

Field Sanitation Costs for Willamette Valley Grass Seed Producers

4

Circular of Information 703 April 1989

Agricultural Experiment Station Oregon State University, Corvallis

TABLE OF CONTENTS

	Page
INTRODUCTION	1
Study Approach	2
Assumptions	4
RESULTS	11
Acreage Results	11
Open Field Burning Results	14
Propane Burning Results	17
Results for Nonthermal Sanitation	22
SUMMARY AND CONCLUSIONS	24
REFERENCES	27
APPENDIX A. MACHINERY COST WORKSHEET	29

ACKNOWLEDGMENTS: A number of persons contributed their time to the project. They include seed growers Mike Coon, Shedd; Don Estergard, Harrisburg; Dennis Glaser, Tangent; Bob Lindsay, Shedd; Jerry Mullen, St. Paul, Jim Vanleeuwen, Halsey; and Dave Nelson, Executive Secretary of the Oregon Seed Council. Dave Bender, Albany, Greg Loe and Ron Rowe, Corvallis, and Bob Rear, Eugene, provided machinery and equipment information for the study. The research was financed under Contract 14-89 between the Department of Environmental Quality and Oregon State University.

AUTHORS: Tim Cross is Extension Agricultural Economist, Agricultural and Resource Economics, and Robert Mason is Study Director, Survey Research Center, respectively, Oregon State University.

FIELD SANITATION COSTS FOR WILLAMETTE VALLEY GRASS SEED PRODUCERS

T.L. Cross and R. Mason

INTRODUCTION

Grass seed production, processing, and marketing accounts for a large share of Oregon's agriculture industry. In 1988, Oregon growers harvested approximately 360,000 acres of grass seed with an estimated farm gate sale value of \$211 million [Miles].

Field sanitation is a critical component of grass seed production. Historically, open field burning has been used to remove straw residue and provide disease, weed, and volunteer crop seedling control. Alternative methods of field sanitation are available, but little is known about their cost or long-term effectiveness. The two alternatives used most often by growers are propane burning and nonthermal sanitation with or without straw removal.

This study will focus on the costs of three field sanitation methods in the Willamette Valley for 1988. The objectives of the study are:

- 1. To estimate the average cost per acre of sanitizing grass seed fields using propane burners;
- 2. To estimate the average cost per acre of sanitizing grass seed fields using traditional open field burning; and
- 3. To estimate the average cost per acre of sanitizing unburned grass seed fields using other chemical and tillage methods.

The study was initiated in July 1988 to coincide with grass seed harvest and field sanitation. A unique aspect of this research is that it is based on actual experiences of a large cross-section of grass seed growers.

A survey was used to collect data from growers to estimate sanitation costs per acre. The three-part survey was administered to a randomly selected group of growers by telephone.¹

Names, addresses, and telephone numbers of 786 growers who had registered grass seed acres with the Department of Environmental Quality for 1988 were used as the sample frame. Growers who had recorded less than 50 acres and duplicate names were deleted from the sample, leaving 628 names in the population. A random 50 percent sample of 314 growers was selected for interview by telephone. Interviews were attempted between September 25 and November 10, 1988, after the burning season.

The results of the telephone contact are shown in table 1. An adjusted completion rate of 94 percent was achieved, after nongrowers were subtracted from the sample base. The response is considered quite high, providing confidence that the data will not be affected appreciably by nonresponse effects. The unusually high response rate indicates that growers were both interested and willing to cooperate in the study.

Table 1. Summary of Telephone Contacts for the Survey

Completed	282
Refused	14
Not at home	4
No longer raising grass seed	_14
TOTAL	314

Study Approach

Field sanitation practices vary widely among growers due to a number of factors, including location of fields, species and variety of grass crops grown,

¹A copy of the interview schedule is available on request.

machinery and equipment available, personal preferences, and institutional restrictions. The approach taken in this study is to first determine the cultural operations performed and the resources used by each grower surveyed. Next, the costs associated with the various cultural operations and resources used are estimated using enterprise budgeting techniques. Finally, the estimated operation costs are summed for each grower to arrive at individual costs per acre, which are then averaged to give the average costs per acre for each alternative field sanitation practice.

To illustrate this approach, consider baling straw on a field which will be propane burned. Growers were asked how many tons of straw they baled, what type of baler they used, the horsepower of the power unit for the baler, and the type of bales they put up. The responses to these questions established the cultural operations performed and the resources used by each grower. The next step was to estimate the typical baling costs per ton for a variety of sizes and types of balers and power units. For example, the cost of baling using a square baler pulled by a 120 horsepower tractor was estimated to be \$8.78 per ton. These typical costs of baling were then used to calculate each grower's baling cost per acre, based on the size and type of baler and the tons of straw each grower baled.

Please note that the approach we have used considers only those costs of field sanitation which were paid in 1988. We have not estimated the potential decreases in yields of propane burned or unburned grass seed acreage relative to open field burning. Thus, we have ignored a potential cost associated with propane burned and unburned acreage, due to our limited one-year data set.

During the pre-test of the survey, we found that operations and resources used by growers varied among their individual fields and varieties of grass seed. In order to collect the information we needed, we asked growers to respond to the propane burning, open field burning, and nonburning sections of the survey for the <u>largest</u> field they sanitized using each method. This allowed growers to relate the survey to individual fields, and provided the study with the largest feasible

acreage base upon which cost estimates could be made. It also provided a consistent means of collecting data from growers.

A potential problem with using cost information from grower's largest fields is that average costs per acre may be understated if larger fields can be more efficiently sanitized than smaller fields. To overcome this problem, we calculated weighted average costs per acre using field size as the weighing mechanism. The resulting weighted average costs are compared to the unweighted costs to determine the effect of field size on costs per acre.

Assumptions

A number of assumptions must be made to estimate typical costs of operations and resources. The major assumptions made in this study and the methods used to calculate costs are discussed below.

LaborAll labor used in field sanitation is valued at \$7.00 per hour.
This wage rate may be thought of as the net cost to growers for
hired labor which is paid a cash wage of \$5.00 per hour, with an
additional \$2.00 per hour for payroll expenses (withholding
taxes, record keeping, preparing W-2 forms, etc.). Alternatively,
this wage rate can represent the opportunity cost of labor
provided by the owner/operator. The individuals performing
field sanitation could have been employed elsewhere for \$7.00
per hour. In either case, labor is a resource used and must be
paid.

Interest Rate An interest rate of 6 percent is used to calculate machinery and equipment ownership costs. This interest rate reflects the <u>real</u> rate of interest, which is the difference between the nominal interest rate and the rate of inflation. In other words, a real interest rate is adjusted for inflation.

