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Stripe rust (Puccinia striiformis f. sp. tritici) and Septoria tritici blotch (Zymoseptoria tritici) are 

a constant and significant threat to wheat production, significantly reducing wheat quality and 

yield. Wheat is responsible for 20% of the world’s human calorie intake, and wheat production 

must increase to supply the demand of the world’s growing population. Both stripe rust and 

Septoria tritici blotch (STB) are critical foliar diseases of wheat in the Pacific Northwest (PNW). 

Increasing stripe rust and STB resistance through plant breeding is the most cost-effective, 

sustainable, and environmentally friendly approach to manage these diseases. A recombinant 

inbred line population was developed from a cross between ‘Madsen’ and ‘Foote’ soft white 

winter wheat cultivars to study stripe rust and STB resistance. Foote (PI 599663) was initially 

resistant to stripe rust but is now considered susceptible to new, virulent strains of the pathogen. 

However, Foote has maintained moderate resistance to STB in the PNW. Madsen (PI 511673) 

has provided effective resistance to stripe rust, but it is considered moderately susceptible to 

STB. The recombinant inbred line (RIL) population, consisting of 217 lines, was phenotyped 

across multiple environments for stripe rust and STB response and genotyped using Illumina 

HiSeq 3000 Sequencing. The 217 lines were also phenotyped for seedling resistance for stripe 

rust in growth chambers against a bulk population of spores collected from the field in 2012 and 

a single isolate of race Pstv-37. Pstv-37 has been the most abundant race in the PNW in the last 

six years. The STACKS and Bfctools programs were used for calling genotype variation. The 

best linear unbiased prediction (BLUP) was calculated across environments and used to detect 

QTL resistance. Results of quantitative trait locus (QTL) analysis indicated minor alleles for 

adult plant resistance to STB in wheat chromosomes 4B, 5A, 6B, 6D and 7DS. Stacking these 



 
 

genes is the best strategy to develop durable resistance to STB. For wheat stripe rust in the field, 

major alleles for resistance were identified in wheat chromosome 2AS, which is likely the known 

stripe rust resistance gene Yr17, and in 1AS. Two minor QTL were found in 2AS/2DS and 4DL. 

For the growth chamber study, four QTL were found in 1B, 2B, 6B, and 7B, with the identified 

QTL dependent on the stripe rust race used for screening. Combining Yr17, 1AS, and the other 

QTLs will lead to developing durable resistance to individual cultivars. The QTL identified in 

this thesis could help to develop breeder-friendly molecular markers for use in genotypic 

selection for improved STB and stripe rust resistance in wheat. 
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Chapter 1: General Introduction 

1.1 Introduction 

Wheat (Triticum spp.) is a cereal with a high nutritive value1 and supplies the human population 

with around 20% of its total caloric intake2,3. The grain of wheat is composed of 7% to 28% protein and 

60% to 80% starch. The percentage of wheat protein determines the final product. The most notable 

wheat products are bread, noodles, and pasta. Additionally, wheat is also used for alcohol distillation, 

animal feed, and as raw material for biofuels4. 

Wheat has played an essential role in human civilization since its domestication ∼ 10,000-12,000 years 

ago in the Near Eastern Fertile Crescent5. It was the main crop in the transition from hunting and 

gathering to settled agriculture6. The earliest wheat cultivated were einkorn, diploid wheat (genome AA), 

and emmer, tetraploid wheat (genome AABB)7. Plant domestication is an evolutionary process of 

speciation, natural selection, and adaptation of the plants guided by our ancestors. This process was the 

beginning of plant breeding. Plant breeding has been around since as early as the Neolith age, with 

humans changing and manipulating plant characteristics, such as structure, traits, and composition, 

making them more useful to humans8. Plant breeding became more sophisticated after Mendel proposed 

the two laws of heredity, establishing that plant traits are controlled by heritable factors (genes)9.  The 

most crucial domestication traits in wheat were non-brittle rachis and free-threshing10. The brittle rachis 

results in seed loss due to the shattering of the spike at maturity. This trait is determined by the mutation 

of two major genes, brittle rachis 2 (Br-A2) in the short arm of chromosome 3A and brittle rachis 3 (Br-

A3) in the short arm of chromosome 3B11. Free- threshing is the loss of glumes that enclose seeds, 

resulting in ‘naked’ seed. This trait is principally controlled by two homologous gene, Tg located in the 

short arm of chromosome 2B and the gene Q located in the large arm of chromosome 5A12. Other 

domestication traits were plant architecture, kernel size, and seed dormancy13. This process was the 

beginning of plant breeding. 

Wheat has been distributed to all parts of the world except Antarctica, making it the commercial crop with 

the most land area globally with around 214 million hectares and an annual yield of 734 million tonnes14. 

Currently, most cultivated wheat are hexaploid bread wheat and tetraploid durum wheat, with 95% and 

5% of the wheat grown worldwide respectively14,15. The biggest wheat producers are the European Union, 

Australia, Canada, India, the Russian Federation, Ukraine, and the United States16.  Even with this level 

of wheat being grown in the world, wheat production must continue to increase to supply food for the 

expanding global population, which is expected to reach 9 billion by 2050 and about 11 billion by 210017. 

At the same time, several factors, including climate change, lack of freshwater, decreasing availability of 
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suitable farmland, and unpredictable abiotic and biotic stresses, can compromise the ability to increase the 

yield of wheat enough to feed the planet. Therefore, wheat breeders must use new knowledge, techniques, 

and technology to counteract these factors to meet the demand. 

Fungal diseases pose a severe and persistent challenge to wheat throughout the world. Pathogenic fungi 

represent a significant limitation for wheat production, significantly reducing wheat quality and yield, by 

up to 15-20%18. There are two types of plant pathogenic fungi, biotrophic fungi-obligate parasites which 

require living cells of the plants as a source of nutrients, such as stripe rust (caused by Puccinia 

striiformis f. sp. Tritici), and necrotrophic fungi - facultative parasites that feed on the host's dead cells 

and do not necessarily need living plants, such as Septoria tritici blotch (caused by Zymoseptoria tritici19). 

The fungal diseases that result in the most prominent and devastating loss of yield in wheat are rusts, 

blotches, and head blight/scab18. Of these, stripe rust is considered the most significant rust disease 

affecting winter cereal production across the world, causing yield losses of 5 to 50% depending on the 

year, representing  an annual loss of 5.47 million tonnes worth $979 million20. Septoria tritici blotch 

(STB) is wheat's primary leaf blotch disease, decreasing crop yield by 10 to 50%, especially in humid and 

temperate areas. In recent years, STB prevalence has increased, having a significant economic impact due 

to loss of yield and quality and excessive use of fungicides, especially in Europe with losses of $1.2 

billion21. 

Pesticides were one of the keys in the green revolution, allowing farmers to intensify production systems 

without incurring further losses leading to pesticides becoming the primary method of pest control22. 

Pesticides are usually an effective method, but they involve a high economic, social, and environmental 

cost. A viable and effective alternative is to use disease resistance genes to develop resistant cultivars23. In 

all breeding programs, one of the main objectives is breeding against disease. Ninety-eight percent of elite 

wheat cultivars in the U.S. have at least one resistance gene8. Fortunately, wheat has an efficient immune 

system, regulated by resistance genes. Wheat is the plant species with the largest number of resistance 

genes reported24. Resistance genes can be defined as a source of either full or partially heritable 

resistance. These genes can be used for breeding fungi-resistant wheat. Resistance genes can be classified 

by their resistance type: qualitative resistance - characterized by vertical resistance which generally 

depends on major genes with higher effects; and quantitative resistance characterized by unspecific 

horizontal resistance which generally depends on several-to-many genes with moderate-to-small effects. 

These two types of resistance can regulate a plant’s immune response either independent of the growth 

stage or dependent on the growth stage. Resistance genes can also be classified by the stage of growth in 

which the immune response appears. Seedling resistance is resistance effective at all plant growth stages, 

which is generally specific race-specific resistance gene and adult plant resistant, effective resistance only 
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at the adult stage. These genes usually provide resistance to more than one isolate or distinct pathogen 

species. 

Plant breeding for resistance involves the knowing and manipulating two organisms, plants (host) and 

fungi (parasite). Resistance breeding is a perpetual challenge for breeders because plant pathogens (such 

as fungi) can rapidly overcome previously resistant crop cultivars due to the dynamic and elusive nature 

of the gene-for-gene interaction between the host plant and pathogenic system.  Resistance breeding 

requires a constant supply of resistance genes that can be incorporated into new cultivars. Molecular 

markers are essential in both classical and modern plant breeding approaches to accelerate genetic gain25. 

Marker-assisted selection (MAS) and its variants are the most common method in resistance breeding. 

These methods allow the selection of resistance genes at the genotypic level in the absence of the 

pathogen, reducing time, cost and resulting in a higher gain per year compared to phenotypic selection26. 

MAS requires that identified molecular markers are linked to a resistance allele/gene, allowing breeders 

to deploy new genes for resistance faster and more effectively when disease undergoes race changes27. 

The common method to identify molecular markers linked to a resistance allele/gene is called quantitative 

trait locus detection (QTL analysis). This method detects the relationship between genotypes and 

phenotypes in order to explain the genetic variation28. QTL requires a variation in the genetic population 

in the trait of interest; quantifying, characterization, and determination of resistance reaction of crops 

against fungal pathogen; and high-resolution/fine genetic mapping. The common populations used 

are F2 populations, backcrosses (BCs), near-isogenic lines (NILs), and recombinant inbred lines (RILs). 

The RIL population must consist of 100-250 individuals with genetic variation in the trait of interest to 

enable high resolution and  fine mapping of the trait of interest29,30. Genotyping a population has 

historically been slow and difficult, especially in species with a large, complex genome with a high level 

of repetitive DNA. 

In the last 10 years, new genome sequencing technologies have become faster and more economical, 

providing greater depth and increased sensitivity. These techniques allow identifying inter-individual 

variation at a genome-scale. There are two sequencing approaches: whole-genome sequencing, used when 

the species possess small genomes, such as fungi; and genome reduction and sequencing techniques such 

as genotyping-by-sequencing, transcriptome sequencing, and exome capture, which are used when the 

species possess large genomes, such as wheat. These techniques are valuable for the discovery, validation, 

and assessment of genetic DNA markers in populations31. Genetic DNA markers are genes or DNA 

sequences linked to a particular trait of interest with a known chromosomal position28. A high-quality 

wheat reference genome has been publicly available since 2018, providing an ordered and annotated 

wheat genomes sequence32,33. The publication of the wheat genome had been highly anticipated for wheat 
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breeders due to wheat having a large, polyploid, complex genome (haploid genome, 1C = 16 GB), which 

includes more than 85% repetitive DNA32.  

Phenotyping is essential in detecting resistance genes/alleles. Each plant can show symptoms and 

different resistance reactions during pathogenesis, such as hypersensitive response (HR) or systematic 

acquired resistance (SAR)34.  There are different methods to quantify the individual variation. The general 

method is quantified visually by estimating the percentage symptoms (level of susceptibility) such as 

percentage of severity of the disease (% severity of disease), or percentage of leaf surface covered by 

lesions (PLACL), or the resistance reaction (such as hyperspectral reflectance). All of these require an 

infection with the pathogen of interest. The last step of quantifying variation is using statistical programs 

to identify genotypic-phenotypic interaction to explain the genetic variation. The most common method is 

a quantitative trait locus (QTL) analysis. This analysis is generally evaluated by analytical statistical 

software such as QGENE35, MapChart36, and R/qtl37 to analyze the different variations of QTL analysis, 

such as single-markers analysis (SMA); interval mapping (IM), and composite interval mapping (CIM)38.  

The Pacific Northwest of the United States, commonly abbreviated as PNW, consists of three states: 

Idaho, Oregon, and Washington. It is one of the principal wheat producing regions in the United States, 

producing about 7.66 million metric tons each year, corresponding to $1,700 million. The primary market 

class of wheat grown in the PNW is soft white wheat, used for noodle products, crackers, cereals, and 

white crusted bread39. Wheat production in the PNW is concentrated in the Columbia and Snake River 

drainage systems and its production is primarily aimed at the Asian market40. The weather conditions 

such as humid climate with moderate temperature characterizes the Pacific Northwest. These conditions 

provide a favorable environment for fungal pathogens, especially stripe rust41 and Septoria19.  

Wheat breeding is a vital aspect of world wheat production. Breeders’ objectives are increasing yield and 

counteracting adverse factors setbacks to productivity. Successful modern wheat breeding uses new 

knowledge, techniques, and technology to achieve the goal. Therefore, this research aims to address 

counteracting fungal diseases, especially stripe rust and Septoria, which are the most important wheat leaf 

diseases worldwide and in the Pacific Northwest. 

The objectives of this dissertation are: 

1) Identify molecular markers for stripe rust resistance alleles/genes in field conditions in order to identify 

valuable markers and quantitative trait loci for future gene characterization and breeding of resistant 

cultivars against stripe rust.  
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2) Identify molecular markers for Septoria tritici blotch resistance alleles/genes in the field in order to 

identify valuable markers and quantitative trait loci for future gene characterization and breeding of 

resistant cultivars against Septoria tritici blotch.  

3) Identify molecular markers of stripe rust resistance alleles/genes in the growth chamber in order to 

identify valuable markers and quantitative trait loci for seedling resistance for future gene characterization 

and breeding of resistant cultivars against stripe rust.   
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Chapter 2: Literature review 

2.1 History of wheat  

Domestication 

Wheat (Triticum spp.) has been one of the principal food crops for human civilization since its 

domestication in the Fertile Crescent ~ 10,000-12,000 years ago1. Domestication of plants radically 

changed human societies, molding itself from a nomadic, gatherer, and hunter society to a sedentary, 

agricultural community2. The earliest cultivated wheat forms were einkorn (Triticum monococcum L.) and 

emmer (T. turgidum ssp. dicoccum L). Einkorn (diploid wheat) was domesticated from its wild form  

(Triticum monococcum L. subsp. boeoticum) in southeastern Turkey, between the Kartal–Karadaǧ and 

Karacadaǧ regions3. The progenitor of emmer (tetraploid wheat) is Triticum turgidum L. ssp dicoccoides4. 

Emmer and hexaploid wheat (Triticum aestivum L.) underwent a natural hybridization process. In the case 

of emmer hybridization occurred between Triticum urartu (2n =2x=14; AA)5, which provides the A 

genome, and Aegilops speltoides (2n =14; SS)6, which granted the B genome3. Instead, hexaploid wheat 

hybridization occurred in the agronomic field between two cultivated forms, emmer and Ae. tauschii (DD 

genome), 10,000 years ago4.  

Domestication traits 

The early forms of cultivated wheat developed through a plant domestication process, such as 

hybridization, adaptation, and natural selection7. Spike morphology was the most significant 

domestication event, which involved two independent traits, non-brittle rachis and free-threshing8,9. The 

non-brittle rachis is the loss of function that promotes seed dispersal, favoring the collection of seeds at 

maturity10. Two genes control this trait, Br-A2 (brittle rachis) located in the short arm of chromosome 3A 

and Br-A3 (brittle rachis) located in the short arm of chromosome 3B11. Free-threshing is the loss of the 

enclosure of the seed by the lemma and palea, reducing the level of self-protection of the seed10.  Two 

genes control this trait, Tg and Q, located in the short arm of chromosome 2B and the large arm of 

chromosome 5A, respectively12. These evolutionary traits with other traits such as kernel size, seed 

dormancy, and plant structure9 are considered the beginning of plant breeding.  

Wheat genetics  

Bread wheat is an allohexaploid species consisting of three individual but related sub-genomes, 

A, B and D from three progenitor species, Triticum urartu (2𝑛 = 2𝑥 = 14; AA), Aegilops speltoides 

(2𝑛 = 14; SS)6, and Aegilops tauschii  (2𝑛 = 2𝑥 = 14; DD)13–15. Wheat has approximately 15.4 to 15.8 

bp, with 107,891 gene loci across the 21 chromosomes16. It is estimated that the wheat genome has 

around 94,000-96,000 genes, and around 85% of the genome is repeated sequences17, where genome A is 
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4.93pg DNA18, genome B is 5.15 pg DNA19, and genome D is 5.10 pg DNA18. A high-quality reference 

genome of hexaploid wheat has been publicly available since 201816. In addition, there is a high-quality 

reference genome of the D genome20,  the AB tetraploid wild emmer (Triticum diccocoides) genome21, 

and wild emmer’s domesticated wheat relative (Triticum durum)22. Knowing the reference genome of 

wheat and its relatives facilitates the study of wheat’s genetics, function, and evolution. 

2.2 Cultivated wheat. 

Wheat production 

Wheat is one of the principal sources of the human diet due to its relatively long-term storage 

capacity, wide adaptability, and high nutritional value23,24. Wheat plays a vital role in world food security, 

being the most widely planted crop globally at about 214 million hectares per year with an annual yield of 

734 million tons25. It contributes approximately 20% of total caloric intake23,26. The wheat grain 

comprises 7%-22% of protein and 60%-80% of starch, making it one of the most nutritive cereal crop27. 

The grain protein content and kernel hardness of wheat determine its grain market class, milling process, 

and final products28. Wheat is the only grain whose dough contains viscoelastic properties essential to 

producing leavened food such as bread24. Wheat is also used for other food products such as noodles, 

cakes, and pasta. Besides food products, wheat is also used for animal feed, alcohol distillation, and as a 

raw material for biofuel29. 

Wheat is produced on all continents, except Antarctica. The areas with the highest production are 

the European Union, India, Australia, Canada India, the Russian Federation, Ukraine, and the United 

States30.  The flowering patterns of wheat genotypes are vastly different, allowing wheat to be grown in 

subtropical to temperate areas at different altitudes31. Wheat flowering is a complex trait regulated by 

photoperiod (Ppd), vernalization (Vrn), and earliness genes32. These genes are regulated by environmental 

stimuli such as daylength (Ppd), or temperature (Vrn), initiating or retarding flowering. This 

environmental response protects the wheat from flowering during either low or high-temperature 

extemes33. The photoperiod trait is regulated by three orthologous pseudo response regulator (PRR) genes 

located on the homoeologous chromosome 2 group (A, B, and D genomes) (Ppd-A1, Ppd-B1, and Ppd-

D1)34. Ppd-A1 is the most photoperiod sensitive locus followed by Ppd-B1 and Ppd-D135. Other genes 

with a photoperiod response such as Ppd-B2 mapped on chromosome 7BS and the three recently 

discovered homeolog genes called TaFT3, located on the long arm on the chromosome 1 of each wheat 

sub-genome36. The photoperiod and vernalization genes differentiate wheat into winter and spring types. 

Winter wheat is planted in the fall and requires a chilling treatment for at least six to eight weeks with a 

temperature below 8°C (vernalization) to shift from vegetative to reproductive growth. These genes 

protects the wheat from flowering during the winter37. Spring wheat requires no vernalization so can be 
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planted in the spring38. Vernalization is controlled by genes at the Vrn-1, Vrn-2, Vrn-3, and Vrn-4 loci. 

The Vrn-1 loci involves three orthologous genes (Vrn-A1, Vrn-B1, and Vrn-D1), located on chromosome 

5A, 5B, and 5D, respectively39. Vrn-2 loci involves three genes across the wheat genome that have been 

mapped on chromosomes 5A, 4B and 4D40. Vrn-3 loci involves the homologous chromosomes, 7B and 

7D40. Vrn-D1 is found at a single locus on chromosome 5D41. Vrn1 is the gene with a higher impact in the 

transition between vegetative to adult plant. Vrn-A1 recessive is associated with winter wheat, while Vrn-

B1 and VRN-D1 dominant are associated with spring wheat42. 

Cultivated wheat species include einkorn, spelt, hexaploid bread wheat, and tetraploid durum 

wheat. Hexaploid bread wheat is the most cultivated form of wheat, accounting for approximately 95% of 

the world's cultivated total wheat25,43, followed by durum wheat representing around 5% of the total wheat 

grown worldwide25,43. Spelt and einkorn spelled represent a minuscule percentage of the total wheat 

worldwide, growing in only some areas of Spain, Turkey, the Balkans, and India44. 

Wheat in the Pacific Northwest (PNW) of the U.S. 

The United States is eighth in the world for wheat production, producing around 63 million tons 

of wheat every year45. Wheat is the third-largest crop in the U.S, behind corn (Zea mays) and soybeans 

(Glycine max). Wheat has a wide production zone with every state involved in the nation's wheat 

production46. The Pacific Northwest (PNW), which consists of three states, Oregon, Idaho, and 

Washington, grows around 1.83 million hectares every year45. Wheat production in the PNW is 

concentrated in the Columbia and Snake Rivers, and their production is mainly for the Asian market. Soft 

white wheat is the principal wheat from the PNW; it’s primarily used to produce noodles and crackers47. 

Wheat yield differs in the PNW due to agronomic practices such as irrigation/no irrigation or tillage/no-

tillage. The farmers of the PNW produce 755 million metric tons of grain annually, rendering 

approximately 1.7 billion USD45. 

Future challenges in wheat 

Food producers are having increasing competition for water, land, and energy from the expanding 

population predicted to be 9 billion by 2050 and about 11 billion by 210048, and from climate change. In 

addition, unpredictable abiotic and biotic stress can negatively affect production and compromise the 

ability to increase yield48. Thus, it is not a surprise the importance that wheat breeding has in meeting 

global production demands. Modern plant breeding techniques such as molecular assisted markers (MAS) 

and genomic selection are being applied to improve breeding efficiency and speed up cultivar 

development49. In all breeding programs, one of the main objectives is breeding for disease resistance. 

Ninety-eight percent of elite wheat cultivars carry at least one known resistance gene against one crucial 

disease50.  
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The challenge for wheat producers and wheat breeders in the PNW is that producing wheat in an 

ideal climate for wheat production, with moderate to high humidity, mild winters, and moderate summer 

temperatures, is also ideal for fungal diseases. Fungal disease control is essential for wheat production in 

both the PNW and worldwide. The most critical diseases in the PNW are fungal diseases such as stripe 

rust caused by Puccinia striiformis f. sp. tritici), Septoria tritici blotch caused by Zymoseptoria tritici, 

diseases caused by fungal soilborne pathogens such as eyespot caused by Tapesia yallundae51, and 

Rhizoctonia cerealis52.  

