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Unmanned aircraft systems (UAS), also known as drones, are an increasingly popular 

method of collecting surveying and mapping data. Two common drone-based mapping 

techniques are lidar and structure from motion (SfM) photogrammetry, and a frequently-

heard (yet nearly impossible to answer) question is: “which is better?” The most common 

metric for comparison is spatial accuracy, but the two techniques also vary in other key 

aspects, such as cost, complexity, learning curve, payload requirements, acquisition and 

processing speeds, and abilities to map under canopy or in vegetation. While there is no 

“one-size-fits-all” technology or technique, comparisons of drone-based lidar and SfM 

photogrammetry along all of these different dimensions and various settings can help 

surveyors and mappers make informed decisions in purchasing and operating UAS-based 

systems. This study performs these comparisons using data acquired with two remote 

aircraft at a project site with a robust control network and high-accuracy reference data 

located in Stevenson, Washington. The results shed light on the relative strengths and 

weaknesses of UAS-SfM with post processed kinematic (PPK) image georeferencing 

(UAS-SfM-PPK) and UAS-lidar. The products created using these two techniques 

typically provide comparable data accuracies with some differences, as a function of 

terrain, ground cover type and surface texture. Although UAS-SfM-PPK is generally less 

expensive, imposes less stringent requirements for the remote aircraft, requires less 

expert knowledge and training, and yields higher data densities, an overarching 

recommendation from this research is that UAS-SfM-PPK be considered the default, 



 

 

general-purpose technique for many mapping projects. However, there are a number of 

specific scenarios in which UAS-lidar is preferable to UAS-SfM-PPK, and it is critical to 

understand these cases. Additionally, while the combination of UAS-SfM-PPK and UAS-

lidar would typically be unnecessarily expensive and complex for most projects, the 

synergistic use of both techniques could provide an optimal solution for the most 

demanding projects.  
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1 Introduction 

Unmanned Aircraft Systems (UASs) have rapidly progressed and generated increasing 

interest for a wide range of applications due, in large part, to the miniaturization and 

affordability of many technologies, such as inertial navigation, GNSS positioning, 

batteries, remote sensing payloads, and computer processing. The reduced cost and size 

of UAS resulting from these technological advancements in combination with efforts of 

aviation authorities to open the airspace to commercial use of small UAS, has increased 

the viability for UAS commercial applications in the mapping industry. The Federal 

Aviation Administration (FAA) in the USA has specifically made this possible through 

the release of the Small Unmanned Aircraft System Rule, officially Part 107 of Title 14 

Code of Federal Regulations (14 CFR) (Federal Aviation Administration, 2016).  

One of the many benefits for the application of UAS is their ability to collect high-

resolution remotely sensed data, typically acquired at a significantly lower altitude when 

compared to manned aircrafts (Fonstad et al., 2012; Harwin and Lucieer, 2012; Mancini 

et al., 2013; Micheletti, Chandler and Lane, 2015; Marteau et al., 2017). However, a side 

effect to their lower altitude and insufficient flight endurance is that they are unable to 

efficiently capture data for larger areas, typically greater than 2 square kilometers, of 

interest where manned aircraft excel. This limitation for UASs is partially outweighed by 

having the ability to quickly interchange multiple sensors, often referred to as payloads, 

at the project site and being able to complete repeat mapping missions to track changes 

throughout the area of interest (AOI) at a significantly lower cost than manned aircraft. 

The ability to equip UAS with a wide variety of payloads allows for the collection of a 

diverse range of remotely-sensed data. Recently, two of the most popular payloads for the 

application of topographic mapping from UAS are: 1) RGB cameras in combination with 

structure from motion and multi view stereo (SfM-MVS) processing techniques, and 2) 

lidar. The primary difference between these two payloads is that RGB imagery is 

captured using a passive sensor, while lidar is an active sensor. An active sensor uses its 

own source of electromagnetic energy and measures the returning energy that has been 

reflected back to the sensor. Thus, active sensors, such as lidar, are relatively invariant to 
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ambient lighting conditions. However, there are inherent tradeoffs involved, in that active 

sensor systems are typically more expensive, due to the increased hardware requirements 

(transmitter, and receiver) and are susceptible to angular and linear errors due to the 

number of moving parts used to derive the positions of each point (Pilarska et al., 2016). 

