

AN ABSTRACT OF THE THESIS OF

Renjie Zheng for the degree of Doctor of Philosophy in Computer Science presented on

March 30, 2020.

Title: Advances in Simultaneous Translation

Abstract approved:

Liang Huang

Simultaneous translation, which translates concurrently with the source language speech,

is widely used in many scenarios including multilateral organizations. However, it is

well known to be one of the most challenging tasks for humans due to the simultaneous

perception and production in two languages. On the other hand, simultaneous translation

is also notoriously difficult for machines and has remained one of the holy grails of AI.

The key challenge is the word order difference between the source and target languages.

There have been efforts towards genuine simultaneous translation, but all these efforts

have the following major limitations: (a) none of them can achieve any arbitrary given

latency; (b) their base translation model is still trained on full sentences; and (c) their

systems are complicated, involving many components and are difficult to train. In this

thesis, we start by introducing several simultaneous translation approaches with two

orthogonal categories: fixed or adaptive latency policies; trained on full sentences or not.

Then, we investigate how to improve simultaneous translation with beam search which

is universally used in full-sentence translation but non-trivial to be applied in simulta-

neous translation. Finally, we explore speech-to-speech simultaneous interpretation by

incorporating streaming ASR and incremental TTS.

c©Copyright by Renjie Zheng
March 30, 2020

All Rights Reserved

Advances in Simultaneous Translation

by

Renjie Zheng

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented March 30, 2020
Commencement June 2020

Doctor of Philosophy thesis of Renjie Zheng presented on March 30, 2020.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Renjie Zheng, Author

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Liang Huang for

the continuous support and guidance of my Ph.D study and related research. I could not

imagine having a better advisor and mentor for my Ph.D study. Some of my work in this

thesis was supported in part by NSF grants IIS-1817231 and IIS-1656051. Additionally,

I was also supported by DARPA grant N66001-17-2-4030 for another project [Zheng

et al., 2018b] but it is not part of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Prasad Tadepalli, Prof. Xiaoli Fern, Prof. Lizhong Chen, Prof. Brett Tyler and Prof. Alan

Fern, for their insightful comments and encouragement, but also for the hard questions

which incented me to widen my research from various perspectives.

I thank my fellow labmates for the stimulating discussions, and for all the fun we

have had in the past years. They are Mingbo Ma, Baigong Zheng, Kaibo Liu, Junkun

Chen, Juneki Hong, Göksu Öztürk Miraç, Liang Zhang, He Zhang and Sizhen Li.

Last but not the least, I would like to thank my family: my wife and my parents for

supporting me spiritually throughout writing this thesis and my life in general.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Background: Simultaneous Interpretation 1

1.2 Existing Methods in Simultaneous Translation 2

1.3 Our Proposed Methods . 3

1.4 Preliminaries . 5

2 Policies and Models for Simultaneous Translation 7

2.1 Prefix-to-Prefix and Wait-k Policy . 7
2.1.1 Latency Metric: Average Lagging 10
2.1.2 Implementation Details . 13
2.1.3 Experiments . 16

2.2 Learning Flexible Policy based on Pre-trained NMT 24
2.2.1 Supervised-Learning for Simultaneous Translation Policy 25
2.2.2 Generating Action Sequences 26
2.2.3 Experiments . 28

2.3 Learning Flexible Policy from Scratch 33
2.3.1 Training via Restricted Imitation Learning 35
2.3.2 Training with Restricted Dynamic Oracle 37
2.3.3 Experiments . 38

3 Beam Search for Simultaneous Translation 42

3.1 Full Sentence NMT and Beam Search 44

3.2 Speculative Beam Search for Simultaneous Translation 44
3.2.1 Single-Step SBS . 45
3.2.2 Chunk-based SBS . 46
3.2.3 Experiments . 47

3.3 Opportunistic Decoding and Timely Correction with Beam Search 53
3.3.1 Opportunistic Decoding . 54
3.3.2 Timely Correction . 56
3.3.3 Revision-aware AL and Revision Rate 57
3.3.4 Experiments . 60

TABLE OF CONTENTS (Continued)

Page

4 Speech-to-Speech Simultaneous Translation with Incremental TTS 65

4.1 Background . 65
4.1.1 Full-sentence TTS Pipeline . 68
4.1.2 Prefix-to-prefix Framework . 71

4.2 Incremental TTS . 72
4.2.1 Prefix-to-Prefix for TTS . 72
4.2.2 Lookahead-k Policy . 73
4.2.3 Incremental Generation of Spectrogram 74
4.2.4 Generation of Waveform . 75
4.2.5 Experiments . 76

4.3 Speech-to-Speech Simultaneous Translation 88
4.3.1 Speech-to-Text Simultaneous Translation and Human Interpreter 91
4.3.2 Speech-to-Speech Simultaneous Translation and Human Interpreter 91

5 Summary . 95

Bibliography . 96

Appendices . 105

LIST OF TABLES

Table Page

2.1 wait-k policy in training and test (4-ref BLEU, zh→en dev set). The
bottom row is “test-time wait-k”. Bold: best in a column; italic: best in a
row. 19

2.2 Human evaluation for all four directions (100 examples each from dev
sets). We report sentence- and word-level anticipation rates, and the
word-level anticipation accuracy (among anticipated words). 20

2.3 An example for READ/WRITE action sequence. R represents READ
and W represents WRITE. 25

2.4 Training times (in hours) of different methods. Wait-k training uses 8
GPUs, while others use 1 GPU. 33

2.5 Chinese-to-English example in the dev set using model trained with
α = 3, β = 7, . 41

3.1 Three approaches to simultaneous translation. 47

3.2 Zh→En wait-1 model BLEU improvement of SBS against greedy result
(b = 1, w = 0) on dev-set. When b ≥ 5 the performance of SBS becomes
stable. 48

3.3 Chinese-to-English example on dev set. †: test-time wait-k; ‡: wait-k. ∗:
full-sentence beam search. 49

4.1 Summary of notations. We distinguish vectors (over frequencies) and
sequences (over time). 69

4.2 Mean Opinion Score (MOS) ratings with 95% confidence intervals. . . 79

4.3 Human Simultaneous Interpretation Corpora. 91

4.4 Translation quality and latency of human interpreter and our system . . 93

4.5 Running example of our Speech-to-speech simultaneous translation. Hu-
man interpreter summarizes "nuclear-weapon and non-nuclear-weapon
country" into "nuclear country, non-nuclear country". 93

LIST OF TABLES (Continued)

Table Page

4.6 Running example of our Speech-to-speech simultaneous translation. Our
system translates "New Zealand" into "museum" because of the error in
ASR output. 94

LIST OF ALGORITHMS

Algorithm Page

1 Generating Action Sequence . 28

Chapter 1: Introduction

Simultaneous translation, which translates sentences before they are finished, is useful in

many scenarios including multilateral organizations (UN/EU), and international summits

(APEC/G-20). However, it is widely considered one of the most challenging tasks in

NLP, and one of the holy grails of AI [Grissom II et al., 2014]. There have been efforts

towards genuine simultaneous translation, but unfortunately none of them can achieve

any arbitrary given latency and their base translation models are still trained on full

sentences. In this thesis, we first present several simultaneous translation approaches

based on the prefix-to-prefix framework which overcomes the limitations of previous

work (Chapt. 2). Then we investigate a beam search algorithm which is able to further

improve the translation quality of different simultaneous translation models (Chapt. 3). In

the end, we introduce an incremental Text-to-speech model which is a critical component

of our final speech-to-speech simultaneous translation system (Chapt. 4).

1.1 Background: Simultaneous Interpretation

There are two modes of human interpretation, consecutive and simultaneous. While

consecutive interpretation waits until the speaker pauses (usually at sentence boundaries)

to initiate translation, simultaneous interpretation translates concurrently with the source-

language speech, with a delay of only a few seconds. This additive latency is much more

2

desirable than the multiplicative 2× slowdown in consecutive interpretation.

With this appealing property, simultaneous interpretation has been widely used in

many scenarios. However, due to the concurrent comprehension and production in

two languages, it is extremely challenging and exhaustive for humans: the number of

qualified simultaneous interpreters worldwide is very limited, and each can only last for

about 15-30 minutes in one turn, whose error rates grow exponentially after just minutes

of interpreting [Moser-Mercer et al., 1998]. Moreover, limited memory forces human

interpreters to routinely omit source content [He et al., 2016]. Therefore, there is a critical

need to develop simultaneous machine translation techniques to reduce the burden of

human interpreters and make it more accessible and affordable.

1.2 Existing Methods in Simultaneous Translation

Unfortunately, simultaneous translation is also notoriously difficult for machines, due

in large part to the diverging word order between the source and target languages. For

example, think about simultaneously translating an SOV language such as Japanese or

German to an SVO language such as English or Chinese:1 you have to wait until the

source language verb. As a result, existing so-called “real-time” translation systems resort

to conventional full-sentence translation, causing an undesirable latency of at least one

sentence. Some researchers, on the other hand, have noticed the importance of verbs in

SOV→SVO translation [Grissom II et al., 2016], and have attempted to reduce latency by

explicitly predicting the sentence-final German [Grissom II et al., 2014] or English verbs

1Technically, German is SOV+V2 in main clauses, and SOV in embedded clauses; Mandarin is a mix
of SVO+SOV.

3

[Matsubarayx et al., 2000], which is limited to this particular case, or unseen syntactic

constituents [Oda et al., 2015, He et al., 2015], which requires incremental parsing on the

source sentence. Some researchers propose to translate on an optimized sentence segment

level to get better translation accuracy [Oda et al., 2014, Fujita et al., 2013, Bangalore

et al., 2012]. More recently, Gu et al. [2017] propose a two-stage model whose base

model is a full-sentence model, On top of that, they use a READ/WRITE (R/W) model

to decide, at every step, whether to wait for another source word (READ) or to emit a

target word using the pretrained base model (WRITE), and this R/W model is trained by

reinforcement learning to prefer (rather than enforce) a specific latency, without updating

the base model. All these efforts have the following major limitations: (a) none of them

can achieve any arbitrary given latency such as “3-word delay”; (b) their base translation

model is still trained on full sentences; and (c) their systems are complicated, involving

many components (such as pretrained model, prediction, and RL) and are difficult to

train.

1.3 Our Proposed Methods

In this thesis, we will introduce our work in simultaneous translation to tackle the

previous problems. We first present a very simple yet effective solution, designing a

novel prefix-to-prefix framework that predicts target words using only prefixes of the

source sentence. Within this framework, we study a special case, the “wait-k” policy [Ma

et al., 2019a, 2020], whose translation is always k words behind the input. Consider the

Chinese-to-English example in Figs. 1.1–1.2, where the translation of the sentence-final

4

President Bush met with Putin in Moscow
Bùshí 
Ջ
Bush

zǒngtǒng 
ᕹ

President

zài
 ࣁ
at

Mòsīkē
ឭේᑀ
Moscow

yǔ
Ө
with

Pǔjīng
ฦՂ
Putin
huìwù
տร
meet

pr
ed

ic
tio

n

read

write

Source side →

Target side →

Figure 1.1: Our wait-k model emits target word yt given source-side prefix x1... xt+k−1,
often before seeing the corresponding source word (here k=2, outputing y3=“met” before
x7=“huìwù”). Without anticipation, a 5-word wait is needed (dashed arrows). See
also Fig. 1.2.

Bùshí zǒngtǒng zài Mòsı̄kē yǔ Pǔjı̄ng huìwù
布布布什什什 总总总统统统 在在在 莫莫莫斯斯斯科科科 与 普京 会晤
Bush president in Moscow with/and Putin meet

(a) simultaneous: our wait-2 ...wait 2 words... pres. bush met with putin in moscow
(b) non-simultaneous baseline wait whole sentence pres. bush met with putin in moscow
(c) simultaneous: test-time wait-2 ...wait 2 words... pres. bush in moscow and pol- ite meeting

布什 总统 在 莫斯科 与 普京 会晤
(d) simultaneous: non-predictive ...wait 2 words... pres. bush wait 5 words met with putin in moscow

Figure 1.2: Another view of Fig. 1.1, highlighting the prediction of English “met”
corresponding to the sentence-final Chinese verb huìwù. (a) Our wait-k policy (here
k = 2) translates concurrently with the source sentence, but always k words behind. It
correclty predicts the English verb given just the first 4 Chinese words (in bold), lit. “Bush
president in Moscow”, because it is trained in a prefix-to-prefix fashion (Sec. 2.1), and
the training data contains many prefix-pairs in the form of (X zài Y ..., X met ...). (c)
The test-time wait-k decoding (Sec. 2.1.0.2) using the full-sentence model in (b) can
not anticipate and produces nonsense translation. (d) A simultaneous translator without
anticipation has to wait 5 words.

5

…… wait whole source sentence …

1 2

source:

target:

41 2 3 5
seq-to-seq

41 2 3

…wait k words

1 2

source:

target:

5

prefix-to-prefix  
(wait-k)

Figure 1.3: Sequence-to-sequence framework.

Chinese verb huìwù (“meet”) needs to be emitted earlier to avoid a long delay. Our wait-2

model correctly anticipates the English verb given only the first 4 Chinese words (which

provide enough clue for this prediction given many similar prefixes in the training data).

Besides this wait-k fixed policy, we also proposed a flexible policy learned on pre-

trained model [Zheng et al., 2019b] and a flexible policy learned from scratch [Zheng

et al., 2019a, 2020a]. To further improves simultaneous translation quality, we propose

the speculative beam search algorithm [Zheng et al., 2019d, Ma et al., 2019c, Zheng et al.,

2020b] which can also be used to do timely correction. In the end, we will introduce an

incremental Text-to-speech model which can be used in speech-to-speech simultaneous

interpretation [Ma et al., 2019b].

1.4 Preliminaries

Neural machine translation has attracted much attention in recent years thanks to its

impressive generation accuracy and wide applicability. Sequence-to-sequence (seq2seq)

models based on RNNs [Sutskever et al., 2014, Bahdanau et al., 2014a] , CNNs [Gehring

et al., 2017] and self-attention [Vaswani et al., 2017] have achieved great successes in

Neural Machine Translation (NMT). The above family of models encode the source

6

sentence and predict the next word in an autoregressive fashion at each decoding time

step. The classical “cross-entropy” training objective of seq2seq models is to maximize

the likelihood of each word in the translation reference given the source sentence and

all previous words in that reference. This word-level loss ensures efficient and scalable

training of seq2seq models.

Regardless of the particular design of different seq-to-seq models, the encoder always

takes the input sequence x = (x1, ..., xn) where each xi ∈ Rdx is a word embedding of

dx dimensions, and produces a new sequence of hidden states h = f(x) = (h1, ..., hn).

The encoding function f can be implemented by RNN or Transformer.

On the other hand, a (greedy) decoder predicts the next output word yt given the

source sequence (actually its representation h) and previously generated words, denoted

y<t = (y1, ..., yt−1). The decoder stops when it emits <eos>, and the final hypothesis

y = (y1, ..., <eos>) has probability

p(y | x) =
∏|y|

t=1 p(yt | x, y<t) (1.1)

At training time, we maximize the conditional probability of each ground-truth target

sentence y? given input x over the whole training data D, or equivalently minimizing

the following loss:

`(D) = −
∑

(x,y?)∈D log p(y? | x) (1.2)

7

Chapter 2: Policies and Models for Simultaneous Translation

2.1 Prefix-to-Prefix and Wait-k Policy

To overcome the drawbacks in previous work, we instead present a very simple yet

effective solution, designing a novel prefix-to-prefix framework that predicts target words

using only prefixes of the source sentence. Within this framework, we study a special

case, the “wait-k” policy, whose translation is always k words behind the input. Consider

the Chinese-to-English example in Figs. 1.1–1.2, where the translation of the sentence-

final Chinese verb huìwù (“meet”) needs to be emitted earlier to avoid a long delay. Our

wait-2 model correctly anticipates the English verb given only the first 4 Chinese words

(which provide enough clue for this prediction given many similar prefixes in the training

data).

In full-sentence translation ,each yi is predicted using the entire source sentence x.

…… wait whole source sentence …

1 2

source:

target:

41 2 3 5
seq-to-seq

41 2 3

…wait k words

1 2

source:

target:

5

prefix-to-prefix  
(wait-k)

Figure 2.1: Seq-to-seq vs. our prefix-to-prefix frameworks (showing wait-2 as an exam-
ple).

8

But in simultaneous translation, we need to translate concurrently with the (growing)

source sentence, so we design a new prefix-to-prefix architecture to (be trained to) predict

using a source prefix.

2.1.0.1 Prefix-to-Prefix Architecture

Definition 1. Let g(t) be a monotonic non-decreasing function of t that denotes the

number of source words processed by the encoder when deciding the target word yt.

For example, in Figs. 1.1–1.2, g(3) = 4, i.e., a 4-word Chinese prefix is used to

predict y3=“met”. We use the source prefix (x1, ..., xg(t)) rather than the whole x to

predict yt: p(yt | x≤g(t), y<t). Therefore the decoding probability is:

pg(y | x) =
∏|y|

t=1 p(yt | x≤g(t), y<t) (2.1)

and given training D, the training objective is:

`g(D) = −
∑

(x,y?)∈D log pg(y
? | x) (2.2)

Generally speaking, g(t) can be used to represent any arbitrary policy, and we give

two special cases where g(t) is constant: (a) g(t) = |x|: baseline full-sentence translation;

(b) g(t) = 0: an “oracle” that does not rely on any source information. Note that in any

case, 0 ≤ g(t) ≤ |x| for all t.

Definition 2. We define the “cut-off” step, τg(|x|), to be the decoding step when source

9

sentence finishes:

τg(|x|) = min{t | g(t) = |x|} (2.3)

For example, in Figs. 1.1–1.2, the cut-off step is 6, i.e., the Chinese sentence finishes

right before y6=“in”.

Training vs. Test-Time Prefix-to-Prefix. While most previous work in simultaneous

translation, in particular Bangalore et al. [2012] and Gu et al. [2017], might be seen as

special cases in this framework, we note that only their decoders are prefix-to-prefix,

while their training is still full-sentence-based. In other words, they use a full-sentence

translation model to do simultaneous decoding, which is a mismatch between training

and testing. The essence of our idea, however, is to train the model to predict using

source prefixes. Most importantly, this new training implicitly learns anticipation as a

by-product, overcoming word-order differences such as SOV→SVO. Using the example

in Figs. 1.1–1.2, the anticipation of the English verb is possible because the training data

contains many prefix-pairs in the form of (X zài Y ..., X met ...), thus although the prefix

x≤4=“Bùshí zǒngtǒng zài Mòsikē” (lit. “Bush president in Moscow”) does not contain

the verb, it still provides enough clue to predict “met”.

2.1.0.2 Wait-k Policy

As a very simple example within the prefix-to-prefix framework, we present a wait-k

policy, which first wait k source words, and then translates concurrently with the rest of

source sentence, i.e., the output is always k words behind the input. This is inspired by

human simultaneous interpreters who generally start translating a few seconds into the

10

speakers’ speech, and finishes a few seconds after the speaker finishes. For example, if

k = 2, the first target word is predicted using the first 2 source words, and the second

target word using the first 3 source words, etc.; see Fig. 4.2. More formally, its g(t) is

defined as follows:

gwait-k(t) = min{k + t− 1, |x|} (2.4)

For this policy, the cut-off point τgwait-k(|x|) is exactly |x| − k. From this step on, gwait-k(t)

is fixed to |x|, which means the remaining target words (including this step) are generated

using the full source sentence, similar to conventional MT. We call this part of output,

y≥|x|−k, the “tail”, and can perform beam search on it (which we call “tail beam search”),

but all earlier words are generated greedily one by one (see Appendix).

Test-Time Wait-k. As an example of test-time prefix-to-prefix in the above subsection,

we present a very simple “test-time wait-k” method, i.e., using a full-sentence model

but decoding it with a wait-k policy (see also Fig. 1.2(c)). Our experiments show that

this method, without the anticipation capability, performs much worse than our genuine

wait-k when k is small, but gradually catches up, and eventually both methods approach

the full-sentence baseline (k =∞).

2.1.1 Latency Metric: Average Lagging

Beside translation quality, latency is another crucial aspect for evaluating simultaneous

translation. We first review existing latency metrics, highlighting their limitations, aand

then propose our new latency metric that address these limitations.

11

2.1.1.1 Existing Metrics: CW and AP

Consecutive Wait (CW) [Gu et al., 2017] is the number of source words waited between

two target words. Using our notation, for a policy g(·), the per-step CW at step t is

CWg(t) = g(t)− g(t− 1). The CW of a sentence-pair (x,y) is the average CW over

all consecutive wait segments:

CWg(x,y) =

∑|y|
t=1CWg(t)∑|y|
t=1 1CWg(t)>0

=
|x|

∑|y|
t=1 1CWg(t)>0

In other words, CW measures the average source segment length (the best case is 1

for word-by-word translation or our wait-1 and the worst case is |x| for full-sentence

MT). The drawback of CW is that CW is local latency measurement which is insensitive

to the actual lagging behind.

Another latency measurement, Average Proportion (AP) [Cho and Esipova, 2016]

measures the proportion of the area above a policy path in Fig. 1.1:

APg(x,y) =
1

|x| |y|
∑|y|

t=1 g(t) (2.5)

AP has two major flaws: First, it is sensitive to input length. For example, consider

our wait-1 policy. When |x| = |y| = 1, AP is 1, and when |x| = |y| = 2, AP is 0.75,

and eventually AP approaches 0.5 when |x| = |y| → ∞. However, in all these cases,

there is a one word delay, so AP is not fair between long and short sentences. Second,

being a percentage, it is not obvious to the user the actual delays in number of words.

12

Source→

Target→

1 2 3 4 5 6 7 8 9 10

Source→

Target→

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2.2: Illustration of our proposed Average Lagging latency metric. The left figure
shows a simple case when |x| = |y| while the right figure shows a more general case
when |x| 6= |y|. The red policy is wait-4, the yellow is wait-1, and the thick black is a
policy whose AL is 0.

2.1.1.2 New Metric: Average Lagging

Inspired by the idea of “lagging behind the ideal policy”, we propose a new metric called

“average lagging” (AL), shown in Fig. 2.2. The goal of AL is to quantify the degree the

user is out of sync with the speaker, in terms of the number of source words. The left

figure shows a special case when |x| = |y| for simplicity reasons. The thick black line

indicates the “wait-0” policy where the decoder is alway one word ahead of the encoder

and we define this policy to have an AL of 0. The diagonal yellow policy is our “wait-1”

which is always one word behind the wait-0 policy. In this case, we define its AL to be

1. The red policy is our wait-4, and it is always 4 words behind the wait-0 policy, so its

AL is 4. Note that in both cases, we only count up to (but including) the cut-off point

(indicated by the horizontal yellow/red arrows, or 10 and 7, resp.) because the tail can

be generated instantly without further delay. More formally, for the ideal case where

13

|x = |y|, we can define:

ALg(x,y) =
1

τg(|x|)

τg(|x|)∑

t=1

g(t)− (t− 1) (2.6)

We can infer that the AL for wait-k is exactly k.

When we have more realistic cases like the right side of Fig. 2.2 when |x| < |y|,

there are more and more delays accumulated when target sentence grows.For example,

for the yellow wait-1 policy has a delay of more than 3 words at decoding its cut-off

step 10, and the red wait-4 policy has a delay of almost 6 words at its cut-off step 7.

This difference is mainly caused by the tgt/src ratio. For the right example, there are 1.3

target words per source word. More generally, we need to offset the “wait-0” policy and

redefine:

ALg(x,y) =
1

τg(|x|)

τg(|x|)∑

t=1

g(t)− t− 1

r
(2.7)

where τg(|x|) denotes the cut-off step, and r = |y|/|x| is the target-to-source length ratio.

We observe that wait-k with catchup has an AL ' k.

2.1.2 Implementation Details

While RNN-based implementation of our wait-k model is straightforward and our initial

experiments showed equally strong results, due to space constraints we will only present

Transformer-based results. Here we describe the implementation details for training a

prefix-to-prefix Transformer, which is a bit more involved than RNN.

