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 Autonomous vehicles (AVs) at varying market penetrations will change traffic flow 

and highway performance. At AV market penetrations between 0% and 100%, human 

driven vehicles (HVs) will be interacting with AVs. However, little is known about how 

HVs interact with AVs. This study attempts to quantify HV headways when following an 

AV using driving simulator data and integrates that data into a multi-agent simulation to 

quantify new highway travel time and flow predictions at varying AV market penetrations. 

This study also collected biometric feedback data to quantify driver level of stress when 

presented with a hard-breaking AV and HV. The driving simulator experiment was 

successfully completed by 36 participants. The results of this study show that driver level 

of stress is 70% higher in hard break scenarios involving HVs versus AVs. Additionally, 

drivers over the age of 34.5 were found to give AVs 2% more headway than HVs, while 

younger drivers gave AVs 18% less headway than HVs. Thirty-six scenarios were tested in 

the multi-agent simulation using results from the driving simulator. Using the driving 

simulator results, average travel times were found to increase at most by 2.3%.  
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1.0 INTRODUCTION 

Autonomous Vehicles (AVs) will undoubtedly have a significant impact on transportation 

networks. Many transportation agencies anticipate that AVs see initial widespread adoption 

concentrated to highway facilities (KPMG, 2019). In response to this, significant research has been 

done to better understand how AVs will impact highway performance, especially with varying AV 

market penetrations. However, these studies use the same interaction model for human vehicle (HV) 

to HV interactions as for HV to AV interactions. There is evidence that human drivers treat and 

interact with AVs differently than they would with HVs. Not reflecting these differences when 

predicting how AVs will impact highway performance under varying AV market penetrations may 

reduce the accuracy of those predictions. 

Headway is a critical parameter in traffic microsimulation and capacity calculations 

(Pueboobpaphan, Park, Kim, & Choo, 2013), and driving simulators are effective tools for measuring 

driver headway (Risto & Martens, 2014). This study uses the driving simulator to better understand 

HV to AV interactions in terms of level of stress and headway, drawing differences between HV to 

HV headways and HV to AV headways. Additionally, this study integrates the driving simulator 

dataset into a multi-agent simulation. The simulation tests the effect of new HV to AV headway values 

on highway travel times and flow.  
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2.0 LITERATURE REVIEW 

 This chapter identifies the challenges and knowledge gaps associated with predicting highway 

capacity when considering the market penetration (MP) of Autonomous Vehicles (AVs). Additionally, 

literature on human driver behavior when interacting with AVs will be reviewed. Significant work has 

been published on traffic flow simulation with varying MPs of AVs. However, the assumptions these 

studies use to define AV and human vehicle (HV) behavior often lack empirical justification. This 

literature review will end with an overview on the role of driving simulators in transportation research 

and how that role relates to traffic flow research. 

2.1 Autonomous Vehicles 

2.1.1 Autonomous Vehicle Classification 

Different vehicles have varying degrees of automation, meaning that not all vehicles can be 

simply categorized as an HV or AV. Guidance from the U.S. Department of Transportation suggests 

that manufacturers should refer and conform to the Society of Automotive Engineers (SAE) J3016 

automation classification system (NHTSA, 2016). Following the publication of this guidance, the SAE 

J3016 automation classification system has become widely accepted as the industry standard by vehicle 

manufacturers, state and municipal transportation agencies, and researchers. SAE classifies 

automation on a scale from zero to five. In summary, the levels are 0) no driving automation, 1) driver 

assistance, 2) partial driving automation, 3) conditional driving automation, 4) high driving 

automation, and 5) full driving automation (SAE, 2018). Figure 2.1 provides more detailed standard 

definitions of each level. Today, most new vehicles fall under SAE levels 1 and 2. While SAE level 3 

vehicles are commercially available, they make up a marginal share of the vehicle market (Hedlund, 

2017). There is no consensus on when SAE level 4 or 5 vehicles will be commercially available, 

however these vehicles are currently being tested on public roads. 
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Figure 2.1: SAE’s standard definitions for its six levels of driving automation as outlined in “SAE 

J3016 Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving 
Systems” (SAE, 2018) 

2.1.2 Autonomous Vehicle Implementation Challenges 

Leading companies in this field such as General Motors, Waymo (Google), Uber, and Baidu 

have increased testing of these vehicles significantly in recent years (Bridgelall & Tolliver, 2020). 

Testing has illustrated the unique safety challenges associated with processing complex movements, 

interactions, and predictions in urban areas. These challenges have been pushed into the public eye 

after the tragic and fatal collision in Tempe, AZ involving a pedestrian and an Uber owned AV (CRS, 

2020).  

Compared to urban driving, the challenges AVs face driving on highways are significantly less, 

as highway infrastructure and highway users tend to be more predictable (Nothdurft, et al., 2011). As 
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a result of this understanding, many countries at the forefront of AV adoption are preparing for 

widespread AV adoption on highways (KPMG, 2019). This has increased the urgency for research 

aimed at solving the set of challenges associated with AV operation on highway infrastructure. Table 

2.1 shows an adoption of Dr. Shladover’s (University of California Berkeley) 2017 estimates for when 

AVs will be introduced to certain driving environments (Shladover, 2017), which align well with other 

predictions reviewed in this literature review. 

Table 2.1: Estimates for when different SAE levels of autonomous vehicles will be introduced to 
different driving environments, adopted from (Shladover, 2017).  

Environment SAE Level 1 SAE Level 2 SAE Level 3 SAE Level 4 SAE Level 5 

Everywhere 2020s 2025s - - 2075s 

General Urban 2010s 2025s 2030s 2030s - 

Pedestrian 
Zone 

2010s 2020s 2020s 2020s - 

Limited-Access 
Highway 

2010s 2010s 2020s 2025s - 

Separated 
Guideway 2010s 2010s 2010s 2010s - 

 

AVs being tested today often use vision systems, which require pavement markings and legible 

signage to operate. Federal and state agencies in the U.S. who are aware of this trend have subsequently 

recognized the future need to improve the quality and consistency of highway pavement markings and 

signage. These agencies have also indicated a desire to ensure that national standards based on the 

Manual on Uniform Traffic Control Devices (MUTCD) are adequate for AV vision systems before 

the widespread adoption of AVs on U.S. highways (CRS, 2020). 

While significant progress has been made in understanding how AVs will perform under 

various roadway conditions, not much is known on how HVs will interact with AVs on highways. 

Specifically, it is not fully understood how the interaction between HVs and AVs will impact highway 

safety and capacity, and what can be done to mitigate any negative impacts. Work is being done to test 
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the viability of dedicated lanes for AVs, which would limit interactions between HVs and AVs. 

However, the cost-to-benefit ratio of this infrastructure and policy strategy is still under question (ITS 

International, 2016). Therefore, it is imperative to understand the dynamics of HV to AV interactions 

on highways before the widespread adoption of AVs. 

2.2 Autonomous Vehicle Impacts on Roadway Capacity 

2.2.1 Adaptive Cruise Control 

The exploration of how AVs will impact highway capacity began by considering the effect 

varying MPs of vehicles equipped with Adaptive Cruise Control (ACC) (Cui, Seibold, Stern, & Work, 

2017). Many of these studies use the Intelligent Driver Model (IDM), which can be simplified into the 

differential equations (1) and (2) for vehicle α (Treiber, Hennecke, & Heldbing, 2000): 

(1)     �̇� =
𝑑𝑥

𝑑𝑡
= 𝑣  

(2)     �̇� =
𝑑𝑣

𝑑𝑡
= 𝛼

⎝

⎜
⎛

1 −
𝑣

𝑣
−

𝑠 + 𝑣 𝑇 +
𝑣 Δ𝑣

2√𝑎𝑏
𝑠

⎠

⎟
⎞

 

Where for each vehicle 𝑣  is the desired velocity, 𝑠  is the minimum spacing, 𝑇 is the desired time 

headway of vehicle α to its leading vehicle, 𝑎 is the maximum rate of acceleration, and 𝑏 is the 

comfortable deceleration. The method to differentiate between vehicles with autonomous driving 

capabilities and HVs is to run multiple IDM models (one for each vehicle type, e.g. AV or HV) in the 

same simulation with parameters that correspond to the vehicle type the model is representing (Cui, 

Seibold, Stern, & Work, 2017). 

Studies exploring the impact of ACC broadly found that increasing ACC MPs correlate with 

increased highway capacity, however there is variation in estimations of capacity gains. Very early 

papers on this topic suggested that a low ACC MP does not impact traffic flow significantly (van 
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Arem, Hogema, Vanderschuren, & Verheul, 1996), and found that while vehicles using ACC help 

traffic stability, they can either positively or negatively impact highway capacity (Zwaneveld & van 

Arem, 1997). Studies also began to justify parameter values such as desired time headway, finding that 

ACC systems are capable of safely maintaining time headways of less than one-second (Godbole, 

Kourjanskaia, Sengupta, & Zandonadi, 1999). More recent findings on this topic conclude that ACC 

can increase highway capacity between 7% (Werf, Shladover, Miller, & Kourjanskaia, 2002) and 30% 

(or a 0.3% increase in capacity per 1% increase in MP) (Kesting, Treiber, & Helbing, 2010). 

