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Sugar pine and western white pine are widely distributed, economically valuable, and 

ecologically important native tree species in North America. However, white pine 

blister rust (WPBR), caused by a non-native fungal pathogen, Cronartium ribicola 

J.C. Fisch. in Rabh., has substantially affected populations of these species. 

Cronartium is an obligate parasite, requiring two living hosts to complete its life 

cycle. White pines are the primary host, and Ribes species, Castilleja, and Pedicularis 

spp. are alternate hosts. Once Cronartium infects trees, it damages and kills branches, 

stems, or entire trees by causing branch and stem cankers. Cronartium requires cool 

temperatures and sufficient moisture to inoculate and spread among alternate and tree 

hosts. Cronartium infects white pines of all size, but it is more prevalent on younger 

and smaller trees. 

Treatments to manage WPBR have included Ribes eradication, chemical 

spraying of Ribes, and thinning and pruning of tree hosts. However, these treatments 

are impractical and costly, and are not expected to eliminate WPBR.  Another 

approach is to breed and deploy rust-resistant trees, and has been an ongoing effort 



 

 

for over 50 years. Finally, another option for managing WPBR is to use rust hazard 

ratings (RHRs). RHRs are metrics reflecting current or potential rust infection levels 

of sites. Specific climatic conditions, site characteristics, and tree characteristics have 

been used to rate the rust hazard of sites in white pine regions.  

For my research, I used data from Koester et al. (2018), who studied rust 

hazard at 265 sites in southwestern Oregon. The sites contained naturally regenerated 

sugar pine, naturally regenerated western white pine, rust-resistant sugar pine, and 

rust-resistant western white pine. I studied four rust traits, environmental variables, 

and tree characteristics. The rust traits consisted of percentage of trees with a stem 

canker (CANK%), average number of cankers per tree (NUM_CANK), average 

height of the highest canker (HT_CANK), and rust hazard index (RI). The 

environmental variables consisted of climate variables, aspect, slope, and elevation. 

The tree characteristics consisted of tree age, tree height, and average height growth 

(HT/AGE). In addition to the Koester et al data, I used the ClimateNA software 

program to obtain historical and future climate variables for the sites. 

I developed rust and tree growth random forest regression models and used 

other analyses to identify (1) which rust traits were best for characterizing rust hazard, 

(2) which environmental variables were most closely associated with rust hazard, (3) 

how were rust traits affected by tree characteristics, (4) how was tree growth affected 

by environmental variables and rust traits, (5) how will rust traits change under future 

climates, and (6) how will tree growth change under future climates. 

Based on random forest RSQ values, I concluded that CANK% and 

NUM_CANK were the best rust traits for characterizing rust hazard. My criteria for a 



 

 

good rust hazard index were that it is (1) closely associated with tree damage and 

death, (2) easy to measure precisely and accurately, (3) not confounded by non-rust 

tree variables, and (4) easy to predict from environmental variables. CANK% and 

NUM_CANK were relatively easy to measure precisely and accurately compared to 

HT_CANK and RI. Also, CANK% and NUM_CANK were more strongly associated 

with environmental variables, and were less confounded with non-rust tree variables. 

Thus, I used CANK% and NUM_CANK for further analyses. 

Among the environmental variables, climate variables were the most 

important predictors of rust hazard (i.e., based on random forest variable importance 

statistics). Correlations indicated that rust hazard was greater at sites with milder 

temperatures, sufficient moisture, and longer growing seasons. Rust hazard was also 

higher at sites with northern, eastern, and northeasterly aspects. Rust hazard was 

positively associated with tree growth and negatively associated with tree age, but 

had little relationship to tree height. The possible explanation is that young 

susceptible trees were subjected to natural selection by WPBR. Thus, older stands 

probably have a higher proportion of rust resistant trees. I also observed that greater 

tree growth was associated with harsher climates and higher rust disease, but the 

reasons for this were unclear. 

Next, I used my random forest regression models to project rust hazard and 

tree growth under climate change. In total, I analyzed 13 climate scenarios consisting 

of 12 future scenarios and one based on the 1931-1990 climate. The future climate 

variables were based on four Shared Socio-economic Pathways (SSPs), SSP1-26, 



 

 

SSP2-45, SSP3-70, and SSP5-85 and three 30-year time periods centered on 2025, 

2055, and 2085.  

I found projected increases in spring, summer, and winter temperatures, 

indicating longer growing seasons in the future. In addition, summer and autumn 

relative humidity were projected to decrease under all SSPs. According to the 

projections of rust hazard, WPBR will decline, but these changes will probably be 

small and uncertain. Declines in WPBR may occur because warmer and drier 

climates inhibit rust spore germination, infection, and dispersal. In contrast, I 

projected a small increase in the average growth rate of the pines, probably because 

the models projected a longer growing season with less rust disease.  

The rust hazard models I developed should be particularly valuable for 

evaluating current rust hazards based on known climate conditions. However, many 

caveats make the future projections uncertain. To improve rust hazard prediction 

models, I recommend accounting for (1) the distributions of alternate hosts, (2) the 

occurrence of specific wave years, and (3) additional moisture-associated 

environmental variables.  
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1. Chapter 1 

1.1 Background and Literature Review 

1.1.1 Sugar pine and western white pine are ecologically and economically important 

species 

 Sugar pine (Pinus lambertiana Dougl.) and western white pine (Pinus monticola Dougl. ex 

D.Don) are five-needled white pine species (subgenus strobus). These species are native to the 

Pacific Northwest (PNW), which covers the western coast of North America from British 

Columbia to the Sierra Nevada Mountains of California, and to the interior side of the northern 

Rocky Mountains in eastern British Columbia, northern Idaho, and western Montana (Figure 1). 

In southwestern Oregon, western white pine and sugar pine are widely distributed (Goheen and 

Goheen 2014). The PNW is a mountainous region with cloudy and humid winters and hot 

summers, resulting in intense and frequent wildfires. Wet winters and dry summers also cause 

sharp changes in weather during the year. However, western white pine can tolerate these 

changes, resulting in being considered a generalist species. Compared to specialists, generalists 

survive across wide areas by being genetically adapted to a wide range of environmental 

conditions (Richmond et al. 2005). Sugar pine has the highest growth potential among pines 

(Kinloch 1984). This species ranges from sea level to 10,000 feet in elevation depending on 

temperature and precipitation, which limit its distribution (Larsen and Woodbury 1916; Kinloch 

1984). Thus, they can be seen on northern slopes and at high elevations where the air holds 

abundant moisture (Larsen and Woodbury 1916). 

Western white pine is adapted to the PNW, having become tolerant of fire and mostly 

resistant to native pests and diseases (e.g., root rots) (Byler et al. 2000). Because it is shade-

intolerant, it requires sunlight to regenerate and grow (Hines 2013). Stand-replacing fires make 

canopy openings which allow seedlings to regenerate quickly and show excellent growth 
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(Loehman et al. 2011; Hines 2013). Western white pines dominate the region because of their 

regeneration ability (Loehman et al. 2011) and ability to live longer than other species (Byler et 

al. 2000). However, subsequent losses from wildfires, lack of regeneration opportunities, attacks 

from mountain pine beetle, and impacts of pathogens have dramatically reduced the planting of 

this species (Hines 2013). Thus, other climax species, such as western hemlock, Douglas-fir, and 

grand fir compete against western white pine (Schwandt et al. 2013). On the other hand, western 

white pine has a high capacity to sequester carbon, which can help mitigate global warming 

(Hines 2013). Thus, under changing climates, western white pine may become more desirable 

compared to other dominant species in the region (Hines 2013). 

 

 

A B 

Figure 1.  Range maps for sugar pine (A) and western white pine (B). Original maps are 

from Little (1971) and these figures are from the Data Basin web site (https://databasin.org/). 
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Sugar pine and western white pine have similar wood qualities and uses. Thus, they can be 

used almost interchangeably (Kinloch 1984). Sugar pine wood is whitish, scentless, lightweight, 

solid, easy to work with, and a good paint-holder. Thus, it has multifunctional uses such as for 

constructing boxes (e.g., used to transport sensitive products such as fruits and vegetables), 

windows, and panels that require robustness (Kinloch 1984). Western white pine is valuable for 

the timber industry because of its good wood quality, rapid growth (2 to 4 feet per year), and 

straight and long bole (e.g., over 150 feet) (Hines 2013). Its timber can be used in many 

applications, from construction lumber to furniture. This high demand led to increased harvesting 

pressure on these species between the early 1800s and late 1900s. However, failure to meet 

increasing demands for western white pine lumber led to the import of seedlings for reforestation 

(Muller 2002). Because of an introduced pathogen and other disturbances (e.g., mountain pine 

beetle), white pine nurseries and stands were damaged, and new plantations were difficult to 

establish. While it was one of the most preferred species, the area that contains substantial 

western white pine has been reduced by 90% since about 1900 (Hines 2013). Returning western 

white pine and sugar pine to the forests of the PNW will make a difference in terms of sustaining 

forest health and contributing to the economy. 

1.1.2 White pine blister rust (WPBR) is a disease caused by a non-native fungal pathogen, 

Cronartium ribicola 

The forest pathogen, Cronartium ribicola J.C. Fisch. in Rabh., is native to Asia, but was 

introduced into many regions, including Japan, Siberian Russia, Himalaya, and North America 

(Kim et al. 2010). The pathogen infects and damages white pine species (subgenus strobus) (Kim 

et al. 2010; Sniezko et al. 2011). Zhang et al. (2010) reviewed the history and behavior of 

C. ribicola in China, where all 12 taxa of white pine were infected by the pathogen. However, 

there may be two blister rust pathogens in China, one of which may be the same as the pathogen 
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in the U.S. (Zhang et al. 2010; R. Sniezko pers. comm.). In any case, major damage was 

observed in China on Pinus armandii and Pinus koraiensis (Zhang et al. 2010).  Although this 

damage may be caused by the rust pathogen, recent increases in infection may also result from 

changes in forest management or environmental conditions (Zhang et al. 2010; R. Sniezko pers. 

comm.). In Korea and Japan, imported Pinus strobus trees were susceptible, but native species 

were resistant to the pathogen.  Furthermore, it has been possible to reduce blister rust disease in 

Korea by eradicating the alternate host (Pedicularis resupinata) and by removing infected 

Korean pine trees (La 2009). Thus, only minimal infection is now seen on Pinus koraiensis (La 

2009; Kim et al. 2010). In the mid-1800s, the pathogen probably came to Europe from Russia on 

infected stone pine trees (Pinus sibirica Du Tor.), and then spread throughout the European 

countries on seedlings of eastern white pine (Pinus strobus) (Mielke 1943; Hummer 2000). The 

pathogen infects all nine native 5-needle white pines in the United States (Sniezko et al. 2011), 

which are eastern white pine (Pinus strobus L.), western white pine (P. monticola), sugar pine 

(P. lambertiana), whitebark pine (P. albicaulis Engelm.), limber pine (P. flexilis E. James), 

southwestern white pine (P. strobiformis Engelm.), foxtail pine (P. balfouriana Balf.), Rocky 

Mountain bristlecone pine (P. aristata Engelm.), and Great Basin bristlecone pine (P. longaeva 

D. K. Bailey ) (The Plant List 2013). Cronartium ribicola first came to eastern North America on 

infected eastern white pine seedlings from Europe, specifically from France and Germany 

(Hummer 2000). Although the pathogen was seen on Ribes species, it was restricted to local 

regions in the 1880s, but spread throughout eastern North America by 1910 (Mielke 1943). In 

western North America, infected eastern white pine seedlings came from French nurseries on a 

single shipment in 1910 (Mielke 1943). However, Hunt (2009) stated multiple shipments might 

have been transported to multiple locations by 1930 in western North America. The disease 
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developed and spread throughout British Columbia, and was recognized on white pines and 

alternate hosts by 1920 (Mielke 1943). The disease was first reported on natural sugar pine 

stands in Oregon in 1936 (Mielke 1938). Now, it can be seen in Quebec, New Mexico, Arizona 

to Idaho, Alberta, Oregon and California (Hummer 2000; Geils 2000; Fairweather and Geils 

2011). The pathogen continues to spread throughout the distributions of these principal hosts, 

resulting in economic and ecological losses that concern foresters and pathologists (Hummer 

2000). 

There are 12 rust fungi in North America, most of which damage the stems and cones of 

“hard” pines (i.e., subgenus Pinus) (Peterson and Jewell 1968; R. Sniezko pers. comm.). One of 

these, Cronartium ribicola, is the causal agent of white pine blister rust that damages species in 

the white pine or “soft” pine group (subgenus Strobus) (Peterson and Jewell 1968). Some of the 

rust fungi have a microcyclic life cycle, which means that pine is infected by the spores from 

another infected pine (Geils et al. 2010). However, Cronartium ribicola is an obligate parasite, 

requiring two living hosts to complete its macrocyclic life cycle (Geils et al. 2010). Ribes species 

(e.g., currants and gooseberries) are the principal telial hosts, but the pathogen also alternates to 

species of Pedicularis and Castilleja in North America (McDonald et al. 2006).  

The pathogen has five types of spores, spermatia, aeciospores, urediniospores, 

teliaspores, basidiospores. Spermatia are microscopic and non-infective hyphae that occurs in the 

initial phases of rust development on pines (Geils et al. 2010). Spermatia reside on pines over the 

winter and then produces blister rust-like aeciospores. The yellow, thick-walled, and 

homozygous aeciospores arise from infected tree bark to infect alternate hosts in the spring and 

early summer (Geils et al. 2010). Aeciospores can travel about ~700km via wind (Mielke 1938; 

Mielke 1943; Campbell and Antos 2000). On Ribes, urediniospores are repeatedly produced by 
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pustules-like uredinia which intensify and spread WPBR among alternate hosts during the 

growing season (Geils et al. 2010). Teliospores are produced by brown, hair-like telia on Ribes 

leaves about 30 days after inoculation of aeciospores (McDonald and Andrews 1980). 

Teliospores produce basidiospores, which are brown, short-lived, wind-borne, thin-walled, and 

haploid. These basidiospores develop on the diseased alternate hosts, and then travel as far as ~2 

km to infect the needles of white pines in late summer or early fall (Van Arsdel et al. 1956; 

Kinloch 2003; Geils et al. 2010). Because WPBR is perennial on pine hosts, aeciospores of 

previous years can be found on diseased tree stems (Geils and Vogler 2011). The optimum 

production of spores occurs below 20oC, but the production was decreased in eastern U.S. when 

the temperatures were above 20oC (Van Arsdel et al. 1956; Van Arsdel 1961). In cooler regions, 

moisture affects WPBR incidence and severity. For example, Hunt and Jensen (2000) observed 

higher rust infections through May to November when humidity was high, particularly during 

foggy days, but the infection was low during dry summers under cooler conditions of British 

Columbia. Thus, conditions in late summer and early fall are good predictors of infection 

(Thoma et al. 2019). 

Although the pathogen does not cause mortality of Ribes species, it can reduce growth of 

white pines and even kill them within few years by damaging the cambium (Lombard and 

Bofinger 1999). The cambium is responsible for tree growth by producing the cells that transport 

photosynthate, water, and nutrients throughout the tree. The development of the disease appears 

to be similar on sugar pine and western white pine (Kimmey and Wagener 1961). Rust-related 

damage can be seen in the years following infection (Peterson and Jewell 1968; Hummer 2000). 

The signs of WPBR are very recognizable on tree and alternate hosts. The first signs of infected 

trees are yellowing needles and dead branches (Lombard and Bofinger 1999). The pathogen 
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infects needles, shoots, and bark, and then grows within the living vascular tissues (Geils et al. 

2010; Schwandt 2013). The resulting damage can be observed as diamond shaped cankers (i.e., 

deformations on bark) growing lethally and swelling on branches (Lombard and Bofinger 1999; 

Goheen and Goheen 2014). Cankers progress toward the bole about ~2 inches per year 

(McDonald et al. 1981; Schwandt 2013). Cankers that are at least 24 inches from the bole are 

less likely to reach the bole (Harvey 1967). Tree mortality may occur once a canker encircles the 

tree (McDonald et al. 1981). A high number of branch or stem cankers can also cause tree 

mortality (Mielke 1943; Burns et al. 2008). The growth rate of the tree host, growth rate of the 

pathogen, environmental conditions, and genetics affect canker expansion rate (McDonald et al. 

1981; Schwandt 2013). WPBR progresses very slowly in trees and the damage may not be 

evident from outside the tree for a long time. Eventually, however, branch and top kills are seen 

and tree dies within 10 years (McDonald et al. 1981; Geils et al. 2010).  

There may be more cankers on the lower part of the tree for a few reasons. First, because 

the lower part of the tree is oldest, it has had more time to become infected. Second, areas closer 

to the ground may be moister and more favorable for the pathogen (Koester et al. 2018). Finally, 

there may be more alternate hosts early in stand development because many more understory 

plants are present before crown closure occurs (R. Sniezko pers. comm. 2022). 

