon the relative spacing. Because of relatively small effects of capillary flow
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Figure 111-17. Effect of bubbling pressure head and tailwater level upon relative

drain spacing

upon water table position, the relative spacing increases as depth of tailwater in-

creases (i.e., as gradient decreases). The influence of convergence upon the effect-

iveness of the capillary zone is again apparent for Yd/D = 0 , since the rate of

change of relative spacing with respect to b'
increases with increasing bubbling

pressure head.

The relative spacing is increased by either reducing the percolation rate or by

raising the tailwater level. Either of these changes results in smaller water table

gradients. As discussed earlier, the effect of the capillary region upon the posi-

tion of the water table is small when small water table gradients exist. Since ZA

is independent of water table gradient and depth to water table, water table gradients

are small that result in the greatest effects upon A
Such small water table

gradients exist whenever the infiltration rate is low or the tailwater depth (thus

the equivalent flow depth) is large.

111.3.2.2 Transient drainage. During transient drainage, the zone of insuffic-

ient aeration above the water table is assumed to have a constant thickness with time.

That is zA is assumed to be the equilibrium value given by Equation (111-16). The
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basis for comparison of drain performance is arbitrarily selected as the time required

to reduce the zone of inadequate aeration at the centerline between drains, A , to

0.8 of the original drainable water table depth. Figure 111-18 illustrates the effect

of bubbling pressure head upon the rate of decline of the surface of aeration. Al-

though the rate of decline of the water table is increased by large values of

1.0

Time

Figure 111-18. Effect of bubbling pressure head upon rate of decline of the zone
of insufficient aeration

the effect of the capillary zone upon position of the water table is not as large as

the value of ZA . As a result, increasing the bubbling pressure head delays the rate

of decline of the zone of insufficient aeration. If ZA is greater than the initial

drainable depth, the aerated zone will never decline below the initial water elevation,

as apparent for the case
b'

= 40 in Figure 111-18. As drainage progresses toward

the final water table elevation,
d

the zone of inadequate aeration,
A approach-

es the constant elevation,
d + ZA

Since the final water-table elevation,
d

, is independent of effects of the

capillary region, the ultimate effects of r upon
A

are somewhat larger than for

the case of equilibrium. During early stages of aeration within the region considered,

water table gradients are larger for large ri . The resulting higher water table

tends to compensate for small values of ZA . As a result the effects of are

initially small and tend to increase with time.
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From the discussion of equilibrium drainage, one would expect the relative spac-

ing to increase as the drainable depth (i.e.,
- d) decreases. Figure 111-19

illustrates the effect of the initial and final water table depths upon relative
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Figure 111-19. Effect of bubbling pressure head on relative spacing for various
initial and final boundary conditions

spacing. The effects of increased convergence losses, due to smaller saturated thick-

ness are reflected in the slightly larger relative spacing shown for the case where

the tailwater depth is zero.

The magnitude of the errors resulting from spacing calculations, based upon the

assumption of no capillary flow, depends upon the degree of aeration required. If the

effective saturation required for adequate aeration is less than the value (0.8) select-

ed in this discussion, the relative spacing will be even greater than that indicated.

From the standpoint of drain design, this means that drains must be spaced more closely,

and possibly deeper, to maintain an optimum environment for plant roots.

The previous discussion has shown that neglecting the effects of the capillary

region on drain performance can result in serious design deficiencies. The use of
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classical drainage theories to evaluate drain spacing always results in an overestimate

of the maximum spacing. The degree of overestimation depends on the soil characterist-

ics, the infiltration rate, initial and boundary conditions, and the degree of aeration

required within the root zone.

The analyses performed for this study are insufficient in scope to justify any

general design criteria. They do, however, indicate the manner in which various para-

meters affect the error resulting from neglecting the capillary region.

The bubbling pressure head,
b'

is the most significant soil property affecting

the adequacy of classical drainage theories. As
b'

increases, the classical theor-

ies provide a less accurate description of actual drain performance. The pore-size

distribution, ri , is significantly less important in evaluating drain performance

than is
b'

especially for large values of n . This suggests that, Pb can

be determined accurately, then r (which is considerably more difficult to evaluate)

could possibly be estimated with sufficient accuracy from a qualitative inspection of

the particle-size distribution.

In general, the classical theories provide the least adequate evaluation of drain-

age when water table gradients are small. Such conditions may result from low infiltra-

tion rates, q , high hydraulic conductivity, K , (although large K is usually asso-

ciated with small
b' ), a large saturated thickness of soil, or a large capillary

region with respect to the total soil depth.
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APPENDIX A

DEFINITION OF SYMBOLS USED

c shape factor [n.d)

D thickness of soil profile [U

D(0) soil water diffusivity function [L2T'I

F number of pores desaturating within a finite pressure increment
[n.d.)

h hydraulic head [U

H distance from water table to soil surface [L)

H. dimensionless distance from water table to soil surface,

HI/pb [n.d.J

Hk equivalent permeable depth of capillary zone [LI

Hk. dimensionless permeable depth of capillary, Hk 'b [n.d.)