2.2.2 Autonomous and Connected and Autonomous Vehicles 

Many more studies have been done on the impact AVs and Connected and Autonomous 

Vehicles (CAVs) will have on highway capacity. CAVs are AVs with the ability to communicate with 

infrastructure and roadway users. CAVs use this information to inform their own decision making, 

potentially increasing roadway network efficiency and safety. Studies involving CAVs will be discussed 

later in this section. 

Like the results of research in ACC’s impact on highway capacity, research on AV’s impact on 

highway capacity have suggested that improvements are possible, but relatively small. By replicating 

the famous “ring-road” study by Dr. Yuki Sugiyama which provided empirical evidence for the 

shockwave phenomenon (Sugiyama, et al., 2008) but replacing one HV with an AV, Cui found that 

AVs can significantly increase local traffic stability without changing HV behavior (Cui, Seibold, Stern, 

& Work, 2017). One microsimulation study found that improvements in traffic flow on highways will 

only be realized at AV MP rates above 70%. The same study recommended for future work to develop 

models that consider HV to AV interactions in mixed traffic. However, the authors recognize that 

before such a model can be developed, more behavioral work needs to be done to understand how 
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HVs perceive and interact with AVs. The authors also recognized a need to validate or calibrate their 

AV driver behavior model (Calvert, Schakel, & van Lint, 2017).  

In 2018, Zhu and Zhang attempted to calibrate the predicted impact AVs have on highway 

capacity and traffic stability ( “stability” refers to linear stability theory or flow uniformity as described 

in (Wilson & Ward, 2011)) by considering AV sensitivity and smoothness. The study found that both 

highway capacity and traffic stability were significantly impacted by AV sensitivity and smoothness 

(Zhu & Zhang, 2018). FIGURE 2.2 visualizes how AV sensitivity and smoothness impact the 

fundamental diagram in mixed traffic. 

 
Figure 2.2: The fundamental diagrams for mixed flow traffic (AVs and HVs) for varying sensitivity 

factors (a) and smoothness factors (b) – note that increases in sensitivity and smoothness lead to 
increases in flow until the critical point (~0.05 veh/m), at which the opposite is exhibited (Zhu & 

Zhang, 2018) 

As innovations in technology and communications have made the introduction of CAVs more 

likely, traffic flow and network modelling research has shifted its focus away from AVs towards CAVs. 

The first paper to distinguish and compare CAVs from AVs in a network model concluded that by 

the nature of CAVs having more information to inform driving behavior than AVs, the potential for 
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highway capacity gains with increasing MPs of CAVs is higher than that of AVs by more than 100% 

(Talebpour & Mahmassani, 2016). Rios-Torres built upon this understanding by finding that 

increasing MPs of CAVs can also reduce fuel consumption by up to 70% and reduce travel times by 

more than 100% in medium to high congestion scenarios. The study also found that CAVs are highly 

effective in stabilizing traffic in very high congestion scenarios (Rios-Torres & Malikopoulos, 2017). 

Similar to Zhu and Zhang’s study, “stability” refers to linear stability theory or flow uniformity as 

described in (Wilson & Ward, 2011). 

2.2.3 Human Driver Models 

As illustrated by the studies in the previous sections, the HV driver model in many mixed 

traffic models and simulations is left unchanged from HV driver models used in HV-only traffic 

analysis. The assumption used in these papers to leave the HV driver model unchanged is that the 

methods of vehicle to vehicle communication will be unchanged for an AV to an HV from that of an 

HV to an HV (Wei, Dolan, & Litkouhi, 2013). However, this assumption does not consider potential 

changes in HV driving behavior due to human drivers’ level of trust in or perceptions of AVs. The 

author of this literature review was unable to find work that justifies the parameters used in network 

models and simulations for HV to AV interactions. For example, vehicle time headways have been 

identified as a critical parameter to fundamental traffic simulation and modelling, and is essential to 

calculate capacity at a microscopic level (Pueboobpaphan, Park, Kim, & Choo, 2013). However, this 

literature review has identified that headway assumptions for HVs following AVs in traffic and 

network models are identical to the headway assumptions for HVs following HVs. 

Studies that have explored the interaction between HVs and AVs tend to focus on 

intersections, as the deployment of traffic control devices that are functional for both HVs and AVs 

was identified as a limiting factor to the widespread adoption of AVs as early as 2007 (Dresner & 



9 
Stone , 2007). For example, Dr. Fox developed a model to simulate the negotiation between HVs and 

AVs at an intersection with no traffic control devices using discrete sequential game theory, and found 

that the more efficient solutions correlated with higher risk of collision (Fox, et al., 2018). 

2.3 Trust in AVs 

2.3.1 Surveys 

While the public’s perception of AVs continues to evolve with time, recent literature can still 

give a general sense of human drivers’ trust in AVs. Five surveys conducted in the United States and 

Canada found that the general population consistently had considerable doubt in the ability of AVs to 

have a positive impact on transportation. Most survey respondents reported distrust in AVs’ ability to 

handle unique or edge-case driving scenarios. Those respondents also preferred AVs to have an option 

for the human operator to take control when the desired. Furthermore, this study found that younger 

respondents consistently held more trust in AVs than older respondents, suggesting a future shift in 

public attitudes toward the technology as younger generations age (Hedlund, 2017). Another survey 

on the topic of trust in AV taken in Australia found similar results, with a significant majority of 

respondents expressing concerns related to perceived safety, trust, and control issues Males, younger 

respondents, and respondents with higher levels of education in this survey were also found to hold 

more favorable views of AVs (Pettigrew, Worrall, Talati, Fritschi, & Norman, 2019).  

2.3.2 Empirical Studies 

Empirical studies have investigated trust in AVs. One 2019 study found that human drivers’ 

level of trust does not change between AVs that are programmed to imitate human driving behavior 

and AVs programmed to convey the impression of communicating with other AVs and the 

surrounding infrastructure. This may suggest that human drivers’ level of trust in AVs is pre-
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determined and not influenced by AV driving behavior. Additionally, the study found that human 

drivers trusted AVs more with increased interaction time (Oliveira, Proctor, Burns, & Birrell, 2019).  

2.3.3 Other Data Collection Methods 

AVs are significantly more expensive than standard vehicles commercially available today, and 

are only being tested in a few municipalities across the U.S. (Brownell & Kornhauser, 2014). Therefore, 

most studies evaluating human interactions with AVs cannot be conducted at any reasonable scale. 

Instead, other means of data collection must be utilized, such as small-scale vehicles (Figure 2.3). This 

study tested humans’ intended driving responses against multiple variations of driving maneuvers 

performed by small scale AVs. Results show that HV driving behaviors and perceptions of AVs are 

strongly related to the AVs driving maneuvers (Zimmermann & Wettach, 2016). This suggests that 

AVs can viscerally communicate information to HVs through certain driving maneuvers.  

 
Figure 2.3: Small scale AVs used to observe and study human interactions and perceptions 
(Zimmermann & Wettach, 2016) 

Driving simulators are established tools for researching human factors and driver behavior at 

a nanoscopic level (Fisher, Rizzo, Caird, & Lee, 2011). Recently, driving simulators have been used to 

evaluate driver behavior when operating an AV. For example, one study used a driving simulator 

programmed to simulate automated driving at SAE level 3 to extract participant level of trust in and 

perceptions of AVs (Buckley, Kaye, & Pradhan, 2018). Another study used a driving simulator to 

observe how drivers react to takeover requests when approaching an intersection, and how proximity 
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to the intersection and in-vehicle tasks impact risk of collision with bicyclists approaching the same 

intersection (Fleskes & Hurwitz, 2019). 

This literature review found only one study that utilized nanoscopic observations to inform a 

traffic simulation model in an attempt to explain the sag curve phenomenon (Miska & Kuwahara, 

2011). Driving simulators are effective tools to measure headway, as driver headways in virtual driving 

simulator environments do not vary significantly from driver headways in real road driving (Risto & 

Martens, 2014). As mentioned in section 2.2.3 of this literature review, headway is a critical parameter 

to fundamental traffic modelling and simulation (Pueboobpaphan, Park, Kim, & Choo, 2013). 

2.4 Research Questions 

Based on this literature review, there are significant knowledge gaps related to how human 

drivers will interact with AVs on highways. This information has the potential to change 

understandings of how mixed traffic is modelled, and how varying MPs of AVs impact highway 

capacity. To address these knowledge gaps and issues, the following research questions were identified 

and guided the development of the experimental procedures. 

 Research Question 1 (RQ1): How do driver’s level of stress compare in a hard breaking scenario 

when following an AV or an HV? 