14

2.1.2.1 Background: Full-Sentence Transformer

We first briefly review the Transformer architecture step by step to highlight the difference

between the conventional and simultaneous Transformer. The encoder of Transformer

works in a self-attention fashion and takes an input sequence x, and produces a new

sequence of hidden states z = (z1, ..., zn) where zi ∈ Rdz is as follows:

zi =
∑n

j=1 αij PWV(xj) (2.8)

Here PWV(·) is a projection function from the input space to the value space, and αij

denotes the attention weights:

αij=
exp eij∑n
l=1 exp eil

, eij=
PWQ(xi)PWV(xj)

T

√
dx

(2.9)

where eij measures similarity between inputs. Here PWQ(xi) and PWK(xj) project xi and

xj to query and key spaces, resp. We use 6 layers of self-attention and use h to denote

the top layer output sequence (i.e., the source context).

On the decoder side, during training time, the gold output sequence y∗ = (y∗1, ..., y
∗
m)

goes through the same self-attention to generate hidden self-attended state sequence

c = (c1, ..., cm). Note that because decoding is incremental, we let αij = 0 if j > i in

Eq. 2.9 to restrict self-attention to previously generated words.

In each layer, after we gather all the hidden representations for each target word

15

through self-attention, we perform target-to-source attention:

c′i =
∑n

j=1 βij PWV′ (hj)

similar to self-attention, βij measures the similarity between hj and ci as in Eq. 2.9.

2.1.2.2 Training Simultaneous Transformer

Simultaneous translation requires feeding the source words incrementally to the encoder,

but a naive implementation of such incremental encoder/decoder is inefficient. Below we

describe a faster implementation.

For the encoder, during training time, we still feed the entire sentence at once to the

encoder. But different from the self-attention layer in conventional Transformer (Eq. 2.9),

we constrain each source word to attend to its predecessors only (similar to decoder-side

self-attention), effectively simulating an incremental encoder:

α
(t)
ij =

exp e
(t)
ij∑g(t)

l=1 exp e
(t)
il

if i, j ≤ g(t)

0 otherwise

e
(t)
ij =

PWQ (xi) PWK (xj)
T

√
dx

if i, j ≤ g(t)

−∞ otherwise

Then we have a newly defined hidden state sequence z(t) = (z
(t)
1 , ..., z

(t)
n) at decoding

16

step t:

z
(t)
i =

∑n
j=1 α

(t)
ij PWV(xj) (2.10)

When a new source word is received, all previous source words need to adjust their

representations.

2.1.3 Experiments

2.1.3.1 Datasets and Systems Settings

We evaluate our work on four simultaneous translation directions: German↔English

and Chinese↔English. For the training data, we use the parallel corpora available from

WMT151 for German↔English (4.5M sentence pairs) and NIST corpus for Chinese↔English

(2M sentence pairs). We first apply BPE [Sennrich et al., 2015] on all texts in order to

reduce the vocabulary sizes. For German↔English evaluation, we use newstest-2013

(dev) as our dev set and newstest-2015 (test) as our test set, with 3,000 and 2,169 sentence

pairs, respectively. For Chinese↔English evaluation, we use NIST 2006 and NIST 2008

as our dev and test sets. They contain 616 and 691 Chinese sentences, each with 4

English references. When translating from Chinese to English, we report 4-reference

BLEU scores, and in the reverse direction, we use the second among the four English

references as the source text, and report 1-reference BLEU scores.

Our implementation is adapted from PyTorch-based OpenNMT [Klein et al., 2017].

Our Transformer is essentially the same as the base model from the original paper

1http://www.statmt.org/wmt15/translation-task.html

http://www.statmt.org/wmt15/translation-task.html

17

2 4 6 8 10
Average Lagging (de en)

15

20

25

30

1-
re

f B
LE

U

k=1

k=1

k=3

k=3

k=5

k=5

k=7

k=7

k=9

k=9

28.6

wait-k
test-time wait-k

2 4 6
Consective Wait (de en)

15

20

25

30

1-
re

f B
LE

U

k=1

k=1

3

5

5

7

7

9

9

28.6

wait-k
test-time wait-k

Figure 2.3: Translation quality against latency metrics (AP and CW) on German-to-
English simultaneous translation, showing wait-k models (for k=1, 3, 5, 7, 9), test-time
wait-k results, full-sentence baselines, and our reimplementation of Gu et al. [2017], all
based on the same Transformer. FI:full-sentence (greedy and beam-search), Gu et al.
[2017]: I:CW=2; H:CW=5; �:CW=8.

2 4 6 8
Average Lagging (en de)

10

15

20

25

1-
re

f B
LE

U

k=1

k=1

k=3

k=3

k=5

k=5

k=7

k=7

k=9

k=9

26.6

wait-k
test-time wait-k

1.0 1.5 2.0
Consective Wait (en de)

10

15

20

25

1-
re

f B
LE

U

k=1

k=1

k=3

k=3

k=5

k=5

k=7

k=7

k=9

k=9

26.6

wait-k
test-time wait-k

Figure 2.4: Translation quality against latency metrics on English-to-German simultane-
ous translation. Gu et al. [2017]: I:CW=2; H:CW=5; �:CW=8.

18

1 3 5 7 9 11
Average Lagging (zh en)

15

20

25

30

35

40

4-
re

f B
LE

U

k=1

k=3
k=5

k=7
k=9

k=1

k=3

k=5

k=7
k=9

wait-k
test-time wait-k

33.14 2 4 6
Consective Wait (zh en)

20

25

30

35

40

4-
re

f B
LE

U

k=1

k=1

3

5

5

7

7

9

9

28.7

wait-k
test-time wait-k

Figure 2.5: Translation quality against latency on zh→en. Gu et al. [2017]: I:CW=2;
H:CW=5; �:CW=8.

1 3 5 7 9 11
Average Lagging (en zh)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

1-
re

f B
LE

U

k=1

k=3
k=5

k=7
k=9

k=1

k=3

k=5
k=7

k=9

wait-k
test-time wait-k

33.14 2 3 4 5
Consective Wait (en zh)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

1-
re

f B
LE

U

k=1

k=1

3

3

5

5

7

7

9

9

38.3

wait-k
test-time wait-k

Figure 2.6: Translation quality against latency on en→zh. We use encoder catchup
policy here . We encode one extra word for every even step. Gu et al. [2017]: I:CW=2;
H:CW=5; �:CW=8.

19

Train
Test

k=1 k=3 k=5 k=7 k=9 k=∞

k′=1 34.1 33.3 31.8 31.2 30.0 15.4
k′=3 34.7 36.7 37.1 36.7 36.7 18.3
k′=5 30.7 36.7 37.8 38.4 38.6 22.4
k′=7 31.0 37.0 39.4 40.0 39.8 23.7
k′=9 26.4 35.6 39.1 40.1 41.0 28.6
k′=∞ 21.8 30.2 36.0 38.9 39.9 43.2

Table 2.1: wait-k policy in training and test (4-ref BLEU, zh→en dev set). The bottom
row is “test-time wait-k”. Bold: best in a column; italic: best in a row.

[Vaswani et al., 2017].

2.1.3.2 Quality and Latency of Wait-k Model

Tab. 2.1 shows the results of a model trained with wait-k′ but decoded with wait-k (where

∞ means full-sentence). Our wait-k is the diagonal, and the last row is the “test-time

wait-k” decoding. Also, the best results of wait-k decoding is often from a model trained

with a slightly larger k′.

Figs. 2.3–2.6 plot translation quality (in BLEU) against latency (in AP and CW) for

full-sentence baselines, our wait-k, test-time wait-k (using full-sentence models), and

our reimplementation of Gu et al. [2017]2 on the same Transformer baseline. In all these

figures, we observe that, as k increases, (a) wait-k improves in BLEU score and worsens

in latency, and (b) the gap between test-time wait-k and wait-k shrinks. Eventually, both

wait-k and test-time wait-k approaches the full-sentence baseline as k → ∞. These

results are consistent with our intuitions.
2However, it is worth noting that, despite our best efforts, we have failed to reproduce their work

on their original RNN, regardless of using their code or our own implementation. That being said, our
successful implementation of their work on Transformer is also a notable contribution of this work.

20

k=3 k=5 k=7 k=3 k=5 k=7
zh→en en→zh

sent-level % 33 21 9 52 27 17
word-level % 2.5 1.5 0.6 5.8 3.4 1.4

accuracy 55.4 56.3 66.7 18.6 20.9 22.2
de→en en→de

sent-level % 44 27 8 28 2 0
word-level % 4.5 1.5 0.6 1.4 0.1 0.0

accuracy 26.0 56.0 60.0 10.7 50.0 n/a

Table 2.2: Human evaluation for all four directions (100 examples each from dev sets).
We report sentence- and word-level anticipation rates, and the word-level anticipation
accuracy (among anticipated words).

We next compare our results with our reimplementation of Gu et al. [2017]’s two-

staged full-sentence model + reinforcement learning on Transformer. We can see that

while on BLEU-vs-AP plots, their models perform similarly to our test-time wait-k for

de→en and zh→en, and slightly better than our test-time wait-k for en→zh, which is

reasonable as both use a full-sentence model at the very core. However, on BLEU-vs-CW

plots, their models have much worse CWs, which is also consistent with results in their

paper (Gu, p.c.). This is because their R/W model prefers consecutive segments of

READs and WRITEs (e.g., their model often produces R R R R R W W W W R R R W

W W W R ...) while our wait-k translates concurrently with the input (the initial segment

has length k, and all others have length 1, thus a much lower CW). We also found their

training to be extremely brittle due to the use of RL whereas our work is very robust.

21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
dochwährendmansich imkongre- ss nichtauf ein vorgeheneinigen kann , wartenmehrere bs. nicht länger
but while they -self in congress not on one action agree can , wait several states no longer

k=3 but , while congress has not agreed on a course of action , several states no longer wait

Figure 2.7: German-to-English example in the dev set with anticipation. The main verb
in the embedded clause, “einigen” (agree), is correctly predicted 3 words ahead of time
(with “sich” providing a strong hint), while the aux. verb “kann” (can) is predicted as
“has”. The baseline translation is “but , while congressional action can not be agreed ,
several states are no longer waiting”. bs.: bunndesstaaten.

1 2 3 4 5 6 7 8 9 10 11 12
tā hái shuō xiànzài zhèngzài wèi zhè yı̄ fǎngwèn zuò chū ānpái
他 还 说 现在 正在 为 这 一 访问 作 出 安排
he also said now (prog.)� for this one visit make out arrangement

k=1 he also said that he is now making preparations for this visit
k=3 he also said that he is making preparations for this visit
k=∞ he also said that arrangements

are being made for this visit

Figure 2.8: Chinese-to-English example in the dev set with anticipation. Both wait-1
and wait-3 policies yield perfect translations, with “making preparations” predicted well
ahead of time. �: progressive aspect marker.

1 2 3 4 5 6 7 8 9 10 11
jiāng zémín duì bùshí zǒngtǒng lái huá fǎngwèn biǎoshì rèliè huānyíng
江 泽民 对布什 总统 来 华 访问 表示 热烈 欢迎

jiang zeming to bush president come-to china visit express warm welcome
k=3 jiang zemin expressed welcome to president bush ’s visit to china
k=3† jiang zemin meets president bush in china ’s bid to visit china

Figure 2.9: Chinese-to-English example from online news. Our wait-3 model correctly
anticipates both “expressed" and “welcome” (though missing “warm”), and moves the
PP (“to ... visit to china") to the very end which is fluent in the English word order. †:
test-time wait-k produces nonsense translation.

1 2 3 4 5 6 7 8 9 10
Měiguó dāngjú duì Shātè jìzhě shı̄zōng yı̄ àn gǎndào dānyōu

(a) 美国 当局 对 沙特 记者 失踪 一 案 感到 担忧
US authorities to Saudi reporter missing a case feel concern

k=3 the us authorities are very concerned about the saudi reporter ’s missing case
k=3† the us authorities have dis- appeared from saudi reporters

bùmǎn
(b) 美国 当局 对 沙特 记者 失踪 一 案 感到 不不不满满满
k=3 the us authorities are very concerned about the saudi reporter ’s missing case
k=5 the us authorities have expressed dissatisfaction with the incident

of saudi arabia ’s missing reporters

Figure 2.10: (a) Chinese-to-English example from more recent news, clearly outside of
our data. Both the verb “gǎndào” (“feel”) and the predicative “dānyōu” (“concerned”)
are correctly anticipated, probably hinted by “missing”. (b) If we change the latter to
bùmǎn (“dissatisfied”), the wait-3 result remains the same (which is wrong) while wait-5
translates conservatively without anticipation. †: test-time wait-k produces nonsense
translation.

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
it was learned that this is the largest fire accident in the medical and health system nationwide since the founding of new china

k=3

k=3†

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
jù liǎojiě , zhè shì zhōngguó jìn jı̌ nián lái fāshēng de zuì dà yı̄ qı̌ yı̄liáo wèishēng xìtǒng huǒzāi shìgù
据 了解 , 这 是 中国 近 几 年 来 发生 的 最 大 一 起 医疗 卫生 系统 火灾事故
to known , this is China recent few years since happen - most big one case medical health system fire accident

yı̄nwèi tā shì , zhègè , shì zùi dà de huǒzāi shìgù , zhè shì xı̄n zhōngguó chénglì yı̌lái
因为 它 是 , 这个 , 是 最 大 的 火灾 事故 , 这 是 新 中国 成立以来

because it is , this , is most big - fire accident , this is new China funding since

Figure 2.11: English-to-Chinese example in the dev set with incorrect anticipation due
to mandatory long-distance reorderings. The English sentence-final clause “since the
founding of new china” is incorrectly predicted in Chinese as “近几年来”(“in recent
years”). Test-time wait-3 produces translation in the English word order, which sounds
odd in Chinese, and misses two other quantifiers (“in the medical and health system” and
“nationwide”), though without prediction errors. The full-sentence translation, “据了
解，这是新中国成立以来，全国医疗卫生系统发生的最大的一起火灾
事故”, is perfect.

2.1.3.3 Human Evaluation on Anticipation

Tab. 2.2 shows human evaluations on anticipation rates and accuracy on all four directions,

using 100 examples in each language pair from the dev sets. As expected, we can see that,

with increasing k, the anticipation rates decrease (at both sentence and word levels), and

the anticipation accuracy improves. Moreover, the anticipation rates are very different

among the four directions, with

en→zh > de→en > zh→en > en→de

Interestingly, this order is exactly the same with the order of the BLEU-score gaps

between our wait-9 and full-sentence models:

en→zh: 2.7 > de→en: 1.1 > zh→en: 1.6† > en→de: 0.3

23

(†: difference in 4-ref BLEUs, which in our experience reduces by about half in 1-

ref BLEUs). We argue that this order roughly characterizes the relative difficulty of

simultaneous translation in these directions. In our data, we found en→zh to be particu-

larly difficult due to the mandatory long-distance reorderings of English sentence-final

temporal clauses (such as “in recent years”) to much earlier positions in Chinese; see

Fig. 2.11 for an example. It is also well-known that de→en is more challenging in

simultaneous translation than en→de since SOV→SVO involves prediction of the verb,

while SVO→SOV generally does not need prediction in our wait-k with a reasonable

k, because V is often shorter than O. For example, human evaluation found only 1.3%,

0.1%, and 0% word anticipations in en→de for k=3, 5 and 7, and 4.5%, 1.5%, and 0.6%

for de→en.

2.1.3.4 Examples and Discussion

We showcase some examples in de→en and zh→en from the dev sets and online news

in Figs. 2.7 to 2.10. In all these examples except Fig. 2.10(b), our wait-k models can

generally anticipate correctly, often producing translations as good as the full-sentence

baseline. In Fig. 2.10(b), when we change the last word, the wait-3 translation remains

unchanged (correct for (a) but wrong for (b)), but wait-5 is more conservative and

produces the correct translation without anticipation.

Fig. 2.11 demonstrates a major limitation of our fixed wait-k policies, that is, some-

times it is just impossible to predict correctly and you have to wait for more source

words. In this example, due to the required long-distance reordering between English

24

and Chinese (the sentence-final English clause has to be placed very early in Chinese),

any wait-k model would not work, and a good policy should wait till the very end.

2.2 Learning Flexible Policy based on Pre-trained NMT

Simultaneous translation outputs target words while the source sentence is being re-

ceived, and is widely useful in international conferences, negotiations and press releases.

However, although there is significant progress in machine translation (MT) recently,

simultaneous machine translation is still one of the most challenging tasks. This is

because it is difficult to make good translation decisions to keep both good translation

quality and small latency, especially for the syntactically divergent language pairs, such

as German and English.

Researchers previously study simultaneous translation as a part of real-time speech

recognition system [Yarmohammadi et al., 2013, Bangalore et al., 2012] Recent simul-

taneous translation research falls into two main categories: (1) learn a fixed-latency

policy [Ma et al., 2019a, Dalvi et al., 2018] and (2) learn an adaptive policy with rein-

forcement learning (RL) method [Gu et al., 2017, Alinejad et al., 2018]. The fixed-latency

policy usually starts by waiting for the first k source words and then outputs w translated

words after receiving w source words until source sentence ends, when the remaining

translation will be outputted altogether. It is easy to see that this kind of policy will

inevitably need to guess the future content, which always can be incorrect. Therefore,

an adaptive policy (see Table 2.3 as an example), which can decides on the fly whether

to wait for another source word (READ) or to emit a target word (WRITE) using an

25

German Ich bin mit dem Bus nach Ulm gekommen
Gloss I am with the bus to Ulm come
Action R W R R R R W W W R R R W W W W

Translation I took the bus to come to Ulm

Table 2.3: An example for READ/WRITE action sequence. R represents READ and W
represents WRITE.

MT model, is more desirable for simultaneous translation. However, previous work [Gu

et al., 2017, Alinejad et al., 2018] depends on reinforcement learning (RL) method to

learn such an adaptive policy, whose training process is very unstable and inefficient due

to its exploration process. Furthermore, such a learned policy cannot control latency in

applications, which reduces its applicability in many scenarios.

To combine the merits of both approaches and resolve their issues, in this work

we propose a simple supervised learning framework to learn an adaptive policy, and

show how to apply it with controllable latency. This framework is based on sequences

of READ/WRITE actions for parallel sentence pairs, so we present a simple method

to generate such an action sequence for each sentence pair with a pre-trained neural

machine translation (NMT) model. Our experiments on German↔English dataset show

that our method can lead to better policy model than previous methods without retraining

the underlying NMT model. And our model can achieve better performance than the

retrained wait-k models for small latency.

2.2.1 Supervised-Learning for Simultaneous Translation Policy

Given a sentence pair and an action sequence for this pair, we can apply supervised

learning method to learn a parameterized policy for simultaneous translation. For the

policy to be able to choose the correct action, its input should include information

26

from both source and target sides. Since we use Transformer [Vaswani et al., 2017] as

our underlying NMT model in this work, the policy input oi at step i consists of three

components from this model:

• hsi : the last hidden state from encoder for the first source word at step i;

• hti: the last hidden state from decoder for the first target word at step i;

• ci: cross-attention scores at step i for the current input target word on all attention

layers in decoder, averaged over all current source words.

That is oi = [hsi , h
t
i, ci].

Let ai the i-th action in the given action sequence a. Then the decision of our policy

on the i-th step depends on all previous inputs o≤i and all taken actions a<i. We want to

maximize the probability of the next action ai given those information:

max pθ(ai|o≤i, a<i)

where pθ is the action distribution of our policy parameterized by θ.

2.2.2 Generating Action Sequences

In this section, we show how to generate action sequences for parallel text. Our simultane-

ous translation policy can take two actions: READ (input a new source word) and WRITE

(output a new target word). A sequence of such actions for a sentence pair (s, t) defines

one way to translate s into t. Thus, such a sequence must have |t| number of WRITE

actions. However, not every action sequence is good for simultaneous translation. For

instance, a sequence without any READ action will not provide any source information,

27

while a sequence with all |s| number of READ actions before all WRITE actions usually

has large latency. Thus the ideal sequences for simultaneous translation should have the

following two properties:

• there is no anticipation during translation, i.e. when choosing WRITE action, there

is enough source side information for the MT model to predict the correct target

word;

• the latency is as small as possible, i.e. the WRITE action for each target word

appears as early as possible.

Table 2.3 gives an example for such a sequence.

In the following, we present a simple method to generate such an action sequence

for a sentence pair (s, t) using a pre-trained NMT model, assuming this model can

make reasonable prediction given incomplete source sentence. Our method is based on

this observation: if the rank of the next ground-truth target word is high enough in the

prediction of the model, then this implies that there is enough source-side information for

the model to make right prediction. Specifically, we sequentially input the source words

to the pre-trained model, and use it to predict next target word. If the rank of the gold

target word is high enough, we will append a WRITE action to the sequence and then try

the next target word; otherwise, we append a READ action and input a new source word.

Let r be a positive integer, M be a pre-trained NMT model, s≤i be the source sequence

consisting of the first i words of s, and rankM(tj|s≤i) be the rank of the target word tj

in the prediction of model M given sequence s≤i. Then the generating process can be

summarized as Algorithm 1.

28

Algorithm 1 Generating Action Sequence

Input: sentence pair (s, t), integer r, model M
ids ← 1, idt ← 1
Seq← [R]
while idt ≤ |t| do

if rankM(tidt |s≤ids) ≤ r or ids = |s| then
Seq← Seq +[W]
idt ← idt + 1

else
Seq← Seq +[R]
ids ← ids + 1

return Seq

Although we can generate action sequences balancing the two wanted properties with

appropriate value of parameter r, the latency of generated action sequence may still be

large due to the word order difference between the two sentences. To avoid this issue, we

filter the generated sequences with the latency metric Average Lagging (AL) proposed

by Ma et al. [2019a], which quantifies the latency in terms of the number of source words

and avoids some flaws of other metrics like Average Proportion (AP) [Cho and Esipova,

2016] and Consecutive Wait (CW) [Gu et al., 2017]. After the filtering process, each

action sequence has AL less than a fixed constant α.

2.2.3 Experiments

Dataset We conduct experiments on English↔German (EN↔DE) simultaneous trans-

lation. We use the parallel corpora from WMT 15 for training3, newstest-2013 for

validation and newstest-2015 for testing. All datasets are tokenized and segmented into

3http://www.statmt.org/wmt15/translation-task.html

29

sub-word units with byte-pair encoding (BPE) [Sennrich et al., 2016], and we only use

the sentence pairs of lengths less than 50 (on both sides) for training.

Model Configuration We use Transformer-base [Vaswani et al., 2017] as our NMT

model and our implementation is based on PyTorch-based OpenNMT.We add an <eos>

token on the source side, which is not included in the original OpenNMT codebase. Our

policy model consists of an RNN of 512 units, a fully-connected layer of dimension 64,

and a softmax function to produce the action distribution. We use BLEU [Papineni et al.,

2002] as the translation quality metric and “Averaged Lagging” (AL) [Ma et al., 2019a]

as the latency metric.

2 4 6 8 10

AL

22

24

26

B
LE

U

r=5 =3

r=50 =3

r=100 =3

r=50 =7

r=50 =

Figure 2.12: Translation quality against latency on DE→EN dev set. Lines are obtained
with different probability thresholds ρ. Markers represent ρ = 0.5.

Effects of Generated Action Sequences We first analyze the effects of the two pa-

rameters in the generation process of action sequences: the rank r and the filtering

30

2.5 5.0 7.5
AL

20

22

24

26

28

30

B
LE

U

29

(a) DE→EN

2 4 6
AL

16

18

20

22

24

26

28

B
LE

U

27

(b) EN→DE

Figure 2.13: Comparing performances of different methods on testing sets. The shown
pairs are results of greedy decoding and beam search (beam-size = 5).

latency α. We fix α = 3 and choose the rank r ∈ {5, 50, 100}; then we fix r = 50 and

choose the latency α ∈ {3, 7,∞} to generate action sequences on DE→EN direction,

whose statistical information is provided in the supplemental material. Figure 2.12 shows

the performances of resulting models with different probability thresholds ρ. We find

that smaller α helps achieve better performance and our model is not very sensitive to

different values of rank r ∈ {5, 50, 100}. Therefore, in the following experiments, we

report results with r = 50 and α = 3.

Performance Comparison We compare our method on EN↔DE directions with three

different previous methods: RL method of [Gu et al., 2017], wait-k models and test-time

wait-k methods of [Ma et al., 2019a]. For RL method4, we use the same kind of input

and architecture for policy model. Test-time wait-k means decoding with wait-k policy

4we find the reward function designed with CW metric works better than the AP-based reward function
so we report models trained with CW-based reward function.

31

using the pre-trained NMT model. All methods share the same underlying pre-trained

NMT model except for the wait-k method, which retrains the NMT model from scratch,

but with the same architecture as the pre-trained model.

