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Narratives are central to communication and the human experience. For a computer system

to understand a narrative, it must be able to identify the key facts or plot elements that

describe what happened or how the world has changed. These element are called events;

establishing a document’s events and the relationships between them is central to under-

standing a text’s narrative. Events are related to each other temporally and causally by

being part of the same story arc. Further, these event sequences typically follow patterns

called scripts.

In this thesis, I explore three essential stages for narrative understanding. All three stages

form an end-to-end system that starts with plain text documents and ultimately produces

scripts, a generalization of narrative structure. The first two stages, event detection and

event sequence extraction, analyze a document and extract the key information needed to

understand a document’s narrative. The final stage, script learning, generalizes the discovered

event sequences to find common patterns between them.

First, I propose a neural network model based on grammar and syntax. It combines a left-

to-right reading of the text along with a reading ordered by the sentence’s syntactic tree. The

model is an extension of Gated Recurrent Units and uses an attention mechanism to blend



both reading modes. This model achieves state-of-the-art performance on a well-studied task.

I present an evaluation that is the first to quantify the substantial variability of neural

networks when applied to the nuanced problem of event detection. Two sources of variability

are considered: the effect of local optimization of the neural networks’ training procedure and

the types of documents used for evaluation and training. I show that the variation involved is

often greater than the differences in the state-of-the-art, demonstrating the need for a robust

evaluation.

Second, the new task of event sequence extraction is addressed with a novel, interpretable

neural network framework. The framework represents the problem as a series of graph trans-

formations. By doing so, it allows for various neural network architectures to be combined

while mirroring the structure of the task. Several models instantiated from the framework are

evaluated against a strong baseline showing a substantial improvement on a difficult task.

Further, I demonstrate the framework’s flexibility by evaluating it on the entity relation

extraction task.

Finally, I examine using Hidden Markov Models to learn scripts from event sequences with

missing data. This formulation of scripts as Hidden Markov Models is novel and the first to

explicitly account for missing observations in the context of natural language processing. The

models are learned with a bottom-up induction algorithm based on Structural Expectation

Maximization. The scripts are evaluated by inferring omitted events in event sequences and

are shown to be more effective than an informed baseline.
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Chapter 1: Introduction

1.1 Motivation

Narratives range from mundane descriptions of common activities to grand stories that de-

fine peoples and cultures. The written word often takes a narrative form whether it be a

correspondence between people, a news article, a historical text, or a work of fiction. Nar-

ratives are a framework for communication that span time and culture. It is theorized that

narratives are how people store memories [74].

This dissertation defines narrative understanding as identifying the key elements of a story,

the structure of an individual narrative, that is, the relationships between those elements,

and finally the broader context or archetype to which the narrative belongs. This definition

roughly corresponds to both a colloquial definition of understanding as well as a technical

definition.

Besides the broader interest and implications of algorithmically understanding narratives,

there are a variety of other applications. Extracting and representing narratives can be viewed

as a comprehensive or holistic method for information extraction.

One such application of narrative understanding is text summarization. The key people,

place, things and events of a document are a natural basis for summarization. Further, those

elements, in conjunction with a document’s narrative structure, could serve as a framework

for comparison between documents. In short, narrative structure and elements would be a

principled means of assessing the semantic similarity of two texts.

Additionally, narratives often omit “common-sense” or non-salient information for the

sake of brevity. A model for narratives could be used to infer events or facts left out of

individual stories. Co-reference relationships between entities could be identified by knowing

how those entities relate to their roles within a narrative.
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Finally, a model of narrative archetypes or scripts could be used as in generative frame-

work for stories. In theory, a script could generate a story, a sequence of events with actors,

and, in conjunction with a language model, create a textual representation of that story.

1.2 Natural Language Processing and Machine Reading

The three aspects of narrative understanding: identifying narrative elements, determining

their relationships, and discovering the narrative archetypes, correspond in part to three

separate natural language processing (NLP) tasks. They are event detection, relation extrac-

tion, and script learning. Each chapter of this thesis details a contribution to each of these

tasks. When taken together, the systems presented can start with a plain document, identify

events, place them in temporal order, and finally generalize them into a script.

This thesis is centered on several NLP concepts defined by the ACE2005 standard [84].

They are defined below:

• Entity - The concept of a person, place, or thing; ACE2005 defines seven types for

entities: person, organization, geopolitical entity, location, facility, weapon, and vehicle.

An entity is typically referenced by multiple entity mentions in the same document.

• Entity Mention - An entity rendered as a short span of text in the context of a

document.

• Event - Something that happens in time and changes the state of the world. ACE2005

defines 33 types of events, they are enumerated in Table A.1.

• Event Mention - The instance of an event represented by a span of text in a document.

• Relation - An association between either a pair of entities or a pair of events. For

this thesis, the relations considered between events are either “After” or “Parent-child”

which indicate a temporal ordering or composition respectively. Relations between
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entities are various kinds of composition and adjacency. More details are provided in

Chapter 3.

Each of the following chapters is dedicated to a single NLP task: event detection, relation

extraction, and script learning. Event detection involves identifying spans of texts that

indicate an event occurred along with the type of the event. Recently, neural networks have

achieved state-of-the-art performance. However, the models used have had three deficiencies.

First, they are focused on individual sentences and ignore the larger document context.

Second, the syntactic relationships found within the text are also ignored for a strict left-to-

right reading. Finally, there is a high degree of variability in performance due to both the

random initialization of the model and the differences in the distributions of the training and

testing datasets.

For each of these drawbacks, Chapter 2 provides a solution. To incorporate the syntactic

relationships between words, I purpose a model, DAG-GRU, that combines both a left-to-

right reading of a sentence with a syntactic reading. The DAG-GRU model uses an attention

mechanism to blend each reading into a more accurate representation.

Next, a variety of neural network models designed to represent an entire document were

evaluated on the task of event detection. The intuition is that the broader document context

can be useful for interpreting the meaning individual words. Three document level models

implemented: doc2vec, EntNet, and Transformer. Of these models, EntNet was found to be

on average the highest performing.

Finally, the variability of these neural network models was quantified. To address the

two sources of variability considered, two experiential setting were employed. Overall, eight

different models were implemented and evaluated. Five of those models are reproductions,

two newly applied, and one new model was created for event detection. For the first exper-

iment, each model was trained and evaluated with twenty different random initializations.

The second experiment involved randomizing the training-testing partition ten times, again

training and evaluating each model on each partition. It was shown that the variation was
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often greater than the difference in the state-of-the-art models.

The next chapter focuses on two different formulations of relation extraction, event se-

quence extraction and entity relation extraction. I purpose a new framework for neural

networks that represents relation extraction as a series of graph transformations. Each

transformation corresponds to a task related to relation extraction. The transformations

themselves are accomplished with a neural network. However, the framework is modular

allowing for differing networks to be easily substituted to do different tasks. Various mod-

els produced by the framework were evaluated on the event sequence extraction task. One

instance outperformed the baseline, the only previous work on the task. Additionally, the

framework was competitive with a reproduction of a high performing model on the ACE2005

entity relation extraction task.

After identifying event sequences, Chapter 4 describes script learning which involves gen-

eralizing event sequences into archetypal patterns. Here scripts are presented for the first

time as Hidden Markov Models (HMM). A novel formulation of HMMs allows missing and

omitted events. The HMM are learned with a new structure learning algorithm based on

Structural Expectation Maximization[29] and Bayesian Model Merging [79]. This method

was evaluated against an informed baseline on the narrative cloze task, which involves filling

in missing events in event sequences.

Overall, the primary contributions of this thesis are:

1. A new model, DAG-GRU, for event detection that incorporates syntax a robust eval-

uation and reproduction of many event detection models.

2. Demonstrating an on-average improvement over existing methods in event detection

with the EntNet model.

3. A new modular neural network framework evaluated on two relation extraction tasks.

4. The formulation of scripts as Hidden Markov Models and an associated learning algo-

rithm allowing for missing observations.
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Chapter 2: Event Detection

2.1 Introduction

Events are the lingua franca of news stories and narratives and describe important changes

of state in the world. Identifying events and classifying them into different types is a chal-

lenging aspect of understanding text. This chapter focuses on the task of event detection,

which includes identifying the “trigger” words that indicate events and classifying the events

into refined types. Event detection is the necessary first step in inferring more semantic

information about the events including extracting the arguments of events and recognizing

temporal and causal relationships between different events.

For event detection, ACE2005 provides both the primary definition of the task as well as a

dataset for evaluation. One of the challenges is the size and sparsity of this dataset. It consists

of 599 documents, which are broken into a training, development, testing split of 529, 30,

and 40 respectively. This split has become a de-facto evaluation standard [47]. Furthermore,

the test set is small and consists only of newswire documents, even though there are multiple

domains within ACE2005. These two factors lead to a significant difference between the

training and testing event type distribution. Though some work had been done comparing

method across domains [62], variations in the training/test split including all the domains

has not been studied.

There has been an explosion of different neural network models that address a variety

of NLP tasks in recent years. Likewise, neural network models have been the most suc-

cessful methods for event detection. Though these models have been successful, producing

higher accuracy than previously achieved, their evaluation has been unsatisfactory. Due to

the effect of random initializations as well as differences in training-testing splits, there is

often significant variance in the models’ performance. In this chapter, an empirical study of
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the sensitivity of the system performance to the model initialization is conducted. Various

neural network models are reproduced and put through a rigorous evaluation, quantifying

the variance in their performance. Each model is evaluated in two ways, by averaging over

twenty random initializations and over ten randomized training-testing splits.

Additionally, for further in-depth comparison of model performance, one additional eval-

uation was performed on a pair of models. The premise behind differing neural network

architectures is that they capture different types of information. If that is the case, then

significantly differing models should make different predictions on the same test data.

An analysis of each model’s predictions was performed, comparing how often those models

agreed with each other. Model instances at similar levels of performance are compared to

eliminate accuracy as a factor that could influence the similarity or discrepancy between

model predictions. Surprisingly, though the models have major differences in their network

architectures, their agreement was high in both the cases when they were right and when they

were wrong in their predictions. In some cases, the agreement was the same across different

model types as within the same model type. This gives evidence that despite differences in

network architectures, these models are largely capturing the same regularities in data. In

addition to a more robust evaluation, this chapter purposes new models for event detection.

Typically, current models work at the sentence level, ignoring the rest of the document.

Further, the syntactic relationships in a text are also eschewed as they treat a sentence as

simply as a sequence of words.

In order to model syntactic connections, a GRU-based model is proposed, called DAG-

GRU, that captures both the context and the syntactic information through a bidirectional

reading of the text with dependency parse relationships. A sequential reading of the text

can be represented as a linear graph were each node is a word and each edge is an adjacency

relationship. Dependency parse relationships are represented as additional edges between

words. The DAG-GRU model combines the information communicated across multiple edges

with the use of an attention mechanism.
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Additionally, to establish a baseline of robust comparison, multiple sentence-level mod-

els were also reproduced. Three common models were implemented and evaluated: CNN

[62], GRU [61], and a combination CNN+LSTM model [27]. A recent LSTM model that

incorporates syntactic information [28] was also reproduced.

In addition to sentence-level models, several document-level models were also applied to

the task of event detection and rigorously evaluated. It is easy to imagine that a document

talking about political events might interpret the word “fire” as an employment termination

event rather than a violent act. Since the topic of the document could conceivably be gleaned

from any part of the document, it stands to reason that the overall context of the document

might ease the event detection and classification.

This work considers three distinct neural network models to represent document-level

context. Two of the three have not previously been applied to event detection though they

have had considerable success in other NLP tasks, while the other is a replication of a recent

method for event detection. Each model uses a unique network architecture suited to capture

“long-distance” dependencies in the text. First, a document-level recurrent neural network

model (RNN) [24] based on doc2vec [43] was reproduced. This model combines both word [58]

and document embeddings as features for an LSTM [34] model. The document embeddings

are intended to capture the semantics of the document, which provide context to individual

predictions.

Second, as an alternative to representing the entire document as a vector, memory net-

works are designed to remember key portions of a document. One effective memory network

design is the entity network model (EntNet), which has been shown to track both entities

and important context in long term memory [33]. EntNet’s memory blocks are built with

simple gated recurrent neural networks and can target important pieces of document context

with keyed gates. The memory blocks are accessed with an attention mechanism.

Finally, the transformer model is considered, which is based on self-attention [81]. At-

tention mechanisms are location-insensitive, allowing them to capture distant context in a
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document. The self-attention mechanism allows for each word to be interpreted in light

of every other word in the document. The transformer model combines self-attention with

point-wise networks and residual links to build a representation of each word in a document

contextualized by every other word.

Overall, there are four main conclusions in this chapter:

1. Random initializations and data splits are a significant source of variation, the spread

is often larger than the differences in the state-of-the-art.

2. Document-level models, in particular EntNet, produce an on average improvement over

existing approaches.

3. The DAG-GRU produces an on average improvement over sentence-level approaches.

4. The differences in neural network architecture yield modest but significant improve-

ments in accuracy but are otherwise functionally equivalent according to the analysis

of models’ predictions.

2.2 Related Work

Event detection and extraction are well-studied tasks with a long history of research. Early

works were typically classifiers that predicted an event type for all the candidate words in

the dataset. The candidate word was represented by hand-crafted features based on lexical

and syntactic information as well as corpus wide statistics or n-gram patterns[31, 1, 36, 13,

48, 35, 46, 11].

The state of the art system for several years has employed a joint model that combines

event detection and argument extraction [20]. It is based on structured perceptron and uses

inexact inference based on beam search [47]. The sentences are processed from left to right,

where after each event is detected, its arguments are extracted.

Typical features are used to represent the document and candidate events and arguments
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based on lexical, syntactic, and decision-history information. Furthermore, the model allows

for complex relational features based on previously identified events and arguments. The most

significant contribution is the use of a joint model to enable better inference. Continuing the

thread of joint inference, a factor graph [86] was used to jointly identify events and entities.