 Research Question 2 (RQ2): How do drivers interpret fault from a collision with an AV or an 

HV? 

 Research Question 3 (RQ3): What demographic variables impact driver’s headway when following 

an AV? 

 Research Question 4 (RQ4): How do driver headways differ when following an AV or an HV? 

 Research Question 5 (RQ5): How do driver headways when following an AV compare to headway 

values currently assumed in mixed traffic models? 
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 Research Question 6 (RQ6): Do new values for driver headway when following an AV have a 

significant impact on highway travel time and flow predictions for varying MPs of AVs? 

The author of this paper hypothesizes that older participants will exhibit greater headways 

when following an AV. Additionally, drivers will interpret fault when in a collision with an AV as their 

own. This is generally consistent with the findings of the literature summarized in section 2.3.1of this 

literature review. The author of this paper also hypothesizes that driver headways will be greater when 

following an AV than an HV and will be different enough from currently assumed headway values in 

mixed traffic models to have a measurable impact on highway travel time and flow predictions. 
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3.0 METHODOLOGY 

This chapter describes the equipment and experimental design used to evaluate the research 

questions of this study. The approach used in this study is grounded in accepted practice (Fisher, 

Rizzo, Caird, & Lee, 2011). 

3.1 Experimental Equipment 

The study leveraged the unique research capabilities of the Oregon State University (OSU) 

Driving Simulator. Data was also collected using the iMotions Shimmer3 GSR+, while network 

analysis was completed using a Python-based multi-agent model. A description of each of these 

experimental tools are provided in the following sections. 

3.1.1 OSU Driving Simulator 

The full-scale OSU Driving Simulator is a high-fidelity motion-based simulator comprising of a 

full 2009 Ford Fusion cab mounted above an electric pitch motion system capable of rotating plus or 

minus four degrees. The vehicle cab is mounted on the pitch motion system with the driver’s eye point 

located at the center of rotation. The pitch motion system allows for accurate representation of 

acceleration or deceleration (Swake, Jannat, Islam, & Hurwitz, 2013). Three liquid crystals on silicon 

projectors with a resolution of 1,400 × 1,050 are used to project a front view of 180 degrees × 40 

degrees. These front screens measure 11 feet × 7.5 feet. A digital light-processing projector is used to 

display a rear image for the driver’s center mirror. The two side mirrors have embedded liquid crystal 

displays. The update rate for all projected graphics is 60 hertz. Ambient sounds surrounding the 

vehicle and internal vehicle sounds are modelled with a surround sound system. 

The computational system includes a quad-core host computer running Realtime Technologies 

SimCreator Software (Version 3.2) with graphics update rates capable of 60 hertz. The simulator 

software can capture and output values for multiple kinematic performance measures with high 
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fidelity. These performance measures include position of the subject inside the virtual environment, 

velocity, and acceleration. Each of these computation components is controlled from the operator 

workstation. The driving simulator is in a physically separated room from the operator workstation to 

prevent participants in the vehicle from being affected by visual or audible distractions. 

3.1.2 iMotions Shimmer3 GSR+ 

The Shimmer3 GSR+ measures galvanic skin response (GSR) and photoplethysmogram (PPG) 

signals. GSR data is collected by two electrodes attached to two separate fingers on one hand. These 

electrodes detect stimuli in the form of changes in moisture, which increase skin conductance and 

changes the electric flow between the two electrodes. Therefore, GSR data is dependent on sweat 

gland activity, which is correlated to participant level of stress (Bakker, Pechenizkiy, & Sidorova, 2011). 

PPG signals are collected through photodetectors on skin surfaces (usually a finger or ear-lobe) which 

measure volumetric variations in blood circulation, giving an accurate and non-intrusive method to 

monitor participant heart rates (Castaneda, Aibhlin, Ghamari, Soltanpur, & Nazeran, 2018). Together, 

GSR and PPG data produce an accurate depiction of participant level of stress. The Shimmer3 GSR+ 

GSR and PPG sensors attach to an auxiliary input, which is strapped to the participant’s wrist as 

shown in Figure 3.1. Data is wirelessly sent to a host computer running iMotions EDA/GSR Module 

software, which feature data analysis tools such as automated peak detection and time synchronization 

with other experimental data. 
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Figure 3.1: Shimmer GSR+ sensors (shown attached to the index and middle finger) send data 

to a host computer through the wireless transmitter (shown attached to the wrist) in real time 

3.1.3 Agent-Based Modeling and Simulation 

Agent-based modeling and simulation (ABMS) has a bottom-up structure and can model 

heterogeneous agents to observe emergent behaviors from interactions among individual agents. 

ABMS is a popular alternative to simulate real-life situations when empirical data is scarce or difficult 

to obtain (Sanchez & Lucas, 2002), and is especially effective in modelling human-involved systems 

due to the autonomous behavior and interactions of agents preset by the programmer (Bonabeau, 

2002).  

3.2 Experimental Design 

3.3 Independent Variables 

Two independent variables were included in the experiment: speed of the leading vehicle and 

the leading vehicle’s level of autonomy. These variables were selected by the research team to address 

the abovementioned research questions.  
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The speed of the leading vehicle was varied to induce different preferred following distances 

from participants. This produces a more detailed dataset for determining participant level of comfort. 

Speeds were varied between 45 mph and 65 mph to reflect high speed facility conditions. 

 The second independent variable was whether the leading vehicle was fully autonomous or 

human driven. Fully autonomous vehicles are defined as Society of Automotive Engineers (SAE) level 

five vehicles, while human driven vehicles are defined as SAE level zero vehicles. Level of autonomy 

was changed by the researchers to observe differences in participant following behavior and level of 

comfort between the two vehicle types.  

3.4 Factorial Design 

A factorial design was created to explore each of the two independent variables of the study. 

The factorial design, a two by two resulting in four scenarios, is shown in Table 3.1. Additionally, 

participants were exposed to two hard breaking scenarios: one with an SAE level zero and one with 

an SAE level five vehicle leading.  In total, participants were exposed to each of the four levels and 

two hard breaking scenarios with six unique scenarios. 

Table 3.1: Experimental Factors and Levels 

Variable Category Level Description 
Leading Vehicle 

Speed Discrete 
45 miles per hour 
65 miles per hour 

Leading Vehicle 
Autonomy 

Dichotomous 
(Categorical) 

SAE level zero 
SAE level five 

 
 The within-subject design provides advantages of greater statistical power and reduced error 

variance associated with individual differences (Brink & Wood, 1998). However, one fundamental 

disadvantage of the within-subject design is the potential for “practice effects,” caused by practice, 

experience, and growing familiarity with procedures as participants move through the sequence of 

conditions. To control for practice effects, the order of the presentation of scenarios to participants 
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needs to be randomized or counterbalanced (Girden, 1992). To account for practice effects, four 

different track layouts representing six different scenarios were presented in a random order to each 

participant. This adds flexibility and simplicity to the statistical analysis and number of participants 

required. 

 The configuration for each of the six scenarios presented to participants and which track 

layout they were assigned to are shown in Table 3.2. Scenarios presented in the same track were 

separated by 45 to 60 seconds of driving. Hard braking events were included in tracks III and IV did 

not interfere with the car-following portion of each track. More information on the design of the 

virtual environment and tracks can be found in the following sections. 

Table 3.2: Six Scenarios Presented in Four Tracks 

Track Scenario Leading Vehicle Speed Leading Vehicle Autonomy Hard Breaking 

I 
1 65 miles per hour SAE level five No 
2 45 miles per hour SAE level zero No 

II 
3 65 miles per hour SAE level zero No 
4 45 miles per hour SAE level five No 

III 5 55 miles per hour SAE level five Yes 
IV 6 55 miles per hour SAE level zero Yes 

 
3.5 Virtual Environment 

The virtual environment was developed using the following software packages: Internet Scene 

Assembler (ISA), SimCreator, and GNU Image Manipulation Program (GIMP). The dynamic 

elements of the simulations were developed in ISA using JavaScript-based sensors on tracks to engage 

position dependent events such as hard-braking. The environment was designed to replicate limited-

access highway conditions with speed limits between 45 miles per hour and 65 miles per hour. 

Roadway cross-sections consisted of two 12-foot lanes in each direction of travel. Track layouts, 

dimensions, and segments of data-collection are shown in Figure 3.3. 
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Figure 3.3: Example grid layout with two 2,500-foot segments in which following distances were 

recorded. 

3.5.1 Custom Objects 

Pre-loaded dynamic objects from SimCreator were adjusted with GIMP to produce visually 

identifiable SAE level five vehicles. GIMP is an open-sourced image editing software that is capable 

of editing RGBA image file types, the file type used to render textures of dynamic objects in 

SimCreator. The rear of SAE level five vehicles was edited to say “Self-Driving,” which replicates the 

terminology and position of text of current SAE level five vehicles being tested on public roads by 

WAYMO and Uber. The edited image file is shown in Figure 3.4.  
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Figure 3.4: Screenshot of RGBA image file edited using GIMP to modify pre-loaded dynamic 

vehicles from SimCreator  
 

3.5.2 Leading Vehicle Driving Behavior 

SAE level five vehicles in the simulation were programmed to have zero fluctuation in speed 

or lane position. SAE level zero vehicles in the simulation were programmed to have continuous 

random speed fluctuations plus or minus five mph.  

