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Climate change impacts everyone’s food and water security. Increasing global 

temperatures accelerate the hydrologic cycle and consequently impact the water resources 

for billions of people worldwide. Countless models have been developed to represent 

various components of the hydrologic cycle at various spatial and temporal scales. These 

are often validated against bulk fluxes and are widely used to predict the response of 

hydrologic systems to changing stressors. Natural tracers, such as stable water isotopes, 

can be applied within modeling frameworks to provide additional points of comparison 

between observed and modelled environmental pools and fluxes. A tracer-enabled 

modeling approach allows for process-level inferences based not only on the size of 

fluxes, but also on the spatial and temporal transport and mixing of the geochemical 

signatures associated with bulk fluxes. These process-level inferences can facilitate 

improved understanding and a multi-response evaluation of a model’s performance.  

In this dissertation, I show how natural tracer datasets can be applied to improve 

our understanding and representation of ecohydrologic processes ranging from fine-scale 

subsurface flow dynamics to ecosystem scale evapotranspiration (ET) flux partitions. 

First, I developed a statistical downscaling method which can be applied on coarse 

resolution time series of geochemical tracers in precipitation. The statistical downscaling 



 

 

method had low absolute error across the 27 datasets from sites located worldwide. The 

results suggest coarsely sampled precipitation tracers can be accurately downscaled to 

daily values.  

Next, I tested if isotopic separations occurred within 650 distinct configurations of 

soil properties, climatologies, and mobile/immobile soil-water domains using an 

advanced soil physics model. The model simulations showed separations in isotope ratios 

between storage and drainage waters during periods of high precipitation, soil water 

content, and drainage. Across soil types and climates, lower saturated hydraulic 

conductivity and higher rainfall rates amplified isotopic differences, illustrating how 

mobile and immobile domains interact with local conditions to physically result in 

subsurface separations. These results exposed how different critical-zone solute fluxes 

can be generated by representing contrasting transport dynamics in distinct domains 

across a range of soils and climate conditions.  

Lastly, I investigated the uncertainty in total ET for three land surface models 

(LSMs) in the North American Land Data Assimilation System (NLDAS) configuration 

using observation datasets of precipitation and ET at 14 sites across the United States 

from the National Ecological Observatory Network (NEON). The biweekly precipitation 

collections of stable water isotope ratios were statistically downscaled to correspond with 

daily NLDAS forcings and used as conservative tracers within a mass balance model 

built from LSM outputs. The mass balance simulated stable water isotope concentrations 

(δ) for each ET partition, subsurface drainage, surface runoff, and storage. Simulated δET 

was directly compared to daily δET observations, which were calibrated from NEON 

tower measurements of atmospheric water vapor. An inter-model comparison suggested 

distinct differences exist amongst simulated δET and this can be associated with 

disparities in the relative contributions of interception, plant transpiration, and soil 

evaporation to the total ET. These findings can improve the general understanding of 

land-surface processes influencing the water and carbon cycle from regional to global 

scales. 
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Chapter 1. General Introduction 
 

 The hydrologic cycle has been intensifying and will continue to intensify with 

increasing global temperatures (IPCC, 2021; Huntington et al., 2018; Madakumbura et 

al., 2019; Mitchell et al., 2016). The hydrologic cycle describes the continuous movement 

of water in the Earth-Atmosphere system. Rising air temperatures increase the amount of 

moisture an air mass can hold and increase the potential for larger precipitation events. 

Higher temperatures also accelerate other components of the hydrologic cycle (e.g., 

evaporation from the land surface and water bodies, snow and ice melt; Huntington et al., 

2018; Madakumbura et al., 2019; Mitchell et al., 2016). Climate change has been 

observed and is projected to impact regions across the globe differently. Rainfall 

intensities are expected to increase over most land areas, with daily extreme precipitation 

likely to increase by ~7% for every 1 degree Celsius. However, dry extremes are also 

expected in regions like the Mediterranean, southwestern Australia, southwestern South 

America, South Africa, and western North America (IPCC, 2021). Consequently, 

changes to the hydrologic cycle will impact water resources for billions of people 

worldwide and we need appropriate models to represent past, present, and current drivers 

of the hydrologic cycle.  

Scientists have developed countless models representing various components of 

the hydrologic cycle (Overgaard et al., 2006). When developing these models, outputs are 

usually compared against a predefined objective function (often bulk fluxes). This leads 

to a common problem in hydrology called equifinality, where many different parameters 

or parameter sets can yield reasonable values when compared to an objective function 

(Kelleher et al., 2017; Beven, 2000). Natural tracers can be applied to provide additional 

points of comparison between observed and modelled environmental pools and fluxes 

(Abbott et al., 2016) and aid in the evaluating the performance and efficiency of a 

modelling approach (Krause et al., 2005). Tracer-enabled modeling allows for process-

level inferences based not only on the size of fluxes, but also on the spatial and temporal 

transport and mixing of the geochemical signatures associated with the fluxes, thereby 

facilitating improved understanding and multi-response model evaluation (Bowen & 
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Good, 2015; Krause et al., 2005; McGuire & McDonnell, 2006; Sprenger et al., 2019; 

Turnadge & Smerdon, 2014).  

Stable water isotopes are a natural tracer that has been widely applied to add 

additional evaluation metrics and provide new insights when drawing conclusions from 

hydrologic models (Chai et al., 2015; Brooks et al., 2014; Good et al., 2015; Gupta et al., 

2020; Kanner et al., 2014; Remondi et al., 2018). The stable water isotope ratios of 

hydrogen (2H/1H) and oxygen (18O/16O), hereafter expressed as δ2H and δ18O (Krause et 

al., 2005; Bowen et al., 2015; McGuire and McDonnell, 2006; Sprenger et al., 2019; 

Turnadge and Smerdon, 2014; Fiorella et al., 2021), are commonly used to study land 

surface processes from local to global scales and provide useful information for 

partitioning ET into evaporation and transpiration at the ecosystem scales (Good et al., 

2015; Xiao et al., 2018). Water isotopes have been used to understand water use 

efficiency in forests, agricultural, and other ecosystems (Wu et al., 2018; Al-Qqaili et al., 

2020) and provide insights into underlying principles of water and energy cycling in the 

soil-vegetation-atmosphere continuum (Good et al., 2015; Xiao et al., 2018; Lu et al., 

2017; Wieser et al., 2016). 

In many modeling applications, observed and modeled temporal resolutions are 

different and, in these cases, a downscaling method is required to use observed datasets 

within a model to evaluate processes with dynamic fluctuations over short temporal 

intervals (Ebtehaj & Foufoula-Georgiou, 2013). The temporal resolution at which many 

geochemical tracers are collected, a result of analytical or logistical cost or the need to 

aggregate them in time to achieve a measurable signal due to low tracer concentrations, 

contrasts with the time steps typical of many hydrometeorological models (Rosa et al., 

2012; Gupta et al., 2020). Statistical downscaling leverages relationships observed in 

both fine- and coarse-scale measurements to predict fine-scale variations where only 

coarse-scale data are available (Ebtehaj & Foufoula-Georgiou 2013; Goncu & Albek 

2016). Extensive work has focused on downscaling precipitation rate, including through 

use of temporal neural networks (e.g., Coulibaly et al., 2005), stochastic methods (e.g., 

Bordoy & Burlando, 2013; D’Onofrio, 2013; Poduje & Haberlandt, 2017), and 

conditional multivariate statistical models (e.g., Yang et al., 2010). However, past studies 



 

 

3 
have not temporally downscaled precipitation chemistry data, as is warranted for tracer 

applications. 

Chapter 2 details a downscaling method that uses the statistical structure of 

observed stable isotope time series to downscale and generate stable isotope time series at 

finer resolutions. The study used daily observations of precipitation amounts and isotope 

ratios from 27 monitoring stations across the globe. The daily data were artificially 

aggregated to weekly, biweekly, and monthly scales, using amount-weighted running 

means to simulate coarser-scale datasets on which to apply the method. These aggregated 

time series were evaluated for statistical trends, specifically characterizing how the time-

series means, standard deviations and correlation structures changed as the temporal 

sampling interval increased. Then, the statistical downscaling method was applied on 

each of the weekly, biweekly, and monthly aggregated tracer time series to generate 

downscaled tracer values. An ensemble of downscaled realizations was generated at each 

site, the statistics of which were compared to those of the original daily observations. The 

objective was to generate downscaled realizations that accurately preserved the observed 

daily δ2H and δ18O means and standard deviations and the correlation structure between 

precipitation amount, δ2H, and δ18O, so that these realizations could be suitable for 

various potential modeling applications. This statistical downscaling method was applied 

to study various aspects of the hydrologic cycle at different spatial and temporal scales in 

Chapters 3-5 of this dissertation.  

In Chapter 3, I configured 650 geochemically enabled soil physics models 

(HYDRUS-1D; Šimünek et al., 2013; Stumpp et al., 2012) to evaluate soil water 

transport and mixing across a range of soil types and with simulated precipitation from 

different climates. This approach explicitly allowed for heterogeneous mixing of solutes 

at depth via a dual-porosity method. Observations of water from soils, plants, and 

streamflow are geochemically disparate, as was first shown by Brooks et al. (2010) and 

further explored in subsequent studies (Radolinski et al., 2021; Sprenger et al., 2019; 

McDonnell et al., 2014; Stumpp et al., 2009; Sprenger et al., 2016). These results conflict 

with traditional hydrologic assumptions where soil layers are well-mixed water reservoirs 

wherein new precipitation completely mixes with previously stored water before seeping 
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downward or being absorbed by roots for transpiration. Separations (i.e., differences) in 

tracer concentrations have specifically been reported among water traveling through 

preferential flow paths, water residing and tightly held within a soil matrix, and water 

discharged as drainage across various soil types (Radolinski et al., 2021; Barbeta et al., 

2020; Berry et al., 2018; Dubbert et al., 2019; Maloszewski et al., 2006; Vargas et al., 

2017) and climates (Brooks et al., 2010; Sprenger et al., 2019; Chen et al., 2020; Mueller 

et al., 2014; Stumpp and Hendry, 2012).  

Specifically, the research objective in Chapter 3 was to test how pore 

heterogeneity alone (i.e., without confounding evaporative or instrumental effects; 

Stumpp and Hendry, 2012) can give rise to separations in soils across a range of soil 

types and climates. While the subsurface processes conceptualized in advanced models, 

such as HYDRUS-1D, represents current mechanistic knowledge within the soil-physics 

community, the high degree of numerical discretization coupled with the large number of 

non-linear functions programed into these models, requires an evaluation of these models 

across an ensemble of configurations to deduce those emergent priorities inherently 

arising from a chosen set of soil physics. It was hypothesized (1) isotopic separations 

should arise between water pools if a soil has heterogeneous porosities and (2) the degree 

of separation between water pools is controlled by soil hydraulic properties and climate 

conditions. This work extends beyond previous studies by identifying how interactions 

between climate and porosity heterogeneity within a soil profile drive incomplete mixing 

in soils. These results help frame how we understand and represent solute transport and 

mixing in the subsurface. 

Chapters 4 and 5 shift to focus on leveraging observation datasets of stable water 

isotopes to evaluate model uncertainties and estimates of bulk fluxes. Terrestrial 

evaporation has long been recognized as a driving factor of the hydrologic cycle (Irmak, 

2008; Katul and Novick, 2009; Long and Singh, 2012; Miralles et al., 2016) and explains 

~70% of total precipitation globally (Good et al., 2015). The evapotranspiration (ET) flux 

connects the water, carbon, and energy cycles and is critical for understanding linked 

ecological processes (Jung et al., 2010; Good et al., 2015). ET is responsive to radiative 

forcing and changes to the atmosphere’s chemical composition. As a result, 
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anthropogenic impacts and global climate change can impact the magnitude of the 

evaporative flux and influence all components of the hydrologic cycle (Wild and Liepert, 

2010; Miralles et al., 2016). Large uncertainties exist in both the magnitude and direction 

of long-term trends in global ET, with ET increasing by 1.1 mm/year for 26% of earth’s 

land surface and decreasing at a rate of -1.3 mm/year for 7% of earth’s land surface (Feng 

et al., 2017). Uncertainties also exist amongst ET’s partitions of 1) evaporation from the 

bare soil and water bodies, 2) the transfer of water vapor to the atmosphere through plant 

canopies (transpiration), 3) evaporation from canopy interception (interception loss), and 

4) sublimation of snow and ice (Ajami, 2021; Good et al., 2015; Irmak, 2008; Katul and 

Novick, 2009; Kumar et al., 2018; Miralles et al., 2016). Research has estimated 

transpiration constitutes anywhere from 50 to 74% of total global ET (Good et al., 2015; 

Maxwell and Condon, 2016). These large uncertainties call for additional constraints on 

ET to accurately represent various components of the water and energy cycles across 

spatial and temporal scales. 

The United States National Ecological Observatory Network (NEON) collects 

long-term ecological data in eco-climatologically diverse field sites across the United 

States and provisions these data through an open access data portal 

(https://data.neonscience.org/). These publicly available isotope datasets are part of an 

important network documenting hydrometeorological tracer patterns throughout North 

America. The NEON atmospheric gas stable-isotope measurements are collected at 

approximately hourly intervals (varying by site), enabling robust daily calculations of 

net-ecosystem-exchange (NEE) and evapotranspiration flux isotope ratios (e.g., via mass 

balance approaches developed by Keeling (Pataki et al., 2003) and Miller-Tans (Miller & 

Tans, 2003)). The precipitation isotope data are collected at biweekly intervals, but they 

can be downscaled to a daily resolution using a validated approach (Finkenbiner et al., 

2021a). By conducting those pre-processing steps, we can facilitate subsequent 

applications using these published daily flux data products. Chapter 4 details the data 

descriptor associated with an open-access datasets on Hydroshare (Finkenbiner et al., 

2021b). The dataset contains daily records of a) δ2H and δ18O in precipitation fluxes (FP) 

at 16 NEON core sites and 16 NEON relocatable sites, b) δ2H and δ18O of ET fluxes 
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(FET) at 19 NEON core sites and 2 NEON relocatable sites, and c) carbon isotopes (δ13C) 

of NEE fluxes (FNEE) at 19 NEON core sites and 28 NEON relocatable sites. These 

products form daily flux isotope datasets across diverse ecosystems over a multi-year 

span created using consistent instrumentation and methodology.  

Chapter 5 leverages observation datasets (from Chapter 4) of stable water isotopes 

to evaluate the uncertainties in ET from Noah (version 2.8; Chen et al., 1996; Ek et al., 

2003; Xia et al., 2012), Mosaic (Koster and Suarez, 1992, 1996), and Variable Infiltration 

Capacity (VIC; Liang et al., 1994) land-surface models (LSMs) implemented in the 

operational North American Land Data Assimilation System Phase 2 (NLDAS-2) 

configuration (Xia et al., 2012). Noah, Mosaic, and VIC are all validated against 

observation-based meteorological data (Xia et al., 2012) and provide reasonable estimates 

of the bulk ET flux (Zhang et al., 2020). Yet, all have striking differences in their 

partitions of evaporation, transpiration, and interception (Kumar et al., 2018). It was 

hypothesized that incorporating stable water isotopes as tracers into a mass balance 

model built from Noah, Mosaic, and VIC output fluxes would allow us to constrain the 

uncertainty in bulk ET and provide guidance toward model selection. Stable water 

isotope (δ!H, δ$3O) observation datasets of precipitation and ET fluxes were leveraged 

from 14 sites across the United States from the National Ecological Observatory Network 

(NEON). The mass balance simulated stable water isotope concentrations (𝛿) for input 

precipitation and outputs of each ET partition (i.e., evaporation from the bare soil, 

transpiration, interception loss, sublimation), subsurface drainage, surface runoff, and 

storage. Simulated 𝛿𝐸𝑇 was directly compared to daily 𝛿𝐸𝑇 observations, which were 

calibrated from NEON tower measurements of atmospheric water vapor. Specific 

research questions included: 1) Do the different ET partitions assumed by Noah, Mosaic, 

and VIC LSMs result in distinct differences amongst simulated 𝛿𝐸𝑇? 2) Can stable water 

isotopes add additional metrics to evaluate and constrain uncertainties in 𝛿𝐸𝑇 compared 

to bulk fluxes? 3) Can we use simulations of 𝛿𝐸𝑇 to move toward improved model 

selection for representing land-surface fluxes from a site-level to global scale? 
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Chapter 2. A Statistical Method for Generating Temporally Downscaled 
Geochemical Tracers in Precipitation 
 
Chapter 2.1 Abstract 

Sampling intervals of precipitation geochemistry measurements are often coarser 

than those required by fine-scale hydrometeorological models. This study presents a 

statistical method to temporally downscale geochemical tracer signals in precipitation so 

that they can be used in high-resolution, tracer-enabled applications. In this method, we 

separated the deterministic component of the time series and the remaining daily 

stochastic component, which was approximated by a conditional multivariate Gaussian 

distribution. Specifically, statistics of the stochastic component could be explained from 

coarser data using a newly identified power-law decay function, which relates data 

aggregation intervals to changes in tracer concentration variance and correlations with 

precipitation amounts. These statistics were used within a copula framework to generate 

synthetic tracer values from the deterministic and stochastic time series components 

based on daily precipitation amounts. The method was evaluated at 27 sites located 

worldwide using daily precipitation isotope ratios, which were aggregated in time to 

provide low resolution testing datasets with known daily values. At each site, the 

downscaling method was applied on weekly, biweekly, and monthly aggregated series to 

yield an ensemble of daily tracer realizations. Daily tracer concentrations downscaled 

from a biweekly series had average (+/- standard deviation) absolute errors of 1.69‰ 

(1.61‰) for δ!H and 0.23‰ (0.24‰) for δ$3O relative to observations. The results 

suggest coarsely sampled precipitation tracers can be accurately downscaled to daily 

values. This method may be extended to other geochemical tracers to generate 

downscaled datasets needed to drive complex, fine-scale models of hydrometeorological 

processes. 

 

 

 

 



 

 

9 
2.2 Introduction 

 

Naturally occurring chemical signatures in precipitation (e.g. Bailey et al. 2018, 

Bowen et al. 2019, Gibson et al. 2005, Kendall and McDonnell 2012, Moerman et al. 

2013, West et al. 2010, Wiederhold 2015) are frequently used as hydrometeorological 

tracers, especially when inferring transport or chemical transformations through 

terrestrial, aquatic, and atmospheric environments (e.g. Abbott et al. 2016, Brooks et al. 

2014, Good et al. 2015, Gupta et al. 2020, Kanner et al. 2014, Remondi et al. 2018). 

Tracer-enabled modeling allows for process-level inference based not only on the size of 

fluxes, but also on the spatial and temporal transport and mixing of the geochemical 

signatures associated with the fluxes, thereby facilitating improved understanding and 

multi-response model evaluation (Bowen and Good 2015, Krause et al. 2005, McGuire 

and McDonnell 2006, Sprenger et al. 2019, Turnadge and Smerdon 2014). Researchers 

have used tracers within global climate models to evaluate processes that are challenging 

to observe (e.g., ageostrophic circulations, convection and turbulence) or are modeled at 

sub-grid scales and are therefore not explicitly simulated but parameterized (e.g., Gupta 

et al. 2020, Orbe et al. 2020, Rosa et al. 2012). For instance, isotope-enabled general 

circulation models (GCMs) have explicitly simulated water isotope ratios within the 

critical zone on sub-daily time scales (e.g., a version of the Community Earth System 

Model (iCESM1); Brady et al. 2019, Nusbaumer et al. 2017, Wong et al. 2017) and 

provide outputs which have been evaluated against observational datasets at various 

scales (e.g., Hoffmann et al. 2000, Nusbaumer et al. 2017, Risi et al. 2012, Steen-Larsen 

et al. 2016, Wong et al. 2017). 

In many modeling applications, observed and modeled temporal resolutions are 

different and, in these cases, a downscaling method is required in order to use observed 

datasets within a model to evaluate processes with dynamic fluctuations over short 

temporal intervals (Ebtehaj and Foufoula-Georgiou 2013). The temporal resolution at 

which many geochemical tracers are collected, a result of analytical or logistical cost or 

the need to aggregate them in time to achieve a measurable signal due to low tracer 

concentrations, contrasts with the time steps typical of many hydrometeorological models 
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(Rosa et al. 2012, Gupta et al. 2020). Accordingly, a method is needed to generate higher 

frequency datasets of precipitation chemistry from low frequency collections. 

Statistical downscaling leverages relationships observed in both fine- and coarse-scale 

measurements to predict fine-scale variations where only coarse-scale data are available 

(Ebtehaj and Foufoula-Georgiou 2013, Goncu and Albek 2016). Extensive work has 

focused on downscaling precipitation rate, including through use of temporal neural 

networks (e.g., Coulibaly et al. 2005), stochastic methods (e.g., Bordoy and Burlando 

2013, D’Onofrio 2013, Poduje and Haberlandt 2017), and conditional multivariate 

statistical models (e.g., Yang et al. 2010). However, past studies have not temporally 

downscaled precipitation chemistry data, as is warranted for tracer applications. 

Precipitation stable isotope ratios (δ2H and δ18O) are an ideal test case for 

developing a downscaling method that can benefit tracer applications if the downscaling 

can preserve multi-scale statistical properties (Ebtehaj and Foufoula‐Georgiou 2013). Not 

only is such downscaling in demand, decades of research demonstrate patterns in 

precipitation isotope ratios that could be leveraged in downscaling; specifically, 

precipitation amount often covaries with isotopic composition, attributable to the 

interplay of diverse climatological, physiographical, and meteorological factors in the 

evaporation, condensation, and transport of atmospheric moisture (e.g., Aggarwal et al. 