Current lending rates for intermediate capital range from 10 to 13 percent [McKinnon, Meyer]. Table 2 shows that inflation has ranged from 2 to 13 percent over the last 20 years with an average of 6 percent [Bureau of Labor Statistics]. This results in a real interest rate of approximately 6 percent.

Machinery andTable 3 contains a summary of estimated machinery andEquipmentequipment costs for agricultural operations related to grass seedfield sanitation.Appendix A reports the detailed machinery costestimates.

Inputs Purchase prices, salvage values, useful lives, annual hours of use, and field capacities were obtained from machinery dealers, growers, Extension agents, and other farm professionals.

Parameters Lube, insurance, fuel, and repair multipliers were obtained from agricultural engineering studies. Interest rates and labor rates were assumed as discussed above. Current capital values of machinery and equipment are calculated as average values, using the following equation:

> Current <u>Purchase Price + Salvage Value</u> Value 2

Remaining lives are one half of the total useful lives.

Average capital values assume that machinery is half used up, which impute machinery and equipment costs over time as average costs. Obviously, some growers use new machinery, while others use quite old machinery. Our costs reflect the

	CPI - All	
<u>Year</u>	Items	% Change
1967	100.0	
1968	104.2	4.20
1969	109.8	5.37
1970	116.3	5.92
1971	121.3	4.30
1972	125.3	3.30
1973	133.1	6.23
1974	147.7	10.97
1975	161.2	9.14
1976	170.5	5.77
1977	181.5	6.45
1978	195.4	7.66
1979	217.4	11.26
1980	246.8	13.52
1981	272.4	10.37
1982	289.1	6.13
1983	298.4	3.22
1984	311.1	4.26
1985	322.2	3.57
1986	328.4	1.92
1987	340.4	3.65
Average		6.36

Table 2. Consumer Price Index for All Items and Annual Percentage Change,1967=100

.

Table 3. Machinery Costs per Acre for Grass Seed Field Sanitation Operations

			BALE	BALE	-BALE	BALE	-STACK-	-STACK-	-STACK-	-STACK	-CHOP-
		Self- Propelled	75 hp Tractor Square	120 hp Tractor Square	190 hp Tractor Square	120 hp Tractor Round	Bale	75 hp Tractor and	120 hp Tractor and	190 hp Tractor and	75 hp Tractor Flail
INPUTS	Units	Swather	Bales	Bales	Bales	Bales	Wagon	Loader	Loader	Loader	Chop
Machine											
Size Fuel type Purchase p Salvage val Life Annual use Implement Size	hp GorD nice\$ ue\$ hrs hrs ft	90 D 45000 10000 3000 300 none	75 D 32000 9600 8000 450 motor	120 D 52000 15600 8000 450 pto	190 D 80000 24000 8000 450 pto	120 D 52000 15600 8000 450 1.5 ton	90 D 70000 25000 8000 600 none	75 D 32000 9600 8000 450	120 D 52000 15600 8000 450	190 D 80000 24000 8000 450	75 D 32000 9600 8000 450
Purchase p Salvage val Life Annual use Capacity Input costs Operation	rice \$ lue \$ hrs hrs acres/hr \$/yr	6	33000 7000 3000 300 4 7800	25000 7000 3000 300 4 6750	25000 7000 3000 300 4 6750	18000 5400 3000 300 4 600	14000 5	14000 1400 3000 300 3	14000 1400 3000 300 300 3	8500 1400 3000 300 300 3	1275 2500 200 5
Cost per h Cost per a Cost per to	our cre on	52.29 8.71 4.36	69.50 17.38 8.69	70.28 17.57 8.78	82.35 20.59 10.29	42.71 10.68 5.34	64.55 12.91 6.45	30.84 10.28 5.14	38.63 12.88 6.44	50.70 16.90 8.45	29.54 5.91 NA*

		-CHOP-	-CHOP-	-LOAF-	-HARROW-	HARROW	-HARROW-	FLUFF-	-BURN-	BURN	BURN
		120 hp	190 hp	120 hp	75 hp	120 hp	190 hp		75 hp	120 hp	190 hp
		Tractor	Tractor	Tractor	Tractor	Tractor	Tractor	75 hp	Tractor	Tractor	Tractor
		Flail	Flail	Flail	Pasture	Pasture	Pasture	Tractor	Propane	Propane	Propane
	Units	Chop	Chop	& Loaf	Harrow	Harrow	Наптом	Fluff	8um	Burn	Burn
Machine											
Size	hp	120	190	120	75	120	190	75	75	120	190
Fuel type	GorĎ	D	D	D	D	D	D	D	D	D	D
Purchase pric	ce \$	52000	80000	52000	32000	52000	80000	32000	32000	52000	80000
Salvage value	e \$	15600	24000	15600	9600	15600	24000	9600	9600	15600	24000
Life	hrs	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000
Annual use	hrs	450	450	450	450	450	· 450	450	450	450	450
Implement											
Size	ft	14	14	14	10	10	10	10	30	30	30
Purchase price	ce \$	8500	8500	37000	600	600	600	4000	7200	7200	7200
Salvaģe value	e \$	1275	1275	7400	50	50	50	400	720	720	720
Life	hrs	2500	2500	2500	2000	2000	2000	2000	1500	1500	1500
Annual use	hrs	200	200	200	200	200	200	200	150	150	150
Capacity a	cres/hr	6	7	5	7	7	7	7	10	10	10
Input costs	\$/yr										
Operation											
Cost per hou	ır	37.33	49.40	65.74	21.62	29.41	41.48	25.41	30.20	37.99	50.06
Cost per acr	e	6.22	7.06	13.15	3.09	4.20	5.93	3.63	3.02	3.80	5.01

*NA = Not Applicable.

Table 3. Machinery Costs per Acre for Grass Seed Field Sanitation Operations (continued)

				WATER	WATER	TILL	TILL	TILL
	l Inite	Buggy Fert.	Buggy Chem.	Tractor & Small Water Tank	Tractor & Large Water Tank	120 hp Tractor Disc or	190 hp Tractor Disc or Plow	260 hp Tractor Disc or
		<u></u>			Tailk		11044	<u>FIUW</u>
Machine								
Size	hp	125	125	75	75	120	190	260
Fuel type	GiorĎ	G	G	D	D	D	D	D
Purchase price	\$	35200	35200	32000	32000	52000	80000	115000
Salvage value	\$	3520	3520	9600	9600	15600	24000	34500
Life	hrs	5000	5000	8000	8000	8000	8000	8000
Annual use	hrs	. 400	400	450	450	450	450	450
Implement								
Size	ft	3-ton	500 gal	500 gal	1000 gal	13	15	15
Purchase price	\$	5400	7900	4300	5300	12400	14900	14900
Salvage value	\$	540	790	430	530	1240	1490	1490
Life	hrs	1500	1500	1000	1000	2500	2500	2500
Annual use	hrs	100	100	50	50	250	250	250
Capacity	acres/hr	20	20	50	50	6	7	8
Input cosis	\$/yr							
Operation								
Cost per hour		43.43	42.47	24.63	27.11	41.43	56.06	69.95
Cost per acre		2.17	2.12	0.49	0.54	6.90	8.01	8.74

average between these extremes. This method also recognizes that machinery and equipment must be replaced over time.