3.5.3 Simulator Sickness 

Simulator sickness is a phenomenon where a person exhibits symptoms similar to motion 

sickness that is caused by a simulator (Fisher, Rizzo, Caird, & Lee, 2011). The symptoms are often like 

that of motion sickness, and can include headache, nausea, dizziness, sweating, and extreme situations, 

vomiting. While no definitive explanation for simulator sickness exists, one widely accepted theory is 

cue conflict theory. Cue conflict theory suggests that simulator sickness arises from the mismatch of 

visual and physical motion cues, as perceived by the vestibular system (Kolasinski, 1995). Precautions 

were taken to ensure comfort for all participants in both the experimental design and experimental 
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protocol. Data from participants who experienced simulator sickness during the study were not 

included in the project’s results. 

3.6 Experimental Protocol 

This section describes the step-by-step procedures of the driving simulator study was 

conducted for each individual participant. The protocol was approved by the OSU Institutional 

Review Board (IRB) (Study #2019-0261). 

3.6.1 Recruitment 

A total of 39 participants, primarily from the Corvallis-Albany metropolitan area, were 

recruited for the driving simulator study. All participants were required to have at least 1 year of driving 

experience, not wear glasses or have impaired vision, and be physically and mentally capable of legally 

operating a motor vehicle. Furthermore, participants needed to be competent to provide written, 

informed consent. Recruitment for participants was largely done through flyers posted around the 

Corvallis-Albany metropolitan area and emails sent through different campus organization listservs. 

An effort to incorporate participants of all ages within the specified range of 18 to 75 years was made 

to balance the overrepresentation of college-aged students in the Corvallis-Albany metropolitan area.  

Researches did not screen interested participants based on gender until the quota for either males or 

females had been reached, at which point only the gender with the unmet quota could participate. 

Throughout the entire study, information related to the participants was kept under double-lock 

security in compliance with accepted IRB procedures. Each participant was randomly assigned a 

number to remove any uniquely identifiable information from the recorded data. 

3.6.2 Informed Consent and Compensation 

When the test participant arrived at the laboratory, they received an informed consent 

document. This document described the reasoning behind the study, the importance of participation, 
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and the risk and benefits of the test for the participant. Participants were also given the opportunity 

to ask any questions regarding the study and were informed that they could stop the experiment at 

any time for any reason and still receive full compensation ($10 cash) for participating in an 

experimental trial.  To avoid introducing bias to the experiment, participants were not told the specific 

research hypotheses. 

3.6.3 Prescreening Survey 

Participants were administered a prescreening survey before beginning experimental drives. 

The prescreening survey collected information on the participant’s demographics, such as age, gender, 

ethnicity, driving experience, highest level of education, and prior experience with driving simulators. 

Furthermore, the survey included questions in the following areas: 

 Vision: Participants’ vision is crucial for the experiment. Participants were asked if they use 

corrective glasses or contact lenses when driving. Their abilities to see the driving environment 

clearly were confirmed during the calibration drive. 

 Simulator sickness: Participants with previous driving simulation experience were asked about any 

simulator sickness that they experienced. If they had previously experienced simulator sickens, 

they were encouraged not to participate in the experiment. 

 Motion sickness: Participants were surveyed about any kind of motion sickness they had 

experienced in the past. If an individual had a strong tendency towards any kind of motion 

sickness, they were encouraged not to participate in the experiment. 

3.6.4 Calibration Drive 

A calibration drive followed the completion of the prescreening survey. The drive was 

designed to take participants approximately 5-minutes and had the purpose of acclimating the 

participant to the mechanics of the vehicle and the virtual reality of the simulator. The calibration 
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drive also helps researchers determine if the participant was prone to simulator sickness. Before the 

calibration drive, participants could adjust the seat, steering wheel, and rearview mirror to maximize 

comfort and performance while driving. Participants were instructed to drive and follow all traffic 

laws as they normally would. If the participant reported simulator sickness during or after the 

calibration drive, they were excluded from the experimental drives. In accordance to accepted practice 

(Zhao, Wu, Rong, & Zhang, 2015), the calibration effectively introduced participants to horizontal 

curves, acceleration and deceleration on a stretch of roadway, and turning at intersections.  

3.6.5 Biometric Sensors 

After the calibration drive was completed, researchers equipped participants with a head-

mounted eye-tracker. Participants were directed to look at different locations on a calibration image 

projected on the forward screen of the driving simulator. Data collected by the eye-tracker was not 

used for this study. 

Participants were also equipped with a GSR sensor. The GSR sensor was placed on the index 

and middle fingers of the participant’s left hand in a way that would not impede normal driving 

behaviors. The sensors were attached to an auxiliary input, which was strapped to the participant’s 

wrist. 

3.6.6 Vehicle Type Briefing 

After participants were equipped with the biometric sensors, they were shown the slide in 

Figure 3.5. Researchers verbally explained how SAE level five vehicles would be visually discernable 

from SAE level zero vehicles in the virtual environment and answered participant questions on the 

definitions of the SAE levels. Researchers did not answer questions on the driving behavior of 

different SAE level vehicles. 
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Figure 3.5:  Briefing slide shown to participants to assist in explaining how SAE level five vehicles 

will be visually different than SAE level zero vehicles in the simulated environment 

3.6.7 Experimental Drives 

Participants were given brief instructions about the test environment and the tasks they would 

be required to perform. The experiment was divided into four tracks. At the completion of each 

experimental drive, the researcher instructed the participant to bring the vehicle to a complete stop 

and ascertained whether the participant was experiencing simulator sickness. The entire experimental 

portion of the study was designed to take 30 minutes to complete. 

3.6.8  Post-Drive Survey 

Following the experimental drives, participants were asked to respond to questions in a post-

drive survey. The survey included questions about the participant’s level of comfort following SAE 

level five vehicles and SAE level zero vehicles. Additionally, participants were asked to identify fault 

if they were involved in one or more collisions during the experimental drives. 
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3.7 Simulator Data Reduction 

Simulator data was collected through the SimObserver platform during the experimental 

drives. A complete data file was generated for each participant for each of the four experimental drives. 

Files, including collected video data and all output of vehicle performance measures (e.g. lateral 

position, velocity), were opened and synchronized in the Data Distillery (Version 1.34) software suite. 

Performance measures when participants were following vehicles of interest were extracted.  

JavaScript was also written to extract participant distance headways when the participant was 

following vehicles of interest. These values were synchronized with the extracted performance 

measure data and used to calculate the participant’s instantaneous time headways with a fidelity of 30 

measurements per second. Time headway is a more useful measure as it considers both distance 

headway and velocity, as shown in equation (3):  

(3)     ℎ =
ℎ

𝑣
 

 
where ℎ  is time headway, ℎ  is distance headway, and 𝑣 is velocity. Average time headway values 

were aggregated for each of the six tested scenarios. 

3.8 Highway Segment Model 

An agent-based simulation was built to model traffic along a two lane (per direction) 5-mile 

highway segment. Agents in the simulation follow the IDM model, using similar methodologies to 

studies described in section 2.2 of this paper. In addition to the IDM model, agents can perform 

simple lane changing behavior. The behavior’s logic, as well as the program’s overall logic, is presented 

in Figure 3.6. 
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Figure 3.6: Flowchart showing the logic architecture for both AV and HV vehicle-agents 

Because of uncertainties in how AVs will be deployed over time (Chang, et al., 2015), the 

program must be able to vary AV market penetration as an input. Both inputs to the program and 

hard-coded parameters are summarized in Table 3.3. Select parameters are randomly generated from 

a normal distribution for each agent in the simulation as a part of the Monte Carlo simulation method. 

More information on the Monte Carlo method used for this study can be found in section 4.4. 

Program outputs are average vehicle speed, average vehicle travel time, and total simulation time. Total 

simulation time is the total amount of time it takes for all vehicles generated in the simulation to 

traverse the 5-mile highway segment. The total number of vehicles in the simulation can be divided 

by the total simulation time to give average flow. All vehicles are generated simultaneously and given 

2-miles to stabilize their driving behavior before entering the 5-mile highway segment where data is 

recorded. 
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Table 3.3: Summary of user inputs and hard-coded parameters in the program. A user input that is 

randomly generated from a normal distribution uses the user input to center the distribution. 

Source Variable Randomly Generated from 
Normal Distribution? 