In contrast, a passive sensor, such as an RGB camera, is reliant on capturing energy 

reflected off of an object originating from an external source, typically the sun. This 

dependence on an external source allows for the sensors to be much simpler, but the 

quality of data captured can be largely affected by environmental factors. For example, 

when the sun is the external energy source, occlusions in the acquired data can be created 

by shadows throughout the scene, typically caused by clouds or terrestrial objects (e.g. 

trees, and structures). This sensitivity to environmental factors is similar to the same 

limitations faced by traditional photogrammetry. 

The field of photogrammetry is well over 150 years old, and, interestingly, predates the 

invention of both the airplane and the camera (Albertz, 2007). Conventional 

photogrammetry relies on precisely calibrated, stable cameras (so-called metric-mapping 

cameras) operated from precisely flown platforms (i.e., stable imaging geometry). This 

type of operation worked well before the advent of high-powered digital computers, as 

the geometry, and, hence, the mathematics of analytical photogrammetry can be highly-

constrained with such rigid control over the acquisition and camera parameters. 

Meanwhile, SfM and MVS were developed much more recently—starting in the 1980s—

and, interestingly, somewhat independently of conventional photogrammetry, being led 

by the computer vision community specifically through the development of the SIFT 

algorithms implemented for image matching (Lowe, 1999; Fonstad et al., 2012). By 

leveraging advanced image matching algorithms from computer vision, as well as much 

greater image overlap, SfM + MVS enable precise 3D reconstruction and coordinate 

determination from imagery from uncalibrated, consumer-grade, cameras (Fonstad et al., 

2012; Westoby et al., 2012; Micheletti, Chandler and Lane, 2015). Furthermore, the SfM-

MVS algorithms and workflows have been automated to the point that users of 

commercial software can generate point clouds and orthomosaics with little human time 

(although processing time can be lengthy). A discussion of the overall workflow 
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implemented by these software is beyond the scope of this thesis but the reader is referred 

to (Fonstad et al., 2012; Westoby et al., 2012; Micheletti, Chandler and Lane, 2015).  

SfM and photogrammetry are sometimes characterized as different fields, causing users 

to be reluctant to implement SfM-MVS for applications previously fulfilled by traditional 

photogrammetry. However, SfM is, in fact, a form of photogrammetry, as it meets the 

basic definition of photogrammetry, as given by ASPRS:  

Photogrammetry is the art, science and technology of attaining reliable 
information about physical objects and the environment through the 
process of recording, measuring, and interpreting photographic images 
and patterns of electromagnetic radiant energy and other phenomena 
(Alspaugh, 2004).  

Furthermore, despite the fact that SfM incorporates new algorithms from the field of 

computer vision, SfM and conventional photogrammetry are actually more similar than 

they are different.  

While both SfM-MVS and lidar are relatively new technologies for topographic mapping, 

lidar has a longer history of use within the surveying and mapping community, starting in 

approximately the mid-to-late 1990s. Traditionally, lidar has been operated from 

terrestrial platforms, such as tripods (called terrestrial lidar or 3D laser scanning), mobile 

platforms, such as trucks or SUVs (mobile lidar), or conventional aircraft (airborne lidar). 