Infected trees become more susceptible to other disturbances, and may die from attacks by 

beetles or other diseases (Geils et al. 2010). Sugar pines are more susceptible to the pathogen 

than are western white pines (Kimmey and Wagener 1961; Sniezko et al. 2020). Although 

western white pine is strong enough to withstand many disturbances (Hines 2013), it is 

susceptible to the disease at any age, but the disease is more prone to damage and kill younger 

trees (Geils et al. 2010). Widespread damage and death from blister rust disease has caused 
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western white pine to disappear from many ecosystems (Hines 2013). The shift in PNW 

ecosystems has made the PNW forests more vulnerable to other disturbances (Schwandt 2001). 

1.1.3 The activity of the disease is affected by climate and site conditions 

According to Van Arsdel et al. (2006), it is important to understand the environmental factors 

that affect blister rust disease incidence and severity. Disease incidence refers to the percentage 

of diseased plants in the population. Disease severity refers to the quantity of disease on the 

plants. Humidity and temperature limit spore development, germination, inoculation, and spread 

(Van Arsdel et al. 2006; Geils et al. 2010). Particularly in cool and moist areas, the pathogen is 

common (Van Arsdel 1972). Smith-McKenna et al. (2013) studied the geographic and 

topographic factors that affect white pine blister rust in whitebark pine. In the areas with 

abundant water (e.g., near lakes and streams), they observed high occurrence of blister rust 

because the areas provided moisture for the development of disease and establishment of 

alternate hosts. Larson (2011) found a positive correlation between blister rust infection versus 

mean minimum temperatures in December and high temperatures in spring. On western white 

pine, for example, the disease is transmitted via spores in the autumn when humidity is high 

(Schwandt 2001). Thus, climate data can be used to infer where the pathogen can persist and 

develop WPBR disease (Frank et al. 2008). 

Elevation is associated with changes in temperature and precipitation. At lower 

elevations, higher temperatures and lower humidity are typically observed. Although disease 

incidence tends to decline at lower elevations (Berg et al. 1975; Kearns and Jacobi 2007), blister 

rust disease is able to develop across a wide range of elevations, and continues to spread where 

adequate environmental and stand conditions exist (Smith et al. 2001). Landscape position 

affects the amount of solar radiation received, which is related to disease incidence and severity 
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(Smith-McKenna et al. 2013; Kearns et al. 2014). Kearns and Jacobi (2007) inspected white pine 

blister rust on Pinus flexilis in relation to stand-level geographic features and found that bottom 

slopes and northern and eastern aspects tended to have higher incidence of disease, presumably 

because wind patterns allow the pooling of cold and moist air. Larson (2011) also observed more 

blister rust infection at the bottoms of slopes, which are cooler and moister. However, according 

to a study conducted in British Columbia, more WPBR cankers were observed as the slope 

increased (Hunt 1983). Southern aspects may have lower infection levels because of exposure to 

sunlight, which decreases the duration of disease activity (Zambino 2010; Thoma et al. 2019). 

However, in areas that are higher and colder, and further from water sources, solar radiation has 

a positive effect (Larson 2011). In these areas, Larson (2011) found that more cankers were 

observed in areas with higher solar radiation. This is because the solar radiation provided milder 

temperatures required for disease development in these generally cold environments. Thus, 

disease incidence and severity are not uniform, but differ among locations. A wide range of 

topographic features can make favorable microenvironments for the pathogen. 

1.1.4 There are no effective management techniques to prevent blister rust disease 

Because of its complex lifecycle and invasiveness, Cronartium is difficult to eliminate from the 

ecosystem. Many techniques have been used to try to control the disease, including Ribes 

eradication, spraying chemicals on Ribes species, pruning of lower tree branches, thinning of 

damaged or dead trees, and breeding of rust-resistant white pines. The breeding efforts are 

valuable because they provide some level of resistance to the rust pathogen. However, other 

methods have not been fully successful, despite much time and money spent (Maloy 1997). 

Ribes eradication aims to eliminate the disease by removing Ribes species and infected 

white pines from forests. The first eradication program began in 1909 and lasted until 1967 
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(Maloy 1997). Natural and cultivated Ribes species exist in North America. Although native 

Ribes species are moderately susceptible to the disease, cultivated Ribes species are highly 

susceptible. This is particularly true for European black currant (Ribes nigrum), which grows 

across wide areas of North America (Maloy 1997). Susceptible Ribes can be infected from long 

distances and develop many basidiospores, resulting in high hazard to white pine forests. 

Managers recognized that Ribes eradication may succeed in low to moderate hazard areas 

(Maloy 1997). For instance, Ribes eradication (i.e., removing the telial host, Pedicularis 

resupinate) and removing diseased trees was enough to control blister rust disease in Korea 

because blister rust has low infection capacity in the region (Kim et al. 2010). High susceptibility 

to blister rust of both alternate hosts and white pines in North America makes it necessary to 

eradicate Ribes repeatedly over very large areas. In addition, the extensive and rapid spread of 

the disease, and harsh topographic features, makes it essentially impossible to treat every site 

(Maloy 1997).  

The failure to eradicate Ribes accelerated the use of chemicals on white pines starting in 

1950 (Maloy 1997). Fungicides can be used under regulation by the US Department of 

Agriculture (EPA 2019). The antifungal chemicals, cycloheximide and phytoactin, were 

identified to control blister rust (Maloy 1997; Burns et al. 2008). Moss (1961) reviewed 

fungicide application on western white pines, noting that several methods have been developed. 

Some methods require one to identify infected white pines, remove infected bark, and prune off 

infected branches. This extra work demands skilled personnel and money. Some methods are 

more practical because they involve spraying the chemical solution directly on infected white 

pines from some level of height that depends on the tree height. For that, assistance was received 

from workers and aircraft such as helicopters. For all chemical treatments, the timing of 
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application (i.e., during mid-summer or early fall before the trees are infected), environmental 

conditions, and the conditions of the application surface (e.g., leaves) are important (Burns et al. 

2008). Although fungicides cannot be used across large landscapes, they can be used in some 

plantations and nurseries. However, Moss (1961) stated that roots and mycorrhizae of western 

white pine seedlings were harmed after testing fungicide applications aimed at protecting the 

seedlings from blister rust disease.  

Pruning removes lower branches of pines. Because lower branches are more likely to 

become infected, pruning them may reduce infection and the spread of disease (Schwandt, et al. 

2013). Especially in young trees, the foliage is close to the main stem, resulting in higher 

infection of tree boles (Schwandt, et al. 2013). The success of pruning is likely to be less where 

Ribes species and young trees are abundant (Hunt 1998). The timing of the pruning is also 

critical for white pines to escape from the pathogen. Trees can be pruned when they reach ~10 

feet in height (Hunt 1998). However, at dense sites, pruning can be postponed until susceptible 

young trees are eliminated by WPBR (Weber 1964).  

Pruning and thinning are effective when they are applied together. Thinning helps 

increase tree growth by reducing competition among trees. Therefore, fast-growing trees heal 

fast and have clear wood after being pruned (Weber 1964). However, thinning without pruning 

may increase the risk of rust infection. Because thinning provides more sunlight that reduces 

forest moisture, but also allows Ribes species to thrive. However, across the entire landscape, the 

application of thinning and pruning requires much time and money (Burns et al. 2008). 

Overall, Ribes eradication, chemical treatments, thinning, and pruning may reduce the 

spread of the disease, but these practices must be repeated, and the disease may increase again in 



12 

 

 

the area. The long-term solution may be to increase rust resistance by selecting appropriate 

populations or by breeding.  

1.1.5 Genetic resistance and breeding 

Genetic studies and tree breeding may help sustain sugar pine and western white pine. Whether a 

species has genetic diversity or resistance to disease influences its fate. Genetic studies were 

started in the 1950s after managers recognized that Ribes eradication was not adequate to 

eliminate and control the disease. Then, planting was initiated in the 1970s (Mahalovich 2010). 

With the introduction of the pathogen, managers studied the biology of the disease to understand 

the interactions among the elements of the pathosystem (Geils et al. 2010). Species develop 

defense mechanisms to resist pathogens (Millar et al. 2007). Thus, managers recognized that 

resistance to Cronartium ribicola naturally exists in white pine trees at varying levels (Hoff et al. 

1980; Kinloch and Byler 1981; Sniezko et al. 2014; R. Sniezko pers. comm.). For instance, in 

Japan and Korea, blister rust disease does not cause serious problems in white pine forests 

presumably due to coevolution of the pine and rust (Kim et al. 2010). However, white pines in 

North American were severely impacted by the pathogen. This may be because the white pine 

populations in Japan and Korea have been exposed to the disease long enough to develop genetic 

resistance (Kim et al. 2010). In contrast, white pines in North America did not evolve with the 

pathogen, so did not develop resistance (Hummer 2000). Thus, managers established genetic 

resistance breeding programs to understand and improve resistance of white pine populations in 

North America. The USDA-Forest Service’s Dorena Genetic Resource Center (DGRC), Coeur 

d’Alene Nursery (CDA) in Idaho, Institute of Forest Genetics (IFG), and Placerville Nursery in 

California are running greenhouse tests and field trials to understand genetic resistance and 

improve resistance by breeding (McDonald et al. 2004; Sniezko 2004; Sniezko et al. 2011). They 
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established many field trials for western white pine in the PNW (Sniezko et al. 2011; Sniezko et 

al. 2020). The aim was to achieve a long-term solution by having more genetically resistant trees 

in nature to restore this valuable species (Sniezko et al. 2012). 

Western white pine and sugar pine are well studied in terms of genetic resistance to the 

pathogen (Bingham 1983; Sniezko et al. 2011; Sniezko et al. 2014; Sniezko and Liu 2021). Rust 

resistance mechanisms in white pines were categorized by King et al. (2010) as (1) ontogenetic 

resistance, (2) R-gene resistance, and (3) partial resistance. Ontogenetic resistance, also known 

as mature tree resistance, is positively correlated with tree age, which means seedlings and 

younger trees are more susceptible (King et al. 2010). R-gene resistance, also referred to as Cr 

gene resistance or major gene resistance (MGR), is controlled by a single gene (Kinloch and 

Dupper 1999; Kinloch and Dupper 2002). Heritable Cr gene resistance was discovered in sugar 

pine (Cr1), western white pine (Cr2), southwestern white pine (Cr3), and limber pine (Cr4) 

(Kinloch and Dupper 2002; Sniezko et al. 2014; Schoettle et al. 2014). The resistance patterns 

can be observed as hypersensitive-like reactions on tree needles, which is the initial point of 

infection (Sniezko et al. 2011). The hypersensitive response causes death of cells near the 

infected cells, and this inhibits the growth and spread of the disease (Kinloch et al. 1999; Kinloch 

and Dupper 2002; Sweeney et al. 2012). For MGR, this highly effective reaction is the main 

response of the tree to infection (Kinloch et al. 1999). Partial resistance, also known as slow 

rusting, is controlled by multiple genes, and allows hosts to tolerate the disease by slowing 

infection or canker growth (Kinloch and Byler 1981; Sniezko et al. 2014). This is thought to be 

the most effective resistance mechanism, but is affected by environmental conditions to varying 

degrees (King et al. 2010; Sniezko et al. 2014; Sniezko and Liu 2021).  
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The utility of genetic resistance also depends on the durability of resistance (Kinloch and 

Byler 1981; Sniezko et al. 2011; Weiss et al. 2020; Sniezko et al. 2020; Sniezko and Liu 2021; 

Liu et al. 2022). Kinloch and Byler (1981) identified one or more races of Cronartium ribicola 

that are virulent to R-gene resistance in sugar pine, and Kinloch et al. (2004) documented the 

geographic distribution of virulence to MGR in both sugar pine and western white pine. Rust 

resistance mechanisms in sugar pine were discussed by Kinloch et al. (2018), who concluded that 

partial resistance is effective against Cronartium ribicola races virulent to major gene resistance 

(MGR). Thus, selection of sugar pine seedlings with both MGR and partial resistance is probably 

the best strategy for enhancing disease resistance. It is important to improve resistance 

mechanisms to achieve durable resistance for future white pine and sugar pine populations 

(Kinloch and Byler 1981; Kinloch et al. 2018; Sniezko et al. 2020; Liu et al. 2022). 

Whereas some resistance traits are inherited directly to the next generation, some vary 

depending on environmental conditions, such as stand conditions and climate (Park et al. 2013). 

Thus, populations tend to adapt locally and show genetic differences. Surprisingly, Kinloch and 

Byler (1981) observed dramatic increases in infection rates in sugar pine seedlings known to 

have major gene resistance. This may have resulted from changes in environmental conditions 

that allow the pathogen to produce higher spore loads and travel further distances in specific 

“wave years,” resulting in greater inoculation and spread of the disease. In addition, these 

conditions may have allowed rusts with low-frequency virulence mutations to reach and infect 

sugar pines, increasing the frequency of infection over time (R. Sniezko pers. comm.). These 

changes were associated with cooler and wetter late summers and early fall. Populations of 

western white pine from more northwestern sites and lower elevations show higher resistance 

(King et al. 2010). Hunt (2004) observed a decrease in rust resistance of western white pine 
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seedlings that were moved from Idaho to coastal British Columbia, where the climate was 

“milder.” Hunt (2004) observed more blister rust cankers on trees from western white pine seed 

orchards (i.e., consisting of genetically resistant F2 progenies from Idaho) near the coastal range 

of British Columbia, compared to trees in interior British Columbia. Sniezko et al. (2020) found 

similar results that genetically resistant F2 progenies of western white pine coming from Idaho 

seed sources show some concern on stability of white pine blister rust resistance. 

1.1.6 Rust hazard ratings provide guidelines for managing WPBR 

Rust hazard ratings (RHRs) reflect the existing or potential infection levels of white pine stands 

by considering environmental factors (Van Arsdel 1961). RHRs can be calculated at the scale of 

individual trees or stands. Individual tree ratings predict the differences in characteristics among 

individual trees (e.g., growth), whereas stand ratings reflect disease incidence and severity of the 

sites overall (Steele 1996).  

This system was first developed for the Lake States in 1961 (Van Arsdel 1961), and have 

been widely used for other regions, such as New Mexico (Geils et al. 1999), British Columbia 

(Hunt 1983; McDonald 2000), and southern Oregon (Koester et al. 2018). RHRs provide useful 

information by creating an index associated with the incidence and severity of the disease, and 

the abundance of Ribes species (Geils et al. 1999). Van Arsdel (1961) delineated five hazard 

zones based on the suitability of the climate and observed infections. Then, control treatments 

were suggested for each hazard zone (Van Arsdel 1961; Van Arsdel et al. 2006). Maintaining a 

closed canopy and pruning lower branches were recommended to reduce blister rust infections 

(Van Arsdel 1961). Thus, the RHR system is useful for determining which management 

activities should be used by region, especially where the disease is common (Park et al. 2013). 
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RHR systems can be used to develop risk distribution maps that are important for making 

effective management decisions. 

Managers have used the number of pine needles to estimate rust hazard because the 

pathogen enters through the stomata of the needles (Buchanan 1936; Van Arsdel 1961; Geils et 

al. 2010). Two methods were used to obtain the number of needles. First, for five-needled white 

pines, needle bundles were counted and multiplied by five (Buchanan 1936; Buchanan and 

Kimmey 1938). Second, tree crown height and width were used to estimate the number of 

needles (Buchanan 1936; Buchanan and Kimmey 1938). The number of cankers per 1000 

needles per year was used as a rust index (Buchanan 1936; Buchanan and Kimmey 1938). 

McDonald et al. (1981) focused on the other key part of the rust life cycle, Ribes. They used the 

leaf (infection) surface area (cm2) of Ribes as an input to a computer program that analyzed rust 

disease epidemics for western white pine. Tree characteristics associated with WPBR were 

considered by Hagle et al. (1989). They used the number of cankers per tree and tree 

characteristics associated with WPBR to develop a rust index (RI). The tree characteristics were 

tree age and tree height.   

One of the broadest studies of RHRs was completed by Koester et al. (2018), who 

surveyed 265 sites of natural stands and plantations of genetically resistant trees in southern 

Oregon. According to this study, the hazard ratings of the sites were low to relatively high, and 

expected to increase. They concluded that using genetically resistant seedlots is critical to slow 

the decline of sugar pine and western white pine populations (Goheen and Goheen 2014; Koester 

et al. 2018). 



17 

 

 

1.1.7 Climate is changing 

According to the latest IPCC report, global temperatures have continued to increase since pre-

industrial times, and are predicted to rise more than 2oC during the 21st century (IPCC 2021). 

Climate change is altering forest ecosystems by impacting biotic and abiotic components. 

Climate change may reduce tree growth, change the distribution of populations, and lessen 

resistance to disturbances (Sturrock et al. 2011). For example, longer growing seasons enhance 

the development of insects and pathogens, increasing damage (Sturrock et al. 2011; Mitton and 

Ferrenberg 2012). Species may respond to these changes by migrating, adapting, or vanishing.  

Thus, to sustain biological diversity, it will be important for species migration rates to keep pace 

with changes in climate. 