Figure 2.13 shows the performance comparison. In this figure, represents wait-k

models for k ∈ {1, 2, 3, 4, 5, 6}, represents test-time wait-k for k ∈ {1, 2, 3, 4, 5, 6}, J

represents our SL model with threshold ρ ∈ {0.65, 0.6, 0.55, 0.5, 0.45, 0.4},F represents

full-sentence translation with pre-trained NMT model, � represents RL with CW = 2,

H represents RL with CW = 5, N represents RL with CW = 8. Our models on both

directions can achieve higher BLEU scores with the similar latency than the RL model

and test-time wait-k method, implying that our method learns a better policy model than

the other methods when the underlying NMT model is not retrained. Compared with

wait-k models, our models with beam search achieve higher BLEU scores when latency

AL is less than 4, which we think will be the most useful scenarios of simultaneous

translation. When latency is larger, the gap between two methods is less than 1 BLEU

point. Furthermore, this figure also shows that our model can achieve good performance

on different latency conditions by controlling the threshold ρ, so we do not need to train

multiple models for different latency requirements. We also provide a translation example

in the supplemental material to compare different methods.

Learning Process Analysis We analyze two aspects of the learning processes of differ-

ent methods: stability and training time. Figure 2.14 shows the learning curves of training

process of RL method and our SL method, averaged over four different runs with different

random seeds on DE→EN direction. The training process of our method is more stable

32

0

10

20

AL

0 20 40 60

10

20
BLEU

RL training

SL training

Figure 2.14: Learning curves averaged over four independent training runs. x-axis:
training steps (× 50).

and converges faster than the RL method. Although there are some steps where the RL

training process can achieve better BLEU scores than our SL method, the corresponding

values of AL are usually very big, which are not appropriate for simultaneous translation.

We present the training time of different methods5 in Table 2.4. Our method only need

about 12 hours to train the policy model with 1 GPU, while the wait-k method needs

more than 600 hours with 8 GPUs to finish the training process, showing that our method

is very efficient.

5Since RL training is unstable, we report the training times to obtain the models used in the performance
comparisons.

33

DE→EN pre-train: 64
SL: +12 wait-1 wait-3 wait-5
RL: +15 938 966 945

EN→DE pre-train: 68
SL: +11 wait-1 wait-3 wait-5
RL: +15 665 665 630

Table 2.4: Training times (in hours) of different methods. Wait-k training uses 8 GPUs,
while others use 1 GPU.

2.3 Learning Flexible Policy from Scratch

Simultaneous translation, which translates sentences before they are finished, is useful

in many scenarios such as international conferences, summits, press releases, and ne-

gotiations. However, it is widely considered one of the most challenging tasks in NLP,

and one of the holy grails of AI. A major challenge in simultaneous translation is the

word order difference between source and target languages, e.g., from SOV languages

(German, Japanese, etc.) to SVO languages (English, Chinese, etc.).

Recently, there have been two encouraging efforts in simultaneous translation with

promising but limited success. Gu et al. [2017] propose a two-stage model that is also

trained in two stages. The base model, responsible for producing target words, is a

conventional full-sentence seq2seq model, and on top of that, the READ/WRITE (R/W)

model decides, at every step, whether to wait for another source word (READ) or to emit

a target word (WRITE) using the pretrained base model. This R/W model is trained by

reinforcement learning without updating the base model. Ma et al. [2019a], on the other

hand, propose a much simpler architecture, which only need one model and can be trained

with end-to-end local training method. Their model can implicitly learn anticipation

ability but it can only follow fixed-latency policy, which is not adaptive and flexible.

We aim to combine the merits of both efforts, that is, a flexible, adaptive, policy that

34

decides on the fly whether to wait or translate, as in Gu et al. [2017], but instead of using

a two-stage framework with a full-sentence translation model ill-suited for simultaneous

translation, we design a single model trained to perform simultaneous translation from

scratch, as with Ma et al. [2019a]. The first key idea is to add a “delay” token (similar

to the READ action in Gu et al. [2017]) to the target-side vocabulary, and if the model

emits ..., it will read one source word. The second key idea is to train it using (restricted)

imitation learning by designing a (restricted) dynamic oracle.

To obtain a flexible and adaptive policy, we need our model to be able to take both

READ and WRITE actions. Conventional translation model already has the ability to

write target words, so we introduce a “delay” token 〈ε〉 in target vocabulary to enable our

model to apply the READ action. Given a prefix pair, the model will continue predicting

target words until its next prediction is the delay token, and then it will read a new

source word and continue prediction. Formally, for the target vocabulary V , we define an

extended vocabulary

V+ = V ∪ {〈ε〉} (2.11)

Each word in this set can be defined as an action, which is applied with a transition

function δ on a sequence pair (s, t) for a given source sequence x where s � x. We

assume 〈ε〉 cannot be applied with the sequence pair (s, t) if s = x, then we have the

transition function δ as follows.

δ(state, a) =

(s ◦ x|s|+1, t) if a = 〈ε〉

(s, t ◦ a) otherwise

35

Since the those tokens do not provide any semantic information, those predicted delay

tokens may introduce some noise in the translation process. So we propose to remove

delay token in the attention layers except for the current input one. However, this removal

may reduce the explicit latency information which will affect the outputs of the model

since the model cannot observe previous outputted delay tokens. Therefore, to provide

this information explicitly, we embed the number of previous outputted delay tokens to

a vector and add this to the sum of the word embedding and position embedding as the

inputs of the model.

2.3.1 Training via Restricted Imitation Learning

We first introduce a restricted dynamic oracle based on our extended vocabulary for

simultaneous translation. Then we show how to use this dynamic oracle to train a

simultaneous translation model.

Restricted Dynamic Oracle Given a pair of full sequences (x,y) in data, the state of

our restricted dynamic oracle will be a pair of prefixes (s, t) where s � x, t � y and

(s, t) 6= (x,y). The whole action set is V+ defined in last section. The objective of our

dynamic oracle is to obtain the full sequence pair (x,y) and maintain a reasonably low

latency.

For a prefix pair (s, t), the difference of the lengths of the two prefixes can be used

to measure the latency of translation. So we would like to bound this difference as a

latency constraint. This idea can be illustrated in the prefix grid, where we can define

36

Target

Source

Target

Source

aggressive

bound !
conserv.

bound "

Figure 2.15: Illustration of our proposed dynamic oracle on a prefix grid. The right
arrow represents extending next ground-truth target word, and the red downward arrow
represents the delay token. The left figure shows a simple dynamic oracle without without
delay constraint. The right figure shows the dynamic oracle with delay constraint.

a band region and always keep the states in this band during the translation process

(see Figure 2.15). For simplicity, we first assume the two full sequences have the same

lengths, i.e. |x| = |y|. Then we can bound the difference d = |s| − |t| by two constants:

α < d < β. The conservative bound (β) guarantees relatively small difference and then

low latency; while the aggressive bound (α) guarantees the target sequence cannot predict

too many target words before seeing enough source words. Formally, this dynamic oracle

is defined as follows.

π?x,y((s, t)) =

{〈ε〉} if s 6= x and |s| − |t| ≤ α

{y|t|+1} if t 6= y and |s| − |t| ≥ β

{〈ε〉, y|t|+1} otherwise

By this definition, we know that this oracle can always find an action sequence to

obtain (x,y). When the state does not satisfy the latency constraint, then this dynamic

37

oracle will provide only one action applying which will improve the length difference.

Note that this dynamic oracle is restricted in the sense that it is only defined on the prefix

pair instead of any sequence pair. And since we only want to obtain the exact sequence

from data, this oracle can only choose the next ground-truth target word other than 〈ε〉.

In many cases, the assumption that |x| = |y| does not hold. To overcome this issue,

we can utilize the length ratio γ = |y|/|x| to modify the length difference: d′ = |s|−γ|t|,

and use this new difference d′ in our dynamic oracle. Although we cannot obtain this

ratio during testing time, we may use averaged length ratio obtained from training data

(Huang et al. [2017]).

2.3.2 Training with Restricted Dynamic Oracle

To learn the proposed dynamic oracle, we apply imitation learning to train our model.

Recall that the prediction of our model depends on the whole generated prefix including

〈ε〉 (as the input contains the embedding of the number of 〈ε〉), which is also an action

sequence. Following such an action sequence will result in a prefix pair of x and y if the

action sequence is obtained from our oracle. Let s be such a resulting prefix pair. The

probability of choosing the oracle actions conditioned on the prefix pair s obtained from

an action sequence will be

p(π?x,y,α,β(s)|s) =

∑
a∈π?x,y,α,β(s)

p(a | s)

|π?x,y,α,β(s)|
(2.12)

To train our model to learn from the dynamic oracle, we can sample from our oracle

38

a set S(x,y) of action sequences for a translation pair (x,y). The loss for each sampled

sequence a ∈ S(x,y) will be

`(a|x) = −
|a|∑
i=1

log p(π?x,y,α,β(si)|si)) (2.13)

where si is the prefix pair obtained from a<i. For a parallel text D, the training loss is

`(D) =
∑

(x,y)∈D

∑
a∈S(x,y)

1
|S(x,y)|`(a|x) (2.14)

Directly optimizing the above loss may require too much computation resource since

for each pair of (x,y), the number of different action sequences is exponentially large.

To reduce the computation cost, we propose to use these two special action sequences

as our sample set. Recall that our dynamic oracle π?x,y,α,β is sensitive to the latency

constraint, which is defined by two bounds: α and β. For each bound, there is a unique

action sequence, which corresponds to a path in the prefix grid, such that it has the most

number of prefix pairs that make this bound tight. Let aα (aβ) be such an action sequence

for α (β). Then the above loss for dataset D becomes

`(D) =
∑

(x,y)∈D

1
2
(`(aα|x) + `(aβ|x)) (2.15)

2.3.3 Experiments

To investigate the empirical performances of our proposed methods, we conduct experi-

ments on NIST Chinese-to-English 1M translation dataset using Transformer [Vaswani

39

2 3 4 5 6 7 8

AL

21

22

23

24

25

26

27

28

4-
re

f
B

LE
U

33

Figure 2.16: BLEU and latency on test-set. • (forced wait-1 policy), J (t = −2),
N (t = −0.5), I (free decoding), � (forced wait-5 policy) are trained using model
α = 1, β = 5. • (forced wait-3 policy), J (t = −2), N (t = −0.5), I (free decoding), �
(forced wait-5 policy) are trained using model α = 3, β = 5. • (forced wait-3 policy), J
(t = −2), N (t = −0.5), I (free decoding), � (forced wait-7 policy) are trained using
model α = 3, β = 7. • represents fixed wait-k baseline by our own implementation
(k = 1, 3, 5, 7),F strands for full-sentence translation baseline.

et al., 2017].

We first apply BPE [Sennrich et al., 2015] on both sides in order to reduce the

vocabulary for both source and target sides. We then exclude the sentences pairs whose

length are longer than 50 and 256 words. We use NIST 06 (616 sentence pairs) and

NIST 08 (691 sentence pairs) as our development and testing set. Our implementation

is adapted from PyTorch-based OpenNMT [Klein et al., 2017]. Our Transformer’s

parameters are as the same as the base model’s parameter settings in the original paper

[Vaswani et al., 2017].

40

3 4 5 6 7 8

AL

10

11

12

13

14

15

1-
re

f
B

LE
U

44

Figure 2.17: BLEU and latency on three models. • (forced wait-1 policy), J (free
decoding), N (T = 4.5), I (T = 9), � (forced wait-5 policy) are trained using model
α = 1, β = 5. • (forced wait-3 policy), J (T = 4.5), N (T = 9), I (free decoding), �
(forced wait-5 policy) are trained using model α = 3, β = 5. • (forced wait-3 policy),
J (T = 4.5), N (T = 9), I (free decoding), � (forced wait-7 policy) are trained using
model α = 3, β = 7. • represents fixed wait-k baseline (k = 1, 3, 5, 7),F strands for
full-sentence translation baseline.

2.3.3.1 Results

We use Average Lagging (AL) defined in [Ma et al., 2019a] as our latency metrics, which

measures the average delayed words. It avoids some limitations from other metrics, for

example, insensitivity to actual lagging like Consecutive Wait [Gu et al., 2017], sensitivity

to input length like Average Proportion [Cho and Esipova, 2016] .

Fig. 2.16 shows our test results on Chinese-to-English translation. Compare with

fixed policy wait-k models from [Ma et al., 2019a], most of the ours results achieves

higher BLEU score or lower latency. Since the latency of free decoding are always

close to it’s corresponding conservative bound, We apply a discount constant et to the

probability of the delay token in inference time (t = −0.5,−2) to further improve its

flexibility.

Fig. 2.16 shows our test results on English-to-Chinese translation. Since the English

41

Chinese一 名 不 愿 具名 的 欧盟 官员 指出 , 每个 人 都 紧张 兮兮...
pinyin yì míng bú yùan jùmíng de Ōuméng gūanyúan zhı̌chū , měigè rén dōu jı̌ngzhāng xı̄xı̄ ...
gloss one - not willing named - EU official point

out
, every people are nervous - ...

wait-3 a us official who declined to be named said that each and every one was caught
in tensions ...

ours a eu official , who declined to be named , pointed out that ev-
eryone was nervous
...

Table 2.5: Chinese-to-English example in the dev set using model trained with α =
3, β = 7,

source sentences are always much longer than Chinese, we use catchup [Ma et al.,

2019a] in bounding policies during training with catchup frequency of c = 0.25, which

is derived from the dev set tgt/src length ratio of 1.25. Different from the previous

zh-en experiments, the latency of free decoding are always close to it’s corresponding

aggressive bound. Thus, we apply the discount constant temperature t = 4.5, 9. These

two experiment results show higher translation quality, lower latency and more flexible

in decoding policy.

2.3.3.2 Example

Table 2.5 shows an example from dev set using model trained with α = 3, β = 7. Our

proposed model translates “eu” after “Ōuméng”, while the fixed wait-3 policy forced to

anticipate the wrong word “us” before seeing “Ōuméng”.

42

Chapter 3: Beam Search for Simultaneous Translation

Beam search has been widely used in neural text generation such as machine translation

[Sutskever et al., 2014, Bahdanau et al., 2014b], summarization [Rush et al., 2015,

Ranzato et al., 2016], and image captioning [Vinyals et al., 2015, Xu et al., 2015]. It

often leads to substantial improvement over greedy search and becomes an essential

component in almost all text generation systems.

However, beam search is easy for the above tasks because they are all full-sequence

problems, where the whole input sequence is available at the beginning and the output

sequence only needs to be revealed in full at the end. By contrast, in language and speech

processing, there are many incremental processing tasks with simultaneity requirements,

where the output needs to be revealed to the user incrementally without revision (word

by word, or in chunks) and the input is also being received incrementally. Two most

salient examples are streaming speech recognition [Chiu et al., 2018], widely used in

speech input and dialog systems (such as Siri), and simultaneous translation [Bangalore

et al., 2012, Oda et al., 2015, Grissom II et al., 2014, Jaitly et al., 2016], widely used in

international conferences and negotiations. In these tasks, the use of full-sentence beam

search becomes seemingly impossible as output words need to be committed on the fly.

43

w
or

ld
 b

an
k 

Ӯ
ᤈ

Sh

ìh
án

g

<s
>

ba
nk

w
or
ld

th
e

ba
nk

ba
nk of

w
ill is of

1
(2

)
(3

)

pl
an

nǐ

w
or
ld

ba
nk

 o
ut

lo
ok

cu
p

to

pl
an

s

pl
an

ni
ng

to pl
an

pr
ep

ar
e

2
(3

)
(4

)

… 1

ex
em

pt
 

ٺ
ع

jǐa

nm
iǎ

n

ba
nk

re
du

ce

ex
em

pt
s

pl
an
s

to or fro
m

ex
em

pt
s

re
du

ce
so

m
e

3
(4

)
(5

)

…

2

de
bt
 

ۓ

zh

ài
w

ù

pl
an
s

to

ex
em

pt
s

so
m

e

re
du

ce

ex
em

pt

ex
em

pt
s

so
m

e

fr
omfro

m

4
5

6

… 3
so

m
e

de
bt 7

de
bt

…<e
os
>

<e
os

>

8

Fi
gu

re
3.

1:
W

ai
t-
1

po
lic

y
ex

am
pl

e
to

ill
us

tr
at

e
th

e
pr

oc
ed

ur
e

of
SB

S.
T

he
to

p
C

hi
ne

se
w

or
ds

ar
e

th
e

so
ur

ce
si

de
in

pu
ts

w
hi

ch
ar

e
in

cr
em

en
ta

lly
re

ve
al

ed
to

th
e

en
co

de
r.

G
lo

ss
is

an
no

ta
te

d
ab

ov
e

C
hi

ne
se

w
or

d
an

d
Pi

ny
in

is
un

de
rn

ea
th

.T
he

re
ar

e
tw

o
ex

tra
st

ep
s

(s
pe

cu
la

tiv
e

w
in

do
w

)a
re

ta
ke

n
(r

ed
pa

rt)
be

yo
nd

gr
ee

dy
.W

he
n

so
ur

ce
re

ac
he

s
th

e
la

st
w

or
d

“债
务

”
(d

eb
t)

,t
he

de
co

de
rg

et
s

in
to

ta
il

an
d

pe
rf

or
m

s
co

nv
en

tio
na

lb
ea

m
se

ar
ch

(i
n

gr
ee

n)
.

44

3.1 Full Sentence NMT and Beam Search

How to adapt beam search for such incremental tasks in order to improve their generation

quality? We propose a general technique of speculative beam search (SBS), and apply it

to simultaneous translation. At a very high level, to generate a single word, instead of

simply choosing the highest-scoring one (as in greedy search), we further speculate w

steps into the future, and use the ranking at step w+1 to reach a more informed decision

for step 1 (the current step); this method implicitly benefits from a target language

model and alleviates the label bias problem well-known in neural generation [Murray

and Chiang, 2018].

We apply this algorithm to two representative approaches to simultaneous translation:

the fixed policy method [Ma et al., 2019a] and the adaptive policy method [Gu et al.,

2017]. In both cases, we show that SBS improves translation quality while maintaining

latency (i.e., simultaneity).

3.2 Speculative Beam Search for Simultaneous Translation

We first present our speculative beam search on the fixed-latency wait-k policy (generating

a single word per step), and then adapt it to the adaptive policies (generating multiple

words per step).

45

y<t
<latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit><latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit><latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit><latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit>

y<t
<latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit><latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit><latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit><latexit sha1_base64="X/hD3qRrqyBGHyCwDXVE49Ad/0Y=">AAACAXicbVDLSsNAFJ3UV62vqks3g0VwVRIRdOGi6MZlBfuANJTJdNIOnUeYmQghZOU3uNW1O3Hrl7j0T5y0WdjWAxcO59zLvfeEMaPauO63U1lb39jcqm7Xdnb39g/qh0ddLROFSQdLJlU/RJowKkjHUMNIP1YE8ZCRXji9K/zeE1GaSvFo0pgEHI0FjShGxkr+IORZmg+zG5MP6w236c4AV4lXkgYo0R7WfwYjiRNOhMEMae17bmyCDClDMSN5bZBoEiM8RWPiWyoQJzrIZifn8MwqIxhJZUsYOFP/TmSIa53y0HZyZCZ62SvE/zw/MdF1kFERJ4YIPF8UJQwaCYv/4Ygqgg1LLUFYUXsrxBOkEDY2pYUtIS8y8ZYTWCXdi6bnNr2Hy0brtkynCk7AKTgHHrgCLXAP2qADMJDgBbyCN+fZeXc+nM95a8UpZ47BApyvX6Q5mCE=</latexit>

(a) (b)

ŷ>
t+

n

<latexit sha1_base64="VvjgRliAZGlDz4KR3RR9nP5JI88=">AAACC3icdVBNSwMxEM3Wr/pd7dFLsAiCsGTbYtuLFL14VLAqtKVk09SGJtklmRWWZX+Cv8Grnr2JV3+ER/+Ju7WCij4YeLw3w8w8P5TCAiFvTmFufmFxqbi8srq2vrFZ2tq+tEFkGO+wQAbm2qeWS6F5BwRIfh0aTpUv+ZU/Ocn9q1turAj0BcQh7yt6o8VIMAqZNCiVe75KemMKSZymg+QIDnQ6KFWI26g2660aJi45bNXrJCe1RrXRxJ5LpqigGc4GpffeMGCR4hqYpNZ2PRJCP6EGBJM8XelFloeUTegN72ZUU8VtP5ken+K9TBniUWCy0oCn6veJhCprY+VnnYrC2P72cvEvrxvBqNlPhA4j4Jp9LhpFEkOA8yTwUBjOQMYZocyI7FbMxtRQBlleP7b4Ks/k63H8P7msuh5xvfN6pX08S6eIdtAu2kceaqA2OkVnqIMYitE9ekCPzp3z5Dw7L5+tBWc2U0Y/4Lx+APJ9nCE=</latexit><latexit sha1_base64="VvjgRliAZGlDz4KR3RR9nP5JI88=">AAACC3icdVBNSwMxEM3Wr/pd7dFLsAiCsGTbYtuLFL14VLAqtKVk09SGJtklmRWWZX+Cv8Grnr2JV3+ER/+Ju7WCij4YeLw3w8w8P5TCAiFvTmFufmFxqbi8srq2vrFZ2tq+tEFkGO+wQAbm2qeWS6F5BwRIfh0aTpUv+ZU/Ocn9q1turAj0BcQh7yt6o8VIMAqZNCiVe75KemMKSZymg+QIDnQ6KFWI26g2660aJi45bNXrJCe1RrXRxJ5LpqigGc4GpffeMGCR4hqYpNZ2PRJCP6EGBJM8XelFloeUTegN72ZUU8VtP5ken+K9TBniUWCy0oCn6veJhCprY+VnnYrC2P72cvEvrxvBqNlPhA4j4Jp9LhpFEkOA8yTwUBjOQMYZocyI7FbMxtRQBlleP7b4Ks/k63H8P7msuh5xvfN6pX08S6eIdtAu2kceaqA2OkVnqIMYitE9ekCPzp3z5Dw7L5+tBWc2U0Y/4Lx+APJ9nCE=</latexit><latexit sha1_base64="VvjgRliAZGlDz4KR3RR9nP5JI88=">AAACC3icdVBNSwMxEM3Wr/pd7dFLsAiCsGTbYtuLFL14VLAqtKVk09SGJtklmRWWZX+Cv8Grnr2JV3+ER/+Ju7WCij4YeLw3w8w8P5TCAiFvTmFufmFxqbi8srq2vrFZ2tq+tEFkGO+wQAbm2qeWS6F5BwRIfh0aTpUv+ZU/Ocn9q1turAj0BcQh7yt6o8VIMAqZNCiVe75KemMKSZymg+QIDnQ6KFWI26g2660aJi45bNXrJCe1RrXRxJ5LpqigGc4GpffeMGCR4hqYpNZ2PRJCP6EGBJM8XelFloeUTegN72ZUU8VtP5ken+K9TBniUWCy0oCn6veJhCprY+VnnYrC2P72cvEvrxvBqNlPhA4j4Jp9LhpFEkOA8yTwUBjOQMYZocyI7FbMxtRQBlleP7b4Ks/k63H8P7msuh5xvfN6pX08S6eIdtAu2kceaqA2OkVnqIMYitE9ekCPzp3z5Dw7L5+tBWc2U0Y/4Lx+APJ9nCE=</latexit><latexit sha1_base64="VvjgRliAZGlDz4KR3RR9nP5JI88=">AAACC3icdVBNSwMxEM3Wr/pd7dFLsAiCsGTbYtuLFL14VLAqtKVk09SGJtklmRWWZX+Cv8Grnr2JV3+ER/+Ju7WCij4YeLw3w8w8P5TCAiFvTmFufmFxqbi8srq2vrFZ2tq+tEFkGO+wQAbm2qeWS6F5BwRIfh0aTpUv+ZU/Ocn9q1turAj0BcQh7yt6o8VIMAqZNCiVe75KemMKSZymg+QIDnQ6KFWI26g2660aJi45bNXrJCe1RrXRxJ5LpqigGc4GpffeMGCR4hqYpNZ2PRJCP6EGBJM8XelFloeUTegN72ZUU8VtP5ken+K9TBniUWCy0oCn6veJhCprY+VnnYrC2P72cvEvrxvBqNlPhA4j4Jp9LhpFEkOA8yTwUBjOQMYZocyI7FbMxtRQBlleP7b4Ks/k63H8P7msuh5xvfN6pX08S6eIdtAu2kceaqA2OkVnqIMYitE9ekCPzp3z5Dw7L5+tBWc2U0Y/4Lx+APJ9nCE=</latexit>