Recent progress in the miniaturization of lidar sensors and positioning systems has 

enabled lidar to also be installed on UAS (UAS-lidar). In the most common 

implementations, lidar relies on time-of-flight measurements of laser pulses, which, in the 

case of mobile and airborne lidar, are combined with GNSS-aided INS post-processed 

trajectories, scan angles, and calibration data in a laser geolocation equation to produce 

georeferenced point clouds. Due to the number of existing papers, reports, and books on 

lidar technology, this thesis does not include a detailed overview of the technology; 

interested readers are referred to ASPRS Manual of Airborne Topographic Lidar 

(Renslow, 2012) and Topographic Lidar Ranging and Scanning Principles and 

Processing (Shan and Toth, 2008). 
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With these recent technological developments, surveyors and mapping professionals need 

more information about how these smaller sensors and new processing methods (SfM 

photogrammetry and UAS-compatible laser scanners) compare. Unfortunately, such 

comparisons have been complicated by the following: 1) recent emergence of both 

techniques, 2) abundant, but sometimes conflicting and unclear information available 

online; 3) differences along a number of dimensions, such as accuracy, cost, and ease-of-

use. To help alleviate these complications, this study assesses UAS-SfM with post 

processed kinematic (PPK) image georeferencing, to be referred to as UAS-SfM for the 

remainder of this paper, and UAS-lidar using a dense reference control dataset and 

compares the results to terrestrial lidar, a well-tested and highly regarded remote sensing 

platform typically used to collect dense 3D data sets, in order to aid with purchasing 

decisions and the selection of the most applicable technology for a particular project.  

The specific goals of this study are to: (i) provide information on how two common 

drone-based mapping techniques, UAS-SfM and UAS-lidar, perform relative to one 

another through a quantitative comparison with terrestrial lidar and highly accurate 

control check points established using traditional survey techniques; (ii) provide a 

qualitative assessment that discusses the key benefits and limitations of each technique 

such as cost, system complexity, learning curve, remote aircraft payload requirements; 

and (iii) summarize the advantages and disadvantages of each to aid professionals in 

selecting the most advantageous technique based on project requirements.  

2 Materials & Methods 

2.1 Study Site 

The area of interest (AOI) is located near the Port of Skamania at the waterfront in 

Stevenson, Washington (Figure 1). It was selected for the evaluation of the various sensor 

types, due to its diverse site characteristics, Class G (uncontrolled) airspace, and ease of 

access for all data collection parties, Oregon State University from Corvallis, Oregon, 

and Klein and Associates from Hood River, Oregon.  
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Figure 1: A map depicting the location of the area of interest for this 
study. 

The multiple surface types found throughout the AOI include grass, concrete, asphalt, 

multiple soil types, and small sections of river rock (gravel), as shown in Figure 2. In 

addition to the various surface types the AOI also contains a diverse set of topographic 

features such as: large gradients cause by soil stock piles and manmade slopes, buildings, 

curb, sidewalk, roadways, vehicles, street lights, and various species of vegetation.  
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Figure 2: Examples of the various surface types found throughout the 
area of interest. 

2.2 Control Network 

2.2.1 Control Network Data Collection  

A control network was established across the site to georeference the terrestrial lidar and 

to provide adequate ground control points (GCPs) and check points (CPs) for the 

horizontal and vertical accuracy assessment of the aerial lidar and SfM data. This control 

network consists of evenly-distributed aerial targets, terrestrial box targets, and photo-

identifiable features (e.g. sidewalk joints, paint stripes, etc.). Examples of the various 

control and check points can be seen in Figure 3 (a-d). The aerial targets are iron cross 

targets, approximately 1 m2 in size, nailed or weighted to the ground to ensure they did 

not move throughout the various surveys (control network, terrestrial lidar, and aerial 

mapping).  In addition to the targets mentioned above, vertical checkpoints were also 

collected on various surface types (e.g. pavement, bare earth, and grass) under various 
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conditions (e.g. non-obstructed visibility, and under dense tree canopy). The total 

quantity of these targets is summarized in Table 1. 

  
Figure 3 (a-d): Examples of the multiple control/checkpoint targets 
used in the control survey. 

Table 1: Summary of the quantity and type of control/check points acquired in the control 
survey. 