2016, Aggarwal et al. 2012, Bowen et al. 2019, Ingraham 1998, Konecky et al. 2019, Lee 

and Fung 2008, Moore et al. 2016, Risi et al. 2008, West et al. 2010). This (typically 

inverse) covariation between precipitation rates and isotope ratios, often referred to as an 

“amount effect”, represents partially systematic variations at sub-seasonal, monthly, and 

event time scales (Celle-Jeanton et al. 2001, Conroy et al. 2016, Craig 1961, Craig and 

Gordon 1965, Gat 1996, Lee and Fung 2008, Moore et al. 2013, Tharammal et al. 2017). 

If these amount effects share statistical similarities across various time scales, they could 

support downscaling methods to predict short-term fluctuations. Hypothetically, 

relationships inferred from sporadic or brief datasets could be used to predict short term 

variations in precipitation isotopic composition. Those patterns could be superimposed on 

the longer timescale seasonal patterns, which tend to follow regional patterns (Bowen et 
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al. 2019, Dansgaard 1964, Feng et al. 2009, Allen et al. 2019), to potentially generate 

realistic, continuous, high-frequency time series of precipitation isotope ratios. 

In this study, we developed and evaluated a downscaling method that uses the 

statistical structure of observed stable isotope time series to downscale and generate 

stable isotope time series at finer resolutions. We used daily observations of precipitation 

amounts and isotope ratios from 27 monitoring stations across the globe. The daily data 

were artificially aggregated to weekly, biweekly, and monthly scales, using amount-

weighted running means to simulate coarser-scale datasets on which to apply the method. 

These aggregated time series were evaluated for statistical trends, specifically 

characterizing how the time-series means, standard deviations and correlation structures 

changed as the temporal sampling interval increased. Then, the statistical downscaling 

method was applied on each of the weekly, biweekly, and monthly aggregated tracer time 

series to generate downscaled tracer values. An ensemble of downscaled realizations was 

generated at each site, the statistics of which were compared to those of the original daily 

observations. Our objective was to generate downscaled realizations that accurately 

preserved the observed daily δ2H and δ18O means and standard deviations and the 

correlation structure between precipitation amount, δ2H, and δ18O, so that these 

realizations could be suitable for various potential modeling applications. 

 

2.3 Data and Methods 

 

2.3.1 Site Information and Tracer Datasets 

Daily precipitation stable water isotope time series were downloaded from the 

International Atomic Energy’s (IAEA) Global Network of Isotopes in Precipitation 

(GNIP) and Water Isotope System of Data Analysis, Visualization and Electronic 

Retrieval (WISER) database (IAEA/WMO 2020). Each time series was filtered to ensure 

precipitation values were greater than zero and had corresponding δ2H and δ18O isotope 

ratios. All time series with greater than one year of observations were selected, resulting 

in the 27 datasets used in the subsequent analysis; details pertaining to each site are 

included in Table S1 located in the Supplementary Materials. A minimum time series 
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length of one year was chosen because we wanted to account for site-specific seasonal 

precipitation patterns in the generated downscaled tracer time series. We acknowledge 

seasonality is usually characterized over time scales greater than one year, however for 

this analysis we decided on a minimum of one year so the downscaling method could be 

applied to as many datasets as possible. In the Discussion, the downscaling method’s 

performance was evaluated against the number of years represented in the time series and 

the frequency of collection, i.e., the number of recorded precipitation events divided by 

the total number of days represented in the time series. The time series lengths ranged 

from 1.22 to 15.94 years, with an average of 5.34 years. The total number of samples in a 

time series ranged from 33 to 1026, with an average of ~210. The site with 33 samples 

(Barasat, Kolkata; Table S1) was sampled over 1.33 years.  

All hydrogen and oxygen isotope ratios of precipitation were denoted as δ2H and 

δ18O, defined by 

 

𝛿	(‰) = 	 4!"#$%&)	4!'(	
4!'(

	1000   Eq. 1 

 

where 𝛿 was the isotope ratio in delta notation, Rsample was the ratio of concentrations 

between the rare and abundant isotopologues, and Rstd was the isotopic ratio standard; for 

this analysis, that standard was the Vienna Standard Mean Ocean Water (VSMOW). The 

site locations and average stable water isotope observations were represented in Figure 

2.1. The 27 sites have an average mean (+/- standard deviation) daily observed 

precipitation of 22.80 (21.38) mm, δ2H of -37.77 (24.62) ‰ and δ18O of -6.03 (3.21) ‰. 

The maximum recorded total daily precipitation ranged from 43.0 to 317.5 mm across 

sites. At the 27 sites, the observed isotope ratios ranged from -228.0 to 43.35 ‰ for δ2H 

and -30.50 to 8.81 ‰ for δ18O. The site list included geographic locations across different 

climates and with uniform and seasonally varying precipitation amounts.  
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Figure 2.1. The large map displays the 27 GNIP site locations and their average δ!H 
precipitation measurements. The smaller figure is a dual isotope plot with the mean and 
standard deviations of all daily precipitation stable water isotope measurements (δ2H, 
δ18O) at the 27 GNIP sites. The Global Meteoric Water Line (GMWL) is included in the 
subplot. Refer to Table S1 in the Supplemental Material for more site-specific 
characteristics.  
 

Isotope ratios are often evaluated relative to the Global Meteoric Water Line 

(GMWL), which is defined as δ!H = 	8δ$3O + 10	‰ (Craig, 1961). Deuterium excess 

(d-excess (‰) 	= δ!H − 8δ$3O) measures the deviation of a water sample’s 

composition from the GMWL (Dansgaard, 1964) and is a useful secondary tracer in that 

it varies with respect to the evaporation and mixing history of airmasses (e.g., Benetti et 

al. 2014, Fröhlich et al. 2002, Pfahl and Sodemann 2014). One can use d-excess to 

understand both the source of precipitation and the evolution of moisture during transport 

(Fröhlich et al. 2002, Good et al. 2014). We aimed to preserve a site’s d-excess in the 

downscaled time series because it can be informative for a variety of hydrological and 

meteorological applications.  
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2.3.2 Constructing Low-resolution Datasets 

We aggregated each of the 27 GNIP site’s datasets using a moving, precipitation 

amount-weighted average (Eq. 2). This provided us with datasets of low-resolution tracer 

time series on which to apply the downscaling method to generate downscaled daily 

estimates to compare with the observed daily values. The precipitation amount-weighted 

average was defined as  

 

𝛿!𝐻BBBBBB" =	
∑ 6)7*8)
'
)+,
∑ 6)'
)+,

		𝑎𝑛𝑑		𝛿$3𝑂BBBBBBB" =	
∑ 6)7,-9)
'
)+,
∑ 6)'
)+,

  Eq. 2 

 

where P was total precipitation (mm), 𝛿!𝐻 (‰) and 𝛿$3𝑂 (‰) were the daily observed 

stable water isotope tracer values at time t (days), and 𝛿!𝐻BBBBBB" (‰) and 	𝛿$3𝑂BBBBBBB" (‰) were the 

t-day average tracer value within the specified aggregated temporal interval. 𝛿!𝐻BBBBBB" and 

	𝛿$3𝑂BBBBBBB" values populated a time series at t level of aggregation. We focused on 

downscaling time series aggregated at t values of 7-, 14-, and 28-days (weekly, biweekly, 

and monthly).  

Time series statistics were evaluated across a range of temporal intervals. 

Moerman et al. (2013) investigated the correlation structure between precipitation 

amount and δ18O at Mulu Meteo, Sarawak (Table S1) at daily to 12-week (84-days) time 

scales. Following their approach, we evaluated trends in the mean (𝜇), standard deviation 

(𝜎), and Pearson correlation coefficient (𝜌) at different temporal intervals to capture the 

time series response and prediction accuracy. The 𝜌 measures the linear correlation 

between two variables and has a value between -1 and 1, where 1 is a total positive linear 

correlation, 0 is no linear correlation, and -1 is total negative linear correlation. At the 

daily scale for the 27 GNIP sites, the average (+/- standard deviation) 𝜌(P,	δ!H) was -

0.18 (+/- 0.18), 𝜌(P,	δ$3O) was -0.20 (+/- 0.17) and 𝜌(δ!H, δ$3O) was 0.96 (+/- 0.03).  
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2.3.3 Statistical Precipitation Tracer Downscaling Method 

 

1) REMOVAL OF THE DETERMINISTIC TIME SERIES COMPONENT 

 Each aggregated weekly, biweekly, and monthly time series (Eq. 2) was treated as 

an example of a low-resolution dataset on which to apply the downscaling method. We 

considered each tracer time series to have a deterministic component and a stochastic 

component. In the first step, the deterministic component was characterized by the 

seasonality in the precipitation signal and was removed from each set of observations. 

Isotope ratios in precipitation frequently have been observed to exhibit distinct seasonal 

signals. These can be approximated as a combination of sinusoidal functions through 

Fourier decomposition (Allen et al. 2018, Allen et al. 2019, Dutton et al. 2005, Feng et al. 

2009, Halder et al. 2015, Vachon et al. 2007, Wilkinson and Ivany 2002). Sinusoidal 

functions effectively describe the collinear structure and fluctuations in the covariation of 

δ!H and δ$3O relative to the GMWL (Figure 2.1; Allen et al. 2018, Craig 1961, 

Dansgaard 1964). The sine curve parameters (amplitude, phase, and offset) are often 

predictable in space (Allen et al. 2018, Jasechko et al. 2016) and succinctly represent 

temporal dynamics because they express continuous, cyclic time series. Allen et al. 

(2019) used monthly isotopes in precipitation GNIP datasets from across the globe to 

capture patterns in the precipitation isotope seasonality using sinusoidal functions. When 

predicting the isotope seasonality, the values of the sine parameters can be described as 

functions of climate and geography. Additionally, sine curves are useful when describing 

the propagation of cyclic signals, this has been done to infer catchment-scale mixing 

processes using the dampening ratio of seasonal isotope amplitudes in streamflow versus 

precipitation (Kirchner 2016a, 2016b; also see Clow et al. 2018, von Freyberg et al. 2018, 

Gallart et al. 2020, Jacobs et al. 2018, Jasechko et al. 2016, Lutz et al. 2018, Song et al. 

2017). 

 We fitted sinusoidal functions to each of the site’s daily to 12-week aggregated 

time series to describe the deterministic components using a non-linear, least squares 

fitting routine, “curve_fit” in Python’s (v3.7.6) SciPy Library (v1.2.1), following the 

methods from Allen et al. (2018). We used a time-weighted fit routine (i.e., not amount 



 

 

16 
weighted and each daily sample had equal weight) to approximate the parameters of the 

sinusoidal function (Eq. 3) because our ultimate goal related to predicting daily 

precipitation variations in isotopic composition, regardless of whether or not they are 

associated with larger events. The sine functions were defined with a fixed period of one 

year and  

 

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛	𝛿!𝐻	or	𝛿$3𝑂(𝑓) = 𝐴 𝑠𝑖𝑛(2𝜋𝑓 − 𝜙) + 𝑏,  Eq. 3 

 

where f was the fractional year and b was an offset parameter (Allen et al. 2018). All 

fitted amplitudes (A) and phases (𝜙) were bounded so the amplitude values were positive, 

and the phase ranged between −𝜋 and 𝜋. The presence of large seasonal isotope cycles 

enables the quantification of mixing, transport, and turnover of water in landscape and/or 

biota. Amplitude dampening reflects mixing processes, phase shifts reflect advective 

travel times and offset differences reflect proportional contributions of different seasons’ 

precipitation (Kirchner 2016a, 2016b). The defined sinusoidal functions were subtracted 

from the daily to 12-week aggregated series, thus removing the deterministic time series 

components.  

 

2) GENERATION OF STOCHASTIC TRACER REALIZATIONS  

Next, the daily statistics of the stochastic hydrogen (δ!H∗) and oxygen (δ$3O∗) 

isotope time series were estimated by using the relationship between the observed daily 

stochastic statistics and the stochastic signal’s statistics across a range of aggregation 

intervals (𝑡) multiplied by each site’s specific precipitation frequency (𝜆; defined as the 

number of days with precipitation divided by the total number of days in a time series). 

The statistics of the stochastic signal at aggregation interval t were denoted with * as 𝜇"∗, 

𝜎"∗, and 𝜌"∗ and estimates of these at the daily (t=1) resolution were denoted as 𝜇̂$∗ , 𝜎-$∗,	and 

𝜌-$∗. After removal of the deterministic component, the stochastic signals had mean isotope 

values of approximately zero across all ranges of 𝑡𝜆 (Figure 2.2.a,b). Consequently, we 

assumed the stochastic signal to behave as a purely random mean zero process (𝜇̂$∗ = 0), 
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which was further substantiated using tests for independence, autocorrelation, and 

normality on the stochastic signal (refer to Sections 2.d and 3.d).  

 

Figure 2.2. The x-axis is 𝝀 (recorded events / number of days in the time series) multiplied 
by daily to 12-week aggregation intervals (days) and the y-axes were the deviations for 
each of the 27 sites in their stochastic time series a,b) means (𝝁𝒕∗; note the scale of the y-
axis), c,d) standard deviations at t-day (𝝈𝒕∗) divided by the daily standard deviation (𝝈𝟏∗ ) 
with blue dashed lines at (𝝀𝒏)𝟎.𝟓 and (𝝀𝒏)𝟎.𝟐, and e-g) Pearson correlation coefficients at 
t-day divided by daily (𝝆𝒕∗/𝝆𝟏∗ ) with blue dashed lines at y-axis = 1. Refer to Supplemental 
Materials (Fig. 2.S1) for larger ranges in y-axis values for (𝝆𝒕∗/𝝆𝟏∗ ). 

 

The time series standard deviations were greatest at daily time scales and decreased 

with increasing 𝑡𝜆	as a power law function (Figure 2.2.c,d). This decrease resulted from 

the averaging and weighting of individual daily tracer concentrations by precipitation 

amounts over longer temporal intervals. By the Central Limit Theorem and the Law of 
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Large Numbers, as the sampling size increases, the sampling distribution converges to a 

normal distribution where the standard deviation decreases at a rate of 1/𝑛%.', where n is a 

number of samples. It should be noted, the results from the Central Limit Theorem and the 

Law of Large Numbers holds as long as the signal is purely stochastic and there are no 

trends or heteroscedasticity in the time series. It was assumed a similar relationship was 

held between the daily standard deviation of days with precipitation tracer values (𝜎$∗,‰) 

and the series of known t-day aggregation intervals (days) with their corresponding 

standard deviations in time (𝜎"∗,‰). 𝑡𝜆 estimated the expected number of precipitation 

events in each aggregation level because precipitation does not occur every day (e.g., n ≈

𝑡𝜆). We expressed this relationship as 

 

𝜎"∗ =	
2?,∗

("A)"
	,  Eq. 4   

 

where a is a site-specific parameter defining the rate decrease in 𝜎"∗ with increasing t. We 

used the non-linear, least-squares fitting routine, “curve_fit”, in Python’s (v3.7.6) SciPy 

Library (v1.2.1) to estimate the a and 𝜎-$∗ parameters in Eq. 4. 𝑎 was constrained between 

0.2	and	0.5 in order to bound the curve fitting routine. When 𝜎-$∗ was compared with 𝜎$∗, 𝑎 

values below 0.2 often underpredicted 𝜎-$∗ and above 0.5 often overpredicted 𝜎-$∗.  The initial 

value predicted for a was set at 0.3, however varying this had negligible influence on the 

final a parameter estimates and the a parameter estimates were not strongly related to 

observed standard deviation (for δ!H∗ and δ$3O∗ R2 < 0.002 and p-value > 0.75). To 

estimate the daily standard deviation at a site with a biweekly (t = 14) sampling frequency, 

first 𝜆 must be calculated and the time series can be aggregated to 28-, 42-, 56-, 70-, and 

84-day intervals (Eq. 2) for 2t to 6t, giving 6 points to fit Eq. 4. Weekly time series were 

aggregated from 2t to 12t (12 points), while monthly time series were aggregated from 2t 

to 3t (3 points). This quantified the decrease in 𝜎"∗ from the available data resolution out to 

12 weeks (84-days), and allows a and 𝜎-$∗ to be estimated. 

The ratio of 𝜌"∗ divided by 𝜌$∗  across 𝜆𝑡 was relatively invariant and centered around 

one (Figure 2.2.e-g). Thus, Pearson correlation coefficients at a t-day aggregation interval 
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(𝜌"∗) were used to describe the daily correlations (𝜌-$∗) between precipitation amount and the 

stochastic signal’s δ!H∗ and δ$3O∗ values.  

Pseudo-random numbers were generated using a Gaussian copula (Sklar 1959), 

defined by the estimated daily statistics, 𝜇̂$∗’s, 𝜎-$∗’s, and 𝜌-$∗’s, and conditioned on the 

observed daily precipitation amounts. Other copula families are possible (e.g. 

Archimedean copula, Gumbel copula); however, here the Gaussian copula was used 

because it offered a simple approach for modeling the dependence of multivariate states 

(Schneider and Ramos 2014). In probability theory and statistics, the marginal distribution 

of a subset of a collection of random variables is the probability distribution of one random 

variable without any reference to other random variables. Copula models separate the 

dependency structure of multiple random variables from their marginal distributions by 

mapping each variable through its cumulative distribution functions (CDF) to the unit 

interval (i.e. closed interval [0,1]). This captures the dependence between the variables 

using a copula or coupling term, allowing a different marginal distribution for each variable 

while capturing the multivariate dependencies (Schneider and Ramos 2014, Sklar 1959). 

Here, a copula captured the multivariate dependencies between precipitation amount, δ!H∗ 

and δ$3O∗. Refer to Supplemental Material for further detail on the definition of the 

Gaussian copula used here. Models using copula techniques have captured the spatial and 

temporal patterns of precipitation characteristics (Kuhn et al. 2007, Gao et al. 2018), 

temporally downscale precipitation datasets (Gyasi-Agyei 2011, So et al. 2017), to forecast 

precipitation events (Bárdossy and Pegram 2009, Khedun 2014) and across other 

hydrological disciplines (e.g. temperature and rainfall dynamics (Cong and Brady 2012, 

Schölzel and Friederichs 2008), extreme-value stochastic rainfall events (Kuhn et al. 2007, 

Laux et al. 2011, Huang et al. 2012), drought distributions from monthly rainfall (Laux et 

al. 2009), hydraulic conductivity of aquifer systems (Haslauer et al. 2012), and 

groundwater recharge from precipitation events (Jasechko and Taylor 2015). 

For each observed precipitation amount, values of δ!H∗	and	δ$3O∗ (a 2-number 

sample  representing the stochastic signal) were drawn from a multivariate Gaussian 

distribution using Python’s (v3.7.6) SciPy Library (v1.2.1) with parameters described by 
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𝜌-$∗(𝑃, 𝛿!𝐻∗), 𝜌-$∗(𝑃, 𝛿$3𝑂∗)	and 𝜌-$∗(𝛿!𝐻∗, 𝛿$3𝑂∗) (refer to Eq. 9 and 10 in the Supplemental 

Material). The covariates used here were precipitation amount and its isotopic 

composition, however it should be noted the covariates can change depending on the 

method’s application and data availability. Next, Gaussian CDF values were calculated for 

each of the generated series. The resulting uniform values were then used to resample from 

the coarse resolution empirical distribution of isotope ratios for each site, formed by the 

deseasonalized time series. Each of these values was then rescaled by 𝜎-$∗/𝜎"∗. The resulting 

stochastic time series were daily δ!H∗	and	δ$3O∗	values conditioned on observed 

precipitation amounts with means of zero, standard deviations of 𝜎-$∗ and Pearson 

correlation coefficients of 𝜌-$∗. 

 

3) FULL SYNTHETIC TIME SERIES GENERATION  

The deterministic component, the sinusoidal function from Eq. 3, was added to each 

generated stochastic time series. The result was a downscaled tracer time series which 

captured site-specific daily precipitation amount effects, seasonal signals, and stochastic 

variability. Finally, we applied a residual correction on the downscaled synthetic series to 

preserve the observed aggregated weighted tracer values. For each synthetic value within 

each aggregation interval, an interval-specific, single correction factor was subtracted from 

the downscaled values so that there was no difference between that period’s downscaled 

synthetic values aggregated for that interval and the observed coarse-resolution interval’s 

value. In doing so, the precipitation-weighted values of the synthetic time series then 

equaled the known aggregated value. This property is particularly important as it closes the 

tracer mass balance. The statistical downscaling method applied to a dataset with a 

biweekly sampling frequency was summarized and visualized in Section (ii) of the 

Supplemental Material. 

 

2.3.4 Evaluation of Precipitation Tracer Downscaling Methodology  

The statistical method was iterated over 100 times generating an ensemble of 

downscaled isotope time series at each of the 27 GNIP locations. The large number of time 
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series generated for each ensemble allowed for us to quantify the performance of the 

downscaling method. Each ensemble was expected to capture the observed site-specific 

tracer means and standard deviations and the correlation coefficients between precipitation 

amount, δ2H and δ18O. The statistical downscaling method was evaluated using multiple 

techniques, detailed in the subsequent paragraphs.  

After removing the deterministic components, the stochastic time series were 

expected to have means of approximately zero, a predicable decrease in standard deviation 

(Eq. 4) and Pearson correlation coefficients at low temporal resolutions appropriately 

defining daily covariate structures. To test this, 𝜎$∗ and 𝜌$∗ of the observed datasets were 

compared to 𝜎-$∗ and 𝜌-$∗ of downscaled ensembles using root-mean squared error (RMSE), 

mean bias error (MBE), and R-squared (R2). Autocorrelations with lags ranging from 1- to 

20-days (Figure 2.6, refer to Section 3.c) and tests for normality were calculated for the 

stochastic signal of the observed datasets and downscaled ensembles.  