User Input 

AV Market Penetration No 
Percentage of HV’s in Group 1 No 

Speed Limit No 
Number of Vehicles No 
Number of Iterations No 

HV to AV Headway Group 1 Yes 
HV to AV Headway Group 2 Yes 

Hard-
Coded 

AV Maximum Acceleration No 
AV Comfortable Deceleration No 

AV Headway No 
AV Gap Acceptance No 

HV Maximum Acceleration Yes 
AV Comfortable Deceleration Yes 

HV Preferred Speed Yes 
HV to HV Preferred Headway Yes 

HV Gap Acceptance Yes 
 

The program was developed using Python and utilizes a voxel simulation style. Voxels are like 

pixels but contain three dimensions of information rather than two, giving it distinct advantages. 

Relevant to this project, voxels allow for agent’s movement to be simulated on a cartesian plane (which 

requires three dimensions of information) rather than by just vectors (which requires two dimensions 

of information). Furthermore, voxels are easier to transform and render to perform the kinematic 

calculations of vehicle-agents and allow for the implementation of lane-changing behavior. However, 

voxel simulation styles tend to require more computational memory than other simulation styles 

(Klette & Rosenfeld, 2004). This is not an issue for this project given the relatively small size of the 

simulated world.  

Three headway conditions were tested using the developed program: 1) HV to AV headways 

are equal to HV to HV headways, 2) HV to AV headways are different than HV to HV headways, 

and 3) HV to AV headways vary by age group and are different than HV to HV headways. These 
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three conditions will be referred to as “No Difference,” “HV2AV Difference,” and “HV2AV*Age 

Difference” respectively for the remainder of this paper. Each condition was run with AV market 

penetrations varying from 0% to 100% in 20% increments for both 45 mph and 65 mph speed limits. 

Each of these scenarios was iterated 100 times. In total, 36 scenarios were simulated in 3600 iterations. 
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4.0 RESULTS 

This chapter presents the results of the simulator experiment, which includes demographic 

summaries of participants, post-drive survey results, analysis of biometric data, and an analysis of 

experimental drive data. Additionally, this chapter presents the results of the highway capacity 

sensitivity analysis using a multi-agent simulation platform informed by the experimental drive data. 

4.1 Participant Demographics and Post-Drive Survey Results 

Information on the participant recruitment and screening process can be found in section 3.6 

of this report. Of the 39 participants, 44% were female, while the age of the participants ranged 

between 18 years and 69 years (𝑀 = 27.4, 𝑆𝐷 = 10.9). Three participants reported simulator 

sickness and did not complete the experiment – all responses recorded from participants who reported 

simulator sickness were excluded from the analyzed dataset. Table 4.1 summarizes the self-reported 

demographic information collected from all participants. 

Table 4.1: Participant Self-Reported Demographic Information 

Question Possible 
Responses 

Number of 
Participants 

Percentage of 
Participants 

How many years have you 
been a licensed driver? 

1–5 years 21 54% 
6–10 years 7 18% 
11–15 years 3 8% 
16–20 years 3 8% 
20+ years 5 13% 

How many miles did you 
drive last year? 

0–5,000 miles 14 36% 
5,000–10,000 miles 9 23% 
10,000–15,000 miles 11 28% 
15,000–20,000 miles 4 10% 

20,000+ miles 1 3% 
 

How often do you drive in a 
week? 

 

1 time per week 10 26% 
2–4 times per week 15 38% 
5–10 times per week 7 18% 
10+ times per week 7 18% 

Do you have previous 
experience driving an SAE 

Level 1 vehicle? 

Yes 16 41% 

No 23 59% 
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 After the experimental drive, participants were asked if they would prefer AVs to drive in a 

separate lane from human drivers on highways. Thirty-eight percent of participants indicated that they 

would prefer separation. However, how participants answered this question was not found to have a 

relationship with participant’s headways when following an AV or HV. 

Each participant was exposed to two hard breaking scenarios – one when following an AV 

and one when following an HV. If the participant was involved in a collision during one or both hard 

breaking scenarios, they were asked to identify who was at fault for the collision. Of the 78 hard 

breaking scenarios tested in this study, 10 collisions were observed (4 with an HV, 6 with an AV). 

Figure 4.1 visualizes how participants interpreted fault based on the vehicle type they were in a 

collision with. While those in a collision with an AV did not place fault on the AV, the sample size is 

too small to draw a statistical conclusion. 

 
Figure 4.1: Self-reported interpretation of collision fault when in a collision with an HV (left) and 

when in a collision with an AV (right). 
 

4.2 Biometric Results 

GSR measurements were reduced to GSR peaks per minute for the two hard breaking 

scenarios. The dataset analyzed begins at the start of the leading vehicle’s deceleration and ends when 
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the leading vehicle has come to a complete stop. By reducing the data to peaks per minute, the natural 

variations between participants’ peak heights are controlled for. GSR peaks per minute have been used 

in previous transportation human factors studies (Krogmeier, Mousas, & Whittinghill, 2019). 

Furthermore, GSR peaks per minute is generally accepted as an indicator of level of stress in human 

factors studies (Zou & Ergan, 2019). iMotions software was used to segment, compute, and reduce 

the dataset. The software develops a baseline GSR reading for each participant based on their average 

response throughout the entire experimental drive. Any amplified response above the baseline, it is 

classified as a peak and is recorded (iMotions, 2017).  

During the experimental drive, GSR data is transmitted wirelessly from the Shimmer+ device 

attached to the participant in the driving simulator to a host computer in the control room. The 

strength of wireless connectivity can vary, with weaker wireless connections degrading the reliability 

of the dataset. Fifteen datasets were removed from the analysis due to weak wireless connections. 

Table 4.2 visualizes the two datasets of 21 participants with boxplots.  

 

Figure 4.2: Boxplots show that the spread of participant’s GSR response is noticeably wider in the 
HV hard breaking scenario than in the AV hard breaking scenario 
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The 21 datasets that were analyzed were tested using a two-tailed t-test for dependent means 

(also referred to as a repeated-measures t-test) at the 95% confidence level. This test is a strong choice 

to test the difference between the two datasets because it is designed for repeated-measures (within-

subject) data. Furthermore, the dataset meets all normalcy assumptions required to conduct a t-test 

(Jashami H. , Hurwitz, Abdel-Rahim, Bham, & Boyle, 2017). The test shows that GSR peaks per 

minute is 70% higher in the HV hard breaking scenario than in the AV hard breaking scenario. Table 

4.2 presents the results of the test. 

Table 4.2: Results from the two-tailed t-test for dependent means for GSR peaks per minute 
responses in hard breaking scenarios 

Measure Value 
Mean Difference 8.5 peaks/min  

[95% Confidence Interval] [10.6 to 6.4] peaks/min 
T-value 2.61 
p-value 0.017 

 
4.3 Experimental Drive Results 

 
 Linear Mixed Effects Models (LMM) can account for errors generated from repeated 

measures, considers fixed or random effects in its analysis, and accommodates for both categorical 

and continuous variables (Jashami H. , Hurwitz, Chris, & Kothuri, 2019). Furthermore, LMMs have 

a low probability of incurring Type I errors (Jashami, Hurwitz, Monsere, & Kothuri, 2020). 

Considering that this study’s sample size exceeds the minimum required for a LMM analysis (Barlow, 

Jashami, Sova, Hurwitz, & Olsen, 2019) and meets the required distributional assumptions 

(Maruyama, 2008), the LMM is a strong candidate for the analysis of the experimental drive dataset.  

 Variables of roadway speed, leading vehicle type, whether the participant was involved in a 

collision, the participant’s self-reported level of concern when following an AV, and age are included 

in the model as fixed effects. The participant variable is included as a random effect. The driver 

performance measures evaluated are headways when following either an AV or HV. Instantaneous 

time headways are recorded when participants follow select vehicles throughout the drive as intended 
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by the experimental design. To find the closest value to the participant’s preferred following distance, 

the average following distance throughout the entire recorded segment could not be used. This is 

because the entire recorded segment includes headway datapoints when the participant is choosing 

their preferred headway, which are highly variable across different participants. Instead, the minimum 

headway value in the recorded segment was used and will be referred to as “headway” in the analysis.  

 Mean and standard deviation (SD) values for each independent variable level’s time headway 

are reported in Table 4.3. The greatest average time headway was observed when participants 

followed an HV with a 45 mph speed limit (mean = 2.8 s, SD = 1.9 s), while the smallest average time 

headway was observed when participants followed an HV with a 65 mph speed limit (mean = 2.3 s, 

SD = 1.2 s).  