ŷt
<latexit sha1_base64="l4NYCn8CzfUIb1/7pDuX8RR99pk=">AAACAXicdVDJSgNBEO2JW4xb1KOXxiB4GnqymOQW9OIxgjGBJISeTk/SpGehu0YIw5z8Bq969iZe/RKP/omdRTCiDwoe71VRVc+NpNBAyIeVWVvf2NzKbud2dvf2D/KHR3c6jBXjLRbKUHVcqrkUAW+BAMk7keLUdyVvu5Ormd++50qLMLiFacT7Ph0FwhOMgpG6vTGFZJoOEkgH+QKxSdmp1yqY2CVSqVaKhlzU66RUxo5N5iigJZqD/GdvGLLY5wEwSbXuOiSCfkIVCCZ5muvFmkeUTeiIdw0NqM91P5mfnOIzowyxFypTAeC5+nMiob7WU981nT6Fsf7tzcS/vG4MXq2fiCCKgQdssciLJYYQz/7HQ6E4Azk1hDIlzK2YjamiDExKK1tcf5bJ9+P4f3JXtB1iOzflQuNymU4WnaBTdI4cVEUNdI2aqIUYCtEjekLP1oP1Yr1ab4vWjLWcOUYrsN6/AGuHmKM=</latexit><latexit sha1_base64="l4NYCn8CzfUIb1/7pDuX8RR99pk=">AAACAXicdVDJSgNBEO2JW4xb1KOXxiB4GnqymOQW9OIxgjGBJISeTk/SpGehu0YIw5z8Bq969iZe/RKP/omdRTCiDwoe71VRVc+NpNBAyIeVWVvf2NzKbud2dvf2D/KHR3c6jBXjLRbKUHVcqrkUAW+BAMk7keLUdyVvu5Ormd++50qLMLiFacT7Ph0FwhOMgpG6vTGFZJoOEkgH+QKxSdmp1yqY2CVSqVaKhlzU66RUxo5N5iigJZqD/GdvGLLY5wEwSbXuOiSCfkIVCCZ5muvFmkeUTeiIdw0NqM91P5mfnOIzowyxFypTAeC5+nMiob7WU981nT6Fsf7tzcS/vG4MXq2fiCCKgQdssciLJYYQz/7HQ6E4Azk1hDIlzK2YjamiDExKK1tcf5bJ9+P4f3JXtB1iOzflQuNymU4WnaBTdI4cVEUNdI2aqIUYCtEjekLP1oP1Yr1ab4vWjLWcOUYrsN6/AGuHmKM=</latexit><latexit sha1_base64="l4NYCn8CzfUIb1/7pDuX8RR99pk=">AAACAXicdVDJSgNBEO2JW4xb1KOXxiB4GnqymOQW9OIxgjGBJISeTk/SpGehu0YIw5z8Bq969iZe/RKP/omdRTCiDwoe71VRVc+NpNBAyIeVWVvf2NzKbud2dvf2D/KHR3c6jBXjLRbKUHVcqrkUAW+BAMk7keLUdyVvu5Ormd++50qLMLiFacT7Ph0FwhOMgpG6vTGFZJoOEkgH+QKxSdmp1yqY2CVSqVaKhlzU66RUxo5N5iigJZqD/GdvGLLY5wEwSbXuOiSCfkIVCCZ5muvFmkeUTeiIdw0NqM91P5mfnOIzowyxFypTAeC5+nMiob7WU981nT6Fsf7tzcS/vG4MXq2fiCCKgQdssciLJYYQz/7HQ6E4Azk1hDIlzK2YjamiDExKK1tcf5bJ9+P4f3JXtB1iOzflQuNymU4WnaBTdI4cVEUNdI2aqIUYCtEjekLP1oP1Yr1ab4vWjLWcOUYrsN6/AGuHmKM=</latexit><latexit sha1_base64="l4NYCn8CzfUIb1/7pDuX8RR99pk=">AAACAXicdVDJSgNBEO2JW4xb1KOXxiB4GnqymOQW9OIxgjGBJISeTk/SpGehu0YIw5z8Bq969iZe/RKP/omdRTCiDwoe71VRVc+NpNBAyIeVWVvf2NzKbud2dvf2D/KHR3c6jBXjLRbKUHVcqrkUAW+BAMk7keLUdyVvu5Ormd++50qLMLiFacT7Ph0FwhOMgpG6vTGFZJoOEkgH+QKxSdmp1yqY2CVSqVaKhlzU66RUxo5N5iigJZqD/GdvGLLY5wEwSbXuOiSCfkIVCCZ5muvFmkeUTeiIdw0NqM91P5mfnOIzowyxFypTAeC5+nMiob7WU981nT6Fsf7tzcS/vG4MXq2fiCCKgQdssciLJYYQz/7HQ6E4Azk1hDIlzK2YjamiDExKK1tcf5bJ9+P4f3JXtB1iOzflQuNymU4WnaBTdI4cVEUNdI2aqIUYCtEjekLP1oP1Yr1ab4vWjLWcOUYrsN6/AGuHmKM=</latexit>

w
<latexit sha1_base64="sr79D3NkQoMrWj8gMBTNFQeIupM=">AAAB93icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY5mA+YDkCHubuWTJ7t2xu6ccIb/AVms7sfXnWPpP3CRXmMQHA4/3ZpiZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHScKoZNFotYdQKqUfAIm4YbgZ1EIZWBwHYwvp/57SdUmsfRo8kS9CUdRjzkjBorNZ775Ypbdecg68TLSQVy1Pvln94gZqnEyDBBte56bmL8CVWGM4HTUi/VmFA2pkPsWhpRidqfzA+dkgurDEgYK1uRIXP178SESq0zGdhOSc1Ir3oz8T+vm5rw1p/wKEkNRmyxKEwFMTGZfU0GXCEzIrOEMsXtrYSNqKLM2GyWtgRyajPxVhNYJ62rqudWvcZ1pXaXp1OEMziHS/DgBmrwAHVoAgOEF3iFNydz3p0P53PRWnDymVNYgvP1C4m2k5E=</latexit><latexit sha1_base64="sr79D3NkQoMrWj8gMBTNFQeIupM=">AAAB93icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY5mA+YDkCHubuWTJ7t2xu6ccIb/AVms7sfXnWPpP3CRXmMQHA4/3ZpiZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHScKoZNFotYdQKqUfAIm4YbgZ1EIZWBwHYwvp/57SdUmsfRo8kS9CUdRjzkjBorNZ775Ypbdecg68TLSQVy1Pvln94gZqnEyDBBte56bmL8CVWGM4HTUi/VmFA2pkPsWhpRidqfzA+dkgurDEgYK1uRIXP178SESq0zGdhOSc1Ir3oz8T+vm5rw1p/wKEkNRmyxKEwFMTGZfU0GXCEzIrOEMsXtrYSNqKLM2GyWtgRyajPxVhNYJ62rqudWvcZ1pXaXp1OEMziHS/DgBmrwAHVoAgOEF3iFNydz3p0P53PRWnDymVNYgvP1C4m2k5E=</latexit><latexit sha1_base64="sr79D3NkQoMrWj8gMBTNFQeIupM=">AAAB93icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY5mA+YDkCHubuWTJ7t2xu6ccIb/AVms7sfXnWPpP3CRXmMQHA4/3ZpiZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHScKoZNFotYdQKqUfAIm4YbgZ1EIZWBwHYwvp/57SdUmsfRo8kS9CUdRjzkjBorNZ775Ypbdecg68TLSQVy1Pvln94gZqnEyDBBte56bmL8CVWGM4HTUi/VmFA2pkPsWhpRidqfzA+dkgurDEgYK1uRIXP178SESq0zGdhOSc1Ir3oz8T+vm5rw1p/wKEkNRmyxKEwFMTGZfU0GXCEzIrOEMsXtrYSNqKLM2GyWtgRyajPxVhNYJ62rqudWvcZ1pXaXp1OEMziHS/DgBmrwAHVoAgOEF3iFNydz3p0P53PRWnDymVNYgvP1C4m2k5E=</latexit><latexit sha1_base64="sr79D3NkQoMrWj8gMBTNFQeIupM=">AAAB93icbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0DJoY5mA+YDkCHubuWTJ7t2xu6ccIb/AVms7sfXnWPpP3CRXmMQHA4/3ZpiZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+ftHScKoZNFotYdQKqUfAIm4YbgZ1EIZWBwHYwvp/57SdUmsfRo8kS9CUdRjzkjBorNZ775Ypbdecg68TLSQVy1Pvln94gZqnEyDBBte56bmL8CVWGM4HTUi/VmFA2pkPsWhpRidqfzA+dkgurDEgYK1uRIXP178SESq0zGdhOSc1Ir3oz8T+vm5rw1p/wKEkNRmyxKEwFMTGZfU0GXCEzIrOEMsXtrYSNqKLM2GyWtgRyajPxVhNYJ62rqudWvcZ1pXaXp1OEMziHS/DgBmrwAHVoAgOEF3iFNydz3p0P53PRWnDymVNYgvP1C4m2k5E=</latexit>

steps steps

ŷ t+
1:
t+

w

<latexit sha1_base64="rElp/jCMzERk6fxCLDRzgImgapM=">AAACDnicdVBNS8NAEN34/W1V8OJlsQhCIWzaYqqnohePFawVmlI2261dupuE3YlSYv6Dv8Grnr2JV/+CR/+JSa2gog8GHu/NMDPPj6QwQMibNTU9Mzs3v7C4tLyyurZe2Ni8MGGsGW+yUIb60qeGSxHwJgiQ/DLSnCpf8pY/PMn91jXXRoTBOYwi3lH0KhB9wShkUrew7Q0oJJ6vklGadhMoOUdQukm7hSKx3XKteljBxCYHh9UqyUnFLbs17NhkjCKaoNEtvHu9kMWKB8AkNabtkAg6CdUgmOTpkhcbHlE2pFe8ndGAKm46yfj+FO9lSg/3Q51VAHisfp9IqDJmpPysU1EYmN9eLv7ltWPo1zqJCKIYeMA+F/VjiSHEeRi4JzRnIEcZoUyL7FbMBlRTBllkP7b4Ks/k63H8P7ko2w6xnbNqsX48SWcB7aBdtI8c5KI6OkUN1EQM3aJ79IAerTvryXq2Xj5bp6zJzBb6Aev1A8jVnRQ=</latexit><latexit sha1_base64="rElp/jCMzERk6fxCLDRzgImgapM=">AAACDnicdVBNS8NAEN34/W1V8OJlsQhCIWzaYqqnohePFawVmlI2261dupuE3YlSYv6Dv8Grnr2JV/+CR/+JSa2gog8GHu/NMDPPj6QwQMibNTU9Mzs3v7C4tLyyurZe2Ni8MGGsGW+yUIb60qeGSxHwJgiQ/DLSnCpf8pY/PMn91jXXRoTBOYwi3lH0KhB9wShkUrew7Q0oJJ6vklGadhMoOUdQukm7hSKx3XKteljBxCYHh9UqyUnFLbs17NhkjCKaoNEtvHu9kMWKB8AkNabtkAg6CdUgmOTpkhcbHlE2pFe8ndGAKm46yfj+FO9lSg/3Q51VAHisfp9IqDJmpPysU1EYmN9eLv7ltWPo1zqJCKIYeMA+F/VjiSHEeRi4JzRnIEcZoUyL7FbMBlRTBllkP7b4Ks/k63H8P7ko2w6xnbNqsX48SWcB7aBdtI8c5KI6OkUN1EQM3aJ79IAerTvryXq2Xj5bp6zJzBb6Aev1A8jVnRQ=</latexit><latexit sha1_base64="rElp/jCMzERk6fxCLDRzgImgapM=">AAACDnicdVBNS8NAEN34/W1V8OJlsQhCIWzaYqqnohePFawVmlI2261dupuE3YlSYv6Dv8Grnr2JV/+CR/+JSa2gog8GHu/NMDPPj6QwQMibNTU9Mzs3v7C4tLyyurZe2Ni8MGGsGW+yUIb60qeGSxHwJgiQ/DLSnCpf8pY/PMn91jXXRoTBOYwi3lH0KhB9wShkUrew7Q0oJJ6vklGadhMoOUdQukm7hSKx3XKteljBxCYHh9UqyUnFLbs17NhkjCKaoNEtvHu9kMWKB8AkNabtkAg6CdUgmOTpkhcbHlE2pFe8ndGAKm46yfj+FO9lSg/3Q51VAHisfp9IqDJmpPysU1EYmN9eLv7ltWPo1zqJCKIYeMA+F/VjiSHEeRi4JzRnIEcZoUyL7FbMBlRTBllkP7b4Ks/k63H8P7ko2w6xnbNqsX48SWcB7aBdtI8c5KI6OkUN1EQM3aJ79IAerTvryXq2Xj5bp6zJzBb6Aev1A8jVnRQ=</latexit><latexit sha1_base64="rElp/jCMzERk6fxCLDRzgImgapM=">AAACDnicdVBNS8NAEN34/W1V8OJlsQhCIWzaYqqnohePFawVmlI2261dupuE3YlSYv6Dv8Grnr2JV/+CR/+JSa2gog8GHu/NMDPPj6QwQMibNTU9Mzs3v7C4tLyyurZe2Ni8MGGsGW+yUIb60qeGSxHwJgiQ/DLSnCpf8pY/PMn91jXXRoTBOYwi3lH0KhB9wShkUrew7Q0oJJ6vklGadhMoOUdQukm7hSKx3XKteljBxCYHh9UqyUnFLbs17NhkjCKaoNEtvHu9kMWKB8AkNabtkAg6CdUgmOTpkhcbHlE2pFe8ndGAKm46yfj+FO9lSg/3Q51VAHisfp9IqDJmpPysU1EYmN9eLv7ltWPo1zqJCKIYeMA+F/VjiSHEeRi4JzRnIEcZoUyL7FbMBlRTBllkP7b4Ks/k63H8P7ko2w6xnbNqsX48SWcB7aBdtI8c5KI6OkUN1EQM3aJ79IAerTvryXq2Xj5bp6zJzBb6Aev1A8jVnRQ=</latexit>

ŷ t+
n:t+

n+w�1

<latexit sha1_base64="O42AWTU/wgAW89vFJE3oqQQh6Ro=">AAACEnicdVBNSwMxEM36/W3Vm16CRRDEJVuLrZ5ELx4VrAptKdk0taFJdklmlbIs+CP8DV717E28+gc8+k/M1goq+mDg8d4MM/PCWAoLhLx5I6Nj4xOTU9Mzs3PzC4uFpeVzGyWG8RqLZGQuQ2q5FJrXQIDkl7HhVIWSX4S9o9y/uObGikifQT/mTUWvtOgIRsFJrcJqo0shbYQq7WdZK4Utve9q62Y7yFqFIvErpWp5bwcTn+zulcskJzuVUqWKA58MUERDnLQK7412xBLFNTBJra0HJIZmSg0IJnk200gsjynr0Sted1RTxW0zHfyQ4Q2ntHEnMq404IH6fSKlytq+Cl2notC1v71c/MurJ9CpNlOh4wS4Zp+LOonEEOE8ENwWhjOQfUcoM8LdilmXGsrAxfZjS6jyTL4ex/+T85IfED84LRcPDofpTKE1tI42UYAq6AAdoxNUQwzdonv0gB69O+/Je/ZePltHvOHMCvoB7/UDaAqecA==</latexit><latexit sha1_base64="O42AWTU/wgAW89vFJE3oqQQh6Ro=">AAACEnicdVBNSwMxEM36/W3Vm16CRRDEJVuLrZ5ELx4VrAptKdk0taFJdklmlbIs+CP8DV717E28+gc8+k/M1goq+mDg8d4MM/PCWAoLhLx5I6Nj4xOTU9Mzs3PzC4uFpeVzGyWG8RqLZGQuQ2q5FJrXQIDkl7HhVIWSX4S9o9y/uObGikifQT/mTUWvtOgIRsFJrcJqo0shbYQq7WdZK4Utve9q62Y7yFqFIvErpWp5bwcTn+zulcskJzuVUqWKA58MUERDnLQK7412xBLFNTBJra0HJIZmSg0IJnk200gsjynr0Sted1RTxW0zHfyQ4Q2ntHEnMq404IH6fSKlytq+Cl2notC1v71c/MurJ9CpNlOh4wS4Zp+LOonEEOE8ENwWhjOQfUcoM8LdilmXGsrAxfZjS6jyTL4ex/+T85IfED84LRcPDofpTKE1tI42UYAq6AAdoxNUQwzdonv0gB69O+/Je/ZePltHvOHMCvoB7/UDaAqecA==</latexit><latexit sha1_base64="O42AWTU/wgAW89vFJE3oqQQh6Ro=">AAACEnicdVBNSwMxEM36/W3Vm16CRRDEJVuLrZ5ELx4VrAptKdk0taFJdklmlbIs+CP8DV717E28+gc8+k/M1goq+mDg8d4MM/PCWAoLhLx5I6Nj4xOTU9Mzs3PzC4uFpeVzGyWG8RqLZGQuQ2q5FJrXQIDkl7HhVIWSX4S9o9y/uObGikifQT/mTUWvtOgIRsFJrcJqo0shbYQq7WdZK4Utve9q62Y7yFqFIvErpWp5bwcTn+zulcskJzuVUqWKA58MUERDnLQK7412xBLFNTBJra0HJIZmSg0IJnk200gsjynr0Sted1RTxW0zHfyQ4Q2ntHEnMq404IH6fSKlytq+Cl2notC1v71c/MurJ9CpNlOh4wS4Zp+LOonEEOE8ENwWhjOQfUcoM8LdilmXGsrAxfZjS6jyTL4ex/+T85IfED84LRcPDofpTKE1tI42UYAq6AAdoxNUQwzdonv0gB69O+/Je/ZePltHvOHMCvoB7/UDaAqecA==</latexit><latexit sha1_base64="O42AWTU/wgAW89vFJE3oqQQh6Ro=">AAACEnicdVBNSwMxEM36/W3Vm16CRRDEJVuLrZ5ELx4VrAptKdk0taFJdklmlbIs+CP8DV717E28+gc8+k/M1goq+mDg8d4MM/PCWAoLhLx5I6Nj4xOTU9Mzs3PzC4uFpeVzGyWG8RqLZGQuQ2q5FJrXQIDkl7HhVIWSX4S9o9y/uObGikifQT/mTUWvtOgIRsFJrcJqo0shbYQq7WdZK4Utve9q62Y7yFqFIvErpWp5bwcTn+zulcskJzuVUqWKA58MUERDnLQK7412xBLFNTBJra0HJIZmSg0IJnk200gsjynr0Sted1RTxW0zHfyQ4Q2ntHEnMq404IH6fSKlytq+Cl2notC1v71c/MurJ9CpNlOh4wS4Zp+LOonEEOE8ENwWhjOQfUcoM8LdilmXGsrAxfZjS6jyTL4ex/+T85IfED84LRcPDofpTKE1tI42UYAq6AAdoxNUQwzdonv0gB69O+/Je/ZePltHvOHMCvoB7/UDaAqecA==</latexit>

ŷt : t+n�1
<latexit sha1_base64="kRrST2gfxX3pFjXOG0aEqqcPCdI=">AAACFnicdVBNSysxFM348axfzz5dChIsgiAOGW211Y3oxqWCVaFTSiZNbTDJDMmdB2WY3fsR7ze41bU7cevWpf/ETK2gogcSDufcy733RIkUFgh59sbGJyZ/TZWmZ2bn5n8vlP8snts4NYw3WSxjcxlRy6XQvAkCJL9MDKcqkvwiuj4q/Iu/3FgR6zMYJLyt6JUWPcEoOKlTXgn7FLIwUtkgzzsZ4HAf7xUfbOjNIO+UK8Qn1aBRr2Hib5Pabm3LkZ1Gg2xXceCTISpohJNO+SXsxixVXAOT1NpWQBJoZ9SAYJLnM2FqeULZNb3iLUc1Vdy2s+EdOV5zShf3YuOeBjxUP3ZkVFk7UJGrVBT69qtXiN95rRR69XYmdJIC1+xtUC+VGGJchIK7wnAGcuAIZUa4XTHrU0MZuOg+TYlUkcn74fhncr7lB8QPTquVg8NROiW0jFbROgrQLjpAx+gENRFD/9ANukV33n/v3nvwHt9Kx7xRzxL6BO/pFc78nwg=</latexit><latexit sha1_base64="kRrST2gfxX3pFjXOG0aEqqcPCdI=">AAACFnicdVBNSysxFM348axfzz5dChIsgiAOGW211Y3oxqWCVaFTSiZNbTDJDMmdB2WY3fsR7ze41bU7cevWpf/ETK2gogcSDufcy733RIkUFgh59sbGJyZ/TZWmZ2bn5n8vlP8snts4NYw3WSxjcxlRy6XQvAkCJL9MDKcqkvwiuj4q/Iu/3FgR6zMYJLyt6JUWPcEoOKlTXgn7FLIwUtkgzzsZ4HAf7xUfbOjNIO+UK8Qn1aBRr2Hib5Pabm3LkZ1Gg2xXceCTISpohJNO+SXsxixVXAOT1NpWQBJoZ9SAYJLnM2FqeULZNb3iLUc1Vdy2s+EdOV5zShf3YuOeBjxUP3ZkVFk7UJGrVBT69qtXiN95rRR69XYmdJIC1+xtUC+VGGJchIK7wnAGcuAIZUa4XTHrU0MZuOg+TYlUkcn74fhncr7lB8QPTquVg8NROiW0jFbROgrQLjpAx+gENRFD/9ANukV33n/v3nvwHt9Kx7xRzxL6BO/pFc78nwg=</latexit><latexit sha1_base64="kRrST2gfxX3pFjXOG0aEqqcPCdI=">AAACFnicdVBNSysxFM348axfzz5dChIsgiAOGW211Y3oxqWCVaFTSiZNbTDJDMmdB2WY3fsR7ze41bU7cevWpf/ETK2gogcSDufcy733RIkUFgh59sbGJyZ/TZWmZ2bn5n8vlP8snts4NYw3WSxjcxlRy6XQvAkCJL9MDKcqkvwiuj4q/Iu/3FgR6zMYJLyt6JUWPcEoOKlTXgn7FLIwUtkgzzsZ4HAf7xUfbOjNIO+UK8Qn1aBRr2Hib5Pabm3LkZ1Gg2xXceCTISpohJNO+SXsxixVXAOT1NpWQBJoZ9SAYJLnM2FqeULZNb3iLUc1Vdy2s+EdOV5zShf3YuOeBjxUP3ZkVFk7UJGrVBT69qtXiN95rRR69XYmdJIC1+xtUC+VGGJchIK7wnAGcuAIZUa4XTHrU0MZuOg+TYlUkcn74fhncr7lB8QPTquVg8NROiW0jFbROgrQLjpAx+gENRFD/9ANukV33n/v3nvwHt9Kx7xRzxL6BO/pFc78nwg=</latexit><latexit sha1_base64="kRrST2gfxX3pFjXOG0aEqqcPCdI=">AAACFnicdVBNSysxFM348axfzz5dChIsgiAOGW211Y3oxqWCVaFTSiZNbTDJDMmdB2WY3fsR7ze41bU7cevWpf/ETK2gogcSDufcy733RIkUFgh59sbGJyZ/TZWmZ2bn5n8vlP8snts4NYw3WSxjcxlRy6XQvAkCJL9MDKcqkvwiuj4q/Iu/3FgR6zMYJLyt6JUWPcEoOKlTXgn7FLIwUtkgzzsZ4HAf7xUfbOjNIO+UK8Qn1aBRr2Hib5Pabm3LkZ1Gg2xXceCTISpohJNO+SXsxixVXAOT1NpWQBJoZ9SAYJLnM2FqeULZNb3iLUc1Vdy2s+EdOV5zShf3YuOeBjxUP3ZkVFk7UJGrVBT69qtXiN95rRR69XYmdJIC1+xtUC+VGGJchIK7wnAGcuAIZUa4XTHrU0MZuOg+TYlUkcn74fhncr7lB8QPTquVg8NROiW0jFbROgrQLjpAx+gENRFD/9ANukV33n/v3nvwHt9Kx7xRzxL6BO/pFc78nwg=</latexit>