The average of ensemble means (𝜇̂$BBB) and standard deviations (𝜎-$BBB) for each isotope 

ratio and the Pearson correlation coefficients (𝜌-$BBB) between precipitation amount and each 

isotope ratio were compared to the observed daily statistics. R2 values were calculated for 

the downscaled ensembles and observed daily site statistics. Each site’s observed d-excess 

was evaluated against the downscaled ensemble’s d-excess. Lastly, we compared the 

absolute error between the downscaled ensemble and observed time series means to various 

site-specific and time series characteristics. 

 

2.4 Results 

 

2.4.1 Evaluation of Estimated Daily Stochastic Signal Statistics 

  

The estimated daily stochastic signal statistics from weekly, biweekly, and monthly 

aggregation intervals accurately described the observed statistics (Figure 2.3). The method 

best predicted 𝜎-$∗ when applied to a weekly series, while the worst approximations of 𝜎-$∗ 

occurred when it was applied to a monthly series. We expected the weekly time series to 
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best predict 𝜎-$∗ because it better characterizes the change in tracer concentration variance 

as more values of t were used to fit the 𝜎-$∗ and a parameters in Eq. 4. For all 27 GNIP sites, 

the δ!H 𝜎-$∗ had RMSEs of 2.73 ‰ (MBE = -1.92 ‰) for a weekly series, 5.21 ‰ (MBE = 

-3.72 ‰) for a biweekly series, and 7.83 ‰ (MBE = -6.02 ‰) for a monthly series. The 

δ$3O 𝜎-$∗ had RMSEs of 0.35 ‰ (MBE = -0.77 ‰) for a weekly series, 0.64 ‰ (MBE = -

0.48 ‰) for a biweekly series, and 0.98 ‰ (MBE = -0.24 ‰) for a monthly series. For 

weekly, biweekly, and monthly series, 𝜌-$∗(P, δ!H), 𝜌-$∗(P, δ$3O), and 𝜌-$∗(δ!H, δ$3O) had 

low RMSEs ranging from 0.01 to 0.18 ‰ and MBEs ranging from -0.01 to 0.03 ‰ across 

all sites. 𝜌-$∗(P, δ!H) and 𝜌-$∗(P, δ$3O) were more likely to be overestimated for sites with 

𝜌$∗(P, δ!H) and 𝜌$∗(P, δ$3O) near zero, most likely a result of a site’s weak amount effect 

that can become less significant and sometimes positive as a time series is aggregated. 

More data could improve estimates of 𝜌-$∗. The Discussion provides further detail on 

methods for potentially improving statistical estimates at sites where errors were more 

apparent. 

 
Figure 2.3. The estimated standard deviations (a,b) and Pearson correlation coefficients (c-
e)  of the stochastic signal from downscaled weekly, biweekly and monthly time series 
compared to the observed daily stochastic statistics. Each data point is one site location and 
the black lines are the 1:1 lines. The means were not shown because they are approximately 
zero (refer to Figure 2.S2.a,b). 
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2.4.2 Evaluation of the Downscaled Tracer Realizations 

 

The average of each ensemble’s means (𝜇̂$BBB) and standard deviations (𝜎-$BBB) for each 

isotope ratio and the Pearson correlation coefficients (𝜌-$BBB) between precipitation amount 

and its corresponding isotope ratios were compared to the observed daily statistics at each 

site before applying the residual correction (Figure 2.4). The downscaled time series with 

the most accurate 𝜌-$BBB were calculated when the method was applied to a weekly time series. 

After applying a residual correction on each realization in an ensemble, the residual 

corrected downscaled series accurately captured the 𝜇$, 𝜎$, and 𝜌$ (Figure 2.5), though 

slightly altered R2 values. The R2 between 𝜇$and 𝜇̂$BBB and 𝜎$ and 𝜎-$BBB were similar for the 

original downscaled (Figure 2.4.a-d) and residual corrected ensembles (Figure 2.5.a-d). 

The residual correction increases the R2 between 𝜌$ and 𝜌-$BBB (Figure 2.4.e-g, Figure 2.5.e-

g), especially when it is applied on a downscaled weekly series. For a downscaled weekly 

series, the R2 of 𝜌$(𝑃, 𝛿!𝐻) and 𝜌-$BBB(𝑃, 𝛿!𝐻) and 𝜌$(𝑃, 𝛿$3𝑂) and 𝜌-$BBB(𝑃, 𝛿$3𝑂) increased 

from 0.88 to 0.93 with a residual correction. For applications where model outputs are 

directly compared to observation datasets, a residual correction should be applied to 

generate tracer ensembles which are comparable to the coarser resolution observed values. 

The average bias between the downscaled and observed time series means and standard 

deviations were summarized in Table 1. The residual correction on the downscaled 

ensembles reduced bias in the standard deviations but had little effect on the means. The 

Discussion provides further detail on potential methods for adding informative covariates 

(e.g. air temperature) to the downscaled time series estimates at sites where errors were 

more apparent. 
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Table 2.1. Average bias (predicted - observed statistic) (+/- standard deviation) for 
downscaled and residual corrected downscaled ensembles 
 

 Bias in the Means (‰) Bias in the Standard Deviations (‰) 

 𝛅𝟐𝐇 𝜹𝟐𝑯 𝛅𝟏𝟖𝐎 𝜹𝟏𝟖𝑶 𝛅𝟐𝐇 𝜹𝟐𝑯 𝛅𝟏𝟖𝐎 𝜹𝟏𝟖𝑶 

Weekly -0.10 

(1.39) 

0.01 

(1.79) 

-0.02 

(0.20) 

-0.03 

(0.26) 

0.02 

(2.38) 

1.95 

(3.30) 

0.004 

(0.34) 

0.25 

(0.46) 

Biweekly -1.00 

(2.20) 

-0.68 

(3.50) 

-0.16 

(0.30) 

-0.12 

(0.46) 

1.04 

(3.95) 

2.76 

(4.14) 

0.17 

(0.56) 

0.39 

(0.59) 

Monthly -1.43 

(3.08) 

-0.13 

(5.86) 

-0.23 

(0.43) 

-0.05 

(0.74) 

2.20 

(8.75) 

3.28 

(8.81) 

0.28 

(1.12) 

0.43 

(1.12) 

 

 
Figure 2.4. The average means (a,b), standard deviations (c,d) and Pearson correlation 
coefficients (e-g) of the downscaled ensembles from the weekly, biweekly and monthly 
time series compared to the observed daily site statistics. Each data point is one location 
and the black lines are the 1:1 lines. 
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Figure 2.5. The average means (a,b), standard deviations (c,d) and Pearson correlation 
coefficients (e-g) of the residual corrected downscaled ensembles from the weekly, 
biweekly and monthly time series compared to the observed daily site statistics. Each data 
point is one location and the black lines are the 1:1 lines. 
 
 

2.4.3 Conserved Processes with the Method  

 

An analysis of the observed time series demonstrates strong autocorrelation; when 

the seasonal signal is removed, the observed autocorrelation is nearly all removed (Figure 

2.6). In fact, the median autocorrelation of the observed time series stochastic signals falls 

below 5 % after 3-day lags and are approximately zero at 4-day lags, supporting the 

assumption that the sinusoidal function adequately described the deterministic component, 

and the residual was stationary (i.e., white noise). The Shapiro-Wilk and the D’Agostino’s 

K2 normality tests suggest that we could not reject the assumption of normality in the 

weekly, biweekly, and monthly time series (p-value > 0.05). Histograms of the stochastic 
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signals for both isotope ratios across all 27 sites are provided in the Supplemental Materials 

(Figure 2.S3). Next, we calculated autocorrelations from 1- to 20-day lags of the residual 

corrected downscaled ensembles.  The autocorrelations mimicked the observed temporal 

trends and memory of the daily time series. Autocorrelations for δ!H and δ!H∗ (Figure 

2.6) and are highly correlated with trends observed in the autocorrelations for δ$3O and 

δ$3O∗ (refer to Supplemental Materials, Figure 2.S4). Based on the results from the 

autocorrelation analysis and normality tests, we concluded the addition of the seasonal 

signal to the generated stochastic time series captured most of the observed tracer memory 

in the system. 
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Figure 2.6. a,c,e) Median autocorrelation of the observed daily δ!H datasets and the daily 
residual corrected ensembles (solid lines). b,d,f) Median autocorrelations of the δ!H∗ 
stochastic signals for the observations and the downscaled ensembles. The 5th to 95th 
percentiles of the observed and ensemble autocorrelations are represented as shaded 
regions. Horizontal red dashed line indicates where 𝜌 is +/-5%. 
 

The means and standard deviations in d-excess were accurately captured in the 

resulting downscaled time series (Figure 2.7). At each site, d-excess was calculated for the 

observed daily series and each ensemble from the downscaled weekly, biweekly, and 

monthly time scales. The downscaled d-excess was over-estimated for the three sites with 

lowest observed d-excess, indicating potential effects to the downscaling method’s 
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performance when precipitation is predominantly composed of evaporated waters. These 

d-excess estimates provide a metric for evaluating the downscaled series relative to the 

GMWL and increases the applicability of this method for tracing meteorological forcing 

variables and their constituents through modeling environments. Alternative downscaling 

approaches that independently model δ2H and δ18O may not preserve d-excess signals and 

thus would provide precipitation predictions that should not be used in simulations that 

leverage the information provided by dual-isotope analyses.  

 
Figure 2.7. The average d-excess of the residual corrected downscaled ensemble at each 
site location compared to the average observed d-excess. Each data point is one site 
location, and the black line is the 1:1 line. 
 

2.5 Discussion 

 

2.5.1 Method Evaluation for Select Site Characteristics 

 

We compared the absolute error, calculated by taking the absolute value of the 

mean of the downscaled ensembles minus the observed mean, to the site’s latitude, 

calculated rainfall frequency (𝜆), and total length of the time series in years (Figure 2.8). 

The largest absolute errors of the mean resulted from downscaling calculations that used 

monthly aggregated data, yielding average (+/- standard deviation) absolute errors of 2.26 
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‰ (2.54 ‰) for δ!H and 0.33 ‰ (0.35 ‰) for δ$3O. Linear regressions between site 

latitude and absolute errors in the means (derived from monthly, biweekly, and weekly 

ensembles) showed no strong correlations, suggesting that performance may be partially 

climate independent (Figure 2.8). Absolute errors were also not related to the strength of 

the seasonal isotopic variation, nor were they related to the overall variability in isotopic 

composition (as quantified by the standard deviation; Figure 2.9). Alternatively, a weak, 

but significant relationship was observed between absolute error and 𝜆 (R2 = 0.25 and p-

value = 0.0001 for δ!H, R2 = 0.23 and p-value = 0.0002 for δ$3O) and average recorded 

precipitation amount (R2 = 0.12 and p-value = 0.009 for δ!H, R2 = 0.13 and p-value = 

0.0003 for δ$3O) for downscaled weekly ensembles, but not for downscaled biweekly or 

monthly ensembles (Figures 2.8 and 2.9). Although not a site characteristic, time-series 

length significantly influenced absolute errors of downscaled biweekly and monthly 

ensembles. Longer time series spanning many years support better accounting for 

interannual variability and removing potential biases towards certain seasons. Nonlinear 

effects (e.g., continentality (Dansgaard 1964, Rozanski et al., 1993)) may be contributing 

to relatively high absolute errors, especially at the subtropics and mid-latitudes (Figure 

2.8.a-b). When applying the downscaling method to datasets from these regions, one can 

adapt the copula framework to account for other influential site-specific characteristics 

(refer to Section 2.b).  
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Figure 2.8. Absolute error (E) of the residual corrected ensemble means compared to 
various site-specific characteristics: a,b) latitude, c,d) 𝜆, and e,f) total length of the time 
series. Each data point is one site location, dashed lines represent p-values > 0.05, and solid 
lines represent p-values < 0.05.  
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Figure 2.9. Absolute error (E) of the residual corrected ensemble means compared to 
various site-specific characteristics: a,b) the sinusoidal function’s estimated amplitude, c,d) 
standard deviation of each isotope ratio and e,f) average daily precipitation. Each data point 
is one site location, dashed lines represent p-values > 0.05, and solid lines represent p-
values < 0.05. 
 

2.5.2 Method Adaptation for Broader Applications 

 

In this study, weekly, biweekly, and monthly data were used to generate daily 

observations, but more sophisticated applications could potentially be supported by 

different datasets. Generally, the deterministic time series component can be more 
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accurately estimated with increased tracer sampling frequencies (Figure 2.8.c-d) and 

samples collected over longer time frames (Figure 2.8.e-f). Accurately representing the 

deterministic component increases the likelihood of a downscaled synthetic time series 

effectively representing the underlying seasonal patterns and interannual variability at a 

site. Depending on the application, one may increase or decrease the temporal downscaling 

intervals beyond daily or 12-week timescales. While not evaluated in this study, one could 

predict sub-daily datasets with appropriate observation datasets or known statistical 

properties (i.e., mean, standard deviation, covariance structure of precipitation and its 

tracer composition) of a site at sub-daily scales (e.g., diurnal cycle).  

Theoretically, the downscaling methods used in this study can be expanded to 

higher dimensions and account for other tracer covariates including site conditions such as 

air temperature and relative humidity. At sites where the method under or overestimates 

the site statistics, other meteorological variables, such as air temperature, may correlate 

more strongly with isotope signals than precipitation amount. To do this, one needs to 

increase the number of covariates accounted for and the matrix dimensions within the 

copula framework (refer to Supplemental Materials (i) Definition of a Gaussian Copula). 

In these instances, adding more known dimensions to Equations 6 and 7 will incorporate 

additive information into the generated downscaled time series. Including additional 

known covariates within the copula framework may improve the representation of 

nonlinear effects at sites in the subtropics and mid-latitudes if meteorological variables 

(e.g., relative humidity, air temperature) are highly correlated with changes in tracer 

concentrations (Figures 2.8.a-b). 

Not only would a downscaled time series facilitate running more detailed models 

that improve process understanding, but they also allow for better tracking of uncertainties 

associated with inferences drawn from those models. We compared the mean of the 

observed biweekly series and the mean of the downscaled biweekly ensemble aggregated 

to biweekly time scales using Eq. 2. The absolute error of the mean across all sites was 

0.90 ‰ for δ!H and 0.14 ‰ for δ$3O. This suggests models using downscaled tracers 

would mimic temporal trends observed at biweekly time scales, while also tracking 

processes and uncertainties only discernible at finer time scales. As expected, when the 
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residual corrected downscaled biweekly ensemble was aggregated to biweekly time scales, 

the absolute error of the mean was approximately zero. To evaluate how the downscaling 

method compared to a naive downscale with no high-frequency statistical information, we 

created a daily time series where all precipitation events that occurred within each 14-day 

interval had the same isotopic composition equal to the observed biweekly values. The 

absolute error of the mean across all sites (+/- standard deviation) was 2.74 ‰ (2.24 ‰) 

for δ!H and 0.39 ‰ (0.31 ‰) for δ$3O, which was higher than the absolute error of the 

mean calculated for all the downscaled biweekly ensembles (1.69 ‰ (1.61 ‰) for δ!H and 

0.23 ‰ (0.24 ‰) for δ$3O).  

Due to limited data, all the above analyses used the entire dataset to calculate the 

statistics, fit the models and apply the downscaling method. At sites with more than 5 years 

of data, we used the first 4 years to build a downscaling model to apply on the 5th year’s 

precipitation time series. We generated an ensemble of 100 downscaled δ!H and δ$3O time 

series at each site and compared it to the observed δ!H and δ$3O from the 5th year of the 

time series. Based on training and testing sizes, eight sites were used in this analysis and 

the absolute error of the mean (+/- standard deviation) for δ!H was 4.80 ‰ (3.17 ‰), 4.89 

‰ (3.26 ‰) and 5.52 ‰ (3.50 ‰) downscaled from weekly, biweekly, and monthly series, 

respectively. The absolute error of the mean (+/- standard deviation) for δ$3O was 0.79 ‰ 

(0.59 ‰), 0.78 ‰ (0.63 ‰) and 0.85 ‰ (0.67 ‰) downscaled from weekly, biweekly, and 

monthly series, respectively. Based on these promising results, our downscaling method 

could be built using several years of precipitation data with a known concentration and 

then applied to years where only precipitation amount is available.  

This method can be broadly applied to produce ensembles of downscaled datasets 

for various geochemical modeling applications. Ensembles decrease the risk of tying 

conclusions to one specific time series. The downscaled ensembles can be generated using 

the same statistics (like shown here) or multiple ensembles can be generated with varying 

statistical properties. Examples of different ensembles include time series generated from 

downscaled statistics estimated from different aggregation intervals (e.g., weekly and 

biweekly), employing a non-Gaussian copula framework (e.g., Gumbel copula, Extreme-
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value copula) to populate a conditioned stochastic signal’s time series, and increasing 

dimensions of the copula framework by including additive meteorological variables (e.g., 

air temperature). Correspondingly, the geochemical tracer ensembles could be used for 

model selection and with numerous model and parameter sensitivity and uncertainty 

analyses. Ensembles could be useful in developing frameworks for model-data fusion by 

merging observational data with model outputs to improve model quality and characterize 

its uncertainty.  

This downscaling approach could be extended across large spatial extents for use 

in global isotopic models or empirically based geographic simulations to represent sites 

with limited or no high-frequency observations available. To do this, one could generate 

downscaled geochemical tracers correlating with precipitation inputs at the grid-scale. 

Lastly, the methodology can be applied to other geochemical tracers for understanding site-

specific dynamics (e.g., chemical leaching, sediment transport and loading) or 

climatological applications (e.g., nitrogen deposition, carbon sequestration).  

 

2.6 Conclusions 

 

This statistical downscaling method generates datasets that maintain informative 

site-specific correlation structures between covariates and the geochemical tracer and 

retains the statistical properties of underlying processes (e.g., d-excess, amount effects). 

By modeling hydrologic dynamics using downscaled tracers, researchers can enhance 

understanding of physical processes without collecting fine temporal in-situ data. While an 

individual realization of this downscaling approach may generate reasonable estimates of 

true high-frequency values, iterating analyses using an ensemble of realizations allows for 

uncertainties in generated time series to be propagated through subsequent modeling and 

tracer-based analyses. The method is sufficiently general and can be applied for a variety 

of applications to generate downscaled ensembles for use in meteorological and 

hydrometeorological models to evaluate model performance, investigate system processes 

across spatial scales and is additive to model-data fusion frameworks.  
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2.10 Supplemental Material 

 

 
Figure 2.S1. The x-axis is 𝝀 (recorded precipitation events / number of days in the time 
series) multiplied by daily to 12-week aggregation intervals (days) and the y-axes were the 
deviations for each of the 27 sites in their stochastic time series a,b) means (𝝁𝒕∗; note the 
scale of the y-axis), c,d) standard deviations at t-day (𝝈𝒕∗) divided by the daily standard 
deviation (𝝈𝟏∗ ) with blue dashed lines at (𝝀𝒏)𝟎.𝟓 and (𝝀𝒏)𝟎.𝟐, and e-g) Pearson correlation 
coefficients at t-day divided by daily (𝝆𝒕∗/𝝆𝟏∗ ) with blue dashed lines at y-axis = 1. This 
figure corresponds to Figure 2 in the text. 
 

(i) Definition of a Gaussian Copula  

To define a copula for a random vector (𝑋$, 𝑋!, … , 𝑋C), the marginal CDFs 𝐹-(𝑥) =

Pr	[𝑋C 	≤ 𝑥] are assumed to be continuous functions. The probability integral transform 

can be applied to each vector component and the resulting random vector (𝑈$, 𝑈!, … , 𝑈C) =

(𝐹$(𝑋$), 𝐹!(𝑋!), … , 𝐹C(𝑋C)) has uniformly distributed marginals. The copula of 
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(𝑋$, 𝑋!, … , 𝑋C) is defined by the joint cumulative distribution function of (𝑈$, 𝑈!, … , 𝑈C). 

The copula fully describes the dependence structure between the components of 

(𝑋$, 𝑋!, … , 𝑋C) and the marginal CDFs, 𝐹C, describe the marginal distributions. By applying 

the inverse to the above process, pseudo-random samples can be generated from general 

classes of multivariate probability distributions. Explicitly, a sample (𝒙 = 𝑥$, 𝑥!, … , 𝑥-) is 

constructed from a uniformly distributed marginal vector (𝒖 = 𝑢$, 𝑢!, … , 𝑢-) as  

 

(𝑥$, 𝑥!, … , 𝑥-) = (𝐹$)$(𝑢$), 𝐹!)$(𝑢!), … , 𝐹-)$(𝑢-)).  Eq. 5 

 

𝐹-)$ are the inverses of the CDFs of each variable, which are unproblematic because the 𝐹- 

are assumed to be continuous and known. The copula relates the multivariate CDFs of i 

variables to their principal univariate distributions and provides the flexibility of using 

different probability distribution functions for each variable. Since the copula reflects the 

original data’s dependency structure, its construction is solely related to the relationship 

between the variables, thus providing freedom in the choice of univariate marginal 

distributions. For more information on copulas and their utility, refer to Gyasi-Agyei 2011, 

Khedun et al. 2014, Renard and Lang 2006, and Bárdossy and Pegram 2009, among others. 

Assuming a Gaussian copula and a three-variable case (here precipitation amount (P), δ!H∗ 

and δ$3O∗), the mean (𝝁) and covariance matrices (𝚺) of the unconditioned Gaussian 

copula are specified as 

𝝁 = l
0
0
0
m 

with size n=3 by 1, and 

𝚺 = l
1 𝜌$! 𝜌$D
𝜌!$ 1 𝜌!D
𝜌D$ 𝜌D! 1

m 

with size 3 by 3 where the values of 𝜌 are the site-specific estimated daily correlation 

coefficients (𝜌-$∗). A conditional Gaussian can be defined within the generic Gaussian 

copula framework above. If a i-dimensional matrix, x, is partitioned conditioned on 
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knowledge of 𝑖 − 𝑞 pieces of information, where 𝑞 is the dimension of the unknown 

information, then 

 

𝐱 = 	 p	
𝐱$
𝐱!	q 	with	sizes		 y

𝑞 × 1
(𝑖 − 𝑞) × 1{  Eq. 6 

 

, where x1 is the unknown values (here isotope ratios) and x2 is the known values (here 

precipitation). Then, 𝛍 and 𝚺 are partitioned as  

 

𝛍 = 	 p	
𝛍$
𝛍!	q 	with	sizes		 y

𝑞 × 1
(𝑖 − 𝑞) × 1{  Eq. 7a 

𝚺 = 	 y	𝚺$$ 𝚺$!
𝚺!$ 𝚺!!