Currently, there is not enough information on the effects of climate change on WPBR 

(Koester et al. 2018). In the PNW, climate is expected to be warmer and wetter in the future 

(Mote and Salathé 2010), which might increase or decrease WPBR incidence and severity. It 

seems the relationship between white pines and white pine blister rust can be more complicated 

in the future. Thus, management techniques should be improved in light of genetic studies by 

considering shifts in the distributions of hosts and pathogen. 

1.1.8 Climate can be modeled to project future changes in climate and ecosystems 

Models help us to understand complex, dynamic systems in nature. General Circulation Models 

(GCMs) are climate models that use projected greenhouse gas concentrations in the atmosphere 

and other factors to infer future climates. However, GCMs are too coarse to project climatic 

conditions for specific locations, especially for mountainous areas (Wang et al. 2016). For 

instance, the resolution of GCMs may be about 100 to 300 km (about 186.41 mi), which is not 

fine scaled enough to predict climate variables over complex landscapes. Instead, the PRISM 

model (Parameter elevation Regression on Independent Slopes Model) is a climate interpolation 
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model that uses weather station data to model spatial climate data at much finer scales (PRISM 

Climate Group 2021). Combined with ClimateNA (Wang et al. 2016), we can now obtain fine-

scaled projections of future climates based on CMIP6 climate projections. CMIP6 is the Coupled 

Model Intercomparison Project phase 6 associated with the 6th IPCC Assessment Report (IPCC 

2021). 

Scientists develop climate change scenarios to project what the Earth`s climate might be 

like in the future. In IPCC AR5, Representative Concentration Pathways (RCPs) were used to 

project global warming by using greenhouse gas concentrations over the years based on CMIP5 

projections (Van Vuuren et al. 2011). In 2021, AR5 was updated to AR6 using projections based 

on Shared Socio-economic Pathways (SSPs). These are the updated scenarios which use 

socioeconomic trends such as economic growth, population size, urbanization, and education to 

project future greenhouse gas concentrations (Riahi et al. 2017). SSPs are based on five different 

perspectives of how society will address climate change mitigation and adaptation, which are 

called SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The first number is the category 

of the SSP, and second number is the projected radiative forcing in 2100 (IPCC 2021). Radiative 

forcing increases with the increase in the concentration of atmospheric CO2 (Shine et al. 1990). 

SSP1, the most optimistic scenario, predicts an increase in technological opportunities, economic 

growth and, thus, an increase in social well-being. Therefore, challenges in mitigating and 

adapting to climate change are expected to be low (Riahi et al. 2017). SSP2 and SSP3, the most 

pessimistic scenarios, project medium to high challenges for implementing climate change 

mitigation and adaptation. Both of these SSPs predict imbalances in society, such as differences 

in economic growth and education levels among countries, and disruptions to ecosystem 

services. SSP4 predicts low challenges to mitigation, but high challenges to adaptation. In 
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contrast, SSP5 predicts high challenges to mitigation, but low challenges to climate change 

adaptation. Many studies used SSPs to understand the role of climate change in fungal diseases.  

For example, the potential suitable habitats of foliar and root pathogens were predicted and 

mapped using historical and future climates according to climate change scenarios of SSPs (Xu 

et al. 2020; Kim et al. 2021; de Carvalho Alves and Sanches 2022; Batista et al. 2023). 

ClimateNA software provides climate data for North America at much higher resolutions 

(e.g., 1km) compared to global GCMs (Wang et al. 2016). ClimateNA can generate seamless 

climate data with elevation adjustment that is suitable for local climates, especially for 

mountainous areas (Wang et al. 2016). It uses PRISM data for current climate, and the CMIP6 

climate projections associated with the 6th IPCC Assessment Report (Wang et al. 2016). 

ClimateNA estimates monthly, annual, seasonal climate variables using current and historical 

climate data between 1901-2014, and then projects future climates for the periods of 2020s 

(2011–2040), 2050s (2041–2070), and 2080s (2071–2100) under the SSPs SSP1-2.6, SSP2-4.5, 

SSP3-7.0 and SSP5-8.5. Future climate data can be obtain for three normal periods (2011-2040, 

2041-2070, and 2071-2100) and five 20-year periods (2001-2020, 2021-2040, 2041-2060, 2061-

2080, and 2081-2100) (Wang et al. 2016). 
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2. Chapter 2 

2.1 Research Introduction 

Sugar pine (Pinus lambertiana Dougl.) and western white pine (Pinus monticola Dougl. ex 

D.Don) are ecologically and economically important tree species. Sugar pine (SP) and western 

white pine (WWP) are five-needled white pines in the subgenus strobus. They grow naturally in 

the Pacific Northwest (PNW), from sea level to high-elevation forests, even beyond the tree line. 

They show optimum growth in moist habitats with fertile soils and sufficient sunlight (Hines 

2013), but also survive in harsh environments where other less-tolerant conifers might not 

(Richmond et al. 2005; Tomback 2011). For example, western white pine and sugar pine are 

essential components of many higher-elevation forests. 

These species have many desirable traits, including the ability to regenerate after fires 

and sequester large amounts of carbon. They are mostly resistant to native pests and diseases, 

and grow fast (Byler et al. 2000; Hines 2013). They provide many ecosystem services―they 

conserve soil and water, sustain other plants and wildlife (e.g., black bears and grizzly bears), 

and contribute to biodiversity (Kinloch et al. 1996; Mahalovich 2013). They are also valuable 

economically. Compared to other species in the region, they have high quality wood, which is 

valuable and profitable for the timber industry (Tomback 2011; Hines 2013). For example, 

western white pine was among the most widely planted and harvested tree species in the western 

United States until the beginning of the 20th century (Blodgett and Sullivan 2004; Hines 2013). 

However, white pines across North America have declined due to abiotic and biotic disturbances, 

particularly the non-native pathogen, Cronartium ribicola.                                           

White pine blister rust (WPBR) threatens white pines. WPBR is a disease caused by a 

non-native fungal pathogen, Cronartium ribicola J.C. Fisch. in Rabh. Cronartium ribicola is an 
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obligate parasite, requiring two living hosts to complete its macrocyclic life cycle (Geils et al. 

2010).  Five-needled white pines are the primary hosts. Ribes species (e.g., currants and 

gooseberries) are the principal alternate hosts, but the pathogen also alternates with species of 

Pedicularis and Castilleja in North America (McDonald et al. 2006). These alternate or telial 

hosts act as bridges to transfer the disease to white pines. The pathogen does not cause mortality 

of alternate hosts but damages and kills pine hosts (Geils et al. 2010). All nine native five-

needled white pines in the United States are susceptible to WPBR (Sniezko et al. 2011). 

 

In some ecosystems, the persistence of white pines is a concern because of WPBR.The 

blister rust pathogen enters through the stomata of pine needles, and then grows through the 

living tissue of branches and stems, resulting in swellings and cankers (Lombard and Bofinger 

1999; Goheen and Goheen 2014). These branch and stem cankers cause the death of branches, 

top-kill, or even tree mortality. Consequently, WPBR reduces forest biomass and makes white 

pines vulnerable to other disturbances, such as bark beetles. Although sugar pine and western 

white pine can withstand many disturbances (Hines 2013), they are highly susceptible to WPBR 

at any age. Nonetheless, the disease is more prone to damage and kill younger trees (Geils et al. 

2010). In addition, there is a concern that other climax species, such as western hemlock, 

Douglas-fir, and grand fir will outcompete western white pine in the PNW (Schwandt et al. 

2013). The pathogen has continued to spread throughout the distributions of these principal 

hosts, resulting in economic and ecological losses that concern foresters and pathologists 

(Hummer 2000). Unfortunately, there are no effective management techniques to prevent blister 

rust disease. Thus, management of western white pine has been a battle for more than a century 

(Geils et al. 2010).   
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The severity of WPBR is associated with season, weather, and topography. In spring and 

early summer, thousands of yellow aeciospores arise from the bark of infected pine trees. These 

spores blow in the air up to a few hundred miles, and then land on alternate hosts. The alternate 

hosts produce urediniospores over summer, which spread infection on the plant itself, and also 

infect other alternate hosts. Brown basidiospores develop on the diseased alternate hosts, and 

then infect white pines in late summer or early fall. In particular, the fungal spores optimally 

germinate, inoculate, and disperse when humidity is high and temperatures are cool (Van Arsdel 

et al. 1957; Van Arsdel 1972; Geils et al. 2010). 

‘Wave years’ occur when there are unusually favorable environmental conditions for the 

pathogen. Wave years are characterized by large increases in the production and spread of rust 

spores (Mielke 1943; Peterson 1971; Kinloch 2003; R. Sniezko pers. comm.). The intensity and 

frequency of rust infections are highly correlated with the frequency of wave years, but these 

relationships differ by region (Kinloch 2003). Wave years make it difficult to predict which sites 

will become most affected by WPBR because sites with low infection across many years may be 

indistinguishable from sites that suffer a major infection in a single wave year. 

Site-to-site variation in WPBR is associated with topographic features that create 

favorable microenvironments for the pathogen. Favorable habitats include places such as lower 

slopes, narrower and wetter valleys and canyons, areas near cool water resources, and smaller 

canopy openings that supply a cooler, moister environment (Van Arsdel 1972; Frank et al. 2008; 

Smith-McKenna et al. 2013). Apart from environmental conditions, WPBR incidence and 

severity are impacted by the abundance and distribution of hosts, and the genetics of the host and 

pathogen (Geils et al. 1999; Geils et al. 2010; Kearns et al. 2012). Despite these known 
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relationships, significant gaps in knowledge remain about the interaction between white pines 

and the blister rust pathogen (Geils et al. 2010). 

Rust hazard ratings (RHRs) are used to manage WPBR. Rust hazard ratings are indicators 

or metrics designed to reflect the existing or potential rust infection levels of white pine stands 

(Van Arsdel 1961). Rust hazard ratings have been widely used to guide management of white 

pine stands, including in New Mexico (Geils et al. 1999), British Columbia (McDonald 2000), 

and southern Oregon (Koester et al. 2018). As described above, rust hazard has been associated 

with season, weather, and topography. The environmental conditions associated with WPBR 

incidence and severity have been used to develop RHRs and map rust hazard across the 

landscape (Van Arsdel 1961). Furthermore, the distribution and proximity of Ribes species and 

tree characteristics were also used (McDonald et al. 1981; Hagle et al. 1989; Geils et al. 1999; 

Koester et al. 2018).  

A greater understanding of the relationships between climate and rust hazard would allow 

us to project changes in WPBR under climate change. Climate change has the potential to 

increase the incidence and severity of diseases caused by forest pathogens. Globally, today`s 

climate is already ~1.1 °C warmer than it was in 1850-1900, and is projected to rise more than 2 

°C during the 21st century (IPCC 2021). However, changes in precipitation were projected to be 

inconsistent (IPCC 2021). In southwestern Oregon, there has been ~0.1 °C increase in 

temperature per decade since 1895 (Halofsky et al. 2022). However, no change was observed in 

annual precipitation (Halofsky et al. 2022). Climate change impacts biotic and abiotic 

components of forest ecosystems and their interactions, in positive and negative ways. For 

example, increases in temperature promote tree growth in areas with available water. In contrast, 

climate change is one of the major reasons for the decline in forest health in the western U.S. 
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(van Mantgem et al. 2009). It is difficult to project future changes in precipitation because of 

topographic variation, especially in mountainous regions. However, increases in temperatures 

alone can increase water stress in regions with limited water availability (Halofsky et al. 2022). 

The effects of climate change may be compounded because stressed trees are likely to be 

susceptible to other disturbances, including those caused by forest pathogens. 

Because Cronartium ribicola requires mild temperatures and sufficient moisture to inoculate 

and spread (Geils et al. 2010), climate change may alter the pathogen’s lifecycle. Consequently, 

the pathogen may abandon or expand its current distribution into new regions. Climate change 

may also increase epidemics in forests where it already occurs (Sniezko et al. 2011). Based on 

analyses of blister rust disease and climate change, Dudney et al. (2021) concluded the pathogen 

would probably move up in elevation and decrease its range at lower elevations in the future. 

Thus, warming temperatures could reduce WPBR incidence and severity in drier regions, and 

increase WPBR in moist regions (Sturrock et al. 2011). 

Using knowledge about the historic relationships between climate and WPBR, future changes 

in rust hazard can be projected under climate change. Using ClimateNA (Wang et al. 2016), we 

can now obtain fine-scaled projections of future climates for future years and Shared Socio-

economic Pathways (SSPs). SSPs, which the IPCC developed, are climate change scenarios that 

are commonly used to drive climate models and make future climate projections. These 

alternative scenarios are based on five sets of assumptions describing alternative pathways under 

different climate change adaptation and mitigation efforts. The assumptions are about future 

sustainable development, continued trends based on historical patterns, regional rivalry, 

inequality, and fossil-fuel development  (Riahi et al. 2017). 
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Koester et al. (2018) studied rust hazard at 265 sites in southwestern Oregon. However, the 

results were not analyzed in relation to climate variables. They aimed to help design seed 

deployment zones for the blister rust resistance program by mapping the current rust hazard of 

these sites. The sites contained naturally regenerated sugar pine, naturally regenerated western 

white pine, rust-resistant sugar pine, and rust-resistant western white pine. In addition to 

assessing WPBR, they also recorded tree age, tree height, elevation, township, range, and section 

of the sites. I used the Koester et al. (2018) data to develop models for predicting rust hazard 

based on environmental variables. My research focused on predicting rust hazard and assessing 

potential changes in WPBR due to climate change. Specifically, I addressed five main questions: 

(1) Which rust traits were best for characterizing rust hazard? (2) Which environmental variables 

were most closely associated with rust hazard? (3) How were rust traits affected by tree 

characteristics? (4) How was tree growth affected by environmental variables and rust traits? (5) 

How will rust traits change under future climates? (6) How will tree growth change under future 

climates? 
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3. Chapter 3 

3.1 Materials and Methods 

3.1.1  Study Area 

The study sites were located in southwestern Oregon. These sites were near the California border 

and in the Rogue River Basin near Cave Junction, Ashland, and Glendale, Oregon (Figure 2B). 

The region has various topographic structures, and is one of the most rugged areas in the state of 

Oregon. The complex geological structure of the region creates a unique diversity of local 

climate, vegetation, landscape features, and soil structure (Halofsky et al. 2016). The area has a 

Mediterranean climate with hot summers and cool and rainy winters (Halofsky et al. 2016). 

Elevation is the main factor causing differences in precipitation across this region. While 

abundant precipitation is observed at higher elevations, lower lands experience drought. Within 

the total forested area, sugar pine and western white pine have the greatest distributions among 

forest tree species (Goheen and Goheen 2014). 
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Figure 2. Locations of 265 study sites containing sugar pine (SP, ), western white pine 

(WWP, ), rust-resistant sugar pine (RRSP, ), and rust-resistant western white pine 

(RRWWP, ) (Panel A). The view of the same sites on a topographic map (Panel B). 
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3.1.2 Plant Materials 

I used 265 sites chosen from the lands of the Bureau of Land Management (BLM), USDA Forest 

Service, and private timber companies that were surveyed to assess rust hazard during the 1980s 

(Koester et al. 2018). Among the 265 sites ranging from about 7.4 to 98.8 acres  (3 to 40 ha), 244 

had more sugar pine (SP) and 21 had more western white pine (WWP) (Koester et al. 2018). One 

site, Hawk Creek, was a plantation of WWP progeny from rust-resistant parent trees (RRWWP). 

Nine sites were plantations of SP progeny from rust-resistant parent trees (RRSP). These RRSP 

sites were Mule Creek, Sand Creek, Stratton Creek, West Fork, Rum Creek, Mt. Peavine, King 

Mt., Lower Kirby Peak, and Grays Creek.  The plantations were established in the mid-to-late 

1960s (Koester et al. 2018). The RRWWP and RRSP trees were the open-pollinated and control-

pollinated progeny of phenotypically “good standing” parent trees in wild stands (R. Sniezko 

pers. comm. 2022). Control crosses were made among some of the parent trees, and open-

pollinated seeds were collected. The resulting seedling families were tested by artificially 

inoculating them with spores of Cronartium ribicola found on Ribes leaves. Later, the parent 

trees were rated for major gene resistance (MGR) to WPBR at the Dorena Genetic Resource 

Center (R. Sniezko pers. comm. 2022). Using this rust-resistance screening process, some 

parents were identified as being rust-resistant. Finally, the ten sites described above were planted 

with the open-pollinated and control-pollinated progeny of the disease-resistant parent trees (67 

to 2780 trees per site).  

At each of the 265 sites, sample trees were selected using the random path method, which 

is the standard for measuring rust hazard index (RI). The random path method involved walking 

50 paces, looking left, and then selecting the nearest tree (Koester et al. 2018). At least 50 trees 

that were at least 10 years old and generally less than 20 feet (6 m) tall were sampled from each 

site (Koester et al. 2018). Trees that appeared to have died recently and had symptoms of canker 
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were also measured (Koester et al. 2018). Measurements at each site consisted of rust variables, 

tree variables, and topographic variables (see below). 