2.3 Fungal diseases  

Plant diseases are the primary threat for global agriculture, reducing yields by over 10%53,54 

annually, with fungal diseases making up over 70% of plant diseases. Each year fungal diseases cause 

significant yield loss in crops such as wheat, rice (Oryza sativa), and barley (Hordeum vulgare), 

representing annual losses of more than 235 billion dollars55. Furthermore, In the United States alone, 

over 600 million dollars is spent annually on fungicides to control plant diseases56. Fungal diseases are 

present in all life cycles of the crop from germination through post-harvest. In addition, 15,000 fungi 

species cause disease in plants, where most of them are either Ascomycetes or Basidiomycetes57. 

  The fungal infection cycle consists of establishing infection, colonization, growth, reproduction, 

dissemination of the pathogen, and pathogen survival in the host's absence58. However, each pathogen has 

a distinctive manner to accomplish each phase. The fungus produces survival structures from the end of 

the season to over-season and serves as the primary inoculum for the next disease cycle. Fungal plant 

pathogens can be divided into two groups, biotrophic and necrotrophic, based on how they utilize invaded 

plant tissues for nutrients59. Biotrophic fungi such as rust fungi infect the plant through effectors that 

modulate the plant defense system without being detected. It uses living host cells as a source of nutrients. 

Necrotrophic fungi such as blotch fungi use effectors and enzymes to kill the host cell or cell wall-

degrading (CWDEs) to feed off the dead cells60. 

The success or failure of the pathogen depends on the interaction of three elements, pathogen, 

host, and environment. The interaction between host and pathogen depends on mutual recognition, the 

host's virulence effectors, and the plant's defense level. Two different theories explain this interaction, the 

gene-for-gene interaction theory, and the matching-allele theory. The gene-for-gene theory61 is based on 

the concept of each resistance gene in the host having a corresponding gene in the pathogen with which it 

interacts. Therefore, the host’s resistance depends on both the gene's presence for resistance in the host 

and the corresponding genes for the pathogen's virulence. This theory has been demonstrated by genetic 

data and by host-pathogen isolation62. The matching-allele or inverse gene-for-gene theory differs in that 

the pathogen uses the plant's defense mechanisms to cause the disease63. This theory has been supported 

https://en.wikipedia.org/wiki/Tapesia_yallundae
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by the necrotrophic fungal pathogen of plants such as tan spot caused by Pyrenophora tritici-repentis in 

wild emmer (Triticum turgidum ssp. dicoccoides)64. 

Pathogenic fungi pose a constant and significant threat to wheat production54. Fungal diseases 

cause substantial economic damage and are the major limitation for wheat production, reducing wheat 

quality and yield by 15-20%53,54. The most devasting fungal diseases in wheat are the rusts, blotch, and 

head blight/scab54. 

Stripe rust 

Economic impact and control  

Rust diseases of wheat are one of the oldest plant diseases known to humans. There are three 

different rust diseases in wheat, leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici), 

and stripe rust (Puccinia striiformis f. sp. tritici). In the Pacific Northwest, the primary disease that 

attacks wheat is stripe rust58. An alternative name for stripe rust is yellow rust based on the orange to 

yellow color of the spores that appear in ‘stripes’ on infected plants. Favorable environmental conditions 

for stripe rust include moderate winter temperatures to allow over-wintering and cool, moist weather 

conditions in the spring and early summer. As a result, Stripe rust is the primary rust disease affecting 

winter cereal production across the world57. Currently, 88% of wheat elite cultivars are susceptible to 

stripe rust,  resulting in a loss of about 5.5 million tons of wheat yearly, representing $979 million65. The 

continuing evolution of the pathogen in response to resistant wheat cultivars poses a persistent challenge 

to pathologists, breeders, and producers.  

Currently, there are two strategies to control stripe rust, chemical control and genetic resistance. 

Chemical control requires dynamic monitoring to predict the infection to have an accurate chemical 

intervention and reduce environmental impact66. The fungicides most used to control stripe rust are 

demethylation inhibitors (DMI) such as propiconazole and fluquinconazole; quinone outside Inhibitor 

(QoI) such as azoxystrobin and pyraclostrobin; and succinate dehydrogenases (SDHIs) such as 

benzovindiflupy and bixafen67. The use of genetic resistance to control stripe rust is not based on 

monitoring of the pathogen but instead requires understanding pathogen distribution and resistance gene 

distributions in elite cultivars68,69. 

Cycle, host, and symptoms  

  In wheat, the stripe rust pathogen is caused by P. striiformis. f. sp.tritici70. Puccinia striiformis is 

a macrocyclic, heteroecious fungus with two hosts, wheat, and alternate host Berberis or Mahonia spp. 

This cycle comprises five stages that produce a different spore at each stage: basidiospores, pycniospores, 

aeciospores, urediniospores, and teliospores71. The urediniospores are essential spores infecting wheat 

each year. Teliospores and basidiospores cannot infect cereals and grasses but can infect Berberis and 

Mahonia spp. and produce pycniospores and aeciospores71 ( 
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Figure 2.1). The uredinial/telial stages infect bread wheat, emmer wheat and wild emmer, durum wheat 

and triticale (Triticosecale). Pycniospores and aeciospores infect the alternative hosts Barberry 

(Berberischinensis, B. holstii, B. koreana B. shensiana, B. potaninii, B. vulgaris, B. dolichobotrys, B. 

shensiana, B. heteropoda) and Oregon grape (Mahonia aquifolium)72. 

  

Figure 2.1. Stripe rust life cycle in wheat and its alternative hosts. 

Stripe rust infection in wheat starts when urediniospores germinate and germ tubes grow into host 

tissues via stomates. Under favorable environmental conditions, the first symptoms (chlorotic patches on 

leaves) appear 6-7 days after inoculation, while the first uredinia appear 11-14 days after inoculation. In 

adult plants of susceptible wheat cultivars, the infection of stripe rust spreads longitudinally, forming 

stripes delimited by leaf veins. In seedlings, the pathogen spreads equidistantly within leaves and is not 

delimited by leaf veins. Pustules within uredinia are elongated, orange, and can produce thousands of 

urediniospores for many days until the infected leaf area senesces (Figure 2.2). Urediniospores 

predominantly infect leaves (usually between veins), leaf sheaths, glumes, and awns73. Resistant cultivars 

have various responses to infection, from the absence of visual symptoms to small hypersensitive spots to  
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Figure 2.2. Susceptible leaves symptoms   

uredinia surrounded by a chlorotic or necrotic zone, all of which eliminate or limit the production of 

urediniospores73. 

Diversity and distribution 

The stripe rust pathogen has a sizeable genetic variability. Researchers have detected DNA 

polymorphism both among races and between single-spores isolates within a race74,75. In the US, there 

have been over 126 different races of P. striiformis f. sp. tritici detected76–78. Genetic variability in stripe 

rust is due to mutation, somatic recombination, and probably sexual recombination79. Mutation is the 

primary theory to explain the formation of new races through stepwise evolution65,80. A mutation is a 

random event that occurs in any locus that can increase the number of virulences81, or diminish 

virulences82. Mutations most likely to remain in the population are those that increase the amount of 

virulence65,80. Frequency of stripe rust race mutation is estimated to be from 1.4 × 10-6 to 4.1 × 10-6 per 

locus per generation in individual clonal lineages with an assumption of an average 15 generations per 

year82. Somatic recombination is an effective mechanism of stripe rust variation83 and involves 

recombinant isolates by nuclear exchange, cell fusion, and/or chromosomal reassortment84. Sexual 

recombination occurs predominantly in the Himalayan region85, when stripe rust infects the alternative 

host, and natural and human factors cause spore dispersal worldwide. Its rapid local adaptation via 

stepwise evolution contributes to the active resistance defeat in new varietal releases79. 
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Resistance genes 

The significant types of resistance to stripe rust in wheat are seedling (or all-stage) resistance (R) 

and adult plant resistance (APR) or high-temperature adult-plant resistance (HTAP)86. Wheat genes of 

both R and APR resistance to stripe rust use the designated nomenclature Yr (for yellow rust)66. The R 

genes refer to major gene resistance, seedling resistance, race-specific resistance, and gene-for-gene 

resistance87. Most wheat rust R genes encode proteins (NBS-LRR) that recognize a fungal protein and 

trigger a defense response that halts or suppresses pathogen reproduction66,88. An example of this is Yr10, 

the only cloned Yr seedling resistance gene that encodes a highly evolutionary-conserved and unique CC-

NBS-LRR sequence89. R genes have less chance of being durable than APR genes due to the specificity 

of resistance. Adult plant resistance has been durable and therefore should be used in combination with 

race-specific resistance to prolong their life span66. Examples of these genes for stripe rust described in 

the literature are Yr18 in chromosome 7D90, Yr46 in chromosome 4DL, and Yr36 in chromosome 6B91. 

To date there are more than 78 permanently named, 67 proposed and/or designated Yr genes, and 

327 quantitative trait loci (QTL)92 for resistance to stripe rust identified in wheat, and some have been 

widely used in different areas of the world. Among a total of 78 Yr genes, 54 confer seedling resistance 

and 24 adult plant resistance93,94. 

Stripe rust in the PNW 

 The PNW has experienced different epidemics of stripe rust. The first epidemic occurred 

between 1959 to 1961. The losses of yield were estimated to be between 20% to 55%. The most severe 

epidemics occurred in 1960 in Washington, and 1961 in Oregon and Washington. The second period was 

from 1974 to 1978. In 1976, yield losses were 17% in Washington, 13% in Oregon, and 11% in Idaho. In 

1980 and 1981, stripe rust epidemics were widespread, and yield losses in Washington were estimated to 

be 13% and 11%, and 5% to 9% in Oregon and Idaho75. After these periods, the yield losses caused by 

stripe rust were reduced due to widely grown resistant cultivars and the use of fungicides75,95. During the 

period 2002 to 2013, disease resistance was lost in many cultivars, with highly severe epidemics. The loss 

of resistance increased production costs. During this period, the disease became more of a problem in 

other parts of the United States, including the southeastern region and Midwest, where it had previously 

been infrequent or absent96,97. The year 2010 was the most extreme registered for the USA, with an 

estimated yield loss of over 10%98. Stripe rust disease continued to be severe in the PNW, equaling 1981 

losses during 2011; in contrast, it was not extreme in the eastern Rocky Mountains region due to drought 

conditions99. 

In the last 15 years, new races of stripe rust appeared in the USA due to the accelerated evolution 

of the pathogen99. Simultaneously, the stripe rust population has increased in aggressiveness and 

adaptation to both high and low temperatures, reducing the effectiveness of disease resistance100,101. In 
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2010, races of stripe rust drastically changed virulence, having new virulence on Yr genes such as 27, 43, 

44, 7, Exp2, Sp, Tr1, and Tye, reducing virulence on Yr gene such as 11, 16, 18, 19, 20, 3, and 

maintaining virulence on Yr genes such as 1, 10, 17, 8, 9 (Figure 2.4). These changes resulted in new 

races, such as PSTv-11, PSTv-14, PSTv-41, and PSTv-37102 (Figure 2.3). The most dominant race since 

2016 has been PSTv-37 with PSTv-39 starting to increase in frequency (Figure 2.3). In all these years, the 

winter wheat cultivar Madsen has remained highly resistant to stripe rust, as well as cultivars derived 

from Madsen, such as 'Cara' (PI 643435)103 and 'ARS‐Selbu' (PI 667744)104. Other cultivars have lost their 

resistance during this time, such as 'Eltan' (PI 536994)105 and 'Xerpha' (PI 645605)106 due to the 

appearance of new races in the PNW107,108. 

 

Figure 2.3. The most frequent races of stripe rust distributed in the PNW between 2009 to 2020, axis-x is 

the years, and axis-y is the races name, source: https://striperust.wsu.edu/races/data/. 

https://striperust.wsu.edu/races/data/
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Figure 2.4. Frequency of virulence on Yr genes in PNW between 2005 to 2020, in the x axis is the years, 

and y axis are the different virulence on Yr genes. source: https://striperust.wsu.edu/races/data/ 

 

 

https://striperust.wsu.edu/races/data/
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Septoria diseases 

Economic impact 

Septoria tritici blotch (STB) (Zymoseptoria tritici) can have a significant economic impact by 

decreasing yield by 10 to 50% (depending on the region and yearly disease pressure) and by reducing 

grain quality 109. Agronomic practices to control STB, such as late seeding, growing resistant cultivars,110 

and biocontrol with bacteria such as Bacillius megaterium are not as prevalent as frequent fungicide 

application111. Z. tritici populations have evolved high levels of resistance  to frequently used fungicides, 

such as demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) fungicides112. Breeding for 

resistance is the most cost-effective and environmentally friendly approach to control STB113,114. 

Cycle, host, and symptoms 

Septoria tritici blotch (STB) is caused by the ascomycete fungus Zymoseptoria tritici (formerly 

Mycosphaerella graminicola), is a foliar blotch disease and is considered one of the most devastating 

blotch diseases of wheat in the world115. Z. tritici has a heterothallic bipolar mating system with alleles 

mat1-1 and mat1-2116. The sexual fruiting bodies (pseudothecia) contribute to the primary inoculum via 

air-borne ascospores. The asexual pycnidia release pycnidiospores that infect the wheat during the 

growing season are splash-dispersed. Z. tritici has two distinct phases of infection: the initial biotrophic 

phase, which occurs on the leaf surface where spores germinate under low temperature, humid conditions, 

and the final phase, which occurs between 7 to 14 days after infection. During the biotrophic phase, the 

ascospores and conidia produce hyphae that penetrate the leaf through stomata to access the 

apoplast117,118, without damage, defense symptoms, or with feeble defense response119–121. The genetic 

factors that trigger the switch from a biotrophic state to a necrotrophic state are still unidentified122. The 

necrotrophic phase characterizes the final infection phase 7-14 days after infection. Z. tritici probably uses 

several mechanisms to induce necrosis, including the production of protein effectors120,121,123–125. During 

this phase, the host shows the first symptoms, chlorotic lesions, that eventually coalesce into larger 

necrotic blotches (Figure 2.6). The pathogen feeds on nutrients from the dying host tissue and produces 

asexual and sexual fruiting bodies117,126,127. At the end of the season, the pathogen produces pseudothecia 

to survive during the summer and fall until a new crop is planted and rains induce ascospore release 

(Figure 2.6). 
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Figure 2.5 Septoria tritici blotch cycle  

 

 

Figure 2.6 Septoria tritici blotch symptoms  

Diversity and distribution 

 The Z. tritici population has high genotypic diversity and low clonality122,128,129 with alleles in 

gametic equilibrium130 and mating types at equal frequency131. A typical infection of 1 cm can contain 

two to six strains of pathogens, competing strongly for resources128,132. Asexual clones can increase the 
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virulence alleles and then be dispersed over long distances via airborne ascospores due to a strong 

selection either by the variability of the host or environment133,134. Virulence genes can move between 200 

to 300 km every three growing seasons base on the stepping stone model of gene flow135. 

Resistance genes for STB 

Twenty-six resistance genes to STB have been identified and genetically mapped as well as 

several quantitative trait loci (QTL) 129,136–151, including additive and epistatic effect genes136,144. Some 

studies confirm the specific interaction between bread wheat cultivars and STB isolates, such as: IN95-

Lafayette-1196-WW-1-4 avirulent for Stb1150 and Stv4149, IPO323 avirulent Stb6138, Paskeville avirulent 

for Stb2 and Stb3152, IPO94269 avirulent Stb10148, IPO89011 avirulent Stb9147, MG2 avirulent Stb7153 

Stb13 and Stb14143. The first and the only gene cloned for STB resistance is Stb6, which encodes a wall-

associated receptor kinase (WAK)-like protein154. Known individual Stb genes are not currently effective 

against Z. tritici. The efficacy of R genes is limited because of the versatility of STB, its active sexual 

cycle, and the strong selection favoring genes that can overcome adverse environmental (fungicides 

resistance) or biological (host resistance) factors during the asexual cycle. 

2.4 Immune response for diseases.  

The plant immune system consists of multiple layers of surveillance systems capable of recognizing pathogen 

effectors and has a rapid response to avoid causing severe damage155. The first defensive line is basal 

resistance, also called innate immunity or pathogen-associated molecular patterns (PAMP)-triggered 

immunity (PTI)155. This system consists of plant cells that identify microbe-associated molecular patterns 

(MAMPs) or pathogen-associated molecular patterns (PAMPs) by using toll-like receptors (TLRs), and 

pattern recognition receptors (PRRs) present on the surface of the plant cell. The plant's PTI response 

generates reactive oxygen species (ROS), for example, superoxide anion (𝑂2
−)  or hydrogen peroxide 

(𝐻202) , after the plant detects MAMPs. Pathogens secrete proteins called effectors as countermeasures 

to suppress basal resistance. Pathogen effectors can suppress PAMPs, triggering susceptibility in the host; 

this process is called effector-activated susceptibility (ETS)156. However, when the plant identifies these 

effectors, either directly or indirectly, the effector-activated immunity (ETI) or the second level of 

defense, is triggered. The second line of defense is activated only after earlier localized exposure to a 

pathogen. There are two types of this response: hypersensitive response (HR) and systematic acquired 

resistance (SAR)157. Resistance genes limit the pathogen's access to water and nutrients by sacrificing 

plant cells by HR at the infection site to save the rest of the plant. SAR is an enhanced resistance that 

helps to initiate a quick and effective response involving the whole plant157. 

Resistance genes regulate the plant immune response. Resistance genes are a source of full or 

partially heritable resistance. There are two types of resistance genes: qualitative resistance genes (R 
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genes), generally major genes of large effect, and quantitative resistance genes (APR), which generally 

depend on several-to-many genes with moderate-to-small effects158. R genes are detected in seedling tests 

and remain effective throughout all growth stages. This kind of major gene resistance is generally not 

durable due to mutations in the pathogen, so durable resistance depends on the deployment of multiple 

resistance gene combinations, either inhomogeneous pure line cultivars75,95, multi-line cultivars159, or 

cultivar blends160. APR can express resistance in all stages of the plant or can express susceptible 

infection types in the seedling stage then develops varying levels of resistance in post-seedling stages in 

the field. Thus, they provide a non-complete level of resistance/immunity expressed only in the adult 

plant and in all stage, (except under particular conditions). It is characterized by a delay in infection and 

spore production. APR resistance has been durable and, therefore should be used in combination with 

race-specific resistance to prolong the effectiveness of R genes66,75. These genes are involved in general 

plant physiology and encode resistance allele-specific protein variants 66,161 that can recognize specific 

pathogen proteins85. 

R genes recognize pathogen effectors or damage, directly or indirectly, on the cell surface or 

inside the cell and activate the plant’s ‘immune system’, playing an essential role in the gene-for-gene 

(GFG) interaction between pathogen and host. R genes are classified based on recognizing the effectors or 

damage, i.e.,  on the cell surface or inside the cell162. 

R genes on the cell surfaces are typically patterned recognition receptors (PRRs): receptor-like 

kinases (RLK) or receptor-like proteins (RLPs)163. RLK represents an extracellular domain, a 

transmembrane domain, and an intracellular kinase domain. The receptor-like proteins (RLPs) lack 

intracellular signaling domains and are made of ecto-ligand binding and transmembrane domains164–166. 

Both recognize PAMPs and host-derived DAMPs (Damage-Associated Molecular Patterns) during the 

infection directly (recognition of non-self) or indirectly (triggered Immunity or PTI). The wall-associated 

receptor kinase (WAK)-like protein is one type of RLKs that detect DAMPs that result from cellular 

damage during the initial infection. Five types of PRRs have been identified in wheat. They are: (1) the S-

domain-type RK TaLRK10 that provides resistance to P. triticina167, (2) TaLRRK-6D which provides 

resistance to F. graminearum168, (3) LRR-RLP TaRLP1.1 and cysteine-rich domain-type RKs TaRLK-

R1–3 that provide resistance to (P. striiformis f. sp. tritici169, (4) the TaWAKL4 that provides resistance to 

STB (Z. tritici)170, and (5) the NbBAK1 and NbSOBIR1 induced cell death in Z. tritici effector 

recognition171.  

The intracellular R genes typically encode proteins with a nucleotide-binding domain (NB) and 

leucine-rich repeats (LRR)172. The intracellular R genes (NLR) are the most common resistance genes and 

belong to the most extensive and most widespread group of resistance genes These genes can be 

subdivided based on the presence of the Toll-like/interleukin 1 domain (TIR-type-NLR) and coiled-coil 
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(CC-NB-LRR)172 at the N-terminus. Many NLR genes are in the extra-pericentromeric regions173 of the 

chromosome, which has high chromosomal duplications, recombination, and deletion rates. However, the 

wheat NLRs are found in the distal regions of the chromosomes, near the telomeres, and are close to each 

other174,175. The NLR function recognizes the effector and activates resistance responses such as 

hypersensitive response (HR), generating reactive oxygen species (ROS), or systematic acquired 

resistance (SAR). The NLRs are activated by the presence of a pathogen either binding to pathogen 

effectors176, by sensing effector-induced modification of other host proteins (modified guardee)177,178, by 

modification of target-mimicking decoy protein (modified decoy)179, by modifying the NLR (integrated 

decoy)180–182, or by the WRKY proteins that are a type of integrated decoy183,184. Over 2000 NB-LRR 

encoding genes have been reported in wheat, which is the largest number reported thus far in any plant 

speicies185. However, only 19 R genes (NLR) have been cloned for rust and powdery mildew 

resistance88,186–196. Wheat and its relatives have a rare, unique domain, ANK-NLR-WRKY, that also 

provides R genes197. 

2.5 Wheat Breeding 

History of breeding 

Breeding has been practiced since the domestication of wheat198. In the early centuries, farmers 

selected different traits of interest controlled by genes without knowledge of dominance, segregation, and 

heritability. Since Mendel's laws, plant breeding has become more sophisticated, utilizing the selection of 

pollen donors and artificial pollination 199. These techniques are still being using for most cultivated 

crops. Artificial pollination creates diversity to improve traits such as disease yield, disease resistance, 

quality, morphology, and architecture. 

The second significant advance in plant breeding was the discovery of rapid DNA sequencing 

invented by Frederik Sanger in 1977200,201. This allowed breeders to employ molecular markers to 

improve cultivars more rapidly202,203. Marker-assisted selection (MAS) is the strategy that involves the 

identification of the presence of gene or genes associated with a trait of interest through using molecular 

markers,204 which are a sequence of DNA associated (linked) with this particular trait205. This technique 

can enhance the efficiency of breeding programs by identifying and quantifying genetic variation. It is 

considered very useful for low heritability traits, genes that are expressed in adult plants, and traits that 

are expensive to measure. In addition, molecular markers can also be used for plant variety protection, 

such as uniformity, distinctness, and stability testing processes205. 