Hs equivalent saturated depth of capillary zone [LI

H. dimensionless saturated depth of capillary, H 'b [n.d.]

k intrinsic permeability [U2]

k10 saturated permeability [L2]

k. dimensionless permeability, k/k10 {n.d.}

K hydraulic conductivity [LT1]

K standard flux unit (later shown to be K10) [Lf11

K10 saturated hydraulic conductivity [LT]

K. dimensionless hydraulic conductivity (numerically equal to k. for

same fluid properties), K/K1 [n.d.}

L geometric dimension [LI

L0 standard length unit (later shown to be Pb/I) [LI

ND number of finite increments considered [n.d.]

capillary pressure above which aeration is adequate [ML1T2]
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PC

bubbling pressure, pressure at which a continuous air phase first
exists [ML-1T-2]

capillary pressure, pressure in the nonwetting phase (air) minus
pressure in the wetting phase (water) [ML4T-2J

p0 standard pressure unit (later shown to be [MLf2]

p. dimensionless capillary pressure, c'b [m.d.]

PA average capillary pressure head in a finite pressure increment [L}

q volumetric flux per unit area of porous medium [LT1)

q. dimensionless volumetric flux per unit area, q/K10 [m.d.]

Q total horizontal flux per unit thickness of soil {L2T1]

Q. dimensionless horizontal flux per unit thickness of soil, Q/K1 m.d.]

dimensionless flux through partially saturated region [n.d.]

Q.f dimensionless flux through capillary fringe [n.d.]

dimensionless flux below the water table [n.d.]

r radius of a pore [U

R hydraulic radius of a pore [LI

PA average pore radius corresponding to a finite pressure increment [LI

s arbitrary coordinate direction [L]

S saturation, the fraction of interconnected pore volume occupied by
the wetting fluid (n..d.J

SA maximum saturation at which aeration is adequate for root growth [n.d.]

Se effective saturation, fraction of drainable pore volume occupied
by the wetting phase [n.d.]

Sr residual saturation, fraction of pore volume occupied by wetting
phase when K 0 [n.d.]

Sm maximum saturation attainable, may be < 1.0 if air is entrapped [n.d.}

SA average saturation corresponding to a finite pressure increment [n.d.}

t time [TI

to standard time unit [TI
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T tortuosity factor [n.d.I

V volume of liquid [L31

Vd volume of drainable liquid per unit area [U

Vr volume of water released per unit area by decline in water table [L}

V bulk volume of soil [L3]

X horizontal space coordinate [U

I water table elevation referred to impermeable boundary [LI

minimum height at which aeration is adequate, referred to impermeable
boundary [LI

water table elevation midway between drains, referred to level in

ditch [LI

water level in ditch, referred to impermeable lower boundary [U

Ii
initial saturated thickness [U

apparent permeable depth [LI

I initial drainable depth referred to level in ditch [LI

Is
apparent saturated depth [LI

z vertical space coordinate [L]

minimum height at which aeration is adequate, referred to water
table [U

z. dimensionless elevation above arbitrary datum, Zy/pb [TLd.I

z elevation above water table at which
c = b

[LI

z" elevation above water table at which K = e/q/ [LI

contact angle of liquid-air interface with solid [n.d.}

slope of impermeable lower boundary of aquifer [n.d.I

y specific weight of wetting phase fluid [M. 2T 21

V gradient operator [LI

V dimensionless gradient operator, (pb/y)V [n.d.I

c constant, greater than but arbitrarily close to unity [n.d.I
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negative slope of log-log plot of p/y vs. K. [n.d.J

0 volumetric water content [n.d.]

A pore size distribution index, negative slope of log-log plot
of vs. S {n.d.]

viscosity of wetting phase [ML'T'II

a surface tension coefficient {Mf2}

total interconnected porosity of medium [n.d.]

effective or drainable porosity of medium 4(l_Sr) [n.d.j
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APPENDIX C

COMPUTER PROGRAM OF STAUFFER AND COREY
FOR CALCULATING SOIL CAPILLARY PARAMETERS

Although the digital computer has been used to obtain solutions to many of

the problems discussed in this paper, only the computer program in this section

is included to provide a convenient, objective method for determining the Brooks-

Corey capillary properties from pressure-desaturation data.