Surface Type  QTY 

GNSS Control  5 
Terrestrial Lidar Target  27 
Iron Cross Targets  14 
Vertical Check Points  110 
   Grass 26 
   Bare Earth 32 
   Concrete 9 
   Asphalt 43 
Identifiable Features  16 
   ADA mat corner 5 
   Paint stripe 11 
Vertical Check Points Under Canopy  21 
   Grass 7 
   Bare Earth 3 
   Concrete 1 
   Asphalt 10 

(a) 

(c) 

(b) 

(d) 
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The coordinates for the GCPs and CPs were derived by combining data from two 

surveying technologies: a multi-frequency, Leica GS14, GNSS receiver capable of 

utilizing the Oregon Real-Time Network (ORGN) as well as logging static GNSS RINEX 

files, Figure 4 (a); and a Leica TS15P 3” total station with a Leica 360° prism, Figure 4 

(b-c). A total of 5 static GNSS control points were established and observed for durations 

around 60 to 180 minutes. The Leica TS15P total station was set up in three different 

positions from which all aerial targets and GNSS control points were observed multiple 

times in the direct and reverse faces of the instrument. The data acquisition technologies 

and methodology resulted in a robust dataset that was optimally adjusted through the use 

of a least squares adjustment using MicroSurvey STAR*NET Pro resulting in a more 

accurate ground truth model that will be utilized for terrestrial lidar registration and 

comparison purposes. 

 
Figure 4 (a-c): The various survey instruments used to complete the 
control survey of the AOI. (a) is a Leica GS14 Receiver mounted on 
top of a seco 2 meter fixed height tripod; (b) is a Leica TS14P 3” 
Robotic Total station; (c) shows the prism rod with 360 degree prism 
and Leica CS15 Data collector used to remotely control the total 
station. 

 

2.2.2 Control Network Processing/Adjustment 

The control survey was adjusted using MicroSurvey STAR*NET Pro. The static GNSS 

observation data for the 5 GNSS control points, spaced evenly throughout the area of 

(a) (b) (c) 
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interest, were first uploaded and processed in the National Geodetic Survey’s Online 

Positioning User Service (OPUS) (National Geodetic Survey, 2018). Stations that were 

observed for 15 minutes to 2 hours were upload to OPUS Rapid Static, while stations that 

were observed continuously for greater than 2 hours were upload to OPUS Static. Table 2 

summarizes the GNSS observation times for each OPUS solution that was input into 

STAR*NET Pro. 

Table 2: Summary of Static and Rapid Static GNSS observations submitted to NGS’s 
OPUS for corresponding stations. 

Static 
Observations Duration Rapid Static 

Observations Duration 

PSK03 1h 58m P44 1h 07m 
PSK03 2h 49m PSK01 1h 04m 
PSK02 5h 22m PSK02 0h 52m 
  PSK04 1h 08m 

 
The next step required importing the raw total station observations for all 3 total station 

positions into STAR*NET Pro. These observations included the target ID, horizontal 

angle, distance, vertical angle, and rod height. Prior to adjusting any data a few project 

settings needed to be established. For this data, the coordinate system is set as 

Washington State Plane South Zone (4602) NAD83(2011) epoch:2010.000 and the 

vertical datum is NAVD88 (Geoid12B) with units of meters.  

The general workflow for adjusting this data includes adjusting each of the total station 

vectors from each setup for each point observed to the GNSS control coordinates. In 

order to weight the total station observations the following stochastic model about the 

measurement equipment was implemented, see table 3 below. These stochastic model 

values were derived from averaging repeat observation, instrument specification sheets, 

and minor iterative adjustments during outlier removal. 
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Table 3: The corresponding values used for each parameter of the stochastic model and 
comments on how that value was determined. 