It also determines the argument roles between events and entities, adding to the evidence

that event detection helps the extraction of arguments.

One of the weaknesses of these traditional machine learning approaches is that they

required extensive feature engineering. Recently, neural network models have alleviated this

problem by learning sophisticated, task-specific representations built on top of pre-trained

word2vec vectors [58], producing competitive and better results. These methods turned their

focus primarily to event detection rather than argument extraction.

For example, a dynamic convolutional neural network (CNN) model [12] uses a two part,

branched model to represent the candidate event trigger and its containing sentence. The

candidate trigger is represented with a word2vec [58] vector for the candidate and its adjacent

neighboring words. For the sentence representation, the method applies a convolutional layer

to each sentence followed by a dynamic k-maxpooling layer to select the most relevant parts

of the convolutional feature map. In effect, it finds the most relevant parts of each sentence

dynamically, summarizing the context of each side of the event candidate.

Similarly, a forward-backward RNN model [30] employs a pair of recurrent neural networks

to represent the context immediately to the left and right of the candidate token.

Instead of dividing the region around the candidate trigger into two halves, another CNN

model [62] builds a representation for the entire sentence. Three types of embeddings describe

each word in the window: word, position, and entity type. Each word is represented by a

concatenation of its word and entity type embeddings with the distance to candidate trigger.

The distance measured in number of words from the word to the candidate trigger, has a

randomly initialized embedding. Finally, the entity type taken from ACE2005’s annotation,

is also embedded starting with a random initialization. These concatenated embeddings are
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the run for a convolutional layer of varying filter sizes. Global max-pooling summarizes the

CNN filter and the result is passed to a linear classifier.

A follow-up approach based on a skip-gram based CNN model [63] allows the filters to

skip non-salient or otherwise unnecessary words in the middle of word sequences. The model

is largely the same as a previous CNN [62] model except for the use of non-consecutive filters.

A hybrid model [27] combined a previously used CNN [62] and a bi-directional LSTM

[34] models to create a hybrid network. The outputs of both networks were concatenated

together and fed to a linear model for final predictions.

A bidirectional GRU model [61] was used for sentence level encoding, and, in conjunction

with a memory network, to jointly predict events and their arguments.

Also, a probabilistic soft logic model [50] was used to incorporate semantic frames from

Framenet [5] in the form of extra training examples. Based on the intuition that entity and

argument information is important for event detection, an attention model [51] was built

to capture annotated arguments and the surrounding context to better model event trigger

candidates.

To address the sparsity and limited size of the ACE2005 dataset, a cross language atten-

tion model [49] was created for event detection and was used for both the English and Chinese

event detection tasks in the ACE2005 data. The model created a multi-lingual projection of

the data via unsupervised alignments between languages, achieving high accuracy.

Another approach to address the minimal training data associated with the ACE2005

data studied jointly training several models on both the word sense disambiguation and

event detection tasks [52]. Including joint training increased the performance of CNN, non-

consecutive CNN, and hyrid CNN/RNN models.

A previous a drawback of early neural network methods was the lack of syntactic infor-

mation. The early feature engineered systems included dependency parse information, but

the neural network methods principally relied on word embeddings. Recently, a graph-CNN

(GCCN) [64] model applies convolutional filters to syntactically dependent words in addition
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to consecutive words. The addition of entity information into the network structure produced

currently the best CNN model. Furthermore, the pooling layer of the model took the max

of filters outputs over the annotated entities, rather than the whole sentence.

Another neural network model that includes syntactic dependency relationships is the

DAG-based LSTM [28]. It combines the syntactic hidden vectors into a weighted average

and adds them through a dependency gate to the output gate of the LSTM model. Finally,

it uses a tensor to represent and jointly predict event-argument relationships, producing the

current best performance for an RNN.

2.3 Models

The task of event detection is to predict, for each word in the corpus, whether or not it is

an event trigger and if it is a trigger, its type. Hence, the task is formulated as a multi-class

classification problem, where the input is a sequence of words X = x1 . . . xn and the output is

a sequence of event type labels, where the sequence of words is either a sentence or an entire

document depending on whether the model is sentence-level or document-level respectively.

Each of the models considered uses the same multi-class classification setup. First the

words of the document are embedded and represented as fixed k-length vectors. Second, the

model takes the word embeddings X and produces a new representation of each word in the

document, X ′. Finally, dropout [78] with a rate of 0.5 is applied to the vectors during training,

before a linear layer plus softmax activation is applied to each vector to make a classification.

The difference between each approach is simply the representation X ′ it employs.

2.3.1 DAG GRU Model

The DAG-GRU model is an extension of the standard GRU model. It is a sentence-level

model that operates on a directed acyclic graph rather than a sequential chain. The standard
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GRU model works as follows:

rt = σ(Wrxt + Urht−1 + br) (2.1)

zt = σ(Wzxt + Uzht−1 + bz) (2.2)

h̃t = tanh(Whxt + rt � Uhht−1 + bh) (2.3)

ht = (1− zt)� ht−1 + zt � h̃t (2.4)

The GRU model produces a hidden vector ht of length dh for each word xt by combining

its representation with the previous hidden vector. Thus ht summarizes both the word and its

prior context. In equation 2.4, ht is calculated by making the trade-off between the previous

hidden vector ht−1 and the candidate hidden vector h̃t. The operator � is element-wise

product between vectors.

The “update gate” zt and “reset gate“ rt are vectors where each element ranges from 0

to 1. In equation 2.2, zt is computed as a function of the current word vector xt and the

previous hidden vector ht−1. The “reset gate” rt is computed similarly in equation 2.1. The

matrices Wz, Uz, Wr, Ur along with the vectors bz and br are parameters of model. Here σ

is an element-wise application of the sigmoid function.

The candidate hidden vector h̃t is calculated by equation 2.3. h̃t is also function of wt

and ht−1, however it also incorporates the “reset gate” rt to determine how much of ht−1

to “forget.” It also uses the parameters Wh, Uh and bh. The function tanh is applied in an

element-wise fashion.

All the W matrices are of size dh × dw, where dh and dw are the size of the hidden and

word vectors respectively. Likewise, the U matrices are of size dh × dh and the b vectors are

of length dh.

However, the GRU model reads the text in a sequential manner without considering

syntax. One common representation of linguistic syntax is a dependency parse tree, as seen

in Figure 2.1. The CoreNLP system [56] is used to produced a dependency parse tree for each
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Figure 2.1: The dependency parse tree for the sentence “Scott told investigators she had
moved that body around before she moved to Texas.”

sentence in the ACE2005 corpus. Each node in the tree represents a word, and the directed

edges between nodes are syntactic relationships. For example, if a “nsubj” edge indicates the

child node is the subject of the parent node.

The proposed DAG-GRU model incorporates syntactic information through dependency

parse relationships and is similar in spirit to GCNN [64] and DAG-LSTM [28]. However,

unlike those methods, DAG-GRU uses attention to combine syntactic and temporal infor-

mation. Rather than using an additional gate as in DAG-LSTM [28], DAG-GRU creates a

single combined representation over previous hidden vectors and then applies the standard

GRU model. Each relationship is represented as an edge, (t, t′, e), between words at index t

and t′ with an edge type e. The standard GRU edges are included as (t, t− 1, temporal).

Each dependency relationship may be between any two words, which could produce a

graph with cycles. However, back-propagation through time [60] requires a directed acyclic

graph (DAG). Hence the sentence graph, consisting of temporal and dependency edges E,

is split into two DAGs: a “forward” DAG Gf that consists of only of edges (t, t′, e) where

t′ < t, and a corresponding “backward” DAG Gb where t′ > t. The dependency relation

between t and t′ also includes the parent-child orientation, e.g., nsubj-parent or nsubj-child
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At least three members of a family in Indias northeastern state of Tripura were hacked to death by a tribal mob

nsubj

auxpass

tanh softmaxx dot tanh dot

Figure 2.2: The hidden state of “hacked” is a combination of previous output vectors. In
this case, three vectors are aggregated with DAG-GRU’s attention model. ht′′ , is included in
the input for the attention model since it is accessible through the “subj” dependency edge.
ht′ is included twice because it is connected through a narrative edge and a dependency edge
with type “auxpass.” The input matrix is non-linearly transformed by Ua and tanh. Next,
wa determines the importance of each vector in Dt. Finally, the attention at is produced
by tanh followed by softmax then applied to Dt. The subject “members” would be distant
under a standard RNN model, however the DAG-GRU model can focus on this important
connection via dependency edges and attention.

for a nsubj (subject) relation.

An attention mechanism is used to combine the multiple hidden vectors. The matrix

Dt is formed at each word xt by collecting and transforming all the previous hidden vectors

coming into node t, one per each edge type e. α gives the attention, a distribution weighting

importance over the edges. Finally, the combined hidden vector ha is created by summing

Dt weighted by attention.

DT
t = [tanh(Ueht′)|(t, t′, e) ∈ E] (2.5)

αt = softmax(tanh(Dtwa)) (2.6)

ha = DT
t αt (2.7)

However, having a set of parameters Ue for each edge type e is over-specific for small

datasets. Instead a shared set of parameters Ua is used in conjunction with an edge embedding
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ve.

DT
t = [ tanh(Uaht′ ◦ ve) | (t, t′, e) ∈ E ] (2.8)

Here the operator ◦ denotes concatenation. The edge type embedding ve is concatenated

with the hidden vector ht′ and then transformed by the shared weights Ua. This limits the

number of parameters while flexibly weighting the different edge types. The new combined

hidden vector ha is used instead of ht−1 in the GRU equations. The model is run forward and

backward with the output concatenated, hc,t = hf,t ◦ hb,t, for a representation that includes

the entire sentence’s context and dependency relations.

2.3.2 doc2vec

The doc2vec model [42] is an extension of the word2vec [58] model that builds an embedding

for a document rather than individual words. Its goal is to create a single vector that repre-

sents an entire document, capturing the semantics of the text [43]. For the event detection

task, the doc2vec model provides additional global context to individual event predictions.

The doc2vec model has two different formulations: a distributed memory model of para-

graph vectors (PV-DM) and a distributed bag of words (DBOW). These formulations are

analogous to the continuous bag of words and skip-gram models of word2vec [43, 58]. The

use of doc2vec is intended as a reproduction of a recent method [24] which is based on the

PV-DM model. However, doc2vec has suffered from some reproduction issues, and it has

been shown that the DBOW model is much more consistent in its performance [42]. A pre-

trained DBOW model [42] was used for this thesis. The DBOW model uses the following

objective, which maximizes the probability of the words of the document, represented by

word vectors x given the document vector xd.
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P (x1, . . . , xn|d) (2.9)

The doc2vec model produces a vector that represents an individual document. However,

the event detection task requires a decision per individual word in each document. Hence the

document vector xd is combined with the individual word vectors by concatenation i.e. x∗i =

xi ◦ xd.

Long short-term memory (LSTM) recurrent neural network is used to create a contextu-

alized word representation based on the combined word vectors, x∗i [34]. LSTM uses memory

cells to remember key portions of the input and solve the vanishing gradient problem [34].

The model is as follows:

ft = σ(Wfx
∗
t + Ufht−1 + bf ) (2.10)

it = σ(Wix
∗
t + Uiht−1 + bi) (2.11)

ot = σ(Wox
∗
t + Uoht−1 + bo) (2.12)

c̃t = tanh(Wcx
∗
t + Ucht−1 + bc) (2.13)

ct = ft � ct−1 + it � c̃t (2.14)

ht = ot � tanh(ct) (2.15)

Like the GRU model, LSTM produces a hidden vector ht of length dh for each word

represented by a vector x∗t . The primary diffence between LSTM and GRU is the memory

cell ct LSTM maintains. LSTM uses the cell ct to form the hidden vector ht. LSTM combines

the previous hidden vector ht−1 and the current word vector xt through a series of gates.

The “forget gate” ft, “input gate” it, “output gate” ot, and candidate memory cell c̃t are

all functions of the previous hidden vector ht−1 and the current word vector x∗t . They are

parameterized by their respective matrices W and U and the bias vector b. The equation for
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the candidate memory cell c̃t is show in equation 2.13. Since the forget, input, and output

gates use the sigmoid function σ, the value of each of their dimensions’ range in value from

0 to 1. This enables the gates to regulate the contributions of other vectors via element-wise

product, denoted by �. The forget and input gates respectively control the how much of

the previous memory cell ct−1 and candidate memory cell ẽt to be included in the updated

memory cell ct as show in equation 2.14. In equation 2.15, the hidden vector ht is produced

by a combination of the output gate ot and the memory cell ct.

LSTM is run twice, one starting the beginning of the document and the other starting at

the end, creating two sequences: hf,1 . . . hf,n and hb,n . . . hb,1. The output of the bi-directional

LSTM model is the concatenation of both directions vectors: X ′ =
[
hf,1 ◦ hb,1 . . . hf,n ◦ hb,n

]
.

Processing the text in both directions allows for both the left-hand and right-hand contexts

to be combined into a single representation.

2.3.3 Transformer

The transformer model uses self-attention to build a representation for each word based on all

the other words in a document. Self-attention can capture long-range dependencies between

words because the distance between words is not a consideration. There is evidence that

self-attention mimics syntactic relationships in a sentence [81].

The transformer model is comprised of four operations. The first is multi-head self-

attention. Self-attention transforms its input into three components: a key K, a value V , and

a query Q. The transformation is learned by dh × dh linear projections for each component:

Wk, Wv, and Wq. If the input is specified by the n× dh matrix X, the transformation are as
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follows:

K = ReLU(XWk) (2.16)

V = ReLU(XWv) (2.17)

Q = ReLU(XWq) (2.18)

Each projection is of the dimension n × dh. The projected components Q and K are

combined to form attention over the projected component V . The attention mechanism used

by the transformer model is scaled dot product. Scaled dot product attention in effect is

finding a weight for each pair of words. These weights are used to make a weighted average

for each word vector.