Breeding for resistance 

Wheat breeding programs aim to improve yield and disease resistance while maintaining quality 

for a specific end-use. Breeding for disease resistance in wheat requires a resistance source to start the 
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breeding program. Resistance genes can be provided by elite cultivars, traditional cultivars, or wheat 

relatives, either wild or crop forms. Recently, new technologies such as gene editing using CRISPR-Cas9 

may also be used to induce disease resistance205. 

Developing elite resistant cultivars can be accomplished by classical breeding, molecular plant 

breeding, or a combination of both. The common methods in classical resistance breeding are backcross 

breeding, recurrent selection, and multi-stage selection. The goal of backcrossing (BC) is to transfer an R 

gene from distantly related sources, such as wheat relatives or landraces, to an elite cultivar through 

crosses between the elite cultivar and the resistance donor, followed by a series of crosses back to the elite 

cultivar as the recurrent parent. Selection of the resistant phenotype is required in each backcross 

generation. If the resistance is recessive, a selfing generation would be needed to select for resistance. On 

the other hand, if a molecular marker exists for the resistance gene, genotypic selection can be done and 

the selfing generation would not be required. The number of backcross generations needed depends on the 

genetic difference between the donor and the recurrent parent. Recurrent selection (RS) consists of 

developing various repeated cycles of recombination and selection without losing genetic diversity. In 

wheat, this method requires crosses and additional selfing steps to increase the additive effect. The main 

benefits are being able to test in multiple locations and improve multiple traits at once. However, this 

method is not efficient when the agronomic traits negatively impact quantitative resistance, such as the 

Rht-D1 dwarfing locus having a negative effect on transfer of resistance to Fusarium head blight205. The 

multi-stage selection consists of a continuous selection process with multiple successive resistances in a 

single generation. The selection in each step depends on how the resistance is inherited. Using doubled-

haploids (DH) allows starting the selection in the F1 generation. The main advantages of the multi-stage 

selection approach are higher selection intensity, accuracy, and saving time. However, this method has 

high costs and only has one round of recombination206.  

Molecular plant breeding is the application of molecular biology or biotechnology to improve or 

develop new cultivars207. There are two major strategies, marker-assisted selection and genomic selection. 

Marker-assisted selection is the selection of genotypes based on a marker linked to a trait of interest. 

Marker-assisted selection can be applied in all the classical breeding methods increasing efficiency. 

Genomic selection (GS) uses all the genome markers available to create breeding values to improve 

selection efficiency. This method uses a training population with phenotypic and genotypic data to 

develop a model to predict performance based on marker data without phenotyping208. Both ways require 

new sequence technology such as genotyping-by-sequencing (GBS).  

Molecular plant breeding technology 

Over the past 20 years, new genome sequencing technologies have become more economical and 

progressively more efficient, increasing precision and sequencing speed209. This has allowed for a more 
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robust analysis of numerous plant and pathogen genomes. There are two sequencing approaches to 

identify inter-individual variation at a genome-scale. When the species possess small genomes, like fungi, 

whole-genome sequencing can be used. However, it is too expensive to generate whole-genome sequence 

data for species with large genomes, such as wheat. An alternative to whole-genome sequencing is to 

reduce genomic complexity by only sequencing a portion of the genome; this approach includes 

transcriptome sequencing, exome capture, genotyping-by-sequencing209. 

The transcriptome sequence or RNA sequence identifies and quantifies different expression levels 

of genes in particular conditions, allowing associated the genes with the specific trait210. The exome 

capture technique consists of the sequence of the exotic region of the genome. This technique consists of 

two phases, the first phase identifies the DNA encodes protein by probe hybridization, and the second is a 

high throughput DNA sequencing211.  Genotyping-by-sequencing (GBS) is a technique that consists of 

construction of GBS libraries using restriction enzymes to reduce the genome complexity, and sequencing 

with the Illumina next-generation sequencing (NGS) platform212. GBS is characterized by low cost, 

efficient barcoding, and ease for calling up for PCR and purification steps213. In addition, Genotyping-by-

sequencing generates multiple single nucleotide polymorphism markers (SNPs)214 allowing efficient 

studies such as genome-wide association studies (GWAS) and/or quantitative trait loci analysis (QTL)215. 

Quantitative trait loci (QTL) analysis is a method to identify molecular markers associated with 

resistance genes. Quantitative trait loci (QTL) are a genome region associated with a specific trait linked 

to a particular polymorphic marker like SNPs identified by GBS. QTL analyses require a segregating 

population such as F2, backcross populations (BC), doubled haploids (DH), or recombinant inbred lines 

(RIL) and their and their phenotypic and genotypic data. Statistical methods include single marker 

analysis (SMA), interval mapping (IM), composite interval mapping (CIM), and multiple interval 

mapping (MIM) to identify QTL216. 

Single marker analysis (SMA) is the simplest method for QTL mapping. It analyzes individual 

markers and splits the population into groups according to the individuals' genotypes. Interval mapping 

(IM) uses intervals between each pair of markers, exploring for QTL between them217. Composite interval 

mapping (CIM) is a method that attempts to separate and isolate individual QTL effects by combining 

interval mapping with multiple regression analysis. The CIM aims to reduce residual variation and 

enhance QTL detection by considering markers near to putative QTL as covariates. This method 

identifies or discards putative QTL using forward or backward stepwise regression in combination with 

single interval mapping218. Multiple interval mapping (MIM) extends the methods for single interval 

mapping to develop a search for pairs of QTLs at a time218.  
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Phenotyping disease  

Phenotyping is essential to identify molecular markers associated with any trait in a crop and 

disease resistance is no exception. Each plant can show a range of symptoms or different resistance 

reactions during pathogenesis, such as systematic acquired resistance (SAR) or hypersensitive response 

(HR)157. Currently, the most used method to quantify the percent severity is based on human visual 

observations. Alternative visual methods include calculating the percentage of disease severity according 

to the modified Cobb scale219, calculating the area under the disease progress curve (AUDPC)220, or 

quantification using diagrammatic scales220. All these methods are labor-intensive, subjective, and have 

accuracy limitations. In recent years, researchers have studied different objective methods to quantify 

disease severity, by imaging technologies such as fluorescence imaging, hyperspectral imaging221,222, 

multispectral imagery, and leaf color analysis through digital photography223,224. Fluorescence imaging, 

hyperspectral imaging221,222, multispectral is based on the theory that healthy plants and infected plants 

differ in their ability to absorb, reflect, emit, transmit or fluorescent light. All use different visible 

spectrums to detect the severity of the pathogen. Fluorescence images use an overall average 

measurement of light quality in visible wavebands for individual pixels, multispectral images use between 

3 and 10 different electromagnetic spectrum bands for each pixel, and hyperspectral image measures 

energy in narrower bands and uses 200 or more contiguous spectral bands. All three methods use the 

information of spectral bands to distinguish between diseases and healthy tissue225. An alternative 

approach is to analyze leaf color through digital photography, using the intensity of different colors to 

differentiate between disease area and leaf area.  
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3.1 Abstract 

Septoria tritici blotch (STB) is a foliar disease of wheat (Triticum aestivum L.) caused by the ascomycete 

fungus Zymoseptoria tritici. STB is a polycyclic disease and represents a significant threat to wheat 

production. High disease pressure can reduce the economic value of wheat by decreasing yield and grain 

quality. The control of STB relies primarily on the use of fungicides. Unfortunately, Z. tritici populations 

have evolved high resistance levels to some of these fungicides, causing them to lose their efficacy. 

Increasing STB resistance through plant breeding is the most cost-effective and environmentally friendly 

method for control. A recombinant inbred line (RIL) population was developed from a cross between 

‘Madsen’ and ‘Foote’ soft white winter wheat cultivars to study STB resistance. Foote (PI 599663) has 

provided moderate resistance to STB in the Pacific Northwest (PNW), while Madsen (PI 511673) is 

moderately susceptible to STB. The RIL population, consisting of 217 lines, was phenotype across 

multiple environments for STB response and genotyped using Illumina HiSeq 3000 Sequencing. The 

STACKS program was used to select SNPs. Analysis of variance showed significant differences among 

phenotypes and genotypes in the RIL population (p<0.01). The best linear unbiased prediction (BLUP) 

value for each accession across different environments for STB severity was used for QTL mapping. 

Results of quantitative trait loci (QTL) analysis indicated minor genes in 4B, 5A, 6B, 6D, and 7DS. 

Stacking these QTL in one cultivar can reduce the severity by over 70% compared to not using any of 

these QTL. These QTL could develop breeder-friendly molecular markers for genotypic selection for 

improved STB resistance in wheat in the Pacific Northwest. 

3.2 Introduction 

Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria tritici, is a 

devastating foliar disease of hexaploid wheat (Triticum aestivum L.), especially in humid and temperate 

areas.  It has a significant economic impact by decreasing grain quality and crop yield by 10 to 50%, 

depending on the region and disease pressure1. The regions of the world where STB has become the most 

significant challenge in wheat production are the Pacific Northwest and the Northern Great Plains of the 

United States, Central, and Western Asia, and Europe2. Zymoseptoria tritici is a polycyclic pathogen, with 
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two types of spores, ascospores, and pycnidiospores. Ascospores are sexual spores driven by a 

heterothallic bipolar mating3 system, and pycnidiospores are asexual spores. Both spores can contribute to 

the primary inoculum and the propagation of STB through the wheat growing season4. Infection is mainly 

initiated in the fall, after seedlings emerge,  by air-borne ascospores from wheat debris the prior year, 

either from the same field or other fields within the region5. Septoria tritici blotch has two distinct phases, 

biotrophic and necrotrophic.  The biotrophic phase starts when spores infect leaves through stomata and is 

characterized by an extended symptomless infection. The host shows the first symptoms during the 

necrotrophic phase, via small necrotic spots that expand into necrotic blotches on leaves6. The Z. tritici 

population in a wheat field is characterized by high genotypic diversity and low clonality7–9. A single 

wheat field contains about 92% of the global genetic STB diversity for neutral markers7,10. The variation 

in allelic frequency occurs by a strong selection of asexual clones11,12 or by the gene flow from another 

field13. Management of STB relies primarily on fungicides, using between two to four applications per 

year. In Europe, the fungicide use for STB represents 70% of the annual use of fungicide in wheat and has 

a cost of approximately $1.2 bn/year14. In recent years, the global Z. tritici population has evolved high 

levels of resistance to some fungicides, such as quinone outside Inhibitors (Qols)15demethylation 

inhibitors (DMI)16, and some resistance to the succinate dehydrogenase inhibitors (SDHIs) was recently 

reported in the UK 17.  One approach to reducing the use of fungicides to control STB is increasing host 

plant resistance to STB through plant breeding. The use of host plant resistance is not only an 

environmentally friendly approach to reduce the impact of STB on wheat production. It is also the most 

cost-effective way to control STB. 

Plant resistance genes (PRGs) can be grouped into two types, qualitative and quantitative. 

Qualitative resistance genes are characterized by host genotype-pathogen genotype specificity and 

generally depend on a major gene with a large effect. Quantitative resistance genes are usually 

characterized by non-specific interactions, which generally depend on multiple genes with moderate-to-

small effects. PRGs can regulate the resistance response either independent of the plant growth stage or 

ontogenetically. In wheat, 26 qualitative resistance genes against STB and several quantitative trait loci 

(QTL) have been identified and genetically mapped 9,18–33, showing additive and epistatic effects18,26. The 

first PRGs mapped against STB were Stb1, Stb2, and Stb334, mapped on chromosomes 5BL32, 1BS9, and 

7AS21, respectively, and were described as qualitative resistance genes. Stb6 and Stb15 are the most 

common STB genes in current European wheat germplasm26. A gene-for-gene relationship has only been 

demonstrated for Stb620. Stb6 encodes a wall-associated receptor kinase (WAK)-like protein and is the 

only PRG cloned for Z. tritici35. Each of these genes is useful against only one or a few isolates of STB 

but is not effective against current Z. tritici populations in the field. The limitation of these genes is due to 

the high genetic diversity of the pathogen, its active sexual cycle, large effective population size of Z. 
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tritici, and strong selection favoring genes that can overcome fungicides 36,37 or host resistance38,39 during 

the asexual cycle. For example, the soft white winter wheat cultivar `Gene´, which has Stb6 and Stb1040, 

became highly susceptible to STB within 5 years of its release even when occupying only about 15% of 

the Willamette Valley, Oregon wheat-growing area41. It is not known which of the genes was overcome 

by the fungus, however. It is known that the soft white winter wheat cultivar, ‘Foote’, released in Oregon 

in 1998, remained moderately resistant to STB in Oregon42 when it was abandoned due to susceptibility to 

stripe rust in 2004/05. In addition, there have been genes that have had lasting resistance, such as Stb1, 

which originated from the wheat cultivar Bulgari 88, but this cultivar has recently become ineffective 

against 10 different isolates43. Stb4 was effective in California for more than 15 years until 200431, when 

resistance broke down. Stb16 is considered the most promising durable resistance gene, providing 

resistance to more than 20 different Z. tritici isolates around the world18, and maintains resistance against 

STB populations from Mexico and Uruguay44. Nonetheless, cultivar ‘M3’ carrying Stb16 and Stb17 was 

susceptible to four of 10 Iranian Z. tritici isolates45. 

Resistance to STB can also be quantitative. The chromosome regions with relevant quantitative 

trait loci for resistance against STB are 3BL, 6BS, and 7DL. At least one QTL or meta-QTL has been 

identified on all chromosomes, except 5D46. Additionally, wheat has PRGs with quantitative resistance to 

multiple diseases in addition to STB. Examples include TaXA21 located in 5AL, which provides 

resistance to different stripe rust, powdery mildew, and Hessian fly biotypes BP47, and Tsn1 located in 

5BL that provides susceptibility to necrotrophic pathogens such as Stagonospora nodorum and 

Pyrenophora tritici-repentis48. 

The STB population undergoes annual sexual reproduction and maintains a substantial effective 

population. Therefore, studying multiple environments can help us cover the evolution of the pathogen 

and increase the possibility of identifying durable resistance genes. Furthermore, identify the genes 

involved in resistance in the STS population. The Pacific Northwest is a perfect laboratory field to study 

STB due to its conditions like cool temperature, frequent rainfall, and high humidity. In addition, the STB 

is present yearly, with an effective substantial population in the PNW. 

Resistance to STB can be confounded by factors such as plant height and flowering time. Plant 

height can influence the amount of inoculum  splashed upwards as plants grow, increasing disease 

severity in shorter and earlier heading cultivars49. Heading dates are less relevant than plant height when 

cultivars were evaluated for STB at the same development stage under similar weather conditions50. 

Identified PRGs with non-specific resistance might improve the durability of resistance via marker-

assisted selection (MAS). 
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The overall objective of this project is to identify QTL associated with STB resistance in a recombinant 

inbred line (RIL) population in the state of Oregon in the Pacific Northwest of the United States. 

Specific objectives were: 

1. Determine if plant height and flowering time are confounding factors influencing STB severity in 

a Foote by Madsen (FxM) RIL population.  

2. Identify the QTL for adult plant resistance to STB in the Foote x Madsen RIL population-based 

for each five and a cross the environments. 

3. Select a genomic model to predict STB severity. 

4. Determine if markers for Stb1 and Stb6 contribute to resistance in the FxM population or are 

correlated with any QTL detected in the QTL analysis.  

3.3 Materials and methods 

Mapping population  

The segregating population was a recombinant inbred line (RIL) F7-F9population, developed from the 

cross between the soft white winter wheat cultivars ‘Foote’ (PI 599663) and ‘Madsen’ (PI 511673)51, 

followed by single seed descent. This population consisted of 216 RILs and was developed at Oregon 

State University (OSU). Foote was released by OSU in 2000 with the pedigree 

“Heima/Kalyansona/Bluebird/3/WWP7147, F1/4/Davis 6301/Heine VII/era/3/Buckbuck” and provided 

moderate resistance to STB in the Pacific Northwest (PNW) but was abandoned from production in the 

mid-2000s due to susceptibility to new stripe rust races. The wheat cultivar Madsen, with the pedigree 

“VPM1/Moisson 951//2*Hill 81”, was developed by the USDA-ARS wheat genetics program in Pullman, 

WA. It is known to carry Pch1 for Pseudocercosporella herpotrichoides foot rot resistance and Yr17 for 

stripe rust (Puccinia striiformis f. sp. Tritici).   Madsen was moderately resistant to STB when first 

released in 1988 but became moderately susceptible over a ten-year period52.  

Genotypic data  

DNA extraction and sequencing 

Parents and offspring were grown under greenhouse conditions, at 21 to 23 °C, a photoperiod of 16:8 

hours (Light: Dark), avoiding pathogen or insect infection. Genomic DNA of parents and their RIL (F6-

F7) progeny were extracted from seedlings at the three-leaf stage, with an automated extraction system 

(Thermo KingFisher Flex, Waltham, MA) at the Center of Genomic Research and Biotechnology (CGRB) 

at Oregon State University. Genotyping by sequencing (GBS) libraries were developed following a two-

enzyme PstI (CTGCAG) and MspI (CCGG) restriction digestion GBS protocol described in Poland et 
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al.53. Barcode adapters were ligated to unique individual samples by (5 a 10 bp) based on oligonucleotides 

listed by Elshire et al.54 and solely compatible with the two digested fragments (PstI and MspI). Four 

libraries were prepared and sequenced with an Illumina HiSeq 3000 (Illumina HiSeq 3000/HiSeq 4000 

System, RRID:SCR_016386, Illumina, San Diego, CA, USA) at the Center for Genome Research and 

Biocomputing, Oregon State University, Corvallis, OR, USA. 

SNPs data 

The SNP calling was done using the STACKS  v2.52 software packages.55 All samples for each library 

for each enzyme were quality filtered, demultiplexed, and trimmed, using process radtags55, with the 

rescue barcodes option (-r) and automatic clean data (-c), removing any reads with an uncalled base. The 

RIL population and both parents were identified from the raw data using the nucleotides barcodes. Both 

files from each enzyme were concatenated by sample. The raw reads for each library were aligned to the 

wheat indexed reference genome56, using BWA57 and sort and variants detection by SAMTOOLS58. The 

wheat reference genome (IWGSC RefSeq v1)59 was previously indexed using BWA tools. SNPs for all 

populations were identified and genotyped at each locus and in each sample, gstacks STACKS v2.52 

software packages55. The population program from gstacks was used to obtain the output files such as the 

locus consensus sequences in FASTA format, the SNPs, haplotypes in Variant Call Format (VCF), and 

the genotypes in PLINK format. The SNPs were filtered out by 20% of missing data, minor allele 

frequency MAS>5% missing rate per SNP (including SNPs with 80% genotype rate), using PLINK 

software60. 

Linkage map construction group 

A linkage map was constructed using SNP data from GBS (GBS-SNP). Loci that were 

completely linked, i.e., displayed no segregation, were excluded from the dataset. Polymorphic markers 

were classified into two categories according to their segregation pattern. A test to detect markers with 

segregation distortion was performed. For each locus, the pattern of allelic segregation was tested using a 

𝜒2goodness-of-fit to fit test where expected frequencies responded to Mendelian segregation ratios. 

Linkage group analysis was performed using Join Map v4.061 with the parameters set for a RIL 

population. Initial assignment to linkage groups was based on a logarithm of the odds (LOD) threshold of 

6.0. We used a linkage with recombination rate (REC) <0.5 and a map LOD value of five for inclusion 

into the map and to calculate the linear order of the markers within a linkage group. Certain singletons 

were removed with the statistical method SMOOTH62 and reorder the markers with the RECORD 

software63. 
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Molecular markers  

The RILs and their parents were genotyped using genetic markers associated with photoperiod(Ppd-D1)64, 

vernalization https://maswheat.ucdavis.edu/protocols), height (Rht‐B and Rht‐D1)65, and for two candidate 

resistance genes of Septoria tritici (Stb1 and Stb6)66,67. 

Phenotypic data  

The RIL population for the Foote × Madsen RIL population, along with its parents, was planted for 

evaluation of STB severity in five environments, which were combinations of three years (2016, 2018 and 

2019) and two locations. Locations were the OSU Botany and Plant Pathology Field Laboratory (45.72 N, 

122.54 W), Corvallis OR in 2016 and 2019, and the other three at the OSU Hyslop Crop Science Field 

Research Laboratory (44.63 N, 123.19 W), Corvallis OR in 2016, 2018, and 2019. Each trial is labeled by 

BF for trials located at the OSU Botany and Plant Pathology Field Laboratory or HF for trail located at 

the OSU Hyslop Crop Science Field Research Laboratory Farm, followed by the year. The experiments 

were in a randomized complete block design (RCBD) for each environment, with two replications. Each 

plot was 3 rows and 2m long. The parents were included twice in each replication.  

Plots were treated with a strobilurin fungicide four times during late winter/spring to allow a reliable 

scoring of STB severity in the absence of stripe rust. The Willamette Valley population of Z. tritici. is 

now highly resistant to strobilurin fungicides68, but the stripe rust population is still susceptible to 

strobilurin fungicides. 

Ample natural STB infection occurred in all experiments. Two disease readings were taken in each field 

trial. The first reading was between stage 10.5 flowering wheat and stage 11 of the Feekes growth scale69, 

and the second reading occurred two to three weeks later. STB severity was determined for each plot by 

estimating the percentage of the total leaf area that was covered by STB lesions, including all leaves on 

the plant.  

Measurements for plant height and heading date were taken each year of the experiment. Plant height (ht) 

was measured for each plot as the distance from the ground to the spikes' top, excluding the awns. The 

heading date(hd) was scored for each plot using Julian days when approximately 50% of the spikes of 

each plot was emerged (above the collar of the flag leaf). 

https://maswheat.ucdavis.edu/protocols
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Statistical analysis 

The Severity of STB. 