3.2 Measurements and Derived Variables 

3.2.1 Rust Variables 

At each site, the rust variables consisted of the percentage of trees with a stem canker (CANK%), 

average number of cankers per tree (NUM_CANK), average height of the highest canker 

(HT_CANK), and rust hazard index (RI) (Table 1). RIs of the sites were calculated using the rust 

hazard index computing program described by Hagle et al. (1989). Samples were collected using 

a protocol designed for measuring WPBR rust hazard index. This protocol aims to select trees 

when they are old enough to have been exposed to the disease for years (i.e., > 10 years old) but 

are short enough that cankers can be counted accurately (i.e., < 35 feet (11 m) tall) (Koester et al. 

2018). Trees that appeared to have died recently and had symptoms of canker were also included 

in the sample and calculation of RI (Koester et al. 2018). The inputs to the program were tree ID, 

tree age (AGE), tree height (HT), and NUM_CANK. Based on these inputs, the program 

calculated rust hazard index (RI) as formulated below. 

 

Rust Hazard Index (RI) = number of cankers per 1000 needles per year  [1] 

 

In general, the index varies between 0 and 1, and the disease becomes more intense as it 

approaches 1 (Hagle et al. 1989). The rust hazard index of the sites ranged from low (< 0.001) to 

relatively high (≥ 0.009) (Koester et al. 2018). 
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3.2.2 Tree Variables 

Koester et al. (2018) measured tree age (AGE) and height (HT) at each site (Table 1). AGE was 

estimated by counting whorls. Using these measurements, I calculated average height growth 

(HT/AGE, feet/years) for each site.  



31 

 

 

Table 1. Tree variables used to study white pine blister rust at 265 sites in southwestern 

Oregon. These variables were measured by Koester et al. (2018). 

Abbreviation Description 

 
Rust variables 

CANK% Percentage of trees with a stem canker 

NUM_CANK Average number of cankers per tree 

HT_CANK Average height of the highest canker 

RI Rust hazard index  

Tree size and age variables 

AGE Average age (years) 

HT Average height (feet)  

Tree growth variables 

HT/AGE Average height growth (feet/year) calculated as HT/AGE  

Tree species variables 

SPECIES Sugar pine, western white pine, rust-resistant sugar pine, rust-resistant 

western white pine  

 

 

3.2.3 Topographic Variables 

The topographic variables consisted of aspect (ASPECT), elevation (ELEV), and slope 

(SLOPE).  ELEV was recorded by (Koester et al. 2018).  Then, I used USGS digital elevation 

models (DEMs) to derive ASPECT and SLOPE for each site. These DEMs consisted of 

longitude, latitude, and elevation information. Each DEM covered an area of 1x1 degree at a 

resolution of 1 arc-second, which is about 30 m (USGS). First, I downloaded GeoTIFF files 

covering the study area, namely, USGS_1_n43w123 and USGS_1_n43w124 from the U.S. 

Geological Survey. Then, I merged two DEMs to allow analysis of the full study area. According 
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to the USGS web site, “ground spacing is approximately 30 meters north/south, but variable 

east/west depending on latitude.” 

To obtain topographic variables of the sites, longitude and latitude information were 

needed. Thus, I converted township, range, and section information from the Koester et al. 

(2018) dataset to longitude and latitude using sharpshootR R package. I used code that calculates 

longitude and latitude of the section centroids, and then I used the distGeo R function to create 

raster extents corresponding to the sections that contained each test site. The potential location of 

each site was determined by finding at least four pixels that had elevation and aspect values that 

matched the elevation and aspect recorded by Koester et al. (2018). Koester et al. (2018) 

recorded aspect, the orientation of the slope, as a categorical variable (e.g., north (N) or south 

(S)).  Thus, I first converted the categorical aspect variable to a range of azimuths in degrees 

(Table 2).  Initially, a pixel was considered a match if it was within 15 meters of elevation and 

11.25 degrees of azimuth for aspect (Table 2).  However, these limits were progressively relaxed 

until at least four pixels were found. Ultimately, the average number of pixels associated with 

each site was 10.65, which equals about 296.1 ac (119.8 ha). Once I found the potential pixels 

for each test site, I obtained the mean slope (SLOPE, ⁰) and aspect (ASPECT, ⁰) for each test site 

using the terrain function from the raster R package (Table 2). 

3.2.4 Climate Variables 

I used ClimateNA v.7.01 to obtain climate variables for each of the 265 sites (Wang et al. 2016) 

(Table 3). First, I converted the merged GeoTIFF files from GeoTIFF to ASCII grid format to be 

used as input to ClimateNA. Second, I generated seasonal and annual climate variables for the 

years 1931-1960 and 1961-1990 for each raster point. I used climate data for these two time 

periods because the sites were surveyed in the mid-1980s (Koester et al. 2018), but the average 
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age of the trees on the oldest sites were 65 years. Third, I calculated the final climate variables 

for each raster point by taking the mean of the 1931-1960 and 1961-1990 values. Finally, I 

calculated mean climate values for the pixels associated with each site (see Topographic 

Variables). 
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Table 2.  Aspect categories and azimuths used to study white pine blister rust at 265 sites in 

southwestern Oregon. Aspect was recorded by Koester et al. (2018). 

Direction* Azimuth mid-point (◦) Azimuth range (◦) 

   
North 0.0 348.75 – 11.25 

North-northeast 22.5 11.25 – 33.75 

Northeast 45.0 33.75 – 56.25 

East-northeast 67.5 56.25 – 78.75 

East 90.0 78.75 – 101.25 

East-southeast 112.5 101.25 – 123.75 

Southeast 135.0 123.75 – 112.5 

South-southeast 157.5 112.5 – 146.25 

South 180.0 146.25 – 191.25 

Southeast-southwest† 180.0 146.25 – 191.25 

South-southwest 202.5 191.25 – 213.75 

Southwest 225.0 213.75 – 236.25 

West-southwest 247.5 236.25 – 258.75 

West 270.0 258.75 – 281.25 

West-northwest 292.5 281.25 – 303.75 

Northwest 315.0 303.75 – 326.25 

North-northwest 337.5 326.25 – 348.75 

FLAT NA NA 

FLAT-northeast NA NA 

Northwest-southeast NA NA 

*Recorded aspect for each site (Koester et al. (2018). For analyses, aspect categories were 

converted to azimuths (°) (https://en.wikipedia.org/wiki/Azimuth, accessed on 08/20/2021). 

†Sites recorded as having a Southeast-southwest aspect were analyzed as if they were recorded 

as having a South aspect. 

 

  

https://en.wikipedia.org/wiki/Azimuth
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Table 3.  Environmental variables used to study white pine blister rust at 265 sites in 

southwestern Oregon. 

Environmental variables (units)* Abbreviation 

  Topographic variables (USGS)  

Aspect (degrees) ASPECT 

Elevation (feet) ELEV 

Slope (degrees) SLOPE 

  
Climate variables (ClimateNA)†  

Annual heat-moisture index (MAT+10)/(MAP/1000)) (°C/mm) AHM   

The day of the year on which FFP begins (Julian date) bFFP 

Hargreaves climatic moisture deficit (mm) CMD 

Hogg’s climate moisture index (mm) CMI 

Degree-days below 0°C, chilling degree-days (dd) DD_0 (DD<0) 

Degree-days below 18°C, heating degree-days (dd) DD_18 (DD<18) 

Degree-days above 18°C, cooling degree-days (dd) DD18 (DD>18) 

Degree-days above 5°C, growing degree-days (dd) DD5 (DD>5) 

The day of the year on which FFP ends (Julian date) eFFP 

Extreme minimum temperature over 30 years (°C) EMT 

Hargreaves reference evaporation (mm) Eref 

Extreme maximum temperature over 30 years (°C) EXT 

Frost-free period (days) FFP 

Mean annual precipitation (mm) MAP  

Mean annual temperature (°C) MAT 

Mean coldest month temperature (°C) MCMT   

May to September precipitation (mm) MSP  

Mean warmest month temperature (°C) MWMT  

The number of frost-free days (day) NFFD 

Precipitation as snow (mm) PAS 

Mean annual relative humidity (%) RH 

Summer heat-moisture index ((MWMT)/(MSP/1000)) (°C/mm) SHM  

Temperature difference between MWMT and MCMT, or continentality 

(°C) 
TD  

Autumn Hargreaves climatic moisture deficit (mm) CMD_at  

Summer Hargreaves climatic moisture deficit (mm) CMD_sm  

Spring Hargreaves climatic moisture deficit (mm) CMD_sp  
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Table 3 (cont.).  Environmental variables used to study white pine blister rust at 265 sites in 

southwestern Oregon. 

  Winter Hargreaves climatic moisture deficit (mm) CMD_wt  

Autumn Hogg’s climate moisture index (mm) CMI_at 

Summer Hogg’s climate moisture index (mm) CMI_sm 

Spring Hogg’s climate moisture index (mm) CMI_sp 

Winter Hogg’s climate moisture index (mm) CMI_wt 

Autumn degree-days below 0°C (dd) DD_0_at 

Summer degree-days below 0°C (dd) DD_0_sm 

Spring degree-days below 0°C (dd) DD_0_sp 

Winter degree-days below 0°C (dd DD_0_wt 

Autumn degree-days below 18°C (dd) DD_18_at 

Summer degree-days below 18°C (dd) DD_18_sm 

Spring degree-days below 18°C (dd) DD_18_sp 

Winter degree-days below 18°C (dd) DD_18_wt 

Autumn degree-days above 18°C (dd) DD18_at 

Summer degree-days above 18°C (dd) DD18_sm 

Spring degree-days above 18°C (dd) DD18_sp 

Winter degree-days above 18°C (dd) DD18_wt 

Autumn degree-days above 5°C (dd) DD5_at 

Summer degree-days above 5°C (dd) DD5_sm 

Spring degree-days above 5°C (dd) DD5_sp 

Winter degree-days above 5°C (dd) DD5_wt 

Autumn Hargreaves reference evaporation (mm) Eref_at  

Summer Hargreaves reference evaporation (mm) Eref_sm  

Spring Hargreaves reference evaporation (mm) Eref_sp  

Winter Hargreaves reference evaporation (mm) Eref_wt  

Autumn number of frost-free days (days) NFFD_at  

Summer number of frost-free days (days) NFFD_sm  

Spring number of frost-free days (days) NFFD_sp  

Winter number of frost-free days (days) NFFD_wt  

Autumn precipitation as snow (mm) PAS_at  

Summer precipitation as snow (mm) PAS_sm  

Spring precipitation as snow (mm) PAS_sp  

Winter precipitation as snow (mm) PAS_wt  
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Table 3 (cont.).  Environmental variables used to study white pine blister rust at 265 sites in 

southwestern Oregon. 

  Autumn relative humidity (%) RH_at 

Summer relative humidity (%) RH_sm 

Spring relative humidity (%) RH_sp 

Winter relative humidity (%) RH_wt 

Autumn precipitation (mm) PPT_at 

Summer precipitation (mm)  PPT_sm 

Spring precipitation (mm)  PPT_sp 

Winter precipitation (mm) PPT_wt 

Autumn mean temperature (°C) Tave_at 

Summer mean temperature (°C) Tave_sm 

Spring mean temperature (°C) Tave_sp 

Winter mean temperature (°C) Tave_wt 

Autumn mean maximum temperature (°C) Tmax_at 

Summer mean maximum temperature (°C) Tmax_sm 

Spring mean maximum temperature (°C) Tmax_sp 

Winter mean maximum temperature (°C) Tmax_wt 

Autumn mean minimum temperature (°C) Tmin_at 

Summer mean minimum temperature (°C) Tmin_sm 

Spring mean minimum temperature (°C) Tmin_sp 

Winter mean minimum temperature (°C) Tmin_wt 

  
*Topographic variables were obtained from Digital Elevation Models (DEMs) downloaded 

from the U.S. Geological Survey (USGS) (https://apps.nationalmap.gov/downloader/#/, 

accessed on 01/05/2021). 

†Climate variables were obtained from ClimateNA v.7.01 (Wang, et al. 2016). For the 

seasonal variable, autumn denotes September, October, and November; spring denotes March, 

April, and May; summer denotes June, July, and August; and winter denotes December, 

January, and February. 

 



38 

 

 

3.3 Statistical Analyses 

3.3.1 Correlations 

I calculated correlation coefficients among rust, tree, and environmental variables using the 

cor function from the stats R package. Correlations among selected dependent and independent 

variables were then displayed as heatmaps using the pheatmap function from the pheatmap R 

package. 

3.3.2 Random Forest Models 

I developed “Random Forest” (RF) regression models (Breiman 2001) to predict rust and tree 

growth variables from various independent variables. The dependent variables consisted of 

CANK%, NUM_CANK, HT_CANK, RI, and HT/AGE.  According to the dependent variable 

analyzed, the independent variables consisted of subsets of 89 independent variables representing 

climate, tree growth, rust disease, and topography (Table 3). 

First, I developed full models that included all independent variables that were selected a priori. 

This was done using the randomForest R package (ntree = 1000). Second, I pruned each full 

model by removing one variable at a time until I obtained a reduced model with nearly the same 

RSQ (≥ 98%) as the full model. To do that, I used the cforest function in the party R package to 

calculate the “variable importance” (VI) of each independent variable. Then, I re-ordered the 

variables based on their VI scores and effect on RSQ (i.e., amount of RSQ improvement). At 

each step, I calculated RSQ using the randomForest R package (ntree = 2000) and the reduced 

set of independent variables. This approach aimed to retain only the most important independent 

variables in the final reduced model. The relative importance of each variable in the final 

reduced model was evaluated using the VI score, %IncMSE. The performance of the reduced 

models versus the full models was judged by comparing the RSQ and root mean square error 
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(RMSE) values. RSQ is more informative and reliable than SMAPE, MAE, MAPE, MSE and 

RMSE to evaluate regression analyses (Chicco et al. 2021). Among the reduced models, I 

selected the tree growth model and the two rust models with the highest RSQ values for detailed 

evaluation and for making future projections of tree growth and rust disease. The dependent 

variables for these models were HT/AGE, CANK%, and NUM_CANK (see Results). 

3.3.3 Climate Projections 

I used ClimateNA v.7.10 to obtain seasonal and annual future climate variables for four Shared 

Socioeconomic Pathways (SSPs) and three time periods, 2011-2040, 2041-2070, and 2071-2100 

based on the climate projections from CMIP6 (Wang et al. 2016). In total, I analyzed 13 climate 

scenarios consisting of 12 future scenarios and one based on the 1931-1990 climate. The 

procedure to generate future climate variables for the rust hazard sites was similar to the other 

ClimateNA procedures described above. Of the models described above, I used the rust and tree 

growth models with the highest RSQs to make future projections based on changes in climate. 

The dependent variables for these prediction models were CANK%, NUM_CANK, and 

HT/AGE. The independent variables consisted of SLOPE, ASPECT, ELEV, and future climate 

variables. 

Summary statistics for the 13 climate scenarios described above included mean, median, 

minimum value, maximum value, quantiles, and standard deviation for the predicted rust and tree 

growth variables. I conducted one-way analyses of variance (ANOVA) using the aov function 

in the stats R package to compare predicted means of CANK%, NUM_CANK, and HT/AGE at 

the site-level for current climate versus future projected climates. For each SSP analysis (i.e., 

SSP1-26, SSP2-45, SSP3-70, and SSP5-85), I had four time period treatments (i.e., 1931-1990, 

2011-2040, 2041-2070, and 2071-2100). For each SSP analysis, I tested whether differences 



40 

 

 

existed among the four treatments (P < 0.05), and then used Tukey’s HSD to identify which 

treatments differed from one another. 
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4. Chapter 4 

4.1 Results 

4.1.1 Approach 

I used an observational approach to identify the relationships between rust traits versus 

environmental variables and tree characteristics at 265 sites in southwestern Oregon. I developed 

Random Forest (RF) regression models to predict rust traits and tree growth from climate, 

topographic, and tree growth independent variables. I developed the models using (1) only 

environmental variables as predictors, and (2) both environmental variables and tree 

characteristics to reveal the effects of the different independent variables. Once climate-based 

models were developed, I used future climate variables to project blister rust disease and tree 

growth for 12 climate scenarios. 

4.1.2 Which rust traits were best for characterizing rust hazard? 

I used RF regression models to identify which rust traits were best for characterizing rust hazard. 

For these analyses, rust traits were the dependent variables and environmental variables were the 

independent variables. I compared the rust traits based on the model RSQ values. The full 

models included all independent variables described in Tables 1 and 3. The reduced models 

included a subset of these variables selected using the randomForest R package. 

All full and reduced models described in Tables 4-7 were significant at a p-value of 

< 0.001. Compared to the full models, the reduced models had higher RSQ values and fewer 

independent variables (Tables 4-7). Thus, only results from the reduced models are presented 

below. First, I analyzed the rust traits using only the environmental independent variables. 