A = softmax

(
QKT

√
dh

)
V (2.19)

The softmax function is applied over the first dimension, creating an importance weight

per hidden dimension for each input vector. The result, the matrix A, is of size n× dh and

consists of a composite representation for each word, is based on all the other words vectors

in the document.

Next, the transformer applies a residual link and layer normalization [45]. The residual

link simply consists of adding the matrix A to the input matrix X as see in equation 2.20.

The second half of the transformer model applies a point-wise feed forward network, that is,

a pair of convolutional neural networks (CNN) with a window size of 1, as in equations 2.21

and 2.23. Finally, it applies another residual link and layer normalization. The equations are
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as follows:

L0 = normalize(X + A) (2.20)

F1 = CNN(L0) (2.21)

F2 = ReLU(F1) (2.22)

F3 = CNN(F2) (2.23)

L = normalize(L0 + F3) (2.24)

The result L, seen in equation 2.24, is a n×dh matrix that represents a single application of

transformer’s self-attention. However, it has been observed that multiple parallel applications

of transformer’s self-attention are more effective than a single application. Each parallel

application of attention is a “head” and the hidden dimension dh is split among multiple

heads. Each head is has its own set of parameters: Wk, Wv, and Wq. This allows each head

to target a different type of interaction. Multi-head attention is formulated as follows:

Lm = L1 ◦ L2 ◦ . . . ◦ Lh (2.25)

X ′ = LmWm (2.26)

Where X ′ is the final representation of the document produced by the transformer model,

Li is the output of a single attention head, Wm is a dh × dh learned linear projection and ◦

is the concatenation operator, joining matrices on their second dimension.

2.3.4 The EntNet Model

Despite the effectiveness of RNN models such as LSTM or gated recurrent units (GRU) [19],

RNNs are still not effective at long-term memory [33]. A variety of memory networks have

been created to address this need. EntNet is a memory network which uses simple RNNs for

the memory cells. It is designed to store key parts of the document, key actors or facts, and
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use those stored memories later for contextualizing individual predictions per word.

The EntNet model was found to be most effective when combined with a standard RNN.

First, GRU was applied to create a locally contextualized representation per word before

applying EntNet. For each word, xt, the GRU model produces a dh-length hidden vector ht

by combining the word vector with the previous hidden vector ht−1.

The model is applied to both the word sequence and its reverse, creating two hidden

vectors per word, ht,l and h′t,r. The two vectors are concatenated to produce a single vector

representing the word, ht = ht,l ◦ ht,r.

The next layer is the EntNet model, which was created to maintain long term memory.

EntNet consists of a set of memory blocks and each block is a simple gated RNN. The updated

equations for the jth block of memory, ej are as follows:

gj = σ(hTt ej + hTt wj) (2.27)

ẽj = φ(Ueej−1 + Vewj +Weht) (2.28)

e′j = ej−1 + gj � ẽj (2.29)

ej =
e′j
‖e′j‖

(2.30)

Here Ue, Ve, We, and wj are parameters of the model. The matrices Ue, Ve, and We control

the update gate, which is a function of the current memory block ej, the “key” vector w,

and the current hidden vector ht, as shown in equation 2.28. In the equation 2.27, the vector

wj is a “key” vector for the memory block and opens the gate function gj when the current

input, ht matches the key. Similarly, hTt ej opens the gate when the current input matches the

current memory. Together they control the gate gj which determines how much the memory

will be updated given the current input ht. The gate gj is a vector where each dimension

ranges in values from 0 to 1. This controls how much of the update vector ẽj to add to the

existing memory block ej−1 in the equation 2.29.

In equation 2.28, the vector ẽj is the updated to the memory block and it is combined by
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the element-wise product � with gate function gj output. However, a simplified version of

EntNet was used since it has been shown to be just as effective with fewer parameters [33].

The matrices are set to Ue = Ve = 0 and We = I and the activation function φ is likewise

the identity function. Thus the equation 2.28 is replaced with ẽj = ht. In either case, the

new update vector e′j is normalized, which allows it to forget part of its previous memory as

shown in equation 2.30.

EntNet is used to read the sequence of hidden vectors h1 . . . hn in a left-to-right fashion

producing m memory cells. These cells are combined with the hidden vector via a bi-linear

attention model:

at = tanh(EWaht) (2.31)

αt = softmax(at) (2.32)

e∗t = ETα (2.33)

Here Wa is a dh×dh matrix and are the parameters of the attention mechanism. The matrix

E is the m × dh matrix of all the memory blocks. This allows for an interaction between

the word’s hidden vector ht and each of the memory blocks. The combined memory block

representation e∗t is combined with the hidden vector ht via concatenation:

h′t = ht ◦ e∗t (2.34)

The combined representation h′t is used for the final representation of the document:

X ′ =
[
h′1 . . . h

′
n

]T
(2.35)
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2.4 Experiments

The ACE2005 dataset is used for evaluation. Each word in each document is marked with

one of the thirty-three event types or Nil for non-triggers. Several high-performance models

were reproduced for comparison. Each is a good faith reproduction of the original with some

adjustments to level the playing field.

For word embeddings, Elmo was used to generate a fixed representation for every word in

ACE2005 [67]. The three vectors produced by Elmo per word were concatenated together for

a single representation. Entity type embeddings were not used for any method. The models

were trained to minimize the cross entropy loss with Adam [38] with L2 regularization set at

0.0001. The learning rate was halved every five epochs starting from 0.0005 for a maximum

of 30 epochs or until convergence as determined by F1 score on the development set.

The same training method and word embeddings were used across all the methods. Based

on preliminary experiments, these settings resulted in better performance than those origi-

nally specified.

2.4.1 Models & Baselines

Several baseline models and some variations of the aforementioned models were evaluated.

A description of each follows:

• GRU: a bi-directional GRU [61] sentence-level model with a hidden dimension of 128.

Notably this was not used as a joint model and does not use a memory network.

Instead, the final vectors from the forward and backward pass concatenated to each

timestep’s output for additional context.

• DAG-GRU: a bi-directional DAG-GRU sentence-level model described in section 2.3.1

with a hidden dimension of 128.

• CNN: a reproduction of a CNN sentence-level model with the number of filters per con-



23

volution size was reduced to 50 [62].

• CNN+LSTM: a reproduction of a sentence-level combination CNN and LSTM model

with no modifications [27].

• DAG-LSTM: a reproduction of a sentence-level DAG based LSTM model [28], also not

used as as joint model.

• Document GRU: a bi-directional GRU model, the same as the sentence-level GRU but

applied to entire documents.

• GRU + EntNet: a document-level model, the combination of EntNet and GRU as de-

scribed in Section 2.3.4.

• doc2vec + LSTM: a document-level model described in Section 2.3.2.

• doc2vec + LSTM + EntNet: a document-level model which combines the doc2vec-

based model with an EntNet layer after the LSTM layer.

• Transformer: a document-level model as described in Section 2.3.3. The first layer is a

CNN with window size 1 to “tune” the word vectors and project them into the correct

dimension. It uses a hidden dimension of 256 and 16 heads.

Variant A of the DAG-GRU model utilized the attention mechanism, while variant B

used averaging, that is Dt = 1
|E(t)|

∑
(t′,e)∈E(t)

tanh(Uaht′ ◦ ve)

2.4.2 Effects of Random Initialization

Given that ACE2005 is small as far as neural network models are concerned, the effect of the

random initialization of these models needs to be studied. Although some methods include

tests of significance, the type of statistical test is often not reported. Simple statistical

significance tests, such as the t-test, are not compatible with a single F1 score, instead the

average of F1 scores should be tested [85].
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Figure 2.3: A comparison of mean performance versus number of parameters.

Five different systems were reproduced, two others applied, and one newly created and

evaluated with different initializations to assess the effect of initialization. The experiments

were done on the standard ACE2005 split, and the aggregated results over 20 random seeds

are given in Table 2.1. The random initializations of the models had a significant impact on

their performance. The variation was large enough that the observed range of the F1 scores

overlapped across almost all the models. However the differences in average performances of

different methods, except for CNN and DAG-LSTM, were significant at p < 0.05 according

to the t-test, not controlling for multiple hypotheses.

Both the GRU [61] and CNN [62] models perform well with their best scores being close

to the reported values. The CNN+LSTM model’s results were significantly lower than the

published values, though this method has the highest variation. It is possible that there is

some unknown factor such as the preprocessing of the data that significantly impacted the

results or that the value is an outlier. Likewise, the DAG-LSTM model underperformed.

However, the published results were based on a joint event and argument extraction model

and probably benefited from the additional entity and argument information.

DAG-GRU A consistently and significantly outperforms the other sentence-level methods

in this comparison. The best observed F1 score, 71.1%, for DAG-GRU is close to the pub-

lished state-of-the-art scores of DAG-LSTM and GCNN at 71.9% and 71.4% respectively.

With additional entity information, GCNN achieves a score of 73.1%. The attention mech-
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anism used in DAG-GRU A shows a significant improvement over the averaging method of

DAG-GRU B. This indicates that some syntactic links are more useful than others and that

the weighting attention applies is necessary to utilize that syntactic information.

Another source of variation was the distributional differences between the development

and testing sets. Further, the testing set only includes newswire articles whereas the training

and development sets contain informal writing such as web log (WL) documents. The two

sets have different proportions of events of each type and each model saw at least a 2%

drop in performance between development and test on average. At worst, the DAG-LSTM

model’s drop was 5.26%. This is a problem for model selection, since the development

score is used to choose the best model, hyperparameters, or random initialization. The

distributional differences mean that methods which outperform others on the development

set do not necessarily perform as well on the test set. For example, DAG-GRU A performs

worse than DAG-GRU B on the development set, however it achieves a higher mean score

on the testing set.

The results show that there is about a 1% improvement by simply moving from a sentence

level model to the document-level model. The additional document-level context is useful

without more advanced methods.

Out of the three document-level models evaluated, transformer performed the worst with

an average F1 score of 68.71%. It was also quite variable with a standard deviation of

0.88%. Transformer’s self attention is not aware of word location, which was likely a problem

since the task involves a close reading of the text. Both the positional encoding and em-

bedding additions to transformer were evaluated [81]. However they both hurt performance.

Transformer’s expressiveness could also be the cause of its poor performance given that the

ACE2005 dataset is small.

The doc2vec + LSTM model generally matches its reported performance [24]. The re-

ported F1 score of 70.5%[24] is observed to be within 3 standard deviations of the mean

69.29%. It also had a 0.26% improvement over the document-level GRU model and was the
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Model Dev Mean Mean Min Max Std. Dev. Published

Sentence-Level

DAG-GRU A 70.3% 69.2% ± 0.42 67.8% 71.1% 0.91% -
DAG-GRU B 71.2% 68.4% ± 0.45 67.39% 70.53% 0.96% -
GRU 70.3% 68.0% ± 0.42 66.4% 69.4% 0.86% 69.3%†
CNN+LSTM 69.6% 66.4% ± 0.62 63.6% 68.1% 1.32% 73.4%
DAG-LSTM 70.5% 65.2% ± 0.44 63.0% 66.8% 0.94% 71.9%†
CNN 68.5% 64.7% ± 0.65 61.6% 67.2% 1.38% 67.6%

Document-Level

Doc. GRU 69.69% 69.03% ± 0.35 0.75% 67.01% 70.14% -
GRU + EntNet 67.19% 69.72% ± 0.32 0.68% 68.03% 70.75% -
d2v + LSTM 71.85% 69.29% ± 0.42 0.90% 67.62% 71.72% 70.5%
d2v + LSTM + EntNet 70.86% 70.10% ± 0.30 0.63% 68.70% 71.73% -
Transformer 68.98% 68.72% ± 0.41 0.88% 67.20% 70.56% -

Table 2.1: The statistics of the 20 random initializations experiment. † denotes results are
from a joint event and argument extraction model.

most variable method with a standard deviation of 0.42%.

The most effective model was EntNet. It yielded a 0.68% statistically significant improve-

ment over the baseline GRU model, according to Welch’s two-sample t-test at the 0.05 level.

Further, when combined with doc2vec + LSTM, it produced the best overall results with

a mean of 70.10%, again, statistically significant improvement of 0.81% over the doc2vec

+ LSTM model. EntNet was also the most consistent, having the lowest variability of any

model. In fact, it made the most variable method into the least, when it was added to

doc2vec + LSTM.

The EntNet model is comparable to the state-of-the-art on the random initialization

evaluation. The sentence-level best, the DAG-GRU model, achieved an average F1 score of

69.2%, versus 70.10% for EntNet [65]. Again, the improvement is statistically significant at

the 0.05% level according to Welch’s two-sample t-test.

2.4.3 Bootstrap

One method of model selection over random initializations is to train the model k times and

pick the best one based on the development score. Repeating this model selection procedure
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Model Dev Mean Mean Std. Dev.
DAG-GRU A 72.0% 69.2% ± 0.04% 0.68%
DAG-GRU B 72.0% 67.9% ± 0.04% 0.60%
GRU 71.5% 68.4% ± 0.05% 0.80%
CNN+LSTM 70.8% 66.8% ± 0.07% 1.08%
DAG-LSTM 70.4% 65.5% ± 0.02% 0.40%
CNN 69.6% 65.4% ± 0.09% 1.49%

Table 2.2: Bootstrap estimates on 1000 samples for each model after model selection based
on dev set scores.

many times for each model is prohibitively expensive, so the experiment was approximated

by bootstrapping the 20 instantiations per model [26]. For each sentence-level model, 5

development & test score pairs were sampled with replacement from the twenty available

pairs. The initialization with the best development score was selected and the corresponding

test score was taken. This model selection process of picking the best of 5 random samples was

repeated 1000 times and the results are shown in Table 2.2. This process did not substantially

increase the average performance beyond the results in Table 2.1, although it did reduce the

variance, except for the CNN model. It appears that using the development score for model

selection is only marginally helpful.