All phenotypic data were analyzed using R software version 3.6370. Each combination between year and 

location was treated as an individual data set and analyzed separately using lme4 packages from R 

software version 3.6370.  The model for each combination of year and location for STB was: 

𝑦𝑖𝑗𝑘 = μ + 𝑅𝐼𝐿𝑖 + Envj + 𝑒𝑖𝑗𝑘  , (1) 

Where 𝑦𝑖𝑗𝑘 was the severity response for STB for each RIL 𝑖 and each environment (rep) 𝑗; mu (μ) is the 

population mean for the severity response (STB). RIL and Environments (rep) were treatments as random 

effects with zero mean and variance ( 𝜎𝑅𝐼𝐿
2 , 𝜎𝑒𝑛𝑣

2 ). Model errors were assumed to follow a normal 

distribution with zero mean and variance, i.e., 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒𝑟𝑟
2 ).  The likelihood ratio was calculated for 

each random effect, using the rand option in the lme4 packages from R package statistical70.  This model 

was used to calculate heritability for each experiment,  ℎ2 = 𝜎𝑔
2/𝜎𝑝

2 =  𝜎𝑔
2/(𝜎𝑔

2 +
𝜎2𝑒

𝑟
), where the RIL 

and rep were fitted as a random effect, using lme4 packages from R package statistical70. The variance 

components of the model are 𝜎𝑔
2, genetic variance, and 𝜎𝑒

2 residual variance. From these two components, 

the phenotypic variance was calculated as 𝜎𝑝
2 = 𝜎𝑔

2 +
𝜎𝑒

2

𝑟
 where r is the number of replications71. 

Phenotypic correlations were calculated to understand the concordance of STB scores measured at 

different time points and different years.  Then, heading date and plant height were tested for the 

significant regression in the severity model. 

General model  

The general model for genotypes, environments, their interaction for STB severity was: 

𝑦𝑖𝑗𝑘 = μ + ui + uj + 𝑢𝑖𝑗 + 𝑒𝑖𝑗𝑘  , (2) 

where 𝑦𝑖𝑗𝑘 is the observed response for the 𝑘𝑡ℎ element of RIL 𝑖 in environment (location x environment) 

𝑗, mu is the population mean for the trait, and ui + uj 𝑎𝑛𝑑 𝑢𝑖𝑗  are RIL, Environment, and 

RILxEnvironment random effects, and 𝑒𝑖𝑗𝑘 is the unexplained model error. Model errors were assumed to 

follow a normal distribution with zero mean and variance, i.e., 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒𝑟𝑟
2 ) and random effects were 

assumed to be independent of the model errors and normally distributed with zero means and variances 

𝜎𝐺𝑒𝑛
2 , 𝜎𝐸𝑛𝑣

2 and 𝜎𝐺𝑒𝑛∗𝐸𝑛𝑣
2 .  It was further assumed that ui + uj 𝑎𝑛𝑑 𝑢𝑖𝑗  were mutually independent, i.e., 

𝑐𝑜𝑣(𝑢𝑖 , 𝑢𝑗) = 0. Variance components were determined and the significance of variance component 
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estimates were calculated by the restricted maximum likelihood, using lme4 packages from R package 

statistical70. Then, the plant heading date and plant height were added in the general model to test for 

significance of effects.  

BLUPs 

Best linear unbiased predictors (BLUPs) for STB for each RIL, Foote, and Madsen were determined 

across all the combinations of location/year using lme4 packages from R package statistical70. The model 

was: 

𝑦𝑖𝑗 = μ + 𝑔i + 𝑙𝑔j + 𝑒𝑖𝑗 , (3) 

where𝑦𝑖𝑗 represents the estimated BLUPs of STB severity for each RIL line, μ is the overall mean, 𝑔i and 

𝑙𝑦j are the random effects of the ithRIL and jth location by year, respectively, and 𝑒𝑖𝑗 is the unexplained 

model error. It was assumed that 𝑔i and 𝑙𝑔j were mutually independent, i.e., 𝑐𝑜𝑣(𝑔i, 𝑙𝑔j) = 0, and were 

independent of the model errors and normally distributed with zero means and variance, i.e., 𝑔i~𝑁(0, 𝜎𝑔
2) 

and 𝑙𝑔𝑗~𝑁(0, 𝜎𝑙𝑔
2 ) , respectively. Model errors were assumed to follow a normal distribution with zero 

mean and variance, i.e., 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒
2). This model was fitted using lme4 packages from R package 

statistical70. The estimated BLUPs for each RIL were further used in QTL analysis to identify QTL 

resistance against Septoria tritici blotch.  

QTL analysis 

QTL analysis was performed for the combined five environments separately and the BLUPs estimated 

across environments, described before using R/QTL software72. In the first step, composite interval 

mapping (CIM) scans to identify putative QTL location along the genome were performed for each 

experiment and for the BLUPs obtained previously. The significance likelihood odd (LOD) threshold for 

CIM and MIM was obtained from a 1,000 permutation test73. Multiple interval mapping (MIM) was 

performed using forward selection and setting up the number of markers to find on the previously 

composite interval mapping (CIM) scan, using the Harley-Knott regression, method, and the windows for 

the CIM was set to 2 cM. Finally, each model was fitted, and each QTL were refined by using the 

function fitting and refine function on R/qtl72.  

The BLUPs estimated across each year by location, and their interaction were further analyzed. The 

addint function from R/QTL72 calculated the epistasis interaction 𝑄𝑇𝐿 ∙ 𝑄𝑇𝐿. The function addqtl72 was 

used to scan for additional QTL to be added to the model. The additive or interaction effect for a second  

QTL for each chromosome was calculated by the addpair function in R/qtl72. The final QTL model was 
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fitted by stepwise function using an automated model search algorithm with a penalty calculated by using 

the scantwo functions in R/qtl72 with 1,000 permutations test.  

Genomic models 

Three genomic prediction models were created using the R package lme. The models were compared 

using the maximum likelihood method. The accuracies of the models were evaluated by calculating the 

bias mean of residuals, and the precision was calculated by the root mean square error (RMSE).  The 

general model (model 1) was: 

𝒀 = 𝑿𝛽 + 𝒁𝑢 + 𝜖 (4) 

 

where Y  is the vector of phenotypes, 𝜷 is the vector of fixed markers effects selection in the QTL 

analysis and the Stb1 and Stb6 markers, 𝑢 is the vector of random markers effects, 𝑿 is the design 

matrices coded by (0,1) for QStb relating 𝛽 to the observation in Y, and 𝒁 is the design matrices for QStb, 

intercept, environment and interaction between QTL*environment, coded by (0,1) relating 𝑢 to 

observation in Y. The 𝒁 matrix is considered a random effect, including intercept, for all QStb and 

location/year combinations with no variance and covariance restrictions.  

Model 2 was: 

𝒀 = 𝑿𝛽 + 𝒁𝑢 + 𝜖 (5) 

 

where Y is the vector of phenotypes, 𝛽 is the vector of fixed marker effects selection in the QTL analysis, 

𝑢 is the vector of random markers effects, 𝑿 is the design matrices coded by (0,1) for QStb relating 𝛽 to 

the observation in Y, and 𝒁 are the design matrices for intercept and environment coded by (0,1) 

relating 𝑢 to observation in Y. The 𝒁 matrix is considered a random effect with no restriction in variance 

and covariance.  

Model 3 was: 

𝒀 = 𝑿𝛽 + 𝜖 (6) 
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where Y is the vector of phenotypes, 𝛽 is the vector of fixed markers effects selection in the QTL 

analysis, 𝑢 is the vector of random markers effects, 𝑿 is the design matrices coded by (0,1) for QStb 

relating 𝛽 to the observation in Y.   

The selection models were tested by environmental variables such as temperature, rainfall, relative 

humidity. The environmental variables were treated as fixed effects. 

3.4 Results 

Genotypic Data  

A total of 11,587 SNPs were identified for the F×M population after filtering with PLINK software60.. 

One line was removed after filtering due to a high proportion of missing SNP calls. The markers were 

further filtered based on Mendelian segregation ratios. A total of 8.658 SNPs were used to construct the 

linkage map, representing areas from all chromosomes of common wheat.  Chromosome 2B was the 

chromosome with the highest number of markers (732), while chromosome 4D had the chromosome with 

lowest number of markers (88). 

Phenotypic Analysis 

The phenotypic analysis for each environment revealed a broad range of disease severity in the RIL 

population. The parents' reactions were consistent in rank, with Foote being moderately resistant and 

Madsen showing a moderately susceptible response to STB in all environments. The distribution of 

phenotypes was skewed toward lower disease severity in all environments. STB disease pressure varied 

across environments (Figure 3.1). 

The correlation between both severities’ reads in two different stages was significantly higher for all 

environments, ranking between 0.865 to 0.927. Thus, analyses were conducted using only the second 

reading for STB severity. 



58 
 

 

 

 

Figure 3.1 Recombinant inbred lines (RIL) histogram of the FxM RIL population with the colored points 

indicating the arithmetic mean of the percentage STB infection for the parents, orange for Foote, and the 

blue for Madsen. The y axis shows the number of RILs, and the y axis represents categories of percent 

severity of STB % for each environment: Botany Farm 2016 (BF 2016), Botany Farm (2019), Hyslop Farm 

(2016), Hyslop Farm (2018) and Hyslop Farm (2019). 

STB was present in all experiments, with mean severity varying from 30.0% at the Hyslop Farm 2019 to 

47.1% at the Hyslop Farm 2016 (Table 3.1). STB severity for the parent Foote ranged from 10.0% 

severity at Botany Farm 2015 to 29.4% at Hyslop Farm 2018 and disease severity of the parent Madsen 

ranged from 25.0% at Botany Farm 2015 to 66.3% at the Botany Farm 2016 (Table 3.1). Plots of the 

Foote parent were mistakenly planted to an old seed source in both 2016 trials and were replanted 2-3 

weeks later with viable seed. This resulted in an underestimate of the susceptibility of Foote in these two 

trials. 

  STB severity for the RILs ranged from a low of 0-5%, depending on the experiment, and a high 

of 95-98% (Table 3.1). Heritability for each environment was high, ranging from 0.69 at the Hyslop Farm 

2019 to 0.83 at the Botany Farm 2019 (Table 3.1). 
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Table 3.1. The severity of STB for parents and RIL population (mean, max and min, genetic variance 𝜎𝑔
2, 

residual variance  𝜎𝑒
2, number of replication r, and their heritability ℎ2 were calculated for each 

environment: Botany Farm 2016 (BF 2016), Botany Farm (2019), Hyslop Farm (2016), Hyslop Farm 

(2018) and Hyslop Farm (2019) 

Loc/year Foote Madsen 
RIL Population 

  

r 
 

Mean Max Min 

HY 2016 12.9 59.4 47.13  98 5 377.9 213.4 2 0.78 

BF 2016 14.4 66.3 44.77  95 2 300.6 276.5 2 0.69 

HY 2018 29.4 38.1 38.29  98 2 346.3 282.5 2 0.79 

BF 2019 27.5 47.8 31.16  98 0 414.4 167.1 2 0.83 

HY 2019 25.7 45.4 30.04  95 0 293.1 264.1 2 0.70 

 

The contribution of RIL and environment were further analyzed by the mixed model Eq (1). All 

genotypic (RIL) variances were significantly greater than 0 in each environment, and the variance ranged 

from 256.7 in Botany Farm 2016 to 368.0 in Hyslop Farm 2019. However, for variance between 

environments, only Hyslop Farm 2016 and Botany Farm 2019 were different than 0, where the 

environment variance was 10.95 for Hyslop Farm 2016, and 33.8 for Botany Farm 2019 (Table 3.2). 

Table 3.2. ANOVA-like table, the variance of random effect for each environment, LRT (Likelihood Ratio 

Test), and the probability of variance test for each environment: Botany Farm 2016 (BF 2016), Botany 

Farm (2019), Hyslop Farm (2016), Hyslop Farm (2018) and Hyslop Farm (2019). 

ANOVA-like table and variance of random effect 
Location Factor Variance  StdDev LRT Pr(>Chisq) 

BF 2016  

Genotype (RIL) 256.7 16.0 59.29 1.36e-14 *** 

Environment (rep) 0.0 0.0 0 1  

Residuals 246.9 16.3    

HY 2016  

Genotype (RIL) 352.9 18.8 109.08 2.2e-16 *** 

Environment (rep) 11.0 3.3 8.64 0.003 ** 

Residuals 206.5 14.4    

HY 2018  

Genotype (RIL) 322.2 18.0 73.32 2e-16 *** 

Environment (rep) 0.5 0.7 0.06 0.81  

Residuals 277.5 16.7    

BF 2019  

Genotype (RIL) 368.0 19.2 133.08 2.2e-16 *** 

Environment (rep) 33.8 5.8 34.64 3.96e-09 *** 

Residuals 173.7 13.2    

HY 2019  

Genotype (RIL) 255.8 16.0 66.18 4.11e-16 *** 

Environment (rep) 3.80 2.0 1.89 0.17  

Residuals 241.2 15.5    
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The Pearson correlations between severity of different environments revealed that the highest correlation 

was observed between Hyslop Farm 2019 and Botany Farm 2019 (𝑟 = 0.68, 𝑝 < 0.001), and the lowest 

between Hyslop Farm 2019 and Botany Farm 2016 (𝑟 = 0.34, 𝑝 <  0.001) (Table 3.3.)  

Table 3.3. Pearson correlation coefficients for STB disease severity among environments (Botany Farm 

2016, Botany Farm 2019, Hyslop Farm 2016, Hyslop Farm 201) and Hyslop Farm 2019), plant height (ht), 

and heading date (hd). 

 

 

 

 

 

 

 

Note: all correlations were significant at P < 0.001 ***; Plant height (PH) was the distance from the 

ground to the spike’s top for each plot. 

The mean plant height for each experiment was between 93.8 cm to 97.8 cm, with the range for RIL 

height being 75 to 115 cm. The mean heading date ranged between 131 to 134 Julian days. Heading date 

plant height, and their interaction showed no significant association with STB severity, p-value=0.65 and 

0.64, respectively. 

The analysis of the general model revealed that genotypic variance, environment variance, and genotype 

by environment interaction were highly significant with a Pr(>Chisq) of 2.2e-16, 2.2e-16, and 9.34e-14, 

respectively. Among the three sources of variation, the largest proportion was genotype, representing38% 

of variation in the model, followed by genotype by environment, which represented 13% of variation in 

the model. Environment accounted for 9% of the variation (Table 3.4). The ANOVA test based on the 

general model indicated that plant height and heading date were not significant with Pr(>Chisq)>0.37.  

Table 3.4. Analysis-like table and variance of random effect for the general model, LRT (Likelihood Ratio 

Test). 

Analysis-like ANOVA table, and variance of random effect 

Factor Variance  % Var LRT Pr(>Chisq) 

Genotype (RIL) 231.50 0.38 442.41 2.2e-16 *** 

Environment 51.70 0.09 185.84 2.2e-16 *** 

Gen*Env 74.74 0.13 55.50 9.34e-14 *** 

Residuals 242.98 0.40    

 

 Pearson correlation coefficients 

 BF 2016 BF 2019 HY 2016 HY 2018 HY 2019 

BF 2016 1     

BF 2019 0.42 1    

HY 2016 0.64 0.49 1   

HY 2018 0.52 0.58 0.59 1  

HY 2019 0.34 0.68 0.50 0.59 1 

ht 0.016 0.002 0.055 0.033 0.060 

hd 0.061 0.051 0.058 0.060 0.057 
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Foote and Madsen had identical alleles for photoperiod sensitivity (Ppd-A (insensitive)and Ppd-B (wild 

type)) that influence heading date and for the dwarfing alleles RHT-B and RHT-D that directly affect plant 

height.  The RIL population did differ for VrnB, with Foote donating the spring type allele and Madsen 

donating the winter type allele. However, in this study, the environment was the primary source of 

variation for heading date and plant height resulting in these two traits not affecting STB severity.  

QTL analysis  

Individual experiments 

The QTL identified in each experiment (site/year) but at overlapping chromosomal positions were 

grouped and assigned the same name using the nomenclature QStb-followed by the chromosome location. 

Considering each year by location, seven different QTL were identified, contributing to STB resistance in 

the Foote × Madsen population (Table 7). The threshold of 1,000 permutations was 3.31 for composite 

interval mapping and 3.45 for multiple composite interval mapping using a significance level of 5%. All 

QTL had minor effects, accounting for 5.4% to 14.1% of the explained variance (Table 3.6). The QTL 

with the highest effect was QStb-7D, which was in the short arm of chromosome 7D (Table 3.6). QStb-

7D was detected in all experiments (Table 8), except the Botany Farm 2016 with LOD scores for the 

QStb-7D ranging from 6.71 to 7.8.  The phenotypic variance explained by QStb-7D ranged from 9.7% to 

14.1%, with the additive effect ranging from -4.97 to -9.74 (Table 8). QStb-5A, QStb-6B, and QStb-6D 

were detected in three environments each (Table 3.6). QStb-2A, QStb-2B, and QStb-4B were each 

detected in only one environment each (Table 3.6). The resistance alleles for the QStb-2A, QStb-5A, QStb-

6B and QStb-6D came from Madsen and QStb-2B, QStb-4B, QStb-7D came from Foote (Table 3.5). 

Table 3.5. Summary of Septoria tritici blotch (STB) resistance QTL identified using the Harley-knot 

regression method in the Foote × Madsen population, under natural STB infection during 2016 to 2019.  

QTL name Chr Physical map Position (cM) Donor  

QStb-2A 2A 8735846-8735909 11.15 Madsen 

QStb-2B 2B 87673492-87673429 150.44 Foote 

QStb-4B 4B 597979606-597979669 161.02 Foote 

QStb-5A 5A 509569535-509569472 137.24 Madsen 

QStb-6B 6B 2609428-2609365 151.14 Madsen 

QStb-6D 6D 61003540-61003598 102.38 Madsen 

QStb-7D 7D 614103520-614103583 102.04 Foote 
 

Table 3.6 Summary of the QTL detected using composite interval mapping (CIM) for the Foote x Madsen 

population response to Septoria tritici blotch under natural field infection, including likelihood odds (LOD) 

scores, explicative variance in the model (var_expli), and estimated additive effects (est_QTL), for all 

combinations of year by location. 
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              QTL Model  

Loc.Year Chromosome  
QStb  
-2A 

QStb 
-2B 

QStb 
-4B 

QStb 
-5A 

QStb 
-6B 

QStb 
-6D 

QStb 
-7D 𝑳𝑶𝑫𝟏  

Explain
ed  

Varianc
e (%) 

BF 2016 

LOD (CIM)   5.68 3.60    

7.66 15.08 
LOD*   4.19 3.81    
Explained 
variance 

 
 8.08 5.61    

Additive effect   3.44 -3.36    

BF 2019 

LOD (CIM) 4.79   3.66 4.26 4.26 4.10 

21.41 36.65 
LOD* 4.59   3.84 5.05 4.16 7.71 
Explained 
variance 

9.29 
  5.41 7.21 5.88 9.74 

Additive effect -5.31   -4.03 -4.94 -4.25 7.44 

HY 2016 

LOD (CIM)  4.25    4.30 9.46 

14.39 26.42 
LOD*  4.02    3.89 7.69 
Explained 
variance 

 
6.58    6.37 13.1 

Additive effect  4.22    -4.26 8.14 

HY 2018 

LOD (CIM)    7.79 3.4 3.8 8.32 

19.62 34.18 
LOD* 

   9.04 2.93 3.16 
10.0

3 
Explained 
variance 

   
14.0

0 
4.25 4.60 

15.6
8 

Additive effect    -5.69 -3.25 -3.44 8.06 

HY 2019 

LOD (CIM)     4.79  8.01 

11.94 22.46 
LOD*     4.18  7.83 
Explained 
variance 

 
   7.23  

14.1 

Additive effect     -3.73  6.97 

𝐿𝑂𝐷1 is relative to the null model (with no QTL). LOD(CIM) for a single imputation for each marker, 
LOD* is relative to the full model and the model with the term omitted. Explained variance is the estimated 

proportion of the phenotype variance explained by the term in the model. The estimates effects are derived 

by coding Foote at 0 and Madsen at 1.  

BLUPs models  

The QTL identified in the BLUPs models overlapped in the same region of the chromosome as the QTL 

identified in the individual experiment analysis. A total of 5 QTL were identified by multiple interval 

mapping (MIM), QStb-4B, QStb-5A, QStb-6B, QStb 6D, and QStb-7D, using the BLUPs as phenotypic 

data. The QTL were located on chromosomes 4B, 5A, 6B, 6D, and 7D. The model explained 52.5% of 

the phenotypic variance (Table 3.7). A non- significant 𝑄𝑇𝐿 ∙ 𝑄𝑇𝐿 interaction was found using the addint 

function in R/qtl. The highest LOD score was 1.10 from the interaction between QStb-6B and QStb-7D. 
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The other QTL interactions had LOD scores lower than 0.17. Two additional QTL were detected by 

addqtl function, but they were dropped during the stepwise QTL regression analysis. 

Table 3.7. Summary of the QTL detected on by multiple interval mapping (MIM) in the Foote x Madsen 

population in response to Septoria tritici blotch under natural field infection, including likelihood odds 

(LOD) scores, explicative variance in the model (var_expli), and estimated additive effects (est_QTL), for 

all the estimated BLUPs. 

            QTL Model  

 Chromosome  
QStb 

4B 
QStb 
5A 

QStb 
6B 

QStb 
6D 

QStb  
7D LOD 

Explained  
Variance (%) 

BLUPs 
RIL*Env 

LOD (MIM) 4.17 4.27 5.23 5.11 10.97 

27.02 52.5 
LOD* 4.67 6.26 5.91 6.40 15.33 

Explained variance 6.01 8.19 7.71 8.40 22.19 

Additive effect 3.45 -4.01 -4.08 -4.19 8.85 

𝐿𝑂𝐷1 is relative to the null model (with no QTL). LOD(CIM) for a single imputation for each marker, 

LOD* is relative to the full model and the model with the term omitted. Explained variance is the estimated 
proportion of the phenotype variance explained by the term in the model. The estimated effects are derived 

by coding Foote at 0 and Madsen at 1. 

Genomic models  

Model comparison and selection 

The comparison between genomic models was based on the maximum likelihood ratio test. Stb1 and Stb6 

markers do not reduce significantly against STB using these data, p-value= 0.98 and 0.96, respectively. 

The epistasis effect between QTL by environment was calculated by the maximum likelihood between 

model G and model 1. No epistasis effect was found in evaluating the genotype x environment interaction 

(p-value 0.519). The environment (site/year) affected STB severity (p-value 0.001) in the comparison 

between model 1 and model 2. Model 1 with the QTL and the environment effect was selected based on 

these results. 

Results of the selected model. 