Costs per hourFuel is calculated based on agricultural engineering estimates[McGrann] and the type of fuel used (gas or diesel).Lubrication cost is calculated as fifteen percent of fuel costs[Bauscher]. Repairs are based on agricultural engineeringestimates [McGrann]. Insurance costs are calculated as onepercent of current value.

Depreciation costs reflect the actual decline in value of the machinery and implements using the straight-line depreciation method. Depreciation for the current year is dependent on the portion of the remaining life used in the current year and on the current market value adjusted for salvage value [McGrann]. Costs per acre are calculated by dividing total cost per hour by acres per hour. For hay operations, cost per acre is divided by two tons per acre to calculate cost per ton.

- Propane costs During the summer of 1988, propane cost \$0.729 per gallon in 1,000 gallon tanks. Delivery and set up of the tanks cost \$35.00 per hour, and we assumed a maximum charge of \$70.00 per tank for this service. The total cost of propane used in this study is \$0.799 per gallon.
- Chemical costs For unburned acreage, growers were asked to identify the additional chemicals they intended to spray as a result of not burning their fields, the rates at which they would spray, and the total number of applications required. Table 4 shows the most common sprays used and their costs, based on prices provided by chemical dealers.

Many of these chemicals are used on fields which are open or propane burned as spring applications. However, nonthermal sanitation may also require one or more additional fall applications of these chemicals, and these added applications are included in calculating nonthermal sanitation costs.

<u> </u>	Typical	
Chemical	Rate per acre	Price
Karmex	2 - 3 pounds	\$ 3.80/pound
Nortron	2/3 gallon	\$47.00/gallon
Simazine	2 pounds	\$ 2.95/pound
Banvel	1/2 pint	\$59.00/gallon
2,4-D Amine	1 quart	\$ 8.00/gallon
Atrazine	1/2 - 3 pounds	\$ 2.40/pound
Enquik	15 gallons	\$ 2.00/gallon

Table 4. Common Chemicals Applied to Unburned Grass Seed Fields; Application Rates and Prices²

²Mention of trade name products does not mean any endorsement of these products by Oregon State University, and the fact that other products are not mentioned does not mean any discrimination against them. Substitute other formulations, as appropriate, for those included in this study.

Straw storage costs are based on estimates from a publication by Doran and Ford. They estimate that it cost \$9.72 per ton to store hay in a pole shed in 1978, and \$10.46 per ton to store hay in a metal shed in 1978.

These costs are adjusted using an agricultural building index [USDA] to obtain 1988 storage costs of \$13.22 per ton in a pole shed and \$14.23 per ton in a metal shed. A building index was used to adjust costs because construction costs are the major component of straw storage costs. Other costs include interest on stored straw, repairs, insurance, high stacking straw, and weight loss of 5 percent of the straw. The storage costs reflect 6 months of straw storage per year.

RESULTS

Acreage Results

Table 5 summarizes the acreage of grass seed represented by the survey sample. The 282 respondents farmed a total of 242,464 acres of cropland. The smallest farm in the sample is 60 acres, and the largest farm is 8,000 acres. Average farm size for the sample is 866 acres. These farms harvested 185,019 acres of grass seed in 1988. The least amount of grass seed harvested is 18 acres, and the largest is 7,200 acres. On the average, these 282 farms harvested 656 acres of grass seed.

				ass Seed		
			Total	Perennial	Annual	
		Acres	Acres	Acres	Acres	Acres
	Growers	Farmed	Harvested	Harvested	Harvested	Unharvested
Total	282	242,464	185,019	119,427	63,118	3,642
Minimum		60	18	0	0	0
Maximum		8,000	7,200	5,500	3,000	480
Average		866	656	424	224	13

Table 5. Acreage Results for the Survey Sample

Perennial grass seed acreage totaled 119,427 acres in the sample, and averaged 424 acres per farm. Annual grass seed acreage totaled 63,118 acres in the sample, and averaged 224 acres per farm. Growers reported that 3,642 acres of grass seed was left unharvested in 1988, which was two percent of total grass seed acres surveyed. These unharvested acres were likely newly established stands, or old stands which were no longer economically viable. The perennial and annual acres do not add up to total grass seed acres due to rounding and approximation errors by respondents, but the difference is just over one percent.

The Department of Environmental Quality reports that 342,559 acres of grass seed were registered in the Willamette Valley in 1988. If we assume that this figure represents total valley grass seed acreage, then we can calculate a multiplier to be used to aggregate our sample average totals to total values for the entire Willamette Valley, using the following equation.

Multiplier = $\frac{\text{Total acres}}{\text{Sample acres}}$ = $\frac{342,559}{185,019}$ = 1.85

Using this multiplier, we estimate that 220,940 acres of perennial and 116,768 acres of annual grass seed were harvested in the Willamette Valley in 1988. This multiplier is also used to project propane burned, open field burned, and unburned grass seed acres for the Willamette Valley in 1988.

Open field burning was practiced by over 90 percent of growers surveyed on some of their acreage in 1988. The total acres open field burned by survey respondents was 81,450. The smallest number of acres open field burned by a single grower was 15, and the largest was 3,800. The average number of acres open field burned was 321 for the 254 growers who utilized some open field burning. These results are summarized in table 6.

	Growers	Total open field burned acres	Acres in largest open burned field
Total	254	81,450	21,526
Minimum		15	14
Maximum		3,800	600
Average		321	85

Table 6. Open Field Burned Acreage

To estimate total open field burned acreage, we use the acreage multiplier derived above. The total estimated open field burned acreage in the Willamette Valley for 1988 is

1.85 * 81,450 = 150,683 acres

This compares to 168,475 acres reported burned by DEQ, and shows that our acreage estimate is only 12 percent different than the true value. There is good reason to expect expanded sample values to be slightly lower than DEQ burning totals. A few growers registered their acres after our sample was drawn and that raised the total number of acres burned by survey respondents, which in turn would increase our estimated open field burned acreage.