2.4.4 Randomized Splits

In order to explore the effect of the de facto training/testing split [47] , a randomized cross

validation experiment was conducted. From the set of 599 documents in ACE2005, 10 ran-

dom splits were created maintaining the same 529, 30, 40 document counts per split, of

training, development, testing, respectively. This method was used to evaluate the effect of

the standard split, since it maintains the same data proportions while only varying the split.

The results of the experiment are found in Table 2.3.

The effect of the split is substantial. Almost all models’ performance dropped except

for DAG-LSTM; however the variance increased across all models. In the worst case, the

standard deviation increased threefold from 0.75% to 2.65% for the document-level GRU
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Method Dev Mean Mean Min Max Std. Dev.
Sentence-Level

DAG-GRU A 71.4% 68.4% ± 1.85 65.7% 74.1% 2.59%
DAG-GRU B 70.9% 68.4% ± 1.88 64.19% 73.59 2.63%
DAG-LSTM 68.9% 67.3% ± 1.43 63.5% 70.7% 2.00%
GRU 69.8% 66.6% ± 1.86 62.5% 71.1% 2.60%
CNN+LSTM 69.8% 66.3% ± 2.03 60.1% 70.3% 2.83%
CNN 68.0% 65.4% ± 1.59 60.7% 69.2% 2.22%

Document-Level
Doc. GRU 70.24% 68.26% ± 1.68 63.42% 71.90% 2.54%
GRU + EntNet 71.36% 69.03% ± 1.00 64.92% 71.73% 2.13%
doc2vec + LSTM 71.10% 69.04% ± 0.76 65.44% 71.23% 1.63%
doc2vec + LSTM + EntNet 71.56% 69.60% ± 0.67 66.67% 71.80% 1.44%
Transformer 69.40% 67.12% ± 1.01 64.16% 71.01% 2.15%

Table 2.3: Average results on 10 randomized splits.

model. This aligns with cross domain analysis; some domains, such as WL, are known to be

much more difficult than the newswire domain which comprises all of the test data under the

standard split [62]. Further, the effect of the difference in splits also negates the benefits of

the attention mechanism of DAG-GRU A. This is likely due to the test partitions’ inclusion

of WL and other kinds of informal writing. The syntactic links are much more likely to be

noisy for informal writing, making the syntactic information not as useful and reliable.

Moving to a document-level model helps on average about 1.64%, EntNet adds about 0.7%

on average. EntNet’s improvement is consistent across evaluations. Due to the variablity

of this experiment, the same randomized splits were used across each model. This enables

the use of a paired t-test, which found EntNet’s improvement over doc2vec + LSTM to be

significant at the 0.05 level.

Further, the EntNet models showed a large drop in standard deviation when combined

with either model. The consistency of results on event detection has seen limited research,

though is important with regards to reproducibility and practical application. The doc2vec

+ LSTM model performed the most consistently between evaluations, only losing 0.25% on

average between experiments. Overall, doc2vec + LSTM + EntNet performed the best.

However, the randomization of the partitions did impact it significantly.
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Statistic EntNet Trans. EntNet vs. Trans.
Agree & correct 275 284 276
Agree & wrong 199 197 192
Disagree (false negative) 29 35 37
Disagree (false positive) 36 47 49
Disagreement to Agreement Ratio 13.71% 17.05% 18.38%

Table 2.4: Prediction and error correlation counts for the doc2vec + LSTM + EntNet and
Transformer models. The “EntNet” and “Trans.” columns compare two models within the
same time but trained with different random initializations. Both the cases of disagreement
involve one model making a correct prediction and the other making the stated error. The
ratio is calculated by dividing the sum of the disagreement counts by the sum of agreement
counts.

All these sources of variation are greater than most advances in event detection, so quan-

tifying and reporting this variation is essential when assessing model performance. Further,

understanding this variation is important for reproducibility and is necessary for making any

valid claims about a model’s relative effectiveness.

2.4.5 Error Correlations

In addition to the statistical comparison of models, an analysis is performed on their pre-

dictions and errors. The premise of the different models evaluated is that their different

network architectures allow them to capture different types of information. Here the models

considered are the farthest from each other in terms of design: EntNet and transformer.

EntNet is a memory network with memory cells consisting of simple RNNs, and in this work

it is also used in conjunction with GRU and LSTM. However, the transformer model eschews

the RNN structure completely, relying on self-attention instead to capture the context of the

document.

The goal is to determine whether EntNet and transformer make similar decisions in spite of

their vastly different architectures. If the models are capturing different kinds of information

then they should be making different types of predictions. That is, they should both have

their own set of correct predictions, and the intersection of their sets should be minimal.
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However, to determine how the models correlate with each other, there needs to be a

baseline for comparison. Hence, two instantiations of each model are considered, all of them

at similar levels of accuracy 70.1%, taken from the random initialization experiment. Next,

for each pair, four different statistics were collected: the count of events they both correctly

predict, the count of non-events or mistyped events they both incorrectly predict, the count

of events one predicts correctly but the other counts as Nil, and the count of non-events that

one incorrectly predicts as an event. Note that correctly predicting Nil, i.e. a true negative,

is not included in the counts, as in F1. A summary of the results is shown in Table 2.4.

The pairs within each model type establish the baseline, that is, it determines the level of

variation in predictions for the type. Given the difficulty of the task, it is expected that the

variation in the model initialization will result in variation of the model decisions. Hence the

variation is compared within a model type versus the variation across model types. If the

two types of models are actually capturing different information then they should disagree

with each other much more than they disagree within type.

By dividing the disagreement counts by the agreement counts, a ratio is constructed per

pair. It is observed that for EntNet the ratio is 13.71%, for transformer it is 17.05% and for

EntNet versus transformer it is 18.38%. The lowest value the disagreement ratio between

EntNet versus transformer can realistically take is 17.05%, since that is the higher within type

ratio. However, the ratio is only 1.33% higher, indicating the models mostly agree, almost as

often as within the transformer type. This gives evidence that these models are effectively

making the same decisions at a given level of accuracy despite the fact they are quite different

in structure. There is no evidence that the differences in model architecture resulted in

different information or relationships being represented from a predictive standpoint.
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2.5 Conclusions

Altogether, five models were reproduced, two models were applied, and a new model was cre-

ated for event detection. The DAG-GRU model was introduced to use syntactic information

through an attention mechanism. It was shown to be competitive with the state-of-the-art

at the sentence-level. Further, document-level models were shown to be in general higher in

performance than sentence-level models. In particular, EntNet demonstrated the highest per-

formance on both the random initializations and training-test split evaluations on ACE2005.

Further, these experiments in general show that there are several significant sources of vari-

ation which had not been previously studied and quantified. At a minimum, it suggests that

the community should move away from evaluations based on single random initializations

and single training-test splits. Finally, it was demonstrated that despite the major architec-

tural differences, transformer and Entnet were qualitatively similar except for a modest but

significant difference in accuracy.
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Chapter 3: Relation Extraction

3.1 Introduction

Complex AI problems such as natural language understanding consist of a variety of tasks

from low level tasks such as part of speech tagging and parsing to more higher level tasks

such as event detection, event sequence extraction, and question answering. The current

best approaches are based on neural networks and are typically focused on optimizing the

performance on one task at a time. However, it is not clear how to integrate multiple tasks

in a unified framework that provides a clean separation between the tasks, while also taking

advantage of their mutual relationships to constrain learning. Part of the problem is that

the primitive elements in each task are different and are created by previous tasks. For

example, while a document can be described as a sequence of words at the lowest level, it

consists of mentions of entities at the next level with syntactic relationships between them. At

higher level of processing, the mentions are clustered into entities with a variety of semantic

relationships between them.

In this chapter, a flexible architecture called Graph Transforming Neural Network (GTNN)

is proposed. It allows the integration of multiple tasks into a single architecture, taking into

account the different kinds of information represented and manipulated at different levels of

processing. The architecture consists of multiple layers, where each layer is represented as

a graph. The nodes in the graph at a higher layer are composed of nodes at a lower layer.

Edges at a higher layer are predicted based on the nodes and edges at the lower layer. The

different layers can be trained simultaneously if the training data is available. If not some of

the decisions can be hard-coded or heuristically guided. Importantly the architecture sup-

ports modularity and creation of new objects from objects at lower levels, a requirement for

AI to robustly address the full problem of language understanding.
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The GTNN framework is illustrated in the context of event sequence extraction which

has several subtasks. Events are key for understanding narratives and news stories. Fur-

ther, placing events into a temporal sequence is a means of representing narratives. Hence,

identifying the temporal and compositional relationships between events is a necessary and

challenging aspect of representing and understanding narratives. In this context, the pro-

posed framework starts with an input graph that is a linear chain of tokens or words and

applies a series of three transformations to it. The first transformation converts it into a

graph of entity and event mentions which are connected by co-reference links. The second

transforms this graph into an event-argument graph, where event instances are connected to

their argument instances. Finally, the third transformation creates event instances (which

aggregate events and their arguments in the second layer) and links them with containment

and temporal relationships.

GTNN is a flexible framework that can be combined with a variety of graph-based neural

network architectures to create more specialized networks. The second main contribution is

a specific instantiation of GTNN to event sequence extraction by combining attention and

max-pooling. This model is motivated by the intuition that stories are centered around

a few entities, i.e. people, places, and things. Together, the attention mechanism and the

max-pooling allow the model to ignore the irrelevant entities and focus on the key entities.

A robust empirical evaluation of the model is done on the TAC KBP 2017 dataset on

event sequence extraction and is compared to a baseline method and several variations of

the model. The results based on 10-fold cross validation show that the proposed method

significantly outperforms the baseline.

3.2 Event Sequence Extraction

At the highest level, the event sequence extraction task is to determine if there is an “After”

or “Parent-child” relationship between a given pair of events or not. The relationships are
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Attack 
M1: "shooting" 

Transport­Person 
M2: "arrived" 

Attack 
M3: "shot" 
M4: "fired" 

Die 
M5: "dead" 

Parent­child
Parent­child

Parent­child

After After

Figure 3.1: An example of the graph for the text, “The shooting occurred late Tuesday
afternoon. The assailant arrived at the marketplace shot a shopkeeper and then fired on
a nearby crowd, leaving four dead”. A single event mention, “shooting,” is a summary,
describing a sequence of events and is indicated as such by “Parent-child” relations. In this
case two mentions make up the “Attack” event i.e. “shot” and “fired.” Note, the summary
event “shooting” is not necessary for the other events to have an “After” relationship.

only defined to hold if the events in question are related in some way, i.e. parts of the same

“script.” A script is a stereotypical sequence of events and a story is an instance of a script

[74]. The “After” relation temporally orders events that occur within the same narrative.

However, the task is not to temporally order all the events in a document. Only those events

which are part of the same story have “After” relations defined even if the events can be

placed in chronological order. Consider the following example of “After” relations.

One person died from injuries after Croat and Muslim fans clashed . . . there

were several others injured, while fans demolished shops . . .

According to the event sequence task, there are two separate stories. The first involves a

single person dying from fans fighting i.e. “clashed” ⇒ “injuries” ⇒ “died” with each arrow

indicating “After.” The other story is about fans destroying shops and hurting people as a

result i.e. “demolished”⇒ “injured.” Though both stories involve the same generic group of

fans and are related to the same circumstances, they are considered separate. This is due to

the difference in the victims: a single person in the first versus a small group in the second.

Since the participants are different, yet are related in content, the two stories are arguably

different instantiations of the same script.
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The second relation defined by the task is “Parent-child.” This relation indicates that a

single event is a summarization or composition of a sequence of events. The “Parent-child”

relation is illustrated by the following example.

Ali Ibrahim Al-Sudani was detained and sent back to Egypt under an emer-

gency deportation order . . .

Here “detained” and “sent back” are event mentions of “Arrest-Jail” and “Transport-

Person” types respectively. The event mention “deportation” is also of type “Transport-

Person,” and is also the “Parent” of both “detained” and “sent back.” It is clear here that

a deportation logically implies both an arrest and a transportation of a person. In this case,

the term “deportation” serves as a summary or as a label for a composition of events.

The relations are defined to hold at the event level, that is, for a collection of event

mentions associated through co-reference. Event co-reference relations, along with event

mention annotations are given as input for event sequence extraction. An example of the

graph structure of the task is given in Figure 3.1.

This task is surprisingly difficult for several reasons. The data is usually sparse due to the

cost of annotation. The classes are unbalanced in the sense that the vast majority of event

pairs (about 99%) are unrelated to each other. Further, the relations are nuanced in that

judging whether two events are part of the same story requires a careful reading of the text

with particular consideration for the entities involved. However, entities, i.e. people, places,

things, etc. are not a part of the input for the task despite their importance. Finally, there

is the issue of representing the elements of the task, i.e. the events, their mentions, and their

relationship with each other. The state of the art methods on this task have only been able

to achieve 6-7% F1.
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3.3 Related Work

Prior work on event sequence extraction has been limited. The task was introduced for a

TAC KBP pilot study and benchmark competition in 2017. The only published work framed

the problem as a multi-label classification problem on pairs of event mentions represented by

a bi-directional GRU [19] model [76]. Though the relations were originally defined for events,

they were later expanded to event mentions. That is, if a relation held between events, it was

then defined to hold between all pairs of corresponding mentions. Each relation type, “After”

and “Parent-child” was inverted into “Before” and “Child-Parent” to avoid comparing both

orderings of event mentions. The pairs were ordered according to their narrative ordering.

Additionally, the type “Nil” was added for non-existent relations, making the total number

of relation types five.

Each pair was represented by a feature vector comprised of three parts: the GRU hidden

vectors for the left and right mentions, a path embedding, and additional knowledge base

features. First, each word was represented with a concatenation of word and part-of-speech

embeddings. A bi-directional GRU model was then used to create a contextualized represen-

tation for all the words in each document. The vectors corresponding to each event mention

were selected as the first part of the feature vector.

The vector of the word previous to the second mention vector was used as a path repre-

sentation. That is, if the mention vectors are given as xt and xt′ and t < t′, then the path

representation is xt′−1. Finally, features based on event type, lemmas, realis (hypothetical

event versus actual occurrence), sentence distance, and semantic relations from VerbOcean

[15] and ConceptNet [77] were also included. Each pair was classified with Multi-layer Per-

ceptron (MLP) making use of dropout [72, 78].