The random effects for model 1 had a variance for the intercept of 41.1 and a residual of 43.1. All QStb 

were significant with a p-value <0.0001, and no correlation was found between QStb. The effect of each 

QStb was small, with QStb-7D having the highest effect at 7.60 followed by QStb-6D with -4.85, QStb-

5A with -4.41, QStb-6B with -4.03, QStb-4B with 4.00, QStb7B 3.06, and QStb5B -2.6. The accuracy 

bias mean was -2.53e-13, and the precision was between 20.42 to 21.83 of the roots mean square error 

(RMSE) depending on the environment. All QTL had an additive effect. These additive effects differ 

among QTL and vary with the environment. The estimated disease severity for the parents was 38% for 

Foote and 52% for Madsen. The severity without QStb was estimated to be 66.2%. The lines carrying all 
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five significant QStb would have reduced disease severity to 16.7%, which was below the moderately 

resistant check cultivar Foote. The QTL with the highest estimated STB severity reduction is 

QStb7D,located on the 7D chromosome in a chromosomal region where four genes are considered 

resistance genes. Three of those are the leucine repeat domain superfamily, TraesCS7D02G502300, 

TraesCS7D02G505700, TraesCS7D02G509000, and one protein kinase-like domain superfamily, 

TraesCS7D02G503700. Both superfamily genes, protein kinase-like domain or leucine repeat domain 

superfamily, are considered resistance genes74. 

  

Figure.3.2 The STB severity prediction using the genomic model for individual lines where different QStb 

are present or absent. 

The multiple environmental variables were tested using the maximum likelihood ratio statistical test 

separately with a range of p-values from 0.94 to 0.083.  
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3.5 Discussion 

Septoria tritici blotch (STB) is a significant wheat disease worldwide, and wheat producers are currently 

reliant on multiple doses of fungicides to prevent yield losses and reduce of grain quality75. Chemical 

control makes the crop less sustainable and has led to STB populations being resistant to some fungicides. 

Traditional sanitation practices such as burning crop residue or crop rotation can reduce the level of 

primary inoculum, but ascospores from other fields can rapidly infect the previously sanitated76,77. An 

alternative is to develop cultivars with increased genetic resistance against STB, providing economic and 

environmentally sustainable management. The severity of STB depends on host resistance, the virulence 

and the aggressiveness of genetically diverse pathogen isolates, and the environment. STB resistance is a 

complex trait and usually depends on multiple genes with moderate-to-small effects78. Accumulation of 

independent quantitative resistance genes can reduce the severe infection of STB. In this study, a RIL 

population developed from a moderately susceptible parent and a moderately resistant parent was 

evaluated for STB severity in multiple environments under natural STB infection to identify QTL 

associated with resistance genes that reduce the STB severity. Infection by naturally occurring inoculum 

for each site/year led to a wide range of STB severity scores among the RILs, illustrating the wide range 

of resistance in the population. In this study, adult plant resistance was evaluated against multiple STB 

genotypes due to a natural STB population with a high genetic variation caused by the combination of  

large effective population size and yearly sexual recombination. Among these environments, seven QTL 

associated with STB resistance (QStb) with minor effects were identified. The QStb with the highest was 

QStb-7D, with an additive effect of 6.85. 

The identification and utilization of molecular markers associated with STB resistance can facilitate the 

improvement of wheat resistance by marker-assisted selection79. The stepwise regression model identified 

five QTL, and the model explained 58.6% of the phenotypic variance. The QStb from chromosomes 4B, 

and 7D is derived from Foote, while the QStb is carried by chromosomes 5A, 6B, 6D are derived from 

Madsen. All these QTL may be associated with minor resistance and adult plant resistance. 

Other traits, such as plant height and heading date, have sometimes been associated with STB severity49. 

The QTLs detected during the QTL analysis of STB resistance genes could be related to plant height or 

heading dates instead of resistance genes. Plant height can have an effect due to secondary cycles of 

infection of wheat by splash-dispersed pycnidiospores80. The pycnidiospores usually come from spores 

produced on lower leaves dispersed upwards through the canopy through rain splash. Levels of plant 

disease resistance often vary with plant developmental stage for a variety of reasons81. For this study, the 

variation in heading date and plant height did not affect disease severity. This is likely because Foote and 

Madsen do not substantially differ in plant height or heading date. For plant height, both parents carry the 
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same height genes (RHT-B and RHT-D). Heading date is a complex trait explained by three factors, 

photoperiod sensitivity, vernalization, and narrow-sense earliness81. Narrow-sense earliness was described 

by Lewis et al. (2008) as the factor which explained flowering time but is not the vernalization 

requirement or the photoperiod78.  Although the RIL population segregated for the vernalization gene 

(VrnB), which classifies wheat as spring versus winter type, there was no significant difference for 

heading dates. This was partly due to the parents carrying the genes associated with photoperiod 

sensitivity that has a greater impact on heading date in places with moderate winters, such as western 

Oregon. 

Best linear unbiased predictions (BLUPs) estimate the genotypic value of a trait, adjusting the empirical 

means toward the general means for each RIL and reducing the variability explained for the different 

environments (year/location).  BLUPs analysis also reduces the bias of normality in the QTL model. 

Using the BLUPs in the QTL analysis increases the explained phenotypic variance compared to using the 

mean of each RIL. BLUPs analysis in this study created with or without the interaction (RIL* Env) effect 

detected five different QTL. The BLUPs analysis with the interaction term explained slightly more of the 

phenotypic variance.  Only two of the seven QTL identified from individual experiments were not 

detected using BLUPs, i.e., QStb2A and QStb2B. These two QStb were each detected in only one 

location. No significant epistatic interactions or interactions among chromosomes were found. Only 

additive effects remained significant in the model after the stepwise analysis. The genomic model was 

used for testing QTL validation detected in the QTL analysis. The non-significant interaction between 

QTL confirmed what was observed in the QTL analysis. The genomic model showed that the QTLs 

identified in this study for STB resistance were stable across environments. The root means square error 

(RMSE) increased slightly if the random environment effects were not included. Although the 

environmental factor has a significant effect, it only increases the precision of the model slightly. The 

environment response is controlled by three factors: environmental variables, pathogen genotypes, and the 

interaction between pathogen genotypes and environmental variables. The model has an acceptable but 

considerable RMSE. These results agree with a similar prediction model for STB severity82. 

The QTL identified in our study have varying associations with those reported by others. Overall, 7DL, 

3BL, and 6BS are the regions with the most QTL identified for STB resistance85. The markers from the 

candidate genes Stb1 and Stb6 were not associated with reduced STB severity in the FxM RIL population, 

even though the markers showed Mendelian segregation. QStb-7D had the most significant additive 

effect, and it is located on the long arm of chromosome 7DL. The QStb-7D comes from Foote and is the 

QTL with the highest phenotypic variance explained. The interval region on chromosome 7D where 

QStb-7D was detected is associated with four resistance genes from two resistance gene families. Three 
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genes are part of the leucine repeat domain superfamily, and one gene is from a protein kinase-like 

domain superfamily. One or more of these genes, or combinations among them, could reduce STB 

severity. Resistance genes Stb483 and Stb584 have been detected on the short arm of chromosome 7D31, 

and several quantitative resistance genes have been identified on 7DL85. The region of chromosome 7D 

QTL that has been identified carrying STB resistance may also confer resistance against other 

necrotrophic pathogens such as Septoria nodorum blotch (Phaeosphaeria nodorum)86 and Rhizoctonia 

root rot (Rhizoctonia solani)87. This opens the possibility that these four genes reduce STB severity and/or 

other necrotrophic pathogens. 

Foote has another QTL on 4BL that slightly reduced STB severity. There is no known source of 

qualitative resistance for STB associated with the long arm of chromosome 4B (4BL), where QStb-4B is 

located. A QTL was detected on 4BL for STB resistance in 11 different environments in Europe88.  Rht-

b1, which is one of the dwarfing genes in wheat89, is located on chromosome 4B. Plant height is 

considered one of the most confounding factors in determining resistance to STB90.  The QTL detected in 

this study cannot be Rht-b1 because both parents carry the same dwarfing genes, and the Rht-b1 locus 

would not segregate in this population. 

The other three QTL detected, Qstb-5A, Qstb-6B and Qstb-6D, had similar additive effects and came 

from Madsen. Qstb-5A was detected in chromosome 5AL. Stb17 is associated with 5AL and provides 

resistance in only the adult plant stage, and it is considered a quantitative trait18. Consequently, Qstb-5A 

could be Stb17 since it behaves as a quantitative adult plant resistance gene.  QStb-6D is on the short arm 

of chromosome 6D. In the literature chromosome, 6DS is associated with Stb18, which confers genotype-

specific resistance to multiple STB isolates (IPO323, IPO98022, IPO89011, and IPO098046)91  for 

seedling resistance, but was inconsistently expressed at the adult plant stage91. Further study will be 

needed to determine if QStb-6D identified in this study is associated with Stb18 or if QStb-5A is 

associated with Stb17. The chromosome 6BS is also one of the regions where QTL has been associated 

with STB resistance, so Qstb-6B could be a previously identified QTL or a novel QTL associated with 

STB resistance. 

All QTL detected in this study are quantitative genetic loci that provide partial resistance to STB.  This 

study confirms that breeding for Septoria tritici blotch resistance is challenging because it is a complex 

trait controlled by multiple quantitative genes with moderate-to-small effects. In addition, this study 

demonstrated that accumulating Qstb could reduce STB severity. 

One of the most essential goals in plant breeding is to improve the durability of disease resistance. Z. 

tritici in the Willamette Valley is one of the most adaptable plant pathogens owing to a highly favorable 
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environment for infection, extremely large effective population size of the pathogen, and recurring sexual 

reproduction that recombines virulence effectors13. STB resistance in wheat cultivar ‘Gene’ conferred by 

Stb6 and Stb1040 was defeated five years after its release when it only occupied 15% of the wheat-

growing area in the Willamette Valley41.  Madsen lost much of its quantitative resistance against STB 

gradually over  10 year period during the 1990s90. Foote was one of the notable cultivars in the 

Willamette Valley in the early/mid-2000s13 and showed resistance to STB when it was released, but 

rapidly declined in acreage due to becoming susceptible to stripe rust. Foote retained field resistance to 

STB13 when it became stripe rust susceptible but was highly susceptible to some isolates of Z. tritici 

collected in 2004 and 200542, suggesting that it would have eventually become susceptible to STB. Other 

wheat cultivars such as ‘Goetze’ and ‘Bobtail’ with quantitative resistance have also shown evidence of 

erosion of their STB resistance several years post release13. Durability of STB resistance in the 

Willamette Valley, and perhaps elsewhere, will likely require multiple QTL as well as deployment of 

different QTL in time and space. 

Resistance associated with QSt-7D was consistent over three years of field studies and provided a 

reduction of between 7% to 9% of STB severity, except at Botany Farm in 2016. This durability could be 

explained by the four associated resistance genes found on chromosome 7DL. Other independent studies 

of resistance of STB in the field detected different QTL with similar additive effects, around 10% or 

less46. The QSt-7D with the other QTL identified in this study can significantly reduce the severity of 

STB. Accumulating the most significant number of quantitative resistance genes increases the reduction 

of severity and may provide durable resistance. No major QTL effect was detected in this study, based on 

the concept of a major effect causing a reduction of severity of more than 30%46. This is because neither 

Foote nor Madsen carries a major resistance gene capable of defeating the high rates of infection found in 

the Willamette Valley.  Madsen lost much of its quantitative resistance against STB during the early/mid 

2000s92. Foote was one of the major cultivars in the Willamette Valley in the early/mid-2000s13 and 

showed resistance to STB when released but lost acreage due to becoming susceptible to stripe rust.  

Though stripe rust susceptible, Foote still retained resistance to STB13. Foote did lose resistance against 

some isolates of STB that were collected during the 2004 and 200543 seasons but conserved some 

resistance against individual isolates collected from Madsen43, and for the STB population, it was exposed 

to during this study. Our results suggest that QTL from Foote and Madsen can be combined to reduce 

STB severity and perhaps increase the durability of resistance. 
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4.1 Abstract 

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat (Triticum 

aestivum L.) worldwide, and is the most important fungal disease of wheat in the United States Pacific 

Northwest (PNW). When environmental conditions are favorable for disease development, stripe rust can 

significantly reduce the economic value of wheat by decreasing both grain yield and quality. Foliar 

fungicides are adequate to control stripe rust, but chemical application adds substantial economic and 

environmental costs. The development of wheat cultivars with durable resistance to stripe rust is a priority 

due to the continuous evolution of new races of the pathogen. To study stripe rust resistance, a 

recombinant inbred line (RIL) population was developed from a cross between ‘Madsen’ and ‘Foote’ soft 

white winter wheat. Madsen (PI 511673) has provided effective resistance to stripe rust in the PNW, 

while Foote (PI 599663) was initially resistant to stripe rust but is now susceptible to the disease. This 

study aimed to identify molecular markers for stripe rust resistance in a 217 RIL population of Foote × 

Madsen. The population was evaluated across five environments, genotyped with GBS using STACKS, 

and compared with the reference genome of the International Wheat Genome Sequencing Consortium 

(IWGSC). Analysis of variance for phenotypic and genotypic data was significant for stripe rust severity 

among RILs (P<0.01). Results for quantitative trait loci (QTL) analysis indicated two major QTL, one in 

2AS, which is likely associated with the known stripe rust resistance gene Yr17, and another in 1AS. Two 

additional minor QTL on 2AS/2DS and 4DL also were identified. The combination of the 1AS QTL and 

Yr17 reduced the stripe rust severity significantly. Adding the other two QTL detected in this study can 

reduce severity further and potentially contribute to resistance durability. The QTL identified in this study 

could help to develop breeder-friendly molecular markers for use in genotypic selection for improved 

stripe rust resistance in wheat. 

4.2 Introduction 

Stripe rust, caused by Puccinia striiformis f. sp. Tritici, is one of the most destructive diseases of wheat 

globally1. The Pacific Northwest (PNW) region of the U.S., composed of Oregon, Idaho, and 

Washington, has an ideal environment for stripe rust infection and development, with moderate to high 
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humidity, mild winters, and moderate summer temperatures. Since 1959, this region has experienced 

different levels of yield losses that have been characterized as low (<20%), moderate (20-40%), and 

severe (40-60%)2,3. The most severe epidemics occurred in the years 1960, 2005, 2007, 2010 and 20125. 

The most recent epidemic was between 2010 and 2012, with the appearance of new stripe rust races such 

as PSTv-11, PSTv-14, PSTv-41, and PSTv-374. The disease severity of stripe rust in this region depends 

on: temperatures in autumn (October-November); winter (December-January); and spring-summer (May-

June); and precipitation during the spring (April)5. 

The stripe rust pathogen has sizeable genetic variability.  In the U.S., PST races are identified 

annually, with 19 races being identified in 2020 (https://striperust.wsu.edu/races/data/). Genetic 

variability in stripe rust is due to mutation, somatic recombination, and possibly sexual recombination6 if 

the alternative host (Berberis or Mahonia spp) is present 7. Mutation is the primary mechanism to explain 

the formation of new races, which often occurs through stepwise evolution8,9. Frequency of stripe rust 

race mutation is estimated to be from 1.4 ×  10−6 𝑡𝑜 4.1 ×  10−6 per locus per generation in individual 

clonal lineages10. Somatic recombination is the second most important mechanism to develop new races 

of stripe rust and involves recombination between genotypes by nuclear exchange, cell fusion, and 

chromosomal reassortment11. Sexual recombination is the rarest mechanism for creating variability. It 

occurs predominantly in the region near the Himalayas, where Berberis spp are ubiquitous, with spores 

being potentially dispersed worldwide by natural and human factors12. 

Stripe rust control is based primarily on fungicides and host plant resistance. In the PNW, fungicides have 

been widely used to control stripe rust, but add substantial cost to PNW farmers, who spend at least $10 

million annually on fungicides13. Fungicides may also have negative environmental consequences. Thus, 

growing resistant cultivars is the most environmentally and economically sound method to control stripe 

rust14. Resistance to stripe rust has been a prime priority in wheat breeding programs in the PNW since 

the 1960s14,15. Wheat breeders have developed resistant cultivars with durable and adequate levels of 

resistance. Still, disease severity is not lowered sufficiently during heavy stripe rust years. Further, the 

underlying genes conferring resistance, and their durability, are not clearly characterized.  Identifying 

QTL (quantitative trait loci) for resistance to stripe rust may help to increase the level of durable 

resistance in wheat. 

Stripe rust resistance can be divided into two categories: qualitative and quantitative.  Qualitative 

resistance is usually controlled by a single gene (major gene), often providing a high level of resistance, 

and tends to be specific to certain races of the pathogen (race-specific resistance)16. These genes are 

effective and can often fully protect the cultivar from rust damage even when the disease is very severe. 

However, these genes are not durable due to the development of new races in the pathogen population.  
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Most of these genes encode proteins (NBS-LRR), which identify fungal effectors and trigger a defense 

response that inhibits pathogen reproduction17,18, such as Yr10, which is the only cloned gene for 

qualitative resistance19. Quantitative resistance is usually controlled by multiple genes with minor 

individual effects, does not usually provide complete resistance, and tends to be less race-specific than 

qualitative resistance. A particular category of quantitative resistance that has been highly effective for 

stripe rust control in the PNW is high-temperature adult plant resistance (HTAP)15,20. HTAP is 

quantitative resistance expressed only in the adult plant stage and only when a temperature threshold has 

been exceeded15,20.  Currently, there are 67 qualitative genes and, 327 quantitative genes for resistance to 

stripe rust identified in wheat, and some have been used to provide resistance in commercial cultivars21. 

Traditionally, wheat breeders have used phenotypic selection to improve resistance against stripe 

rust. However, rust infection depends significantly on environmental effects such as temperature and 

humidity, making phenotypic selection difficult due to seasonal variation22. Marker-assisted selection 

(MAS) allows selection on the genotypes without stripe rust presence, making this technique potentially 

more effective23,24. The fastest and cheapest ways to identify single nucleotide polymorphisms (SNPs) 

associated with the trait of interest are through quantitative trait loci (QTL) analysis or a genome-wide 

association (GWAS) study25. These techniques evaluate the correlation between genotypic data and 

phenotypic data26. Genotype data are usually obtained through reduced genome sequencing technologies 

such as genotyping by sequencing (GBS)27. GBS is a technique that consists of construction of GBS 

libraries through restriction enzymes to reduce genome complexity, and allows sequencing with the 

Illumina next-generation sequencing (NGS) platform28. GBS is characterized by low cost, efficient 

barcoding, and ease of calling up SNPs29. 

New populations of stripe rust that have moved around the world in the last 15 years have 

increased aggressiveness and adaptation to both high and low temperatures, reducing the effectiveness of 

disease resistance30,31. During this time, the winter wheat cultivar ‘Madsen’ (PI 511673)32 has remained 

highly resistant to stripe rust as well as cultivars derived from Madsen, such as 'Cara' (PI 643435)34 and 

'ARS‐Selbu' (PI 667744)35. Though, other cultivars have lost their resistance during this time, such as 

'Eltan' (PI 536994)36, 'Xerpha' (PI 645605)37 and ‘Foote’ (PI 599663), due to the appearance of new races 

of stripe rust in the PNW38,39. 

Madsen is a cultivar that was released in 1988 for production in the PNW38. Madsen carries 

effective resistance for fungal soilborne pathogens such as strawbreaker foot rot (caused by Oculimacula 

yallundae Crous & W. Gams and O. acuformis Crous & W. Gams), wheat blast (Magnaporthe oryzae 

Triticum pathotype MoT), root knot nematode (Rkn3) (Meloidogyne spp.), cereal cyst nematode (Cre5) 

(Heterodera spp.), and for fungal foliar pathogens such as stem rust (caused by P. graminis subsp. 
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graminis Pers.:Pers.), leaf rust (caused by P. recondita Rob. Ex. Desm. f. sp. tritici), and stripe rust 

(caused by P. striiformis Westend. f. sp. tritici Erikss.)38. Madsen has been widely used to develop new 

cultivars and for research. For example, a recombinant inbred line (RIL)  population developed from a 

cross between Avocet S x Madsen has recently been used in a stripe rust study to identify seedling and 

adult plant resistance33. In this study, it was determined that Madsen carries Yr17 plus five additional loci 

for stripe rust resistance33. 

The gene Yr17 in wheat originated from the translocation 2NS/2AS from Triticum ventricosum40. 

The first wheat line with Yr17 was VPM1, which was developed for strawbreaker foot rot resistance, and 

was widely used in countless European wheat breeding programs41. Yr17 is closely linked with Lr37 

resistance from leaf rust and Sr38 resistance from stem rust42. Yr17 is a qualitative resistance gene used 

worldwide until virulence to Yr17 was detected in the UK in 1994 and spread worldwide1. The 

researchers hypothesized that Madsen has maintained its resistance despite the presence of stripe rust 

races that are virulent to Yr17 due to the presence of additional stripe rust resistance genes in combination 

with Yr17 providing durable stripe rust resistance in Madsen in the PNW16,33. The objectives of this study 

were to 1) identify molecular markers for stripe rust resistance in a recombinant inbred line (RIL) 

population segregating for stripe rust susceptibility using genotyping by sequencing (GBS). 2) determine 

if the most effective QTL for resistance has changed over the six years. 

4.3 Materials and Methods 

Mapping population  

The population for this study consisted of 217 𝐹6−7 recombinant inbred lines (RILs) that were developed 

at Oregon State University (OSU). The population was developed between the soft white winter wheat 

cultivars ‘Foote’ (PI 599663)’ and Madsen (PI 511673)32, followed by single seed descent.  

The wheat cultivar ‘Foote’ with the pedigree “Heima//Kalyansona/Bluebird/3/WWP7147,F1/4/Davis 

6301/Heine VII/era/3/Buckbuck” is a soft white winter wheat developed by Oregon State University. 

Foote was initially resistant to stripe rust at the time of its release in 1998 but subsequently became 

susceptible. ‘Madsen’ with the pedigree “VPM1/Moisson 951//2*Hill 81”, was developed by the USDA-

ARS wheat genetics program in Pullman, WA, and carries Yr17. It also carries Pch1 for strawbreaker foot 

rot resistance. Madsen is considered to have a moderate-to-high level of resistance to stripe rust. Since its 

release in 1988, Madsen has shown durable resistance to stripe rust in the PNW, indicating it carries stripe 

rust resistance genes in addition to Yr17 in its genome. 
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Genotypic data  

DNA extraction and sequencing 

Genomic DNA of the parents and their RIL (F6-F7) progeny were extracted from young leaf tissue, 

previously grown under greenhouse conditions to avoid pathogen or insect infestation. DNA extraction 

and quantification for GBS library construction were performed with an automated extraction system for 

acid isolation of DNA (ThermoKingFisher Flex, Waltham, MA), at the Center of Genomic Research and 

Biotechnology at Oregon State University (CGRB). The CGRB generated the GBS data following the 

protocol described in Elshire et.al28. The DNA was single digested by two restricted enzymes, PstI 

(CTGCAG) and MspI (CCGG). Barcodes adapters were unique for each sample (5 a 10 pb) based on 

oligonucleotides listed by Elshire et al.28 The four libraries were prepared and sequenced with Illumina 

HiSeq 3000 at CGRB, Corvallis, OR, using 150 bp single-end high-output sequencing.  