	{ with sizes y 𝑞 × 𝑞 𝑞 × (𝑖 − 𝑞)
(𝑖 − 𝑞) × 𝑞 (𝑖 − 𝑞) × (𝑖 − 𝑞)	{,  Eq. 8a 

 

where 𝛍 are the means and 𝚺 are the standard deviations. When a multivariate Gaussian 

copula is used, the distribution of x1, conditional on x2 = j is also a multivariate Gaussian 

(x1 | x2 = j) ~ N (𝝁,} 	𝚺}) where 

 

𝛍	} = 	𝚺$!𝚺!!)$ 	 ∙ 𝑗.  Eq. 7b 

 

Above, j is equal to the conditioned values and the covariance matrix is 

 

𝚺} = 	𝚺$$ −	𝚺$!	𝚺!!)$	𝚺!$.  Eq. 8b 

 

In our three-variable case, when conditioning on precipitation amount (P) this simplifies 

to:  

 

𝛍E} = y	 𝜌-$
∗(𝑃, 𝛿!𝐻∗)	𝑗-

	𝜌-$∗(𝑃, 𝛿$3𝑂∗)	𝑗-
	{   Eq. 9 

and  
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𝚺!" =

$	
1 −	𝜌)"∗(𝑃, 𝛿$𝐻∗)𝜌)"∗(𝑃, 𝛿$𝐻∗) 𝜌)"∗(𝛿$𝐻∗, 𝛿"%𝑂∗) − 𝜌)"∗(𝑃, 𝛿$𝐻∗)𝜌)"∗(𝑃, 𝛿"%𝑂∗)

𝜌)"∗(𝛿$𝐻∗, 𝛿"%𝑂∗) − 𝜌)"∗(𝑃, 𝛿"%𝑂∗)𝜌"∗1(𝑃, 𝛿$𝐻∗) 1 −	𝜌)"∗(𝑃, 𝛿"%𝑂∗)𝜌)"∗(𝑃, 𝛿"%𝑂∗)
	2

,  Eq. 10 

 

where ji is equal to a daily precipitation value 𝑝- minus the precipitation mean (𝜇/) divided 

by its standard deviation (𝜎/) as 𝑗- =(𝑝- 	− 	𝜇/)/𝜎/.  

For each observed precipitation amount, a 2-number sample (ci) representing the 

stochastic signal was drawn from a multivariate Gaussian (MG) distribution using Python’s 

(v3.7.6) SciPy Library (v1.2.1) with parameters of µF} 	and ΣF}  (i.e. ci~N(µF} , ΣF} ) ; Eq. 9 and 

10). Next, Gaussian CDF values (ui) were calculated for each of the generated series, as 

ui=F(ci). Note, each sample of ui consists of two numbers which are uniformly distributed 

between 0 and 1 with a specified covariance and conditioned on that day’s precipitation. 

Next, each uniform value (ui) was used to resample from the n-day empirical distribution 

of isotope ratios for each site, formed by the deseasonalized time series values of 

δ!H∗	and	δ$3O∗. Each of these values was then rescaled by 𝜎-$∗/𝜎"∗. The resulting stochastic 

time series were site-specific synthetic daily δ!H∗	and	δ$3O∗	values conditioned on 

observed precipitation amounts with means of zero, standard deviations of 𝜎-$∗ and Pearson 

correlation coefficients of 𝜌-$∗. 

 

(ii) Downscaling Methodology Applied to a Biweekly Precipitation, 𝛿!𝐻, and 𝛿$3𝑂 Time 

Series 

Below is an overview of the methodology and its application for generating 

downscaled tracer time series. The daily dataset from Piracicaba, Brazil (Table S1) was 

aggregated to biweekly time scales and the downscaling method was applied to generate a 

daily time series conditioned on known daily precipitation amounts. 
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Figure 2.S2a. Step 1) Define and remove the deterministic (seasonal) time series 
component from the observed biweekly tracer time series (Section 2.c.1 in the text). Here 
the biweekly observations, estimated sinusoidal function, stochastic time series and the 
mean of the stochastic time series are shown. 

 
Figure 2.S2b. Step 2) Estimate the daily stochastic signal statistics by utilizing a power law 
relationship and the observed correlation structures (Section 2.c.2 in the text). Here the 
observed stochastic daily standard deviation (𝜎$∗), observed t-day standard deviations (𝜎"∗), 
the power-law function (Eq. 4) and the estimated daily standard deviation (𝜎-$∗) are shown. 
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Figure 2.S2c. Step 3) Generate conditioned values using relevant covariates and the 
estimated daily stochastic signal statistics from Step 2 (Section 2.c.2 in the text). The 
downscaled stochastic time series conditioned on daily precipitation amounts and its mean 
are shown. 

 
Figure 2.S2d. Step 4a) Produce final synthetic time series by adding the deterministic 
component from Step 1 to the stochastic realizations from Step 3 (Section 2.c.3 in the text). 
Here the sinusoidal function, downscaled stochastic time series conditioned on daily 
precipitation amounts, and downscaled synthetic time series, which is the stochastic series 
plus the sinusoidal function, are shown. 
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Figure 2.S2e. Step 4b) Apply a residual correction on the final synthetic time series 
(Section 2.c.3 in the text). Here the sinusoidal function, observed daily time series, 
downscaled synthetic time series and residual corrected downscaled synthetic time series 
are shown. 
 

 

Figure 2.S3. Histograms of all 27 site’s stochastic signal z-scores (=	 𝒙)	𝝁	
𝝈

; where x is δ2H* 
or δ18O*, 𝝁 is the mean, and 𝝈 is the standard deviation) at weekly (a,b), biweekly (b,e) and 
monthly (c,f) time scales. The Shapiro-Wilk and the D’Agostino’s K2 normality tests 
suggest that we could not reject the assumption of normality in the weekly, biweekly and 
monthly time series (p-value > 0.05). 
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Figure 2.S4. a,c,e) Median autocorrelation of the observed daily δ18O datasets and the daily 
residual corrected ensembles (solid lines). b,d,f) Median autocorrelations of the δ18O* 
stochastic signals for the observations and the downscaled ensembles. The 5th to 95th 
percentiles of the observed and ensemble correlations are represented as shaded regions. 
Horizontal red dashed line indicates where ρ is +/-5%. 
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Python Code: 

#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

""" 

@author: Catie Finkenbiner 

""" 

import numpy as np 

import scipy as sp 

 

## Use prediction to create conditional copula generated 

values 

def main(tsP,xday_stats,H_scale,O_scale): 

     

    ''' 

    See Section 2.c of Manuscript 

 

    tsP: observed precipitation time series 

    xday_stats: n-day statistics matrix 

        [[P_mean, H_mean, O_mean], 

        [P_std, H_std, O_std],  

        [rho_PH, rho_PO, rho_HO]] 
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    H_scale: sorted d2H stochastic time series component 

multiplied by the estimated  

        1-day standard deviation and divided by the standard 

deviation of the n-day  

        d2H stochastic series (hat{sigma_1}/sigma_n) 

         

    O_scale: sorted d18O stochastic time series component 

multiplied by the estimated  

        1-day standard deviation and divided by the standard 

deviation of the n-day  

        d18O stochastic series (hat{sigma_1}/sigma_n) 

         

    returns an isotope time series conditioned on tsP 

    ''' 

     

    # Observed P statistics 

    Pmu = np.mean(tsP) 

    Psig = np.std(tsP) 

     

    # Correlation Coefficients 

    xday_rho1 = xday_stats[2,0] ; xday_rho2 = xday_stats[2,1] 

; xday_rho3 = xday_stats[2,2]  
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    # Calculate Sigma_bar 

    sigma_bar = [[1 - xday_rho1*xday_rho1, xday_rho3 - 

xday_rho1*xday_rho2], 

                 [xday_rho3 - xday_rho1*xday_rho2, 1 - 

xday_rho2*xday_rho2]] 

     

    series = [] 

    for i in np.arange(len(tsP)): 

        a = (tsP[i] - Pmu) / Psig         

        H2mu_bar = xday_rho1 * a 

        O18mu_bar = xday_rho2 * a 

        mu_bar = np.array([H2mu_bar,O18mu_bar]) 

         

        X = sp.stats.multivariate_normal.rvs(mean= 

mu_bar,cov= sigma_bar)  

        X2 = sp.stats.norm.cdf(X[0],loc=0,scale=1)  

        X3 = sp.stats.norm.cdf(X[1],loc=0,scale=1) 

         

        index = int(np.floor(X2 * len(H_scale))) 

        newH = H_scale[index] 

 

        index = int(np.floor(X3 * len(O_scale))) 

        newO = O_scale[index] 
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        series.append([newH,newO])  

    return series 

 

if __name__ == '__main__': 

    main(tsP,xday_stats,H_scale,O_scale) 
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Chapter 3. A Physical Basis for Ecohydrological Separation: The roles 
of soil hydraulics and climate 
 
3.1 Abstract 

 

The degree of water mixing in the critical zone is under intense debate. Field 

measurements of isotope ratios indicate varying degrees of separation between pools of 

water that supply streams and vegetation. The exact physical mechanisms behind 

ecohydrologic separation are unknown, but local conditions such as soil heterogeneities 

likely influence the extent of mixing and separation of subsurface water pools. Using a 

well-established soil physics model, we simulated if isotopic separations occur within 

650 distinct configurations of soil properties, climatologies, and mobile/immobile soil-

water domains. Simulations demonstrated separations in isotope ratios between storage 

and drainage waters during periods of high precipitation, soil water content, and drainage. 

Separations grew with larger immobile domains and, to a lesser extent, higher mobile-

immobile transfer rates. Across soil types and climates, lower saturated hydraulic 

conductivity and higher rainfall rates amplified isotopic differences, illustrating how 

mobile and immobile domains interact with local conditions to physically result in 

subsurface separations. These results show how different critical-zone solute fluxes can 

be generated by representing contrasting transport dynamics in distinct domains across a 

range of soils and climate conditions. 

 

3.2 Introduction 

 

Observations of water from soils, plants, and streamflow are geochemically 

disparate, as was first shown by Brooks et al. (2010) and further explored in subsequent 

studies (Radolinski et al., 2021; Sprenger et al., 2019; McDonnell et al., 2014; Stumpp et 

al., 2009; Sprenger et al., 2016). These results conflict with traditional hydrologic 

assumptions where soil layers are well-mixed water reservoirs wherein new precipitation 

completely mixes with previously stored water before seeping downward or being 
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absorbed by roots for transpiration. Separations (i.e., differences) in tracer concentrations 

have specifically been reported among water traveling through preferential flow paths, 

water residing and tightly held within a soil matrix, and water discharged as drainage 

across various soil types (Radolinski et al., 2021; Barbeta et al., 2020; Berry et al., 2018; 

Dubbert et al., 2019; Maloszewski et al., 2006; Vargas et al., 2017) and climates (Brooks 

et al., 2010; Sprenger et al., 2019; Chen et al., 2020; Mueller et al., 2014; Stumpp and 

Hendry, 2012). Stable water isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O), 

hereafter communicated as δ2H and δ18O, in precipitation, soil water, and plant root 

extracts have been utilized as tracers to investigate transport and so-called 

ecohydrological separations in soils (Radolinski et al., 2021; Sprenger et al., 2019; 

McDonnell 2014; Stumpp et al., 2009; Sprenger et al., 2016). Separate from those 

observational studies of isotopic differences between pools, new theoretical frameworks 

have shown how flow through systems composed of contrasting conductivities will 

support transport dynamics that lead to separations between storages and fluxes 

(McDonnell, 2014; Sprenger and Allen, 2020; Berghuijs and Kirchner, 2017). We expand 

on these frameworks previously applied to individual sites and case studies to explore, 

more generally, how ecohydrological separation caused by transport heterogeneity in 

soils can be expected to vary across soils and climates. 

 One of the difficulties of modeling observed separations is that traditional 

hydrologic modeling approaches fail to account for heterogeneous mixing and transport 

processes by assuming incoming precipitation enters the soil matrix and mixes fully with 

pre-existing soil water. Several numerical modeling studies have attempted to represent 

separations arising in soils (e.g., Cain et al., 2019; Knighton et al., 2020; Stumpp and 

Maloszewski, 2010; Sprenger et al., 2015; Sprenger et al., 2016; Sprenger et al., 2018; 

Hu et al., 2018), with these studies advancing understanding of subsurface mixing by 

quantifying flow heterogeneities in the unsaturated zone and the spatiotemporal 

variability of water and solute transport. Sprenger et al. (2018) investigated separations 

between soil water pools using a one-dimensional flow model at three long-term northern 

latitude research sites and found modeling with two pore domains improved the 

representation of soil water isotope dynamics when compared to field measurements. We 
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expand on this work by utilizing a fully mechanistic modeling approach to examine how 

separation phenomena arise across a wide range of soil hydraulic parameters or climate 

conditions to address which environmental conditions do (or do not) lead to the 

separation phenomena that have been observed (Brooks et al., 2010; Berghuijs and 

Kirchner, 2017; Evaristo et al., 2015) to be intrinsic to soil-water flow. 

We configured 650 geochemically enabled soil physics models (HYDRUS-1D; 

Šimünek et al., 2013; Stumpp et al., 2012) to evaluate soil water transport and mixing 

across a range of soil types and with simulated precipitation from different climates. This 

approach explicitly allowed for heterogeneous mixing of solutes at depth via a dual-

porosity method. Specifically, our research objective was to test how pore heterogeneity 

alone (i.e., without confounding evaporative or instrumental effects; Stumpp and Hendry, 

2012) can give rise to separations in soils across a range of soil types and climates. While 

the subsurface processes conceptualized in advanced models, such as HYDRUS-1D, 

represents current mechanistic knowledge within the soil-physics community, the high 

degree of numerical discretization coupled with the large number of non-linear functions 

programed into these models, requires an evaluation of these models across an ensemble 

of configurations to deduce those emergent priorities inherently arising from a chosen set 

of soil physics. We hypothesized (1) isotopic separations should arise between water 

pools if a soil has heterogeneous porosities and (2) the degree of separation between 

water pools is controlled by soil hydraulic properties and climate conditions. This work 

extends beyond previous studies by identifying how interactions between climate and 

porosity heterogeneity within a soil profile drive incomplete mixing in soils. These 

results help frame how we understand and represent solute transport and mixing in the 

subsurface. 

 

3.3 Understanding Dual-Porosity Isotope Separation in Soils 

 

Isotopic separations were simulated across different hypothetical 

conceptualizations of water transport for a single soil type with high, low, and zero 

immobile water fractions and high and low mass-transfer rates between the mobile and 
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immobile domains (Figure 3.1). Across the range of fractions (f) of pore space in the 

immobile domain and mass transfer coefficients (ω) between the mobile and immobile 

domains, soils with immobile fractions exhibited distinct transport processes that were 

not apparent with a single porosity soil configuration (Figure 3.1c-e). Given that these 

models were driven with the same inputs and all other model parameters were held 

constant, the temporal patterns which arose were attributable to differences in simulated 

pore heterogeneities. Immobile soil water has limited δ2H variability regardless of 

precipitation driven changes in volumetric water content (VWC) or drainage rates (Figure 

3.1d). This contrasts with mobile-soil and drainage waters, of which δ2H varied 

considerably during wetter and drier simulations periods. When parameterizations 

included large fractions of immobile soil water, vertical water transport reduced, matrix 

holding capacities increased, and mobile water fractions decreased; however, this 

manifested in more rapid breakthrough curves that preceded the low-f breakthrough 

curves (see days 250-260, Figure 3.1e). These differences in tracer breakthrough curves 

occurred because vertical movement within the soil column and mixing of precipitation 

inputs was limited to the mobile domain, and thus smaller f values implied more mixing 

within the column. Varying ω did not influence the breakthrough curve response. While 

the separations between pools were distinct, overall differences in δ2H from each domain 

and model configuration were relatively small (all δ2H ratios ranged from -70.5 to -65.3 

‰). 
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Figure 3.1 Time series of simulated precipitation, soil water pools, and drainage isotope 
ratios. (a) Averaged (+/- std from the 10 simulations) downscaled precipitation's stable 
water isotope flux-weighted concentration (𝛿𝑃-./0") and the daily input precipitation. 
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Averaged time series of the 10 simulated (b) volumetric water contents (VWC) of a single 
porosity soil (VWCbulk), the mobile (solid lines) and immobile (dashed lines) soil domains 
for high (Hf, dark grey, 40% of VWCsat) and low (Lf, light grey, 20% of VWCsat) 
immobile fractions, and the drainage from the column (green), (c) isotope ratio of the 
mobile soil water domain, (d) isotope ratio of the immobile soil water domain, and (e) 
isotope ratio of the column's drainage for the soils simulated with a single pore domain 
model (0f1ω, black), high immobile fraction, f, models with high(0.75)/low(0.25) transfer 
rates, ω (HfHω, red; HfLω, orange) and low immobile fractions with high/low transfer 
rates (LfHω, purple; LfLω, blue).  

 

Consistently across soil configurations, as the VWCbulk (mobile + immobile VWC) 

and drainage increased, the separation between water pools shifted so the drainage water 

more closely reflected the mobile and immobile water (i.e., the difference between 

drainage and mobile or mobile water ≅	0 ‰; Figure 3.2b,c). During drier periods, 

stronger separations were observed between soil water pools and the drainage water 

(Figure 3.2b,c). This difference was likely a function of the incomplete mixing of the soil 

column with new incoming precipitation and the time-lag between the drained and 

mobile soil water pools. As VWCbulk and drainage increased, models with a higher 

immobile fraction had the largest increase in isotopic separation (i.e. more positive slopes 

in Figure 3.2b,c; Supplemental Tables 3.S1, 3.S3). All dual-porosity models had positive 

slopes (most had significant p-values < 0.05; Supplemental Table 3.S1) and models with 

higher immobile fractions had steeper slopes. Interestingly, the separation between the 

soil and drainage water simulated by a single porosity model had a negative slope as 

VWCbulk increased, this was distinctly different from all other models (Figure 3.2b). 

Within model variability in these positive and negative slopes arises as a function of the 

ten stochastically simulated isotope precipitation time series which served as input for 

each of the modeled porosity heterogeneities. Changing the incoming precipitation would 

likely change the slopes, however differences among modeled separations should still be 

apparent across soils with smaller or larger immobile fractions. Supplemental Tables 

3.S1, 3.S2, and 3.S3 summarize the linear regression, p-value, Pearson correlation 

coefficient, and Spearman correlation coefficient calculated between isotopic separations 

and VWCbulk, daily accumulated precipitation, and drainage. In summary, periods with 
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drier soil water contents will have larger separations between soil water pools and this 

relationship is amplified for soils with larger immobile fractions. 

 
Figure 3.2 Instantaneous δ2H differences between soil pools and fluxes during different 
soil moisture conditions. The separation for 10 simulations in (a) isotopic concentration 
of the mobile and immobile soil water at different volumetric water contents (VWCBulk) 
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for models with high and low immobile fractions (Hf and Lf) and transfer rates (Hω and 
Lω). The separation in isotopic concentration of the drainage from the column and (b) 
mobile soil water and (c) immobile water at different water contents. Refer to Figure S1 
in the Supplemental Information for (a-c) evaluated against depth of precipitation into 
and drainage from the soil column. 
 

3.4 Dual-Porosity Isotope Separation Across Soils and Climates 

 

Moving beyond a representation of one soil type, we explored a wide range of soil 

and climate characteristics with varying immobile fractions and transfer rates. Changing a 

soil’s total saturated water content (VWCsat) and saturated hydraulic conductivity (Ks) 

influenced the transport and mixing of soil water, thus producing different degrees of 

separation between mobile, immobile and drainage pools (Figure 3.3a-d). Separations 

between the mobile and immobile pools were more pronounced with lower VWCsat and 

Ks (Supplemental Figure 3.S1). Lowering the VWCsat produced the largest separations in 

soils with high f and ω (Supplemental Figure 3.S1a), accordingly large tightly bound 

water pools and low VWCsat drive these larger separations. Furthermore, soils with large 

tightly bound water pools and low VWCsat demonstrated decreases in the degree of 

separation between drainage and mobile water, and this decrease was not observed for 

models with smaller tightly bound pools (Figure 3.3a). Lowering VWCsat and increasing 

the strength of transfer (ω) between the mobile and immobile domains increased the 

separation between drainage and immobile water (Figure 3.3b). Changing Ks influenced 

the separation between soil water pools as well, wherein soils with lower Ks exhibited 

larger separations between drainage and tightly bound water (Figure 3.3d). Varying the 

Ks of the soil had a minimal effect on the difference between drainage and mobile water 

(Figure 3.3c). Based on the 2-sample t-test, none of the dual-porosity models were 

statistically different compared to the single pore model (p-values > 0.5; Figure 3.3). It is 

worth mentioning that all simulated differences in Fig. 3a-c varied by approximately 0.5 

‰ and this difference would be difficult to observe from field observations given typical 

instrumental accuracy. Nevertheless, we demonstrated that appropriately representing 
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mobile and immobile pools is especially important for soils with low VWCsat and Ks (such 

as with clays) when representing subsurface transport processes and drainage.  