This program, written in FORTRAN IV, selects the value of residual saturation

resulting in the most nearly linear relation between log Se and log Least

squares linear regression is then applied to the experimental data (log Se vs. log

to calculate the pore size distribution index, . From these parameters, the

relative permeability-capillary pressure function is generated.
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PROGRAM SORPT (INPUT,OUTPUT)
DIMENSION S(20) ,PC (20)

C PROGRAM ACCEPTS MAXIMUM 20 PAIRS OF SATURATION-CAPILLARY PRESSURE DATA.
REAL L,Ll
PRINT 1

1 FORMAT (1H1,/)
READ 2,NR

C ENTER NO. SETS OF DATA INCLUDED IN THE CURRENT ANALYSIS
2 FORMAT (12)
3 READ 4,IDN,N

C ENTER SAMPLE ID NO., NO. OF DATA PAIRS IN THAT SAMPLE. MAX N=20.

4 FORMAT(215)
DO S I=1,N

5 READ 6, S(I),PC(I)
6 FORMAT(2F10.4)

C ENTER SATURATION AND CORRESPONDING CAP. PRESSURE, ONE PAIR OF VALUES
C PER CARD, IN ORDER OF DECREASING CAP PRESSURE. ENTER ONLY DATA PAIRS FOR
C WHICH S IS LT 1.0.
C INITIALIZE VARIABLES-

J=0 $ K=0 $ JR=0
DL0.1 $ R1=0. $ R2=0. $ R3=0. $ SS=0. $ SS2=0.

DO 7 I=1,N

C SUMS AND SUM OF SQUARES OF S
SS=SS+S(I)

7 SS2= SS2S(I)**2

C OBTAIN FIRST ESTIMATE OF SR AND LAMBDA
PC 1=PC (1)

PC2=PC (2)

PCL1=ALOG (PC 1)

PCLN=ALOG (PC (N))

S1=S (1)

S2=S (2)
FPC1=(1./PC1)**2
FPC2=(1./PC2)**2
SR=(FPC2*S1_FPC1*S2)/ (FPC2-FPCJ)

IF(SR.LT.0.) SR=0.
SEL1=ALOG((S1-SR)/ (1. -SR))

SELN=ALOG((S(N)-SR)/ (1. -SR))

L=- (SELN-SEL1)/(PCLN-PCL1)
8 SFPC=0.

SPS=0. $ SFPC20.
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C CALCULATE CORRELATION COEFFICIENT FOR SELECTED SR AND LAMBDA

DO 9 I=1,N
FPCI=(1./PC(I))**L
SFPC=SFPC+FPC I

SFPC2=SFPC2+FPCI**2

9 SPS=SPS+FPCI*S(I)
R= (SFPC 2_SFPC**2/N)* ((SPS_SFPC*SS/N)**2)/ (SS2_SS**2/N)

C INCREMENT LAMBDA TO FIND VALUE AT WHICH CORRELATION COEFFICIENT IS MAX.

IF(JR.EQ.1) R1=R
IF(JR.EQ.3) R3=R
IF(K.EQ.2) GO TO 17
IF(R3.NE.0.) GO TO 12
IF(R2.NE.0.) GO TO 10
R2=R
L1=L
L=L1-DL
GO TO 8

10 IF(R1.NE.O.) GO TO 11
Ri =R

L=L1+DL
GO TO 8

11 R3=R
12 IF((R2_R1)*(R2_R3)) 13,13,16
13 ILF(R1.GT.R3) 14,15

14 R3=R2
R2=R1
JR= 1

L1=L1-DL
L=L1-DL
GO TO 8

15 R1=R2
R2=R3
JR=3
L1=L1-'-DL

L=L1+DL
GO TO 8

16 C=(R1R3_2.*R2)/(2.*DL**2)
B= (R3_R2_C*DL**2)/DL
L= Li

L=L-B/ (2. *C)

DL=DL/i0.

R1=O. $ R2=0. $ R3=0.

JR=0
K=K+1
GO TO 8

C CALCULATE SR, ETA, BUBBLING PRESSURE

17 B= (SPS_SS*SFPC/N) I (SS2_SS**2)
SR= (SS_SFPC*B) /N

PB=i . I (B+SFPC/N_B*SSIN)** (1. IL)
E=3. *L2
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C PRINT RESULTS
PRINT 18,IDN

18 FORMAT(1H ,*SOIL IDENTIFICATION NUMBER*, 15,/Il)
PRINT 19

19 FORMAT(1H ,5X,*SATURATION*,8x,*CAp. PRESSURE*,6X,*REL.PERMEABILITY*,4x,*E
1FF. SATURATION*,//)
DO 20 I=1,N
RK= ( (S(I) -SR)/ (1. -SR) )** (E/L)

FPC= (PB/PC(I))**L
20 PRINT 21, S(I),PC(I),RK,Fpc
21 FORMAT(7X,3(F6.s,13x),/)

PRINT 22; E,L,SR,PB,R
22 FORMAT(///,*ETA *,F10.3,/,*LA1yIBDA =*,F1O.3,/,*RESIDIJAL SATURATION =*,F1O.

13,/,*BUBBLING PRESSURE *,F103* CM*,/,*CORRELATION COEFFICIENT *E16.6,
2/////)
NR=NR-1

IF(NR.GT.0) GO TO 3
END
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