Table 4.3: Descriptive statistics for time headways (s) observed in each experimental drive scenario 
Leading 

Vehicle Type 
Descriptive 

Statistics 
45 mph Speed 

Limit 
65 mph Speed 

Limit 

AV 
Mean 2.4 2.3 
(SD) (1.4) (1.3) 

HV 
Mean 2.8 2.3 
(SD) (1.9) (1.2) 

 

 An LMM was used to estimate the relationship between the independent variables and the 

participant’s time headway, which is appropriate given the repeated measures nature of the 

experimental design (Abadi, Fleskes, Jashami, & Hurwitz, 2018). Both fixed and random effects 

needed to be included in the model. Fisher’s Least Significant Difference (LSD) test was run in the 

case of statistically significant effects to perform post hoc contrasts for multiple comparisons. All 

statistical analyses were performed at the 95% confidence level. Restricted Maximum Likelihood 

estimates were also used in the development of this model. Table 4.4 shows the results of the model. 

The random effect was significant (Wald Z = 3.56, p<0.001), which suggests that it was necessary to 

treat the participant as a random factor in the model. 
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Table 4.4: Mean and standard deviation of time headway (s) at the independent variable level 

Variable Levels Estimate DF P 
Participant Random Effect (SD) - (0.9) - <0.001* 

Constant - 2.4 35 <0.001* 

Leading Vehicle Type 
AV -0.2 105 <0.001* 
HV Base 105 <0.001* 

Speed Limit 
45 mph 0.2 105 <0.001* 
65 mph Base 105 <0.001* 

Collision 
Yes -1.0 105 <0.001* 
No Base 105 <0.001* 

Age 
<34.5 -0.5 105 <0.001* 
>34.5 Base 105 <0.001* 

Age x Leading Vehicle Type 
<34.5 AV -0.5 105 <0.001* 
>34.5 AV Base 105 <0.001* 

Speed Limit x Leading Vehicle 
Type 

45 AV -0.5 105 <0.001* 
45 HV Base 105 <0.001* 

Collision x Leading Vehicle 
Type 

Yes AV -0.2 105 <0.001* 
Yes HV Base 105 <0.001* 

Age x Speed Limit 

<34.5 45 mph -0.3 105 <0.001* 
>34.5 45 mph -0.1 105 <0.001* 
<34.5 65 mph -0.8 105 <0.001* 
>34.5 65 mph Base 105 <0.001* 

Summary Statistics     
Adjusted R2 67% Observations 216 
-2Log Likelihood 402.0 Participants 36 
AIC 438.4 Observations/Participant 6 

*Significant at the 95% confidence level 

Both independent variables were found to have a significant impact on headway. Regardless 

of other variables, participants following AVs maintained headways that were 9% smaller than when 

following HVs. Similarly, participants selected headways that were 8% smaller with 45 mph speed 

limits versus 65 mph speed limits. The mean time headways for each level of leading vehicle type and 

speed limit are shown in the interaction plot presented in Figure 4.3.  
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Figure 4.3: Primary effects plot of the leading vehicle type (left) and speed limit (right) on mean 

lateral position 
 

More interactions relevant to the research questions of this study are shown in Figure 4.4. 

Figure 4.5 visualizes why age has been categorized into two groups: below and above 34.5 years of 

age. A clear divide was observed between participants above and below these two age groups. Zero 

participants above the age of 34.5 years self-reported being “unconcerned” when following an AV in 

the post-drive survey, while 38% of participants under the age of 34.5 did. 
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Figure 4.4: Two-way interaction plots of treatment variables on mean time headway between speed 
limit and leading vehicle type (top left), leading vehicle type and whether or not the participant was 
involved in a collision during the experimental drives (top right), speed limit and age (bottom left), 

and leading vehicle type and age (bottom right)  
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Figure 4.5: Participants were asked about the level of concern they feel when following an AV in 

the post-drive survey – this plot shows those responses according to the participant’s age and 
corresponding time headways (s) recorded during the experimental drive 

 
4.4 Agent-Based Simulation Results 

 
 Information on the development of the agent-based simulation for this study can be found in 

section 3.8. AVs in all scenarios follow a time headway of 1 s, while HV time headways vary by 

scenario. The input values shown in Table 4.5 are used by the program to center a normal distribution 

from which preferred time headway values are randomly assigned to each HV generated in the 

simulation. Table 4.5 also shows the percent difference between input time headway values as 

informed by the driving simulator dataset. In the HV2AV*Age Difference condition, Group 1 

represents drivers under the age of 34.5. According to 2019 data from the U.S. Census Bureau, those 

under the age of 34.5 make up approximately 45% of the U.S. population (U.S. Census Bureau, 2019). 

Therefore, Group 1 agents made up 45% of all HV agents, with Group two agents making up the 

remaining 55% in the HV2AV*Age Difference condition. 
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Table 4.5: Variation in HV time headway values for the three conditions modeled 

Condition HV Time Headway 
Group 1 

HV Time Headway 
Group 2 

Percentage of HVs 
in Group 1 

No Difference Base - 100% 
HV2AV Difference -9% - 100% 

HV2AV*Age Difference -18% +2% 45% 
 
The modeling used a Monte Carlo simulation approach to evaluate the emergent collective 

behaviors and patterns of the traffic flow along the highway segment. AV market penetrations were 

varied from 0 to 100 percent in 20-point increments and each scenario was iterated 100 times. Figure 

4.6 visualizes convergence after 100 iterations for HV2AV Difference scenarios as an example, while 

Figure 4.7 summarizes the results of all simulations. 

 
Figure 4.6: The 95% confidence interval of average vehicle travel time (min) through 100 

simulation iterations for the 40% AV market penetration 65 mph HV2AV Difference scenario 
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c  
Figure 4.7: Average travel time (left) and average flow (right) across varying AV market 

penetrations with 45 mph speed limits (top) and 65 mph speed limits (bottom)  
 

A one-way Analysis of Variance (ANOVA) was conducted between each of the three 

conditions modeled for each AV market penetration scenario. Separate ANOVAs tested for 

differences in average travel times and average flow. The Tukey post-hoc test was conducted on each 

ANOVA analysis to determine where exactly differences lie. Table 4.6 shows the scenarios that have 

different average travel times or average flows from its respective No Difference scenario at the 99% 

significance level. 
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Table 4.6: Scenarios found to have different means of travel time or flow at the 99% significance 

level 

Measure Speed 
Limit 

AV Market 
Penetration 

Condition 
Compared 

Percent 
Difference 

Q Statistic p-Value 

Travel 
Time 

45 mph 40% HV2AV*Age 
Difference 0.1% 4.88 <0.01 

45 mph 60% HV2AV 
Difference 2.3% 16.00 <0.01 

45 mph 60% HV2AV*Age 
Difference 2.2% 15.50 <0.01 

45 mph 80% HV2AV 
Difference 

1.7% 9.35 <0.01 

45 mph 80% HV2AV*Age 
Difference 

0.9% 5.06 <0.01 

Flow 65 mph 40% 
HV2AV*Age 

Difference -1.3% 5.02 <0.01 
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5.0 DISCUSSION 

This section revisits the research questions of this study and discusses how the study’s results 

answer the research questions. Recommendations, limitations, and suggested future work are also 

discussed in this section.  

5.1 Findings 
5.1.1 Research Questions 1 (How do driver’s level of stress compare in a hard 

breaking scenario when following an AV or an HV?) and 2 (How do drivers 
interpret fault from a collision with an AV or an HV?) 

Driver level of stress was measured using GSR peaks per minute and was found to be 

significantly higher in the HV hard breaking scenario than in the AV hard breaking scenario. On 

average, GSR peaks per minute were 70% higher with HVs versus AVs in hard breaking scenarios. 

Of 4 collisions observed with HVs, two participants blamed the leading HV for the collision and two 

blamed themselves. In contrast, zero of the 6 participants who collided with an AV blamed the AV 

for the collision. Considering both abovementioned findings, it is possible that participants have a 

higher level of confidence in an AV’s ability to exhibit safe driving behaviors than an HV’s. However, 

the sample size of driver interpretations of fault is too small to draw a conclusion with confidence. 

5.1.2 Research Question 3 (What demographic variables impact driver’s headway 
when following an AV?) 

Of the demographic information provided by participants (e.g. gender, income, race), age was 

found to be the best indicator of how a participant perceives and interacts with AVs. None of the 

participants over the age of 34.5 reported being “unconcerned” when following an AV, compared to 

38% of participants under the age of 34.5. In terms of following distance, age was also a strong 

predictor of how a participant behave. In general, those over the age of 34.5 had greater headways 

than those under the age of 34.5, regardless of the vehicle type. This is consistent with what is already 

known about age’s impact on driver headways (e.g. (Brackstone, Waterson, & McDonald, 2009)), and 
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helps to validate the dataset produced in this study. Compared to their respective headways when 

following an HV, those older than 34.5 increased headways by over 2% when following an AV. On 

the contrary, those younger than 34.5 decreased headways by over 18%. This finding could have 

important impacts on transportation planning, which will be discussed in section 5.1.4.  

5.1.3 Research Questions 4 (How do driver headways differ when following an 
AV or an HV?) and 5 (How do driver headways when following an AV 
compare to headway values currently assumed in mixed traffic models?) 