 

 
Figure 3.3 The influence of modeled soil hydraulic parameters on average δ2H difference 
between drainage and (a, c) mobile or (b, d) immobile soil water. Each boxplot represents 
flux and volumetrically weighted averaged differences, the black triangles indicate the 
mean calculated from 10 simulations, and the diamonds are outliers. Missing boxplots at 
0.35 cm3cm-3 (a-b), 0.40 cm3cm-3 (a-b), and 40 cm day-1 (c-d) indicate where Hydrus 
model configurations failed to converge. Refer to Fig. S1 in the Supplemental 
Information for the average isotopic difference between mobile and immobile soil water 
evaluated against the soil hydraulic parameters in (a-d).  
 

Next, we showed that precipitation input amounts can drive the degree of 

separation between mobile, immobile, and drainage pools (Figure 3.4). We both 

increased and decreased the total input precipitation in simulations, since precipitation 

drove increases in VWC and drainage in the previous H.J. Andrews soil results. Soils 

receiving less precipitation yielded lower variances in the separations between drainage, 

mobile, and immobile pools (Figure 3.4a,b, Supplemental Figure 3.S2a). For these 

simulations, the soil had a high Ks (65.64 cm d-1) and therefore smaller precipitation 

events were less likely to saturate the soil column. This influenced the rate of mass 
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transfer between mobile and immobile regions, which was driven by a pressure head 

gradient, thus decreasing the separations simulated at lower precipitation rates.  

Given that precipitation amount controls both separation (as discussed in the 

previous paragraph) and stable isotope ratios (McDonnell, 2014; Cain et al., 2019; 

Kirchner, 2016; Sprenger et al., 2017), we posit that the interaction between these two 

relationships could be a significant factor contributing to the ecohydrologic separation 

phenomena. We tested if precipitation driven separations were disparate between single 

and heterogeneous porosity landscapes. We show that varying the strength of the amount 

effect on precipitation isotopic concentrations, which describes the often negative 

correlation (ρ) between precipitation amount and its isotopic concentration, influences 

separations between water pools (Figure 3.4). A large amount effect (more negative ρ) 

means higher intensity rainfall will have much lower δ2H ratios than low intensity 

rainfall. ρ can vary depending on source precipitation (e.g., oceanic versus continental 

precipitation), latitude, and seasonal temperatures or precipitation patterns (Gat, 1996). 

Observed daily values of ρ can range from +0.24 to -0.47 (Finkenbiner et al., 2021) and 

an amount effect of zero removes any correlation between precipitation intensity and its 

isotopic composition. The most negative precipitation events were simulated when the 

amount effect was -0.4 and the input precipitation amount was large. Consequently, when 

ρ = -0.4, we simulated the largest separations between mobile and immobile soil water 

(Supplemental Figure 3.S2b) and the drainage and mobile soil water (Figure 3.3c). The 

larger separations can be attributed to the large, negative precipitation events entering the 

mobile soil domain later in the time series when precipitation intensity was the largest. 

These large, negative precipitation events also shifted the degree of separation between 

drainage and immobile pools (Figure 3.4d). Thus, regions with large storm events and 

large amount effects (i.e., rain-out effects), seasonal precipitation which transitions from 

snow to rain, or intense temperature changes between seasons are more likely to exhibit 

larger separations between pools and fluxes. 
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Figure 3.4 The influence of modeled climate parameters on average δ2H difference 
between drainage and (a, c) mobile or (b, d) immobile soil water. (a, b) illustrates the 
effects of increasing or decreasing the total input precipitation (=101.5 cm) and (c, d) 
demonstrates the influence of strengthening the amount effect’s negative correlation 
represented by the Pearson correlation coefficient (𝜌) between precipitation amount (P) 
and its δ2H concentration. Each boxplot represents flux and volumetrically weighted 
averaged differences, the black triangles indicate the mean calculated from 10 
simulations, and the diamonds are outliers. Refer to Fig. S2 in the Supplemental 
Information for the average isotopic difference between mobile and immobile soil water 
evaluated against the modeled climate parameters in (a-d).  
 

3.5 Ecohydrologic Implications 

 

Many research studies have studied the effects of ecohydrologic separations 

(Brooks et al., 2010; Radolinski et al., 2021; Sprenger et al., 2019; McDonnell et al., 

2014; Sprenger et al., 2016; Sprenger and Allen, 2020; Sprenger et al., 2015; Sprenger et 

al., 2016; Sprenger et al., 2018) and suggest different storage pools supply plant 

transpiration (immobile) and groundwater recharge and streamflow (mobile) (Brooks et 

al., 2010; Evaristo et al., 2015). Here, we demonstrate how soil properties such as a low 

VWCsat and high f can drive larger separations between pools supplying plants and other 
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water pools. Our results showed the largest separations between drainage and mobile or 

immobile water were ~4‰ in δ2H (Figure 3.2a) and when averaged over time, were ~1-

2‰ in δ2H (Figure 3.3a-d, 3.4a-d). We acknowledge only a few soil physical properties 

were investigated, and other factors which were not simulated in this study could also 

drive separations. Literature has cited varying degrees of separation between soils and 

streams, often far exceeding 4 ‰ (Brooks et al., 2010; Rodriguez et al., 2018). However, 

recent literature has shown that these separations are likely overestimated (Barbeta et al., 

2020; Chen et al., 2020; also refer to Allen and Kirchner (2020)). Moreover, our 

simulated values cannot be directly compared to previous studies since streamflow is 

largely composed of temporally integrated groundwater at any given time and there are 

much longer time lags involved in streamflow generation (Berghuijs et al., 2017; Allen 

and Kirchner, 2021). Regardless, our results show that soils represented with 

heterogeneous porosities are likely to produce larger separations between soil and 

drainage water, and thus such soils are likely to manifest in previously described isotopic 

differences between soil water and streamflow.  

The implications of varying of the size and influence of f and ω for tracer 

transport and mixing have not been explicitly investigated. Prior work by Hu et al. (2018) 

used the simple assumption that half of the total storage was mobile water and no mass 

transfer occurred between regions, nevertheless they found improved transit time 

estimates when compared to a complete mixing model. Here we clarify how increases in f 

increased the proportion of the soil matrix characterized by porous flow media, thus 

decreasing the amount of incoming precipitation likely to bypass the matrix and 

decreasing a soil’s hydrologic connectivity. The largest separations between drainage and 

mobile or immobile water were simulated with large f values (Figure 3.2b,c). Lowering ω 

decreases the exchange between the matrix and preferential flow, further limiting mixing 

and transfer between domains especially under dry soil conditions. A high ω often 

increased the separation between drainage and immobile pools (Figure 3.3b,d). Based on 

our findings and previous work, we hypothesize that soil representations accounting for 

both f and ω will better characterize transport and mixing, as well as prescribing some 

subsurface water to reside longer (e.g., increase in f will increase the time water travels 
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through the matrix), while other configurations will result in more water transported 

through preferential flow paths.  

While not explored here, other factors could drive separations quoted in previous 

studies. These include accounting for evaporation and the corresponding isotopic 

fractionation mechanisms (Zhou et al., 2021) or root water uptake from the mobile or 

immobile domains. It also should be noted, plant and soil water extraction techniques can 

introduce biases and uncertainties in stable water isotope analyses (Barbeta et al., 2020; 

Chen et al., 2020; Allen and Kirchner, 2021; Jasechko et al., 2016; Ellsworth et al., 

2007), and many reported simulated differences are 1-2 ‰, which is approximately the 

precision of many laser-based systems when measuring water samples for δ2H 

concentration. Consequently, the simulated differences between domains would not be 

able to be detected in nature.  

We provided the first comprehensive evaluation of transport in the subsurface 

under different soil porosity heterogeneities across a range of fine to coarse soils and wet, 

dry, and seasonally varying climate conditions. Future research should build on this 

analysis and investigate other mechanisms (e.g., evaporation, root water uptake) that 

might drive larger separations between soils, plants, and streamflow. Regardless, we have 

demonstrated that separations can be explained by heterogeneous mixing in soils alone 

and how these separations are expected to vary with local ecohydrologic characteristics. 

Thus, any models aiming to realistically represent transport processes, especially those 

characterized through tracer observations, must represent the heterogeneity of soil pores 

within a soil column and the exchanges among them. This analysis demonstrated that the 

coexistence of both finer and coarser pores within a single soil profile by itself can 

manifest in real, complex tracer phenomena that have otherwise been attributed to myriad 

ecophysiological and hydrological processes. 

 

3.6 Methods 

 

The one-dimensional HYDRUS-1D dual-porosity numerical model (Šimünek et 

al., 2013) with modifications for stable water isotope transport (Stumpp et al., 2012) was 
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configured to represent 650 different porosity heterogenies across soils with different 

hydraulic properties and climate conditions. HYDRUS (Šimünek et al., 2013) is one of 

the most widely used numerical models for simulating the movement of water, heat, and 

solutes in various soil conditions and has been used in other isotope studies in a single 

porosity configuration (Stumpp and Hendry, 2012; Sprenger et al., 2016; Sprenger et al., 

2018; Stumpp et al., 2012; Allen and Kirchner, 2021; Groh et al., 2018). We first 

configured a dual-porosity HYDRUS-1D model with parameters based on observed soil 

hydraulic properties from Watershed 10, H.J. Andrews Experimental Forest, Oregon, 

USA (Brooks et al., 2010) and simulations of VWCbulk were compared against observed 

VWCbulk from September 14, 2006 to December 23, 2006. These 100 days were selected 

for our analysis because precipitation events during this period were sampled for their 

isotopic concentration in 5 mm increments, making this a unique dataset on which to test 

our hypothesis since many other sampling approaches integrate precipitation sampling 

over a week or longer time scales. The observed precipitation samples were used within a 

statistical downscaling method (Finkenbiner et al., 2021) to simulate realizations of 

possible precipitation inputs corresponding with observed precipitation amounts. The 

model represented the top 100 cm of the soil profile, no evaporative effects were 

considered from the surface, and no root water uptake was simulated within the column. 

All pore water heterogeneities were driven by model parameterization of the soil physical 

properties. Refer to the Supplemental Material for further details on model configuration, 

parameterization, and initial conditions and the simulated input precipitation datasets.  

The modeled "mobile" soil water domain represented regions of the soil matrix 

such as preferential flow paths or large pore-spaces and the modeled "immobile" soil 

water domain represented tightly bound water held at water potentials below what can 

drain by gravity. Water was only transported vertically in the mobile region and water 

movement into or out of the immobile region was controlled by the pressure head 

gradient and a mass transfer coefficient (𝜔; Šimünek et al., 2013). We investigated five 

model configurations characterizing different heterogeneous mixing and transport: 1) a 

model representing a single-pore domain with no f and the ω equaling 1 (0f1ω), 2) a 

model with a high f representing 40% of the total saturated water content (VWCsat) and 
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high ω equaling 0.75 (HfHω), 3) a model with a low f representing 20% of the VWCsat and 

high ω equaling 0.75 (LfHω), and 4) a model with a high f representing 40% of the VWCsat 

and low ω equaling 0.25 (HfLω), and 5) a model with a low f representing 20% of the 

VWCsat and low ω equaling 0.25 (LfLω). These five model configurations were tested 

across a range of different precipitation inputs and soil hydraulic properties, which were 

varied in relation to the original soil column configured from observed datasets from 

Watershed 10, H.J. Andrews Experimental Forest.  

In total, we present 650 simulations of HYDRUS-1D with varying f, ω, VWCsat, 

Ks, total accumulated precipitation, and amount effects describing the correlation between 

precipitation amount and its isotopic composition. When varying soil hydraulic 

parameters across model configurations, all other parameters were held constant and 

VWCsat or Ks was altered. We increased or decreased the total accumulated precipitation 

by multiplying each precipitation event in the input time series by a specific percentage. 

New precipitation isotope ratios were generated (refer to the Supplemental Material) with 

stronger or weaker negative correlations between precipitation depth and its isotopic 

ratio. All model simulations had relatively low mass balance errors (average relative error 

= 0.09 %) and solute balance errors (average relative error = 0.001 ‰) calculated by 

HYDRUS-1D during the numerical computations (Šimünek et al., 2013). 

This study represented 100 days in a Pacific Northwest winter wet season (Brooks 

et al., 2010; Rodriguez et al., 2018) and not a full year with dry periods, large evaporative 

effects, or high transpiration rates. The 100-day time series was repeated three times to 

remove the effects of the initial condition of the soil’s stable water isotope signature, and 

the final 100 days (days 200-300) were analyzed in the presented results. We chose this 

approach to reduce the confounding effects of evaporation and we were constrained by 

the computation limitations imposed by running HYDRUS-1D with many configurations. 

The observation dataset from Brooks et al. (2010) was used to calibrate our modeled soil 

properties, however our objective was not to exactly simulate the observed water isotope 

datasets. The simulated stable water isotopes in precipitation are not equal to the actual 

precipitation during the period and we did not know the initial soil water’s isotopic 
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concentration. Our focus was to test the dual-porosity approach across 650 

representations of transport dynamics across soils and climates.  
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Chapter 3.9 Supplemental Material 

 

3.9.1 Modeled Soil Configuration and Parameterization 

Soil hydraulic properties for the soil at H.J. Andrews was approximated with the 

HYDRUS-1D built-in ROSETTA DLL (Dynamically Linked Library) software which 

implements pedotransfer functions that predict van Genuchten (1980) water retention 

parameters and the saturated hydraulic conductivity (Ks). The values used within the 

pedotransfer function where 27, 35, and 38% sand, silt, and clay, respectively, and a 

porosity of 60% (these are the same values cited in Brooks et al., (2010)). The estimated 

VWCsat was 0.55 cm3cm-3 and Ks was 65.64 cm d-1. The root-mean-square error (RMSE) 

of the observed and modeled VWCbulk was 0.06 cm3cm-3. We used multiple techniques to 

estimate the soil hydraulic parameters based on observed hydraulic properties at H.J. 

Andrews and the VWC time series from Brooks et al. (2010), this included inverse 

modeling and a large Monte Carlo analysis. Based on RMSE, ROSETTA DLL 

outperformed all techniques and was computationally efficient. It is important to note the 

objective was not to replicate the observed time series perfectly. No soil evaporation or 

root water uptake was simulated, as to drive all isotopic differences between soil domains 

from the parameterized soil physics. 

 

3.9.2 Modeled Input Precipitation Datasets 

We generated precipitation isotope time-series which reflected the average and 

variance of the δ2H ratio and its correlation with precipitation depth over time. Observed 

δ2H in precipitation was sampled in 5 mm increments over the study period (2010), but 

the model required input data on 15-minute increments. Accordingly, the observed time 

series was downscaled, using the statistical downscaling method described by 

Finkenbiner et al. (2021), to correspond with the observed 15-minute precipitation data 

(H.J. Andrews PRIMNET database (Daly and McKee, 2019), Figure 3.1a). The total 

input precipitation amount for the 100 days was 101.5 cm. The statistical downscaling 

method decomposed the observed precipitation isotope ratio time series into its 

deterministic and stochastic components. δ2H ratios were simulated from a Gaussian 
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distribution using the observed mean of -66.7 ‰, standard deviation of 21.5 ‰, and 

Pearson correlation coefficient (ρ), ρ(precipitation (cm), δ2H ratio (‰)), of -0.16. The 

generated precipitation isotope time series had seasonality effects removed as to drive 

separations strictly from soil properties or amount effects.  Ten unique 15-minute δ2H 

time series were generated for each model configuration and each time series captured 

the statistics of the sampled precipitation (Figure 3.1a). We chose to simulate ten time 

series of δ2H ratios as to not tie results to one specific input time series. Additionally, an 

ensemble size of ten time series was chosen due to the lengthy computational time of 

each model (~5 min), the amount of time required to process, manipulate, and analyze the 

output files, and the size of the HYDRUS-1D input/output files (~100-150 MB). 

 

3.9.3 Modeled Initial Conditions 

The soil water's initial δ2H concentration was unknown and we decided to set it 

equal the average weighted precipitation. The 100-day time series was repeated three 

times to remove the effects of the initial condition of the soil’s isotopic concentration, 

and the final 100 days (days 200-300) were analyzed in the presented results. To explore 

the effects of changing the initial condition of the isotopic concentration of the soil water, 

we changed the soil's initial condition to a very high δ2H value of +200 ‰. The mobile 

soil water decreases to average soil water concentrations observed in other model 

configurations presented in this paper within the 200-day period. Immobile soil water 

takes much longer, most likely a function of the mass transfer rate between the mobile 

and immobile domains, and eventually decreases to the average soil water concentrations 

observed in other model configurations. Therefore, we concluded that changing the initial 

condition would have minimal impact on the presented results.  
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Table 3.S1 The linear regression, p-value, Pearson correlation coefficient, and Spearman 
correlation coefficient for the isotopic separation between water pools and VWCbulk.  
 
  Linear Regression p-value Pearson Spearman 

  Mobile - Immobile Water v. VWCbulk (cm3cm-3) 

HfHω y = 3.4x - 1.5 5.00E-03 0.15 0.13 

LfHω y = 6.5x - 2.8 1.69E-08 0.30 0.28 

HfLω y = 3.2x - 1.5 2.00E-02 0.13 0.09 

LfLω y = 6.6x - 2.9 3.60E-08 0.30 0.27 

  Drainage - Mobile Water v. VWCbulk (cm3cm-3) 

0f1ω y = -7.6x + 3.5 2.06E-06 -0.26 -0.23 

HfHω y = 12.2x - 5.4 1.61E-12 0.38 0.37 

LfHω y = 2.2x - 0.9 1.90E-01 0.07 0.11 

HfLω y = 15.2x - 6.6 7.97E-15 0.41 0.42 

LfLω y = 2.7x - 1.1 1.20E-01 0.09 0.12 

  Drainage - Immobile Water v. VWCbulk (cm3cm-3) 

HfHω y = 15.6x - 6.9 3.60E-20 0.48 0.47 

LfHω y = 8.7x - 3.7 1.25E-09 0.33 0.35 

HfLω y = 18.4x - 8.1 5.53E-22 0.50 0.50 

LfLω y = 9.3x - 4.0 9.21E-10 0.33 0.35 
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Table 3.S2 The linear regression, p-value, Pearson correlation coefficient, and Spearman 
correlation coefficient for the isotopic separation between water pools at the end of a day 
and daily accumulated precipitation.  
 
  Linear Regression p-value Pearson Spearman 

  Mobile - Immobile Water v. Precipitation (cm) 

HfHω y = -0.001x - 0.1 8.89E-01 -0.03 -0.21 

LfHω y = 0.01x - 0.2 4.03E-01 0.15 0.33 

HfLω y = -0.002 - 0.2 7.75E-01 -0.05 0.17 

LfLω y = 0.004 - 0.3 4.32E-01 0.14 0.33 

  Drainage - Mobile Water v. Precipitation (cm) 

0f1ω y = -0.01x + 0.5 5.25E-01 -0.12 -0.34 

HfHω y = 0.02x - 0.8 1.48E-02 0.42 0.36 

LfHω y = 0.01x - 0.2 1.22E-01 0.28 0.06 

HfLω y = 0.02x - 0.8 1.48E-02 0.42 0.43 

LfLω y = 0.01x - 0.2 1.23E-01 0.27 0.07 

  Drainage - Immobile Water v. Precipitation (cm) 

HfHω y = 0.02x - 0.9 2.00E-02 0.40 0.54 

LfHω y = 0.02x - 0.4 1.00E-02 0.44 0.37 

HfLω y = 0.02x - 1.0 2.00E-02 0.40 0.54 

LfLω y = 0.02x - 0.4 1.40E-02 0.42 0.37 
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Table 3.S3 The linear regression, p-value, Pearson correlation coefficient, and Spearman 
correlation coefficient for the isotopic separation between water pools and drainage.  
 
  Linear Regression p-value Pearson Spearman 

  Mobile - Immobile Water v. Drainage (cm) 

HfHω y = 0.1x - 0.2 2.20E-02 0.13 0.18 

LfHω y = 0.2x - 0.4 3.54E-05 0.23 0.34 

HfLω y = 0.2x - 0.4 6.00E-02 0.10 0.14 

LfLω y = 0.1x - 0.3 3.19E-05 0.23 0.33 

  Drainage - Mobile Water v. Drainage (cm) 

0f1ω y = -0.2x + 0.7 2.50E-04 -0.20 -0.25 

HfHω y = 0.4x -1.0 5.21E-12 0.37 0.40 

LfHω y = 0.1x - 0.1 5.70E-02 0.06 0.09 

HfLω y = 0.5x -1.1 2.25E-12 0.37 0.39 

LfLω y = 0.1x - 0.1 3.05E-01 0.57 0.11 

  Drainage - Immobile Water v. Drainage (cm) 

HfHω y = 0.5x - 1.2 7.41E-18 0.45 0.56 

LfHω y = 0.2x - 0.4 6.73E-06 0.25 0.36 

HfLω y = 0.6x - 1.4 1.83E-17 0.45 0.52 

LfLω y = 0.2x - 0.5 9.35E-06 0.24 0.37 
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Figure 3.S1 The influence of modeled soil hydraulic parameters on average δ2H 
difference between mobile and immobile soil water. Each boxplot represents flux and 
volumetrically weighted averaged differences and the black triangles indicate the mean 
calculated from 10 simulations. The missing boxplot at 0.40 cm3cm-3 indicates where 
Hydrus model configurations failed to converge.  
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Figure 3.S2 The influence of modeled climate parameters on average δ2H difference 
between mobile and immobile soil water. (a) illustrates the effects of increasing or 
decreasing the total input precipitation and (b) demonstrates the influence of adjusting the 
strength of the Pearson correlation coefficient between precipitation amount and its δ2H 
concentration. Each boxplot represents flux and volumetrically weighted averaged 
differences and the black triangles indicate the mean calculated from 10 simulations.  
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Chapter 4. Datasets of Daily Water and Carbon Stable Isotope Ratios 
for Precipitation, Evapotranspiration, and Net Ecosystem Exchange 
Fluxes at NEON Sites 
 
4.1 Abstract 

 

The National Ecological Observatory Network (NEON) provides open-access 

measurements of stable isotope ratios in atmospheric water vapor (δ2H, δ18O) and carbon 

dioxide (δ13C) at different tower heights, as well as aggregated biweekly precipitation 

collections (δ2H, δ18O) across the United States. Based on these NEON measurements, 

daily estimates of isotope ratios of precipitation (P; δ2H, δ18O), evapotranspiration (ET; 

δ2H, δ18O), and net ecosystem exchange (NEE; δ13C) fluxes have been quantified. 