ŷt+
n : t+

n+w�1

<latexit sha1_base64="s2S1xFtplMgMmo+UlAT1aTEd9R4=">AAACGnicdVBNbxMxEPWWAiEUmsKRi5UIqVLEyptEJIFLRC8cU6n5kLJR5HWcxKrtXdmzRdFq7/wIfgNXOHNDvfbSI/+k3iRIBLVPsvX03oxm5kWJFBYIufUOHh0+fvK09Kz8/OjFy+PKyauhjVPD+IDFMjbjiFouheYDECD5ODGcqkjyUXR5VvijK26siPUFrBM+VXSpxUIwCk6aVarhikIWRipb5/ksg7rG4Uf8ofgcr395F+SzSo347Uan1W1i4pP33VaLFKTZbrQ7OPDJBjW0Q39W+RPOY5YqroFJau0kIAlMM2pAMMnzcphanlB2SZd84qimittptrklx2+dMseL2LinAW/Ufzsyqqxdq8hVKgor+79XiPd5kxQWnWkmdJIC12w7aJFKDDEugsFzYTgDuXaEMiPcrpitqKEMXHx7UyJVZPL3cPwwGTb8gPjBeavW+7RLp4TeoCo6RQFqox76jPpogBj6ir6jH+in98375f32rrelB96u5zXag3dzB4VZoG4=</latexit><latexit sha1_base64="s2S1xFtplMgMmo+UlAT1aTEd9R4=">AAACGnicdVBNbxMxEPWWAiEUmsKRi5UIqVLEyptEJIFLRC8cU6n5kLJR5HWcxKrtXdmzRdFq7/wIfgNXOHNDvfbSI/+k3iRIBLVPsvX03oxm5kWJFBYIufUOHh0+fvK09Kz8/OjFy+PKyauhjVPD+IDFMjbjiFouheYDECD5ODGcqkjyUXR5VvijK26siPUFrBM+VXSpxUIwCk6aVarhikIWRipb5/ksg7rG4Uf8ofgcr395F+SzSo347Uan1W1i4pP33VaLFKTZbrQ7OPDJBjW0Q39W+RPOY5YqroFJau0kIAlMM2pAMMnzcphanlB2SZd84qimittptrklx2+dMseL2LinAW/Ufzsyqqxdq8hVKgor+79XiPd5kxQWnWkmdJIC12w7aJFKDDEugsFzYTgDuXaEMiPcrpitqKEMXHx7UyJVZPL3cPwwGTb8gPjBeavW+7RLp4TeoCo6RQFqox76jPpogBj6ir6jH+in98375f32rrelB96u5zXag3dzB4VZoG4=</latexit><latexit sha1_base64="s2S1xFtplMgMmo+UlAT1aTEd9R4=">AAACGnicdVBNbxMxEPWWAiEUmsKRi5UIqVLEyptEJIFLRC8cU6n5kLJR5HWcxKrtXdmzRdFq7/wIfgNXOHNDvfbSI/+k3iRIBLVPsvX03oxm5kWJFBYIufUOHh0+fvK09Kz8/OjFy+PKyauhjVPD+IDFMjbjiFouheYDECD5ODGcqkjyUXR5VvijK26siPUFrBM+VXSpxUIwCk6aVarhikIWRipb5/ksg7rG4Uf8ofgcr395F+SzSo347Uan1W1i4pP33VaLFKTZbrQ7OPDJBjW0Q39W+RPOY5YqroFJau0kIAlMM2pAMMnzcphanlB2SZd84qimittptrklx2+dMseL2LinAW/Ufzsyqqxdq8hVKgor+79XiPd5kxQWnWkmdJIC12w7aJFKDDEugsFzYTgDuXaEMiPcrpitqKEMXHx7UyJVZPL3cPwwGTb8gPjBeavW+7RLp4TeoCo6RQFqox76jPpogBj6ir6jH+in98375f32rrelB96u5zXag3dzB4VZoG4=</latexit><latexit sha1_base64="s2S1xFtplMgMmo+UlAT1aTEd9R4=">AAACGnicdVBNbxMxEPWWAiEUmsKRi5UIqVLEyptEJIFLRC8cU6n5kLJR5HWcxKrtXdmzRdFq7/wIfgNXOHNDvfbSI/+k3iRIBLVPsvX03oxm5kWJFBYIufUOHh0+fvK09Kz8/OjFy+PKyauhjVPD+IDFMjbjiFouheYDECD5ODGcqkjyUXR5VvijK26siPUFrBM+VXSpxUIwCk6aVarhikIWRipb5/ksg7rG4Uf8ofgcr395F+SzSo347Uan1W1i4pP33VaLFKTZbrQ7OPDJBjW0Q39W+RPOY5YqroFJau0kIAlMM2pAMMnzcphanlB2SZd84qimittptrklx2+dMseL2LinAW/Ufzsyqqxdq8hVKgor+79XiPd5kxQWnWkmdJIC12w7aJFKDDEugsFzYTgDuXaEMiPcrpitqKEMXHx7UyJVZPL3cPwwGTb8gPjBeavW+7RLp4TeoCo6RQFqox76jPpogBj6ir6jH+in98375f32rrelB96u5zXag3dzB4VZoG4=</latexit>

w
<latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit><latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit><latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit><latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit> w

<latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit><latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit><latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit><latexit sha1_base64="ocO9KNmdPOUHA59ncG4uOZRABnI=">AAAB93icdVDLSsNAFJ3UV62vqks3g0VwFSZtMO2u6MZlC/YBbSiT6aQdOnkwM1FC6Be41bU7cevnuPRPnLQVrOiBC4dz7uXee7yYM6kQ+jAKG5tb2zvF3dLe/sHhUfn4pCujRBDaIRGPRN/DknIW0o5iitN+LCgOPE573uwm93v3VEgWhXcqjakb4EnIfEaw0lL7YVSuINOp1u1GDSITXTVsG+Wk5lSdOrRMtEAFrNAalT+H44gkAQ0V4VjKgYVi5WZYKEY4nZeGiaQxJjM8oQNNQxxQ6WaLQ+fwQitj6EdCV6jgQv05keFAyjTwdGeA1VT+9nLxL2+QKL/uZiyME0VDslzkJxyqCOZfwzETlCieaoKJYPpWSKZYYKJ0NmtbvGCuM/l+HP5PulXTQqbVtivN61U6RXAGzsElsIADmuAWtEAHEEDBI3gCz0ZqvBivxtuytWCsZk7BGoz3Lwbnk+Q=</latexit>

ŷ t+
1
: t+

w

<latexit sha1_base64="cTROMIMSZgjgfe09GK2qjFosOLo=">AAACFnicdVBNSwMxEM3W7/pV9ShIsAiCsGTbYlu9iF48VrAqdEvJpmkbmuwuyaxSlr35I/wNXvXsTbx69eg/cbdWUNEHCY/3ZpiZ54VSGCDkzcpNTc/Mzs0v5BeXlldWC2vrFyaINONNFshAX3nUcCl83gQBkl+FmlPlSX7pDU8y//KaayMC/xxGIW8r2vdFTzAKqdQpbLkDCrHrqXiUJJ0Y9hzsHuKD7IO9m6RTKBK7WqpV6mVMbLJfr1RIRsrVUrWGHZuMUUQTNDqFd7cbsEhxH5ikxrQcEkI7phoEkzzJu5HhIWVD2uetlPpUcdOOx3ckeCdVurgX6PT5gMfq946YKmNGyksrFYWB+e1l4l9eK4JerR0LP4yA++xzUC+SGAKchYK7QnMGcpQSyrRId8VsQDVlkEb3Y4qnsky+Dsf/k4uS7RDbOasUj44n6cyjTbSNdpGDqugInaIGaiKGbtE9ekCP1p31ZD1bL5+lOWvSs4F+wHr9AN1EnxI=</latexit><latexit sha1_base64="cTROMIMSZgjgfe09GK2qjFosOLo=">AAACFnicdVBNSwMxEM3W7/pV9ShIsAiCsGTbYlu9iF48VrAqdEvJpmkbmuwuyaxSlr35I/wNXvXsTbx69eg/cbdWUNEHCY/3ZpiZ54VSGCDkzcpNTc/Mzs0v5BeXlldWC2vrFyaINONNFshAX3nUcCl83gQBkl+FmlPlSX7pDU8y//KaayMC/xxGIW8r2vdFTzAKqdQpbLkDCrHrqXiUJJ0Y9hzsHuKD7IO9m6RTKBK7WqpV6mVMbLJfr1RIRsrVUrWGHZuMUUQTNDqFd7cbsEhxH5ikxrQcEkI7phoEkzzJu5HhIWVD2uetlPpUcdOOx3ckeCdVurgX6PT5gMfq946YKmNGyksrFYWB+e1l4l9eK4JerR0LP4yA++xzUC+SGAKchYK7QnMGcpQSyrRId8VsQDVlkEb3Y4qnsky+Dsf/k4uS7RDbOasUj44n6cyjTbSNdpGDqugInaIGaiKGbtE9ekCP1p31ZD1bL5+lOWvSs4F+wHr9AN1EnxI=</latexit><latexit sha1_base64="cTROMIMSZgjgfe09GK2qjFosOLo=">AAACFnicdVBNSwMxEM3W7/pV9ShIsAiCsGTbYlu9iF48VrAqdEvJpmkbmuwuyaxSlr35I/wNXvXsTbx69eg/cbdWUNEHCY/3ZpiZ54VSGCDkzcpNTc/Mzs0v5BeXlldWC2vrFyaINONNFshAX3nUcCl83gQBkl+FmlPlSX7pDU8y//KaayMC/xxGIW8r2vdFTzAKqdQpbLkDCrHrqXiUJJ0Y9hzsHuKD7IO9m6RTKBK7WqpV6mVMbLJfr1RIRsrVUrWGHZuMUUQTNDqFd7cbsEhxH5ikxrQcEkI7phoEkzzJu5HhIWVD2uetlPpUcdOOx3ckeCdVurgX6PT5gMfq946YKmNGyksrFYWB+e1l4l9eK4JerR0LP4yA++xzUC+SGAKchYK7QnMGcpQSyrRId8VsQDVlkEb3Y4qnsky+Dsf/k4uS7RDbOasUj44n6cyjTbSNdpGDqugInaIGaiKGbtE9ekCP1p31ZD1bL5+lOWvSs4F+wHr9AN1EnxI=</latexit><latexit sha1_base64="cTROMIMSZgjgfe09GK2qjFosOLo=">AAACFnicdVBNSwMxEM3W7/pV9ShIsAiCsGTbYlu9iF48VrAqdEvJpmkbmuwuyaxSlr35I/wNXvXsTbx69eg/cbdWUNEHCY/3ZpiZ54VSGCDkzcpNTc/Mzs0v5BeXlldWC2vrFyaINONNFshAX3nUcCl83gQBkl+FmlPlSX7pDU8y//KaayMC/xxGIW8r2vdFTzAKqdQpbLkDCrHrqXiUJJ0Y9hzsHuKD7IO9m6RTKBK7WqpV6mVMbLJfr1RIRsrVUrWGHZuMUUQTNDqFd7cbsEhxH5ikxrQcEkI7phoEkzzJu5HhIWVD2uetlPpUcdOOx3ckeCdVurgX6PT5gMfq946YKmNGyksrFYWB+e1l4l9eK4JerR0LP4yA++xzUC+SGAKchYK7QnMGcpQSyrRId8VsQDVlkEb3Y4qnsky+Dsf/k4uS7RDbOasUj44n6cyjTbSNdpGDqugInaIGaiKGbtE9ekCP1p31ZD1bL5+lOWvSs4F+wHr9AN1EnxI=</latexit>

Figure 3.2: Illustration of SBS: (a) wait-k policy (Eqs. 3.1–3.2); (b) adaptive policy
(Eqs. 3.3–3.4). Speculations in red.

3.2.1 Single-Step SBS

The wait-k policy conducts translation concurrently with the source input, commit-

ting output words one by one while the source sentence is still growing. In this case,

conventional beam search is clearly inapplicable.

We propose to perform speculative beam search at each step by hallucinating w more

steps into the future, and use the ranking after these w+ 1 steps to form a more informed

decision for the current step. More formally, at step t, we generate yt based on already

committed prefix y<t:

〈ŷ, st〉 = top1
(
nextb1+w([〈y<t, 1〉])

)
(3.1)

y≤t = y<t ◦ ŷt (3.2)

where ŷ = y<t ◦ ŷt ◦ ŷt+1:t+w has three parts, with the last one being a speculation of w

steps (see Fig. 3.2). We use nextb1+w(·) to speculate w steps. The candidate ŷt is selected

based on the accumulative model score w steps later. Then we commit ŷt and move on to

step t+ 1.

46

In the running example in Fig. 3.1, we have w = 2 and b = 3. In the greedy mode,

after the wait-1 policy receives the first source word, “世行” (world bank), the basic

wait-1 model commits “bank” which has the highest score. In SBS, we perform a beam

search for 1 + w = 3 steps with the two speculative steps marked in red. After 3 steps,

the path “world bank will” becomes the top candidate, thus we choose to commit “world”

instead of “bank” and restart a new speculative beam search with “world” when we

receive a new source word, “拟”(plan to); the speculative part from the previous step (in

red) is removed.

3.2.2 Chunk-based SBS

The RL-based adaptive policy system [Gu et al., 2017] can commit a chunk of multiple

words whenever there is a series of consecutive WRITEs, and conventional beam search

can be applied on each chunk to improve the search quality within that chunk, which is

already used in that work.

However, on top of the obvious per-chunk beam search, we can still apply SBS to

further speculate w steps after the chunk. For a chunk of length n starting at position t,

we adapt SBS as:

〈ŷ, st〉 = top1
(
nextbn+w([〈y<t, 1〉])

)
(3.3)

y≤t+n−1 = y<t ◦ ŷt:t+n−1 (3.4)

47

policy static NMT retrained NMT

fixed
test-time wait-k
[Dalvi et al., 2018]

wait-k
[Ma et al., 2019a]

adaptive RL [Gu et al., 2017] N/A

Table 3.1: Three approaches to simultaneous translation.

Here nextbn+w(·) does a beam search of n+w steps, with the last w speculated. Similarly,

ŷ = y<t ◦ ŷt:t+n−1 ◦ ŷt+n:t+n+w−1

has three parts, with the last being a speculation of w steps, and the middle one being the

chunk of n steps returned and committed (see Fig. 3.2).

3.2.3 Experiments

3.2.3.1 Datasets and Latency Metrics

0.55 0.60 0.65 0.70 0.75 0.80
Average Proportion (zh en)

20

25

30

35

40

4-
re

f B
LE

U

k=1

k=3
k=5

k=7

Wait-k
Test-time wait-k

1 0.55 0.60 0.65 0.70 0.75
Average Proportion (en zh)

7.5

10.0

12.5

15.0

17.5

20.0

1-
re

f B
LE

U

k=1

k=3

k=5
k=7

Wait-k
Test-time wait-k

1

Figure 3.3: BLEU against AP using Wait-k model. � �: conventional beam search only
in target tail (when source finishes). 44: speculative beam search. FI:full-sentence
(greedy and beam-search).

48

We evaluate our work on Chinese↔English simultaneous translation tasks. For the

training data, we use the NIST corpus for Chinese↔English (2M sentence pairs). We

first apply BPE [Sennrich et al., 2015] on all texts in order to reduce the vocabulary sizes.

For Chinese↔English evaluation, we use NIST 2006 and NIST 2008 as our dev and test

sets with 4 English references. For English→Chinese, we use the second among the four

English references as the source text.

We re-implement all models in Table 3.1: wait-k model [Ma et al., 2019a], test-time

wait-k model [Dalvi et al., 2018] and adaptive policy model [Gu et al., 2017] based on

PyTorch-based OpenNMT [Klein et al., 2017]. To reach state-of-art performance, we use

Transformer based wait-k model and also use Transformer based pre-trained full sentence

model for learning adaptive policy. The parameters of Transformer are the same as the

base model from the original paper [Vaswani et al., 2017]. We use Average Proportion

(AP) [Cho and Esipova, 2016] as the latency metrics. AP measures the normalized

amount of word delay for translating a given source sentence.

b
w

0 1 2 3 4 5

1 34.28 - - - - -
3 +1.7 +0.9 +1.4 +1.4 +1.4
5 +1.9 +1.5 +2.0 +1.3 +1.5
7 +2.1 +1.5 +2.0 +1.3 +1.6
10 +2.2 +1.5 +1.7 +1.4 +1.6

Table 3.2: Zh→En wait-1 model BLEU improvement of SBS against greedy result (b = 1,
w = 0) on dev-set. When b ≥ 5 the performance of SBS becomes stable.

49

sh
ìh

án
g

nı̌
jı̌a

nm
ı̌a

n
zù

i
qi

ón
g

gú
oj

iā
zh

ài
w

ù
世
行

拟
减
免

最
穷

国
家

债
务

G
lo

ss
w

or
ld

ba
nk

pl
an

to
re

m
it

&
re

du
ce

m
os

t
po

or
co

un
tr

y
de

bt

k
=1
†

G
re

ed
y

w
or

ld
ba

nk
to

re
du

ce
po

ve
rt

y
-

st
ri

ck
en

co
un

tr
ie

s
SB

S
w

or
ld

ba
nk

to
ex

em
p-

t
po

-
or

-e
st

co
un

tr
ie

s
fr

om
de

bt

k
=1
‡

G
re

ed
y

w
or

ld
ba

nk
to

re
du

ce
or

ex
em

p-
td

eb
to

fp
oo

re
st

co
un

tr
ie

s
SB

S
th

e
w

or
ld

ba
nk

in
te

n-
ds

to
re

du
ce

or
ex

em
p-

tt
he

de
bt

of
th

e
po

-o
r-

es
tc

ou
nt

ri
es

k
=∞

∗
w

or
ld

ba
nk

pl
an

s
to

re
m

it
an

d
re

du
ce

de
bt

s
of

po
-o

r-
es

tc
ou

nt
ri

es

Ta
bl

e
3.

3:
C

hi
ne

se
-t

o-
E

ng
lis

h
ex

am
pl

e
on

de
v

se
t.
† :

te
st

-t
im

e
w

ai
t-
k

;‡
:w

ai
t-
k

.∗
:f

ul
l-

se
nt

en
ce

be
am

se
ar

ch
.

50

3.2.3.2 Performance on Wait-k Policy

We perform experiments on validation set using speculative beam search (SBS) with beam

sizes b ∈ {3, 5, 7, 10, 15} and speculative window sizes w ∈ {1, 2, 3, 4, 5}. Table 3.2

shows the BLEU score of b and w over wait-1 model. Compared with greedy decoding,

SBS improves at least 0.9 BLEU score in all cases and achieves best performance

by b = 10, w = 1. (We recommend b = 5, w = 3 which can achieve substantial

improvements in most cases.) We search the best b and w for each model on dev-set and

apply them on test-set in the following experiments.

Fig. 3.3 shows the performance of conventional greedy decoding, trivial tail beam

search (only after source sentence is finished) and SBS on test set on Chinese↔English

tasks. SBS largely boost test-time wait-k models with slightly worse latency (especially

in English→Chinese because they tend to generate longer sentences). Wait-k models

also benefit from speculation (especially in Chinese→English).

Fig. 3.3 shows an running example of greedy and SBS output of both wait-k and test-

time wait-k models. SBS on test-time wait-k generate much better outputs compared with

the greedy outputs which misses several essential information. Wait-k with speculation

correctly translates “拟” into “intends to” instead of “to” in greedy output.

We also evaluate our work using Consecutive Wait (CW) as latency metric, which

measures the average lengths of consecutive wait segments, and perform experiments on

German↔English corpora available from WMT151. We use newstest-2013 as dev-set

and newstest-2015 as test-set.2

1http://www.statmt.org/wmt15/translation-task.html
2The German↔English results are slightly different from those in Ma et al. [2019a] because of different

decoding settings. We do not allow that the decoder stops earlier than the finish of source sentence while it

http://www.statmt.org/wmt15/translation-task.html

51

2 4 6 8
Average Lagging (de en)

15

20

25

30
1-

re
f B

LE
U

k=1

k=3

k=5
k=7

Wait-k
Test-time wait-k

28.6 2 4 6 8
Average Lagging (en de)

10

15

20

25

1-
re

f B
LE

U

k=1

k=3

k=5
k=7

Wait-k
Test-time wait-k

26.6

Figure 3.4: Translation quality against AL on English↔German simultaneous translation
using wait-k model. ��: conventional beam search only on target tail. 44: speculative
beam search. FI:full-sentence (greedy and beam-search).

1.00 1.25 1.50 1.75
Consecutive Wait (zh en)

15

20

25

30

35

40

4-
re

f B
LE

U

k=1

k=3

k=5
k=7

Wait-k
Test-time wait-k

29.6 1.4 1.6 1.8 2.0 2.2
Consecutive Wait (en zh)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

1-
re

f B
LE

U

k=1

k=3
k=5

k=7

Wait-k
Test-time wait-k

38.3

Figure 3.5: Translation quality against CW on Chinese↔English simultaneous translation
using wait-k model.

Fig. 3.4 show the translation quality on German↔English against AL of different de-

coding methods. Consistent to the results of Chinese↔English, our proposed speculative

beam search gain large performance boost especially on test-time wait-k. Fig. 3.5 and

Fig. 3.6 use CW as latency metrics. Since both the wait-k and test-time wait-k models

is allowed in German↔English experiments of Ma et al. [2019a]. This makes our generated sentences
longer and further results in worse AL compared with the results in Ma et al. [2019a].

52

1.00 1.25 1.50 1.75 2.00
Consecutive Wait (de en)

15

20

25

30
1-

re
f B

LE
U

k=1

k=3

k=5
k=7

Wait-k
Test-time wait-k

28.6 1.00 1.25 1.50 1.75
Consecutive Wait (en de)

10

15

20

25

1-
re

f B
LE

U

k=1

k=3

k=5
k=7

Wait-k
Test-time wait-k

26.6

Figure 3.6: Translation quality against CW on English↔German simultaneous translation
using wait-k model.

use the same fixed policy, the CW latencies of the same k are identical.

3.2.3.3 Performance on Adaptive Policy Model

Figure 3.7: BLEU against AP using adaptive policy model (compared with wait-k models)
with different beam search methods. � � �: conventional beam search in chunk of
consecutive write [Gu et al., 2017]. 444: speculative beam search. FI:full-sentence
baseline (greedy and beam-search).