Of the 282 growers surveyed, 128, or 45 percent, used propane burners to perform field sanitation on some or all of their grass seed acreage. The total acreage propane burned in the survey was 29,801 acres. The smallest number of acres propane burned by a single grower was 14, and the largest was 3,000. The average amount of acreage propane burned for those growers who propane burned more than 0 acres was 233 acres. These results are summarized in table 7.

Table 7.	Propane	Burned	Acreage	for	the	Survey	Sam	ple
----------	---------	--------	---------	-----	-----	--------	-----	-----

	Growers	Total propane burned acres	Acres in largest field propane burned
Total	128	29.801	9.292
Minimum		14	14
Maximum		3,000	600
Average		233	73

To estimate total propane burned acreage, we can use the multiplier derived previously. Total estimated propane burned acreage in the Willamette Valley for 1988 is

1.85 * 29,801 = 55,132 acres

Table 5 also contains the results for the largest field propane burned by each grower. The total acreage accounted for by each grower's largest field is 9,292, or approximately one-third of the total acreage reported propane burned in the survey. Estimated propane burning costs per acre are based on the operations and resource growers used on these largest fields. Since these largest fields represent a high percentage of the total acres propane burned, we feel confident that our estimated costs are representative of those paid by growers.

Of the 282 growers surveyed, 204 had at least some acreage which they harvested but didn't burn. This leaves 78 growers that burned all of their

harvested acreage, using propane and/or open field burning. A total of 69,469 acres were not burned by survey respondents, with an average of 341 acres per grower. Using our acreage multiplier, we estimate that total unburned, harvested acreage in the Willamette Valley is

$$1.85 * 69,469 = 128,518$$
 acres

Table 8 reports totals and values from grower's largest unburned, harvested fields. The total acres in grower's largest fields represent 23 percent of the total unburned acres. As in the propane and open field burning sections, the data from grower's largest unburned fields is used to calculate average costs per acre.

	Growers	Total unburned acres	Acres in largest unburned field
Total	204	69,469	15,999
Minimum		10	5
Maximum		3,000	410
Average		341	78

Table 8. Unburned, Harvested Grass Seed Acreage

Open Field Burning Results

Open field burning costs were estimated using information gathered from grower's largest open burned field. Total acreage from these largest fields accounts for 25 percent of the open burned acres in the survey. The average largest field size for open burning is 85 acres, (from table 6) compared to 73 acres (from table 7) for propane burning. This implies that propane burning tends to be performed on smaller fields, while larger fields tend to be open burned.

Cost information for open field burning is summarized in table 9. The number of growers and average costs are shown only for those growers who incurred each type of expense. Incomes are treated as negative values, since they offset the expenses of field sanitation.

The primary costs of open field burning include labor, water tanks, border preparation, and burning fees. A few growers baled, stacked, and stored straw prior to burning their fields, while the majority of growers used burning as a means of disposing of their straw. Field burning rules established by the State Fire Marshal do not require straw removal prior to open field burning [Greene]. However, the rules do specify that "all fields, prior to burning, shall be prepared by removing all straw that lies within a 20-foot strip on the perimeter of the field." The required border preparation could be performed by various methods, including baling, plowing, and discing.

The average cost per acre for open field burned grass seed acreage is \$8.86. Individual costs ranged from a low of -\$9.83 per acre to a high of \$35.55 per acre. The average cost is calculated by multiplying the number of growers who performed each operation by the average cost per acre, summing the total costs of the operations, and dividing the sum by 254 (the number of growers who open field burned.

To examine the relationship between field size and cost per acre, we weighted individual costs per acre by grower's field sizes. The weighted average cost of open field burning was calculated to be \$7.97 per acre. Based on the difference of only ten percent between the unweighted average and the weighted average cost per acre, we conclude that our data exhibits no indication of economies of size in open field burning, and therefore our methods have not underestimated actual costs. Assuming that open field burning cost is a normally distributed random variable, we construct a 95 percent confidence interval for our estimated average open field burning cost. We calculate that

PROB[$\$8.31 \le \text{True Average Cost} \le \9.41] = 95 percent

	Number of	Average
Operation or Resource	Growers	<u>Cost per Acre</u>
Swathing or Windrowing		Þ
Owner/operator	23	10.22
Custom	0	
Baling		
Owner/operator, square bales	11	3.45
Owner/operator, round bales	1	0.53
Custom	3	7.77
Trade straw	2	0
Stacking Bales		
Owner/operator, tractor	2	0.39
Owner/operator, bale wagon	1	0.21
Custom	3	2.65
Burning Stacks		
Labor	5	0.14
Water tanks	5	0.31
Straw Sales		
Storage expense, pole shed	0	
Storage expense, metal shed	20	0.51
Storage expense, rented shed	1	2.44
Straw sales	3	-9.01
Expected straw sales	2	-25.16
Field Burning		
Labor	254	0.91
Water tanks	254	2.05
Fee	254	3.50
Border preparation	254	1.50
AVERAGE TOTAL COST PER ACRE	254	8.86
CONFIDENCE INTERVAL		8.31 - 9.41

Table 9. Costs	per Acre Calculated for O	pen Field Burned Acreage,	by Operation or Resource ⁴
20010 // 00010			

⁴Average costs are based on the number of growers reported for each operation or resource.

This means we are 95 percent certain that the true average cost per acre for open field burning in the Willamette Valley in 1988 lies in the interval between \$8.31 and \$9.41.

As we will demonstrate in the next two sections, a major factor influencing the cost of propane burning and nonthermal field sanitation is the ability of growers to dispose of the straw. The two primary methods of disposing of straw according to our survey are: 1) bale the straw and burn it or let it decompose in stacks; and

2) bale the straw and sell it or trade the straw to someone in return for baling and removal services. Growers who have a market for their straw would likely sell it or trade it, while those with no market would tend to burn it or let it decompose.

Straw sales or trades had very little effect on the average cost per acre of open field burning. Only seven growers sold or traded straw from their largest open burned field, and their average cost of burning was \$5.49 per acre. A 95 percent confidence interval for this estimate ranges from -\$1.58 to \$12.56 per acre.

The average cost for the 247 growers who open burned but did not sell or trade straw from their largest fields is \$8.96 per acre, with a 95 percent confidence interval of \$8.42 to \$9.49 per acre. This average confidence interval is almost identical to our total average confidence interval, again leading us to conclude that straw markets do not influence the average cost per acre of open field burning.

While the average cost of \$5.49 for growers who traded or sold straw is different from our overall average, the difference is small and shows that straw markets have little impact on the cost of open field burning.