A related task is temporal relation extraction. The aim of this task is to predict the

temporal ordering between pairs of events or between events and particular times. There is

a long history of research on this topic, with many contributions resulting from the SemEval

and TempEval competitions [82, 83, 80, 7, 8, 55].
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Recently, neural network methods have risen to the top, replacing hand-engineered feature-

based systems. Multiple methods of applying bi-directional LSTMs [34] to dependency parse

paths have generated rich representations for temporal relation classification [16, 14]. Fur-

ther, convolutional neural networks (CNN) [44] have been shown to out-perform bi-directional

LSTM models on a clinical temporal relation dataset [23].

Another related task is event co-reference resolution, which has the goal of determining if

pairs of event mentions refer to the same event. Event trigger detection and event co-reference

were jointly modeled by structured perceptron [3]. More closely related, a max-ent model

was applied for event co-reference with the “Parent-child” relation to identify the structure

of events and mentions [2]. Recently, an integer linear programming joint model of event

co-reference, “Parent-child” relations, and document topics demonstrated that solving the

related tasks improves event co-reference accuracy [17].

Neural network models for graph-based relational reasoning have shown success. Rel-Net

is a network architecture for modeling relationships between objects in images and text [73].

It combines a memory network structure with a MLP to represent complex relationships

and achieves state-of-the-art results on challenging visual and text-based question answering

datasets.

Graph convolutional neural networks (GCNN) likewise utilize graph structures to model

complex tasks [37]. GCNNs have been successful at the event detection task, effectively lever-

aging dependency parse information [64]. They have been shown to model sentences success-

fully for semantic role labeling [57]. Finally, GCNNs have been used in a semi-supervised

learning setting on citation network and knowledge graph datasets [39]. Though not exactly

a GCNN, dependency CNNs also use the graph structure of a sentence’s dependency parse

to achieve high accuracy on question answering and sentiment analysis datasets [54].

Finally, attention models have been successful on a variety of NLP tasks. Attention

models have made significant improvements in machine translation [53] and document classi-

fication [87]. They have also been applied to the event detection task [51, 49]. The DAG-GRU
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model further applies attention to the graphical structure of a dependency parse for event

detection [65].

3.4 Graph Transforming Neural Networks

While event mentions and co-references are typically given as inputs for the task of event

sequence extraction, I hypothesize that entities and their roles in events play an important

role. The task has many elements to consider: the document text, event mentions, entity

mentions, co-reference relations, events, entities, argument relations, and instantiated events.

These elements can be represented in a graph structure. However, they are at different levels

of abstraction. For example, events are groups of event mentions connected by co-reference

relations. Creating a single graph out of all the elements is complex and computationally

cumbersome.

However, there are often simple relationships between successive levels of abstraction.

The entities at a given level are formed from the entities at lower level through some kind of

composition. For example, an event is made of a set of event mentions and a set of mentions

represent an entity. Therefore, a graph can be defined for each level of abstraction as well as

a transformation between successive levels. Hence, this architecture is framed as a series of

graph transformations.

More formally, a graph is defined as a set of nodes and edges, G = (V,E). A graph

transformation Hl(Gl) takes as input a graph Gl and produces a graph Gl+1, i.e. Gl+1 =

Hl(Gl). Hl is decomposed into two functions f and g, which transform nodes and edges

respectively:

Hl(Gl) =
(
Vl+1, g(Vl+1)|Vl+1 = f(Gl)

)
(3.1)

The function f aggregates nodes in Gl to produce a new, smaller set of nodes Vl+1.

Specifically, f(Gl) = {r(s,G)|s ∈ Sl} where r is a function that generates a representation
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Figure 3.2: An overview of GTNN. H1 transforms the word representations (green) into
event (red) and entity (blue) mention nodes. Next, H2, utilizing event co-reference, creates
event and entity nodes. Finally, instantiated event nodes are created in H3 by heuristically
linking events and entities that co-occur in the same sentence. All pairwise combinations of
instantiated events are evaluated for a possible “Parent-child” or “After” relation.

for each subset of the graph. Some possible models that can be used for r are GCNN

[37, 39, 57], Rel-Net [73], DCNN [54], or even an RNN [19] with pooling. In general, f needs

to summarize a graph as a set of vectors which comprise the nodes in the new graph.

These nodes are linked with edges produced by g. g needs to evaluate pairs of nodes,

and determine if an edge should exist between them. For example, a linear model or multi-

layer perceptron (MLP) operating on pairs of nodes could predict edges. Alternatively, prior

knowledge or heuristic-based functions can be substituted. This framework allows for the

neural network to mirror the natural decomposition of a problem, and exploit it for efficient

learning and inference. The framework is illustrated in the context of event sequence and

entity relation extraction in the remained of the chapter.

3.5 First Transformation

Three transformations are defined for the event sequence extraction as shown in Figure

3.2. The first transformation converts a graph representing the document into a graph of

event and entity mentions connected by edges indicating co-reference. Figure 3.3 contains

an illustration of the first layer. The initial graph G0, is comprised of the document text.
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Ali	Ibrahim	Al-Sudani	was	detained	and	sent	back	to	Egypt	under	an	emergency	deportation	order	...

Figure 3.3: An example of the first layer of GTNN for event sequence extraction. A GRU
model produces a vector per word. Spans of words are averaged into a single vectors repre-
sented by the blue and red nodes. Since “sent back” and “deportation” refer to the same event
they are linked an edge. The spans for event mentions are part of the dataset’s annotation,
while the entity spans are predicted.

Each token in the document is a node and the narrative ordering of the text forms the edges.

The representation function r1 consists of a word embedding layer followed by GRU with

average pooling [19]. Average pooling is applied to the subsets in S1, which are event and

entity mention spans. The linking function g1 simply connects nodes based on the given

co-reference relations. For entities, rather than attempting to solve the challenging problem

of entity co-reference, g1 creates a fixed number of entities per type and links each mention

to each entity of the same type. This avoids making co-reference decisions but allows for the

next transformation layer to create entity representations. Altogether, this transformation

H1, applies word embeddings, GRU, and average pooling defined by mention spans. The

result is a graph consisting of event and entity mentions with the event mentions connected

according to co-reference relations and the entity mentions grouped according to entity type.

3.6 Second Transformation

The second layer transforms the mention graph into an event argument graph. That is, a

single representation is created for each event and each entity out of their corresponding

mentions. In the mention graph, an event or entity is a sub-graph of mentions. These
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subgraphs constitute the subsets in S2. The representation function r2 could be any graph

neural network, but for this work four kinds of neural networks were considered. GTNN

is modular, allowing for any one of the following graph neural networks to be used as a

representation function r2(s2, G):

• GCNN applies a transformation to each mention m ∈ s2, sums the result, and applies

a transformation. It is denoted with the following: r2,gcnn(s2, G) = ReLU
( ∑
m∈s2

Wrm
)

• Rel-Net applies a multi-layer perceptron network to pairs of mention vectors. The

equation is: r2,rel-net(s2, G) =
∑

m,m′∈s2
MLP

(
m ◦m′

)
• Max-pooling simply takes largest value of each dimension in the mention vectors. The

equation is: r2,max-pool(s,G) = row-max
([
m|m ∈ s

])
• Attention effectively makes a weighted average of the mention vectors. The equations

are:

MT =
[
m|m ∈ s

]
(3.2)

α = softmax(tanh(Mwr)) (3.3)

r2,attention(s,G) = MTα (3.4)

Each of the representation functions contains trainable parameters except for max-pooling.

The mention vector m is composed of the output of the previous layer h1 and an embedded

mention type et, i.e. m = h1 ◦ et. Here the ◦ is the concatenation operator. The linking

function g2 is heuristically based and adds an argument edge between any event and entity if

they contain mentions that co-occur in a sentence. In summary, H2 builds event and entity

nodes by applying a graph neural network to aggregate mentions into a single canonical vec-

tor. These event and entities are then linked by textual co-occurrence. The result is a graph

consisting of events linked with possible arguments.
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Method Dev Avg. Test Avg. Std. Dev. Min Max Avg. ∆
Baseline 7.69% 6.36% 2.38% 2.42% 9.21% -
Baseline+GCNN 6.20% 4.44% 3.08% 0.00% 8.86% -1.92% ± 2.43%
Baseline+Rel-Net 4.99% 1.05% 1.01% 0.00% 2.89% -5.31% ± 1.65%
Baseline+Attention 8.21% 4.14% 2.31% 0.00% 7.57% -2.22% ± 1.87%
GCNN 8.69% 6.18% 2.72% 3.82% 12.14% -0.18% ± 1.45%
GCNN+max 7.30% 5.98% 3.48% 2.78% 11.76% -0.37% ± 1.94%
GCNN+max+ents 7.67% 6.53% 2.95% 2.58% 11.49% 0.17% ± 1.53%
Rel-Net 8.35% 4.64% 2.87% 0.0% 10.86% -1.71% ± 2.46%
Rel-Net+max 7.97% 6.32% 3.44% 1.09% 12.41% -0.04% ± 2.26%
Rel-Net+max+ents 7.13% 5.42% 3.11% 0.00% 10.04% -0.94% ± 1.84%
Attention 6.88% 5.36% 1.74% 2.58% 7.72% -1.00% ± 0.89%
Attention+max 8.59% 7.83% 2.58% 3.92% 11.71% 1.47% ± 1.45%
Attention+max+ents 8.36% 8.07% 3.21% 2.83% 13.55% 1.71% ± 1.39%

Table 3.1: F1 scores on 10 fold cross validation results on TAC KBP 2017. The “Avg. ∆” is
the average improvement over the baseline.

3.7 Third Transformation

Finally, the third layer transforms the event-argument graph into a graph of instantiated

events with edges indicating either a “Parent-child” or “After” relationship, the target of the

event sequence extraction task. The inputted event-argument graph consists of sub-graphs,

each containing a single event and associated arguments. For this layer, each set s3 ∈ S3

is a set edges between a single event and all its arguments i.e. e, a ∈ s3. The graph neural

networks used for r3 are similar to those used for r2 except that they are event-centric. The

networks are as follows:

• GCNN applied to the event-argument graph concatenates the event representation

e with the argument representation a, effectively aggregating the edge relationships:

r3,gcnn(s3, G) = ReLU

( ∑
e,a∈s3

Wr(e ◦ a)

)
• Rel-Net likewise builds a representation of each event-argument link with a multi-layer

perceptron function: r3,rel-net(s3, G) =
∑

e,a′∈s3
MLP

(
e ◦ a′

)
• Attention uses a bilinear projection to combine the event representation with all the
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associated arguments before performing a weighted average:

MT =
[
a|e, a ∈ s3

]
(3.5)

α = softmax(tanh(MWae)) (3.6)

r3,attention(s3, G) = Wr

(
(MTα) ◦ e

)
(3.7)

MLP denotes a multi-layer perceptron network. GCNN and Rel-Net here are modified

slightly to model the interaction between an event and each of its arguments. The attention

network is significantly different than the version for r2. The importance of each argument

is determined by the bilinear function MWae rather than by a single weight vector. This

also models the interaction of event and argument and weights each argument accordingly.

Finally, it produces a linear projection of both the event and attention weighted argument

vectors. The output of r3 is a vector that represents an instantiated event.

The linking function g3 predicts edges between pairs of instantiated events. This is framed

a multi-class classification problem, where the class labels are “Parent-child,” “After,” or

“Nil.” Dropout [78] is applied before a linear classifier where softmax is used to make the

prediction. The final graph consists of nodes representing instantiated events with relation-

ships forming edges between them.

3.8 Experimental Results

The TAC KBP 2017 event sequence extraction dataset is used for evaluation. It consists of

158 documents, taken from newswire, weblog, and discussion forum sources. Additionally, a

entity tagging system was trained on ACE2005 to predict entity mentions. It consists of a

three layer GRU model with softmax classifier and was trained for BIO tagging [70] on the

train-dev-test split of ACE2005 [84], achieving an F1 Score of 82% on test. This system was

used to predict entity mentions according to the ACE2005 ontology on the TAC dataset.
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The data was randomly split into 10 folds, each consisting of 88, 30, and 40 documents for

training, development, and test respectively. Splitting this way maintains consistent amounts

of training and testing data, making comparisons across the splits meaningful. Each method

was evaluated on all the folds and measured against the baseline performance for each fold.

The difference was evaluated by a paired t-test. Performance was measured with F1, the

harmonic mean between precision and recall. The average F1 difference between the baseline

and the method was used as the basis for the evaluation of each method.

3.9 Baseline

The baseline system consists of a straight-forward GRU-based model similar to that used in

the TAC 2017 competition [76]. It was recreated since it is the only prior work and so the

model can be evaluated fairly in the same experimental setup. The baseline can be viewed

as a simplified version of a graph transforming neural network, utilizing H1 and H2 without

any entities or entity mentions, with r2 = r2,max-pool.

The model consists of four layers. The first is the word embedding layer, followed by a bi-

directional GRU. The result is a contextualized representation for each word in the document.

The third layer applies a max-pooling for each event over all the event’s mentions. Finally,

a linear softmax classifier predicts the relation type between each pair of events. Unlike the

TAC 2017 model, the path embedding, part-of-speech embedding, and additional features

were removed. With the addition of the max-pooling layer over entity mentions, the same

information is available to all the models, making the comparison as fair as possible.