Fig. 3.7 shows the performance of proposed SBS on adaptive policy. We train adaptive

53

yt
<latexit sha1_base64="SeGBdmF0K269BzW9NTI6ylilwtw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD+Me9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOiEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2nZEPwFl9eJs2zqndevby/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QN1Bo3r</latexit>

ŷ6w
t

<latexit sha1_base64="KB9f+IQoMdoV0w7Aq9F4Qd4Ea5M=">AAACCXicbVC5TsNAEF2HK4QrQEmzIkKiimwOQRlBQxkkckixsdabdbLK+mB3DLIstzT8Cg0FCNHyB3T8DZvEBSQ8aaSn92Y0M8+LBVdgmt9GaWFxaXmlvFpZW9/Y3Kpu77RVlEjKWjQSkex6RDHBQ9YCDoJ1Y8lI4AnW8UaXY79zz6TiUXgDacycgAxC7nNKQEtuFdtDApkdEBh6fpbmuQu3mS3YnRIkBPyQu9WaWTcnwPPEKkgNFWi61S+7H9EkYCFQQZTqWWYMTkYkcCpYXrETxWJCR2TAepqGJGDKySaf5PhAK33sR1KXXj9Rf09kJFAqDTzdOT5ZzXpj8T+vl4B/7mQ8jBNgIZ0u8hOBIcLjWHCfS0ZBpJoQKrm+FdMhkYSCDq+iQ7BmX54n7aO6dVw/vT6pNS6KOMpoD+2jQ2ShM9RAV6iJWoiiR/SMXtGb8WS8GO/Gx7S1ZBQzu+gPjM8fJaObQg==</latexit>

revision window

de
co

di
ng

 ti
m

e

t
<latexit sha1_base64="t6XaytdIsHwdU4AeCNDSjPNP5sM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV0f6DHoxWMC5gHJEmYns8mY2dllplcIS77AiwdFvPpJ3vwbJ8keNLGgoajqprsrSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGd1O/9cS1EbF6wHHC/YgOlAgFo2ilOvZKZbfizkCWiZeTMuSo9Upf3X7M0ogrZJIa0/HcBP2MahRM8kmxmxqeUDaiA96xVNGIGz+bHTohp1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDGz4RKUuSKzReFqSQYk+nXpC80ZyjHllCmhb2VsCHVlKHNpmhD8BZfXibN84p3UbmqX5art3kcBTiGEzgDD66hCvdQgwYw4PAMr/DmPDovzrvzMW9dcfKZI/gD5/MH4m2M/w==</latexit>

t + 1
<latexit sha1_base64="tGQ1GTwhm57M/cuPNJRIL/VDcNU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIez6QI9BLx4jmgckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O0vLK6tr64WN4ubW9s5uaW+/YeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3k785hPXRsTqEUcJ9yPaVyIUjKKVHvDU65bKbsWdgiwSLydlyFHrlr46vZilEVfIJDWm7bkJ+hnVKJjk42InNTyhbEj7vG2pohE3fjY9dUyOrdIjYaxtKSRT9fdERiNjRlFgOyOKAzPvTcT/vHaK4bWfCZWkyBWbLQpTSTAmk79JT2jOUI4soUwLeythA6opQ5tO0Ybgzb+8SBpnFe+8cnl/Ua7e5HEU4BCO4AQ8uIIq3EEN6sCgD8/wCm+OdF6cd+dj1rrk5DMH8AfO5w+4yY1v</latexit>

correction

8>><>>:
<latexit sha1_base64="vOXxVXrmuiv79AW8seb2TKJ6MCA=">AAACN3icfVDLSgMxFM34dnxVXboJFsVVmfGBLotuXImCVaEpJZPeaYOZzJDcEcvQv3Ljb7jTjQtF3PoHprWCL7wkcDjnHu69J8qUtBgE997I6Nj4xOTUtD8zOze/UFpcOrNpbgTURKpScxFxC0pqqKFEBReZAZ5ECs6jy4O+fn4FxspUn2I3g0bC21rGUnB0VLN0xBTEyAoWQVvqIuFo5HXPp+vUPcboP8hnoFufDmZku4OVZqkcVIJB0d8gHIIyGdZxs3THWqnIE9AoFLe2HgYZNgpuUAoFPZ/lFjIuLnkb6g5qnoBtFIO7e3TNMS0ap8Z9jXTAfnUUPLG2m0Su063ZsT+1PvmXVs8x3msUUmc5ghYfg+JcUUxpP0TakgYEqq4DXBjpdqWiww0X6KL2XQjhz5N/g7PNSrhV2TnZLlf3h3FMkRWySjZISHZJlRySY1IjgtyQB/JEnr1b79F78V4/Wke8oWeZfCvv7R1tL6Y8</latexit>

…

…

…

8>><>>:
<latexit sha1_base64="vOXxVXrmuiv79AW8seb2TKJ6MCA=">AAACN3icfVDLSgMxFM34dnxVXboJFsVVmfGBLotuXImCVaEpJZPeaYOZzJDcEcvQv3Ljb7jTjQtF3PoHprWCL7wkcDjnHu69J8qUtBgE997I6Nj4xOTUtD8zOze/UFpcOrNpbgTURKpScxFxC0pqqKFEBReZAZ5ECs6jy4O+fn4FxspUn2I3g0bC21rGUnB0VLN0xBTEyAoWQVvqIuFo5HXPp+vUPcboP8hnoFufDmZku4OVZqkcVIJB0d8gHIIyGdZxs3THWqnIE9AoFLe2HgYZNgpuUAoFPZ/lFjIuLnkb6g5qnoBtFIO7e3TNMS0ap8Z9jXTAfnUUPLG2m0Su063ZsT+1PvmXVs8x3msUUmc5ghYfg+JcUUxpP0TakgYEqq4DXBjpdqWiww0X6KL2XQjhz5N/g7PNSrhV2TnZLlf3h3FMkRWySjZISHZJlRySY1IjgtyQB/JEnr1b79F78V4/Wke8oWeZfCvv7R1tL6Y8</latexit>

t + 2
<latexit sha1_base64="9+8co5X+9cuaDI/4vvU0v8CjHtc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3KnoMevEY0TwgWcLsZJIMmZ1dZnqFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glgKg6777eRWVtfWN/Kbha3tnd294v5Bw0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwup36zSeujYjUI45j7od0oERfMIpWesCzSrdYcsvuDGSZeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyYpUe6UfalkIyU39PpDQ0ZhwGtjOkODSL3lT8z2sn2L/2U6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7AheIsvL5NGpeydly/vL0rVmyyOPBzBMZyCB1dQhTuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4Auk2NcA==</latexit>

correction

y<t
<latexit sha1_base64="5wmZKBhkP+VlNy8pxWZS+/TmoiA=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUl8oAsXRTcuK9gHtCFMppN26OTBzEQJMZ/ixoUibv0Sd/6NkzYLrR4YOJxzL/fM8WLOpLKsL6OytLyyulZdr21sbm3vmPXdrowSQWiHRDwSfQ9LyllIO4opTvuxoDjwOO150+vC791TIVkU3qk0pk6AxyHzGcFKS65Zz4YBVhPPz9I8d7NLlbtmw2paM6C/xC5JA0q0XfNzOIpIEtBQEY6lHNhWrJwMC8UIp3ltmEgaYzLFYzrQNMQBlU42i56jQ62MkB8J/UKFZurPjQwHUqaBpyeLnHLRK8T/vEGi/AsnY2GcKBqS+SE/4UhFqOgBjZigRPFUE0wE01kRmWCBidJt1XQJ9uKX/5LucdM+aZ7dnjZaV2UdVdiHAzgCG86hBTfQhg4QeIAneIFX49F4Nt6M9/loxSh39uAXjI9vLjKUmg==</latexit>

irreversible

Figure 3.8: Besides yt, opportunistic decoding continues to generate additional w words
which are represented as ŷ6wt . The timely correction only revises this part in future
steps. Different shapes denote different words. In this example, from step t to t+ 1, all
previously opportunistically decoded words are revised, and an extra triangle word is
generated in opportunistic window. From step t+ 1 to t+ 2, two words from previous
opportunistic window are kept and only the triangle word is revised.

policies using the combination of Consecutive Wait (CW ∈ {2, 5, 8} [Gu et al., 2017])

and partial-BLEU as reward in reinforcement learning. We vary beam size b ∈ {5, 10} in

both conventional consecutive write beam search [Gu et al., 2017] and proposed SBS

whose speculative window size w ∈ {2, 4}. Our proposed beam search achieves better

results in most cases.

3.3 Opportunistic Decoding and Timely Correction with Beam Search

Though the existing efforts improve the performance in both translation latency and

quality with more powerful frameworks, it is still difficult to choose an appropriate

policy to explore the optimal balance between latency and quality in practice, especially

when the policy is trained and applied in different domains. Furthermore, all existing

approaches are incapable of correcting the mistakes from previous steps. When the

54

former steps commit errors, they will be propagated to the later steps, inducing more

mistakes to the future.

We propose an opportunistic decoding technique with timely correction mechanism

to address the above problems. As shown in Fig. 3.8, our proposed method always

decodes more words than the original policy at each step to catch up with the speaker and

reduce the latency. At the same time, it also employs a timely correction mechanism to

review the extra outputs from previous steps with more source context, and revises these

outputs with current preference when there is a disagreement. From the user experience

point of view, at each time step, since we only review and modify the last few output

words with a relatively low revision rate, in the speech-to-text scenario [Oda et al., 2014,

Bangalore et al., 2012, Yarmohammadi et al., 2013] where the outputs are posted on the

screen, the audience will not be overwhelmed by the modifications. This is a much better

user experience compared with the “always re-translate” strategy.

We also define, for the first time, two metrics for revision-enabled simultaneous

translation: a more general latency metric Revision-aware AL (RAL) as well as the

revision rate. We demonstrate the effectiveness of our proposed technique using fixed

Ma et al. [2019a] and adaptive [Zheng et al., 2019d] policies in both Chinese-to-English

and English-to-Chinese (in appendix) translation.

3.3.1 Opportunistic Decoding

For simplicity, we first apply this method to fixed policies. We define the original decoded

word sequence at time step t with yt, which represents the word that is decoded in time

55

bùshí

Ջ
Bush

zǒngtǒng

ᕹ
President

de

ጱ
of

Jiāng

Jiang

fāyán

ݎ
speech

biăoshì

ᤒᐏ
express

Zémín

၂࿆
Zemin

dùi

to

Jiang Zemin expressed his welcome to

his agreement to President

1 2 3 4 5 6 7 8 9
zàntóng

ݶᩩ
agreement

…

decoding time

t = 4

t = 5 expressed

…

҅
bìngqiě

ଚӬ
and

10 11

Jiang Zemin

his to Presidentt = 6 expressed Jiang Zemin Bushagreement

Figure 3.9: Decoder generates the 4th word “his” and two extra words “welcome to” at
the 4th decoding step and the 9th source word “zàntóng” (agreement) on source side is
not available to the model yet. When the model receives the 9th source word at 5th step,
the decoder immediately corrects the previous mistake with “agreement” and makes two
more additional decoding. The decoder not only is capable to fix the previous mistake,
but also has the enough information to perform more correct generations. Our framework
benefits from opportunistic decoding with reduced latency here. Note though the word
“to” is generated in step 4, it only becomes irreversible at step 6.

step t with original model. We denote the additional decoded words at time step t as

ŷ6wt = (y1t , ..., y
w
t), where w denote the number of extra decoded words. In our setting,

the decoding process is as follows:

pg(yt ◦ ŷ6wt | x6g(t)) =

pg(yt | x6g(t))
∏w

i=1 pg(ŷ
i
t | x6g(t), yt ◦ ŷ

<i
t)

(3.5)

where ◦ is the string concatenation operator.

We treat the procedure for generating the extra decoded sequence as opportunistic

decoding, which prefers to generate more tokens basic on current context. When we have

enough information, this opportunistic decoding eliminates unnecessary latency and keep

the audience on track. With a certain chance, when the opportunistic decoding tends

to aggressive and generates inappropriate tokens, we need to fix the inaccurate token

immediately.

56

3.3.2 Timely Correction

In order to deliver the correct information to the audience promptly and fix previous

mistakes as soon as possible, we also need to review and modify the previous outputs.

At t + 1 step, when encoder obtains more information from x6g(t) to x6g(t+1), the

decoder is capable to generate more appropriate candidates and may revise and replace

the previous outputs from opportunistic decoding. More precisely, ŷ6wt and yt+1 ◦ ŷ6w−1t+1

are two different hypothesis over the same time chunk. When there is a disagreement,

our model always uses the hypothesis from later step to replace the previous commits.

Note our model does not change any word in yt from previous step and it only revise the

words in ŷ6wt .

Modification for Adaptive Policy For adaptive policies, the only difference is, instead

of committing a single word, the model is capable of generating multiple irreversible

words. Thus our proposed methods can be easily applied to adaptive policies.

Correction with Beam Search When the model is committing more than one word

at a time, we can use beam search to further improve the translation quality and reduce

revision rate [Murray and Chiang, 2018, Yang et al., 2018].

The decoder maintains a beam Bk
t of size b at step t, which is ordered list of pairs

〈hypothesis, probability〉, where k denotes the kth step in beam search. At each step,

there is an initial beam B0
t = [〈yt−1, 1〉]. We denote one-step transition from the previous

beam to the next as

57

Bk+1
t = nextb1(B

k
t)

=
b

top{〈y′◦ v, u·p(v|x6g(t),y′)〉 | 〈y′, u〉∈Bk
t }

where topb(·) returns the top-scoring b pairs. Note we do not distinguish the revisable

and non-revisable output in y′ for simplicity. We also define the multi-step advance beam

search function with recursive fashion as follows:

nextbi(B
k
t)=nextb1(next

b
i−1(B

k
t))

When the opportunistic decoding window is w at decoding step t, we define the beam

search over w + 1 (include the original output) as follows:

〈y′t, ut〉 = top1
(
nextbn+w(B

0
t)
)

(3.6)

where nextbn+w(·) performs a beam search with n + w steps, and generate y′t as the

outputs which include both original and opportunistic decoded words. n represents the

length of yt

3.3.3 Revision-aware AL and Revision Rate

We define, for the first time, two metrics for revision-enabled simultaneous translation.

Revision-aware AL AL is introduced in [Ma et al., 2019a] to measure the average

delay for simultaneous translation. Besides the limitations that are mentioned in [Cherry

and Foster, 2019], AL is also not sensitive to the modifications to the committed words.

Furthermore, in the case of re-translation, AL is incapable to measure the meaningful

58

A
A B
A D B C
A C F
A D F E F
A D F B E
A D F B E

target

source

final 
outputs

s = 0
<latexit sha1_base64="D1yS6RzrA1lVOBtvBtnRjRFu1H8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QC9C0IvHiOYByRJmJ7PJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjRa0FBUddPdFSRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Ubz1ybUSsHnCccD+iAyVCwSha6d5cub1yxa26M5C/xMtJBXLUe+XPbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QI6v0SRhrWwrJTP05kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsv/yXNk6p3Wj2/O6vUrvM4inAAh3AMHlxADW6hDg1gMIAneIFXRzrPzpvzPm8tOPnMPvyC8/EN0RmNfw==</latexit>

s = 1
<latexit sha1_base64="tv1gl2xEnOTihOnrQ3xwG0IywLM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QC9C0IvHiOYByRJmJ7PJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjRa0FBUddPdFSRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Ubz1ybUSsHnCccD+iAyVCwSha6d5ceb1yxa26M5C/xMtJBXLUe+XPbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/NTp2QI6v0SRhrWwrJTP05kdHImHEU2M6I4tAselPxP6+TYnjpZ0IlKXLF5ovCVBKMyfRv0heaM5RjSyjTwt5K2JBqytCmU7IheIsv/yXNk6p3Wj2/O6vUrvM4inAAh3AMHlxADW6hDg1gMIAneIFXRzrPzpvzPm8tOPnMPvyC8/EN0p2NgA==</latexit>

s = 2
<latexit sha1_base64="OyODLHvyAVgcgVeW1v0anuu3NT0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRS9C0IvHiOYByRJmJ51kyOzsMjMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfy0Yxj9EM6kLzPGTVWetDXlW6x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpVMreWfni/rxUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOG8OO/Ox7w152Qzh/AHzucP1CGNgQ==</latexit>

s = 3
<latexit sha1_base64="2cq5hRI5oOfi0+KTbgxpw8ViPNI=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewaRS9C0IvHiOYByRJmJ51kyOzsMjMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfy0Yxj9EM6kLzPGTVWetDXlW6x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpnJW9Svni/rxUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOG8OO/Ox7w152Qzh/AHzucP1aWNgg==</latexit>

s = 4
<latexit sha1_base64="XPATyeSDT1r3YAs7G20W9viZ8VM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqRC9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00oO5rnSLJbfszkCWiZeREmSodYtfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTohJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv0rPxUqTpArNl/UTyTBiEz/Jj2hOUM5toQyLeythA2ppgxtOgUbgrf48jJpnJW98/LFfaVUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucP1ymNgw==</latexit>

s = 5
<latexit sha1_base64="nujZy26rKbMtSsGONODKK1q+R00=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqQS9C0IvHiOYByRJmJ51kyOzsMjMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcSCa+O6305uZXVtfSO/Wdja3tndK+4fNHSUKIZ1FolItQKqUXCJdcONwFaskIaBwGYwup36zSdUmkfy0Yxj9EM6kLzPGTVWetDXlW6x5JbdGcgy8TJSggy1bvGr04tYEqI0TFCt254bGz+lynAmcFLoJBpjykZ0gG1LJQ1R++ns1Ak5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKZ/kx5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf48jJpnJW983Ll/qJUvcniyMMRHMMpeHAJVbiDGtSBwQCe4RXeHOG8OO/Ox7w152Qzh/AHzucP2K2NhA==</latexit>

s = 6
<latexit sha1_base64="cL0DGlOQBArHBgYYuFOl5u4ovjs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6vghBLx4jmgckS5iddJIhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXEAuujet+O7ml5ZXVtfx6YWNza3unuLtX11GiGNZYJCLVDKhGwSXWDDcCm7FCGgYCG8HwduI3nlBpHslHM4rRD2lf8h5n1FjpQV9fdIolt+xOQRaJl5ESZKh2il/tbsSSEKVhgmrd8tzY+ClVhjOB40I70RhTNqR9bFkqaYjaT6enjsmRVbqkFylb0pCp+nsipaHWozCwnSE1Az3vTcT/vFZield+ymWcGJRstqiXCGIiMvmbdLlCZsTIEsoUt7cSNqCKMmPTKdgQvPmXF0n9pOydls/vz0qVmyyOPBzAIRyDB5dQgTuoQg0Y9OEZXuHNEc6L8+58zFpzTjazD3/gfP4A2jGNhQ==</latexit>

t = 1
<latexit sha1_base64="ER7jzwoVgjsUgXLZQQcA8BLCHM0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QC9C0IvHiOYByRJmJ7PJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjRa0FBUddPdFSRSGHTdL6ewtLyyulZcL21sbm3vlHf3miZONeMNFstYtwNquBSKN1Cg5O1EcxoFkreC0c3Ubz1ybUSsHnCccD+iAyVCwSha6R6vvF654lbdGchf4uWkAjnqvfJntx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9mp07IkVX6JIy1LYVkpv6cyGhkzDgKbGdEcWgWvan4n9dJMbz0M6GSFLli80VhKgnGZPo36QvNGcqxJZRpYW8lbEg1ZWjTKdkQvMWX/5LmSdU7rZ7fnVVq13kcRTiAQzgGDy6gBrdQhwYwGMATvMCrI51n5815n7cWnHxmH37B+fgG1CONgQ==</latexit>

t = 2
<latexit sha1_base64="JTTAGu8mLCMqvYJ9WV/XCaGanJg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvrHxxf16q3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH1aeNgg==</latexit>

t = 3
<latexit sha1_base64="ztmF+NWK7YHJFlSK1UJItkkJVKc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewaRS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0zspepXxxf16q3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH1yuNgw==</latexit>

t = 4
<latexit sha1_base64="5A33jCSJYnP/zs91NH2ZC1xVM40=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqRC9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0zsreefnivlKq3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH2K+NhA==</latexit>

t = 5
<latexit sha1_base64="VBnB3NxfkozrscJfPwxvIb0q3iU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqQS9C0IvHiOYByRJmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnEccz+kAyX6glG00gNeV7rFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0zsreeblyf1Gq3mRx5OEIjuEUPLiEKtxBDerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MH2jONhQ==</latexit>

Figure 3.10: The red arrows represent the changes between two different commits, and
the last changes for each output word is highlighted with yellow.

latency anymore.

We hereby propose a new latency, Revision-aware AL (RAL), which can be applied

to any kind of translation scenarios, i.e., full-sentence translation, use re-translation as

simultaneous translation, fixed and adaptive policy simultaneous translation. Note that

for latency and revision rate calculation, we count the target side difference respect to

the growth of source side. As it is shown in Fig. 3.10, there might be multiple changes

for each output words during the translation, and we only start to calculate the latency

for this word once it agrees with the final results. Therefore, it is necessary to locate the

last change for each word. For a given source side time s, we denote the tth outputs on

target side as f(x6s)t. Then we are able to find the Last Revision (LR) for the tth word

59

on target side as follows:

LR(t) = argmax
s<|x|

(
f(x6(s−1))t 6= f(x6s)t

)

From the audience point of view, once the former words are changed, the audience also

needs to take the efforts to read the following as well. Then we also penalize the later

words even there are no changes, which is shown with blue arrow in Fig. 3.10. We then

re-formulate the LR(t) as follows (assume LR(0) = 0):

LR(t) = max{LR(t− 1), LR(t)} (3.7)

The above definition can be visualized as the thick black line in Fig. 3.10. Similar with

original AL, our proposed RAL is defined as follows:

RAL(x,y) =
1

τ(|x|)

τ(|x|)∑

t=1

LR(t)− t− 1

r
(3.8)

where τ(|x|) denotes the cut-off step, and r = |y|/|x| is the target-to-source length ratio.

Revision Rate Since each modification on the target side would cost extra effort for

the audience to read, we penalize all the revisions during the translation. We define the

revision rate as follows:

(|x|−1∑

s=1

dist
(
f(x6s), f(x6s+1)

))/(|x|∑

s=1

|f(x6s)|
)

60

where dist can be arbitrary distance measurement between two sequences. For simplicity,

we design a modified Hamming Distance to measure the difference:

dist(a, b) = hamming
(
a, b≤|a| ◦ 〈pad〉max(|a|−|b|,0)) (3.9)

where 〈pad〉 is a padding symbol in case b is shorter than a.

3.3.4 Experiments

Datasets and Implementation We evaluate our work on Chinese-to-English and

English-to-Chinese simultaneous translation tasks. We use the NIST corpus (2M sentence

pairs) as the training data. We first apply BPE [Sennrich et al., 2015] on all texts to reduce

the vocabulary sizes. For evaluation, we use NIST 2006 and NIST 2008 as our dev and

test sets with 4 English references. We re-implement wait-k model [Ma et al., 2019a]

and adaptive policy [Zheng et al., 2019d]. We use Transformer [Vaswani et al., 2017]

based wait-k model and pre-trained full-sentence model for learning adaptive policy.

Performance on Wait-k Policy We perform experiments using opportunistic decoding

on wait-k policies with k ∈ {1, 3, 5, 7, 9}, opportunistic window w ∈ {1, 3, 5} and beam

size b ∈ {1, 3, 5, 7, 10, 15}. We select the best beam size for each policy and window

pair on dev-set.

We compare our proposed method with a baseline called re-translation which uses a

full-sentence NMT model to re-decode the whole target sentence once a new source word

is observed. The final output sentences of this method are identical to the full sentence

61

5 10 15
Revision-aware Average Lagging (zh en)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0
4-

re
f B

LE
U

w=5, b>1
w=3, b>1
w=1, b>1
w=5, b=1
w=3, b=1
w=1, b=1
w=0, b=1

29.6 0 5 10 15
Revision-aware Average Lagging (en zh)

10

12

14

16

18

20

22

24

1-
re

f B
LE

U

w=5, b>1
w=3, b>1
w=1, b>1
w=5, b=1
w=3, b=1
w=1, b=1
w=0, b=1

38.3

Figure 3.11: BLEU against RAL using wait-k polocies.

translation output with the same model but the latency is reduced.

Fig. 3.11 shows the results of our proposed algorithm. In this figure, N NN represents

wait-1 policies, represents wait-3 policies, represents wait-5 policies,

represents wait-7 policies, H H H represents wait-9 policies,F (F) represents re-

translation with pre-trained NMT model with greedy (beam search) decoding,F (�)

represents full-sentence translation with pre-trained NMT model with greedy (beam

search) decoding. The baseline for wait-k policies is decoding with w = 0, b = 1. Since

our greedy opportunistic decoding doesn’t change the final output, there is no difference

in BLEU compared with normal decoding, but the latency is reduced. However, by

applying beam search, we can achieve 3.1 BLEU improvement and 2.4 latency reduction

on wait-7 policy.

Fig. 3.11(right) shows the translation quality and latency improvement by using

our proposed algorithm. Compare to the Chinese-to-English translation results in pre-

vious section, there is comparatively less latency reduction by using beam search be-

cause the output translations are slightly longer which hurts the latency. As shown in

62

Fig. 3.12(right), the revision rate is still controlled under 8%.

1 2 3 4 5
Window Size (zh en)

0

2

4

6

8

R
ev

is
io

n
R

at
e

b=1
b>1

39.5

40.0

1 2 3 4 5
Window Size (en zh)

0

2

4

6

8

R
ev

is
io

n
R

at
e

b=1
b>1

25

30

Figure 3.12: Revision rate against window size with different wait-k policies. F (F):
re-translation with pre-trained NMT model with greedy (beam search) decoding.

Fig. 3.12 shows the revision rate with different window size on wait-k policies. In

general, with opportunity window w ≤ 5, the revision rate of our proposed approach is

under 8%, which is much lower than re-translation.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
Revision-aware Average Lagging (zh en)

29

30

31

32

33

4-
re

f B
LE

U

w=0, b=1
w=0, b>1

w=1, b=1
w=1, b>1

w=3, b=1
w=3, b>1

w=5, b=1
w=5, b>1

5 6 7 8 9
Revision-aware Average Lagging (en zh)

16

17

18

19

20

21

1-
re

f B
LE

U

w=0, b=1
w=0, b>1

w=1, b=1
w=1, b>1

w=3, b=1
w=3, b>1

w=5, b=1
w=5, b>1

Figure 3.13: BLEU against RAL using adaptive policies. Baseline is decoded with
w = 0, b = 1 and w = 0, b > 1.