Statistically downscaled precipitation datasets were generated to be consistent with the 

estimated covariance between isotope ratios and precipitation amounts at daily time 

scales. Isotope ratios in ET and NEE fluxes were estimated using a mixing model 

approach with NEON tower measurements and site-specific isotope calibrations. The 

datasets are publicly available on HydroShare and can be reproduced or modified to fit 

user specific applications or include additional NEON data records as they become 

available. The daily flux isotope ratios can facilitate understanding of terrestrial 

ecosystem processes through their incorporation into environmental investigations that 

require daily δ2H, δ18O, and δ13C flux data. 

 

4.2 Background & Summary 

 

The stable isotope ratios of carbon and water fluxes are natural environmental 

tracers that can be used to provide new insights into hydrological, ecological, and 

meteorological processes, as well as provide supportive metrics for understanding the 

complex feedbacks between the land surface and atmosphere (Chai et al., 2015; Brooks et 

al., 2014; Good et al., 2015; Gupta et al., 2020; Kanner et al., 2014; Remondi et al., 

2018). These tracers are informative in ecohydrologic modeling applications because 
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they provide additional points of comparison between observed and modeled 

environmental pools and fluxes (Abbott et al., 2016), as well as to evaluate the 

performance and efficiency of modeling approaches (Krause et al., 2005).  

Tracers commonly used in studies of land surface processes from global to local 

scales include the stable isotope ratios of hydrogen (2H/1H), oxygen (18O/16O), and carbon 

(13C/12C), found in water and carbon dioxide, hereafter expressed as δ2H, δ18O and δ13C 

values (Krause et al., 2005; Bowen & Good, 2015; McGuire & McDonnell, 2006; 

Sprenger et al., 2019; Turnadge & Smerdon, 2014; Fiorella et al., 2021). Water isotope 

ratios provide useful information for partitioning evapotranspiration (ET) into 

evaporation and transpiration at the ecosystem scales (Good et al., 2015; Xiao et al., 

2018), as well as understanding water use efficiency in forests, agricultural, and other 

ecosystems (Wu et al., 2018; Al-Qaili et al., 2020). Carbon isotope ratios provide 

valuable information about the component fluxes that determine net exchange of carbon 

dioxide between ecosystems and the atmosphere (Fiorella et al., 2021; Bowen et al., 

2019). Insights into such processes support the understanding of plant water uptake 

strategies and the underlying principles of water, carbon, and energy cycling in the soil-

vegetation-atmosphere continuum (Good et al., 2015; Xiao et al., 2018; Lu et al., 2017; 

Wieser et al., 2016).  

The United States National Ecological Observatory Network (NEON) collects 

long-term ecological data in eco-climatologically diverse field sites across the United 

States and provisions these data through an open access data portal 

(https://data.neonscience.org/). These publicly available isotope datasets are part of an 

important network documenting hydrometeorological tracer patterns throughout North 

America. The NEON atmospheric gas stable-isotope measurements are collected at 

approximately hourly intervals (varying by site), enabling robust daily calculations of 

net-ecosystem-exchange (NEE) and evapotranspiration flux (ET) isotope ratios (e.g., via 

mass balance approaches developed by Keeling (Pataki et al., 2003) and Miller-Tans 

(Miller & Tans, 2003)). The precipitation isotope data are collected at biweekly intervals, 

but they can be downscaled to a daily resolution using a validated approach (Finkenbiner 
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et al., 2021a). By conducting those pre-processing steps, we can facilitate subsequent 

applications using these published daily flux data products. 

We generated daily records of a) δ2H and δ18O in precipitation fluxes (FP) at 16 

NEON core sites and 16 NEON relocatable sites, b) δ2H and δ18O of ET fluxes (FET) at 

19 NEON core sites and 2 NEON relocatable sites, and c) δ13C of NEE fluxes (FNEE) at 

19 NEON core sites and 28 NEON relocatable sites. These products form daily flux 

isotope datasets across diverse ecosystems over a multi-year span created using 

consistent instrumentation and methodology. The dataset analyzed here are reproducible 

with the published python and R scripts. The methods can easily be modified to fit a 

user’s specific application or as additional NEON data records become available in the 

future. The subsequent sections detail the methods used to derive isotope ratios 

associated with the FP, FET and FNEE fluxes, the validation of each method, and a 

description of the associated metadata. 

 

4.3 Methods 

 

4.3.1 Precipitation Flux Data Products 

We acquired 30-minute precipitation data and stable water isotopes in 

precipitation collected in biweekly intervals from the NEON Data Portal (NEON, 2021) 

using the neonUtilities R package (Lunch & Laney, 2020). A wet deposition collector at 

each site opens during rain events to collect samples, which are then retrieved, filtered, 

and analyzed approximately every two weeks (Lee & Weintraub, 2021). All datasets with 

stable water isotopes in precipitation (as of Spring 2021) were downloaded, as well as the 

corresponding precipitation amount data. There were 44 sites across the NEON network 

with water isotope data, 38 of which contained sufficient data to perform the downscaling 

methodology (refer to the NEON data product number 1.00006.001 for precipitation 

amounts and 1.00038.001 for precipitation stable isotope concentrations). At the time of 

this publication, NEON’s “primary” precipitation data had a known issue where the 

weighing gauge had recorded spurious small precipitation amounts. Consequently, we 

used the “secondary” collector data (from a tipping bucket rain gauge) when available, 
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and the primary data was only used at sites that did not have secondary data. As a further 

quality check, we removed trace precipitation events, defined here as less than 0.25 mm 

of accumulated precipitation in one day. This threshold can be changed within the code to 

generate new data products. 

The NEON precipitation samples for isotope analysis are collected at an 

approximately biweekly resolution. This temporal resolution is shorter relative to past 

network collections (e.g., the Global Network of Isotopes in Precipitation (GNIP) 

contains data mostly at monthly resolutions (IAEA, 2020)), but is still coarser than what 

is required for land modelling applications. Consequently, by downscaling from biweekly 

to daily resolution a fine-scale product is available for future studies. The daily stable 

water isotopes associated with the FP were generated at each NEON site with sufficient 

observation data to conduct a statistical downscaling method (Finkenbiner et al., 2021a), 

which translated the observed biweekly water isotope samples to a daily estimate 

correlating with known precipitation amounts. The statistical downscaling method was 

described in detail and validated by Finkenbiner et al. (2021a), here we provide a 

summary of the method applied to the NEON datasets.  

At each NEON site, the 30-minute precipitation amounts were aggregated to daily 

and biweekly totals to correspond with the biweekly tracer observations and provide a 

daily time series on which to condition the generated daily tracer values. The seasonal 

component of each δ2H and δ18O time series was characterized using a combination of 

sinusoidal functions through Fourier decomposition, following the methods from Allen et 

al. (2018), and removed. The remaining values were assumed to be drawn from a purely 

stochastic process with a mean of zero. The daily covariance statistics were predicted 

based on trends in the means, standard deviations, and Pearson correlation coefficients as 

each time series was aggregated from biweekly to coarser resolutions. Some NEON sites 

had few biweekly observations and were unable to be aggregated to the 12-week 

resolution required for the downscaling method. We anticipate as NEON continues to 

collect observations and the site data represents longer seasonal time scales, this 

downscaling method can be applied at additional sites. δ2H and δ18O stable water isotopes 

are strongly correlated with each other (Craig, 1961) and often share a weaker, but 
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significant, relationship with precipitation amount (Dansgaard, 1964). A Gaussian copula 

(Sklar, 1959) conditioned on daily precipitation amounts was used to generate pseudo-

random values from the predicted de-seasonalized daily statistics of δ2H and δ18O from 

the stochastic signal. A copula is a multivariate cumulative distribution function used to 

model the dependence between random variables (Sklar, 1959), here the random 

variables were precipitation amount and its isotopic ratios. Lastly, the pre-defined 

seasonal component was added to each stochastic isotope series and a residual correction 

was performed. The residual correction adjusts the downscaled daily δ2H and δ18O values 

by forcing the biweekly precipitation weighted means of the downscaled data to match 

those of the observed biweekly dataset. At each NEON site with sufficient observation 

data, we generated a final synthetic daily time series which corresponded with daily 

precipitation amounts, seasonal signals, and stochastic variability.  

 

4.3.2 Gas Flux Data Products 

The NEON atmospheric isotope measurements provide continental-scale ongoing 

measurements of δ13C-CO2, δ18O-H2Ovapor, and δ2H-H2Ovapor at established eddy 

covariance towers. The NEON eddy covariance bundled product (refer to NEON data 

product number DP4.00200.001) provides δ2H, δ18O, and δ13C values of the atmospheric 

gases at different tower heights with a typical averaging interval of 9-minutes (the return 

interval varies and can be up to 90-minutes). Gases are sampled at each height for ten 

minutes, with the first minute discarded, and then cycled to the next height; thus, the 

sampling interval depends on the number of heights sampled per tower. These 

measurements were integrated (i.e., averaged) to daily stable water and carbon isotopes 

associated with the FET and FNEE fluxes.  

The estimation of the daily carbon and water isotope composition of the FET and 

FNEE fluxes requires two procedures: 1) calibration of NEON’s measured carbon and 

water isotope ratios to known standards and 2) translation of those values to the Vienna 

Pee Dee Belemnite (VPDB) and Vienna Standard Mean Ocean (VSMOW) scales. The 

measured carbon and water isotope ratios frequently diverge from the VPDB and 

VSMOW scales due to the instrumentation drift, poor instrument calibration, or bias that 
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has not yet been removed from the calibration routines. Fiorella et al. (2021) provided a 

calibration strategy to correct the measured δ13C values to the VPDB scale as part of the 

NEONiso R package (Lunch & Laney, 2020). Since that publication, NEONiso has been 

expanded to include calibrations for δ2H and δ18O values. We estimated the isotopic 

composition of the surface relative to the calibrated atmosphere fluxes by employing the 

Miller-Tans (Miller & Tans, 2003) mixing model approach, which regresses the product 

of H2O or CO2 mixing ratios and the isotope composition of each atmospheric gases at 

each of the measurement heights against the respective mixing ratio for that gas (Good et 

al., 2012). The slope of the simple regression from this procedure estimated the isotope 

composition of the water and carbon fluxes. To estimate the daily isotopic value of each 

flux, we used the 9-minute calibrated isotope datasets across all measurement heights as 

the predictor of a Miller-Tans mixing model and the response was the product of the 9-

minute atmospheric gas concentrations and the calibrated isotope data. We only used 

isotope ratios of the atmospheric gases which occurred during time periods where the 

incoming shortwave radiation was ≥ 10 Wm-2. Importantly, this threshold constrained 

most of the isotope measurements to represent diurnal fluxes. This threshold can be 

updated in future versions of this product.  

While we achieved reasonable results with the Miller-Tans approach, other mass 

balance mixing methods can be explored in future work to estimate the isotope 

composition of the water and carbon fluxes (e.g., Zobitz et al., 2006; Wehr & Saleska, 

2015). At the time of this publication, the water isotope measurements were not corrected 

for low humidity deviations and the data corrected for low humidity was not available. 

Fortunately, here we were not focused on estimating isotope ratios at low humidity, but 

future work could apply these corrections to the data. 

 
 
4.4 Data Records 
 

 

All associated data, code and metadata are available in a public repository on 

HydroShare (Finkenbiner et al., 2021b). HydroShare, developed and maintained by the 
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Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) 

and supported by the U.S. National Science Foundation, is a web-based hydrologic 

information system that allows users to publish and share data repositories in a citable 

manner.  

 

4.4.1 Precipitation Flux Data Products 

 For the daily FP, there are two data files containing time series of modeled δ2H 

and δ18O values corresponding to observed precipitation and a metadata file describing 

the quality of each data point. Each row in these files represents one calendar date and the 

columns are labeled with the NEON site abbreviation codes. Each column contains a 

daily time series of water isotope values where applicable. Days with no precipitation 

contain values of -9999. The precipitation flux metadata file contains quality flags for 

each value in a site’s time series. A “0” indicates daily isotope value was associated with 

observed precipitation that was larger than the defined value for trace events (here 0.25 

mm), a “1” indicates there was no precipitation data on that day, and a “2” indicates the 

observed precipitation was less than the defined value for trace events.  

The precipitation downscaling techniques were successfully applied to sites with 

low (e.g., Onaqui in Utah (ONAQ)) and high (e.g., Wind River in Washington (WREF)) 

annual precipitation (Fig. 4.1a-d).  Across all sites which could be statistically 

downscaled, an average of 23 biweekly observations were used in the downscaling 

method. The means and standard deviations of the downscaled precipitation isotope 

values varied depending on site-specific characteristics (e.g., seasonality, climate) 

accounted for within the downscaling methodology (Fig. 4.2a-d). Recorded in the 

metadata document, the sites with sufficient isotope observations had a minimum number 

of simulated daily isotope ratios of 70 days (0.05% of total days) and a maximum number 

of 531 days (0.39% of total days).  
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Figure 4.1. Time series at NEON sites Onaqui, UT (ONAQ - arid climate) and Wind 
River, WA (WREF - wet climate) of the a-d) downscaled daily and observed biweekly 
ratio of the flux in precipitation (FP) and precipitation amount and e-j) daily isotope ratios 
of the ET and NEE water and carbon fluxes, along with Evapotranspiration (FET), and 
Net Ecosystem Exchange (FNEE) fluxes for January 1, 2019 - June 30, 2020.  
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Figure 4.2. Average and standard deviation of each of the daily time series from each of 
the NEON site locations with a-d) precipitation flux (FP) water isotopes, d-h) flux tower 
ET (FET) estimates of water isotopes, and i-j) NEE (FNEE) of carbon isotopes. 
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4.4.2 Gas Flux Data Products 

 Water isotope ratios of the FET and carbon isotope ratios of the FNEE are contained 

in three data files with row names consisting of the calendar date and column names 

corresponding to the four-letter abbreviation of each NEON site location (same as the FP 

file format described above). The included FET and FNEE metadata files contain data 

quality flags for each flux measurement. For each stable isotope time series, a value of -

9999 was used to fill days when no calibrated isotope ratios were available, and this was 

marked with a “1” quality flag in the metadata file. A flag value of “2” was used if there 

was a low number (n ≤ 5) of calibrated isotope values used to generate the daily flux 

values. A quality flag value of “3” was assigned when the Miller-Trans mixing model r-

squared (R2) was below 0.9. To identify cases where the interred point falls outside the 

range of observations, an interquartile (IQR) range flag was applied to each time series 

meeting the above criteria (n ≥ 5, R2 ≥ 0.9); if the inferred isotope value of the flux was 

beyond the 1.5 times IQR of the 25th percentile (Q1-1.5 IQR) and 75th percentile (Q3+1.5 

IQR) of the observation data, then a flag of “4” was assigned to those data points. A “0” 

quality flag was used to indicate a good isotope value of the flux estimated from the 

isotope ratios of the gases where n ≥ 5 from the regression analysis, R2 ≥ 0.9, and the 

isotope value was within the desired interquartile. Users of these data products are 

encouraged to use the isotope values in the time series with a quality flag value of “0”. 

The isotope ratios of the ET and NEE fluxes which passed all quality flags at ONAQ and 

WREF were shown in Fig. 4.1e-j, along with the fluxes themselves. 

The site averaged (± standard deviation) isotope flux values ranged from -236.56 

(61.31) ‰ to -51.40 (8.88) ‰ for δ2HET, -33.97 (9.58) ‰ to -7.86 (1.17) ‰ for δ18OET, 

and -30.64 (4.26) ‰ to -18.08 (1.64) ‰ for δ13CNEE (Fig. 4.2e-j). Across all NEON sites, 

the number of δ18OET and δ2HET flux values that passed all quality flags ranged from 82 

to 741 days (5 to 48% of total days) and 92 to 678 days (6 to 42% of total days), 

respectively. The number of δ13CNEE data points that passed all quality flags ranged from 

37 to 861 days (2% to 58% of total days). However, calculated flux isotope ratios that did 

not pass quality flags might not necessarily be low quality. For example, atmospheric 
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conditions could be such that a two-member mixing model does not work. In this case, 

the raw data would be of high quality, but the Miller-Tans mixing model method would 

fail. Future work could investigate other methods besides the Miller-Tans method as to 

increase the number of data points that pass imposed quality flags. 

 
4.5 Technical Validation 

 
 

4.5.1 Precipitation Flux Data Products 

The implemented statistical downscaling method was previously validated 

(Finkenbiner et al., 2021a) at 27 globally distributed sites from the International Atomic 

Energy (IAEA) Global Network of Isotopes in Precipitation (GNIP) database (IAEA, 

2020). Downscaling biweekly observations to daily estimates cannot produce the true 

value (as these are unknown) but only statistically representative realizations. We 

quantified the uncertainty associated with the average of the daily precipitation estimates 

by calculating the standard deviation of each precipitation event across an ensemble of 10 

precipitation time series at each site (Fig. 4.3). The average standard deviations ranged 

from 2.4 to 9.5 ‰ for δ2H values and 0.3 to 1.6 ‰ for δ18O values across sites. Sites with 

larger seasonal variability have larger standard deviations. The dataset provided here 

contains a single realization of the estimated daily precipitation’s isotopic composition 

based on the statistics of a coarser resolution observation time series (here biweekly 

observations). Depending on the application of the daily isotope ratios, generating an 

ensemble of daily time series may be advantageous to capture impacts of the standard 

error as a function of time or space. To generate ensemble sets, the published python 

script, which generates a single random realization of the daily precipitation water 

isotope data product, can be run numerous times. 
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Figure 4.3. Standard deviation of the daily precipitation flux’s (FP) isotope ratio averaged 
across 10 daily time series generated at each of the NEON site locations. Each point 
represents the expected variance for each day in the time series across 10 downscaled 
realizations. 
 

4.5.2 Gas Flux Data Products 

 The generation of calibrated isotope ratios associated with the atmospheric carbon 

dioxide flux were validated by Fiorella et al. (2021; with an accuracy of 0.11‰ and 

precision of ~0.4‰) and here similar procedures were used for the atmospheric water 

vapor ratios. Within the context of a simplified mixing model source estimation 

approach, uncertainty in the estimation of the isotope composition of surface-atmosphere 

fluxes is associated with accuracy of isotope measurements themselves and the range of 

atmospheric carbon dioxide and water vapor concentrations observed during the 

averaging interval (Good et al., 2012).  The average of the daily standard error in the 

mixing model regression slope is shown in Fig. 4.4 for the FET and Fig. 4.5 for the FNEE. 

These standard errors represent the uncertainty associated with estimation of the isotope 

ratio of the FET and FNEE within the mixing model framework. The mean of the standard 

error of the Miller-Tans model slope across all sites ranged from 1.27 (+/- 0.63) to 5.33 

(+/- 3.50) for ẟ2H, from 0.19 (+/- 0.09) to 0.84 (+/- 0.56) for ẟ18O, and from 0.14 (+/- 

0.07) to 0.62 (+/- 0.22) for δ13C. 
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Figure 4.4. Standard error of the flux tower ET (FET) estimates of water isotopes averaged 
across time at each NEON site. 
 

 
Figure 4.5. Standard error of the flux tower NEE (FNEE) estimates of carbon isotopes 
across time at each NEON site. 
 
 
4.6 Usage Notes 
 

Water isotope ratios of FP are contained in two CSV files containing time series 

of δ2H (“daily_p_flux_d2H.csv”) and δ18O (“daily_p_flux_d18O.csv”) ratios 

corresponding to observed precipitation. Both correspond to the same metadata file 

(“daily_p_flux_metadata.csv”) describing the quality of each data point. The script 

“Estimate_daily_p_flux_iso.py” will implement the complete statistical downscaling 

method22 and save daily water isotope time series which correspond to observed daily 

precipitation amounts at each NEON site to comma-separated values (CSV) files. The 

user can change which site data are analyzed and how many ensembles are generated. 

Additionally, the user can change the “precip_filter” variable to change the magnitude of 
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the precipitation events which will be filtered out of the downscaling method and 

consequently update the output time series and metadata files.  

Water isotope ratios of the FET and carbon isotope ratios of the FNEE are contained 

in three CSV files (“daily_et_flux_d2h.csv”, “daily_et_flux_d18o.csv”, and 

“daily_nee_flux_d13c.csv”). Each correspond to a metadata file 

(“daily_et_flux_d2h_metadata.csv”, “daily_et_flux_d18o_metadata.csv”, and 

“daily_nee_flux_d13c_metadata.csv”) describing the quality of each data point. The 

script “Estimate_daily_et_nee_flux_iso.py” will implement all the calibration procedures 

for water and carbon isotope ratios and save the daily isotope time at each NEON site to 

CSV files. For the FET and FNEE fluxes, the user can adjust the minimum number of the 

data points used in the Miller-Tans mixing model, adjust the threshold value of the R2 

regression, and implement other filters besides the IQR filtering. The FET and FNEE flux 

isotope composition estimation procedure for δ13C, δ2H, and δ18O were done by 

leveraging the R scripts “mixing_model_d13c_by_month.R”, 

“mixing_model_d2h_by_site.R”, and “mixing_model_d18o_by_site.R”, respectively.  