Propane Burning Results

The cost of propane burning is summarized in table 10, which shows the number of growers who incurred each type of expense at a nonzero level and the average costs of each operation or resource. All values in table 10 are on a peracre basis. Incomes received from straw storage or sales are reported as negative values, since they offset the expenses of field sanitation.

Several alternative scenarios of field practices were identified by survey respondents. Many growers gave the straw to individuals in return for baling, stacking, and removal, followed by propane burning. Other growers flail chopped the straw into loafs, burned the loafs, then propane burned their fields. Still

others baled and stacked their straw, burned their stacks, then propane burned their fields. Thirty-six growers propane burned their fields twice. The variety of practices used indicates that growers are still experimenting with propane burning to determine the optimum practices for their fields.

The average cost for propane burned grass seed acreage is \$37.79 per acre. Individual costs ranged from a low of \$0.97 to a high of \$104.79 per acre. The average cost is calculated by multiplying the number of growers who performed each operation by the average cost per acre, summing the total costs of the operations, and dividing the sum by 128 (the number of growers who propane burned). To examine the effect of field size on average cost, individual growers costs per acre were weighted by the acres in their largest field. The weighted average cost of propane burned acreage is \$37.01, which is not significantly different than our unweighted average of \$37.79.

Operation or Resource	Number of Growers	Average Cost per Acre
		\$
Swathing or Windrowing	20	10.70
Owner/operator	39	10.72
Custom	0	
Baling		
Owner/operator, square bales	15	19.59
Owner/operator, round bales	5	12.77
Custom	20	22.73
Trade straw	69	0
Straw Storage		
Storage expense, pole shed	1	14.50
Storage expense, metal shed	Ō	
Income from storage	4	-14.20
Stacking Bales	7	10 (2
Owner/operator, tractor	1	18.03
Owner/operator, Date wagon	12	10.14
Custom	15	15.67
Burning Stacks		
Labor	19	1.16
Water tanks	19	1.38
Straw Sales		
Storage expense, pole shed	4	13.68
Storage expense, metal shed	6	28.31
Storage expense, rented shed	0	
Straw sales	7	-21.09
Expected straw sales	4	-19.62
Flail Chopping		
Owner/operator, flail only	19	7.68
Owner/operator, flail & loaf	20	15.78
Custom	5	16.19
Burn Loofa		
Labor	17	0.70
Water tanks	17	1.06
Water taiks	17	1.00
1st Propane Burning		_
Up to 120 hp tractor & burner	54	2.67
120 hp to 190 hp tractor &		
burner	73	2.92
Over 190 np tractor & burner	129	7.25
Uds Water tanks	120	2.03
Custom	120 8	12.03
Custom	0	16.76
2nd Propane Burning		_
Up to 120 hp tractor & burner	12	2.38
120 hp to 190 hp tractor & burner	23	2.49

.

<u></u>	Number of	Average
Operation or Resource	Growers	Cost per Acre
		\$
Over 190 hp tractor & burner	1	3.62
Gas	36	8.62
Water tanks	36	1.73
Custom	1	16.00
Pasture harrow between burnings	20	3.60
Additional Fertilizer Expense		
Potash	17	3.57
Phosphate	14	6.46
Extra application	6	2.17
AVERAGE TOTAL COST PER ACRE	128	37.79
CONFIDENCE INTERVAL		33.85 - 41.74

Table 10.Costs per Acre Calculated for Propane Burned Acreage, by Operation or Resource3
(continued)

³Average costs are based on the number of growers reported for each operation or resource.

By assuming that individual propane burning costs form a random sample from a normally distributed random variable, we can construct a confidence interval for our estimated average cost. The confidence interval for average propane burning cost per acre is:

 $PROB[$33.85 \le True Average Cost \le $41.74] = 95 percent$

In other words, we are 95 percent certain that the true average cost per acre for propane burning in the Willamette Valley in 1988 lies in the interval between \$33.85 and \$41.74.

The estimated average cost of propane burning for growers who sold or traded their straw is \$29.98 per acre. The 95% confidence interval for this estimate is \$25.73 to \$34.24 per acre. The estimated average cost of propane burning for growers who did not sell or trade their straw is \$50.80 per acre, with a 95 percent confidence interval of \$44.56 to \$57.04 per acre. Of the 128 growers who propane burned, 80 sold or traded straw and 48 did not sell or trade straw. This analysis highlights the importance of the existence of a straw market in determining growers' costs. Growers with no market for their straw paid an average of an additional \$20.82 per acre to sanitize their fields using propane burning compared to growers who were able to sell or trade their straw. The difference in costs paid by growers with no market for their straw can likely be attributed to the costs of removing the straw.

Results for Nonthermal Sanitation

Cost information for unburned, harvested acreage is summarized in table 11. This table shows the number of growers and average costs for the operations performed and resources used on grower's largest harvested, unburned grass seed fields. Average values are based only on those growers values who incurred the respective expenses.

As in propane burning, growers exhibited large variability in the field practices they performed for nonthermal sanitation. Most growers chopped their straw, used tillage to work up the soil, and applied one or more chemicals in the fall for disease and volunteer seedling control. Other growers traded their straw in return for baling, stacking, and removal, then used tillage and chemical applications on their fields.

The estimated average field sanitation cost for harvested, unburned grass seed acreage is \$35.41 per acre. The minimum value for an individual grower is -\$8.50 per acre, and the maximum value is \$108.52 per acre.

The weighted average cost of unburned, harvested acreage is \$38.24 per acre. Since the weighted cost is greater than the unweighted cost per acre, economies of field size may be present in our data. Adjusting for field size shows that our costs may underestimate true costs for unburned, harvested acreage. However, the difference in the two averages is small (less than 10 percent) indicating that our methods are valid even for the unburned acreage. A confidence interval for the average cost per acre is calculated to be

We are 95 percent sure that the true average cost per acre for unburned acreage lies in the range from \$32.00 to \$38.81.

The average cost for the 47 growers who sold or traded straw from their largest unburned, harvested field is \$28.57 per acre. The 95 percent confidence interval for this estimate ranges from \$21.80 to \$35.33 per acre. This is a large interval, indicating a large amount of variability in cost per acre among these 47 growers.

For the 157 growers who did not trade or sell straw from their largest unburned, harvested field, the average cost is \$37.40 per acre, with a 95 percent confidence interval of \$33.51 to \$41.30 per acre. Average cost per acre for unburned acreage does appear to be related to the existence of a straw market although the economic impact in this case is not as great as for propane burning. This could be due to the fact that annual ryegrass is often not burned, and there is very little demand for ryegrass straw. Seventy-nine annual ryegrass fields were among the 204 fields left unburned.