63

Performance on Adaptive Policy Fig. 3.13 shows the performance of the proposed

algorithm on adaptive policies. We use threshold ρ ∈ {0.55, 0.53, 0.5, 0.47, 0.45}. We

vary beam size b ∈ {1, 3, 5, 7, 10} and select the best one on dev-set. Comparing with

conventional beam search on consecutive writes, our decoding algorithm achieves even

much higher BLEU and less latency.

3.3.4.1 Revision Rate vs. Window Size

1 3 5 7 10 15
Beam Size (zh en)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
ev

is
io

n
R

at
e

wait-1
wait-3
wait-5
wait-7
wait-9

Figure 3.14: Revision rate against beam size with window size of 3 and different wait-k
policies.

We further investigate the revision rate with different beam sizes on wait-k policies.

Fig. 3.14 shows that the revision rate is higher with lower wait-k policies. This makes

sense because the low k policies are always more aggressive and easy to make mistakes.

64

Moreover, we can find that the revision rate is not very sensitive to beam size.

65

Chapter 4: Speech-to-Speech Simultaneous Translation with Incremental

TTS

Text-to-speech synthesis (TTS), which generates speech from text, is an important task

with wide applications in dialog systems, speech translation, natural language user

interface, assistive technologies, etc. Recently, TTS research has benefited greatly from

advances in deep learning, with neural TTS systems becoming capable of generating

audios with near human-level naturalness [Oord et al., 2016, Shen et al., 2018].

4.1 Background

State-of-the-art neural TTS systems generally consist of two stages: the text-to-spectrogram

stage which generates an intermediate acoustic representation (linear or mel-spectrogram)

from text, and the spectrogram-to-wave stage (vocoder) which converts the aforemen-

tioned acoustic representation into actual wave signals. In both stages, there are sequential

approaches based on the seq-to-seq framework, as well as more recent parallel methods;

the first stage, being relatively fast, is more commonly sequential [Wang et al., 2017,

Shen et al., 2018, Ping et al., 2017, Li et al., 2019] with notable exceptions [Ren et al.,

2019, Peng et al., 2019], while the second stage, being much slower, is more commonly

parallel [Oord et al., 2017, Prenger et al., 2018, Ping et al., 2018].

Despite these successes, standard full-sentence neural TTS systems still suffer from

66

“Start to record the voice.”

Start to record the voice

Start
to

record
the

voice

Figure 4.1: Monotonic spectrogram-to-text attention.

two types of latencies: (a) the computational latency (synthesizing time), which still

grows linearly with the sentence length even using parallel inference (esp. in the second

stage), and (b) the input latency in scenarios where the input text is incrementally

generated or revealed, such as in simultaneous translation [Bangalore et al., 2012, Ma

et al., 2019a], dialog generation [Skantze and Hjalmarsson, 2010, Buschmeier et al.,

2012], and assistive technologies [Elliott, 2003]. These latencies limit the applicability of

neural TTS systems; for example, in simultaneous speech-to-speech translation, the TTS

module has to wait until a full sentence of translation is available, causing the undesirable

delay of at least one sentence.

67

full sentence

phonemes

spectrogram

wave
audio play
time input latency computational latency

incremental with lookahead-1

phonemes

spectrogram

wave
audio play
time

 input
latency

comput.
latency time saved

k1 = 1
k2 = 0

Figure 4.2: Conventional full-sentence TTS vs. our proposed incremental TTS with
prefix-to-prefix framework (with k1 = 1 and k2 = 0 in Eq. 4.7).

To reduce these latencies, we devise the first neural incremental TTS approach based

on the recently proposed prefix-to-prefix framework [Ma et al., 2019a]. Our idea is based

on two observations: (a) in both stages, the dependencies on input are very local (see

Fig. 4.1 for monotonic attention between text and spectrogram, for example); and (b)

audio playing is inherently sequential in nature, but can be done simultaneously with

audio generation, i.e., playing a segment of audio while generating the next. In a nutshell,

we start to generate the spetrogram for the first word after receiving the first two words,

and this spectrogram is fed into the vocoder right away to generate the waveform for the

first word, which is also played immediately (see Fig. 4.2). This results in an O(1) rather

than O(n) latency, for the very first in neural TTS. Experiments on English TTS show

that our approach achieves similar speech naturalness compared to full sentence methods,

but only using a fraction of time and a constant (1–2 words) latency.

68

record the  
voice …

 [[R IH K AO R D]  
[DH AH] [V OY S]]

Text to
Phoneme

Phoneme to
Spectrogram

text phonemes
Spectrogram

to wave

step I step IIspectrogram wave

Figure 4.3: Pipeline of conventional full-sentence neural TTS.

Prior to the deep learning era, there also exist several efforts on (non-neural) incre-

mental TTS, using very different techniques.

We firstly briefly review the full-sentence neural TTS pipline to set up the nota-

tions. Then we review the prefix-to-prefix framework, which has been introduced for

simultaneous translation by [Ma et al., 2019a].

4.1.1 Full-sentence TTS Pipeline

As shown in Fig. 4.3, the neural-based text-to-speech synthesis system generally has two

main steps: (1) the text-to-spectrogram step which converts a sequence of textual features

(e.g. characters, phonemes, words) into another sequence of spectrograms (e.g. mel-

spectrogram or linear-spectrogram); and (2) the spectrogram-to-wave step, which takes

the predicted spectrograms as inputs and generates the audio wave through one specific

vocoder.

4.1.1.1 Step I: Text-to-Spectrogram

Conventional neural-based text-to-spectrogram frameworks (e.g. Tacotron 1[Wang et al.,

2017], Tacotron 2[Shen et al., 2018], Deep Voice 3 [Ping et al., 2017], Transformer-

69

data type examples

x scalar
a phoneme

a sample in wave
x vector a spectrogram frame

x
sequence phonemes in a word,
of scalars waveform of a word

x seq. of vectors spectrogram of a word

x
seq. of sequences phonemes in a sentence,

of scalars waveform of a sentence

x
seq. of sequences

spectrogram of a sent.of vectors

Table 4.1: Summary of notations. We distinguish vectors (over frequencies) and se-
quences (over time).

based TTS [Li et al., 2019]) employ the seq-to-seq framework to encode the source text

sequence (characters or phonemes) and decode the spectrogram sequentially despite the

actual computation unit choice (RNN, CNN or Transformer).

Regardless the actual design of seq-to-seq framework, with the granularity defined

on words, the encoder always takes as input a word sequence x = [x1, x2, ..., xm] , where

any word xt = [xt,1, xt,2, ...] could be a sequence of phoneme or character indices, and

produces another sequence of hidden states
[
h1,h2, ...,hm

]
= h = f(x) to represent

the textual features.

On the other side, the decoder produces the new spectrogram yt given the entire

sequence of hidden states and the previously generated spectrogram, denoted by y<t =

[y1, ...,yt−1], where yt = [yt,1,yt,2, ...] is a sequence of spectrogram frames with yt,i ∈

Rdy . Formally, on word level, we define the inference process as follows:

yt = φ(x,y<t), (4.1)

70

and for each frame within one word, we have

yt,i = φ(x,y<t ◦ yt,<i), (4.2)

where yt,<i = [[yt,1, ...,yt,i−1]], and ◦ represents concatenation between two sequences.

During training time, we minimizing the difference between gold spectrogram y?

and model’s prediction as follows:

L(D) =
∑

(x,y?)∈D
∑|x|

t=1 `(y
?
t ,φ(x,y

?
<t)) (4.3)

where ` can be different loss criteria, e.g. mean squared error. It is standard to use short-

time Fourier transform (STFT) to obtain linear-frequency spectrogram and followed by

an non-linear transform to the frequency domain to collect mel-frequency spectrogram

as gold signal.

4.1.1.2 Step II: Spectrogram-to-Wave

Given a sequence of acoustic feature y, the vocoder generates waveform sample vec-

tor w = [w1, w2, ..., wm], where wt = [wt,1, wt,2, ...], given only the linear- or mel-

spectrogram without any phase information. The vocoder model model can be either

autoregressive, e.g. WaveNet [Oord et al., 2016], or non-autoregressive, such as Parallel

WaveNet [Oord et al., 2017], ClariNet [Ping et al., 2018], WaveGlow [Prenger et al.,

2018] and FloWaveNet [Kim et al., 2019].

For the sake of both computation efficiency and near human sound quality, we choose

71

non-autoregressive model as our vocoder, which can be defined as follows without losing

generality:

w = ψ(y, z) (4.4)

where the vocoder function ψ takes as input a random signal z to generate the wave signal

w conditioning on the given spectrogram y, where z is drawn from a simple tractable

distribution, such as a zero mean spherical Gaussian distribution N (0, I). The length of

each zt is determined by the length of yt, and we have |zt| = γ · |yt|. Based on different

STFT procedure, γ can be 256 or 300. More specifically, the wave generation of the tth

word with an inverse autoregressive flow (IAF) model can be defined as follows

wt = ψ(y, z, t) (4.5)

4.1.2 Prefix-to-prefix Framework

Ma et al. [2019a] propose a prefix-to-prefix framework for simultaneous machine trans-

lation. Given a monotonic non-decreasing function g(t), the model would predict each

target word bt based on current available source prefix a≤g(t) and the predicted target

words b<t:

p(b | a) =
∏|b|

t=1 p(bt | a≤g(t), b<t)

As a simple example in this framework, they present a wait-k policy, which first wait

k source words, and then alternates emitting one target word and receiving one source

word. With this policy, the output is always k words behind the input. This policy can be

72

defined with the following function

gwait-k(t) = min{k + t− 1, |b|}.

4.2 Incremental TTS

Both steps in the above conventional TTS pipeline require the fully observed source text

or spectrograms as input to start the inference. In this section, we first propose a general

framework to do inference at both steps with partial source information, then we present

one simple specific example in this framework.

4.2.1 Prefix-to-Prefix for TTS

As shown in Fig. 4.1, there is no long distance reordering between input and output sides

in the task of Text-to-Spectrogram, and the alignment from output side to the input side

is monotonic. One way to utilize this monotonicity is to generate audio pieces for each

word independently, that is to feed the input text each word to predict its spectrogram in

step I, and then to generate audio piece based on the spectrogram. After generating audio

pieces for all words, we can concatenate those audios together as the result. However,

this simple incremental generation approach mostly provides some robotic and abnormal

speech voice. In order to generate speech with better prosody, we need to consider some

local information around the current word, when generating audio for each word. This is

also necessary to connect several audio pieces smoothly.

To solve the above issue, we propose a prefix-to-prefix framework for TTS, which is

73

inspired by the prefix-to-prefix framework [Ma et al., 2019a] for simultaneous translation.

Within this new framework, our yt and wt is generated incrementally as follows:

yt = φ(x≤g(t),y<t),

wt = ψ(y≤h(t), z≤h(t), t)

(4.6)

where g(t) and h(t) are monotonic functions that define the number of words, whose

information is taken as input for each step, when generating results for the tth word.

4.2.2 Lookahead-k Policy

As a simple example in the prefix-to-prefix framework, we define two lookahead polices

for the two steps with h(t) and g(t) functions respectively. These are similar to the wait-k

policy introduced by Ma et al. [2019a].

gk1(t) = min{k1 + t, |x|}

hk2(t) = min{k2 + t, |y|}
(4.7)

Intuitively, the function g implies that we wait for the first k1 number of words, and

then generate mel spectrogram for each word continuously until the end of the input

sentence. Similarly, the function h implies that we first wait for spectrograms of k2

number of words, and then start generating audio piece for each word continuously.

Combining these together, we can obtain a lookahead-k policy for the whole TTS system,

where k = k1 + k2. An example of lookahead-1 policy is provided in Fig. 4.2, where we

take k1 = 1 for the first step and k2 = 0 for the second step.

74

4.2.3 Incremental Generation of Spectrogram

Different from full sentence scenario, where we feed the entire source text to the encoder,

we gradually provide source text input to the model word by word when more input

words are available. By our prefix-to-prefix framework, we will predict mel spectrogram

for the tth word, when there are g(t) words available. Thus, the decoder predicts the ith

spectrogram frame of the tth word with only partial source information as follows:

yt,i = φ(x≤g(t),y<t ◦ yt,<i) (4.8)

where yt,<i = [[yt,1, ...,yt,i−1]] represents the first i − 1 spectrogram frames in the tth

word.

In order to obtain the corresponding relationship between the predicted spectrogram

and the currently available source text, we rely on the attention alignment applied in our

decoder, which is usually monotonic. To the ith spectrogram frame of the tth word, we

can define the attention function σ in our decoder as follows

ct,i = σ(x≤t+1,y<t ◦ yt,<i) (4.9)

The output ct,i represents the alignment distribution over the input text for the ith predicted

spectrogram frame. And we choose the input element with the highest probability as the

corresponding input element for this predicted spectrogram, that is, argmaxct,i. When

we have argmaxct,i >
∑t

τ=1 |xτ |, it implies that the ith spectrogram frame corresponds

to the (t+ 1)th word, and all the spectrogram frames for the tth word are predicted.

75

For models like Deep Voice 3, there are usually multiple attention layers in the

decoder. For our implementation, we only consider the alignment obtained from the first

attention layer. When the encoder observes the entire source sentence, a special symbol

<eos> was feed into the encoder, and the decoder continue to generate spectrogram word

by word. The decoding process ends when the binary “stop” predictor of the model

predicts the probability larger than 0.5.

4.2.4 Generation of Waveform

After we obtain the predicted spectrograms for a new word, we feed them into our vocoder

to generate waveform. Since we use a non-autoregressive vocoder, we can generate each

audio piece for those given spectrograms in the same way as full sentence generation.

Thus, we do not need to make modification on the vocoder model implementation. Then

the straightforward way to generate each audio piece is to apply Eq. 4.5 at each step t

conditioned on the spectrograms of each word yt. However, when we concatenate the

audio pieces generated in this way, we observe some noise at the connecting part of two

audio pieces.

To avoid such noise, we sample a long enough random vector as the input vector

z and fix it when generating audio pieces. Further, we append additional δ number of

spectrogram frames to the each side of the current spectrograms yt if possible. That is, at

most δ number of last frames in yt−1 are added in front of yt, and at most δ number of

first frames in yt+1 are added at the end of yt. This may give a longer audio piece than

we need, so we can remove the extra parts from that. Formally, the generation procedure

76

of wave for each word can be defined as follows

wt = ψ(y[t−1:h(t)], z[t−1:h(t)], t) (4.10)

where y[t−1:h(t)] = [yt−1, . . . ,yh(t)] and z[t−1:h(t)] = [zt−1, . . . , zh(t)].

4.2.5 Experiments

4.2.5.1 Experimental Setup

For simplicity, we assume the given input are all phonemes in our experiments, and

we will include the text-to-phoneme model in the future version. In our experiments,

we work on a chunk-level which consists of one or more words depending on a hyper-

parameter l. That is, a chunk consists of minimum number of words such that the number

of phonemes in this chunk is at least l. We use chunk instead of single word because the

pronunciation of some words may be too short and they may affect the performance and

efficiency of our system.

Datasets We use an internal English speech dataset containing 13,708 audio clips from

a female speaker and the corresponding phoneme transcripts. The total audio lengths is

about 20 hours and the sampling rate of the audio is 48 kHz. We downsample that to 24

kHz. We remove all intermediate punctuation marks in the transcripts, and randomly

split the dataset into three sets: 13,158 samples for training, 275 samples for validation

and 275 samples for testing. Our mel-scale spectrogram has 80 bands, and is computed

77

through a short time Fourier transform (STFT) with window size of 1200 and hop size of

300.

Model Configuration We use the fully-convolutional text-to-spectrogram architecture

introduced in Deep Voice 3 (DV3) [Ping et al., 2017] as our phoneme-to-spectrogram

model. The original DV3 architecture consists of three components: an encoder, an

decoder and a converter. We do not use the converter part since we only need the

mel spectrogram output for our vocoder. Our encoder consists of eleven convolution

blocks, and our decoder consists of seven convolution blocks. Different from the original

architecture in DV3, our decoder only contains two attention blocks: one for the first

convolution block and one for the last convolution block.

We use a 60-layer Gaussian inverse autoregressive flow (IAF) model introduced in

ClariNet [Ping et al., 2018] as our waveform synthesizer (i.e. vocoder). The model

consists of four stacked Gaussian IAF blocks, which are parameterized by [10, 10, 10,

30]-layer WaveNets with 64 residual channels, 64 skip channels and filter size 3 in dilated

convolutions. We distill this model from a 20-layer Gaussian autoregressive WaveNet,

which have the same architecture as the teacher WaveNet model in ClariNet.

Training We separately train the DV3 model and the ClariNet vocoder. To train the

DV3 model, we follow the original DV3 paper [Ping et al., 2017] and add the guided

attention loss into our training loss, which is introduced by Tachibana et al. [2018] to

improve the efficiency of training. We use the Adam optimizer with batch size of 16

to train this model on NVIDIA GTX TITAN X GPU. We follow the original ClariNet

78

paper [Ping et al., 2018] to train the teacher autoregressive WaveNet and distill the student

Gaussian IAF, which are both trained using ground truth mel-spectrograms and audio

waveforms.

Inference For inference, we apply the monotonic constraint introduced for DV3 to

obtain a better attention. Specifically, we compute the softmax function over a fixed

window instead of all generated encoder hidden states, which starts from the last attended

position and has window size of 3. For our proposed method in the following sections, we

consider two different policies: lookahead-1 policy for step I and lookahead-0 policy for

step II (where we set δ = 0), giving a lookahead-1 policy for the system; and lookahead-1

policy for both steps (where we set δ = 30 for the second step), giving a lookahead-2

policy for the system. In the following sections, we only consider lookahead-k policy for

the TTS system instead of each step.

4.2.5.2 Audio Quality

We first compare the audio quality generated from different methods. For this purpose,

we choose 50 sentencesfrom our test set and generate audio samples for these sentences

with different methods, which include (1) Ground Truth Audio; (2) Ground Truth Mel,

where we convert the ground truth mel spectrograms into audio samples using our

vocoder; (3) Full-sentence, where we first predict all mel spectrograms given the full

sentence text and then convert those to audio samples; (4) Lookahead-2, where we

incrementally generate audio samples with lookahead-2 policy; (5) Lookahead-1, where

79

we incrementally generate audio samples with lookahead-1 policy. For our method, we

choose as 18 the least length of the first chunk and for other chunks we choose 6 as the

least length. The MOS (Mean Opinion Score) of the evaluation is provided in Table 4.2.

Method MOS
Ground Truth Audio 4.12± 0.10
Ground Truth Mel 4.05± 0.07

Full-sentence 3.56± 0.08
Lookahead-2 3.46± 0.08
Lookahead-1 3.37± 0.09

Table 4.2: Mean Opinion Score (MOS) ratings with 95% confidence intervals.

From Table 4.2, we can see that with lookahead-2 policy we can generate high

quality audio similar to the full-sentence method, and the MOS decreases slightly with

lookahead-1 policy. We also provide the relation between lookahead and MOS in Fig. 4.4.

We can see there is a trade-off between lookahead numbers and audio quality (measured

by MOS).

4.2.5.3 Latency

In this section, we compare the latency of full-sentence method and our proposed method.

We consider two different scenarios: (1) when all text input is available; and (2) the text

input is provided incrementally as audio playing speed. The first scenario is the common

monolingual text-to-speech application, while the second scenario is more similar to the

simultaneous translation application.

80

0 1 2 3
 Lookahead

3.35

3.40

3.45

3.50

3.55
M

ea
n

Op
in

io
n

Sc
or

e
(M

OS
)

lookahead
full-sentence

 +
3.35

3.40

3.45

3.50

3.55

Figure 4.4: Trade-off between lookahead and MOS.

4.2.5.4 All Input Available

For full-sentence generation, the latency will be the generation time of the whole audio

sample; while for our proposed incremental method, the latency will be the generation

time of the first phoneme chunk if the next audio piece can be generated before the

previous audio piece is finished playing. (We will show this later.) So we compare the

generation time of sentence with different lengths, which is averaged over sentences with

the same length. Here we choose as 18 the least length of the first chunk and for other

chunks we choose 6 as the least length. We do inference on the test set on both CPU and

GPU and provide the results in Fig. 4.5.

We can see the latency of full-sentence method increases along with the number of

the phonemes in the sentence, which is more than 1 second on GPU for sentences with

length larger than 60 and could be more than 4 seconds on CPU for those sentences;

81

0 20 40 60 80 100 120
Phoneme Numbers

0

1

2

3
La

te
nc

y
(S

ec
on

d)

lookahead-1
lookahead-2
full-sentence

0 20 40 60 80 100 120
Phoneme Numbers

0

2

4

6

8

10

12

La
te

nc
y

(S
ec

on
d)

lookahead-1
lookahead-2
full-sentence

Figure 4.5: Averaged latency of different methods when all input is available. Left:
results on GPU. Right: results on 80-core CPU.

while our incremental method has a constant latency for sentences with different lengths:

its latency on average is less than 0.5 seconds on GPU and less than 2.5 seconds.

82

2 4 6 8 10
Chunk Index

0

2

4

6

Ti
m

e
Ba

la
nc

e
(S

ec
on

d)

2 4 6 8 10
Chunk Index

0

1

2

Ti
m

e
Ba

la
nc

e
(S

ec
on

d)

2 4 6 8 10
Chunk Index

4

2

0

Ti
m

e
Ba

la
nc

e
(S

ec
on

d)

Figure 4.6: Left time on different chunk positions. Left: lookahead-2 results on GPU.
Middle: lookahead-1 results on 80-core CPU. Right: lookahead-2 results on 80-core
CPU.

83

Continuity We now show that our method can generate audio piece for each chunk

fast enough such that the next audio piece will be generated before we finish playing

the previous audios, i.e. the generated audios can be played continuously without

interruptions. At each generation step, the available time to generate the current audio

piece is equal to the whole previous audio time minus the generation time of all previous

chunks but the first one. Starting from the second chunk, as long as the current available

time is larger than the generation time of the current chunk, we can continuously play the

current generated audio piece without any interruption. That is, the remaining time (time

balance) from the available time after taking the generation time should be larger than

zero at each step. To evaluate this case, we compute the time balance at several steps

and show the results in Fig. 4.6. We find that the time balance is always larger than 0 on

GPU with lookahead-2 policy, while on CPU the time balance is less than that on GPU.

If we apply lookahead-1 policy, then the time balance is always larger than 0; if we apply

lookahead-2 policy on CPU, then the time balance will be less than 0 starting from the

second chunk. This is because the lookahead-2 policy needs to generate audio piece with

appended mel spectrogram, which causes more computing time.

4.2.5.5 Input Provided Incrementally

When the text input (such as obtained from speech or translation system) is given

incrementally, the latency of full-sentence method will be more than the running time,

since it needs to wait for the whole text to finish to start generation. Similarly, the latency

of our proposed method should be at least the sum of generation time of the first phoneme

84

0 20 40 60 80 100 120
Phoneme Numbers

2.5

5.0

7.5

10.0

12.5

Av
er

ag
ed

 C
hu

nk
 D

el
ay

 (S
ec

on
d) lookahead-1

lookahead-2
full-sentence

0 20 40 60 80 100 120
Phoneme Numbers

0

5

10

15

20

Av
er

ag
ed

 C
hu

nk
 D

el
ay

 (S
ec

on
d) lookahead-1

lookahead-2
full-sentence

Figure 4.7: Averaged latency results when input is provided incrementally. Left: results
on GPU. Right: results on 80-core CPU.

chunk and the time waited for enough input to start generation. To mimic this scenario,

we consider the experiment where the goal is to repeat the sentence from the speaker as

soon as possible after the speaker starts speaking (this is also called shadowing). Here

we define averaged chunk delay as our latency metrics, which is the averaged lag time

85

0 1 2 -2 -1
Chunk Index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
ed

 T
im

e
(S

ec
on

d)

lookahead-1 generation time(GPU)
lookahead-2 generation time(GPU)
audio playing time

0 1 2 -2 -1
Chunk Index

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er

ag
ed

 T
im

e
(S

ec
on

d)

lookahead-1 generation time(CPU)
lookahead-2 generation time(CPU)
audio playing time

Figure 4.8: Averaged generation time and audio playing time on different chunk positions.
Left: results on GPU. Right: results on 80-core CPU.

between the ending time of each input chunk and the ending time of its corresponding

generated audio piece.