Among the four rust traits, CANK% had the highest RSQ value (Table 4).  
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Next, I analyzed rust traits by adding tree growth, tree size, and tree age variables to the 

environmental variables. Compared to the other rust traits, CANK% had the highest RSQ values 

for all RF models, ranging from 45% to 49% (Tables 4-7). Based on RSQ, the overall rankings 

of the rust traits were CANK% > NUM_CANK > HT_CANK > RI. These results suggest that 

the CANK% models are better than the other traits for predicting rust hazard. NUM_CANK had 

the second-highest RSQ values overall (~34%; Tables 4-7). In contrast to CANK% and 

NUM_CANK, the RSQ values for HT_CANK and RI were low. RSQ values ranged between 

~9-41% for HT_CANK, and the lowest RSQ values were consistently found for RI (Tables 4-7). 

The rust traits with the highest RSQ values (CANK% and NUM_CANK) were used for future 

projections of rust hazard (see below).  

I found no strong evidence that sites with rust-resistant trees (SPECIES = RRSP and 

RRWWP) had less blister rust disease than did the naturally regenerated sites (SPECIES = SP 

and WWP). First, I included SPECIES as an independent variable in the RF models, but it did 

not appear in any of the reduced models (Tables 4-7). Second, based on ANOVA, the SPECIES 

means were not significantly different for CANK%, NUM_CANK, or RI (F-value = 

0.265-0.369; p-value = 0.78-0.85). In contrast, HT_CANK was greater for the naturally 

regenerated SP sites (F-value = 9.46; p-value = 5.95e-06). Finally, the scatterplots and partial 

dependence plots of CANK% and NUM_CANK showed that there were no obvious differences 

between the naturally regenerated sites and rust-resistant sites (Figures 3-6). These results 

suggest that combined analyses of the rust-resistant and naturally regenerated sites are 

appropriate.
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Table 4.  Random Forest models used to predict rust traits from environmental independent variables. 

  Reduced model* Full model†   

Dependent 

variable 

RSQ 

(%) MSE 

RSQ 

(%) MSE Variable importance score ranking of independent variables‡ 

Environmental independent variables 

CANK% 45.32 259.5 40.06 286.4 EMT, RH_at, NFFD_wt, Tmin_sm, RH_sm, CMD_sp, CMD, ASPECT 

NUM_CANK 33.71 3.230 26.67 3.583 CMI_sm, Tmin_sm, bFFP, ASPECT 

HT_CANK 9.05 3.374 -2.340 3.786 PAS, NFFD_sp, ELEV, NFFD_sm 

RI 18.46 < 0.001 13.15 < 0.001 CMI_sm, Tmin_sm, RH_at, Tmin_sp, CMD, Eref_wt, NFFD_sp, DD18, 

PPT_sm, MWMT, SLOPE, ASPECT, RH_sp 

* The reduced models included the rust variables and independent variables listed in the variable importance score column. RSQ is 

R-squared and MSE is mean square error. 

† The full models included rust variables described in Table 1 and environmental variables described in Tables 2-3. 

‡ Independent variables are listed in order of variable importance from highest to lowest based on %IncMSE. 
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Table 5.  Random Forest models used to predict rust traits from environmental and tree growth independent variables. 

  Reduced model* Full model†   

Dependent 

variable 

RSQ 

(%) MSE 

RSQ 

(%) MSE Variable importance score ranking of independent variables‡ 

Environmental and tree growth independent variables 

CANK% 49.08 242.5 44.03 264.7 HT/AGE, RH_sm, RH_at, Tmin_sm, Tmin_wt, CMD, TD, EMT, 

DD_18_sm, Tmin_sp, NFFD, DD_18, CMI_sm, MSP, PPT_wt, bFFP, 

SHM, ASPECT 

NUM_CANK 34.83 3.190 28.40 3.498 CMI_sm, Tmin_sm, NFFD_sp, bFFP, ASPECT, HT/AGE 

HT_CANK 18.38 2.987 1.890 3.629 bFFP, PAS, NFFD_sm, HT/AGE 

RI 20.48 < 0.001 15.08 < 0.001 Tmin_sm, CMI_sm, RH_at, CMD, Tmin_sp, PPT_sm, DD18, NFFD_sp, 

MWMT, SLOPE, ASPECT, HT/AGE 

* The reduced models included rust variables and independent variables listed in the variable importance score column. RSQ is 

R-squared and MSE is mean square error. 

† The full models included rust and tree growth variables described in Table 1 and environmental variables described in Tables 2-3. 

‡ Independent variables are listed in order of variable importance from highest to lowest based on %IncMSE. 
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Table 6.  Random Forest models used to predict rust traits from environmental and tree size independent variables. 

  Reduced model* Full model†   

Dependent 

variable 

RSQ 

(%) MSE 

RSQ 

(%) MSE Variable importance score ranking of independent variables‡ 

Environmental and tree size independent variables 

CANK% 46.46 253.7 40.32 282.3 Tmin_sm, NFFD_wt, RH_at, RH_sm, CMD, NFFD, bFFP, SHM, 

Tmin_sp, RH, ASPECT 

NUM_CANK 33.47 3.249 26.03 3.614 CMI_sm, Tmin_sm, bFFP, ASPECT 

HT_CANK 35.39 2.382 26.70 2.711 HT, bFFP  

RI 26.58 < 0.001 20.00 < 0.001 CMI_sm, Tmin_sm, CMD, bFFP, Eref_wt, RH_at, MWMT, HT, 

ASPECT 

* The reduced models included rust variables and independent variables listed in the variable importance score column. RSQ is 

R-squared and MSE is mean square error. 

† The full models included rust and tree size variables described in Table 1 and environmental variables described in Tables 2-3. 

‡ Independent variables are listed in order of variable importance from highest to lowest based on %IncMSE. 
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Table 7.  Random Forest models used to predict rust traits from environmental and tree age independent variables. 

  Reduced model* Full model†   

Dependent 

variable 

RSQ 

(%) MSE 

RSQ 

(%) MSE Variable importance score ranking of independent variables‡ 

Environmental and tree age independent variables 

CANK% 49.01 242.0 43.30 268.2 RH_at, RH_sm, EMT, Tmin_sp, AGE, Tmin_sm, Tmin_wt, DD_18_sm, 

CMD, CMI_sm, MSP, ASPECT 

NUM_CANK 32.64 3.296 27.06 3.564 Tmin_sm, Tmin_sp, CMI_sm, NFFD_sp, ASPECT 

HT_CANK 41.32 2.200 32.15 2.510 AGE, CMI, RH_at, bFFP 

RI 24.23 < 0.001 16.94 < 0.001 RH_at, CMI_sm, Eref_wt, bFFP, MWMT, SLOPE, Eref_sm, CMD, 

AGE, ASPECT 

* The reduced models included rust variables and independent variables listed in the variable importance score column. RSQ is 

R-squared and MSE is mean square error. 

† The full models included rust and tree age variables described in Table 1 and environmental variables described in Tables 2-3. 

‡ Independent variables are listed in order of variable importance from highest to lowest based on %IncMSE. 
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Figure 3: Scatterplots showing the relationships between CANK% versus the environmental variables listed in Table 4. 

Relationships between the percentage of trees with a stem canker (CANK%) versus (A) extreme minimum temperature over 30 years 

(EMT, °C), (B) number of frost-free days in the winter (NFFD_wt, days), (C) autumn relative humidity (RH_at, %), (D) summer 

relative humidity (RH_sm, %), (E) Hargreaves climatic moisture deficit (CMD_sp, mm), (F) summer mean minimum temperature 

(Tmin_sm, °C), (G) Hargreaves climatic moisture deficit (CMD, mm), (H) aspect (ASPECT, degrees). Black points are the values for 

the naturally-regenerated sites of sugar pine (SP, ) and western white pine (WWP, ). Red points are the values for the rust-resistant 

sites of sugar pine (RRSP, ) and western white pine (RRWWP, ). The dashed lines represent 95% prediction intervals. 

A B C D 

E F G H 

r = 0.32 r = 0.33 r = 0.56 r = 0.57 

r = -0.21 r = -0.52 r = 0.21 r = -0.49 
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Figure 4: Scatterplots showing the relationships between NUM_CANK versus the 

environmental variables listed in Table 4. Relationships between the number of cankers per 

tree (NUM_CANK) versus (A) summer mean minimum temperature (Tmin_sm, °C), (B) day 

of the year on which the frost-free period begins (bFFP, Julian date), (C) summer Hogg’s 

climate moisture index (CMI_sm, mm), and (D) aspect (ASPECT, degrees). Black points are 

the values for the naturally-regenerated sites of sugar pine (SP, ) and western white pine 

(WWP, ). Red points are the values for the rust-resistant sites of sugar pine (RRSP, ) and 

western white pine (RRWWP, ). The dashed lines represent 95% prediction intervals. 

r = 0.15 r = -0.12 

r = -0.23 r = 0.38 
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A B C D 

Figure 5: Partial dependency plots showing the relationships between CANK% versus the environmental variables listed in Table 4. 

Relationships between the percentage of trees with a stem canker (CANK%) versus (A) extreme minimum temperature over 30 years (EMT, 

°C), (B) number of frost-free days in the winter (NFFD_wt, days), (C) autumn relative humidity (RH_at, %), (D) summer relative humidity 

(RH_sm, %), (E) Hargreaves climatic moisture deficit (CMD_sp, mm), (F) summer mean minimum temperature (Tmin_sm, °C), (G) 

Hargreaves climatic moisture deficit (CMD, mm), (H) aspect (ASPECT, degrees). Black points are the values for the naturally-regenerated 

sites of sugar pine (SP, ) and western white pine (WWP, ). Red points are the values for the rust-resistant sites of sugar pine (RRSP, ) 

and western white pine (RRWWP, ).  
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Figure 6: Partial dependency plots showing the relationships between NUM_CANK versus the 

environmental variables listed in Table 4. Relationships between the number of cankers per tree 

(NUM_CANK) versus (A) summer mean minimum temperature (Tmin_sm, °C), (B) day of the year 

on which the frost-free period begins (bFFP, Julian date), (C) summer Hogg’s climate moisture 

index (CMI_sm, mm), and (D) aspect (ASPECT, degrees). Black points are the values for the 

naturally-regenerated sites of sugar pine (SP, ) and western white pine (WWP, ). Red points are 

the values for the rust-resistant sites of sugar pine (RRSP, ) and western white pine (RRWWP, 

).  
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4.1.3 Which environmental variables were most closely associated with rust hazard? 

A second objective was to identify which environmental variables were most closely associated 

with rust hazard. I used correlations and RF models to identify the relative importance of 

independent environmental variables for predicting rust traits. As described above, I used 

CANK% and NUM_CANK as the dependent variables, and environmental variables as the 

independent variables. One purpose of these analyses was to identify the best climate variables to 

use for future projections of rust incidence and severity (see below).  

Based on univariate correlation coefficients, CANK% and NUM_CANK were associated 

with climate variables and ASPECT (Figures 3, 4 and 7). CANK% was positively associated 

with RH_sm and RH_at, with correlation coefficients of 0.57 and 0.56, respectively (p < 0.001). 

CANK% was also positively associated with NFFD_wt, EMT, and Tmin_sm, but these 

correlations were relatively low (i.e., 0.33, 0.32, and 0.21, respectively, p < 0.001). In contrast, 

CANK% was negatively correlated with variables representing climate moisture deficit (CMD 

and CMD_sp), with correlation coefficients of -0.52 and -0.49, respectively (p < 0.001). 

CANK% and NUM_CANK were greater on sites with northern, eastern, and northeasterly 

aspects. That is, CANK% was negatively associated with ASPECT, with a correlation coefficient 

of -0.21 (p < 0.001). NUM_CANK was positively associated with Tmin_sm and CMI_sm 

(Figures 4 and 7).  The correlation coefficients were low for Tmin_sm (0.15) and CMI_sm (0.38) 

(p < 0.001). NUM_CANK was negatively associated with bFFP and ASPECT.  The correlation 

was very low for bFFP (-0.12) and low for ASPECT (-0.23) (p < 0.001). 

Next, I calculated variable importance (VI) scores using randomForest to judge the 

relative importance of the independent variables.  In contrast to the univariate correlations 
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described above, these analyses accounted for the multivariate relationships among the 

independent variables.  

Among the independent variables, the climate variables had higher VI scores than did the 

topographic variables (Figures 8-9). Based on the CANK% model with environmental 

independent variables, the top-ranked variables were climate variables, followed by ASPECT 

(Figure 8A). The important climate variables were associated with temperatures in the winter and 

summer (EMT, NFFD_wt, and Tmin_sm), relative humidity in the fall and summer (RH_at and 

RH_sm, and climate moisture index (CMD_sp and CMD) (Figure 8A; Table 3). The VI score for 

the low temperature variable (EMT) was greater than the VI scores for the relative humidity 

variables (RH_sm and RH_at) (Figure 8A). 

Based on the NUM_CANK models, the climate variables had higher VI scores than did 

the topographic variables (Figure 9). For example, the top-ranked variables were climate 

variables, followed by ASPECT (Figure 9). Using only the environmental variables as 

predictors, the most important climate variables were associated with moisture in the summer 

(CMI_sm) and temperatures in the summer and spring (Tmin_sm and bFFP) (Figure 9A, 

Table 3). The VI score for the summer moisture variable (CMI_sm) was greater than the VI 

score for the summer temperature variable (Tmin_sm) (Figure 9A). 

Overall, CANK% and NUM_CANK tended to be higher at warmer and less-droughty 

sites (Figures 3-6). Based on analyses of CANK% and NUM_CANK, ASPECT was an 

important topographic variable. ASPECT occurred in models for both traits, ranking higher in VI 

score than did the other topographic variables, SLOPE and ELEV (Figures 8 and 9). 
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Figure 7: Heat map of correlation coefficients among rust and environmental variables.  

Tree variables are described in Table 1, and environmental variables are described in Tables 

2-3. Correlation coefficients were calculated among 265 study sites of western white pine, 

sugar pine, rust-resistant western white pine, and rust-resistant sugar pine. Cool and warm 

colors of the heat map cells represent positive and negative correlation, respectively—the 

darker the color stronger the correlation.  
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Figure 8: Variable importance (VI) rankings for CANK% based on Random Forest 

regression models. Variable importance values of independent variables for predicting the 

percentage of trees with a stem canker (CANK%) were based on the mean decrease in accuracy 

(MDA).  Independent variables used in the four Random Forest models were (A) environmental 

variables, (B) environmental and tree size variables, (C) environmental and tree growth variables, 

and (D) environmental and tree age variables. These variables are described in Tables 1-3. 

B 

D 
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Figure 9: Variable importance (VI) rankings for NUM_CANK based on Random Forest 

regression models. Variable importance values of independent variables for predicting the number 

of cankers per tree (NUM_CANK) were based on the mean decrease in accuracy (MDA).  

Independent variables used in the four Random Forest models were (A) environmental variables, 

(B) environmental and tree size variables, (C) environmental and tree growth variables, and (D) 

environmental and tree age variables. These variables are described in Tables 1-3. 
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4.1.4 How were rust traits affected by tree characteristics? 

I used correlations and RF models to infer the relative importance of tree characteristics to the 

incidence and severity of rust disease. For these analyses, rust traits were the dependent 

variables, and tree characteristics and environmental variables were the independent variables. 

First, I calculated correlation coefficients between rust traits versus tree growth (HT/AGE), tree 

age (AGE), and tree height (HT). Correlations between rust traits and HT/AGE were weak, 

ranging from -0.16 to 0.22 (Figure 10). CANK%, NUM_CANK, and RI had weak positive 

correlations with HT/AGE, whereas HT_CANK had a weak negative correlation. Correlations 

between rust traits and AGE were stronger than they were for HT/AGE (Figure 10). HT_CANK 

had a strong positive correlation with AGE (0.65), but CANK% and RI had moderate negative 

correlations (-0.37 and -0.35, respectively). HT_CANK was the only rust trait that had a 

relatively strong positive correlation with HT (0.44) (Figure 10). The correlations were low 

negative for CANK% (-0.10) and NUM_CANK (-0.05), and low moderate for RI (-0.30). Next, I 

calculated variable importance (VI) scores to judge the relative importance of the independent 

variables. The growth trait, HT/AGE, was included in the RF models for all four rust traits 

(Table 5). For example, using CANK% as the dependent variable, HT/AGE had the highest VI 

scores among the independent variables (Table 5).  For the other rust traits, the VI rank for 

HT/AGE varied relative to the environmental variables. HT was included in the RF models for 

HT_CANK and RI (Table 6). Based on VI scores, HT was the most important variable in the 

HT_CANK RF model, followed by the climate variable, bFFP. HT was less important in the RF 

model for RI (Table 6). AGE was included in the RF models for CANK%, HT_CANK, and RI, 

but not for NUM_CANK (Table 7).  For example, AGE was the top-ranked variable for 

HT_CANK, followed by climate variables (Table 7). However, AGE had lower VI scores than 

did the climate variables for CANK% and RI (Table 7). 