	Number of	Average
Operation or Resource	Growers	Cost per Acre
		\$
Swathing or Windrowing		
Owner/operator	36	10.16
Custom	0	3.00
Baling	10	
Owner/operator, square bales	18	/./3
Custom	17	19.03
Traded straw	36	0
		·
Straw Storage		
Storage expense, pole shed	3	8.66
Storage expense, metal shed	0	14.00
Income from storage	1	-14.00
Stacking Bales		
Owner/operator, tractor	12	14.76
Owner/operator, bale wagon	1	9.68
Custom	7	11.95
Burning Stacks	10	1.00
Lador Water tanks	18	1.00
water tanks	10	2.70
Straw Sales		
Storage expense, pole shed	2	13.82
Storage expense, metal shed	5	27.32
Storage expense, rented shed	0	00.05
Straw sales	y 2	-23.05
Expected straw sales	2	-10.11
Flail Chopping		
Owner/operator, flail only	84	9.25
Owner/operator, flail & loaf	32	15.20
Custom	12	4.31
Burn Loafe		
Labor	25	1 12
Water tanks	25	2.75
Tillage		
Owner/operator	98	8.18
Custom	4	0.//
Chemicals		
Chemical costs	142	23.28
Application	142	3.36
	•••	
AVERAGE TOTAL COST PER ACRE	204	35.41
CONFIDENCE INTERVAL		37 00 - 38 81
		52.00 - 50.01

Table 11. Costs per Acre for Nonthermal Sanitation of Grass Seed Fields, by Operation or Resource⁵

 $^{^{5}}$ Average costs are based on the number of growers reported for each operation or resource.

SUMMARY AND CONCLUSIONS

Table 12 summarizes the estimated costs for sanitizing grass seed fields using alternative methods. Open field burning is the least expensive alternative, with propane burning and nonthermal sanitation costing approximately four times more than open field burning. The confidence intervals for all three methods are fairly small, given the variability in practices performed by growers.

Field	Number	Average	95% Confid	ence Interval
Sanitation	of	Cost	Lower	Upper
Method	Growers	per Acre	Bound	Bound
Open field burning	254	8.86	8.31	9.41
Straw sold or traded	7	5.49	-1.58	12.56
No straw sold or traded	247	8.96	8.42	9.49
Propane burning	128	\$37.79	\$33.85	\$41.74
Straw sold or traded	80	29.98	25.73	34.24
No straw sold or traded	48	50.80	44.56	57.04
No burning	204	35.41	32.00	38.81
Straw sold or traded	47	28.57	21.80	35.33
No straw sold or traded	157	37.40	33.51	41.30

Table 12. Summary of Estimated Field Sanitation Costs, 1988

Since open field burning is by far the least expensive sanitation method, we would expect it to be the preferred method used by growers. Why do growers use propane burning and nonthermal sanitation on their fields, given these circumstances? Obviously, noneconomic factors must play a role in determining field sanitation methods.

The most important factor related to field sanitation is undoubtedly approval to burn. Grower's fields are allowed to burn only when weather conditions are appropriate, as determined through the DEQ smoke management program, the State Fire Marshal, and the local fire district. We pointed out in the acreage results section that 78 of 282 growers surveyed, or 28 percent, burned all of their harvested grass seed fields. This means that 72 percent of growers surveyed were not able to burn all their fields for one or more reasons.

Another factor related to the ability to burn is location. Fields located within one-half mile of interstate highways and one-fourth mile of other designated roadways in the Willamette Valley are restricted from burning unless large safety buffer zones are observed. Thus, many growers must use propane burning or nonthermal sanitation on fields because of their close proximity to roadways. Others may not burn out of concern for neighbors and nearby communities.

The variety of grass seed grown may dictate the sanitation methods chosen by growers. Increased production of proprietary varieties has been accompanied by contracts requiring shorter rotations [Conklin, et.al.]. With shorter rotations, many growers may feel that propane burning or nonthermal sanitation provide adequate disease protection on those fields which are not open field burned. Also, some varieties of grass seed may be sensitive to thermal sanitation, and require nonthermal sanitation. This may partially explain the fact that 204 growers used nonthermal sanitation, while only 128 growers used propane burning.

Machinery and equipment availability certainly has a bearing on sanitation methods. In order to propane burn, growers require the services of straw removal equipment (balers, stackers, choppers, loafers, etc.) and propane burning equipment. Nonthermal sanitation, on the other hand, makes use of equipment used in other grass seed field operations (disks, plows, sprayers, etc.).

The difference in cost depending on whether the straw is sold or traded is an important aspect of this study's findings. Growers who had a market for their straw incurred lower costs to sanitize their fields under all three sanitation methods studied. Straw sales or trades had the greatest impact on propane burned acreage. Open field burning was the method least affected by straw markets.

Examination of weighted average costs showed that the procedures used in this study did not significantly bias the estimates due to economies of field size. The fact that the estimated costs per acre were generated from data on growers'

largest fields did not appear to affect the estimates. However, the estimates should be viewed as conservative, since economies of size may indeed exist, but were not detectable in the data set.

Finally, remember that these estimates were obtained from only one year of data. Field sanitation impacts on future yields were ignored due to a lack of research in this area. Further studies are needed to estimate long run average costs for field sanitation methods. Further research is also needed on the impacts of shorter stand life, the effects of thermal and nonthermal sanitation on proprietary varieties, and the status and outlook for straw markets.

REFERENCES

- American Society of Agricultural Engineers. "Agricultural Engineers Yearbook of Standards, 1983," St. Joseph, Michigan: American Society of Agricultural Engineers.
- Bauscher, Lonny D. and Gayle S. Willett. "The Costs of Owning and Operating Farm Machinery in Washington," Extension Bulletin 1055, Pullman, Washington, April, 1986.
- Bureau of Labor Statistics. "Consumer Price Index," various issues, compiled by Oregon State University Extension Economic Information Office.
- Conklin, Frank S., William C. Young III, and Harold W. Youngberg. "Burning Grass Seed Fields in Oregon's Willamette Valley, The Search for Solutions," Extension Miscellaneous 8397, Corvallis, Oregon, January, 1989.
- Doran, Samuel M. and William P. Ford. "Should you Invest in a Hay Shed?," Extension Miscellaneous 3898, Pullman, Washington, Revised April, 1978.
- Greene, Olin. "Oregon Administrative Rules, Field Burning," Office of State Fire Marshal, State of Oregon, August 15, 1988.
- McKinnon, Joe. U.S. National Bank of Oregon, Portland, Oregon. Personal communication, December, 1988.
- McGrann, James M., et al. "Microcomputer Budget Management System," Texas A&M University, College Station, Texas, September 1986.
- Meyer, Harvey. Farm Credit Services, Inc., Spokane, Washington. Personal communication, December, 1988.