The results of this study show that driver headways do differ when following an AV versus an 

HV. Regardless of any other factors, drivers give HVs 8% more following distance than AVs. This 

may suggest that participants have a greater level of comfort or trust when following an AV, which is 

consistent with the findings of research questions 1 and 2. As discussed in the previous section, 

headways when following an AV can be as much as 18% lower than when following an HV depending 

on the driver’s age. This means a standard 4-second headway would be reduced to a 3.3 s headway. If 

travelling at 65 mph, a 4-second headway would be reduced nearly 60 feet, or three car lengths. 

5.1.4 Research Question 6 (Do new values for driver headway when following an 
AV have a significant impact on highway travel time and flow predictions for 
varying MPs of AVs?) 

The values found for driver headways when following an AV without adjusting for age do not 

seem to have a statistically significant impact on highway travel times or flow predictions. However, 

adjusting headway values for age do produce statistically significant differences. The greatest 

difference is seen on average travel times for 45 mph facilities with 60% AV market penetrations, with 

a 2.3% increase in average travel times. While the difference is statistically significant, it appears that 

the practical meaning of this result is small. At most, the calibrated HV driver model could change a 

60-minute travel time prediction to just over 61 minutes.  
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The impact could become greater as age demographics shift. If younger generations hold their 

attitudes and behaviors towards AVs as observed in this study as they age, and new generations exhibit 

similar attitudes and behaviors, then greater portions of the population could give AVs an average of 

18% less headway than HVs through time. Based on this study, there is a clear need to fully understand 

how HVs interact with AVs. Characteristics not analyzed in this study such as gap acceptance 

combined with the validated headway values found in this study could have an even greater impact on 

travel time and flow predictions. 

5.2 Recommendations 

This study makes it clear that there is a difference between how drivers follow HVs and AVs. 

While these differences have small impacts on highway travel times and flow, they could have more 

significant impacts on the analysis of other facility types (such as intersections) or on the calculation 

of other driver behaviors that use headway as an input variable. Therefore, the Highway Capacity 

Manual (HCM) should include lookup tables with different headway values based on the leading 

vehicle type and driver age.  

GSR data analyzed also suggest that drivers have a smaller physical response to hard breaking 

AVs, which could increase the risk of AVs being rear-ended by human drivers. AVs may be more 

likely to exhibit hard breaking behavior at intersections in states with restrictive yellow-light laws and 

in areas with high inter-modal interaction (e.g. urban areas). States should consider evaluating yellow-

light laws and their application to AVs to maximize safety, and vehicle manufacturers should consider 

ways to communicate to following vehicles of hard breaking that induce a greater physical response. 

Results of this study show that younger drivers follow AVs with smaller headways than HVs. 

Given that younger drivers already tend to follow vehicles with smaller headways than other age 

groups (Brackstone, Waterson, & McDonald, 2009), this could be a potentially dangerous emergent 
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behavior. Education programs and campaigns should reinforce safe following distances regardless of 

the lead vehicle type. 

5.3 Limitations 

This study serves as an important step in understanding the differences in how human drivers 

interact with and perceive AVs. It is also an important step in developing an effective way to integrate 

driving simulator data into traffic models. However, there are limitations to this study, which are 

addressed below. 

 Within-subject study designs have limitations associated with fatigue and carryover effects, which 

can degrade participant’s performance and compromise data validity. The magnitude of these 

effects is mitigated in this study by randomizing the presentation of grids to different participants 

and minimizing the time spent driving.  

 Participants likely have not driven with SAE level 5 vehicles before. Driving behavior and 

perceptions may change with increased exposure to SAE level 5 vehicles. 

 Although efforts were made to recruit a sample of drivers like the driving population of the U.S., 

the final sample skewed slightly young. 

 Fifteen GSR datasets were lost due to weak wireless connectivity between the GSR sensor and 

host computer. Future studies should find a way to synchronize SimObserver data with GSR data 

so that the GSR sensor and host computer can be in the same room during data collection. 

5.4 Future Work 

Additional research is needed to continue developing the HV to AV driver model and to better 

understand how transportation networks will perform at varying AV market penetrations.  

 The headway values produced in this study should be used to calibrate capacity predictions for 

other facility types and scenarios such as intersections and bottlenecks. 
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 Driving simulators are effective tools for extracting driver behavior when interacting with AVs. 

Future studies should explore other driver performance measures such as yielding behavior and 

gap acceptance when interacting with an AV. Driving simulator studies may also investigate the 

effectiveness of different ways AVs communicate with HVs. 

 This work has attempted to bridge the gap between nanoscopic observations from the driving 

simulator to microscopic traffic simulation. More work should be done to improve this bridge, 

such as developing methods to build more detailed driver models from driving simulator data to 

inform agents in a multi-agent simulation. 

 The simulation platform built for this study has high potential for expansion. Future iterations of 

the simulation should expand to a network level analysis. 
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6.0 CONCLUSION 

Each of the six research questions were answered by this study. Driver level of stress is greater 

in hard breaking scenarios involving an HV compared to an AV, and there is some evidence to suggest 

that drivers are more likely to blame themselves if in a rear-end collision with an AV. In general, 

drivers give AVs less headway than HVs. However, age is a strong indicator of how a driver perceives 

an AV and how much headway they will give when following an AV. Older drivers may follow AVs 

with slightly greater headways than HVs, while younger drivers follow AVs with significantly smaller 

headways than HVs. These new headway values do impact highway travel time and flow predictions 

for lower speed facilities at AV market penetrations between 0% and 100%, however the impact is 

small. The greatest impact observed in this study was a 2.3% increase in average travel time when 

integrating headway values from the driving simulator experiment. 

This study justifies the need for a better understanding of how human drivers will interact with 

AVs. Better understanding these interactions can improve AV vehicle design and AV policy to 

increase safety for all roadway users. A calibration of the human driver model considering interactions 

with AVs will improve the accuracy of facility and network performance predictions for varying AV 

market penetrations. The results of this study should be used to inform updates to the HCM. 

Based on the results of this study, immediate opportunities for future work building off this 

study could: 

1. Continue building upon the multi-agent simulation to model at a network level or to model 

intersections. Use the driving simulator dataset produced by this study to inform the model. 

2. Expand the driving simulator dataset with observations of other human driver to AV interactions. 

This could include yield behavior and gap-acceptance. Use the expanded dataset to inform the 

expanded multi-agent simulation model mentioned above.  



46 

BIBLIOGRAPHY 

Abadi, M. G., Fleskes, K., Jashami, H., & Hurwitz, D. (2018). Bicyclist's Perceived Level of Comfort 
Level Traveling Near Urban Truck Loading Zones. Transportation Research Board 97th Annual 
Meeting. Washington, D.C.: TRR. 

Bakker, J., Pechenizkiy, M., & Sidorova, N. (2011). What's Your Current Stress Level? Detection of 
Stress Patterns from GSR Sensor Data. 2011 IEEE 11th International Conference on Data Mining 
Workshops. Vancouver: IEEE. 

Barlow, Z., Jashami, H., Sova, A., Hurwitz, D. S., & Olsen, M. J. (2019). Policy processes and 
recommendations from Unmanned Aerieal System operations near roadways based on visual 
attention of drivers. Transportation Research Part C: Emerging Technologies, 207-222. 

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human 
systems. Proceedings of the National Academy of Sciences, 99-102. 

Brackstone, M., Waterson, B., & McDonald, M. (2009). Determinants of Following Headway in 
Congested Traffic. Transportation Research Part F: Traffic Psychology and Behaviour, 131-142. 

Bridgelall, R., & Tolliver, D. D. (2020). A cognitive framework to plan for the future of 
transportation. Transportation Planning and Technology, 237-252. 

Brink, P. J., & Wood, M. J. (1998). Advanced Design in Nursing Research. Thousand Oaks: SAGE 
Publications. 

Brownell, C., & Kornhauser, A. (2014). A Driverless Alternative: Fleet Size and Cost Requirements 
for a Statewide Autonomous Taxi Network in New Jersey. Transportation Research Record, 73-
81. 

Buckley, L., Kaye, S.-A., & Pradhan, A. K. (2018). A qualitative examination of drivers' responses to 
partially automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 167-
175. 

Calvert, S. C., Schakel, W. J., & van Lint, J. C. (2017). Will Automated Vehicles Negatively Impact 
Traffic Flow? Advances in Modelling Connected and Automated Vehicles. 

Castaneda, D., Aibhlin, E., Ghamari, M., Soltanpur, C., & Nazeran, H. (2018). A Review on 
Wearable Photoplethysmography Sensors and Their Potential Future Applications on Health 
Care. International Journal of Biosensors & Bioelectronics, 195-202. 

Chang, J., Hatcher, G., Hicks, D., Scheenberger, J., Staples, B., Sundarajan, S., . . . Wunderlich, K. 
(2015). Estimated Benefits of Connected Vehicle Applications: Dynamic Mobility Applications, AERIS, 
V2I Safety, and Road Weather Management. Washington, D.C.: FHWA. 