57 

 

 

Figure 10: Heat map of correlation coefficients among tree and environmental 

variables. Tree variables are described in Table 1, and environmental variables are described 

in Tables 2-3. Correlation coefficients were calculated among 265 study sites of western 

white pine, sugar pine, rust-resistant western white pine, and rust-resistant sugar pine. Cool 

and warm colors of the heat map cells represent positive and negative correlation, 

respectively—the darker the color stronger the correlation.  

 

 



58 

 

 

4.1.5 How was tree growth affected by environmental variables and rust traits? 

I calculated correlations and developed RF models using tree growth as the dependent variable 

and rust traits and environmental variables as the independent variables. One objective of these 

analyses was to identify the best independent variables to use for future projections of tree 

growth (see below). 

First, I calculated correlation coefficients between tree growth (HT/AGE) versus the 

environmental variables. HT/AGE had weak negative correlations with climate variables 

(i.e., -0.31 to -0.03), except for DD_0_sp (0.30) and TD (0.20) (Figure 10; p < 0.001). Next, I 

calculated variable importance (VI) scores to judge the relative importance of the independent 

variables on tree growth. I developed two RF models for HT/AGE. The RSQ of the first model, 

which included only environmental independent variables, was much lower (32%) than the RSQ 

of the second model, which included the rust variables, too (Table 8).  

In the first model, the temperature variable had a higher VI score than did moisture 

variable (Figure 11A). The important variables were associated with low temperatures in fall 

(Tave_at), spring relative humidity (RH_sp), low temperatures in the summer and spring 

(Tmin_sm and Tmin_sp), mean coldest temperature month (MCMT), extreme maximum 

temperature over 30 years (EXT), and high temperatures in winter (DD5_wt) (Figure 11A; 

Table 3). CANK% and NUM_CANK were included in the second HT/AGE RF model, but the 

climate variables had higher VI scores than did these rust variables (Table 8, Figure 11B).  

For the second HT/AGE model, the most important climate variables were associated 

with low temperatures in spring (DD_0_sp), high temperatures in winter (DD5_wt), extreme 

maximum temperature over 30 years (EXT), mean coldest temperature month (MCMT and TD), 

relative humidity in summer (RH_sm), and low temperatures spring and summer (Tmin_sp, 
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Tmin_sm) (Figure 11B, Table 3). Once the important rust traits and climate variables were 

identified, they were used for future projections of tree growth (see below). 
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Table 8.  Random Forest models used to predict tree growth from environmental and rust independent variables. 

  Reduced model* Full model†   

Dependent 

variable 

RSQ 

(%) MSE 

RSQ 

(%) MSE Variable importance score ranking of independent variables‡ 

Environmental independent variables 

HT/AGE 14.64 0.026 6.240 0.028 Tave_at, RH_sp, Tmin_sm, MCMT, EXT, DD5_wt, Tmin_sp 

Environmental and rust independent variables 

HT/AGE 21.41 0.024 14.28 0.026 DD_0_sp, NUM_CANK, DD5_wt, CANK%, EXT, MCMT, RH_sm, 

Tmin_sp, TD, Tmin_sm 

* The reduced models included tree growth and independent variables listed in the variable importance score column. RSQ is 

R-squared and MSE is mean square error. 

† The full models included tree growth and rust variables described in Table 1 and environmental variables described in Tables 2-3. 

‡ Independent variables are listed in order of variable importance from highest to lowest based on %IncMSE. 
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Figure 11: Variable importance (VI) rankings for HT/AGE based on Random Forest 

regression models. Variable importance values of independent variables for predicting (HT/AGE, 

feet/years) were based on the mean decrease in accuracy (MDA).  Independent variables used in 

the two Random Forest models were (A) environmental variables and (B) environmental and rust 

variables. These variables are described in Tables 1-3. 

B A 
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4.1.6 How will rust traits change under future climates? 

I used the CANK% and NUM_CANK prediction models to project how rust traits will change 

under future climates. For the CANK% prediction model, the predictors were seven future 

climate variables and ASPECT (Table 4). For the NUM_CANK prediction model, the predictors 

were a different set of three future climate variables and ASPECT (Table 4). 

Overall, projected changes in the rust traits were small.  Among all SSPs and years, 

differences in CANK% were no more than 2%.  That is, the minimum and maximum values 

were 29% and 31% of trees with cankers (Figure 13). Among all SSPs and years, differences in 

NUM_CANK were no more than 0.9 cankers per tree (Figure 13).  

Projected changes were also inconsistent between rust traits (Figures 12 and 13).  For 

CANK%, there was no significant change in CANK% by the end of the century under any of the 

SSPs (i.e, year 2085, Table 9, Figure 12). In contrast, there was a significant decrease in 

NUM_CANK between 1985 and 2085 under all SSPs (Table 9, Figure 13). Thus, these two rust 

traits tell different stories.  

Finally, projected changes in CANK% were inconsistent among the years. Compared to 

1985 and 2085, there was a small decrease in CANK% in the mid-years (i.e., 2025 and 2055) 

(Table 9, Figure 12). Because projected changes in the rust traits are expected to be gradual over 

time, this pattern of change was unexpected (Figure 12). The main conclusion from these results 

is that projected changes in rust disease are uncertain, but will probably not be large. 
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Table 9.  One-way analyses of variance (ANOVA) for measured and projected rust and tree 

growth variables under historical climate (1930-1990) and 12 climate change scenarios consisting 

of 4 Shared Socioeconomic Pathways (SSPs) and three future time periods (Years = 2011-2040, 

2041-2070, and 2071-2100). CANK% is the percentage of trees with a stem canker, 

NUM_CANK is number of cankers per tree, and HT/AGE is tree growth. 

 Year (treatment)* Residual (error)* F-test* 

Scenario† Df Sum sq Mean sq Df Sum sq Mean sq 
F-

value 
Pr 

         
CANK% 

SSP126 3 981 327 1052 135863 129.1 2.53 0.0557 

SSP245 3 1041 347.1 1052 126308 120.1 2.89 0.0345 

SSP370 3 1532 510.7 1052 133275 126.7 4.03 0.00728 

SSP585 3 757 252.4 1052 120770 114.8 2.20 0.0866 

NUM_CANK 

SSP126 3 59.30 19.77 1052 1050.7 0.999 19.80 1.7 10-12 

SSP245 3 70.50 23.51 1052 986.4 0.938 25.08 
1.13 10-

15 

SSP370 3 84.70 28.23 1052 1073.1 1.02 27.68 <2 10-16 

SSP585 3 105.90 35.29 1052 918.7 0.87 40.41 <2 10-16 

HT/AGE         

SSP126 3 0.27 0.08888 1052 3.617 0.00344 25.85 
3.87 10-

16 

SSP245 3 0.25 0.08323 1052 3.30 0.00314 26.53 <2 10-16 

SSP370 3 0.25 0.08178 1052 3.473 0.00330 24.77 
1.73 10-

15 

SSP585 3 0.25 0.08333 1052 3.045 0.00289 28.79 <2 10-16 

HT/AGE†         

SSP126 3 0.539 0.17951 1052 6.074 0.00577 31.09 <2 10-16 

SSP245 3 0.560 0.18672 1052 5.792 0.00551 33.91 <2 10-16 

SSP370 3 0.654 0.21811 1052 5.727 0.00544 40.06 <2 10-16 

SSP585 3 0.834 0.27793 1052 5.174 0.00492 56.51 <2 10-16 
* Df is degrees of freedom, Sum sq is sum of squares, Mean sq is mean square, F-value is F-

statistic, and Pr is the p-value from one-way analyses of variance (ANOVA).  
† Historical and future climate variables were obtained using ClimateNA v.7.01 and v.7.10 (Wang 

et al. 2016). Future climate variables were projected from the General Circulation Models 

(GCMs) of the Coupled Model Intercomparison Project (CMIP6) of the IPCC sixth assessment 

report (AR6). 

‡ CANK% and NUM_CANK were projected using only environmental variables as predictors. 

HT/AGE was projected using environmental variables and rust variables as predictors. These 

variables are described in Tables 1-3. 
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Figure 12: Historical and future projected percentages of trees with a stem canker (CANK%). 

CANK% was predicted using historical climate variables, 12 climate change scenarios, and other 

environmental variables. The climate change scenarios consisted of 4 Shared Socioeconomic 

Pathways (SSPs) and 3 future time periods (years = 2011-2040, 2041-2070, and 2071-2100).  

Environmental variables are described in Tables 2-3. Blue bars represent variable means, and error 

bars show the standard errors of the means for 265 study sites. Different letters indicate significant 

differences among means according to Tukey's honestly significant difference test. 
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Figure 13: Historical and future projected numbers of cankers per tree (NUM_CANK). 

NUM_CANK was predicted using historical climate variables, 12 climate change scenarios, 

and other environmental variables. The climate change scenarios consisted of 4 Shared 

Socioeconomic Pathways (SSPs) and 3 future time periods (years = 2011-2040, 2041-2070, 

and 2071-2100).  Environmental variables are described in Tables 2-3. Blue bars represent 

variable means, and error bars show the standard errors of the means for 265 study sites. 

Different letters indicate significant differences among means according to Tukey's honestly 

significant difference test. 



66 

 

 

4.1.7 How will tree growth change under future climates? 

I used two tree growth prediction models to project future tree growth based on climate, 

topographic, and rust variables. For the first HT/AGE prediction model, I used seven future 

climate variables as predictors (Table 8). For the second HT/AGE prediction model, I used a 

different set of eight future climate variables, CANK%, and NUM_CANK (Table 8). 

Compared to 1985, there was a small increase in HT/AGE for prediction models by 2085 

(Figures 14 and 15). The increases in HT/AGE were expected to be about 0.07 (feet/year) among 

all SSPs and years (Figures 14 and 15). The results were consistent among SSPs (Table 9, 

Figures 14 and 15). Overall, I observed a small increase in tree growth in the future compared to 

the past (Table 9, Figures 14 and 15). At the end of the century, HT/AGE was projected to be 

very slightly greater using the second model that included rust traits (Table 9, Figures 14 and 

15). For example, there was a 0.05 (i.e., 0.51 versus 0.56) (feet/year) difference in HT/AGE 

between the two models under the most extreme SSP, which is SSP5-85 (Table 9, Figures 14 and 

15). The main conclusion from these results is that the average growth rate will probably 

increase, but this increase will not be large. 

 



67 

 

 

 

a a a 

b 

a a a 

b 

a a a 

b 

a a a 

b 

H
T/

A
G

E 
(f

ee
t/

ye
ar

s)
 

Figure 14: Historical and future projected tree growth (HT/AGE).  

HT/AGE was predicted using historical climate variables, 12 climate change scenarios, and other 

environmental variables.  The climate change scenarios consisted of 4 Shared Socioeconomic 

Pathways (SSPs) and 3 future time periods (years = 2011-2040, 2041-2070, and 2071-2100).  

Environmental variables are described in Tables 2-3. Blue bars represent variable means, and error 

bars show the standard errors of the means for 265 study sites. Different letters indicate significant 

differences among means according to Tukey's honestly significant difference test. 
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Figure 15: Historical and future projected tree growth (HT/AGE).  

HT/AGE was predicted using historical climate variables, 12 climate change scenarios, rust 

variables, and other environmental variables. The climate change scenarios consisted of 4 

Shared Socioeconomic Pathways (SSPs) and 3 future time periods (years = 2011-2040, 2041-

2070, and 2071-2100). Rust variables are described in Table 1. Environmental variables are 

described in Tables 2-3. Blue bars represent variable means, and error bars show the standard 

errors of the means for 265 study sites. Different letters indicate significant differences among 

means according to Tukey's honestly significant difference test. 
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5. Chapter 5 

5.1 Discussion 

5.1.1 Approach 

One of my objectives was to determine which rust traits are best for characterizing rust hazard. 

Among the rust traits, RI has been historically and widely used to measure and predict rust 

hazard (McDonald et al. 1981; Hagle et al. 1989; Koester et al. 2018). However, rust hazard 

might be measured using other rust traits as well. My second objective was to identify which 

environmental variables are most closely associated with rust hazard. As discussed in the 

Introduction, the pathogen requires certain environmental conditions to inoculate and spread 

(Geils et al. 2010). Thus, I expect that rust disease incidence and severity differ among sites. My 

third objective was to project changes in rust disease and tree growth using RF prediction models 

and 12 climate change scenarios. This information may provide new understanding of rust-

environment interactions that can be used to manage WPBR. To address these questions and 

achieve the objectives described above, I used data from Koester et al. (2018), ClimateNA, and 

DEMs to build RF regression models for rust traits and tree growth. 

5.1.2 Which rust traits were best for characterizing rust hazard? 

I studied the relationships between rust traits versus environmental variables and tree 

characteristics to identify which rust traits were best for characterizing rust hazard. Various rust 

indices have been used to measure rust hazard of sites (Van Arsdel 1961; Hagle et al. 1989; 

Steele 1996). Van Arsdel (1961) recommended using an index to categorize rust hazard of sites 

to better manage WPBR. A rust hazard index is an indicator of the existing or potential infection 

level of a site, optimally reflecting both rust incidence and severity (Van Arsdel 1961; Hagle et 

al. 1989; Steele 1996). There are four characteristics of a good rust hazard index. A good rust 
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hazard index is (1) closely associated with tree damage and death, (2) easy to measure precisely 

and accurately, (3) not confounded by non-rust tree variables, and (4) easy to predict from 

environmental variables. Because certain environmental conditions are required for rust disease 

development (Geils et al. 2010), rust hazard should be estimated considering environmental 

conditions (Van Arsdel 1961; Hunt 1983; Steele 1996; Geils et al. 1999). 

Initially, the number of “cankers per tree” was used as a proxy for rust infection and 

damage (Stillinger 1943). Later, the number of pine needles was added to the measurement of 

rust hazard (Buchanan 1936) because the pathogen enters and infects through the stomata of the 

needles (Van Arsdel 1961; Geils et al. 2010). Individual needle bundles of western white pine 

were counted and multiplied by five to obtain the total number of needles (Buchanan 1936; 

Buchanan and Kimmey 1938). However, this measurement is not convenient and might be 

biased by different estimation approaches among observers. Buchanan (1936) and Buchanan and 

Kimmey (1938) estimated the number of needles from tree crown height and width, and then 

used the number of cankers per 1000 needles per year as an index of rust infection rate. 

McDonald et al. (1981) developed a computer program that can be used to analyze rust disease 

epidemics for western white pine using rust infection rate by estimating leaf (infection) surface 

area (cm2) of Ribes. Hagle et al. (1989) used tree age, tree height, and the number of cankers per 

tree to develop a rust index (RI). Measured trees must be at least 10 years old and less than 35 

feet tall. This is because sites with trees less than 35 feet tall have a higher likelihood of current 

and future infections (Hagle et al. 1989). The units of the resulting RI are the number of cankers 

per 1000 needles per year. Hagle et al. (1989) concluded this index was reliable for estimating 

rust hazard and making effective management decisions for white pines. However, they also 

suggested that information on Ribes populations could be used to estimate rust hazard, but only if 
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it was impossible to calculate rust index itself (e.g., for sites with no white pine trees). Koester et 

al. (2018) and I used the rust index described by Hagle et al. (1989) (i.e., RI = number of cankers 

per 1000 needles per year). 

Below, I discuss RI, CANK%, NUM_CANK, and HT_CANK in relation to the 

characteristics of a good rust hazard index (described above). RI is a complex measure that 

integrates information on tree age, tree height, and the number of cankers per tree. The final units 

are number of cankers per 1000 needles per year. CANK%, the percentage of trees with a 

canker, is believed to reflect the severity of the disease and the distance from Ribes populations. 

For example, the percentage of trees with cankers decreased as the distance from alternate hosts 

increased (Buchanan and Kimmey 1938). NUM_CANK, the number of cankers per tree, is a 

component of RI, but does not include estimates of tree age, tree height, or indirectly, the number 

of needles per tree. HT_CANK, the height of the highest canker on the tree, may provide 

information about how the tree was infected. If cankers occur high in the crown, the trees are 

more likely to have been infected via basidiospores carried by the wind (McDonald et al. 1981). 

If the cankers are close to the bottom of the tree, the trees are more likely to have been infected 

by alternate hosts nearby (McDonald et al. 1981). I used the RF regression RSQ and correlation 

coefficients to identify which rust traits were best for characterizing rust hazard. RSQ is the 

percentage of among-site variation explained by the RF model. The main assumption underlying 

this approach is that rust traits with higher RSQ values were more closely associated with the 

environmental and tree independent variables.  

A good rust hazard index is associated with tree damage and death. Each of my rust traits 

provides information on tree damage because they are based on the presence of cankers. Cankers 

occur on tree branches and bole, damaging and possibly killing the tree. The pathogen, which 
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requires living tissue to survive, enters through the needles or bark, grows through the branches, 

and into the bole (McDonald et al. 1981; Geils et al. 2010). If branches die before the pathogen 

reaches the bole (e.g., via natural or manual pruning), the pathogen affects only the branches and 

does not cause stem cankers (McDonald et al. 1981; Geils et al. 2010). Trees with stem cankers 

are likely to die sooner than trees with only branch cankers (Hagle et al. 1989). Although branch 

cankers typically cause only the branches to die, a large abundance of branch cankers may also 

cause tree mortality (Mielke 1943; Burns et al. 2008). Overall, rust damage and mortality depend 

on the locations of cankers and the number of cankers on the tree. CANK% and HT_CANK may 

be less closely related to tree damage than are the other rust traits (RI and NUM_CANK) 

because they do not account for the number of cankers per tree. CANK% is the percentage of 

trees with at least one canker, and HT_CANK is the average height of the highest canker. 