REFERENCES (continued)

- Miles, S.D. "Oregon County and State Agricultural Estimates," Oregon State University Extension Service Special Report 790, Corvallis, 1988. 13p.
- United States Department of Agriculture. "Agricultural Statistics, 1987," USDA: Washington, D.C., 1987.

APPENDIX A. DETAILED MACHINERY COST WORKSHEET

Appendix Table A1. Machinery Costs per Acre for Grass Seed Field Sanitation Operations

<u> </u>			BALE	BALE	-BALE	-BALE	-STACK	-STACK-	-STACK-	-STACK-	-CHOP-
		Self-	75 hp Tractor	120 hp Tractor	190 hp Tractor	120 hp Tractor		75 hp Tractor	120 hp Tractor	190 hp Tractor	75 hp Tractor
	11-1	Propelled	Square	Square	Square	Round	Bale	and	and	and	Flail
INPUTS	Units	Swather	Bales	Bales	Bales	Bales	Waqon	Loader	Loader	Loader	Chop
Machine											
Size	hp	90	75	120	190	120	90	75	120	190	75
Fuel type	GorDe	45000	32000	52000	80000	52000	Z0000	32000	52000	D	22000
Salvage value	s Š	10000	9600	15600	24000	15600	25000	9600	15600	24000	9600
Life	hrs	3000	8000	8000	8000	8000	8000	8000	8000	8000	8000
Annual use	hrs	300	450	450	450	450	600	450	450	450	450
Size	ft	none	motor	pto	pto	1.5 ton	none				14
Purchase price	\$		33000	25000	25000	18000		14000	14000	14000	8500
Salvage value	\$		7000	7000	7000	5400		1400	1400	1400	1275
Life Annual use	nrs hrs		3000	3000	3000	3000		3000	3000	3000	2500
Capacity	acres/hr	6	4	4	4	4	5	3	3	3	5
Input costs	\$/yr		7800	6750	6750	600					
PARAMETERS											
				·····					·····	<u>.</u>	
General	AdEna	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Insur. multiplier	AgEng	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Interest rate	%	6%	6%	_6%	6%	_6%	6%	6%	6%	6%	6%
Labor	\$/hr	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
Gas cost	\$/gal	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Diesel cost	\$/gal	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Fuel multiplier	AgEng	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
Remaining life	Calc	1500	4000	4000	4000	4000	4000	4000	4000	4000	4000
Repair Factor #1	AgEng	0.278	0.029	0.024	0.024	0.024	0.230	0.024	0.024	0.024	0.029
Repair Factor #2	AgEng	1.400	1.500	1.500	1.500	1.500	1.400	1.500	1.500	1.500	1.500
Current value	Calc		20000	16000	16000	11700		7700	7700	7700	4888
Remaining life	Calc		1500	1500	1500	1500		1500	1500	1500	1250
Repair Factor #1			0.168	0.222	0.222	0.168		0.168	0.168	0.168	0.304
	Ageing		1.400	1.400	1.400	1.400		1.400	1.400	1.400	1.400
COSTS PER HOU	R										
Machine											
Fuel		5.36	4.47	7.14	11.31	7.14	5.36	4.47	7.14	11.31	4.47
Lube Repairs		21.39	0.67	1.07	1.70	1.07	0.80 40 39	0.67	3.85	5.92	2.86
Labor		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
Insurance		0.92	0.46	0.75	1.16	0.75	0.79	0.46	0.75	1.16	0.46
Depreciation		11.67	2.80	4.55 4.37	7.00 6.72	4.55	5.63 4.58	2.80	4.55	7.00	2.80
Total		52.29	20.95	28.73	40.81	28.73	64.55	20.95	28.73	40.81	20.95
Implement											4
Repair Inputs			9.48	9.49	9.49	5.17		4.02	4.02	4.02	4.08
Insurance			0.67	0.53	0.53	0.39		0.26	0.26	0.26	0.24
Depreciation			8.67	6.00	6.00	4.20		4.20	4.20	4.20	2.89
Interest Tetal			3.74	3.02	3.02	2.21		1.41	1.41	1.41 0.90	1.38
Operation			40.00	41.34	41.04	13.37		3.03	3.03	3.03	0.03
Cost per hour		52.29	69.50	70.28	82.35	42.71	64.55	30.84	38.63	50.70	29.54
Cost per acre Cost per ton		8.71 4.36	17.38 8.69	17.57 8.78	20.59 10.29	10.68 5.34	12.91 6.45	10.28 5.14	12.88 6.44	16.90 8.45	5.91 NA
2001 por 1011		1.00	0.00	00		0.07	00		,		

Appendix Table A1. Machinery Costs per Acre for Grass Seed Field Sanitation Operations (continued)