CRS. (2020). Issues in Autonomous Vehicle Testing and Deployment. Washington, D.C.: Congressional 
Research Service. 



47 
Cui, S., Seibold, B., Stern, R., & Work, D. B. (2017). Stailizing traffic flow via a single autonomous 

vehicle: Possibilities and limitations. 2017 IEEE Intelligent Vehicles Symposium. Los Angeles: 
IEEE. 

Dresner, K., & Stone , P. (2007). Sharing the Road: Autonomous Vehicles Meet Human Drivers. 
The Twentieth International Joint Conference on Artificial Intelligence (pp. 1263-1268). Hyderbad: 
IJCAI. 

Fisher, D. L., Rizzo, M., Caird, J. K., & Lee, J. D. (2011). Driving Simulation for Engineering, Medicine, 
and Phychology. New York: CRC Press: Taylor & Francis Group. 

Fleskes, K., & Hurwitz, D. S. (2019). Influence of bicyclist presence on driver performance during 
automated vehicle take-over requests. Transportation Research Part F: Traffic Psychology and 
Behaviour, 495-508. 

Fox, C. W., Camara, F., Markkula, G., Romano, R., Madigan, R., & Merat, N. (2018). When Should 
the Chicken Cross the Road? - Game Theory for Autonomous Vehicle - Human 
Interactions. VEHITS 2018. Funchal: VEHITS. 

Girden, E. R. (1992). ANOVA: Repeated Measures. Newbury Park: SAGE Publications. 

Godbole, D. N., Kourjanskaia, N., Sengupta, R., & Zandonadi, M. (1999). Breaking the Highway 
Capcity Barrier: Adaptive Cruise Control-Based Concept. Transportation Research Record, 148-
157. 

Hedlund, J. (2017). Autonomous Vehicles Meet Human Drivers: Traffic Safety Issues for States. Washington, 
D.C.: Governors Highway Safety Association. 

iMotions. (2017). GSR R-Notebooks: Processing in iMotions and algorithms used. Copenhagen, 
Denmark. 

ITS International. (2016). Tri-nation cooperation on C-ITS Corridor. Dartford: ITS International. 

Jashami, H., Hurwitz, D. S., Monsere, C., & Kothuri, S. (2020). Do Drivers Correctly Interpret the 
Solid Circular Green From an Exclusive Right-Turn Bay? Advances in transportation studies. 

Kesting, A., Treiber, M., & Helbing, D. (2010). Enhanced Intelligent Driver Model to Access the 
Impact of Driving Strategies on Traffic Capacity. Philosophical Transactions o the Royal Society A, 
4585-4605. 

Klette, R., & Rosenfeld, A. (2004). Digital Geometry: Geometric Methods for Digital Picture Analysis. San 
Fransisco: Elsevier. 

Kolasinski, E. M. (1995). Simulator Sickness in Virtual Environments. Alexandria: U.S. Army Research 
Institute. 

KPMG. (2019). 2019 Autonomous Vehicles Readiness Index. Amstelveen: KPMG International. 

Krogmeier, C., Mousas, C., & Whittinghill, D. (2019). Human, Virtual Human, Bump! I Preliminary 
Study on Haptic Feedback. IEEE Conference on Virutal Reality and 3D User Interfaces. Osaka: 
IEEE. 



48 
Maruyama, N. (2008). Generalized Linear Models Using Trajectories Estimated from a Linear Mixed 

Model. Tokyo, Japan. 

Miska, M., & Kuwahara, M. (2011). Nanoscopic traffic simulation with integrated driving simulator 
to investigate the sag curve phenomenon. Production Research, 153-158. 

Mohammed, H. A. (2019). Evaluating Drier Response to the Onset of the Circular Yellow Indication in 
tehPresence of a Followign Vehicle at Isolated High-Speed Signalized Intersections. Corvallis: Oregon 
State University. 

NHTSA. (2016). Federal Automated Vehicles Policy. Washington, D.C.: National Highway Traffic Safety 
Administration. 

Nothdurft, T., Hecker, P., Ohl, S., Saust, F., Maurer, M., Reschka, A., & Bohmer, J. R. (2011). 
Stadtpilot: First fully autonomous test drives in urban traffic. 14th International IEEE 
Conference on Intelligent Transportation Systems. Washington, D.C.: IEEE. 

Oliveira, L., Proctor, K., Burns, C. G., & Birrell, S. A. (2019). Driving Style: How Should an 
Automated Vehicle Behave. Information, 1-20. 

Pettigrew, S., Worrall, C., Talati, Z., Fritschi, L., & Norman, R. (2019). Dimensions of attitudes to 
autonomous vehicles. Urban, Planning and Transport Research, 19-33. 

Pueboobpaphan, R., Park, D., Kim, Y., & Choo, S. (2013). Time headway distribution of probe 
vehicles on single and multiple lane highways. KSCE Journal of Civil Engineering. 

Rios-Torres, J., & Malikopoulos, A. A. (2017). Impact of Connected and Automated Vehicles on 
Traffic Flow. International Conference on Intelligent Transportation Systems. Yokohama: IEEE. 

Risto, M., & Martens, M. H. (2014). Driver headway choice: A comparison between driving 
simulator and real-road driving. Transportation Research Part F: Traffic Psychology and Behaviour, 1-
9. 

SAE. (2018). J3016-201806. Warrendale: SAE International. 

Sanchez, S. M., & Lucas, T. W. (2002). Exploring the world of agent-based simulations: simple 
models, complex analyses. Proceedings of the Winter Simulation Conference. San Diego: IEEE. 

Shladover, S. E. (2017). Road Vehicle Automation: History, Opportunities, and Challenges. 
Berkeley. 

Sugiyama, Y., Fukui, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S.-i., & Yukawa, S. 
(2008). Traffic jams without bottlenecks - experimental evidence for the physical mechanism 
of the formation of a jam. New Journal of Physics. 

Swake, J., Jannat, M., Islam, M., & Hurwitz, D. S. (2013). Driver Response to Phase Termination at 
Signalized Intersections: Are Driving Simulator Results Valid? 7th International Driving 
Symposium on Human Factors in Driving Assessment, Training, and Vehicle Design. Bolton Landing. 

Talebpour, A., & Mahmassani, H. S. (2016). Influence of connected and autonomous vehicles on 
traffic flow stability and throughput. Transportation Research Part C, 143-163. 



49 
Treiber, M., Hennecke, A., & Heldbing, D. (2000). Congested Traffic States in Empirical 

Observations and Microscopic Simulations. Physical Review E, 1805-1824. 

U.S. Census Bureau. (2019). Age and Sex Compsition in the United States: 2019. Washington, D.C.: U.S. 
Census Bureau. 

van Arem, B., Hogema, J. H., Vanderschuren, M., & Verheul, C. H. (1996). An Assessment of the 
Impact of Autonomous Intelligent Cruise Control. TRID. 

Waymo. (2020). Our Journey. Retrieved 2020, from https://waymo.com/journey/ 

Wei, J., Dolan, J. M., & Litkouhi, B. (2013). Autonomous vehicle social behavior for highway 
entrance ranp management. 2013 IEEE Intelligent Vehicles Symposium. Gold Coast: IEEE. 

Werf, J. V., Shladover, S. E., Miller, M. A., & Kourjanskaia, N. (2002). Effects of Adaptive Cruise 
Control Systems on Highway Traffic Flow Capcity. Transportation Research Record, 78-84. 

Wilensky, U., & Rand, W. (2015). An Introduction to Agen-Based Modeling: Modeling Natural, Social, and 
Engineered Complex Systems with NetLogo. Cambridge: Massachusetts Institute of Technology. 

Wilson, R. E., & Ward, J. A. (2011). Car-following models: fifty years of linear stabililty analysis - a 
mathematical perspective. Transportation Plannng and Technology, 3-18. 

Zhao, X., Wu, Y., Rong, J., & Zhang, Y. (2015). Development of a driving simulator based eco-
driving support ystem. Transportation Research Part C: Emerging Technologies, 631-641. 

Zhu, W.-X., & Zhang, H. M. (2018). Analysis of mixed traffic flow with human-driving and 
autonomous cars based on car-following model. Physica A: Statistical Mechanics and its 
Applications, 274-285. 

Zimmermann, R., & Wettach, R. (2016). First Step into Visceral Interaction with Autonomous 
Vehicles. 9th ACM International Conference on Automotive User Interfaces and Interactive Vehicular 
Applications (pp. 24-27). Oldenburg: AutomotiveUI. 

Zou, Z., & Ergan, S. (2019). A Framework towards Quantifying Human Restorativeness in Virtual 
Built Environments. Environmental Design Research Association. Tempe: EDRA. 

Zwaneveld, P. J., & van Arem, B. (1997). Traffic Effects of Automated Vehicle Guidance Systems: 
A Literature Survey. TRID. 

 

 

 