Parameters Value Comments 

Conventional   
Distance Constant (m) 0.001 Instrument spec 
Distance PPM 1.50 Instrument spec 
Angle (sec) 6.55 Multiplied direction value by √2 

Directions (sec) 4.63 
Average direction error of  8 repeat observations  for 
each of the following points (GPS01-GPS04, and P44) 
from 3 total station positions 

Azimuth/Bearing (sec) 1.00 Default (not applicable) 

Zenith (sec) 6.18 
Average direction error of  8 repeat observations  for 
each of the following points (GPS01-GPS04, and P44) 
from 3 total station positions 

Elev Diff Constant 0.001 Default (not applicable) 
Elev Diff PPM 0.00 Default (not applicable) 

Centering Errors   

Horiz Inst. (m) 0.0015 Although not set up over point - this error can account 
for movement in total station throughout the setup 

Horiz Target (m) 0.0035 Assuming a 6' bubble on a 2 meter rod 
Vertical (m) 0.000003 Assuming a 6' bubble on a 2 meter rod 

 
To identify/remove the outliers in the datasets within STAR*NET Pro the following 

procedure was implemented after processing using the initial stochastic model outlined 

above: 

1. Temporarily removed any observation that had a standard residual greater than 
6.0 

2. Re-adjusted stochastic model with initial outliers removed with the goal of 
achieving a total error factor as close to unity as possible. If the value was greater 
than 1 the stochastic model overestimated the error parameters; similarly if the 
value was less than 1 the model was underestimating the error parameters. 

3. After creating a new stochastic model each rejected observation was added 
individually. 

a. If the standard residual was less than 3.0, and the total error factor was not 
greatly affected by its addition, the added observation was kept; if not, the 
observations was removed. 



 

Page 11 

 

 

b. After going through all of the rejected observations, the stochastic model 
was re-adjusted as needed. 

4. After the stochastic model was re-adjusted, the remaining outliers were added 
individually. 

5. If any outliers were accepted under the new stochastic model then the stochastic 
model was adjusted once more. 

6. Steps 3-5 were iterated until there were no rejected observations accepted in the 
most recent stochastic model. 
 

After completing the observation outlier rejection procedure described above, there were 

no rejected observations. The resulting stochastic model parameters were determined and 

are shown in Table 4 below. Note that the final parameters correspond well with the 

initial values previously indicated. 

Table 4: Summary of the final stochastic model used when processing the control 
network within Star*NET. 

Parameters Value 
Conventional 

Distance Constant (m) 0.0015 
Distance PPM 1.5000 
Angle (sec) 1.5000 
Directions (sec) 2.5000 
Azimuth/Bearing (sec) 1.0000 
Zenith (sec) 8.0000 
Elev Diff Constant 0.0010 
Elev Diff PPM 0.0000 

Centering Errors 
Horiz Inst. (m) 0.0015 
Horiz Target (m) 0.0020 
Vertical (m) 0.0020 

   

In order to quantify the accuracy of the final adjusted coordinates for the ground control 

points and checkpoints, the following summary statistics were calculated based on the 

propagated error uncertainties reported by STAR*NET for each point, shown in the Table 

5. The following conversion factors were used to scale the calculated RMSE values to a 

95% confidence level. These scalars are applied based on the assumption that the 
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uncertainties are normally distributed. Additionally, the final dispersion of the 

control/check points can be viewed in Figure 5. 

 1𝐷𝐷 95% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1.9600 · (1𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (1) 
 2𝐷𝐷 95% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1.7308 · (2𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (2) 
 3𝐷𝐷 95% 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1.6166 · (3𝐷𝐷 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (3) 
   

Table 5: Combined statistical summary of all processed control points (vertical CPs, 
Horizontal CPs, and 3D GCPs, and GNSS stations). 

Summary Statistics 3D (m) NE (m) E (m) N (m) U (m) 

Minimum 0.0132 0.0052 0.0040 0.0031 0.0121 
Maximum 0.0159 0.0098 0.0070 0.0080 0.0131 
Average 0.0145 0.0072 0.0051 0.0051 0.0125 

Std. Deviation 0.0006 0.0011 0.0006 0.0011 0.0002 
RMSE 0.0145 0.0073 0.0052 0.0052 0.0125 

95% Confidence 0.0234 0.0127 0.0101 0.0102 0.0245 

 

 
Figure 5: Overview map of the AOI showing the resulting control and 
check points of the control network survey. 
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2.3 Terrestrial Lidar 