Some extensions of the baseline were also considered. The max-pooling layer was replaced

with either GCNN, Rel-Net, or the attention model. Baseline+GCNN, Baseline+Rel-Net,

Baseline+Attention use r2,gcnn, r2,rel-net, and r2,attention for r2 respectively as shown in Table

3.2. These models made use of the event structure without any entity or entity mention

information.
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Model r2,event r2,entity r3

Baseline r2,max-pool - -
Baseline+GCNN r2,gcnn - -
Baseline+Rel-Net r2,rel-net - -
Baseline+Attention r2,attention - -
GCNN r2,gcnn - r3,gcnn

GCNN+max r2,max-pool - r3,gcnn

GCNN+max+ents r2,max-pool r2,gcnn r3,gcnn

Rel-Net r2,rel-net - r3,rel-net

Rel-Net+max r2,max-pool - r3,rel-net

Rel-Net+max+ents r2,max-pool r2,rel-net r3,rel-net

Attention r2,attention - r3,attention

Attention+max r2,max-pool - r3,attention

Attention+max+ents r2,max-pool r2,attention r3,attention

Table 3.2: Baseline & GTNN model variations

3.10 GTNN Models

Multiple instantiations of the GTNN framework were evaluated. All variations of GTNN

use the same H1: word embeddings followed by GRU with average pooling over mentions.

The word embeddings for all the systems were initialized with a pre-trained 300 dimension

word2vec model [58] with the parameters fixed during training. Three types of graph neural

networks were considered, each with three variations, detailed in Table 3.2.

Each model with a “+max” variation is a direct extension of the baseline. These models

represent each event with a max-pool of its mentions. However, in the second transformation,

entity mentions are not grouped: each one is left unaltered and passed to the third transfor-

mation. The final transformation uses the nominal network to combine entity mentions and

events into instantiated events, e.g. “GCNN+max” uses r3,gcnn.

Each nominal variation is an extension of the corresponding baseline, e.g. “Rel-Net”

extends “Baseline+Rel-Net.” Unlike the “+max” variation, the nominal model uses that

representation function to aggregate event mentions in order to represent events, e.g. “Rel-

Net” uses r2,event = r2,rel-net. Their final transformation is the same as the “+max” variation.

Finally, the “+max+ents” variation is an extension of the “+max” variation. The primary

difference is in the second transformation, using a representation function for events and a
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Figure 3.4: A comparison of each model’s parameter count versus the its average performance.

set of representation functions for entities. Instead of solving the entity co-reference problem,

for each entity type, a fixed number of fully connected entities are created. A corresponding

number of representation functions are used to model the entities. This allows the models to

learn entity representations useful to the task by consolidating entity mentions. The number

of entities is set to be 5 via hyper-parameter tuning on the dev sets.

The hyper-parameters and settings are the same across all the models and the baseline.

The expanded relation type strategy used in the TAC competition system is followed [76].

The models were trained with the Adam algorithm [38] with a learning rate of 0.001 which

is halved every 75 epochs for a maximum of 200 epochs. The hidden dimension of the GRU

in H1 for a single direction is 32, and the mention type embedding size is 10. Hence the

dimension of the subsequent layer is 74. The dropout rate is 0.5. The models minimizes

cross-class entropy loss.
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3.11 Results

The task is challenging, and the baseline method was formidable. A summary of the results

of the experiments is shown in Table 3.1. The baseline method, i.e. Baseline, beat all its

extensions, Baseline+GCNN, Baseline+Rel-Net, Baseline+Attention, by a large margin. The

representations of events other than max-pool simply were not helpful.

Only the attention family of models, Attention, Attention+max, Attention+max+ents,

displayed significant improvements over the baseline. Both the variation with max-pooling of

events, Attention+max, and the variation with entities, Attention+max+ents, showed sta-

tistically significant improvements over the baseline with average scores of 7.83% and 8.07%

respectively. These models were the highest scoring across all models and variations and were

able to effectively utilize the entity and entity mention information. The combination of en-

tity information with attention could indicate that entity information is important however,

only some entities are relevant. This matches the intuition that stories are written around a

handful of important people, places, and things. All the entity mentions were predicted by a

separate system trained on ACE2005 and thus are noisy. The attention mechanism perhaps

allowed for filtering of irrelevant or noisy entities or entity mentions. Further, the attention

models have relatively few parameters, possibly helping these models avoid overfitting.

The GCNN based models, GCNN, GCNN+max, GCNN+max+ents, were statistically

indistinguishable from the baseline and generally worse on average despite using more pa-

rameters. Only the GCNN with entities, GCNN+max+ents, was better on average than the

baseline, with a small 0.17% improvement; however the difference is not statistically signif-

icant. GCNN’s relatively simple architecture did not effectively use its parameters. When

compared to models with a similar number of parameters, its performance lagged as seen in

Table 3.1.

The Rel-Net based models, Rel-Net, Rel-Net+max, Rel-Net+max+ents were not success-

ful, scoring the lowest of the methods evaluated. Each of these variations was worse than the

baseline. Rel-Net’s network structure is the most complex of the models evaluated, and it
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was likely to their detriment. In particular, using Rel-Net to model pairs of event mentions,

i.e. the “Rel-Net” and “Baseline+Rel-Net” models, were some of the worst with average

scores of 4.64% and 1.05% respectively. This demonstrates that modeling the interaction of

event mention pairs is likely not helpful. As seen in Figure 3.4, the relatively high number

of parameters used by Rel-Net likely caused overfitting.

One trend across all the families of models was the importance of max-pooling for event

mentions. In almost every case, the models that included max-pooling of event mentions

out-performed their counterparts. In particular, all the extensions of the baseline were sig-

nificantly worse on average. This could indicate that for each event, there is a canonical

mention that best represents it.

Additionally, the three base models, GCNN, Rel-Net, and attention, all have a common

structure, a summation over all given mentions. Each model is in its essence a different

strategy for weighting each mention before aggregating them with a sum. If each event does

have a single or a small number of mentions that best represent it, these models may be

diluting them by summing over all mentions.

Another positive effect was that of entities. The representation of entities was simplistic,

small fixed number of entities per type were created. Each entity was connected to all

the mentions of its type. Despite the limited nature of their representation, this variation

of each model family was the best on average except for Rel-Net+max+ents. It used far

more parameters than any other model or variation and very likely overfit the data. The

success of the other two “+ents” variations could indicate that aggregating entity mentions

is important for utilizing their information. Further, it may provide for the ability to filter

noisy or otherwise unimportant entity mentions.
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3.11.1 Entity Relation Results

In addition to the event sequence task, the GTNN framework was evaluated on the ACE2005

entity relation extraction task. Pairs of entity mentions are defined to have one of seven

possible relations or Nil if no relations exists.

For this task, an instantation of the GTNN framework similar to the Attention+max+ents

model was used on the event sequence task. However in the event sequence extraction task,

entity mentions were included as additional predicted information. For entity relation extrac-

tion, the situation is reversed with event mentions being included as additional information.

Since, the event mentions as well as the event argument links are included in the ACE2005

dataset. The links and mentions were simply included from the ACE2005 annotations, rather

than heuristically created or predicted with a separate model.

For comparison, a high performance baseline model was reproduced [18]. The baseline

uses bi-directional LSTM with a pairwise attention model over entity mentions. This model

was chosen as a baseline since its components are similar though it does not fit within the

GTNN framework. Both models in this evaluation use GloVe word embeddings [66]. GTNN

produced an F1 score of 46.98% while the baseline was evaluated at 46.83%. These values are

likely equivalent since they are close and this thesis has already established the variability

of neural networks. It does show that GTNN is likely competitive with a current, high

performance entity relation extraction system.

However, the reproduction of the baseline was far below the reported value of 61.4%

[18]. There are a few possible explanations for this. First, the training-testing partition used

for this evaluation was different, so the comparison is not completely fair. Also, the word

embeddings employed differ from the reported source as well, which can significantly impact

performance [67, 66]. Naturally, it is possible there is an oversight in the implementation

or there is some other significant factor not stated or implied. To reiterate, this experiment

does show that the two methods are roughly equivalent in a fair evaluation setting.
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3.12 Conclusions and Future Work

The graph transforming neural network framework was introduced and many derived models

was evaluated on the task of event sequence extraction. While the task is difficult even

for sophisticated neural network models, two models managed to outperform a competitive

baseline demonstrating the usefulness of the framework. This chapter establishes a robust

evaluation and a benchmark for future work on this task. Experimental evidence suggests

that entities are important for understanding event sequences.

Many NLP tasks can be framed as a transformation of one type of graph into another. The

GTNN framework is sufficiently general that it can be applied to many other problems such as

entity linking, event and argument extraction, entity and event co-reference, and dependency

parsing. Many NLP tasks could benefit from the additional abstraction provided by GTNN.

While the GTNN framework makes local decisions, extending the framework into a joint

or structured prediction framework would be helpful for many NLP tasks including event

sequence extraction. For example, identifying entity roles, i.e. event argument relationships,

could be beneficial to event sequence extraction. In general, replacing the heuristic linking

functions used in this work with predicted links between events, entities, and entity mentions

could allow the model to identify key relationships. Both unsupervised and supervised joint

learning models may be helpful. Additional supervision will most likely be useful since it

provides more information. However, a joint model with unsupervised tasks could essentially

provide constraints for the overall task.

An additional transformation H4 could be added to the work of this chapter. Aggregating

event sequences would produce a representation for a story. Predicting a “same script”

relation between stories could be used for script learning. This effectively allows for script

learning to be incorporated into the framework as a joint task. Hence event detection,

event sequence extraction, and finally script learning can all be jointly learned in the same

framework.

Event sequence extraction provides the input for script learning which is explored in



51

Chapter 4. While script learning is the ultimate product of this thesis, the knowledge that is

represented in scripts may be helpful for event sequence extraction and possibly even event

detection. Many of the “after” relationships in event sequences are implied by the script to

which the event sequence belongs. That is, the ordering of events can be inferred by common

sense.
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Chapter 4: Script Learning

4.1 Introduction

Scripts were developed as a means of representing stereotypical event sequences and inter-

actions in narratives. The benefits of scripts for encoding common sense knowledge, filling

in gaps in a story, resolving ambiguous references, and answering comprehension questions

have been amply demonstrated in the early work in natural language understanding [74].

The earliest attempts to learn scripts were based on explanation-based learning, which can

be characterized as example-guided deduction from first principles [21, 22]. While this ap-

proach is successful in generalizing from a small number of examples, it requires a strong

domain theory, which limits its applicability.

More recently, some new graph-based algorithms for inducing script-like structures from

text have emerged. “Narrative Chains” is a narrative model similar to Scripts [10]. Each Nar-

rative Chain is a directed graph indicating the most frequent temporal relationship between

the events in the chain. Narrative Chains are learned by a novel application of pairwise mu-

tual information and temporal relation learning. Another graph learning approach employs

Multiple Sequence Alignment in conjunction with a semantic similarity function to cluster

sequences of event descriptions into a directed graph [71]. More recently still, graphical mod-

els have been proposed for representing script-like knowledge, but these lack the temporal

component that is central to this chapter and to the early script work. These models instead

focus on learning bags of related events [9, 40].

While the above approches demonstrate the learnability of script-like knowledge, they do

not offer a probabilistic framework to reason robustly under uncertainty taking into account

the temporal order of events. In this chapter, I present the first formal representation of

scripts as Hidden Markov Models (HMMs), which support robust inference and effective
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learning algorithms. The states of the HMM correspond to event types in scripts, such

as entering a restaurant or opening a door. Observations correspond to natural language

sentences that describe the event instances that occur in the story, e.g., “John went to

Starbucks. He came back after ten minutes.” The standard inference algorithms, such as the

Forward-Backward algorithm, are able to answer questions about the hidden states given the

observed sentences, for example, “What did John do in Starbucks?”

There are two complications that need to be dealt with to adapt HMMs to model narrative

scripts. First, both the set of states, i.e. event types, and the set of observations are not pre-

specified but are to be learned from data. The set of possible observations and the set of

event types is assumed to be bounded but unknown. A clustering algorithm [71] is employed

to reduce the natural language sentences, i.e. event descriptions, to a small set of observations

and states based on their Wordnet similarity.

The second complication of narrative texts is that many events may be omitted either

in the narration or by the event detection process. More importantly, there is no indication

of a time lapse or a gap in the story, so the standard forward-backward algorithm does not

apply. To account for this, the states are allowed to skip generating observations with some

probability. This kind of HMM, with insertions and gaps, have been considered previously

in speech processing [4] and in computational biology [41]. These models are refined by al-

lowing state-dependent missingness, without introducing additional “insert states” or “delete

states” as in [41]. In this work, attention is restricted to the so-called “Left-to-Right HMMs”

which have acyclic graphical structure with possible self-loops, as they support more efficient

inference algorithms than general HMMs and suffice to model most of the natural scripts.

The problem considered is that of learning the structure and parameters of scripts in

the form of HMMs from sequences of natural language sentences. The proposed solution to

script learning is a novel bottom-up method for structure learning, called SEM-HMM, which

is inspired by Bayesian Model Merging (BMM) [79] and Structural Expectation Maximization

(SEM) [29]. It starts with a fully enumerated HMM representation of the event sequences
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Figure 4.1: A portion of a learned “Answer the Doorbell” script

and incrementally merges states and deletes edges to improve the posterior probability of the

structure and the parameters given the data. This approach is compared to several informed

baselines on many natural datasets and shows its superior performance. I believe this work

represents the first formalization of scripts that supports probabilistic inference and paves

the way for robust understanding of natural language texts.

4.2 Problem Setup

Consider an activity such as answering the doorbell. An example HMM representation of

this activity is illustrated in Figure 4.1. Each box represents a state, and the text within is

a set of possible event descriptions (i.e. observations). Each event description is also marked

with its conditional probability. Each edge represents a transition from one state to another

and is annotated with its conditional probability.

In this thesis, a special class of HMM is considered with the following properties. First,

some observations are allowed to be missing. This is a natural phenomenon in text, where not

all events are mentioned or extracted. These are called null observations and are represented

with a special symbol λ. Second, it is assumed that the states of the HMM can be ordered

such that all transitions take place only in that order. These are called Left-to-Right HMMs

in the literature [68, 4]. Self-transitions of states are permitted and represent “spurious”

observations or events with multi-time step durations. While this work can be generalized
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to arbitrary HMMs, it was observed that the Left-to-Right HMMs suffice to model scripts in

this corpora.