NUM_CANK is the average number of cankers per tree. Hagle et al. (1989) and Mielke (1943) 

concluded there is a positive relationship between the number of cankers and the likelihood of 

tree death. One reason is that branch cankers are more likely to become stem cankers as the 

number of cankers increases. Hagle et al. (1989) concluded that information on the number of 

stem cankers improves the prediction of rust hazard. Thus, Hagle et al. (1989) integrated the 

number of cankers per tree into their RI metric.  

A good rust hazard index is easy to measure precisely and accurately. RI requires 

multiple inputs to be measured; tree age, tree height, and the number of cankers per tree (Hagle 

et al. 1989), and each measurement may add error. For example, Koester et al. (2018) estimated 

tree age by counting whorls. In the calculation of RI, tree age and tree height are used to estimate 

the number of needles.  Although the prediction accuracy for the number of needles was not 

reported, it is probably not high. Moreover, each variable needed to calculate RI requires time, 
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money, and personnel to be measured. Thus, RI is difficult to measure precisely and accurately. 

Compared to RI, the other rust traits are easier to measure. CANK%, the easiest trait to measure, 

is estimated by counting trees having at least one canker on the stem. Stem cankers have 

distinctive shapes and are generally large enough to recognize from a distance. Stem cankers 

have discolored bark, yellow-orange canker margins, and resin leakage. NUM_CANK is more 

complex to measure because one must count the number of cankers anywhere on the tree 

(Koester et al. 2018). HT_CANK is not as complex as RI, but one must measure the height of the 

highest canker. However, Koester et al. (2018) found that HT_CANK was generally below 8 

feet. Thus, CANK%, NUM_CANK, and HT_CANK can be measured more easily and 

accurately than RI can be. 

A good rust hazard index is not confounded with non-rust tree variables. A good rust 

hazard index should reflect the potential of the site to develop WPBR, even if no white pine trees 

are present. Likewise, a good rust hazard index should be unrelated to the age and height of the 

existing trees. Based on correlations with AGE, the rankings of the rust traits were HT_CANK > 

CANK% > RI > NUM_CANK.  That is, RI and NUM_CANK were the least closely related 

traits to tree age. Based on correlations with HT, the rankings of the rust traits were HT_CANK 

> RI > CANK% > NUM_CANK.  That is, CANK% and NUM_CANK were the least closely 

related traits to tree height. Not surprisingly, HT_CANK had the strongest correlations with 

AGE and HT.  In contrast, NUM_CANK had the weakest correlations with non-rust tree 

variables. The prediction models also support these conclusions. For example, AGE and HT did 

not occur in the NUM_CANK prediction models, and only AGE occurred in CANK% prediction 

model. Thus, overall, NUM_CANK and CANK% are less likely to be confounded with non-rust 

tree variables than are HT_CANK and RI. 
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A good rust hazard index is easy to predict from environmental variables. A good rust 

hazard index should be strongly associated with environmental variables that are responsible for 

site-to-site differences in rust hazard. I used the RSQ values to identify these rust traits. Based on 

the RSQ values, CANK% and NUM_CANK had the highest RSQs. That is, CANK% and 

NUM_CANK were the rust traits most closely associated with the environmental variables. 

In contrast, RI had the lowest RSQ among the rust traits, probably because of the errors 

associated with measuring RI (discussed above). HT_CANK had a low RSQ, probably because 

of the strong relationships with tree age and height (discussed above). Overall, CANK% and 

NUM_CANK had the strongest associations with environmental variables, and RI and 

HT_CANK had the weakest. The rust traits with the highest RSQ values (CANK% and 

NUM_CANK) were used for future projections of rust hazard (see below).  

Based on the rust hazard criteria and my results, CANK% and NUM_CANK seem to be 

the best variables for measuring rust hazard. Both variables are relatively easy to measure 

precisely and accurately compared to RI. CANK% is easy to measure and had the highest RSQ, 

indicating the strongest association with environmental variables. NUM_CANK is somewhat 

harder to measure and had the second-strongest association with environmental variables. 

CANK% and NUM_CANK were also less confounded with non-rust tree variables. Thus, as 

direct measures of rust hazard, CANK% and NUM_CANK should be useful for improving 

management of sugar pine and western white pine sites that are climatically similar to the ones I 

studied. More importantly, the prediction models I developed should be useful for predicting rust 

hazard without measuring trees in the field. These prediction models could be used to create rust 

risk maps that would allow managers to consider management options. These management 

options might include identifying the optimum planting stock and sites for planting white pines, 
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and applying silvicultural treatments in a timely and affordable manner. For example, forest 

managers could apply silvicultural treatments to sites where the disease is likely to occur, but 

before the disease becomes established. 

5.1.3 Which environmental variables were most closely associated with rust hazard? 

I studied the relationships between rust traits versus environmental variables to identify which 

environmental variables were most closely associated with rust hazard. I identified 

environmental variables associated with WPBR infection at the sites in southern Oregon. One 

purpose of these analyses was to identify the best climate variables to use for future projections 

of rust incidence and severity (see below). This information sheds light on the biology of rust 

infection, and the resulting RF regression models can be used to improve rust hazard maps. 

The wind-borne aeciospores on infected pines can travel long-distances (~700 km) to 

infect Ribes species in spring (Mielke 1938; Mielke 1943; Campbell and Antos 2000). Mielke 

(1943) stated that aeciospore production on western white pines differs by seasonal 

environmental conditions. The pathogen produces basidiospores on the undersides of leaves of 

Ribes species, and these basidiospores reinfect pines in late summer and early autumn (Van 

Arsdel 1961). Basidiospores are short-lived and can be transmitted via only wind as far as ~2 km 

(Van Arsdel et al. 1956; Kinloch 2003; Geils et al. 2010). High relative humidity and mild 

temperatures are important for the pathogen to produce spores and complete its life-cycle (Van 

Arsdel et al. 1956; Geils et al. 2010). Thus, I predicted humidity and temperature variables 

would be associated with rust hazard. 

Among the environmental variables, climate variables were more closely associated with 

rust traits than were the topographic variables―slope, aspect, and elevation. Based on the 

climate variables, my study indicated that rust hazard was greater at sites with milder 
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temperatures and sufficient moisture. The potential reasons for these relationships are discussed 

below. 

My first major conclusion was that rust hazard was greater at sites with milder 

temperatures in winter, spring, and summer. I found that CANK% and NUM_CANK were 

positively correlated with EMT and Tmin_sm. EMT is the extreme minimum temperature, and 

Tmin_sm is the minimum temperature in summer. Thus, a positive correlation indicated that 

increased rust disease was associated with milder temperatures in winter and summer. CANK% 

and NUM_CANK were positively correlated with NFFD_wt and negatively correlated with 

bFFP, indicating that increased rust disease was associated with longer growing seasons. 

NFFD_wt is the number of frost-free days in winter, and bFFP is the beginning of the frost-free 

period. The positive correlations with NFFD_wt indicate that more frost-free days in winter were 

associated with more rust disease. The negative correlations with bFFP indicate that earlier 

growing seasons were associated with more rust disease. 

Why was rust disease associated with milder temperatures? The pathogen takes 

advantage of milder spring temperatures and longer growing seasons. Favorable climatic 

conditions allow the pathogen to produce spores frequently (Van Arsdel et al. 1956), resulting in 

a higher rust hazard. For example, spring temperatures impact the initial phase of spore 

development of the pathogen on Ribes (Mielke and Kimmey 1935; Larson 2011). Larson (2011) 

observed that rust infection was higher at sites with warmer spring temperatures. A positive 

correlation with milder winter temperatures was related to a longer growing season for the 

pathogen (Mielke 1943). For example, the pathogen grew from needles of western white pine to 

the bark during dormant seasons that had milder winter temperatures (Chapman 1934). Rust 

infections were observed until October in Idaho, resulting in more cankers on potted western 
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white pine trees at test sites that had milder winters (Mielke 1943). Moreover, mild temperatures 

may allow basidiospores to enter pine needles more readily through the stomata. In contrast, 

Larson (2011) observed more rust infections at sites with colder winter temperatures in the 

northern Rockies, where the whitebark pine host was abundant. In this case, the relationship 

between rust disease and winter temperature may have been confounded with other weather or 

climatic differences among the sites. 

Rust hazard was greater at sites with sufficient moisture in spring, summer, and autumn. 

CANK% and NUM_CANK had moderate positive correlations with relative humidity (RH_sm 

and RH_at) and Hogg's climate moisture index (CMI_sm). Hogg's climate moisture index, which 

is the difference between annual precipitation and potential evapotranspiration (PET), is higher 

for sites that are less droughty. Hargreaves climatic moisture deficit (CMD, CMD_sp) was 

negatively correlated with CANK% and NUM_CANK, which is consistent with these other 

relationships. Hargreaves CMD, which is annual evaporative demand that exceeds available 

water, is greater at droughty sites. 

As for other fungal pathogens, Cronartium ribicola requires abundant moisture to 

complete its life-cycle. Conditions that are too dry are harmful for rust spore germination and 

production, particularly for the short-lived basidiospores (Van Arsdel et al. 1956; Van Arsdel 

1972). Then, the higher the relative humidity, the longer time rust spores can be transmitted in 

the air during late summer and early autumn (Mielke 1943; Schwandt 2001; Smith et al. 2001). 

Because basidiospores infect pine trees in late summer and early autumn (Van Arsdel 1972), 

moisture conditions in these seasons affect rust hazard. Thus, the higher the relative humidity, 

the higher the expected spread and occurrence of blister rust disease (Mielke 1943; Schwandt 

2001; Smith et al. 2001). For example, based on studies of tree islands in the Northern Divide 
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Ecosystem, Smith-Mckenna et al. (2013) concluded that high humidity increased rust infection 

rates for whitebark pine (P. albicaulis). Dudney et al. (2021) concluded that upper elevations 

create cool and moist conditions favorable for rust infection. In contrast, in arid regions, drier 

climates decrease the probability of rust infection, but once trees become infected, they are more 

likely to die (Dudney et al. 2021). Similar patterns were observed in southwestern Wisconsin 

(Van Arsdel et al. 1956) and the southern Lake States (Van Arsdel 1961), where the incidence of 

WPBR was lower in areas with drier climates. In the Greater Yellowstone Ecosystem, Thoma et 

al. (2019) concluded that relative humidity and temperatures in August and September were 

more influential than other site characteristics on blister rust disease. The other site 

characteristics they studied were latitude, longitude, elevation, slope, and aspect. 

The forest management techniques aiming to alter the forest's climatic conditions could 

help reduce rust damage. For example, stand density could be reduced to decrease relative 

humidity and “leaf wetness duration” responsible for rust spore production and transmission 

(Bregaglio et al. 2011; Wyka et al. 2018). Moreover, reducing stand density (e.g., thinning) 

could provide more space for trees, reducing stress caused by drought and the pathogen. 

Rust disease was greater at sites with northern, eastern, and northeasterly aspects. The 

pathogen favors cool and moist environments (see above), and northern, eastern, and 

northeasterly aspects are cooler and moister. Both rust variables, CANK% and NUM_CANK, 

were greater on sites with northern, eastern, and northeasterly aspects. However, the 

relationships between the rusts traits and ASPECT were weak, probably because other factors 

were more influential than aspect. For sites with northern and eastern aspects, wind patterns may 

add cool air, and lower solar radiation contributes to milder temperatures. These conditions 

provided the conditions needed for disease development in other regions with hot summers 
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similar to southern Oregon (Van Arsdel et al. 1957; Smith-McKenna et al. 2013). For example, 

rust infections were common on north-facing sites of whitebark pine (P. albicaulis) (Larson 

2011). In central and southeastern Wyoming and northern Colorado, disease incidence on limber 

pine (Pinus flexilis) was higher on sites with northern and eastern aspects (Kearns and Jacobi 

2007). In contrast to aspect, elevation and slope did not occur in the rust models for CANK% 

and NUM_CANK. However, other researchers reported that sites on steeper slopes had greater 

rust disease, probably because they were cooler. For example, in British Columbia, more WPBR 

cankers were observed on WWP as the slope increased (Hunt 1983). However, no such 

relationship was found in central or southeastern Wyoming and northern Colorado (Kearns and 

Jacobi 2007). 

In conclusion, my results suggest that climate variables were more influential than 

topographic variables for predicting rust hazard. Mild temperatures and sufficient moisture seem 

to be important predictors of rust hazard, probably because the rust pathogen is able to 

germinate, spread, and infect hosts better under these conditions. Northern, eastern, and 

northeasterly aspects support these climatic conditions, showing a small role for micro-

topography for influencing rust infections in southern Oregon. These findings provide 

information about the interactions among the host, pathogen, and environment. This information 

may shed light on rust hazard in the future, under climate change. It should be possible to use 

climate projections to identify locations that are climatically suitable or unsuitable for rust 

establishment, enabling effective forest management decisions. For example, the white pine trees 

might be planted at sites with unfavorable climatic conditions for the pathogen (Van Arsdel 

1961), allowing trees to avoid WPBR. Forest managers might use this climatic information to 

map potential planting sites for western white pine and sugar pine. 
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5.1.4 How were rust traits affected by tree characteristics? 

I studied the relationships between rust traits and tree characteristics for three reasons.  First, I 

wanted to understand how blister rust disease affects tree growth. Second, I wanted to understand 

how differences in tree characteristics among sites may affect the ability to estimate rust hazard. 

Finally, I wanted to understand the importance of tree characteristics in rust hazard because rust 

hazard metrics have been calculated using tree age, tree height, and the number of cankers per 

tree (Hagle et al. 1989). 

Rust incidence and severity are related to tree characteristics (Geils et al. 2010). For 

example, McDonald et al. (1981) found a positive relationship between tree height and the 

probability of being infected. Generally, taller trees have wider crowns, with more foliage for the 

rust spores to reach and infect (McDonald et al. 1981; Conklin 2004 ). For example, Smith 

(2000) observed more serious rust infections higher in the tree crown in the Intermountain 

Region. Although the pathogen infects white pines at all ages, younger trees seem to be more 

vulnerable (Geils et al. 2010; Schoettle et al. 2011; Tomback and Sprague 2022). Thus, I studied 

the relationships between rust disease versus tree height and age as part of my research.  

In my study, it appeared that the sites with faster growing trees had more rust disease. 

Based on the relative importance values, tree growth (HT/AGE) was an important predictor of 

rust hazard in southern Oregon. Furthermore, the two key rust traits, CANK% and 

NUM_CANK, had weak positive correlations with HT/AGE. Because it is unlikely that rust 

disease enhanced tree growth, this suggests fast-growing trees were more prone to be infected or 

develop cankers than were slow-growing trees. It also suggests the pathogen does not adversely 

affect tree growth as much as expected. For example, McDonald et al. (1981) found rapid decline 

in tree growth occurred only when the tree was close to death. This is because the cankered 

branches of trees die before the pathogen reaches the stem. Even trees with bole cankers appear 
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to grow well for years even if they are mostly girdled and will eventually die (Schwandt et al. 

2013; Schwandt 2013). An alternative explanation is that the environmental conditions that 

promoted tree growth were also favorable for the pathogen. 

In my study, it appeared that sites with young trees had more rust disease. Based on the 

relative importance values, tree age (AGE) was an important variable for predicting rust hazard 

of the sites. Furthermore, the two key rust traits, CANK% and NUM_CANK, had moderate 

negative correlations with AGE. There are three possible explanations for these relationships. 

First, older trees were affected to the same extent when they were young, but either tended to 

recover or it is harder to detect cankers on older trees (i.e., measurements are biased). Second, 

the pathogen was more prevalent when the young trees were measured, and not as prevalent 

when the old trees were young. Finally, the older stands have a higher proportion of resistant 

trees because many of the susceptible trees have died. This latter explanation seems to be the 

most likely one. 

There is a tendency for young trees to be infected and die (York 1927; Kinloch and Byler 

1981). The distances between the pine needles and the stems of younger trees are shorter than 

those of older trees. Thus, the pathogen reaches the main stem of younger trees in a shorter time, 

resulting in more stem cankers on younger trees (Schwandt 2013). For example, a canker can 

reach the stem of a seedling in weeks, but it may take more than 40 years to kill mature trees 

(McDonald et al. 1981). Geils et al. (2010) concluded the pathogen causes faster death of young 

trees, and old trees may survive for years depending on the locations, abundance, and types of 

cankers. Childs and Kimmey (1938) also found more damage on smaller and presumably 

younger western white pine trees. Smith (2000) stated that the pathogen can girdle more of the 

cambium of young trees, resulting in more significant damage. Thus, he found more WPBR 
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damage on younger trees. If susceptible trees die young, then mature stands are more likely to be 

populated by more resistant trees with fewer cankers. The greater rust-resistance of older trees is 

sometimes called “ontogenetic resistance” (King et al. 2010). Although susceptible young trees 

may have more symptoms of WPBR and die quickly, older surviving trees may have few or no 

symptoms of WPBR (King et al. 2010). In particular, a few cankers close to the ground are 

enough to kill small trees (Buchanan 1938; Mielke 1943), and these trees would then be missing 

from older stands. 