SNP callings 

The raw data were quality filtered, demultiplexed, trimmed, and separated by sample based on their 

initial’s barcodes, using the procces_radtags STACKS v2.52 software packages43. Only exact matches 

were considered. The parameters from procces_radtags was automatic clean data (-c), and rescue barcode 

options (-r), to remove any read with an uncalled base, and create an individual file for each RIL. The raw 

read for each RIL file was aligned to the wheat indexed reference genome44, using the Burrows wheeler 

aligner (BWA)45, previously indexed by using BWA tools45. The alignment output files were converted to 

binary version and sorted with view and sort algorithm, using the samtools v1.646. The bcf files were 

generated with samtools mpileup and filtered out by quality score below 30, 25% missing data, minor 

allele frequency (MAF) between 30% to 70%, or more than 15% heterozygous calls. Only high-quality 

biallelic SNP for both parents and homozygous for opposite alleles were retained. The GBS-SNP markers 

were given the following format “TP23451231A”. The first two letters correspond to a SNP (TP), or a 

SSR (SR). The following numbers correspond to the physical position on the RefSeq v1.0 assembly and 

the last two correspond where the marker is located.  

Linkage map construction 

Filtered GBS SNP (GBS-SNP) data were used to create a linkage map, and missing values were imputed 

using the ASMap packages from R/software47. The scaffolds pseudochromosome (ChrUn) were removed 

for QTL analysis. Initial group assignments were established using a p-value of 1E-10, and the maximum 

likelihood (ML) objective function. Recombination frequencies were calculated for each marker using the 

Kosambi function. During each interaction of linkage map construction, markers with excess of double 

recombination or markers not linked to any other marker were removed. For each locus, a χ2 goodness-of-

fit test was performed to detect distorted segregation markers, Bonferroni correction was used for 



83 
 

 

 

multiple testing. Markers that did not fit a Mendelian segregation proportion (χ2 test p-value <0.01) were 

excluded from the analysis. 

Molecular markers: 

The RILs and their parents were genotyped by genetic markers associated with photoperiod and plant 

height. The photoperiod (Ppd-A, Ppd-B, and Ppd-D1) markers were genotyped by following the protocol 

of Yang et al.48 and the plant height Rht-B1 and Rht‐D1) markers were genotyped following the protocol 

of Ellis et al49. 

The population was also genotyped for Yr17 following the protocol of Cardozo et al. (not published ), 

with the following primers: Ventriup (5’-AGG GGC TAC TGA CCA AGG CT- 3’), LN2 (5’-TGC AGC 

TAC AGC AGT ATG TAC ACA AAA-3’40 used to detect the 2NS/2AS translocation and Yr17neg-F 

(5’-GATCCATGACGCGCATTTG-3’) that indicates the absence of Yr17 (Cardozo et al. Instituto 

Paraguayo de Tecnología Agraria (IPTA), not published ). 

Experimental fields  

Field trial  

The Foote and Madsen (FxM) RIL population with their parents was planted for evaluation of natural 

infection by stripe rust in five years (2014, 2015, 2017, 2018, 2020), at two different farms, the OSU 

Botany and Plant Pathology Field Laboratory (45.72 N, 122.54 W), Corvallis OR and the OSU Hyslop 

Crop Science Field Research Laboratory (44.63 N, 123.19 W), Corvallis OR. For each trial, the 

experiment was planted in a randomized complete block design (RCBD), with two replications. For the 

2014 to 2020, each plot was 3 rows and 2 m long, and the parents were included twice in each replication. 

The exception was the experiment planted at the Hyslop farm in 2020 where, plots were 6 rows and 2 m 

long, and the parents were included four times in each replication.  

Phenotypic data  

Natural infection occurred for each experiment. The disease readings were taken at the flowering-milk 

stage (Zadoks 59-75). The percent rust severity for each plot was evaluated according to the modified 

Cobb scale50. Heading date was measured for each plot using the Julian calendar when around 50% of the 

spikes had emerged above the collar of the flag leaf. Plant height was measured at the ripening stage 

(Zadoks 92-98), for each plot as the distance between the ground to the spikes’ top, excluding the awns. 
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Statistical analysis 

Severity of rust for each combination of year and location. 

All statistical analyses were conducted using R software version 3.6351. The model for each combination 

of year and location for stripe rust was treated as an individual data set and analyzed separately using 

lme4 packages from R packages statistical51.  

𝑦𝑖𝑗𝑘 = μ + 𝑅𝐼𝐿𝑖 + Envj + 𝑒𝑖𝑗𝑘  , (7) 

where 𝑦𝑖𝑗𝑘 was the severity response for stripe rust (Yr) for each element of RIL 𝑖 and each element of 

environment 𝑗, mu (μ) is the population mean for the severity response (Yr). RIL and Environments were 

treated as random effects with zero mean and variance ( 𝜎𝑅𝐼𝐿
2 , 𝜎𝑒𝑛𝑣

2 ), respectively. Model errors were 

assumed to follow a normal distribution with zero mean and variance, i.e., 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒𝑟𝑟
2 ). All the 

variables were mutually independent, i.e., 𝑐𝑜𝑣(𝑅𝐼𝐿𝑖 , 𝐸𝑛𝑣𝑗) = 0. The random effects were calculated 

using the rand option in the lme4 packages from R package statistical51. Heritability was calculated for 

each combination between year and location, ℎ2 = 𝜎𝑔
2/𝜎𝑝

2 =  𝜎𝑔
2/(𝜎𝑔

2 +
𝜎2𝑒

𝑟
), where the RIL and rep 

were fitted as a random effect, using lme4 packages from R package statistical51. The phenotypic variance 

was calculated as 𝜎𝑝
2 = 𝜎𝑔

2 +
𝜎𝑒

2

𝑟
  where r is the number of replications52, and the genetic variance  𝜎𝑔

2, and 

residual variance 𝜎𝑒
2  were the model’s(7) variance components. Differences across environments were 

significant.  The LSD test was performed to assess which environments were different from the others 

with a probability level P<0.05.  

General model  

The general model for genotypes, environments, and their interaction for stripe rust severity was: 

𝑦𝑖𝑗𝑘 = μ + ui + uj + 𝑢𝑖𝑗 +  βphPHij + βHDHDij +  𝑒𝑖𝑗𝑘  , (8) 

where 𝑦𝑖𝑗𝑘 is the observed response for the 𝑘𝑡ℎ element of RIL 𝑖 in environment 𝑗, mu is the population 

mean for the trait, and ui + uj 𝑎𝑛𝑑 𝑢𝑖𝑗 are RIL, Environment and RILxEnvironment random effects and 

𝑒𝑖𝑗𝑘 is the unexplained model error. βph is the effect of the plant height, βHD is the effect of heading date. 

Both effects are considered fixed effects. Model errors were assumed to follow a normal distribution with 

zero mean and variance, i.e., 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒𝑟𝑟
2 ) and random effects were assumed to be independent of the 

model errors and normally distributed with zero means and variances 𝜎𝐺𝑒𝑛
2 , 𝜎𝐸𝑛𝑣

2  and 𝜎𝐺𝑒𝑛∗𝐸𝑛𝑣
2 . It was 

further assumed that ui + uj 𝑎𝑛𝑑 𝑢𝑖𝑗  were mutually independent, i.e., 𝑐𝑜𝑣(𝑢𝑖 , 𝑢𝑗) = 0. Variance 
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components were determined and the significance of variance component estimates was calculated by the 

restricted maximum likelihood, using lme4 packages from R package statistical51. 

BLUPs 

Best linear unbiased predictors (BLUPs) for stripe rust severity for each RIL, and for Foote and Madsen, 

were determined across all experiments, using lme4 packages from R package statistical51.  

The model was: 

𝑦𝑖𝑗 = μ + 𝑔i + 𝑙𝑔j + 𝑒𝑖𝑗 , (9) 

where 𝑦𝑖𝑗 represents the estimated BLUPs of stripe rust severity for each RIL line, μ is the overall mean, 

𝑔i and 𝑙𝑦j are the random effect of the ithRIL and jth location by year, respectively, and 𝑒𝑖𝑗 is the 

unexplained model error. We assumed that 𝑔i and 𝑙𝑔j were mutually independent, i.e., 𝑐𝑜𝑣(𝑔i, 𝑙𝑔j) = 0, 

and to be independent of the model errors and normally distributed with zero means and variance, i.e., 

𝑔i~𝑁(0, 𝜎𝑔
2) and 𝑙𝑔𝑗~𝑁(0, 𝜎𝑙𝑔

2 ) , respectively. Model errors were assumed to follow a normal 

distribution with zero mean and variance, i.e., 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒
2). This model was fitted using lme4 packages 

from R package statistical51. The estimate BLUPs for each RIL were further used in genome-wide 

association mapping analysis (GWAS) to identify QTL resistance against stripe rust.   

QTL analysis 

QTL analysis was performed for each experiment using the BLUPs estimated across experiments, 

described above, using R/qtl package software26. In the first step, single-locus QTL were identified 

through composite interval mapping (CIM). The significance of QTLs was assessed using likelihood odds 

(LOD) thresholds obtained from a 1000 permutation test.  The second step was multiple interval mapping 

(MIM). It was performed using forward stepwise regression, using an imputation method. The penalty 

was calculated using 1,000 permutation tests53 with a significance level of 5%. Finally, the QTL was 

refined by the chromosome position using the refinqtl function in R/QTL software26.  

The BLUPs estimated across experiments were further analyzed. The function addint from R/QTL26 was 

used to test the interaction between QTL, and the addqtl from R/QTL26 was used to test additional QTL in 

the same chromosome. Finally, The QTL model was refined to a location by refinqtl function in R/QTL 

software26.  
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Further analysis of Yr17 

Genome-wide association mapping analysis (GWAS) was performed for the markers on chromosomes 

2A, 2B, 2D and the BLUPs estimated across experiments, as described above. The GWAS model was 

performed based on the mixed model described in Yu et al.54, using the rrBLUP package in the R 

software55.  

The model was: 

y = Xβ + Sα + 𝑍𝑢 + 𝑒 , (10) 

 

where y is a vector of phenotypic observation, where β is a vector of fixed effect from the principal 

component analysis, the variable 𝑢 models the genetic background of each line as a random effect with 

𝑉𝑎𝑟[𝑔]  =  𝐾 𝜎2, and the variable α models the additive SNP effect as a fixed effect. The X, S, and Z are 

incidence matrices of 1s and 0s relating to y, β and u, respectively. The kinship matrix was the covariance 

between lines due to a polygenic effect. It was calculated with the A.mat function from the rrBLUP 

package in the R software55. 

A linkage map for the chromosome 2 was created by ASMap by bulking all the markers from the 

chromosome 2A, 2B and 2D and reconstructing the entire linkage map, using the Kosambi function. 

4.4 Results 

Genotypic Data  

The FxM population lines were genotyped using genotyping-by-sequencing, the reads were aligned, and 

the variants from the genomes of the two parents were called and filtered for the whole population. The 

raw data had a GC content of 47.8%, with 156,043 SNPs. The first filtering data consist of 8,111 markers 

representing areas from all chromosomes of common wheat with a GC content of 49.8%. The 

chromosomes with the highest number of markers were chromosome 2B with 737 markers, and the 

chromosome with the fewest number of markers was chromosome 4D with 90 markers. A genetic linkage 

map was constructed using 6,110 markers, including 410 SSR and 5,700 SNPs, representing all 

chromosomes. The average marker distance in different linkage groups ranged from 0.3 cM to 9.8 cM. 

The B genome had the most markers with 2,382, followed by the A genome with 2,077, and the D 

genome was the smallest with 1,651. The map had reasonable contiguity, except for the chromosome 4D, 

having a large gap of 40 cM long. 
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Phenotypic Analysis 

The RIL population and their parents were evaluated for stripe rust resistance. Foote and Madsen were 

consistent in disease severity, with Madsen being resistant and Foote susceptible. The distribution of 

phenotypes was skewed in all environments. Stripe rust disease pressure varied among environments 

(Figure 4.1). 

 

Figure 4.1 Recombinant inbred lines histogram showing distribution of stripe rust mean severity of the 

FxM population with Madsen and Foote. 

Stripe rust was present at all site/year combinations and severity varied among experiments. The lowest 

pressure of stripe rust was the Botany Farm 2017, with an average of 14.6% of disease severity and lines 

ranging between 0 to 100%. The highest pressure of stripe rust was observed at the Hyslop Farm 2020 

with an average of 46.0%, where RILs were between 0% to 99%. The parents were consistent in disease 

severity, with Foote ranging from 72.5% to 92.5% and Madsen ranging from 1.2% to 4.8% disease 

severity (Table 4.1).  The range of the RIL population was consistent in all environments, between 0% to 

~100%.  Heritability for each environment was high, ranging from 0.95 at Botany Farm 2014 to 0.79 in 

Botany Farm 2020 (Table 4.1). The LSD test revealed no significant difference between the BF 2015 and 

BF2 2015 experiments. All environments were analyzed separately in the genomic association mapping, 
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except Botany Farm 2015 and Botany Farm2 2015 which were considered as a single dataset referred to 

as Botany Farm 2015 (BF2015). 

Table 4.1 Severity of wheat stripe rust for parents and RIL population (mean, max, and min, genetic 

variance 𝜎𝑔
2, residual variance  𝜎𝑒

2, number of replication r, and their Heritability ℎ2. 

Loc/year Foote Madsen 
RIL Population 

  

r 
 

Mean Max Min 

BF 2014 82.1 3.1 35.8 b 100 0 745.9 79.0 2 0.95 

BF 2015 79.4 3.3 24.9 e 98 0 550.0 81.7 2 0.93 

BF2 2015 77.9 2.6 26.5 e 95 0 616.6 80.8 2 0.94 

BF 2017 92.5 1.2 14.6 f 100 0 576.0 126.5 2 0.90 

BF 2018 72.5 4.8 33.9 c 98 0 746.9 97.4 2 0.94 

BF 2020 75.6 4.8 30.2 d 98 0 527.6 287.3 2 0.79 

HY 2020 78.7 4.2 46.0 a 99 0 643.1 200.0 2 0.87 

 

Plant height (PH) and heading dates (HD) were not significantly different across environments (p-value = 

0.54). They also were not significantly associated with stripe rust severity (p = 0.64 and 0.69 for PH and 

HD, respectively). The mean plant height among RILs varied between 92.4 cm to 98.2 cm. In all 

environments, RIL plant height ranged between 75 cm to 120 cm. The mean of heading date across 

environments ranged between 118 to 124 Julian calendar days.  The variation for heading dates for RILs 

was approximately 15 to 20 days for each experiment. There was no segregation for the photoperiod 

markers (Ppd-A, Ppd-B, and Ppd -D) or height (Rht-B1 and Rht-D1) markers.   

The Analysis-like ANOVA table from the general model revealed that genotype variance was highly 

significant, as well as environment variance and genotype by environment with Pr(>Chisq) (2.2e-16) 

(Table 4.2). The proportion of variation was 61.0% for genotypes, 9.5% for environment, and 10.6% for 

the interaction genotype by environment (Table 4.2). 

Table 4.2 ANOVA-like analysis table and variance of random effects for the general model, LRT (Likelihood 

Ratio Test) 

 

Factor Variance  % Var LRT Pr(>Chisq) 

Genotype (RIL) 525.09 61.0 1435.79 2.2e-16 *** 

Environment 81.41 9.5 473.45 2.2e-16 *** 

Gen*Env 91.07 10.6 195.74 2.2e-16 *** 

Residuals 162.67 18.9    
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QTL analysis  

For environment 

The QTL identified for each environment were assigned names using the nomenclature Yr-following by 

the chromosome location. Multiple interval mapping (MIM) provided significant alternate QTL on 2AS 

and 2DS. The Pearson correlation between these two markers was 0.87, which could be linked to the 

same chromosome and named Yr2AS/2DS. These two markers were considered the same. Four different 

QTL were detected for stripe rust resistance in the FxM population, located on 1AS, 2DS, and 4DS with 

the composite interval mapping and 1AS, 2DS/2AS, and 2AL with multiple interval mapping. The 

threshold used was 4.29 for the additive and 5.02 for the interaction term, using 1,000 permutations. The 

1AS and 2AS/2DS QTL contributed to stripe rust resistance in all environments and were present in CIM 

and MIM. The 1AS QTL was not detected in the Botany Farm 2014 data set. The phenotypic variation 

explained by 1AS increased between 2014 to 2020 from 12% to 24%. In contrast, the 2AS/2DS showed a 

reduction in the phenotypic variation explained from 48.5% to 15.08% (Table 4.4). The Yr4D was 

detected in three environments, Botany Farm 2017, Botany Farm 2018, and Botany Farm 2020 and only 

with the composite interval mapping (CIM). The phenotypic variation explained by Yr4D was 5.85% for 

BF 2018 and 6.05% for BF 2020 (Table 4.4). 

Epistatic interaction was detected between two QTL, Yr1AS and Yr2AS/2DS, with a positive epistatic 

effect between QTL in chromosome 1AS and 2AS/2DS in four different environments (Table 4.6). The 

MIM had a higher explained variance than the CIM model in each environment except for Botany Farm 

2015, which was 50.49 from CIM and 50.2 from MIM (Table 4.6). All the MIM models detected the 

combination of the two markers on 1AS and 2AS/2DS, except for the Botany Farm 2014 experiment. The 

QTL on 2AL was only identified in one location and only with multiple interval mapping, with a 

phenotypic variance response of 5.8% (Table 4.6). All the QTL were resistance alleles originating from 

the resistant parent Madsen, except for Yr4D which originated from the susceptible parent Foote (Table 

4.3) 

Table 4.3. Summary of stripe rust resistance QTL identified using the Harley-knot regression method in the 

Foote by Madsen population, under natural stripe rust infection during 2014 to 2020.  

QTL name Chr Physical map Position (cM) Donor  

Yr1AS 1AS 10130961….16855697 138 Madsen 

Yr2AS 2AS 14417945….15899118 175 Madsen 

Yr 4DS 4DS 1699017….1879144 41 Foote 
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Table 4.4.  Summary of the CIM QTL model detected in FxM population associated with response to stripe 
rust under natural field infection, including likelihood odds (LOD) scores, explicative variance in the model 

(var_expli), and estimated additive effects (est_QTL), for all combination combinations of year by location. 

       Model 

Loc.Year Chromosome  Yr1AS Yr2AS Yr4D 𝑳𝑶𝑫𝟏 

Explained  
Variance (%) 

BF 2014 
LOD*  31.15  

31.15 48.53% Explained variance  48.53  
Additive effect  -18.51  

BF 2015 
LOD* 11.20 28.41  

32.87 51.18% Explained variance 13.17 40.65  
Additive effect -8.71 -15.13  

BF 2017 
LOD* 11.42 21.43 4.56 

30.83 46.06% Explained variance 14.88 28.31 5.14 
Additive effect -8.65 -12.15 5.18 

 BF 2018 
LOD* 17.49 19.23 5.30 

33.48 51.02% Explained variance 22.14 24.81 5.85 
Additive effect -12.57 -13.18 6.43 

BF 2020 
LOD* 15.04 10.53 4.51 

24.06 40.13% Explained variance 22.63 15.08 6.05 
Additive effect -12.24 -13.48 5.84 

HY 2020 
LOD* 14.6 9.6  

21.10 38.42% Explained variance 24.28 15.48  
Additive effect -11.94 -8.98  

𝐿𝑂𝐷1 is relative to the null model (with no QTL). LOD* is relative to the full model and the model with the 

term omitted. Explained variance is the estimated proportion of the phenotype variance explained by the 

QTL in the model.  The estimatq effects are derived by coding Foote at 0 and Madsen at 1.  

Table 4.5 Summary of the MIM QTL model under natural field infection for each environment, model of 

significant QTL in each chromosome, likelihood odds (LOD) scores, and the phenotype variance explained 

in the model. 

Loc.Year Model   𝑳𝑶𝑫𝟏  

Explained  
Variance (%) 

BF 2014 𝑦 = 𝑌𝑟2𝐷
 31.15 48.65% 

BF 2015 𝑦 = 𝑌𝑟1𝐴 + 𝑌𝑟2𝐴  32.63 50.24% 

BF 2017 𝑦 = 𝑌𝑟1𝐴 + 𝑌𝑟2𝐷 + 𝑌𝑟1𝐴:2𝐷  30.83 50.81% 

BF 2018 𝑦 = 𝑌𝑟1𝐴 + 𝑌𝑟2𝐷 + 𝑌𝑟1𝐴:2𝐷  33.48 53.19% 

BF 2020 𝑦 = 𝑌𝑟1𝐴 + 𝑌𝑟2𝐷 + 𝑌𝑟1𝐴:2𝐷  24.06 41.41% 

HY 2020 𝑦 = 𝑌𝑟1𝐴 + 𝑌𝑟2𝐴 + 𝑌𝑟2𝐷   42.05 42.01% 
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𝐿𝑂𝐷1 is relative to the null model (with no QTL). Explained variance is the estimated proportion of the 

phenotype variance explained by the QTL in the model.  

Table 4.6 Summary of the MIM model QTL detected in the FxM population associated with response to 
stripe rust under natural field infection, including likelihood odds (LOD) scores, explicative variance in 

the model (var_expli), and estimated additive effects (est_QTL), for all combinations of year by location. 