Formally, an HMM is a 4-tuple (Q, T,O,Ω), where Q is a set of states, T (q′|q) is the

probability of transition from q to q′, O is a set of possible non-null observations, and Ω(o|q)

is the probability of observing o when in state q1, where o ∈ O ∪ {λ}, and qn is the terminal

state. An HMM is Left-to-Right if the states of the HMM can be ordered from q0 thru qn such

that T (qj|qi) is non-zero only if i ≤ j. It is assumed that the target HMM is Left-to-Right.

Each state is indexed according to a topological ordering of the transition graph. An HMM is

a generative model of a distribution over sequences of observations. For convenience w.l.o.g.

it is assumed that each time it is “run” to generate a sample, the HMM starts in the same

initial state q0, and goes through a sequence of transitions according to T until it reaches the

same final state qn, while emitting an observation in O∪{λ} in each state according to Ω. The

initial state q0 and the final state qn respectively emit the distinguished observation symbols,

“<” and “>” in O, which are emitted by no other state. The concatenation of observations

in successive states consitutes a sample of the distribution represented by the HMM. Because

the null observations are removed from the generated observations, the length of the output

string may be smaller than the number of state transitions. It could also be larger than the

number of distinct state transitions, since observations are allowed to be generated on the

self transitions. Thus spurious and missing observations model insertions and deletions in

the outputs of HMMs without introducing special states as in profile HMMs [41].

In this chapter, following problem is addressed: given a set of narrative texts, each of

which describes a stereotypical event sequence drawn from a fixed but unknown distribution,

learn the structure and parameters of a Left-to-Right HMM model that best captures the

distribution of the event sequences. The algorithm is evaluated on natural datasets by how

well the learned HMM can predict observations removed from the test sequences.

1Ω can be straightforwardly generalized to depend on both of the states in a state transition.
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4.3 HMM-Script Learning

At the top level, the algorithm is input a set of documents D, where each document is a

sequence of natural language sentences that describes the same stereotypical activity. The

output of the algorithm is a Left-to-Right HMM that represents that activity.

This approach has four main components, which are described in the next four subsections:

event detection, parameter estimation, structure learning, and structure scoring. The event

detection step clusters the input sentences into event types and replaces the sentences with

the corresponding cluster labels. This process assumes that each sentence contains a single

event. After extraction, the event sequences are iteratively merged with the current HMM

in batches of size r starting with an empty HMM. Structure Learning then merges pairs

of states (nodes) and removes state transitions (edges) by greedy hill climbing guided by

the improvement in approximate posterior probability of the HMM. Once the hill climbing

converges to a local optimum, the maxmimum likelihood HMM parameters are re-estimated

using the EM procedure based on all the data seen so far. Then the next batch of r sequences

are processed. These steps will now be described in more detail.

4.3.1 Event Detection

Given a set of sequences of sentences, the event detection algorithm clusters them into events

and arranges them into a tree structured HMM. For this step, it is assumed that each sentence

has a simple structure that consists of a single verb and an object. The further simplifying

assumption is made that the sequences of sentences in all documents describe the events

in temporal order. Although this assumption is often violated in natural documents, this

problem is ignored to focus on script learning. There have been some approaches in previous

work that specifically address the problem of inferring temporal order of events from texts

though that problem is not explored here [69].

While chapter 2 directly addresses the problem of event detection, a simpler approach
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was taken for several reasons. First, despite being natural text, the OMICS data is much

simpler in comparison to newswire articles, weblog posts, and the other documents types of

ACE2005. A neural network model could have been employed; however the short, relatively

consistent sentences of OMICS do not warrant such a complex method. Second, the ACE2005

corpus is much larger than the OMICS dataset and ACE2005 is relatively small compared

to the datasets typically used in conjunction with neural networks. For that reason, any

neural network would likely overfit the data. Finally, ACE2005 provides a clear ontology

with 33 event types with annotation, whereas OMICS does not. An event detection system

for OMICS needs to be unsupervised, whereas the methods studied in Chapter 2 are all

supervised algorithms.

Given the above assumptions, a simple agglomerative clustering algorithm that uses a

semantic similarity function Sim(S1, S2) [71] is applied over sentence pairs (S1, S2) and is

parameterized as w1PS(V1, V2) + w2PS(O1, O2), where Vi is the verb, Oi is the object in

the sentence Si, and PS(w, v) is the path similarity metric from Wordnet [59]. It is applied

to the first verb (preferring verbs that are not stop words) and to the objects from each

pair of sentences. The constants w1 and w2 are tuning parameters that adjust the relative

importance of each component. Like the sequence alignment approach [71], it was found that

a high weight on the verb similarity was important to finding meaningful clusters of events.

The most frequent verb in each cluster is extracted to name the event type that corresponds

to that cluster.

The initial configuration of the HMM is a Prefix Tree Acceptor, which is constructed by

starting with a single event sequence and then adding sequences by branching the tree at the

first place the new sequence differs from it [25, 75]. By repeating this process, an HMM that

fully enumerates the data is constructed.
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4.3.2 Parameter Estimation with EM

In this section, the proposed parameter estimation methods are described. While parameter

estimation in this kind of HMM was treated earlier in the literature [68, 4], this work provides

a more principled approach to estimate the state-dependent probability of λ transitions from

data without introducing special insert and delete states [41]. It is assumed that the structure

of the Left-to-Right HMM is fixed based on the preceding structure learning step, which is

described in Section 4.3.3.

The main difficulty in HMM parameter estimation is that the states of the HMM are not

observed. The Expectation-Maximization (EM) procedure (also called the Baum-Welch al-

gorithm in HMMs) alternates between estimating the hidden states in the event sequences by

running the Forward-Backward algorithm (the Expectation step) and finding the maximum

likelihood estimates (the Maximization step) of the transition and observation parameters

of the HMM [6]. Unfortunately, because of the λ-transitions, the state transitions of the

proposed HMM are not necessarily aligned with the observations. Hence it is necessary to

explicitly maintain two indices, the time index t and the observation index i. αqj(t, i) is

defined to be the joint probability that the HMM is in state qj at time t and has made the

observations ~o0,i. This is computed by the forward pass of the algorithm using the following

recursion. Equations 4.1 and 4.2 represent the base case of the recursion, while Equation 4.3

represents the case for null observations. Note that the observation index i of the recursive

call is not advanced unlike in the second half of Equation 4.3 where it is advanced for a

normal observation. The fact that the HMM is Left-to-Right is exploited by only considering

transitions to j from states with indices k ≤ j. The time index t is incremented starting 0,
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and the observation index i varies from 0 thru m.

αq0(0, 0) = 1 (4.1)

∀j > 0, αqj(0, 0) = 0 (4.2)

αqj(t, i) =
∑

0≤k≤j

T (qj|qk){Ω(λ|qj)αqk(t− 1, i) (4.3)

+ Ω(oi|qj)αqk(t− 1, i− 1)} (4.4)

The backward part of the standard Forward-Backward algorithm starts from the last

time step τ and reasons backwards. Unfortunately in this setting, τ—the true number of

state transitions— is not known, as some of the observations are missing. Hence, βqj(t, i)

is defined as the conditional probability of observing ~oi+1,m in the remaining t steps given

that the current state is qj. This allows for t to be incremented starting from 0 as recursion

proceeds, rather than decrementing it from τ .

βqn(0,m) = 1 (4.5)

∀j < n, βqj(0,m) = 0 (4.6)

βqj(t, i) =
∑
j≤k

T (qk|qj){Ω(λ|qk)βqk(t− 1, i) (4.7)

+ Ω(oi+1|qk)βqk(t− 1, i+ 1)} (4.8)

Equation 4.9 calculates the probability of the observation sequence z = P (~o), which is

computed by marginalizing αq(t,m) over time t and state q and setting the second index i

to the length of the observation sequence m. The quantity z serves as the normalizing factor
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for the last three equations.

z = P (~o) =
∑
q∈Q

∑
t

αq(t,m) (4.9)

γq(t, i) = P (q|~o) = z−1
∑
τ

αq(t, i)βq(τ − t, i) (4.10)

δq,q′↑λ(t) = P (q → q′, λ|~o) = z−1T (q′|q)Ω(λ|q′) (4.11)∑
τ

∑
i

{αq(t, i)βq′(τ − t− 1, i)} (4.12)

∀o ∈ Ω, δq,q′↑o(t) = P (q → q′, o|~o) (4.13)

= z−1T (q′|q)Ω(o|q′) (4.14)∑
τ

∑
i

{αq(t, i)I(oi+1 = o)βq′(τ − t− 1, i+ 1)} (4.15)

In equation 4.10, the joint distribution of the state and observation index γ at time t is

computed by convolution, i.e. multiplying the α and β that correspond to the same time step

and the same state and marginalizing out the length of the state-sequence τ . Convolution is

necessary, as the length of the state-sequence τ is a random variable equal to the sum of the

corresponding time indices of α and β.

Equation 4.11 computes the joint probability of a state-transition associated with a null

observation by first multiplying the state transition probability by the null observation prob-

ability given the state transition and the appropriate α and β values. It then marginalizes

out the observation index i. Again, a convolution with respect to τ needs to be computed

to take into account the variation over the total number of state transitions. Equation 4.13

calculates the same probability for a non-null observation o. This equation is similar to Equa-

tion 4.11 with two differences. First, it is ensured that the observation is consistent with o

by multiplying the product with the indicator function I(oi+1 = o) which is 1 if oi+1 = o and

0 otherwise. Second, the observation index i is advanced in the β function.

Since the equations above are applied to each individual observation sequence, α, β, γ,

and δ all have an implicit index s which denotes the observation sequence and has been
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omitted in the above equations. The sequence will be made explicit below in calculating the

expected counts of state visits, state transitions, and state transition observation triples.

∀q ∈ Q,C(q) =
∑
s,t,i

γq(s, t, i) (4.16)

∀q, q′ ∈ Q,C(q → q′) =
∑

s,t,o∈Ω
⋃
{λ}

δq,q′↑o(s, t) (4.17)

∀q, q′ ∈ Q, o ∈ Ω
⋃
{λ}, (4.18)

C(q, q′ ↑ o) =
∑
s,t

δq,q′↑o(s, t) (4.19)

Equation 4.16 counts the total expected number of visits to each state in the data. Equa-

tion 4.17 estimates the expected number of transitions between each state pair. Finally,

Equation 4.18 computes the expected number of observations and state-transitions including

null transitions. This concludes the E-step of the EM procedure.

The M-step of the EM procedure consists of Maximum Aposteriori (MAP) estimation of

the transition and observation distributions assuming an uninformative Dirichlet prior. This

amounts to adding a pseudocount of 1 to each of the next states and observation symbols.

The observation distributions for the initial and final states q0 and qn are fixed to be the

Kronecker delta distributions at their true values.

T̂ (q′|q) =
C(q → q′) + 1

[C(q) +
∑

p′∈Q 1]
(4.20)

Ω̂(o|q′) =

∑
q C(q, q′ ↑ o) + 1∑

o′{
∑

q C(q, q′ ↑ o′)}+ 1
(4.21)

The E-step and the M-step are repeated until convergence of the parameter estimates.
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4.3.3 Structure Learning

The proposed structure learning algorithm, SEM-HMM, will now be described. The algo-

rithm is inspired by Bayesian Model Merging (BMM) [79] and Structural EM (SEM) [29] and

adapts them to learning HMMs with missing observations. SEM-HMM performs a greedy

hill climbing search through the space of acyclic HMM structures. It iteratively proposes

changes to the structure either by merging states or by deleting edges. It evaluates each

change and makes the merge with the best score. An exact implementation of this method

is expensive, because, each time a structure change is considered, the MAP parameters of

the structure given the data must be re-estimated. One of the key insights of both SEM and

BMM is that this expensive re-estimation can be avoided in factored models by incrementally

computing the changes to various expected counts using only local information. While this

calculation is only approximate, it is highly efficient.

During the structure search, the algorithm considers every possible structure change,

i.e. merging of pairs of states and deletion of state-transitions, checks that the change does

not create cycles, evaluates it according to the scoring function, and selects the best scoring

structure. This is repeated until the structure can no longer be improved (see Algorithm 1).

Algorithm 1 Script induction via SEM-HMM
procedure Learn(Model M , Data D, Changes S)

while NotConverged do
M = AcyclicityFilter (S(M))
M∗ = argmaxM ′∈MP (M ′|D)
if P (M∗|D) ≤ P (M |D) then

return M
else

M = M∗

end if
end while

end procedure

The Merge States operator creates a new state from the union of a state pair’s transition

and observation distributions. It must assign transition and observation distributions to the

new merged state. To be exact, the parameter estimation needs to be redone for the changed

structure. To compute the impact of several proposed changes efficiently, it is assumed that
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all probabilistic state-transitions and trajectories for the observed sequences remain the same

as before except in the changed parts of the structure. In this work, the assumption will be

called “locality of change,” which allows for the addition of the corresponding expected counts

from the states being merged as shown below.

C(r) = C(p) + C(q) (4.22)

C(r → s) = C(p→ s) + C(q → s) (4.23)

C(s→ r) = C(s→ p) + C(s→ q) (4.24)

C(r, s ↑ o) = C(p, s ↑ o) + C(q, s ↑ o) (4.25)

C(s, r ↑ o) = C(s, p ↑ o) + C(s, q ↑ o) (4.26)

The second kind of structure change that is considered is edge deletion. It consists of

removing a transition between two states and redistributing its evidence along the other

paths between the same states. Again, making the locality of change assumption, only the

parameters of the transition and observation distributions that occur in the paths between

the two states need to be recomputed. The parameters affected by deleting an edge (qs, qe) are

re-estimated by effectively redistributing the expected transitions from qs to qe, C(qs → qe),

among other edges between qs and qe based on the parameters of the current model.