2.3.1 Terrestrial Lidar Data Collection  

Terrestrial lidar data of the site was collected in 10 separate scans using a Leica P40 laser 

scanner to serve as reference data. Each scan duration was approximately 15 minutes, 

resulting in an average point spacing of 0.01 meters on orthogonal surfaces at a distance 

of 30 meters from the scanner. Note the point density decreases as the range from the 

scanner is increased. Additionally, RGB imagery was co-acquired at each scan position to 

colorize the point cloud. When selecting scanning locations the follow criteria were 

considered:  

• Line of sight to a minimum of 5 registration targets 

• Consistent overlap with adjacent scans to aid in cloud to cloud registration when 

post processing 

• Unobstructed line-of-site of surrounding terrain to optimize scanned area per set 

up (i.e. no nearby obstructions such as trees, cars, structures, etc.) 

• Good sky visibility for GNSS solution 

To aid in georeferencing the terrestrial lidar data, a Leica GNSS receiver receiving real-

time corrections from the Oregon Real-Time GNSS Network (ORGN), as well as logging 

static GNSS RINEX files, was mounted on top of the scanner for each position as shown 

in Figure 6. The scanner was left at each scan position for a minimum of 20 minutes, 

approximately 5 minutes longer than the scanning duration, to ensure the GNSS 

observation time was adequate to attain an OPUS-RS solution. The OPUS-RS solution 

obtained from processing the static observations are to be the primary coordinates used 

for each scan position. As a redundancy, in case OPUS-RS was unable to attain a fixed 

solution, the ORGN real-time coordinates would be used. 



 

Page 14 

 

 

 
Figure 6: The Leica P40 Lidar scanner with a Leica GS14 GNSS 
antenna mounted on its top during one of the 10 scan position 
observations. 

2.3.2 Terrestrial Lidar Processing 

The terrestrial lidar was registered and classified using Leica Geosystems Cyclone v9.1.4. 

Two registration methods were used in unison to complete the geo-referencing and 

registration of the 10 scan positions: a manual target-based technique with scanner origin 

from GPS observations, and a cloud-to-cloud technique. For the target-based technique 

circular black/white targets printed on 8.5in x 11in sheets of paper and glued to boxes and 

clipboards were distributed throughout the AOI when establishing the control network. 

These targets were used as common tie points between the numerous scan positions to aid 

in scan registration. They also allowed the scanner’s origin to be indirectly transformed, 

or georeferenced, to align with the coordinate system of the targets, as specified in the 

previous section. Images of a single black/white target set in the AOI and extracted from 

the point cloud are shown in Figure 7 (a, b).  
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Figure 7 (a, b): One of the numerous black and white targets distributed 
throughout the AOI to be used in the georeferencing/registration 
process for the terrestrial lidar scans. Where (a) is the photo taken at the 
site of target V44, and (b) is the same target as seen in the terrestrial 
lidar point cloud from scan position 2. 

The second method, cloud-to-cloud, uses an automated matching algorithm (Iterative 

Closest Point), which assigns the closest point in one scan (scan B) as a match to another 

point in a second scan (scan A). The numerous point pairs are then used to determine the 

parameters to transform scan B to scan A. One limitation of cloud-to-cloud registration is 

that it requires the scans be approximately aligned to each other prior to implementing the 

cloud-to-cloud registration. To accomplish this initial alignment, scan B was visually 

aligned to scan A through a series of manual translations and rotations.  

Three methods were implemented to assess the final registration of the terrestrial lidar 

scans: evaluation of root mean square (RMS) residuals of the cloud to cloud constraints, 

evaluation of target residuals, and visual inspection. The purpose of the first method, 

evaluating the cloud-to-cloud comparison, was to assess the relative error between the 

various scan positions and to quantify the overall relative accuracy of the registration 

process. The second method, the evaluation of registration target residuals compared to 

the control survey coordinates, was used to determine the overall registration accuracy of 

the final registered product. The results shown in Table 6 indicate that the overall 3D 

accuracy of the targets was 1.4 cm at a 95% confidence level with a standard deviation of 

0.6 cm. It should be noted that this error does not fully represent the global accuracy of 

the data, due to possible user errors introduced when processing the data (i.e. the exact 

same location of a target might not have been identified in all of the scans). 