       Model 

Loc.Year Chromosome  Yr1A Yrchr2 Yr1A:2A 𝑳𝑶𝑫𝟏 

Explained  
Variance 

(%) 

BF 2014 
LOD*  31.26  

31.15 48.5% Explained variance  48.65  
Additive effect  -18.55  

BF 2015 
LOD* 9.94 25.57  

32.87 51.2% Explained variance 12.34 37.91  
Additive effect -8.31 -14.50  

BF 2017 
LOD* 18.86 28.88 10.78 

30.83 46.1% Explained variance 24.34 41.86 12.71 
Additive effect -8.89 -14.53 8.38 

 BF 2018 
LOD* 22.41 26.40 10.87 

33.48 51.0% Explained variance 28.41 35.37 8.77 
Additive effect -12.51 -11.90 8.13 

BF 2020 
LOD* 18.19 14.62 9.45 

24.06 40.1% Explained variance 27.81 21.47 7.23 
Additive effect -9.41 -7.09 5.51 

HY 2020 
LOD* 23.26 23.26 8.78 

21.10 59.2% Explained variance 26.19 44.34 8.09 
Additive effect -7.33 -9.17 6.43 

LOD* is relative to the full model and the model with the term omitted. Explained variance is the estimated 

proportion of the phenotype variance explained by the QTL in the model.  The estimates effects are derived 

by coding Foote at 0 and Madsen at 1.  

BLUPs model  

BLUPs were used with the phenotypic data to identify QTL in the CIM and MIM models. The QTL 

identified were overlapping in the same chromosomal position as the QTL detected for each individual 

environment. The CIM model shows three different significant QTL located on 1AS, 2AS/2DS and 4DL. 

The phenotypic variance explained by the model was 55.2%, and for each term was 19.4% for, Yr1AS, li 

36.7% for Yr2AS/2DS, and 4.7% for Yr4DL (4.7%). The LOD scores between full model and individual 

QTL were 16.9, 28.1 and 4.4 for Yr1AS, Yr2AS/2DS and Yr4DL respectively (Table 4.7). The MIM 

model using BLUPs as the phenotypic data had the highest phenotypic explained variance (59.2%) and 

highest LOD score relative to the null model (42.0). This model has an intercept term, two additive QTL 

(Yr1AS and 2AS/2DS) and a positive epistatic interaction term between Yr1AS and 2AS/2DS.  The 

additive effect was -9.98 for Yr1AS and -11.91 for Yr2AS/2DS, and the positive interaction term was 
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6.43. The phenotypic variance explained for each term of the model was 26.2% for Yr1A, 44.0% for 

Yr2AS/2DS and the interaction term explained 8.19% (Table 4.7).  

Table 4.7. Summary of the QTL detected in the FxM population associated with response to stripe rust 

under natural field infection, including likelihood odds (LOD) scores, explicative variance in the model 

(var_expli), and estimated additive effects (est_QTL), for all the BLUPs estimated. 

      Model 

Location Chromosome Yr1A Yr2A/2DS Yr4DL 
1AS:2AS 

LOD 
Phenotypic 
variance (%) 

BLUPs, 
CIM 

LOD 16.91 28.08 4.43  
37.65 55.19 Explained variance 19.45 36.66 4.43  

Additive effect -10.16 -13.52 4.68  

BLUPs, 
MIM 

LOD 23.26 34.34  8.48 
42.05 59.20 Explained variance 26.19 44.05  8.09 

Additive effect -9.98 -11.91  6.43 

𝐿𝑂𝐷1 is relative to the null model (with no QTL). LOD(CIM) for a single imputation for each marker, 

LOD* is relative to the full model and the model with the term omitted. Explained variance is the estimated 
proportion of the phenotype variance explained by the term in the model. The estimates effects are derived 

by coding Foote at 0 and Madsen at 1.  

Further analysis of potential Yr17 markers 

GWAS  

GWAS was performed for all RILs using the BLUPs and the genotypic markers previously located on 

chromosomes 2A, 2B and 2D. The results for the GWAS analysis showed 12 significant QTL markers, 

eight referenced on 2A, two for 2B and two for 2D, associated with decreased stripe rust severity (Figure 

4.2)  
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Figure 4.2 Manhattan plot for the GWAS analysis using the BLUPs as phenotypic data, and the two 

homologous chromosomes as the genotypic data. The horizontal axis is the chromosome 2A, 2B, and 2D. 

The vertical axis is the p-value for each single marker associated with the trait of interest. The dotted 

horizontal lines represent the Bonferroni correction  −𝑙𝑜𝑔10(0.05/𝑡𝑜𝑡𝑎𝑙(𝑚𝑎𝑟𝑘𝑒𝑟𝑠). All colored dots 

are the markers predicted by rrBLUP package, and any dot above the dotted horizontal lines is a 

significant maker.   

Correlation markers 

The pairwise recombination between the significant markers from GWAS and Yr17 shows that 11 of the 

significant QTL identified on GWAS were significantly linked to Yr17,( 𝜒2> p. Value 

0.0017, 𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛).  The rank distance between significant markers linked to Yr17 was 

1.89 to 40.09 cM (Table 4.8). The TP714206552A is more likely to be in 1AS because there is 19.40 cM 

distance between TP714206552A and the markers on 1AS. The markers TP129015422D, 

TP206187032D, TP158991182A suggest there are other QTL in the 2A chromosome. 

Table 4.8 Markers significantly associated with stripe rust disease severity identified in the Manhattan 

plots. The Marker and Mark-short correspond to the Marker named. The LOD and the effect correspond 
on the GWAS model, where LOD is the p-value of the -log(p), and the effect is the effect of each individual 
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marker on stripe rust severity. The Pairwise analysis provides the R^2 (coefficient of correlation), cM 

distance in centimorgans, 𝝌𝟐 corresponds to the p-value of testing significance of linkage disequilibrium, 

and Chr corresponds to the chromosome for each marker. 

 GWAS model Pairwise analysis    

SNP Lod Effect Yr17 𝑹𝟐 𝒄𝑴 𝝌𝟐 Chr 

TPYr172A 0.055 -11.32 TPyr17 1.00 0.00 0 2A 
TP319031972A 8.64 -11.34 TPyr17 0.93 1.89 0 2A 
TP129020812D 18.06 -7.09 TPyr17 0.72 7.55 0 2A 
TP212562682A 7.42 -5.83 TPyr17 0.70 8.49 0 2A 
TP344404442B 11.4 -6.69 TPyr17 0.67 9.91 0 2A 
TP41893962D 6.76 -4.66 TPyr17 0.66 10.38 0 2A 

TP144187602A 10.85 -6.44 TPyr17 0.60 12.74 0 2A 
TP91219272A 8.27 -3.51 TPyr17 0.53 13.68 0 2A 

TP108471772A 11.38 -3.33 TPyr17 0.48 17.92 0 2A 
TP218185162A 9.62 -5.22 TPyr17 0.48 17.92 0 2A 
TP59721412B 5.72 -3.76 TPyr17 0.23 25.94 2.29E-12 2A 

TP129015422D  9.09 -12.47 TPyr17 0.08 35.85 4.10E-05 2A 
TP206187032D  9.22 -12.37 TPyr17 0.06 37.00 3.48E-04 2A 
TP158991182A 8.08 -11.71 TPyr17 0.04 40.09 2.78E-03 2A 
TP714206552A 9.15 -7.28 TPyr17 0.00 52.83 0.55 1A 

4.5  Discussion 

Madsen carries Yr17 and other loci for stripe rust resistance33 that have provided durable resistance 

against stripe rust since 19883,38 even though virulent races against Yr17 are present in the region, such as 

Pstv-37 or Pstv-3915. The Yr17 lines produced intermediate infection types (4-6) in the seedling stage, but 

can show drastically reduced severity depending on the temperature at the plant growth stage56. In this 

study, Madsen showed durable resistance to stripe rust ranging from 3.1 to 4.2% disease severity.  The 

resistance from Madsen is mainly explained by two major QTL mapped on 1AS and 2AS. The resistance 

QTL on 2AS was present in all years. The 1AS QTL was not detected until 2015. The continuous 

evolution of stripe rust could explain these results. In 2015, the most prevalent race change was between 

Pstv-52 to Pstv-37. The difference between these two races is the virulence gene Tr1. The frequency of 

Tr1 among virulence genes has increased since its first report in 2010 

(https://striperust.wsu.edu/races/data/). The wheat club cultivar Tres that has Madsen, as part of  its 

pedigree, contains YrTr1 and YrTr257. Tres was used to develop the isogenic line NILYrTr1 to identify 

YrTr1 on the differential set for identifying races in the United Staes58. All evidence in this study 

indicates that the QTL detected in the 1AS could be associated with the virulence gene YrTr159. However, 

YrTr1 was previously identified in chromosome 6D, but recent studies identified the YrTr1 on 

chromosome 1BS (Chen and associates, unpublished data). In the PNW, the resistance genes that have 

shown durable resistance have been identified with HTAP resistance genes14. Three QTL for adult-plant 

https://striperust.wsu.edu/races/data/
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resistance were reported in 1AS in three different cultivars, one Indian cultivar60, and the other two 

cultivars from the PNW, an Idaho line IDO44461, and Madsen39. 

In this study, disease severity differed among environments. These results can be explained by the 

evolution and change of stripe rust races, with a higher correlation between consecutive years and a lower 

correlation between longer periods of years. It also can be explained by the variability of environmental 

factors such as temperature, humidity relative, and pluviometry from year to year. In addition, other 

factors such as plant height (PH) and heading dates (HD) have been reported to have an effect on severity 

of stripe rust. However, no correlation was found between heading dates and plant height against diseases 

severity in this study. 

The interaction between 1AS and 2AS had a positive epistatic effect. Yr1AS reduced disease severity by 

about 10%, and the Yr2AS reduced severity by about 12%, but their combination reduced the severity by 

only 15.5%. Other independent analyses for stripe rust had reported interactions between QTL, such as 

Vazquez et al. (2015) (2AS and 6DL)16 and Zeng et al (2019) (2BL and 6BL)62. 

n additional QTL from Foote was detected on 4DL at the Botany Farm in the composite interval mapping. 

QYr4DL is a minor QTL present in three years 2017, 2018, and 2020, though its effect declined over the 

years. The QTL detected on 4DL could be Yr46, which confers adult plant resistance to stripe rust. 

Detection of this QTL only at the Botany Farm could be related to differences in stripe rust races. The 

dominant race of stripe rust for both sites was PSTv-37, which has also been the dominant race in the 

PNW since 2015 (https://striperust.wsu.edu/races/data/However, three additional races were detected at 

the Hyslop Farm: Pstv-39, Pstv-41, and Pstv-52. This difference could be due to the Hyslop site being 

planted to more wheat genotypes than at the Botany Farm. 

The two major QTL in this analysis have been reported in other studies. Liu et al. (2018) used the Avocet 

S × Madsen RIL population to identify stripe rust resistance QTL. They found that Madsen carries Yr17 

and four additional QTL on 1AS, 1BS, 3BS, and 6BS, showing a high-level and durable resistance 

conferred by this combination of Yr17 and multiple resistance QTL33. These results are supported by 

independent studies in different regions in the world in which Yr17 combined with other QTL was 

associated with resistance durability16,33,63,64. In addition, Yr17 may be linked to other resistance genes for 

high-temperature adult plant resistance56. Liu et al. (2018) detected more QTL than in this study, but most 

of the QTL not detected in our study had a relatively small effect in the work of Liu et al.33, such as the 

QTL in 1BS and 3BS33. The 6BS QTL was not detected in our study despite the fact that the QTL on 6BS 

had an additive effect between -11.46 to -0.66 in the study of Liu et al.33 It may be that Foote also carries 

https://striperust.wsu.edu/races/data/
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the 6BS QTL, which would result in a lack of polymorphism in the Foote x Madsen RIL population for 

this QTL. 

Some markers on 2A, 2B, and 2D had a similar segregation pattern based on our linkage map. In addition, 

multiple interval mapping (MIM) provided alternative QTL locations on both 2AS and 2DS. GWAS 

provided an alternative analysis that does not require designation of linkage groups or parental data and is 

based only on pairwise linkage analysis to identify the correlations between markers. GWAS identified 

two groups in our study. The first group was markers linked to Yr17, and the second group was markers 

not linked to Yr17. Markers not linked to Yr17 could be additional QTL on chromosome 2A or QTL on 

chromosome 2D. Additional QTL on 2A is supported by the more restricted construction linkage map. 

All those markers are segregated on the same linkage group, and by Liu et al33, who suggested that Yr17 

is linked to another QTL for adult plant resistance. QTL on chromosome 2D is supported by the 2D 

marker close to the leucine-rich domain superfamily gene on that chromosome. 

Durability of disease resistance is one of the most essential goals in plant breeding. All QTL detected in 

this study are from Madsen. Madsen was released in 198832 and has remained highly resistant to stripe 

rust33. The primary gene affecting wheat stripe rust severity in the Madsen x Foote population was Yr17. 

Virulence to Yr17 in the U.S. has increased gradually from 27% in 2000 to 94% in 200765, and thus Yr17 

cannot alone account for the durability of stripe rust resistance in Madsen. As previously concluded in 

other studies of stripe rust resistance with Yr1766–68,  durability of resistance in Madsen likely resulted 

from the combination of Yr17 and other QTL resulting in  Madsen maintaining its resistance to stripe rust. 

The QTL detected on chromosomes 1AS and 2AS can be used as molecular markers to develop wheat 

cultivars with durable stripe rust resistance. A similar conclusion was suggested by Liu et al33 based on 

their work using the Madsen x Avocet population. The results of their study combined with ours suggest 

that these two QTL were significant in populations with different genetic backgrounds. The Liu et al. 

study involved a spring (Avocet) parent, while the results presented in this study came from a population 

developed by a winter x winter cross. Thus, our research confirms the importance of the 1AS and 2AS 

QTL in a winter x winter cross. 
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5.1 Abstract 

Stripe rust is a major disease of wheat (Triticum aestivum L.) worldwide and is caused by the fungus 

Puccinia striiformis f. sp. tritici. Genetic resistance to wheat stripe rust is often ephemeral owing to 

changes in the race composition of the pathogen. By contrast, the cultivar Madsen has maintained 

resistance to stripe rust in the Pacific Northwest (PNW) region of the U.S. since its release in 1988. The 

resistance gene Yr17 interacts with other genes to provide resistance in the adult plant stage, even though 

it is no longer effective at the seedling stage. Accordingly, researchers have hypothesized that Madsen has 

other QTL that provides resistance in the seedling stage. The goal of this study was to identify stripe rust 

resistance quantitative trait loci (QTL) at the seedling stage in a recombinant inbred line (RIL) population 

between Madsen (PI 511673) and the susceptible cultivar ‘Foote’ (PI 599663). The 217 lines for the RIL 

population were evaluated in growth chambers against two types of stripe rust inoculum: a bulk 

population of spores collected from the field in 2012, and a single isolate of race PSTv-37, which has 

been the predominant stripe rust race recently in the PNW. The RILs were genotyped using Illumina 

HiSeq 3000 Sequencing and markers were called using the STACKS and Bfctools software. Stripe rust 

resistance QTL were found in chromosomes 1B and 2B using race PSTv-37 and in 6B and 7B when using 

the bulk population collected in 2012. These results suggest that durability of stripe rust resistance in 

cultivar Madsen could be associated with a suite of QTL that are expressed at different growth stages and 

in response to different pathogen races. The QTL identified in this study, could help develop breeder-

friendly molecular markers, and be used in combination with the QTL detected at the adult plant stage to 

improve the durability of stripe rust resistance in wheat. 

5.2 Introduction 

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a globally devastating pathogen of wheat1. The 

Pacific Northwest (PNW) in the U.S. is one of the most at risk regions for stripe rust, with expected 

regional losses ranging from 5 to 25%, yearly2 and observing new rust races annually3. In addition, the 

PNW is the region of the U.S. that has the highest diversity of stripe rust races, with frequent changes of 

predominant races4.  Stripe rust races in U.S. are classified by the virulence and avirulence of isolates on a 
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set of 18 wheat genotypes with single, known resistance5,6.  This differentiation of races is local because 

there has been no standardized and internationally accepted set of differential wheat cultivars to classify 

the stripe rust races7. New populations of stripe rust that have moved around the world in the last 15 years 

have increased  aggressiveness and adaptation to both high and low temperatures, reducing the 

effectiveness of host plant resistance3,8. Currently, the most abundant stripe rust races in the PNW are 

PSTv-37 (50.7% in 2020) and PSTv-39 (21.1% in 2020) (https://striperust.wsu.edu/races/data/). 

Stripe rust epidemics reduce the yield and quality of grain9. Having resistance genes that can protect the 

plant in the seedling stage significantly reduces disease severity. These genes are generally race-specific, 

but in the PNW are only effective for 3.5 years, on average, if used as single genes in cultivars10 due to 

the frequent changes in the predominant stripe rust race. Historically, wheat breeders in the PNW have 

used a combination of qualitative and quantitative resistance genes11. Qualitative resistance tends to be 

specific to certain pathogen races (race-specific resistance), provides a high level of resistance, and often 

protects the plant during the whole growing season (all stage). Quantitative resistance tends to be less 

race-specific than qualitative resistance, is controlled by multiple genes with minor effects, and does not 

usually provide complete resistance. High-temperature adult plant resistance (HTAP) is a particular 

category of quantitative resistance 12,13 that is only expressed in the adult plant stage when a temperature 

threshold has been exceeded12,13. The combination of qualitative and quantitative resistance genes 

provides the most effective and durable resistance against stripe rust.  Currently, there are 67 qualitative 

genes and 327 quantitative genes identified for resistance to stripe rust in wheat and many have been 

deployed in commercial cultivars14. 

The stripe rust resistance gene Yr17 originated from a translocation between homologous chromosomes 

(2NS/2AS) with 2NS originating from Triticum ventricosum15. Yr17 was widely used globally in cultivar 

development until a virulence race was detected in the UK in 1994 that overcame Yr17 and was spread 

worldwide2. In the PNW, Yr17 is present in multiple cultivars, such as 'Cara' (PI 643435)16 , 'ARS‐Selbu' 

(PI 667744)17 and ‘Madsen’ (PI 511673)18. Yr17 is considered a qualitative resistance gene, efficient, 

durable, non-race-specific in the PNW19,20, but cultivars with Yr17 have become more susceptible at low 

temperature and low light intensities in the seedling stage. 

Most new races of stripe rust that have moved around the world in the last 15 years are virulent 

against Yr173,8. However other cultivars with Yr17, such as Madsen maintained their resistance during 

this time. Accordingly, researchers hypothesized combining of other resistance genes with Yr17 provides 

durable stripe rust resistance in the PNW19,20. Recent studies showed that Madsen was susceptible in the 

seedling stage to Pstv-4 and Pstv-14, (infection type 7-8) but resistant to PSTv-37 and PSTv-40, 

(infection type 2-3) at low-temperatures (4–20 °C)19. 

https://striperust.wsu.edu/races/data/
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The objective of this study was to identify molecular markers for stripe rust seedling stage 

resistance in a recombinant inbred line (RIL) population segregating for stripe rust susceptibility using 

genotyping by sequencing (GBS). 

5.3 Materials and Methods 

Mapping population  

The Recombinant Inbred Line (RIL) population used in this study was generated from the cross between 

the soft white winter wheat cultivars ‘Foote’ (PI 599663)’ and Madsen (PI 511673)18. The population was 

developed at Oregon State University (OSU) by single seed descent for six generations.  

The cultivar Foote was developed by Oregon State University with the pedigree 

“Heima//Kalyansona/Bluebird/3/WWP7147,F1/4/Davis 6301/Heine VII/era/3/Buckbuck”. Foote is 

considered susceptible to stripe rust (ARS-GRIN, 2016), although it was resistant at the time of its release 

in 1998. Madsen was developed by the USDA-ARS wheat genetics program in Pullman, WA, with 

pedigree “VPM1/Moisson 951//2*Hill 81”. Madsen has maintained a moderate-to-high level of resistance 

to stripe rust since its release in 1989.  

Genotypic data  

DNA extraction and sequencing 

The parents and the RIL population were grown under greenhouse conditions at 21 to 23 °C with a 

photoperiod of 16:8 hours (Light: Dark). DNA extraction for each RIL and their parents was done at the 

three-leaf stage, with DNA being extracted from the leaf tissue with an automated extraction system for 

acid isolation of DNA (ThermoKingFisher Flex, Waltham, MA), at the Center of Genomic Research and 

Biocomputing (CGRB) at Oregon State University. The genotype by sequencing (GBS) libraries were 

developed following the protocol described in Poland et al.21. Unique individual-based barcodes adapters 

(5 a 10 bp) were ligated to individual samples22.  The two restriction enzymes for the GBS were PstI 

(CTGCAG) and MspI (CCGG)22. Four libraries were prepared and sequenced with an Illumina HiSeq 

3000 (Illumina HiSeq 3000/HiSeq 4000 System, RRID:SCR_016386, Illumina, San Diego, CA, USA) at 

the CGRB at Oregon State University, Corvallis, OR, USA  

SNPs callings 

The raw data were filtered, trimmed, and assigned to samples, using the unique individual barcodes 

adapters, by procces_radtags STACKS v2.52 software packages
23

 following the parameters automatic 

clean data (-c) and rescue barcode options (-r). The wheat reference genome from IWGSC was indexed 

by the Burrows Wheeler aligner (BWA)
24

. Each sample was aligned to the wheat indexed reference 

gnome, using the Burrows Wheeler aligner (BWA)
24

 and was sorted and aligned using SAMTOOLS v1.6 
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software, with the default parameters
25

. The bcf files for SNP calling were generated by bfctools mpileup 

and filtered by no more than 25% of missing data or more than 15% of heterozygous by markers or RILs, 

minor allele frequency 30 to 70% (MAF), and low-quality below 30%. The filter markers with biallelic 

position for both parents and homozygous for opposite alleles were retained. The markers obtained were 

named by two letters corresponding to a SNP (TP) or a SSR (SR), following with the physical position on 

the RefSeq v1.0 assembly, followed by (“_”), and the chromosome location. An example 

TP289123123_2A.  

Linkage map construction 

The linkage map was created by the ASMap packages from R/software26, using the filtered data, except 

the pseudochromosome (ChrUn). The initials groups were established by maximum likelihood (ML) with 

a p-value of 1E-10. The Kosambi function was used by calculating the recombination frequency for each 

marker. Markers with an excess of double recombination (over 50%) and not linked to any other marker 

were removed during each interaction of linkage map construction. A χ2 goodness-of-fit test and 

Bonferroni correction was performed for each maker. Markers not corresponding to the Mendelian 

segregation proportion (χ2 test p-value <0.01) were excluded from the analysis.  