 

4.7 Code Availability 

Python and R code and generated CSV files are available on HydroShare (Finkenbiner et 

al., 2021b). For the NEON data processing packages, refer to the NEONiso package 

(Lunch & Laney, 2020) found at https://github.com/SPATIAL-Lab/NEONiso/tree/0.4.0. 
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Chapter 5. Leveraging New Water Isotope Datasets to Constrain 
Uncertainties in Modeled Evapotranspiration Estimates 
 
5.1 Abstract 

Estimates of the component fluxes of the hydrologic cycle (plant transpiration, 

soil evaporation, overland flow, subsurface percolation, etc.) inform approaches to 

agriculture, water resources, and ecological issues; yet calibration of models representing 

these fluxes is principally based on bulk evapotranspiration and discharge measurements. 

Recent studies have noted significant disparities exist amongst estimates of component 

fluxes. While geochemical tracers such as stable water isotope ratios (δ!H, δ$3O) have 

been used to constrain estimates, lack of data has hindered inter-model assessment at 

large scales and across ecosystems. Here we investigated hydrologic fluxes for three 

leading land surface models (LSMs) using observation datasets of isotope ratios in 

precipitation and atmospheric water vapor at 14 sites across the United States from the 

National Ecological Observatory Network (NEON). Statistically downscaled 

precipitation δ!H and δ$3O values were used as conservative tracers within a mass 

balance model built from LSM specified output fluxes that tracked δ values for different 

components. Simulated δET was aggregated from flux components and directly 

compared to daily δET observations created from calibrated NEON tower measurements 

of atmospheric water vapor. An inter-model comparison suggested distinct differences 

exist amongst simulated δET across North American ecosystems and this can be 

associated with disparities in the relative contributions of interception, plant transpiration, 

and soil evaporation to the total ET. Our results indicate conservative tracers allow for 

better tracking of the uncertainties associated with inferences drawn from LSM outputs 

and provide additional validation metrics on which to evaluate model performance. LSM 

representations of the ET can greatly impact water and energy balance simulations used 

in large-scale hydrologic and global climate modeling. We predict our findings can 

improve the general understanding of land-surface processes influencing the water and 

carbon cycle from regional to global scales. 
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Chapter 5.2 Introduction 

 

The earth science community has developed countless models representing 

various components of the water and energy balance (Overgaard et al., 2006).  Many 

different model structures and parameter sets can yield reasonable results when validated 

against a predefined objective function (often bulk fluxes). This leads to model 

equifinality in space (Wagener et al., 2009; Herman et al., 2013; Moreau et al., 2013) and 

time (Franks et al., 1998; Ghasemizade et al., 2017; Guse et al., 2016; Kelleher et al., 

2015; van Werkhoven et al., 2008; Zhang et al., 2013) and poses serious challenges for 

model improvement (Kelleher et al., 2017; Beven, 2000). Land-Surface Models (LSMs) 

are based on a solution of the energy balance equation at the land surface and offer an 

effective way to generate spatially and temporally continuous estimates of 

evapotranspiration (ET) and its partitions (Kumar et al., 2018; Miralles et al., 2016; 

Overgaard et al., 2006). However, large uncertainties exist in LSM ET estimates. 

Identifying and constraining these uncertainties is difficult due to deficiencies in model 

structures (e.g., representations of the subsurface), input and output measurements a 

model is validated against (e.g., precipitation and stream discharge; Moradkhani et al., 

2005, Renard et al., 2010), and physically unrealistic calibration parameters resulting in 

low model error (Muñoz et al., 2015). A recent study by Kumar et al. (2018) compared a 

suite of state-of-the-art LSMs and exposed large disagreements in partitions of various 

water balance components across the contiguous United States. Across LSMs, large 

uncertainties were calculated in modeled partitions of the total ET with transpiration 

accounting for 29.9 to 83.0 % of total ET (Kumar et al., 2018). 

We postulated a new dataset with stable isotope ratios of water fluxes across the 

United States could be used to provide novel constraints on LSM estimates of hydrologic 

components, as well as provide supportive metrics for understanding modelled feedbacks 

between the land surface and atmosphere (Chai et al., 2015; Brooks et al., 2014; Good et 

al., 2015; Gupta et al., 2020; Kanner et al., 2014; Remondi et al., 2018). Natural tracers, 

like stable water isotopes, provide additional points of comparison between observed and 

modelled environmental pools and fluxes (Abbott et al., 2016) and aid in the evaluating 
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the performance and efficiency of a modelling approach (Krause et al., 2005). The stable 

water isotope ratios of hydrogen (2H/1H) and oxygen (18O/16O), hereafter expressed as 

δ2H and δ18O (Krause et al., 2005; Bowen et al., 2015; McGuire and McDonnell, 2006; 

Sprenger et al., 2019; Turnadge and Smerdon, 2014; Fiorella et al., 2021), are commonly 

used to study land surface processes from local to global scales and provide useful 

information for partitioning ET into evaporation and transpiration at the ecosystem scales 

(Good et al., 2015; Xiao et al., 2018).  

In this study, we leveraged observation datasets of stable water isotopes to 

evaluate the uncertainties in hydrologic partitioning the three operational land surface 

models: Noah (version 2.8; Chen et al., 1996; Ek et al., 2003; Xia et al., 2012), Mosaic 

(Koster and Suarez, 1992, 1996), and Variable Infiltration Capacity (VIC; Liang et al., 

1994) as implemented in the operational North American Land Data Assimilation System 

Phase 2 (NLDAS-2) configuration (Xia et al., 2012). Noah, Mosaic, and VIC are all 

validated against observation-based meteorological data (Xia et al., 2012) and provide 

reasonable estimates of the bulk ET and discharge fluxes (Zhang et al., 2020). Yet, all 

have striking differences in their ET partitions of evaporation, transpiration, and 

interception (Kumar et al., 2018) and discharge estimates of subsurface and overland 

flow. We hypothesized that incorporating stable water isotopes as tracers into a mass 

balance model built from Noah, Mosaic, and VIC output fluxes would allow us to 

constrain the uncertainty in ET and provide guidance toward model selection. Stable 

water isotope (𝛿!𝐻, 𝛿$3𝑂) observation datasets of precipitation and ET fluxes were 

leveraged from 14 sites across the United States from the National Ecological 

Observatory Network (NEON) within a tracer mass balance that simulated stable water 

isotope concentrations (𝛿) for input precipitation and outputs of hydrologic flux 

component: evaporation from the bare soil, transpiration, interception loss, sublimation, 

subsurface drainage, surface runoff, and storage. Simulated 𝛿𝐸𝑇 was directly compared 

to daily 𝛿𝐸𝑇 observations, which were calibrated from NEON tower measurements of 

atmospheric water vapor. Specific research questions included: 1) Do the different ET 

partitions assumed by Noah, Mosaic, and VIC LSMs result in distinct differences 

amongst simulated 𝛿𝐸𝑇? 2) Can stable water isotopes add additional metrics to evaluate 
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and constrain uncertainties in 𝛿𝐸𝑇 compared to bulk fluxes? 3) Can we use simulations 

of 𝛿𝐸𝑇 to move toward improved model selection for representing land-surface fluxes 

from a site-level to global scale? 

 

5.3 Stable Water Isotope Observation Datasets 

We utilized all datasets from National Ecological Observatory Network (NEON) 

sites (https://data.neonscience.org) with long-term records of stable water isotope 

measurements for precipitation and atmospheric water vapor, resulting in the 14 sites 

used in this analysis to evaluate our δET flux simulations (refer to Supplemental 

Materials Table 5.S1).  The NEON provides open-access measurements of stable isotope 

ratios (δ2H, δ18O) in atmospheric water vapor (refer to NEON product number 

DP4.00200.001) at different tower heights, as well as aggregated biweekly precipitation 

collections (refer to NEON product number 1.00038.001) across the United States. These 

14 sites were included in a new data product (Finkenbiner et al., 2021b) which calibrates, 

validates, and translates the raw NEON data products to daily estimates of δ2H and δ18O 

associated with the precipitation and evapotranspiration fluxes. An associated data 

descriptor to Finkenbiner et al. (2021b) is in review with Scientific Data. A brief 

description of the methods used by Finkenbiner et al. (2021b) is provided below. 

 

5.3.1 Stable Water Isotopes of the Precipitation Flux 

The NEON biweekly precipitation collections were statistically downscaled to 

daily resolutions to simulate stable water isotope ratios representative of the observed 

precipitation’s mean, standard deviation, and correlation structures following a method 

detailed and validated by Finkenbiner et al. (2021b). Python scripts from Finkenbiner et 

al. (2021b) were written based on the methods from Finkenbiner et al. (2021a) and we 

adapted those Python scripts to generate daily stable water isotope values associated with 

each daily NLDAS precipitation amount (δP). One-hundred precipitation stable water 

isotope time series were generated at each NEON site and served as input representative 

of the site’s natural seasonal and stochastic variability. Additionally, by generating 100 
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representative time series the presented results are not tied to one input time series and 

we effectively simulated a representative precipitation tracer signal at each site. 

 

5.3.2 Stable Water Isotopes of the Evapotranspiration Flux 

The NEON atmospheric isotope measurements represent the stable water isotope 

composition of the gases at specific measurement layers and therefore must be 

manipulated to reflect the isotope composition of the latent heat flux at ecosystem scales. 

We calibrated atmospheric isotope measurements following Fiorella et al. (2021) and 

then estimated the daily isotopic composition of the evapotranspiration flux (δET) based 

on a Keeling plot approach, which uses the isotope composition of the mole fractions of 

H2O (Pataki et al., 2003). Specifically, we applied a commonly used Miller-Tans mixing 

model (variant of the Keeling plot approach; Miller and Tans, 2003) using python and R 

scripts from Finkenbiner et al. (2021b). The Miller-Tans mixing model estimates the 

isotope ratio of ecosystem scale fluxes by fitting a linear regression between the product 

of the mole fraction and the isotopic ratio of the atmospheric gases at all measurement 

heights (Miller and Tans, 2003). The slopes of these regression lines are the estimates of 

the isotopic composition of the latent heat fluxes. Refer to Finkenbiner et al. (2021b) for 

more details on the calibration and estimation of the δP and δET flux datasets used in the 

subsequent analysis. 

 

5.4 Materials and Methods 

 

5.4.1 Isotope-enabled Mass Balance Model (isoMB) Description 

NLDAS-2 Noah-2.8, Mosaic, and VIC-4.0.3 LSM hourly forcing and output files 

(downloaded from https://ldas.gsfc.nasa.gov/nldas) were aggregated to represent daily 

fluxes from January 1, 2018 to December 31, 2020, a total of three full years. All three 

LSMs employ similar physics components with different parameterizations for soil 

hydrology, canopy interception, soil thermodynamics, and snowpack physics (Kumar et 

al., 2017; Xia et al., 2012). A mass balance model was built from daily Noah, Mosaic, 
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and VIC LSM fluxes to represent a water balance with the storage (S) at the next timestep 

defined as: 

𝑆-G$ =	𝑆- +	𝑃- − 𝑄- − 𝐿- −	𝐸HI) − 𝐸J0K) − 𝐸KJ) − 𝑇- 	    (1) 

where i is the current time step, P is incoming precipitation as rainfall and snow, Q is 

surface runoff (i.e., overland flow), L is subsurface drainage, Ecw is evaporation from 

canopy water interception, Esub is evaporation from sublimation, Ebs is evaporation from 

the bare soil, and T is evaporation from transpiration. The mass balance model (1) was 

validated against Noah, Mosaic, or VIC storage outputs, where 𝑆-G$ was confirmed to be 

equal to the LSM storage output at i+1. 

The Isotope-enabled Mass Balance Model (isoMB) associated stable water 

isotope concentrations (𝛿) with incoming precipitation (P), each ET partition (Ecw, Esub, 

Ebs, T), subsurface drainage (L), surface runoff (Q), and storage (S) flux in (1). The 

simulated daily stable water isotope concentrations (refer to Section 2) were conditioned 

on NLDAS-2 Forcing precipitation amounts and served as input to the isoMB. Storage 

was isotope ratios at the next timestep were defined as: 

𝛿𝑆-G$ ∙ 𝑆-G$ =	𝛿𝑆- ∙ 𝑆- +	𝛿𝑃- ∙ 𝑃- 	− 𝛿𝑃-/ ∙ 𝑄- − 𝛿𝑆- ∙ 𝐿- 

−	𝛿𝑃-/ ∙ 𝐸HI) − 𝛿𝑆- ∙ 𝐸J0K) − 𝛿𝐸KJ) ∙ 𝐸KJ) − 𝛿𝑆- ∙ 𝑇- 	   (2) 

where i’ references the isotope concentration of the most recent precipitation event for 

days when no precipitation occurred. The isoMB calculated stable water isotope 

concentrations for each mass balance component (storage and fluxes) at every time step. 

 

5.4.2 isoMB Model Initial Conditions and Parameter Assumptions 

We ran isoMB at each of the 14 NEON sites with 100 simulations of stable water 

isotopes in precipitation on the National Center for Atmospheric Research (NCAR) high-

performance system (Computational and Information Systems Laboratory, 2019). The 

initial stable water isotope concentration of the storage term (S0) was unknown, so we 

assumed 𝛿S0 was equal to the weighted average isotope concentration of a NEON site’s 

observed precipitation. isoMB was ran three times for 2018-2020 (9 years total) and only 

the isoMB outputs for the last 3 years (after the 6-year warm-up period) were analyzed 
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for the subsequent analyses. For days with Q or Ecw fluxes but no input precipitation, we 

assumed each flux had the isotopic concentration of the most recent precipitation event 

(i’ in (2)). We assumed that fractionation during sublimation was negligible (Noone and 

Sturm, 2010) and that kinetic fractionation from the soil surface does not occur when the 

skin temperature was below freezing (Dee et al., 2015). Hydrologic connectivity of the 

subsurface was randomly varied among model runs, similar to Good et al. (2015), thus 

simulating heterogenous landscape porosities and variable mixing in the subsurface. We 

defined hydrologic connectivity as Fractionation effects on the evaporative flux from the 

bare soil (Ebs) were quantified using the Craig-Gordon equations (Gat, 2008) and 

followed methods from numerous studies who have employed these techniques in other 

hydrologic modeling frameworks (Good et al., 2015; Soderberg et al., 2012; Horita et al., 

2008; Dee et al., 2015). The kinetic fractionation parameter was randomly generated 

from a uniform normal distribution, similar to Good et al. (2015), to simulate varying 

degrees of fractionation between 𝛿𝑆 and 𝛿Ebs at each site. 𝛿𝑇 is assumed to be equal to 

𝛿𝑆 and this is consistent with a steady-state assumption of the transpiration flux. The 

isoMB captured a breath of mass balance scenarios at each NEON site, as it was run with 

100 unique δP time series, variable degrees of kinetic fractionation, and variable 

subsurface mixing. 

 

5.4.3 isoMB Model Evaluation 

We calculated a 𝛿𝐸𝑇 value at each time step from the isoMB outputs as the flux 

weighted combination of the component fluxes as: 

𝛿𝐸𝑇- =	
7L01) ∙L01)G7L!23) ∙L!23)G7L3!) ∙L3!)G7N)∙N)

L01)GL!23)GL3!)GN)
.     (3) 

The 100 isoMB outputs of 𝛿𝐸𝑇 were compared to the 𝛿𝐸𝑇 modeled fluxes from each 

NEON site’s flux tower observations (refer to Section 2.1). We calculated the absolute 

error (E, ‰) in the mean (𝜇) and standard deviations (𝜎) relative to observed 𝛿𝐸𝑇 as: 

𝐸1 = |	𝜇OKJ −	𝜇-JOPQ	|	        (4a) 

𝐸2 = |	𝜎OKJ −	𝜎-JOPQ	|.        (4b) 
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The cross correlation between the isoMB outputs and observed time series of 𝛿𝐸𝑇 was 

calculated using a Pearson correlation coefficient (𝜌), this assumed a 0-day lag. A high 𝜌 

indicated the time series were highly correlated and the LSM flux partitions in the isoMB 

better represented the observed mean, standard deviation, and seasonality in the 𝛿𝐸𝑇 

flux. Lastly, 𝐸1 and 𝐸2 were compared against the average transpiration divided by total 

ET flux (T/ET), subsurface drainage divided by total runoff (i.e., subsurface and surface 

runoff; L/(L+Q)), and 𝜌 to provide guidance toward model selection at each NEON site. 

 

5 Results and Discussion 

 

5.5.1 Evaluation of Spatial and Temporal Patterns from isoMB Outputs 

Noah, Mosaic, and VIC assume different model structures and forms. The 

partitions of the hydrologic fluxes at any given time step are calculated using (2), thus 

resulting in different expected 𝛿𝐸𝑇 values from the isoMB. Figure 5.1 shows example 

time-series estimates of 𝛿𝐸𝑇 at Onaqui, UT (ONAQ), Wind River Experimental Range, 

WA (WREF), Harvard Forest, MA (HARV), and Smithsonian Conservation Biology 

Institute, VA (SCBI). Of the three LSMs investigated, VIC assumes the most 

transpiration (Kumar et al., 2018). Fractionation only occurred in the isoMB on water 

isotopes in the evaporative component from the bare soil (Ebs) where we assumed lighter 

(more negative) water isotopes preferentially evaporated and left behind heavier (less 

negative) water isotopes in the storage term (refer to Section 5.4.2 for more details). 

Thus, VIC partitioned fluxes produce the least fractionated 𝛿𝐸𝑇 flux and this 𝛿𝐸𝑇 most 

closely represents 𝛿𝑆. At any given time step in the isoMB, 𝛿𝐸𝑇 was only more negative 

than 𝛿𝑆 if the evaporative component from interception loss (Ecw) was more negative 

than 𝛿𝑆 (i.e., the last input precipitation was more negative than 𝛿𝑆) or if Ebs occurred 

resulting in a fractioned component of the ET flux. At these 14 NEON sites, VIC 

performed best at sites like WREF (Figure 5.1b, refer to Supplemental Materials Table 

5.S1 for site descriptions and characteristics) with high biomass, high leaf-area indexes, 

and large pant canopies, as well as a relatively weak seasonal signal in the isotopic 
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composition (Figure 5.1b). Across sites, Noah assumed the most bare soil evaporation. 

The Noah isoMB simulated 𝛿𝐸𝑇 had the largest standard deviation and best represented 

the seasonality in the 𝛿𝐸𝑇 flux at sites like ONAQ, HARV, and SCBI (Figure 5.1a,c,d). 

 

Figure 5.1. Time series of flux tower estimates of δET (black circles) and isoMB 
simulations of δET for NOAH (orange), MOSAIC (indigo), and VIC (green) for the 
NEON sites a) Onaqui, UT (ONAQ), b) Wind River Experimental Range, WA (WREF), 
c) Harvard Forest, MA (HARV), and d) Smithsonian Conservation Biology Institute, VA 
(SCBI). Refer to Supplemental Materials Table S1 for more details on each NEON site. 
 

Across LSMs, sites closer to the coast have lower errors in the mean (𝐸1) 𝛿𝐸𝑇 

and Noah has the lowest 𝐸1 (Figure 5.2a-c). Compared to Noah, both Mosaic and VIC 

had lower 𝐸1 at WREF, the site with the most annual precipitation (= 2225 mm) and the 

highest plant canopy height (= 50 m; refer to Supplemental Materials Table S1). None of 

the LSMs best captured the standard deviation of the 𝛿𝐸𝑇 flux across sites (Figure 5.2d-

f). Sites with high errors in the standard deviation of 𝛿𝐸𝑇 have either over or 

underestimated the fractionation associated with the Ebs flux or interception loss. 

Furthermore, means and standard deviations further from the average 𝛿𝑆 were simulated 

by at sites with more soil evaporation. At WREF, the errors in the standard deviation 

were highest for Noah because Noah assumed higher Ebs. Across sites, simulated and 

observed 𝛿ET usually had higher cross correlations (𝜌) with Noah isoMB outputs. This 

suggests the seasonality in the isotope signal was best captured by Noah (Figure 5.2g-i). 
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NEON sites located on the east coast had the highest 𝜌 across LSMs and sites in the 

western US located in mountainous or snowy regions were more poorly correlated to the 

flux tower estimates of 𝛿𝐸𝑇 (Figure 5.2g-i). 

 
Figure 5.2. Average Absolute Error (E) in the a-c) mean (𝜇), d-f) standard deviation (𝜎), 
and g-i) cross-correlation coefficient (𝜌) between the observed and isoMB simulated 𝛿𝐸𝑇 
from a,d,g) Noah, b,e,h) Mosaic, and c,f,i) VIC across the 14 NEON sites. 
 
 

5.5.2 Moving Toward Improved Hydrologic Modeling  

Total site incoming precipitation drives LSM components representing overland 

runoff, subsurface flow dynamics, and each component of the ET flux (Figure 5.3). For 

each of the 100 simulations the same unique time series of generated 𝛿𝑃 inputs, kinetic 

fractionation parameters, and hydrologic connectivity was specified for the isoMB with 

Noah, Mosiac, and VIC outputs. So, differences in variance in 𝛿𝐸𝑇outputs across models 

are directly traced back to how each model partitions its mass balance components. Sites 

with less precipitation had less variance in the errors in the mean (𝐸1) 𝛿𝐸𝑇 across the 100 

simulations of Noah, Mosaic, and VIC isoMB (Figure 5.3a). This could indicate that at 

sites which experience more precipitation the larger, more negative precipitation events 
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drive larger variances in the evaporative flux. Across sites, Noah isoMB 𝛿𝐸𝑇 simulations 

had the lowest 𝐸1 and error in the standard deviation (𝐸2; Figure 5.3a,b). Noah Mosaic, 

and VIC are better at capturing the standard deviation of the 𝛿𝐸𝑇 flux than the mean, 

since 𝐸2was significantly lower than 𝐸1 across models (Figure 5.3a,b). 𝜌 was variable 

across LSMs. The highest 𝜌 was calculated at sites with moderate precipitation and Noah 

usually had the highest 𝜌 of the three LSMs (Figure 5.3c). 𝜌 was relatively low at the two 

sites with the most precipitation (YELL and WREF). We acknowledge some of our 

reported errors may be a result of how the isoMB represents evaporation from canopy 

interception or sublimation, since 𝛿𝐸HI is not exactly equal to 𝛿𝑃 and 𝛿𝐸J0K is not 

exactly equal to 𝛿𝑆. However, this method offers unique insights and provides an 

additional metric on which to evaluate LSM outputs by employing natural tracers to 

evaluate flux partitions. 