	<u> </u>	CHOP-		LOAF	-HARROW	HARROW	-HARROW-	-FLUFF-	BURN	-BURN-	-BURN-
	Linite	120 hp Tractor Flail	190 hp Tractor Flail Chop	120 hp Tractor Flail	75 hp Tractor Pasture Harrow	120 hp Tractor Pasture Harrow	190 hp Tractor Pasture Harrow	75 hp Tractor	75 hp Tractor Propane Burn	120 hp Tractor Propane	190 hp Tractor Propane
	Units				Harrow	Tiallow	Hanow		Duin	Duin	Duili
Machine											
Size	hp Corr D	120	190	120	75	120	190	75	75	120	190
Fuel type Purchase price	GOLD	52000	80000	52000	32000	52000	80000	32000	32000	52000	80000
Salvage value	Š	15600	24000	15600	9600	15600	24000	9600	9600	15600	24000
Life	hrs	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000
Annual use	hrs	450	450	450	450	450	450	450	450	450	450
Implement	4			14	10	10	10	40			
Size Purchase price	n S	14 8500	14 8500	37000	600	600	600	4000	7200	30 7200	7200
Salvage value	Š	1275	1275	7400	50	50	50	400	720	720	7200
Life	hrs	2500	2500	2500	2000	2000	2000	2000	1500	1500	1500
Annual use	hrs	200	200	200	200	200	200	200	150	150	150
Capacity	acres/hr	6	7	5.	7	7	7	7	10	10	10
Input costs	\$/yr										
PARAMETERS								_			
General											
Lube multiplier	AgEng	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Insur. multiplier	AgEng	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Interest rate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6%	6%	6%	6% 7.00	6%	6%	6%	6%	6%	6%
Labor	\$/nr	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
Gas cost	\$/gal	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Diesel cost	\$/gai	0.72	0.72	0.72	0.72	0.72	0.00	0.72	0.72	0.72	0.00
Fuel multiplier	AgEng	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083
Current value	Calc	33800	52000	33800	20800	33800	52000	20800	20800	33800	52000
Remaining life	Calc	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
Repair Factor #1	AgEng	0.024	0.024	0.024	0.029	0.024	0.024	0.029	0.029	0.024	0.024
Repair Factor #2	Ag⊏ng	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500
Current value	Calc	4888	4888	22200	325	325	325	2200	3960	3960	3960
Remaining life	Calc	1250	1250	1250	1000	1000	1000	1000	750	750	750
Repair Factor #1	AgEng	0.304	0.304	0.304	0.364	0.364	0.364	0.364	0.364	0.364	0.364
Repair Factor #2	AgEng	1.400	1.400	1.400	1.300	1.300	1.300	1.300	1.300	1.300	1.300
COSTS PER HOU	IR										
Machine		7 14	11 31	7 14	A A7	7 14	11 31	A A7	A A7	714	11 21
lube		1 07	1 70	1.07	0.67	1.07	1.70	0.67	0.67	1.07	1.70
Repairs		3.85	5.92	3.85	2.86	3.85	5.92	2.86	2.86	3.85	5.92
Labor		7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00	7.00
Insurance		0.75	1.16	0.75	0.46	0.75	1.16	0.46	0.46	0.75	1.16
Depreciation		4.55	7.00	4.55	2.80	4.55	7.00	2.80	2.80	4.55	7.00
Interest		4.37	6.72	4.37	2.69	4.37	6.72	2.69	2.69	4.37	6.72
l otal		28.73	40.81	28.73	20.95	28.73	40.81	20.95	20.95	28.73	40.81
Repairs		4.08	4 08	17 75	0.29	0.29	0.29	1.95	3.22	3.22	3.22
Inputs		4.00	4.00		0.20	0.20	0.20	1.00	0.22	U.	0.24
Insurance		0.24	0.24	1.11	0.02	0.02	0.02	0.11	0.26	0.26	0.26
Depreciation		2.89	2.89	11.84	0.28	0.28	0.28	1.80	4.32	4.32	4.32
Interest		1.38	1.38	6.30	0.09	0.09	0.09	0.61	1.45	1.45	1.45
Total		8.59	8.59	37.01	0.67	0.67	0.67	4.46	9.25	9.25	9.25
Operation Cost per hour		37.33	49.40	65.74	21.62	29.41	41.48	25.41	30.20	37.99	50.06
Cost per acre		6.22	7.06	13.15	3.09	4.20	5.93	3.63	3.02	3.80	5.01

Appendix Table A1. Machinery Costs per Acre for Grass Seed Field Sanitation Operations (continued)

				-WATER-	WATER	TILL	TILL	TILL
				Tractor	Tractor	120 ho	190 ho	260 hn
		Bugay	Bugay	& Small	& Large	Tractor	Tractor	Tractor
		Fert.	Chem.	Water	Water	Disc or	Disc or	Disc or
INPUTS	Units	Appl.	Appl.	Tank	Tank	Plow	Plow	Plow
Machine								
Size	ho	125	125	75	75	120	190	260
Fuel type	GorD	Ğ	Ğ	Ď	Ď	D	D	D
Purchase price	\$	35200	35200	32000	32000	52000	80000	115000
Salvage value	\$	3520	3520	9600	9600	15600	24000	34500
Life	hrs	5000	5000	8000	8000	8000	8000	8000
Annual use	hrs	400	400	450	450	450	450	450
Implement								
Size	ft	3-ton	500 gal	500 gal	1000 gal	13	15	15
Purchase price	\$	5400	7900	4300	5300	12400	14900	14900
Salvage value	\$	540	/90	430	530	1240	1490	1490
Life	hrs	1500	1500	1000	1000	2500	2500	2500
Annual use	nrs acroc/br	100	100	50	50	250	250	250
Capacity	acres/nr ©h/r	20	20	50	50	0	/	8
input costs	Φ/ γ Ι							
PARAMETERS		·····						
General								
Lube multiplier	AgEng	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Insur, multiplier	AgEng	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Interest rate	×.	6%	6%	6%	6%	6%	6%	6%
Labor	\$/hr	7.00	7.00			7.00	7.00	7.00
Machine								
Gas cost	\$/gal	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Diesel cost	\$/gal	0.72	0.72	0.72	0.72	0.72	0.72	0.72
Fuel multiplier	Ageng	0.104	0.104	0.083	0.083	0.083	0.083	0.083
Current value	Calc	19300	19300	20800	20800	33800	32000	4000
Repair Factor #1	AcEnc	0.029	0 029	0.029	0.029	0.024	0.024	0.024
Repair Factor #2	AgEng	1 500	1 500	1 500	1 500	1 500	1 500	1 500
Implement	Ageng	1.500	1.000					
Current value	Calc	2970	4345	2365	2915	6820	8195	8195
Remaining life	Calc	750	750	500	500	1250	1250	1250
Repair Factor #1	AgEng	0.934	0.304	0.777	0.777	0.364	0.364	0.364
Repair Factor #2	AgEng	1.400	1.400	1.400	1.400	1.300	1.300	1.300
COSTS PER HOUR	1							
Mashing								
Fuel		11.05	11.05	A A7	A A7	7 14	11 21	15 40
Luba		1.05	1.05	9.47	4.47	1.14	1 70	2 32
Benair		2.52	2.52	2.86	2.86	3.85	5.92	2.JZ 8.51
Labor		7 00	7 00	2.00	2.00	7.00	7.00	7.00
Insurance		0.48	0.48	0.46	0.46	0.75	1 16	1.66
Depreciation		6.34	6.34	2.80	2.80	4.55	7.00	10.06
Interest		2.71	2.71	2.69	2.69	4.37	6.72	9.66
Total		31.75	31.75	13.95	13.95	28.73	40.81	54.70
Implement								
Repairs		6.46	3.07	3.61	4.46	6.45	7.76	7.76
Inputs								
Insurance		0.30	0.43	0.47	0.58	0.27	0.33	0.33
Depreciation		3.24	4.74	3.87	4.77	4.46	5.36	5.36
Interest		1.68	2.46	2.72	3.35	1.50	1.81	1.81
I Olal		11.68	10.71	10.68	13.16	12.69	15.25	15.25
Operation		40 40	40 47	24 60	07 11	11 42	56 06	60.05
Cost per nour		40.40	42.47	24.03	2/.II 0 5 A	41.40	00.00 2 A1	Q3.33 Q 74
oust per acre		2.17	2.12	0.49	0.34	0.30	0.01	0.74