In conclusion, based on CANK% and NUM_CANK, rust hazard was positively 

associated with tree growth and negatively associated with tree age, but had little relationship to 

tree height. These results demonstrate the potential problems of using both younger and older 

stands for measuring rust hazard. If susceptible trees died when the stand was young, the rust 

hazard of sites that have older stands will be underestimated. These results also emphasize that 

timely, appropriate, and intensive management techniques of WPBR are important. For example, 

pruning could be more effective for the sites with young trees. This is because removing 

branches of younger trees can reduce the occurrence of stem cankers. Thus, the trees with little 

or no genetic resistance to WPBR could survive at sites with high hazard. This may be 

undesirable for improving rust resistance, but could maintain genetic diversity for other traits 

(Hunt 1983; Hagle et al. 1989). From the financial point of view, applying the appropriate 

technique is important for the trees to reach merchantable age. 

5.1.5 How was tree growth affected by environmental variables and rust traits? 

Western white pine and sugar pine are fast-growing species, making them valuable for forest 

ecosystems and the timber industry (Goheen and Goheen 2014). However, variation in forest 

productivity is associated with abiotic and biotic factors, particularly climate, and in the case of 
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white pines, blister rust disease. A better understanding of these abiotic and biotic factors could 

help to improve forest management of white pines. Thus, I studied the relationships between tree 

growth versus environmental variables and rust traits. One purpose was to identify the best 

climate variables to use for future projections of tree growth (see below). Another purpose was to 

evaluate the effects of rust disease on tree growth after accounting for climate. 

First, I studied the associations between tree growth and environmental variables alone. 

Surprisingly, faster tree growth was associated with harsher temperatures. For example, tree 

growth was negatively correlated with mean coldest month temperature (MCMT), minimum 

temperatures in spring and summer (Tmin_sm and Tmin_sp), winter degree-days above 5°C 

(DD5_wt), and extreme maximum temperature (EXT). A possible explanation for these 

relationships is that rust damage reduced tree growth. As discussed above, rust disease was 

greater at sites with longer growing seasons and milder temperatures. 

Second, I added rust variables to the environmental variables used above to infer the 

direct effect of rust disease on tree growth. The resulting model included many of the same 

variables as the model described above, but now that rust variables were added, CANK% and 

NUM_CANK were the most important predictors of tree growth. Contrary to expectations, 

however, tree growth was positively correlated with the percentage of trees with a canker 

(CANK%) and number of cankers per tree (NUM_CANK). As discussed above, this suggests 

that faster growing trees may be more susceptible to rust disease, and this effect was more 

pronounced than any adverse effects rust disease had on growth of the surviving trees. 

Alternatively, the sites that had the best climates for tree growth may have had climates that were 

more favorable for the pathogen. 
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In conclusion, the growth of western white pine and sugar pine seemed to be greater at 

the sites with harsher temperatures and moisture. Thus, I speculated this might be because there 

was less rust disease at these sites. 

However, this conclusion was contradicted by the observation that sites with faster growing trees 

had more rust disease. Thus, the multivariate relationships between site climate, tree growth, and 

rust disease are not obvious. 

5.1.6 How will rust traits change under future climates? 

I studied the relationships between key rust traits, CANK% and NUM_CANK, versus future 

climate variables and ASPECT to identify how the rust traits will change under future climates. I 

aim to provide forest managers with the information needed to select future sites for white pine 

plantations based on rust hazard and climate projections. Climate change may alter the 

interactions among hosts, pathogen, and environment. This may accelerate the spread and 

inoculation potential of WPBR by expanding the duration of favorable climate conditions 

(Kinloch 2003; Wyka et al. 2018). In contrast, the shifts may inhibit the spread and inoculation 

potential of WPBR if drought or cold intensifies under climate change. Considering the expense 

of establishing, protecting, and sustaining forest plantations, identifying lower hazard sites 

should help retain sugar pine and western white pine on the landscape. 

There are concerns that WPBR has been worsening with climate change (Keane et al. 

2017). In contrast, other studies indicated WPBR would probably be lower in the future due to 

climate change (Kinloch 2003; Sturrock et al. 2011; Dudney et al. 2021). More specifically, 

Sturrock et al. (2011) concluded that pathogen pressure would decrease in the future because of 

warmer summers and springs due to climate change, inhibiting spore development and 

transmission (Frank et al. 2008). 
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My research indicates that changes in rust hazard are uncertain. I projected small but 

uncertain rust infections for western white pine and sugar pine under four climate change 

scenarios of warmer and drier future conditions. As discussed above, Cronartium requires moist 

air and relatively cool temperatures to infect trees and alternate hosts (Geils et al. 2010). Dudney 

et al. (2021) stated that a decrease in rust could be observed in some areas under future climate 

change scenarios. However, these changes may be nonlinear and differ across the landscape. 

I projected a small decrease in rust hazard in a warmer and drier future. By the end of the 

century, I found a projected increase in temperatures in spring, summer, and winter, indicating a 

longer growing seasons. However, I also projected a decrease in relative humidity in summer and 

autumn under all SSPs. This suggests that springs and summers will probably be drier in the 

future. If true, this may inhibit initial spore development on pine and alternate hosts. However, I 

projected only a small decrease in rust traits in the future. Thus, I concluded that climate change 

will probably have little effect on WPBR in southwestern Oregon. Furthermore, I found 

projected changes in rust disease were inconsistent and uncertain.  The potential reasons for this 

are discussed below. 

Below, I discuss a number of caveats that probably affected the performance of my rust 

prediction models and reliability of future projections. The first caveat is that I studied 

correlations or the importance of variables in predictive models. Thus, I cannot draw direct 

cause-and-effects conclusions on the effects of environmental variables and tree characteristics 

on WPBR. However, the variables I used in RF analyses corresponded to those used in the 

studies that revealed cause and effect relationships between the environment and WPBR (Van 

Arsdel et al. 1956; Van Arsdel et al. 1957; Van Arsdel 1961; Hunt 1983). 
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The second caveat is that I studied rust hazard versus climate variables, which consisted 

of 30-year averages. Thus, my study did not provide information about the occurrence of specific 

wave years. Rust infection can occur yearly, but wave years occur when the weather is 

particularly suitable for rust development, resulting in rust epidemics (Mielke 1943; Peterson 

1971; Kinloch 2003; R. Sniezko pers. comm.). The gap between wave years could be 4 to 10 

years (Kinloch et al. 1996; Schwandt et al. 2013). The wave years are less likely to occur as the 

weather becomes warmer and drier (Kinloch 2003). However, the behavior of the wave years is 

not fully understood (Kinloch et al. 1996; Schwandt et al. 2013). 

The third caveat is that I did not account for the alternate hosts. Ribes species are one of 

the main reasons for the occurrence, spread, and intensity of WPBR because they are alternate 

hosts (Geils et al. 2010). However, I had no information about the distribution of alternate hosts 

in the study area or their presence/absence at the sites I studied. Goheen and Goheen (2014) 

stated that infection was severe at sites in southwest Oregon with or without Ribes species. This 

may be because Castilleja and Pedicularis spp. acted as alternate hosts at these sites or Ribes 

species occurred near the surveyed stands. Due to the nature of the disease, I assumed Ribes 

species existed in the area I studied. 

The fourth caveat is that I did not account for other environmental variables that might 

have improved the prediction models. For example, I did not include the abundance of water 

sources in the study areas and the distance of these water sources to the study sites. Smith-

McKenna et al. (2013) concluded that areas with abundant water (e.g., near lakes and streams) 

had more WPBR. They stated these areas provided moisture for developing and establishing 

WPBR (Smith-McKenna et al. 2013). Additionally, I did not account for durations of free water 

on the surface of hosts’ leaves, called ‘leaf wetness duration’ (Bebber 2015). Rust inoculation is 
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only possible under a certain duration of wetness with specific temperatures (Van Arsdel et al. 

1956).  

Accounting for the plant’s leaf wetness duration might increase the prediction model’s 

accuracy. However, this would be complex because leaf wetness is estimated from daily 

temperature, precipitation, and humidity (Bregaglio et al. 2011), data which are typically 

unavailable. Furthermore, I did not use soil variables that provide information about available 

water capacity and other soil characteristics (USDA 2006). These data may be important to 

evaluate tree vigor associated with site quality. 

Based on my results, future changes in rust hazard appear to be small and uncertain. 

Furthermore, climate change will complicate relationships among hosts, pathogens, and the 

environment. In particular, it would be valuable to include the current distributions of alternate 

hosts in the rust prediction models. Then, it would be possible to use future projections of 

alternate host distributions to better understand WPBR in the future. Rust infections generally 

occur on the undersides of Ribes leaves, but may occur on branch stems in some species 

(Kimmey 1938). Therefore, Ribes species have different levels of resistance to WPBR and 

provide different levels of inoculum, which influence WPBR incidence and severity on pines. 

Although researchers have conducted studies on the distributions of Ribes species, detailed 

information is still needed. For example, Kimmey (1938) studied the relative susceptibility of 

Ribes species to WPBR. Van Arsdel and Geils (2004) ranked Ribes species in relation to the 

spread and intensification of WPBR. They found that Ribes nigrum is the most susceptible with 

more telia production, and Ribes cereum is the most resistant with less telia production. Strunk 

(2020) mapped the distribution of some Ribes species in the PNW. Furthermore, the U.S. Forest 

Service (USDA) has a database of plant inventories for the U.S., including these alternate hosts. 
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The causes of wave years should be documented to improve our understanding of 

climate-pathogen interactions (Schwandt et al. 2013). Furthermore, it would be valuable to 

project the occurrence of wave years in the future. Because unusual weather conditions seem to 

be responsible for wave years, it may be possible to correlate wave years with climate. If so, 

prediction models could be used to project wave years in the future, which would improve our 

projections of rust hazard.  

Finally, it might be helpful to add soil data to the prediction models to project where 

suitable sites for white pines might exist in the future. The sites with lower moisture and nutrient 

concentrations could be an option for pines to escape WPBR. This is because the growth and 

development of alternate hosts might be slower due to poor soil conditions (Kranabetter and 

Simard 2008). Moreover, the pathogen may adapt faster to climate change than pine and 

alternate hosts (Schoettle et al. 2022). Thus, it is only possible to make rough predictions of rust 

hazard presently. Based on my projections, southwestern Oregon could remain suitable for 

planting of sugar pine and western white pine, particularly if rust-resistant genotypes are used. 

5.1.7 How will tree growth change under future climates? 

I studied the relationships between tree growth (HT/AGE) versus future climate variables and 

rust variables, CANK% and NUM_CANK, to identify how tree growth will change under future 

climates. I aim to provide forest managers with the information needed to improve management 

options for white pine and identify future sites for white pine plantations based on potential tree 

growth in relation to climate change and WPBR.  

Climate change alters species compositions and climatic habitat suitability. Loehman et 

al. (2011) projected an increase in western white pine populations with warming temperatures 

and increasing fire suppression. Western white pine uses fire to regenerate, which probably also 
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helps trees escape from WPBR (Loehman et al. 2011; Hines 2013; Wang et al. 2023). Whitebark 

pine growth increased with warmer temperatures and extended growing seasons in the Northern 

Rocky Mountains without considering WPBR (Loehman et al. 2011). However, climate change 

may reduce tree growth in some regions, especially in warmer and drier areas. One of the main 

reasons for this is that available soil water will be reduced due to increased temperatures 

throughout the year (Keane et al. 2018). For the same reason, tree growth was projected to 

decrease in the southwestern and northwest United States (Harvey et al. 2020). Stern et al. (2021) 

predicted an increase in the growth rate of eastern white pine and eastern hemlock with higher 

temperatures in spring and fall. However, higher summer temperatures are expected to offset 

these growth benefits (Stern et al. 2021).  

My main conclusion was that the average growth rate of sugar pine and western white 

pine will probably increase, but this increase will not be large. At the end of the century, I 

projected that changes in tree growth will be small under all SSPs. I have two possible 

explanations for this, including the effects of climate and WPBR. First, warmer and drier 

climates would inhibit initial spore development on pine and alternate hosts, possibly resulting in 

less rust damage (discussed above). Furthermore, many studies projected increases in tree growth 

in higher-elevation forests (Littell et al. 2011; Harvey et al. 2020; Schoettle et al. 2022; Halofsky 

et al. 2022). Warmer climates will increase the number of frost-free days at upper elevations 

(Little 1971), leading to increased growth at sites that are currently cold-limited. In contrast, a 

warming climate will probably cause earlier snowmelt, and then earlier depletion of soil water 

(Mahalovich 2013). The area of southwestern Oregon I studied is also water limited, resulting in 

water stress on trees (Halofsky et al. 2016; Halofsky et al. 2022). The confounding effects of 

climate change may explain the small increases in tree growth suggested by my results. My 
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results suggest that climate change will probably have little effect on the growth of sugar pine 

and western white pine in southwestern Oregon. 

A caveat for the tree growth prediction models is that I did not account for increases in 

CO2 due to climate change. With sufficient moisture and nutrients, increases in atmospheric CO2 

result in higher net photosynthesis, facilitating tree growth. However, in southwestern Oregon, 

there is limited water during the growing season, and drought may increase because of less 

snowpack and earlier snowmelt (Restaino et al. 2016).  Thus, trees in this region may not benefit 

from increased CO2. Nonetheless, increased CO2 could increase water use efficiency, potentially 

offsetting the effects of water stress during the growing season (Halofsky et al. 2022). Sugar pine 

and western white pine growth positively correlated with higher nighttime temperatures, 

probably because of increased CO2 (Maloney et al. 2011). In addition, an increase in tree growth 

was positively associated with canker growth (Kearns 2009; Schoettle et al. 2022). Overall, 

including the effects of changes in atmospheric CO2 in prediction models would probably have 

little effect on projections of tree growth. As for the rust prediction models described above, the 

tree growth prediction models might be improved by accounting for other factors. Western white 

pine and sugar pine populations in southern Oregon could be more vulnerable to climate change 

than northern regions because of limited water availability.  
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6. Chapter 6 

6.1 General Conclusion 

6.1.1 Future Work 

Because my study is exploratory, it is only possible to make predictions in general. However, 

projection analyses help identify data patterns allowing exploratory analyses. RF regression 

models and ClimateNA could be considered for future research. RF is advantageous because it 

can handle missing values and identify linear and non-linear relationships between dependent 

and independent variables. RF could also select the most important independent variables from 

many independent variables. In addition, RF models provide relative importance of independent 

variables, allowing forest managers to prioritize the most important management strategies for 

WPBR. 

Using RF models to project the effects of climate change on WPBR hazard can be a valuable 

approach for WPBR management and conservation efforts for white pines. Prediction models 

can be trained on historical data to project the future WPBR hazard under multiple climate 

change scenarios. ClimateNA generates historical and future climate variables based on different 

climate change scenarios. The percentage of trees with a stem canker, the average number of 

cankers per tree, the average height of the highest canker, rust hazard index, and average tree 

growth can be projected using RF models. 

Overall, it is possible to project WPBR hazard and average tree growth in the future with 

appropriate data and approaches. The success of the projection depends on addressing the study 

caveats making projections uncertain. First, I recommend accounting for the distribution of Ribes 

species, the occurrence of wave years, and moisture-associated environmental variables. Second, 

I recommend updating the models as new data becomes available based on the latest version of 
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climate change scenarios. Third, this study does not imply causation, and further analyses are 

needed to establish causal relationships better understand WPBR behavior. Finally, permanent 

plots could be established to monitor WPBR. 

6.1.2 Conclusion 

Forests have been one of the most important resources for humanity throughout history. 

Managing this vital resource sustainably and carrying it into the future is one of today's most 

critical issues. However, climate change disrupts the balance of forest ecosystem dynamics 

(Sturrock et al. 2011). Whereas this imbalance is advantageous for some forest disturbances, it 

poses a threat to tree species in general. WPBR incidence and severity may increase or decrease 

in the current regions, or the pathogen may move to new climatically-suitable habitats and cause 

epidemics due to climate change. In southwestern Oregon, mild temperatures and sufficient 

moisture were associated with higher rust infection. In areas with warmer and drier conditions 

with the longer growing season, WPBR may still be present. However, the impact on tree health 

may be less significant. Thus, drought during the growing season seems to be the most critical 

factor impacting both WPBR and average tree growth in the future. Understanding how the 

pathogen response to climate change is important for developing feasible and viable WPBR 

management techniques needed to manage white pines better to reduce the risk of WPBR and 

protect these important tree species.  
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