We choose the ground-truth audios from test set as the inputs and extract the ending

time of each chunk in those audios by the Montreal Forced Aligner [McAuliffe et al.,

86

2017]. The ending time of our chunk can be obtained with the generation time, audio

playing time and input chunk ending time. For this experiment, we choose as 7 the least

length of all chunks and the latency results are averaged over sentences with the same

length. These results are provided in Fig. 4.7.

We find that the latency of our method is almost constant for different sentence

lengths, which is less than 3 seconds on GPU and 4.5 seconds on CPU; while the latency

of full-sentence method increases along with the number of the phonemes in the sentence.

This is similar to the results from previous scenario, but its magnitude is larger than that

in the previous scenario because of the waiting time for the input.

Generation Speed for Chunks When input is given incrementally , we cannot always

guarantee the continuity of the generated audio pieces since we do not have control on

the source audio speed. That is, the interruption is unavoidable when the next chunk is

given after the previous audio piece finishes. But we can compare averaged generation

time and audio playing time for chunks to show that, the generation is faster than the

audio playing, and our method can keep a low latency.

In the next experiment, we consider the sentence that have more than 4 chunks and

compute the averaged generation time and audio playing time for the first three chunks

and the last two chunks. The results are provided in Fig. 4.8.

We find that the averaged generation time of lookahead-1 policy on GPU is about

25% of the audio time for all the five chunks, and that of lookahead-2 policy is about

30% of the audio time for it has appended mel spectrogram chunk for vocoder. The

generation time is much higher on CPU, which is about 80% of the audio playing time

87

except for the last chunk for lookahead-1 policy, and about 130% of the audio playing

time for lookahead-2 policy. These show that with lookahead-1 policy the generation of

audio piece for each chunk can be faster than real-time on GPU and CPU.

Effects of CPU Numbers In the above experiments, we use a machine with 80-core

CPU, which may be expensive to use in practice. So we evaluate the ratio of generation

time and audio time on different number of CPU’s to understand the effects of CPU

numbers. The results are provided in Fig. 4.9. We can see that the averaged ratio is

smaller than 1 for lookahead-1 policy when the CPU number is at least 40, but for

lookahead-2 policy this ratio is still larger than 1 even with 80-core CPU.

10 20 30 40 50 60 70 80
CPU Numbers

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
Ra

tio

lookahead-1
lookahead-2

Figure 4.9: Averaged ratio of generation time and audio time on different number of
CPU’s.

88

4.2.5.6 Analysis

In this section, we provide some analysis on attention and generated mel spectrogram to

understand our method better. Our method trace the relationship between mel spectro-

gram frame and input phonemes in decoding step based on learned attention alignment.

So we compare the alignment of the first attention layer from the full-sentence method

and from our lookahead-1 policy in Fig. 4.10. We can see in this figure that the first

two alignments are very similar, implying that our method will maintain the attention

as full-sentence method, although we incrementally encoding given phonemes. And

since the alignment is monotonic, we can usually get the correct correspondence from

predicted mel spectrogram to input phonemes in decoding step.

We visualize the predicted mel spectrogram from different methods to make a com-

parison. We consider mel spectrograms from four different methods: (1) generated from

ground truth audio wave, (2) predicted with full-sentence method, (3) predicted with

lookahead-1 policy.These are provided in Fig. 4.11. From the visualization, we can

see that the mel spectrogram predicted with lookahead-1 policy is very similar to that

predicted by the full-sentence method, which is also similar to the ground truth. These

show that our method can predict good mel spectrograms.

4.3 Speech-to-Speech Simultaneous Translation

In previous chapters, we have discussed our existing work of different policies and models

for simultaneous translation, beam search for simultaneous translation and incremental

Text-to-Speech.

89

The entire team should be proud of its accomplishment.

Figure 4.10: Top: alignment from full-sentence method. Bottom: alignment from
lookahead-1 policy.

Based on these work, we plan to further explore speech-to-speech simultaneous

interpretation and compare the translation quality and latency with human simultaneous

interpreter.

We propose to incorporate the streaming Automatic Speech Recognition (ASR)

system (e.g. Baidu string ASR) and the our incremental text-to-speech system with the

simultaneous translation system. The difficulties are how to control the latency and how

to error between different layers. The output of streaming ASR is always very noisy. One

special kind of noise is the homophone noise, where words are replaced by other words

90

The entire team should be proud of its accomplishment.

Figure 4.11: Top to Bottom: ground-truth mel, mel predicted by full-sentence method,
mel predicted with lookahead-1 policy.

with similar pronunciations, is very popular in the output of ASR. Meanwhile, most

streaming ASR product doesn’t output punctuations unless a full sentence is recognized.

To tackle this problem, we propose to mix the dataset with input sentences without

punctuations [Zheng et al., 2019c, 2018b] [Zheng et al., 2018c] [Zheng et al., 2018a].

91

4.3.1 Speech-to-Text Simultaneous Translation and Human Interpreter

In this section, we first compare the speech-to-text simultaneous translation with human

interpreters.

Name Languages Hours Domain
LCD United Nations Proceedings Ar, Zh, En, Fr, Ru, Es 8,500 Conference
European Parliament Interpreting En, It, Es 858 Conference
NAIST Simultaneous Translation Ja, En 22 Talk, News

Table 4.3: Human Simultaneous Interpretation Corpora.

There are many human simultaneous interpretation dataset available (e.g. EPIC,

NAIST, LDC UN). Table 4.3 shows three available human simultaneous interpretation

corpora. We propose to compare our speech-to-speech simultaneous interpretation system

with human simultaneous interpreter.

Figure 4.12 shows the result of our simultaneous translation system with Google

Streaming ASR on EPIC Es-En portion compared with the result of human simultaneous

interpreter. This result is not fair enough because our system is a speech-to-text simulta-

neous translation system which can commit several words at once but human interpreter

need time to pronounce each word. The BLEU and AL are measure on corpus level. We

observe large latency in the streaming ASR whose average lagging is 3.52.

4.3.2 Speech-to-Speech Simultaneous Translation and Human Interpreter

We further explore speech-to-speech simultaneous translation by incorporating our in-

cremental TTS into the full pipeline. Incorporating incremental TTS introduces more

92

4 5 6 7
Average Lagging (es en)

12

14

16

18

20
1-

re
f B

LE
U

k=1

k=3

k=5
k=7 k=9

wait-k
human

Figure 4.12: Comparison of speech-to-text simultaneous translation quality against
latency with human simultaneous interpreter.

difficulties to control the latency. Inspired by human simultaneous interpreters, who

automatically adjust their speaking speed to catch-up the source speaker, we propose to

add different kinds of pauses in our incremental TTS model to adjust the speed of our

output speech. These pause information is regarded as prosody information in classic

speech analysis and is involved in most speech synthesis corpus.

In this experiment, we use Baidu public streaming ASR API as speech recognizer.

We use WMT 2018 Chinese-to-English translation corpus to train the translation model.

We use DataBaker 10,000 sentences Chinese TTS dataset to train the incremental TTS

system. We test our system on an English speech from LDC United Nation simultaneous

translation dataset. We also use the corresponding Chinese interpreter’s translation as

93

the performance of human interpreter. We use Ear-voice-span, which is popular in

simultaneous interpretation literature, as latency metric in this experiment.

BLEU Latency (Ear-voice-span)
Human Interpreter 7.87 2.6 seconds
Our System 16.29 2.7 seconds

Table 4.4: Translation quality and latency of human interpreter and our system

Table 4.4 shows the result of comparing our system with human interpreter. We

can see that our system can achieve much higher BLEU score with similar latency.

This is because human interpreter tends to use shorter phrases or even summarizing the

source speech. For example, table 4.5 shows an running example that human interpreter

translates "nuclear- and non-nuclear-weapon States" into "核国家" (nuclear country)

and "无核国家" (non-nuclear country) while our system still translates it into "核武

器和无核武器国家" (nuclear-weapon and non-nuclear-weapon country). The human

interpreter’s translation is not right, strictly speaking.

Speech Nuclear- and non-nuclear-weapon States ...
ASR Output nuclear and non-nuclear weapon States ...

Our Translation 核武器 (nuclear-weapon)和 (and)无核武器国家 (non-nuclear-weapon country) ...
Human 核国家 (nuclear country)，无核国家 (non-nuclear country) ...

Table 4.5: Running example of our Speech-to-speech simultaneous translation. Human
interpreter summarizes "nuclear-weapon and non-nuclear-weapon country" into "nuclear
country, non-nuclear country".

Table 4.6 shows an example that sometimes the error from streaming ASR will prop-

agate to our system’s translation. In this example, the ASR recognizes "New Zealand"

into "museum" which leads our system to translate "New Zealand" into "museum".

94

Speech New Zealand’s commitment to nuclear disarmament and nonproliferation is ...
ASR Output museum’s commitment to nuclear disarmament and nonproliferation is ...

Our Translation 博物馆 (museum)的工作，是致力于核裁军和不扩散的 ...
Human 新西兰 (New Zealand)对这个，裁军和军控的承诺 ...

Table 4.6: Running example of our Speech-to-speech simultaneous translation. Our
system translates "New Zealand" into "museum" because of the error in ASR output.

95

Chapter 5: Summary

In this dissertation, we reviewed a series of work on neural-based simultaneous translation.

We proposed several translation models, decoding algorithms and an incremental Text-

to-speech model. We also concatenated these modules and tested a speech-to-speech

simultaneous translation system.

We first present several simultaneous translation approaches based on the prefix-to-

prefix framework which overcomes the limitations of previous work (Chapt. 2). Besides

this wait-k fixed policy, we also proposed a flexible policy learned on pre-trained model

and a flexible policy learned from scratch. Experiments show that these methods can

achieve high translation accuracy and low latency as well.

Then we investigate a beam search algorithm which is able to further improve the

translation quality of different simultaneous translation models (Chapt. 3). Experiments

on three approaches to simultaneous translation demonstrate effectiveness of our method.

Based on this algorithm, we also proposed an opportunistic decoding timely correction

technique which improves the latency and quality for simultaneous translation. We also

defined two metrics for revision-enabled simultaneous translation for the first time.

In the end, we introduce an incremental Text-to-speech model which is a critical

component of our final speech-to-speech simultaneous translation system (Chapt. 4). We

have presented a prefix-to-prefix inference framework for incremental TTS system, and a

lookahead-k policy that the audio generation is always k words behind the input. We show

96

that this policy can maintain good audio quality compared with full-sentence method and

can achieve low latency on different scenarios: when all the input are available and when

input is given incrementally. We finally concatenated this incremental TTS system with a

streaming ASR and previous proposed simultaneous translation models. This pipeline

system can achieve very high accuracy as well as low latency at the same time.

97

Bibliography

Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar. Prediction improves simultane-
ous neural machine translation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 3022–3027, October-November 2018.
URL https://www.aclweb.org/anthology/D18-1337.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014a.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014b.

Srinivas Bangalore, Vivek Kumar Rangarajan Sridhar, Prakash Kolan, Ladan Golipour,
and Aura Jimenez. Real-time incremental speech-to-speech translation of dialogs. In
Proc. of NAACL-HLT, 2012.

Hendrik Buschmeier, Timo Baumann, Benjamin Dosch, Stefan Kopp, and David
Schlangen. Combining incremental language generation and incremental speech
synthesis for adaptive information presentation. In Proceedings of the 13th Annual
Meeting of the Special Interest Group on Discourse and Dialogue, pages 295–303.
Association for Computational Linguistics, 2012.

Colin Cherry and George Foster. Thinking slow about latency evaluation for simultaneous
machine translation. arXiv preprint arXiv:1906.00048, 2019.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen,
Zhifeng Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Gonina, et al.
State-of-the-art speech recognition with sequence-to-sequence models. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4774–4778. IEEE, 2018.

Kyunghyun Cho and Masha Esipova. Can neural machine translation do simultaneous
translation? volume abs/1606.02012, 2016. URL http://arxiv.org/abs/
1606.02012.

https://www.aclweb.org/anthology/D18-1337
http://arxiv.org/abs/1606.02012
http://arxiv.org/abs/1606.02012

98

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and Stephan Vogel. Incremental decod-
ing and training methods for simultaneous translation in neural machine transla-
tion. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 493–499, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-2079. URL
https://www.aclweb.org/anthology/N18-2079.

CARL Elliott. The perfect voice. C. Elllott, Better than well: American medicine meets
the American dream, pages 1–27, 2003.

T Fujita, Graham Neubig, Sakriani Sakti, T Toda, and S Nakamura. Simple, lexical-
ized choice of translation timing for simultaneous speech translation. Proceedings
of the Annual Conference of the International Speech Communication Association,
INTERSPEECH, 2013.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proc. of ICML, 2017.

Alvin Grissom II, He He, Jordan Boyd-Graber, John Morgan, and Hal Daumé III. Don’t
until the final verb wait: Reinforcement learning for simultaneous machine translation.
In Proceedings of the 2014 Conference on empirical methods in natural language
processing (EMNLP), pages 1342–1352, 2014.

Alvin Grissom II, Naho Orita, and Jordan Boyd-Graber. Incremental prediction of
sentence-final verbs: Humans versus machines. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, 2016.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor O. K. Li. Learning to translate
in real-time with neural machine translation. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics, EACL 2017,
Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, pages 1053–1062, 2017.
URL https://aclanthology.info/papers/E17-1099/e17-1099.

He He, Alvin Grissom II, Jordan Boyd-Graber, and Hal Daumé III. Syntax-based
rewriting for simultaneous machine translation. In Empirical Methods in Natural
Language Processing, 2015.

He He, Jordan Boyd-Graber, and Hal Daumé III. Interpretese vs. translationese: The
uniqueness of human strategies in simultaneous interpretation. In North American
Association for Computational Linguistics, 2016.

https://www.aclweb.org/anthology/N18-2079
https://aclanthology.info/papers/E17-1099/e17-1099

99

Liang Huang, Kai Zhao, and Mingbo Ma. When to finish? optimal beam search for
neural text generation (modulo beam size). In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 2134–2139, 2017.

Navdeep Jaitly, David Sussillo, Quoc V Le, Oriol Vinyals, Ilya Sutskever, and Samy Ben-
gio. An online sequence-to-sequence model using partial conditioning. In Advances in
Neural Information Processing Systems, pages 5067–5075, 2016.

Sungwon Kim, Sang-Gil Lee, Jongyoon Song, Jaehyeon Kim, and Sungroh Yoon.
FloWaveNet: A generative flow for raw audio. In International Conference on
Machine Learning, pages 3370–3378, 2019.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. OpenNMT: Open-Source
Toolkit for Neural Machine Translation. ArXiv e-prints, 2017.

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming Liu. Neural speech synthesis
with Transformer network. In AAAI, 2019.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng,
Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang.
STACL: Simultaneous translation with implicit anticipation and controllable latency
using prefix-to-prefix framework. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3025–3036, Florence, Italy, July
2019a. Association for Computational Linguistics. doi: 10.18653/v1/P19-1289. URL
https://www.aclweb.org/anthology/P19-1289.

Mingbo Ma, Baigong Zheng, Kaibo Liu, Renjie Zheng, Hairong Liu, Kainan Peng,
Kenneth Church, and Liang Huang. Incremental text-to-speech synthesis with prefix-
to-prefix framework. arXiv preprint arXiv:1911.02750, 2019b.

Mingbo Ma, Renjie Zheng, and Liang Huang. Learning to stop in structured prediction
for neural machine translation. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 1884–1889, 2019c.

Mingbo Ma, Liang Huang, Hao Xiong, Kaibo Liu, Chuanqiang Zhang, Renjie Zheng,
Zhongjun He, Hairong Liu, Xing Li, Hua Wu, Haifeng Wang, and Baigong Zheng.
Systems and methods for simultaneous translation with integrated anticipation and
controllable latency (stacl), April 2 2020. US Patent App. 16/409,503.

https://www.aclweb.org/anthology/P19-1289

100

S Matsubarayx, K Iwashimaz, N Kawaguchizx, K Toyama, and Yasuyoshi Inagaki.
Simultaneous japanese-english interpretation based on early prediction of english verb.
2000.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan
Sonderegger. Montreal Forced Aligner: Trainable text-speech alignment using Kaldi.
In Interspeech, 2017.

Barbara Moser-Mercer, Alexander Künzli, and Marina Korac. Prolonged turns in in-
terpreting: Effects on quality, physiological and psychological stress (pilot study).
Interpreting, 3(1):47–64, 1998.

Kenton Murray and David Chiang. Correcting length bias in neural machine translation.
In Proceedings of WMT 2018, 2018.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. Op-
timizing segmentation strategies for simultaneous speech translation. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), 2014.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura.
Syntax-based simultaneous translation through prediction of unseen syntactic con-
stituents. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), volume 1, pages 198–207, 2015.

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg,
Norman Casagrande, Dominik Grewe, Seb Noury, Sander Dieleman, Erich Elsen, Nal
Kalchbrenner, Heiga Zen, Alex Graves, Helen King, and Demis Hassabis. Parallel
WaveNet: Fast high-fidelity speech synthesis. In ICML, 2017.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A
generative model for raw audio. In Arxiv, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of ACL, pages 311–318,
Philadephia, USA, July 2002.

101

Kainan Peng, Wei Ping, Zhao Song, and Kexin Zhao. Parallel neural text-to-speech.
arXiv preprint arXiv:1905.08459, 2019.

Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan Ömer Arik, Ajay Kannan, Sharan
Narang, Jonathan Raiman, and John L. Miller. Deep Voice 3: Scaling text-to-speech
with convolutional sequence learning. In ICLR, 2017.

Wei Ping, Kainan Peng, and Jitong Chen. ClariNet: Parallel wave generation in end-to-
end text-to-speech. 2018.

R. Prenger, R. Valle, and B. Catanzaro. WaveGlow: A flow-based generative network for
speech synthesis. 2018.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence
level training with recurrent neural networks. ICLR, 2016.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fast-
Speech: Fast, robust and controllable text to speech. arXiv preprint arXiv:1905.09263,
2019.

Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for
abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. arXiv preprint arXiv:1508.07909, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of
rare words with subword units. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–
1725, 2016. doi: 10.18653/v1/P16-1162. URL https://www.aclweb.org/
anthology/P16-1162.

Jonathan Shen, Ruoming Pang, Ron Weiss, Mike Schuster, Navdeep Jaitly, Zongheng
Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, Rif Saurous, Yannis
Agiomvrgiannakis, and Yonghui Wu. Natural TTS synthesis by conditioning WaveNet
on MEL spectrogram predictions. In Interspeech, 2018. tacotron 2.

Gabriel Skantze and Anna Hjalmarsson. Towards incremental speech generation in
dialogue systems. In Proceedings of the 11th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 1–8. Association for Computational
Linguistics, 2010.

https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162

102

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112,
2014.

Hideyuki Tachibana, Katsuya Uenoyama, and Shunsuke Aihara. Efficiently trainable
text-to-speech system based on deep convolutional networks with guided attention.
In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4784–4788. IEEE, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems 30, 2017.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3156–3164, 2015.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le, Yannis
Agiomyrgiannakis, Rob Clark, and Rif A. Saurous. Tacotron: Towards end-to-end
speech synthesis. In Interspeech, 2017. URL https://arxiv.org/abs/1703.
10135.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C Courville, Ruslan Salakhut-
dinov, Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In ICML, volume 14, pages 77–81, 2015.

Yilin Yang, Liang Huang, and Mingbo Ma. Breaking the beam search curse: A study
of (re-) scoring methods and stopping criteria for neural machine translation. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018.

Mahsa Yarmohammadi, Vivek Kumar Rangarajan Sridhar, Srinivas Bangalore, and
Baskaran Sankaran. Incremental segmentation and decoding strategies for simultane-
ous translation. In Proceedings of the Sixth International Joint Conference on Natural
Language Processing, 2013.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simultaneous translation
with flexible policy via restricted imitation learning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5816–5822, 2019a.

https://arxiv.org/abs/1703.10135
https://arxiv.org/abs/1703.10135

103

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simpler and faster
learning of adaptive policies for simultaneous translation. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and 9th
International Joint Conference on Natural Language Processing, 2019b.

Baigong Zheng, Kaibo Liu, Renjie Zheng, Mingbo Ma, Hairong Liu, and Liang
Huang. Simultaneous translation policies: From fixed to adaptive. arXiv preprint
arXiv:2004.13169, 2020a.

Renjie Zheng, Junkun Chen, and Xipeng Qiu. Same representation, different attentions:
Shareable sentence representation learning from multiple tasks. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden, pages 4616–4622. ijcai.org, 2018a. doi:
10.24963/ijcai.2018/642. URL https://doi.org/10.24963/ijcai.2018/
642.

Renjie Zheng, Mingbo Ma, and Liang Huang. Multi-reference training with pseudo-
references for neural translation and text generation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 3188–3197. Association for Computational
Linguistics, 2018b. doi: 10.18653/v1/d18-1357. URL https://doi.org/10.
18653/v1/d18-1357.

Renjie Zheng, Yilin Yang, Mingbo Ma, and Liang Huang. Ensemble sequence level
training for multimodal MT: osu-baidu WMT18 multimodal machine translation
system report. In Proceedings of the Third Conference on Machine Translation:
Shared Task Papers, WMT 2018, Belgium, Brussels, October 31 - November 1, 2018,
pages 632–636. Association for Computational Linguistics, 2018c. doi: 10.18653/v1/
w18-6443. URL https://doi.org/10.18653/v1/w18-6443.

Renjie Zheng, Hairong Liu, Mingbo Ma, Baigong Zheng, and Liang Huang. Robust
machine translation with domain sensitive pseudo-sources: Baidu-osu WMT19 MT
robustness shared task system report. In Proceedings of the Fourth Conference on
Machine Translation, WMT 2019, Florence, Italy, August 1-2, 2019 - Volume 2:
Shared Task Papers, Day 1, pages 559–564. Association for Computational Linguistics,
2019c. doi: 10.18653/v1/w19-5367. URL https://doi.org/10.18653/v1/
w19-5367.

Renjie Zheng, Mingbo Ma, Baigong Zheng, and Liang Huang. Speculative beam search
for simultaneous translation. In Proceedings of the 2019 Conference on Empirical

https://doi.org/10.24963/ijcai.2018/642
https://doi.org/10.24963/ijcai.2018/642
https://doi.org/10.18653/v1/d18-1357
https://doi.org/10.18653/v1/d18-1357
https://doi.org/10.18653/v1/w18-6443
https://doi.org/10.18653/v1/w19-5367
https://doi.org/10.18653/v1/w19-5367

104

Methods in Natural Language Processing and 9th International Joint Conference on
Natural Language Processing, 2019d.

Renjie Zheng, Mingbo Ma, Baigong Zheng, Kaibo Liu, and Liang Huang. Oppor-
tunistic decoding with timely correction for simultaneous translation. arXiv preprint
arXiv:2005.00675, 2020b.

105

APPENDICES

	Introduction
	Background: Simultaneous Interpretation
	Existing Methods in Simultaneous Translation
	Our Proposed Methods
	Preliminaries

	Policies and Models for Simultaneous Translation
	Prefix-to-Prefix and Wait-k Policy
	Latency Metric: Average Lagging
	Implementation Details
	Experiments

	Learning Flexible Policy based on Pre-trained NMT
	Supervised-Learning for Simultaneous Translation Policy
	Generating Action Sequences
	Experiments

	Learning Flexible Policy from Scratch
	Training via Restricted Imitation Learning
	Training with Restricted Dynamic Oracle
	Experiments

	Beam Search for Simultaneous Translation
	Full Sentence NMT and Beam Search
	Speculative Beam Search for Simultaneous Translation
	Single-Step SBS
	Chunk-based SBS
	Experiments

	Opportunistic Decoding and Timely Correction with Beam Search
	Opportunistic Decoding
	Timely Correction
	Revision-aware AL and Revision Rate
	Experiments

	Speech-to-Speech Simultaneous Translation with Incremental TTS
	Background
	Full-sentence TTS Pipeline
	Prefix-to-prefix Framework

	Incremental TTS
	Prefix-to-Prefix for TTS
	Lookahead-k Policy
	Incremental Generation of Spectrogram
	Generation of Waveform
	Experiments

	Speech-to-Speech Simultaneous Translation
	Speech-to-Text Simultaneous Translation and Human Interpreter
	Speech-to-Speech Simultaneous Translation and Human Interpreter

	Summary
	Bibliography
	Appendices