 

 
Figure 5.3. Boxplots representing the absolute Error (E) of the a) mean (𝜇) and b) 
standard deviation (𝜎) and the c) cross-correlation (𝜌) between the observed and 100 
simulated time series from Noah (orange), Mosaic (indigo), and VIC (green) isoMB 
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estimates of 𝛿𝐸𝑇. The NEON site order along the x-axis is from least (= 288 mm) to 
most (= 2225 mm) average annual precipitation. The final column is all sites (ALL). 
 

LSM development should be based on how hydrologic components are 

partitioned within the model and reflect observed fluxes. We fit a simple linear regression 

through the average 𝐸1 from the 100 Noah, Mosaic, and VIC isoMB outputs compared to 

the fraction of transpiration in total ET (T/ET) (Figure 5.4a). Most sites have a positive 

slope, indicating LSMs that assume a larger transpiration flux within the bulk ET flux 

(T/ET) will be less likely to accurately represent expected fluxes and their partitions at a 

given site. However, at NIWO, a site with high elevation and significant snowpack, we 

saw an increase in T/ET decreased 𝐸1 because Noah assumed almost no transpiration 

(Figure 5.4a). LSMs with larger evaporative fluxes from the bare soil, canopy 

interception, or sublimation simulated values are more likely to simulate observed values. 

Changing the ET flux partitions also influenced the standard deviation of the isoMB 

outputs. LSMs with lower transpiration generally had lower errors in the standard 

deviation (𝐸2; Figure 5.4b). This suggests models assuming a lower transpiration 

component of the ET flux will better represent a site’s variance in ET through time. 

Selecting a model with lower T/ET is more likely to represent the mean and standard 

deviation of the 𝛿ET flux, and consequently better represent a site’s transpiration and 

evaporation rates. LSMs with lower T/ET had higher cross-correlation (𝜌). By effectively 

capturing temporal characteristics of the tracer time series (i.e., high 𝜌), the ET flux 

appropriately partitions transpiration and evaporation components in time and is 

responsive to seasonality at the site. Some sites experience a stronger seasonal signal than 

others (e.g., HARV versus WREF, Figure 5.1b,c). If seasonality is the most important 

feature of modeled ET to capture, selecting model physics with high 𝜌 would be most 

appropriate. Refer to Supplemental Materials Tables 5.S2a-c for the slope, y-intercept, 

R2, and p-values of the linear regressions. 
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Figure 5.4. Linear regressions representing the average absolute Error (E) of the a) mean 
(𝜇) and b) standard deviation (𝜎) and the c) average cross-correlation (𝜌) between the 
observed and 100 simulated time series from Noah (circles), Mosaic (triangles), and VIC 
(diamonds) isoMB estimates of 𝛿𝐸𝑇 v. the LSM average T/ET at each NEON site. A 
linear regression was fit between the three LSM at each site. A solid line was used for a 
p-value ≤ 0.1 and a dotted line was used for a p-value > 0.1. The NEON site order in the 
legend is from least (= 288 mm) to most (= 2225 mm) average annual precipitation. Refer 
to Supplemental Materials Table 5.S2a-c for the slope, y-intercept, R2, and p-values of 
the linear regressions. 
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Selecting a model with more or less subsurface drainage (L) relative to total 

runoff (L+Q) has site dependent impacts on estimates of 𝛿ET (Figure 5.5a,b). At several 

sites (CPER, SRER, WOOD, YELL), increasing L had little impact on 𝐸1 and at other 

sites increasing L/(L+Q) beyond 0.80 greatly increased 𝐸1 (Figure 5.5a). When the 

contribution of subsurface drainage to total runoff was decreased, 𝐸2 was reduced at most 

sites (Figure 5.5b). Similarly, more overland flow results in less precipitation entering the 

storage volume, mixing, and contributing to the 𝛿ET flux. At YELL and SRER, we 

noticed fewer impacts or large shifts in 𝐸2 across different L/(L+Q) (Figure 5.5b). This 

suggests model selection based on ET has implications for subsurface flow dynamics and 

watershed residence times. The cross-correlation (𝜌) between the isoMB simulations and 

observed time series was also compared against L/(L+Q) (Figure 5.5c). At most sites, the 

LSMs assumed high (> 0.80) L/(L+Q) and subsurface flow clearly plays an integral part 

in dictating the ET. At each site, it is important to select a LSM which assumes a higher 𝜌 

as it relates to capturing seasonal signals in the 𝛿ET flux.  

Future research could move toward LSM development at sites contingent upon 

minimizing 𝐸1 and 𝐸2 in respect to subsurface drainage or transpiration partitions of 

water balance components. Additionally, if a multi-model ensemble is applied different 

weights can be attributed to each model in the averaged based on their 𝐸1 and 𝐸2. 
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Figure 5.5. Linear regressions representing the average absolute Error (E) of the a) mean 
(𝜇) and b) standard deviation (𝜎) and the c) average cross-correlation (𝜌) between the 
observed and 100 simulated time series from Noah (circles), Mosaic (triangles), and VIC 
(diamonds) isoMB estimates of 𝛿𝐸𝑇 v. the LSM average L/(L+Q) at each NEON site. A 
linear regression was fit between the three LSM at each site. A solid line was used for a 
p-value ≤ 0.1 and a dotted line was used for a p-value > 0.1. The NEON site order in the 
legend is from least (= 288 mm) to most (= 2225 mm) average annual precipitation. Refer 
to Supplemental Materials Table 5.S3a-c for the slope, y-intercept, R2, and p-values of 
the linear regressions. 
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5.6 Conclusions 

An inter-model comparison suggested distinct differences exist amongst observed 

and simulated 𝛿𝐸𝑇 and this can be associated with disparities in the relative contributions 

of transpiration and other constituents of evaporation to total ET. Our results indicate 

stable water isotopes as conservative tracers allow for better tracking of the uncertainties 

associated with inferences drawn from LSM outputs and provide additional validation 

metrics on which to evaluate model performance. LSM representations of the ET flux can 

greatly impact water and energy balance simulations used in large-scale hydrologic and 

global climate modeling. We predict our findings can improve the general understanding 

of land-surface processes influencing the water and carbon cycle from regional to global 

scales. 
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(https://www.neonscience.org/data) with the neonUtilities R package (Lunch and Laney, 

2020). NLDAS-2 model forcings and outputs are available for download from NASA 
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5.10 Supplemental Materials 

Table 5.S1. Characteristics for the 14 NEON sites including the official site name and 
location, latitude, longitude, mean annual precipitation, mean elevation, mean annual 
temperature, and mean canopy height.  

Site ID 

Site 
Name/ 

Location 
Latitude 

(°) 
Longitude 

(°) 

Mean 
Annual 
Precipit

ation 
(mm) 

Mean 
Elevation 

(m) 

Mean 
Annual 
Temper

ature 
(C) 

Mean 
Canopy 
Height 

(m) 

ONAQ 

Tooele 
County, 
UT 40.178 -112.452 288 1662 9 1.2 

CPER 

Central 
Plains 
Experime
ntal 
Range, 
CO 40.816 -104.746 344 1654 8.6 0.4 

SRER 

Santa 
Rita 
Experime
ntal 
Range, 
AZ 31.911 -110.835 346 997 19.3 2 

WOOD 
Woodwor
th, WI 47.128 -99.241 494 591 4.9 1 

UNDE 

Universit
y of Notre 
Dame 
Environm
ental 
Research 
Center, 
MI/WI 46.234 -89.537 802 521 4.3 24 

CLBJ 

LBJ 
National 
Grassland
, TX 33.401 -97.570 926 272 17.5 13 

NIWO 

Niwot 
Ridge 
Mountain 
Research 
Station, 
CO 40.054 -105.582 1005 3490 0.3 0.2 

SCBI 

Smithsoni
an 
Conservat
ion 38.893 -78.140 1126 352 11.6 35 
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Biology 
Institute, 
VA 

HARV 

Harvard 
Forest, 
MA 42.537 -72.173 1199 348 7.4 26 

OSBS 

Ordway-
Swisher 
Biologica
l Station, 
FL 29.689 -81.993 1302 46 20.9 23 

ORNL 

Oak 
Ridge 
National 
Laborator
y, TN 35.964 -84.283 1340 344 14.4 28 

TALL 

Talladega 
National 
Forest, 
AL 32.950 -87.393 1383 166 17.2 25 

YELL 

Yellowsto
ne 
National 
Park, MT 44.953 -110.539 2133 2133 3.4 14 

WREF 

Wind 
River 
Experime
ntal 
Forest, 
WA 45.820 -121.952 2225 351 9.2 50 
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Table 5.S2a. The slope, y-intercept, R2, and p-value from the linear regression calculated 
between the average error in the mean (𝐸1) from Noah, Mosaic, and VIC isoMB 𝛿ET 
values and the average transpiration (T) divided by total evapotranspiration (ET) from 
each LSM. Underlined p-values are represented as solid lines in Figure 5.4a.  

Average 𝑬𝝁 v. Average T / ET 

Site Slope y-intercept R2 p-value 

ONAQ 35.70 79.55 0.05 0.85 

CPER 74.67 91.23 0.37 0.59 

SRER 4.30 82.61 0.04 0.87 

WOOD 268.80 61.73 0.39 0.57 

UNDE 195.23 85.95 0.63 0.42 

CLBJ 84.01 20.15 0.31 0.62 

NIWO -220.99 196.86 1.00 0.03 

SCBI 343.43 -85.16 0.86 0.25 

HARV 357.54 -47.30 0.74 0.34 

OSBS 182.00 -90.07 0.95 0.15 

ORNL 216.70 -49.25 0.98 0.09 

TALL 106.48 9.23 0.92 0.18 

YELL 106.52 68.70 0.84 0.26 

WREF -35.22 60.42 0.60 0.43 
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Table 5.S2b. The slope, y-intercept, R2, and p-value from the linear regression calculated 
between the average error in the mean (𝐸2) from Noah, Mosaic, and VIC isoMB 𝛿ET 
values and the average transpiration (T) divided by total evapotranspiration (ET) from 
each LSM. Underlined p-values are represented as solid lines in Figure 5.4b.  

Average 𝑬𝝈 v. Average T / ET 

Site Slope y-intercept R2 p-value 

ONAQ -0.11 6.20 0.00 0.99 

CPER 34.01 14.40 0.63 0.42 

SRER 2.30 11.33 0.02 0.91 

WOOD 98.13 1.23 0.96 0.13 

UNDE 19.89 18.63 0.92 0.18 

CLBJ 22.08 16.22 0.98 0.09 

NIWO 64.81 14.73 0.98 0.09 

SCBI 34.73 7.92 0.90 0.21 

HARV 30.66 18.04 0.54 0.47 

OSBS -15.33 21.28 0.85 0.25 

ORNL 32.37 10.29 0.88 0.23 

TALL 43.70 -13.16 0.75 0.33 

YELL 18.13 10.25 0.54 0.48 

WREF -95.57 64.48 0.95 0.15 
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Table 5.S2c. The slope, y-intercept, R2, and p-value from the linear regression calculated 
from the average cross-correlations (𝜌) of outputs from Noah, Mosaic, and VIC isoMB 
𝛿ET values and the average transpiration (T) divided by total evapotranspiration (ET) 
from each LSM. Underlined p-values are represented as solid lines in Figure 5.4c.  

Average Cross-correlation (𝝆) v. Average T / ET 

Site Slope y-intercept R2 p-value 

ONAQ -0.27 0.04 0.77 0.32 

CPER -1.47 0.60 0.81 0.29 

SRER -0.32 0.28 0.77 0.32 

WOOD -0.38 -0.03 0.61 0.43 

UNDE 1.17 -0.46 0.71 0.36 

CLBJ -0.79 0.81 0.58 0.45 

NIWO 0.98 -0.37 1.00 0.02 

SCBI -1.61 1.05 1.00 0.04 

HARV 1.03 -0.19 0.44 0.54 

OSBS -0.97 0.85 0.70 0.37 

ORNL -1.18 0.98 0.96 0.14 

TALL -1.11 0.88 0.71 0.36 

YELL 0.44 -0.37 0.65 0.40 

WREF -0.21 -0.04 0.57 0.45 
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Table 5.S3a. The slope, y-intercept, R2, and p-value from the linear regression calculated 
between the average error in the mean (𝐸1) from Noah, Mosaic, and VIC isoMB 𝛿ET 
values and the average subsurface drainage (L) divided by total runoff (L + Q) from each 
LSM. Underlined p-values are represented as solid lines in Figure 5.5a.  

Average 𝑬𝝁 v. Average L / (L + Q) 

Site Slope y-intercept R2 p-value 

ONAQ 440.55 -285.90 0.12 0.77 

CPER 54.93 75.31 0.32 0.62 

SRER -12.12 93.10 0.16 0.74 

WOOD 24.48 129.36 0.02 0.92 

UNDE 512.43 -273.83 0.85 0.25 

CLBJ 1071.79 -866.22 0.99 0.05 

NIWO -76.78 188.11 0.23 0.68 

SCBI -173.44 232.29 0.02 0.90 

HARV 1967.01 -1629.10 0.97 0.12 

OSBS 359.26 -261.60 0.94 0.16 

ORNL -328.54 360.55 0.11 0.78 

TALL 550.26 -414.85 0.77 0.32 

YELL 26.46 76.82 0.08 0.82 

WREF 27.93 17.77 0.08 0.82 
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Table 5.S3b. The slope, y-intercept, R2, and p-value from the linear regression calculated 
between the average error in the mean (𝐸2) from Noah, Mosaic, and VIC isoMB 𝛿ET 
values and the average subsurface drainage (L) divided by total runoff (L + Q) from each 
LSM. Underlined p-values are represented as solid lines in Figure 5.5b.  

Average 𝑬2 v. Average L / (L + Q) 

Site Slope y-intercept R2 p-value 

ONAQ 8.22 -0.80 0.01 0.93 

CPER 25.71 6.65 0.58 0.45 

SRER -10.92 20.18 0.21 0.70 

WOOD 42.37 5.72 0.89 0.21 

UNDE 40.15 -8.12 0.74 0.34 

CLBJ 81.43 -42.35 0.26 0.66 

NIWO 18.96 19.49 0.16 0.74 

SCBI -9.83 33.29 0.01 0.94 

HARV 185.37 -132.30 0.85 0.25 

OSBS -32.82 37.95 0.99 0.05 

ORNL -19.84 46.10 0.02 0.92 

TALL 276.82 -232.90 0.93 0.17 

YELL -1.03 15.26 0.00 0.97 

WREF 146.63 -112.47 0.45 0.53 
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Table 5.S3c. The slope, y-intercept, R2, and p-value from the linear regression calculated 
from the cross-correlations (𝜌) of outputs from Noah, Mosaic, and VIC isoMB 𝛿ET 
values and the average subsurface drainage (L) divided by total runoff (L + Q) from each 
LSM. Underlined p-values are represented as solid lines in Figure 5.5c.  

Average Cross-correlation (𝝆) v. Average L / (L + Q) 

Site Slope y-intercept R2 p-value 

ONAQ -1.99 1.67 0.66 0.40 

CPER -1.12 0.94 0.77 0.32 

SRER -0.23 0.32 0.20 0.71 

WOOD -0.22 -0.02 0.98 0.08 

UNDE 2.13 -1.85 0.46 0.52 

CLBJ -7.29 6.71 0.97 0.12 

NIWO 0.35 -0.34 0.25 0.67 

SCBI -0.83 1.00 0.03 0.89 

HARV 2.75 -2.18 0.13 0.76 

OSBS -2.27 2.09 0.99 0.07 

ORNL 3.47 -2.71 0.41 0.55 

TALL -7.25 6.66 0.95 0.14 

YELL 0.03 -0.29 0.00 0.96 

WREF 0.16 -0.29 0.06 0.84 
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Chapter 6. Conclusion 
Changes to the hydrologic cycle will impact water resources for billions of people 

worldwide and we need appropriate models to represent past, present, and current drivers 

of the hydrologic cycle. The results and conclusions presented in this dissertation provide 

new insights and applications of stable water isotopes as natural tracers when evaluating 

hydrologic modeling frameworks and investigating pressing research questions in 

hydrology. Natural tracers were effectively applied to various hydrologic modeling 

applications and provided additional points of comparison between observed and 

modeled environmental pools and fluxes.  

I developed a new statistical downscaling method which can generate synthetic 

geochemical time series at higher temporal resolutions, when fine-scale in-situ data is not 

available (see Chapter 2). The generated high-resolution time series maintain informative 

site-specific correlation structures between covariates and the geochemical tracer and 

retain the statistical properties of underlying processes (e.g., d-excess, amount effects). 

Daily tracer concentrations downscaled from a biweekly series had average (+/- standard 

deviation) absolute errors of 1.69‰ (1.61‰) for δ!H and 0.23‰ (0.24‰) for δ$3O 

relative to observations. The results suggest coarsely sampled precipitation tracers can be 

accurately downscaled to daily values. The method is sufficiently general and was 

applied to investigate subsurface transport processing using a state-of-the-art soil physics 

model and evaluate LSM estimates and partitions of evapotranspiration at ecosystem 

scales. 

I provided the first comprehensive evaluation of transport in the subsurface under 

different soil porosity heterogeneities across a range of fine to coarse soils and wet, dry, 

and seasonally varying climate conditions (see Chapter 3). This work contributes to an 

ongoing debate in the scientific community regarding the degree of mixing within the 

critical zone. Field measurements of isotope ratios indicate varying degrees of separation 

between pools of water that supply streams and vegetation. The exact physical 

mechanisms behind ecohydrologic separation are unknown, but local conditions such as 

soil heterogeneities likely influence the extent of mixing and separation of subsurface 
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water pools. I demonstrated that separations can be explained by heterogeneous mixing in 

soils alone and how these separations are expected to vary with local ecohydrologic 

characteristics. Thus, any models aiming to realistically represent transport processes, 

especially those characterized through tracer observations, must represent the 

heterogeneity of soil pores within a soil column and the exchanges among them. This 

analysis demonstrated that the coexistence of both finer and coarser pores within a single 

soil profile by itself can manifest in real, complex tracer phenomena that have otherwise 

been attributed to myriad ecophysiological and hydrological processes.  

In Chapter 4, I presented a new data product with generated daily records of a) 

δ2H and δ18O in precipitation fluxes (FP) at 16 National Ecological Observatory Network 

(NEON) core sites and 16 NEON relocatable sites, b) δ2H and δ18O of ET fluxes (FET) at 

19 NEON core sites and 2 NEON relocatable sites, and c) δ13C of NEE fluxes (FNEE) at 

19 NEON core sites and 28 NEON relocatable sites. Statistically downscaled 

precipitation datasets were generated to be consistent with the estimated covariance 

between isotope ratios and precipitation amounts at daily time scales. Isotope ratios in ET 

and NEE fluxes were estimated using a mixing model approach with NEON tower 

measurements and site-specific isotope calibrations. These products form a unique daily 

flux isotope dataset spanning across diverse ecosystems over a multi-year span created 

using consistent instrumentation and methodology. This dataset is open-source and 

available on Hydroshare (Finkenbiner et al., 2021b). Future work can modify the to fit a 

user’s specific application or as additional NEON data records become available in the 

future. 

I investigated the uncertainty in total ET for three LSMs in the NLDAS-2 

configuration using observation datasets of precipitation and ET at 14 sites across the 

United States from the NEON (see Chapter 5). Accurate quantification of the terrestrial 

evapotranspiration flux (ET) into its partitions of interception, plant transpiration, and 

soil evaporation is critical for understanding the water and carbon cycle and associated 

ecohydrologic processes. Recent studies have noted significant disparities exist amongst 

modeled estimates of the relative contributions of interception, plant transpiration, and 

soil evaporation to the total ET. The statistically downscaled stable water isotope ratios 
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corresponded with daily NLDAS forcings and were used as conservative tracers within a 

mass balance model built from LSM outputs. The mass balance model (isoMB) simulated 

stable water isotope concentrations (δ) for each ET partition, subsurface drainage, surface 

runoff, and storage. Simulated δET was directly compared to daily δET observations, 

which were calibrated from NEON tower measurements of atmospheric water vapor. An 

inter-model comparison suggested distinct differences exist amongst simulated δET and 

this can be associated with disparities in the relative contributions of interception, plant 

transpiration, and soil evaporation to the total ET. LSMs that assume a larger 

transpiration flux within the bulk ET flux (T/ET) are less likely to accurately represent 

expected fluxes and their partitions. A LSM which effectively captures the temporal 

characteristics of the tracer time series better partitions the ET flux into its transpiration 

and evaporation components in time and has high temporal correlation structures between 

observed and simulated time series. The results indicate conservative tracers allow for 

better tracking of the uncertainties associated with inferences drawn from LSM outputs 

and provide additional validation metrics on which to evaluate model performance. LSM 

representations of the ET can greatly impact water and energy balance simulations used 

in large-scale hydrologic and global climate modeling. These findings can improve the 

general understanding of land-surface processes influencing the water and carbon cycle 

from regional to global scales. 
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