This is done efficiently using a procedure similar to the Forward-Backward algorithm

under the null observation sequence. Algorithm 4.3.3 takes the current model M , an edge

(qs → qe), and the expected count of the number of transitions from qs to qe, N = C(qs → qe),

as inputs. It updates the counts of the other transitions to compensate for removing the edge

between qs and qe. It initializes the α of qs and the β of qe with 1 and the rest of the αs and

βs to 0. It makes two passes through the HMM, first in the topological order of the nodes

in the graph and the second in the reverse topological order. In the first, “forward” pass

from qs to qe, it calculates the α value of each node qi that represents the probability that a

sequence that passes through qs also passes through qi while emitting no observation. In the
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second, “backward” pass, it computes the β value of a node qi that represents the probability

that a sequence that passes through qi emits no observation and later passes through qe. The

product of α(qi) and β(qi) gives the probability that qi is passed through when going from

qs to qt and emits no observation. Multiplying it by the expected number of transitions N

gives the expected number of additional counts which are added to C(qi) to compensate for

the deleted transition (qs → qe). After the distribution of the evidence, all the transition

and observation probabilities are re-estimated for the nodes and edges affected by the edge

deletion.

Algorithm 2 Forward-Backward algorithm to delete an edge and re-distribute the expected
counts.
procedure DeleteEdge(Model M , edge (qs → qe), count N)
∀is.t.s ≤ i ≤ e, α(qi) = β(qi) = 0
α(qs) = β(qe) = 1
for i = s+ 1 to e do

for all qp ∈ Parents(qi) do
α(qp → qi) = α(qp)T (qi|qp)Ω(λ|qi)
α(qi) = α(qi) + α(qp → qi)

end for
end for
for i = e− 1 downto s do

for all qc ∈ Children(qi) do
β(qi → qc) = β(qc)T (qc|qi)Ω(λ|qc)
C(qi → qc) = C(qi → qc) + α(qi → qc)β(qi → qc)N
C(qi) = C(qi) + C(qi → qc)
β(qi) = β(qi) + β(qi → qc)

end for
end for

end procedure

In principle, one could continue making incremental structural changes and parameter

updates and never run EM again. This is exactly what is done in Bayesian Model Merging

(BMM) [79]. However, a series of structural changes followed by approximate incremental

parameter updates could lead to bad local optima. Hence, after merging each batch of r

sequences into the HMM, we re-run EM for parameter estimation on all sequences seen thus

far.
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4.3.4 Structure Scoring

This section describes how to score the structures produced and select the best one. A

Bayesian scoring function is employed, which is the posterior probability of the model given

the data, denoted P (M |D). The score is decomposed via Bayes Rule (i.e. P (M |D) ∝

P (M)P (D|M))), and the denominator is omitted since it is invariant with regards to the

model.

Since each observation sequence is independent of the others, the data likelihood P (D|M) =

Π~o∈DP (~o) is calculated using the Forward-Backward algorithm and Equation 4.9 in Sec-

tion 4.3.2. Because the initial model fully enumerates the data, any merge can only reduce

the data likelihood. Hence, the model prior P (M) must be designed to encourage general-

ization via state merges and edge deletions (described in Section 4.3.3). A prior with three

components is employed: the first two components are syntactic and penalize the number

of states |Q| and the number of non-zero transitions |T | respectively. The third component

penalizes the number of frequently-observed semantic constraint violations |C|. In partic-

ular, the prior probability of the model P (M) = 1
Z

exp(−(κq|Q| + κt|T | + κc|C|)). The κ

parameters assign weights to each component in the prior.

The semantic constraints are learned from the event sequences for use in the model prior.

The constraints take the simple form “X never follows Y .” They are learned by generating

all possible such rules using pairwise permutations of event types, and evaluating them on

the training data. In particular, the number of times each rule is violated is counted and

a z-test is performed to determine if the violation rate is lower than a predetermined error

rate. Those rules that pass the hypothesis test with a threshold of 0.01 are included. When

evaluating a model, these contraints are considered violated if the model could generate a

sequence of observations that violates the constraint.

In addition to incrementally computing the transition and observation counts, C(r → s)

and C(r, s ↑ o), the likelihood, P (D|M), can be incrementally updated with structure changes
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as well. Note that the likelihood can be expressed as the following:

P (D|M) =
∏
q,r∈Q

∏
o∈O

T (r|q)C(q→r)Ω(o|r)C(q,r↑o) (4.27)

when the state transitions are observed. Since the state transitions are not actually observed,

the above expression is approximated by replacing the observed counts with expected counts.

Further, the locality of change assumption allows for easy calculation of the effect of changed

expected counts and parameters on the likelihood by dividing it by the old products and

multiplying by the new products. This version of the algorithm is called SEM-HMM-Approx.

4.4 Experiments and Results

The experimental results on SEM-HMM and SEM-HMM-Approx are now presented. The

evaluation task is to predict missing events from an observed sequence of events. For compar-

ison, four baselines were also evaluated. The “Frequency” baseline predicts the most frequent

event in the training set that is not found in the observed test sequence. The “Conditional”

baseline predicts the next event based on what most frequently follows the prior event. A

third baseline, referred to as “BMM,” is a version of the proposed algorithm that does not

use EM for parameter estimation and instead only incrementally updates the parameters

starting from the raw document counts. Further, it learns a standard HMM, that is, with-

out λ transitions. This is very similar to the Bayesian Model Merging approach for HMMs

[79]. The fourth baseline is the same as above, but uses the EM algorithm for parameter

estimation without λ transitions. It is referred to as “BMM + EM.”

The Open Minds Indoor Common Sense (OMICS) corpus was developed by the Honda

Research Institute and is based upon the Open Mind Common Sense project [32]. It describes

175 common household tasks with each task having 14 to 122 narratives describing, in short

sentences, the necessary steps to complete it. Each narrative consists of temporally ordered,

simple sentences from a single author that describe a plan to accomplish a task. Examples
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Batch Size r 2 5 10
SEM-HMM 42.2% 45.1% 46.0%
SEM-HMM Approx. 43.3% 43.5% 44.3%
BMM + EM 41.1% 41.2% 42.1%
BMM 41.0% 39.5% 39.1%
Conditional 36.2%
Frequency 27.3%

Table 4.1: The average accuracy on the OMICS domains

Example 1 Example 2
Hear the doorbell. Listen for the doorbell.
Walk to the door. Go towards the door.
Open the door. Open the door.
Allow the people in. Greet the vistor.
Close the door. See what the visitor wants.

Say goodbye to the visitor.
Close the door.

Table 4.2: Examples from the OMICS “Answer the Doorbell” task with event triggers un-
derlined

from the “Answer the Doorbell” task can be found in Table 2. The OMICS corpus has 9044

individual narratives, and its short and relatively consistent language lends itself to relatively

easy event detection.

The 84 domains with at least 50 narratives and 3 event types were used for evaluation.

For each domain, forty percent of the narratives were withheld for testing, each with one

randomly-chosen event omitted. The model was evaluated on the proportion of correctly

predicted events given the remaining sequence. On average each domain has 21.7 event types

with a standard deviation of 4.6. The average narrative length across domains is 3.8 with

standard deviation of 1.7. This implies that only a fraction of the event types are present

in any given narrative. There is a high degree of omission of events, and there are many

different ways of accomplishing each task. Hence, the prediction task is reasonably difficult,

as evidenced by the performance of simple baselines. Neither the frequency of events nor

simple temporal structure is enough to accurately fill in the gaps. It indicates that more
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sophisticated modeling such as SEM-HMM is needed.

The average accuracy across the 84 domains for each method is found in Table 4.4. On

average the proposed method significantly out-performed all the baselines, with the average

improvement in accuracy across OMICS tasks between SEM-HMM and each baseline being

statistically significant at a .01 level across all pairs and on sizes of r = 5 and r = 10 using

one-sided paired t-tests. For r = 2, improvement was not statistically greater than zero.

The results improve with batch size r until r = 10 for SEM-HMM and BMM+EM, but they

decrease with batch size for BMM without EM. Both of the methods that use EM depend

on statistics to be robust and hence need a larger r value to be accurate. However for BMM,

a smaller r size means it reconciles a couple of documents with the current model in each

iteration, which ultimately helps guide the structure search. The accuracy for “SEM-HMM

Approx.” is close to the exact version at each batch level, while only taking half the time on

average.

4.5 Conclusions

In this chapter, the first formal treatment of scripts as HMMs with missing observations was

proposed. We adapted the HMM inference and parameter estimation procedures to scripts

and developed a new structure learning algorithm, SEM-HMM, based on the EM procedure.

It improves upon BMM by allowing for missing observations and by incorporating maximum

likelihood parameter estimation via EM. The proposed algorithm is shown to be effective

in learning scripts from documents and performs better than other baselines on sequence

prediction tasks. Thanks to the assumption of missing observations, the graphical structure

of the scripts is usually sparse and intuitive.

There are several avenues for future work. First, the inclusion of entities as arguments to

events is an important extension. This will enable representing the roles of people, places,

and things within the context of a script. Understanding entities and the roles they occupy
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can be used for additional inferences, in particular when references to actors or participants

are implied or omitted.

Another consideration is to use scripts themselves as knowledge to guide event detection

and event sequence extraction. The three chapters of this thesis form a pipeline, producing

scripts. Including scripts as input for the pipeline could refine the entire process. This could

be iteratively repeated until no further improvements are found.

Finally, instead of viewing scripts as a final product of this pipeline, scripts could be

created as a byproduct. Scripts are often viewed as a representation of common sense, that

is, knowledge that does not need to be explicitly stated because it is assumed by the text.

When performing event sequence extraction, it is reasonable to believe that some temporal

relationships are stated and others are assumed. Scripts could be used as a latent variable in

the model, such that a relationship is either explicitly stated, is implied by the script, or does

not exist. An event sequence extraction model could choose between extracting an explicit

relationship or one implied by a script. Scripts would be learned indirectly based on their

utility in assisting with event sequence extraction.
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Chapter 5: Conclusion & Future Work

This thesis explored the task of narrative understanding and its three primary components:

event detection, relation extraction, and script learning. Chapter 2 detailed a new event

detection model named DAG-GRU that incorporates syntactic relationships into its struc-

ture. It identified the on-average improvement of document-level models over sentence-level

models, in particular, the strength of the EntNet memory network. The model along with

replications of other models were evaluated with rigor, accounting for variation due to the

initial parameter values of neural networks and due to the variety of documents contained

in the standard dataset. Overall, the robust evaluation demonstrated that the variation ob-

served was often greater than the differences in the state-of-the-art. Finally, an analysis of

the predictions between two different models surprisingly showed that despite the different

network architectures, they largely made the same predictions and errors.

In Chapter 3, a new framework called graph transforming networks (GTNN) was pro-

posed to be a general method for relation extraction. It represents the task as a series

of graph transformations, each transformation corresponding to a related sub-task. Each

transformation is performed by a neural network, the modularity of the framework allows

for various models to be easily instantiated. The framework was evaluated on both event

sequence extraction as well as ACE2005’s entity relation extraction task.

Finally, in Chapter 4 a new variation of Hidden Markov Models that allows for omitted

events was discussed along with a procedure for inducing the HMMs from event sequences.

The formulation of scripts as HMMs is novel, as is the algorithm for learning the HMMs

which is based on Structural Expectation Maximization and Bayesian Model Merging. The

result was scripts (learned from natural texts) that were effective in inferring events omitted

from event sequences.
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5.1 Future Work

Currently, the GTNN model lags the state-of-the-art in entity relation extraction. One way

GTNN differs from most, if not all, relation extraction models is by modeling segments of

the document rather than relation-mention pairs. The standard procedure is to take the

context, i.e., a sentence fragment, between two entities and build a representation of it

with a neural network e.g. LSTM. GTNN builds a representation for each entity mention

using the entire document as context. However, the relation mention strategy may have

an advantage, because the representations it builds are for pairs of entity mentions. In the

standard approach, each representation is used for a single relation extraction decision, rather

than an entity mention representation in GTNN which is used in multiple decisions.

For the DAG-GRU model, the obvious next step is to apply it to the full event extraction

task rather than only to the event detection task. Event extraction involves identifying entity

mentions that participate in the event and have specified role type. This additional step is

called argument linking. An event extraction model that jointly detects events and links

arguments based on DAG-GRU would be a natural extension, since there is evidence that

syntactic information is useful for identifying events [28].

One more avenue of extension is to convert the three tasks presented into a single joint

model. This would allow for script-level knowledge and context to be used while detecting

events and constructing event sequences. Knowing the co-occurrence of events as well as the

probability of omissions is likely helpful for event detection and event sequence extraction.

Finally, all stages of narrative understanding, including a joint model could benefit from

additional data. The ACE2005 dataset is relatively small, and given the nuance of the tasks,

additional data is likely required for substantial further progress. Though several recent

approaches to event detection have utilized additional data, the extended datasets are still

relatively small and have not produced large improvements. Adapting the tasks to semi-

supervised, unsupervised, or transfer learning problems are some potential ways of extending

the data.
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Event Type Training Dev. Test
Acquit 5 0 1
Appeal 30 7 6
Arrest-Jail 78 4 6
Attack 1273 177 93
Be-Born 47 0 3
Charge-Indict 96 2 8
Convict 64 6 6
Declare-Bankruptcy 24 1 2
Demonstrate 65 9 7
Die 524 57 17
Divorce 20 0 9
Elect 162 5 16
End-Org 31 1 5
End-Position 159 31 22
Execute 14 5 2
Extradite 6 0 1
Fine 22 0 6
Injure 127 14 1
Marry 73 0 10
Meet 200 30 50
Merge-Org 14 0 0
Nominate 11 0 1
Pardon 2 0 0
Phone-Write 112 3 8
Release-Parole 46 0 1
Sentence 84 4 11
Start-Org 29 0 18
Start-Position 92 13 13
Sue 60 12 4
Transfer-Money 127 56 14
Transfer-Ownership 89 5 30
Transport 611 62 48
Trial-Hearing 103 1 5

Table A.1: Event Type distribution across de-facto standard ACE2005 partitions for event
detection.