Growth Chamber Screening 

Growth chamber trial design and phenotypic data 

The RIL population and their parents were evaluated with two different types of stripe rust inoculum; The 

first inoculum was a bulk population of stripe rust races collected from the cultivar ‘Goetze’ in 2012 in 

Corvallis, Oregon, and subsequently increased on plants of Goetze in growth chambers. Unfortunately, 

this population was lost in summer 2020 due to complications associated with a building renovation and 

the COVID-19 epidemic. Thus, the second set of experiments was conducted with a pure culture of race 

PSTv-37. This isolate was provided by Dr. Xianming Chen, USDA-ARS Pullman, Washington, and was 

originally collected in the Willamette Valley of Oregon in 2020. For this study, this race upon receipt was 

increased on plants of Foote wheat in growth chambers. Inoculum increases and the RIL evaluation were 

done in Percival model MB-60B growth chambers at 15°C within a photoperiod of 16:8 hours (Light: 

Dark). For each set, the experiment was arranged a randomized complete block design (RCBD) with two 

replications.  A single seed of each RIL was planted in an individual cone and the parents were included 6 

times. Three racks of 7 x 14 plots cones were used for each block. An extra ring of cones planted to the 

cultivar Madsen was placed as a border on the outside of each of the three racks. The second leaf of each 

RIL was inoculated with a mixture of urediniospores and talc by dusting the spores onto the second leave 

with a cosmetic brush when the plant was at the three-leaf stage. The inoculum concentration was a ratio 

of 1:5 spores: talc for the first inoculum and a ratio of 1:10 for the second inoculum. Immediately after 
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inoculation, inoculated plants were placed in a dew chamber at 13°C for 18 h without light and then 

moved to a growth chamber, with a constant temperature of 14-16 °C and with 16-h light /8-h darkness 

photoperiod. The infection type (IT) was recorded in the infection leave for each plant at three weeks after 

inoculation using a 0-9 scale27. 

Statistical analysis 

Infection type of stripe rust for each set of races. 

All statistical analyses were done using R software version 3.6328. The model for each set of races was 

treated as an individual data set and analyzed separately, using lme4 packages from R package28.  

 𝑦𝑖𝑗𝑘 = μ + 𝑅𝐼𝐿𝑖 + Repj + 𝑒𝑖𝑗𝑘  , (11) 

where 𝑦𝑖𝑗𝑘 was the infection type response (IT) for each RIL 𝑖 and each element of Rep  𝑗, mu (μ) is the 

population mean for the severity response (Yr). All variables were mutually independent, i.e., 

𝑐𝑜𝑣(𝑅𝐼𝐿𝑖 , 𝐸𝑛𝑣𝑗) = 0. RIL, and Rep was treated as random effect with zero mean and variance ( 

𝜎𝑅𝐼𝐿
2 , 𝜎𝑒𝑛𝑣

2 ). The 𝑒𝑖𝑗𝑘  was the error term and was assumed to follow a normal distribution with zero mean 

and variance, i.e., 𝑒𝑖𝑗𝑘~𝑁(0, 𝜎𝑒𝑟𝑟
2 ).  The genetic variance  𝜎𝑔

2 and residual variance 𝜎𝑒
2  were extracted for 

the model’s (7) variance components. The phenotypic variance was calculated using the formula 

𝜎𝑝
2 = 𝜎𝑔

2 +
𝜎𝑒

2

𝑟
 , where r was the number of replication (2), and 𝜎𝑔

2 and 𝜎𝑒
2 were the variances from the 

model. Heritability was calculated for each set of races as, ℎ2 = 𝜎𝑔
2/𝜎𝑝

2 =  𝜎𝑔
2/(𝜎𝑔

2 +
𝜎2𝑒

𝑟
), where the RIL 

and rep were fitted as a random effects, using lme4 packages from R package statistical28. 

QTL analysis 

A composite interval mapping (CIM) analysis was performed independently based on the pathogen 

population in 2012 and the single race in 2020 using the R/qtl package software29 to identify putative 

QTL locations along the genome. The significance of QTL was assessed using the likelihood odds (LOD) 

threshold of 5%, which was obtained by 1,000 permutation tests. The QTL detected on chromosome 2B 

was pairwise analyzed by each individual marker on chromosomes 2A and 2D due to some of the markers 

on those chromosomes having a similar segregation pattern based on our linkage map.  

5.4 Results 

Genotypic Data  

A genetic linkage map was constructed using 6,110 markers, including 410 SSR and 5,700 SNPs, 

representing all chromosomes. Genome D had the lowest number of markers (1,651), and genome B had 
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the highest number of markers (2,382), followed by genome A (2,077). The map had reasonable 

contiguity, except for chromosome 4D, having a large gap of 40 cm long. 

Phenotypic Analysis 

Infection in both experiments was successful, having an infection type between 0 to 8.5 for both sets of 

stripe rust races. The infection type of parents was consistent in both experiments; Foote had an infection 

type between 4 to 6, and Madsen had an infection type between 2 to 4. The distribution of phenotypes 

was bimodal in both experiments, with transgressive segregation for both resistance and susceptibility 

(Heritability was 0.72 for the 2012 bulk inoculum and 0.74 for race PSTv-37 collected in 2020. ANOVA 

indicated no significant difference between experiments (P≥0.15) or between blocks with experiments 

(P≥0.54 for 2012 and 0.37 for 2020). Each inoculum type was evaluated separately due to the race(s) in 

2012 being unknown (Figure 5.1). 

  

 

Figure 5.1. Recombinant inbred lines histogram showing the distribution of stripe rust mean severity of 

the two sets of stripe rust races in the FxM population with Madsen and Foote. 
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Table 5.1 Infection type for parents and RIL population (mean, max, and min, genetic variance 𝜎𝑔
2, residual 

variance  𝜎𝑒
2, number of replication r, and their Heritability ℎ2. 

Inoculum  Foote Madsen 
RIL Population 

  

r 
 

Mean Max Min 

Bulk 2012 5 3.5 4.5 8.5 0 6.78 5.08 2 0.72 
PSTv-37 2020 5 3 4.0 8.5 0 7.78 5.01 2 0.74 

 

QTL analysis  

A name was assigned for each QTL identified in these two experiments using the nomenclature Yr-

following by the chromosome location. Four QTL were detected in this study, Yr6B and 7B for the bulk 

inoculum collected in 2012, and Yr1B and Yr2B for the PSTv-37 race. The threshold used for additive 

effects was 4.2 for both inoculation experiments. All QTL detected had a minor effect, accounting for 5.1 

to 8.6% of the variance. The QTL detected with inoculum from 2012 were Yr6B and Yr7B. Yr6B 

represents a resistance allele for Madsen and Yr7B was from Foote. The additive effect for those QTL 

were -1.0 and 0.9, respectively. The QTL detected with inoculum from 2020 were Yr1B and Yr2B, and 

both were from Madsen with additive effects of -1.2 for Yr1B and -0.6 for Yr2B. The QTL on 2B was not 

linked to any marker on chromosome 2A or 2D 𝜒2 > 0.55(Table 5.2). The QTL detected on 

chromosomes 6 and 7 was not linked test because it did not identify any other significant marker in this 

population. 

Table 5.2 Summary of the CIM model QTL detected in the  FxM population-based on infection type response 

to stripe rust infected by bulk inoculum races collected in 2012, and race PSTv-37 collected in 2020, 

including likelihood odds (LOD) scores, explicative variance in the model (var_expli), and estimated 

additive effects (est_QTL), for all the combination year by the environment. 

        Model 

Inoculum Chromosome  Yr1B Yr2B Yr6B Yr7B 𝑳𝑶𝑫𝟏 

Explained  
Variance (%) 

Bulk 2012 
LOD*   4.7 4.9 

6.15 12.88% Explained variance   5.1 7.1 
Additive effect   -1.0 0.9 

PSTv-37 
2020 

LOD* 5.0 4.4   
21.10 14.22% Explained variance 8.6 5.6   

Additive effect -1.2 -0.6   

𝐿𝑂𝐷1 is relative to the null model (with no QTL). LOD* is relative to the full model and the model with the 

term omitted. Explained variance is the estimated proportion of the phenotype variance explained by the 

QTL in the model.  The estimates effects are derived by coding Foote at 0 and Madsen at 1.  
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5.5 Discussion 

Madsen has provided durable resistance against stripe rust since 198830,31. The resistance observed in 

Madsen is related to the presence of Yr17 and additional QTL conferring resistance to stripe rust. The 

lines with Yr17 produce an intermediate reaction of infection type (4-6) in the seedling stage but can show 

significantly reduced severity depending on the temperature at the adult stage32.  The results from this 

study confirm that Yr17 is only effective for adult plant resistance against most stripe rust races currently 

found in the PNW, as Yr17 was not detected in the seedling assays. Two sets of inoculate were tested in 

this experiment. Race PSTv-37 has virulence against Yr6, Yr7, Yr8, Yr9, Yr10, Yr17, Yr27, Yr43, Yr44, 

YrTr1, and YrExp2 (https://striperust.wsu.edu/races/data/). The bulk inoculum collected in 2012 most 

likely was composed of PSTv-11 and/or PSTv-14, which were the most predominant races in the PNW in 

2012 (https://striperust.wsu.edu/races/data/). Reaction to PSTv-14 and PSTv-11 differ from Pstv-37 on 

Yr1, Yr10, Tye and reaction to PSTv-14 differs from that of PSTv-11 on Tr1 but not for PSTv-37. 

Therefore, itis most likely that all races tested in this experiment carry virulence to Yr17. The virulence 

has been present in around 95% of the races in the PNW since 2007. In this study, four different QTL 

were detected at the seedling stage, Yr1B, Yr2B, Yr6B, and Yr7B. Each QTL showed a minor effect. The 

minor effects of these QTL could be why they were not detected in the Foote x Madsen RIL population 

when evaluated for stripe rust in the field (Cobertera, 2021). 

The most significant effect size QTL for resistance to the PSTv-37 race was the QTL detected on the 

short arm of chromosome 1B (1BS).  The Yr genes mapped on 1BS are Yr9 and Yr10. Yr9 provides 

resistance to all three rust pathogens (stripe, leaf, and stem34), but does not provide resistance to PSTv-

3735. Therefore, the QTL in this study detected on 1BS is not Yr9. On the other hand, Yr10 is highly 

effective against PSTv-377. Yr10 is considered a global resistance gene14. In the PNW, Yr10 was widely 

used in cultivar development since 1965. It was originally deployed in the club wheat cultivar Moro (PI 

178383)36, but it is currently only used with other genes in the resistance gene pyramids14. The QTL 

detected in this study is not likely to be the Yr10 because 1) the pedigree of Madsen does not have a 

source for Yr1019; 2) Yr10 is associated to the brown chaff color37, and Madsen does not have this 

character and 3) Yr10 has a significant effects on PSTv-377 and the QTL detected in this study had only 

minor effects. Ten QTL have been detected in chromosome 1BS associated with stripe rust resistance. 

Two of those QTL were detected in cultivars grown in the PNW, one from the cultivar Coda (PI 

594372)38 and the other from Madsen19,39. Both QTL had a minor effect against PStv-3719,39. Madsen is in 

the pedigree of the Coda38. Therefore, the QTL detected on 1BS in this study is likely to be detected in 

Madsen and Coda. 

https://striperust.wsu.edu/races/data/
https://striperust.wsu.edu/races/data/
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The other QTL detected using PSTv-37 race was on chromosome 2B. Chromosome 2B is a gene-rich 

region for stripe rust resistance. In the literature, 36 QTL and essential resistance genes such as Yr5, Yr7, 

Yr27 have been reported on 2B. In the PNW, similar results have been found in several studies reporting 

resistance genes against stripe rust in chromosome 2B20. For example, Guo et al. 2008 identified two 

different loci for HTAP resistance on 2BS40. In addition, other cultivars such as ‘IDO444’41, ‘Louise’42, 

and ‘Stephens’43 have been reported to carry resistance genes on 2B. In two independent studies with 

PSTv-37, no QTL for resistance to this race were detected on 2BS. However, several studies have 

identified QTL on the chromosome 2BS in the seedling stage, using different races as inoculum, such as 

PSTv-4012,  PST-10044, PSTv-1144, and PSTv-5144. These results could be because not all Yr genes have 

been detected against stripe rust, or the population used in this study had no genomic variation in this 

area. Further analysis, with more replication, is required to verify the QTL detected in this study. 

An additional two QTL were detected in the Foote by Madsen population using the bulk inoculum 

collected in 2012, one on chromosome 6BS, near the centromere, and the other in the long arm of 

chromosome 7. In the centromere region of chromosome 6B, six QTL have been mapped. Three QTL 

have been identified in the PNW in three different cultivars: ‘Druchamp’45, Stephens17, and Madsen19. 

Druchamp is a French cultivar introduced to the United States in the late 1940s, and has been a source of 

stripe rust resistance in the PNW45.  The QTL detected on Duchamp was detected in the seedling stage 

with three different races: PST-35, PST-100 and PST-11445. Stephens and Madsen are two varieties 

released in the PNW, in 1977 and 1988 respectively, Stephens is moderately susceptible, and Madsen is 

still resistant under field conditions17,19. The other two QTL have only been associated with HTAP 

resistance. Both studies suggest that the QTL detected on 6B is Yr7817,19. Yr78 is known to confer partial 

resistance to PSTv-37 at the adult plant stage but provides no resistance at the seedling stage against 

PSTv-4, PSTv-14, PSTv-37, and PSTv-4046. Thus, this study does not contradict any results found in the 

literature, but further analysis is needed to determine if the QTL detected in this study is or is not Yr78 

due to the QTL having only a minor effect under growth chamber conditions at the seedling stage. In this 

chromosome region, there are also other Yr genes such as Yr35 and Yr36. Yr35 was transferred to bread 

wheat from T. turgidum ssp. dicoccoides47 and shows resistance to  PSTv-4, PSTv-14, PSTv-37, and 

PSTv-4046. Instead, by contrast Yr36 confers only HTAP. This gene was previously cloned and encoded a 

kinase domain (WKS1)48. Although the QTL detected in this study is mostly likely to be Yr35 or Yr78, 

further analysis is required to determine if the QTL identified in this study is Yr35, Yr36, or Yr78.  

The other QTL identified using the 2012 inoculum was located on the long arm of chromosome 7B and 

was the only QTL provided by the cultivar Foote. In chromosome 7B, there are five major Yr genes Yr52, 

Yr59, Yr67 (YrC591), Yr39 and YrZh84 and several QTL with low or moderate LOD and effect scores. 
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Weizhen Liu et al. identified a QTL on 7BL that provided resistance at the seedling stage to PSTv-51 but 

not in the adult stage44. The QTL detected in this study is close to this region and could be this QTL since 

it was only effective in the 2012 inoculum and not in the adult plant stage (Cobertera, 2021). 

 None of the QTL identified in this study provides sufficient resistance against the stripe rust races found 

in the PNW. However, all these QTL can be used in a resistance pyramid strategy against stripe rust with 

the combination of QTL detected in previous studies, such as the QTL on 1AS and Yr17 (Cobertera, 

2021). to provide durable resistance against stripe19. It is significant that different QTL were identified at 

the seedling stage when using different inoculum sources, and that a different set of QTLS were 

associated with adult plant resistance in the field (Cobertera, 2021). These results suggest that durability 

of stripe rust resistance in cultivar Madsen could be associated with a suite of QTL that has enabled it to 

respond to changes of the stripe rust pathogen over time. 
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Chapter 6: General Conclusions  

6.1 Conclusions 

Durability of disease resistance is a fundamental goal of plant breeding. The most widely used strategy to 

develop durable resistance is by accumulating or pyramiding resistance genes in an individual cultivar1. 

The use of marker-assisted selection (MAS) can significantly reduce its time to develop new cultivars2. 

This technique requires knowing the chromosomal location of resistance markers associated with 

resistance genes and developing ‘breeder friendly’ molecular markers linked to these genes to ensure 

retention of the resistance genes during the development of a new cultivar3,4. This research aimed to 

identify molecular markers associated with resistance to Septoria tritici blotch (STB) and stripe rust of 

wheat. Attaining durable resistance also depends on the variability, adaptability, and virulence of the 

pathogen1. The two pathogens studied vary greatly in their life history and population structure, with the 

STB pathogen undergoing annual sexual reproduction and maintaining an immense effective population 

size. In contrast the stripe rust pathogen is clonal and undergoes severe, annual genetic bottlenecks. 

This research utilized a molecular mapping population consisting of 217 recombinant inbred lines (RILs) 

derived from a cross between the wheat cultivars Foote and Madsen and was developed via single seed 

descent in the greenhouse. Madsen has maintained a high level of resistance to stripe rust since its release 

in 19885, though most of its initially moderate resistance to STB has eroded over time. Foote had 

moderate resistance to STB and a very high level of stripe rust resistance when released in 1998 but was 

highly susceptible to new stripe rust races that appeared in 2004-05. Foote was still moderately resistant 

to STB when it was abandoned owing to stripe rust severity, though pathogen isolates were identified 

with high virulence in Foote at that time. 

The mapping population was grown in multiple environments. For both diseases, a randomized complete 

block design with two replications per environment was utilized, and infection was via naturally 

occurring inoculum. A specific fungicide was used to exclude stripe rust in the STB trials, while the rapid 

reproductive rate of stripe rust allowed it to exclude STB when that fungicide was not used substantially. 

Visual observations were used to estimate the severity of each disease. In addition to the field trials, the 

population was tested in growth chambers at the seedling stage using two types of stripe rust inoculum: a 

bulk population of spores collected from the field in 2012, and a single isolate of race PSTv-37, which 

had been the predominant race of stripe rust in the PNW in recent years. For all studies, the RILs were 

evaluated using genotyping-by-sequencing (GBS), and QTLs were identified using composite interval 

mapping (CIM) and multiple composite interval mapping. Best linear unbiased prediction (BLUPs) was 

used to analyze  of the field trials results to reduce the variability explained for the different 
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environments. This technique estimates the genotypic value, adjusting the empirical means toward the 

general mean for each RIL. This technique has made it possible to analyze multiple locations/years in a 

single analysis, increasing the phenotypic value's precision, reducing environmental error, and reducing 

the normality bias in the QTL model. 

Quantitative genes were detected for both STB and stripe rust. For STB resistance, five resistance QTL 

were identified after field testing in five environments. The Five QTL had small effect sizes ranging 

between 3.5 to 9.0, explaining 52.5% of the variance observed for STB resistance. For stripe rust 

resistance, four resistance QTL were identified after field testing in five environments. Two QTL (on 

chromosomes 1AS and 2AS (Yr17) with moderate effect sizes between 9.0 to 12.0 were identified, 

explaining 59.2% of the variance. Three of the four QTL (Yr1A, Yr2A/2D and Yr4D) for stripe rust 

resistance identified in the field trials are most likely high-temperature adult plant (HTAP) resistance 

genes. Four QTL were also identified in the growth chamber studies, two using the bulk inoculum and 

two different QTL using the single isolate inoculum. These pairs of QTLs provided a significant reduction 

of severity when found in the same plant. QTL detected in the field were not identified in the growth 

chamber or vice versa. This suggests that the QTL on chromosomes 1AS, 2AS/2DS and 4DL identified in 

the field trials may be high-temperature adult plant (HTAP) resistance genes and the four QTL that 

conferred stripe rust resistance on seedlings grown in the growth chamber may be all stage resistance 

genes. However, it is also possible that the seedling QTL with relatively small effects were masked by 

effects of the adult plant QTL in the field. Identifying different QTL using the bulk inoculum versus the 

single isolate in the growth chamber study suggests that these genes may be race-specific. 

For both diseases, there was one QTL with a more significant effect than the others. The most effective 

QTL for STB was QStb-7D, which is probably one of the reasons why Foote is considered moderately 

resistant to STB. In the region of chromosome 7DL associated with QStb-7D there are four known 

resistance genes. These four genes could be functional against STB and provide durable resistance. In 

the literature, chromosome 7DL is one of the chromosomes with the most identified QTL associated 

with disease resistance in wheat. These QTL provide resistance to other diseases caused by other 

necrotrophic pathogens, such as Rhizoctonia root rot (Rhizoctonia solani)6 and Septoria nodorum blotch 

(Phaeosphaeria nodorum)7. Further analysis is required to study the function of these four genes and 

their possible association with the QTL QStb-7D. 

For stripe rust, the QTL with the largest effect was on 2A and could be associated with the resistance 

gene Yr17, most likely donated by Madsen. Yr17 in wheat originated from the translocation 2NS/2AS 
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from Triticum ventricosum8. Yr17 is one of the essential resistance genes in wheat worldwide. Therefore, 

Yr17 has been widely used in wheat breeding programs9, producing numerous cultivars with Yr17 

around the world. Cultivars with Yr17 produce an intermediate infection type of 4-6, depending on the 

isolate inoculated and temperature10. Virulence to Yr17 was the major cause of stripe rust epidemics in 

many countries in the last 20 years10. In the U.S., virulence to Yr17 increased gradually from 27% to 94% 

between 2000 to 200711. Consequently, Yr17 cannot alone account for the durability of stripe rust 

resistance in cultivars such as Madsen. As previously concluded in other studies of stripe rust on wheat, 

the durability of stripe rust resistance for cultivars carrying Yr17 is caused by interactions with other 

QTL. 

During the development of the linkage map, it was observed that some markers on 2A, 2B, and 2D had 

similar segregation patterns for stripe rust resistance. For stripe rust, a more in-depth study was made 

of chromosomes 2A, 2B, and 2D using multiple interval mapping. This study identified alternative QTL 

locations on both 2AS and 2DS, with two groups being identified. The first group was markers linked to 

Yr17 and the second group was markers not linked to Yr17. The markers in the second group (not linked 

to Yr17) could be on chromosome 2A or 2D. The suggestion that Yr17 is linked to another QTL for adult 

plant resistance is supported by Liu et al.5, and the additional QTL on 2D is supported because the 2D 

marker is close to the leucine-rich domain superfamily gene on that chromosome. 

The highest level of reduction of disease severity for each of the two diseases occurred when all identified 

QTL were combined. This supports the concept of pyramiding resistance genes to maximize the level of 

disease resistance and increase the durability of resistance. A more significant number of QTL may be 

required for STB owing to their smaller individual effects and the high evolutionary potential of the 

causal pathogen to adapt to resistance. The regions on chromosomes 3BL, 6BS, and 7DL have the highest 

number of relevant QTL for STB resistance. Identifying the region on 7DL in Foote with multiple 

resistance genes may help develop new cultivars with durable resistance genes to STB. The combination 

of Yr17 with the QTL detected on 1AS, and other genes identified in this study should provide durable 

effective resistance to stripe rust. As durability of stripe rust resistance has often been associated with 

combinations of seedling and adult plant resistance genes, combining genes identified at different growth 

stages in this study may further contribute to durability of wheat stripe rust resistance. 
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