(a) (b) 
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Table 6: The statistical summary of the errors for the control targets used in 
registering/georeferencing the 10 terrestrial scans together. 

Summary Statistics 3D (m) EN (m) E (m) N (m) U (m) 

Minimum  0.0011 0.0003 -0.0249 -0.0118 -0.0067 
Maximum 0.0269 0.0257 0.0093 0.0040 0.0229 
Average 0.0065 0.0046 -0.0018 -0.0002 0.0019 
Std. Deviation 0.0061 0.0046 0.0055 0.0030 0.0058 
RMSE 0.0089 0.0065 0.0058 0.0030 0.0061 
95% Confidence 0.0143 0.0112 0.0113 0.0058 0.0119 

 
The final verification method, visual verification, consisted of inspecting the registered 

point cloud for point blending (e.g., no single scan color dominated in areas of overlap 

where the scan worlds had similar point densities), and ensuring the points followed a 

single profile while looking at cross sections of the registered dataset. Figure 8 shows a 

top view of the project site. Note each scan position is defined by a different color.  

 
Figure 8: Image showing the top view the AOI with each scan colored 
differently. 

The point cloud classification for this dataset was also completed within Cyclone. To 

accomplish this task, the point cloud was first thinned, to increase computer hardware 

performance, at a minimum spacing of 1.0 cm.  This process did not include any gridding 

of the data but simply removed points if the spacing between them was closer than 1.0 

cm. This point thinning was primarily located in areas within 35 meters from a scan 

position. To classify the registered point cloud, 1-5 m cross sections were taken 



 

Page 17 

 

 

throughout the entire AOI with points being manually selected and placed in one of the 

following classification layers: Ground, Noise (high), Noise (low), High Vegetation, Low 

Vegetation, and Buildings. Figure 9 shows a cross-section of the ground before and after 

the classification process. After the point cloud had been classified it was exported as a 

.pts file, later converted to a .las using Cloud Compare (couldcompare.org) to be loaded 

into QCoherent LP360 (GeoCue Group, Inc.) for further analysis.  

 
Figure 9: A cross-section of the registered lidar point cloud before (top) 
and after (bottom) manual ground classification using Leica Cyclone. 

 

2.4 Structure from Motion (UAS) 

2.4.1 Structure from Motion Data Collection  

A custom DJI s900 hexacopter with PixHawk flight controller was used to collect the 

aerial imagery which was processed using Agisoft Photoscan SfM software. The aircraft 

has a maximum takeoff weight of  approximately 8.2 kg, allowing it to carry all 

necessary sensors, including the Sony A6300 camera with Sigma 30mm lens and a Piksi 

Muli, multi-frequency, GNSS receiver logging at 20 hertz to provide carrier phase-based 

relative positioning for the collected imagery while maintaining an adequate flight time 

of 12-15 minutes. All sensors were attached to the aircraft using custom 3D printed parts, 

which can be identified by their color, orange, in Figure 10. The mount for the Sony 

A6300 was designed to align the cameras optical axis with the z (down) axis of the 

aircraft reference frame. The primary justification for using this custom fixed mount as 

opposed to a 3-axis gimbal is that the lever arms measured from the antenna to the sensor 

remain approximately constant with respect to the camera reference frame with minimal 

movement being allowed by the vibration dampeners located on the top section of the 

Before Manual Classification 

After Manual Classification 
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custom mount. It has also been shown that using a wider range of image viewing angles, 

in combination with precise GNSS positioning, can increase image observations per point 

resulting in improved survey precision (James, Robson and Smith, 2017). This shows that 

having nadir imagery is not a requirement when creating 3D models, and, therefore the 3-

axis gimbal was not deemed necessary.  

 
Figure 10: The s900 airframe with Piksi Multi GNSS Receiver, GNSS 
antenna, and Sony A6300 camera with sigma 30mm lens prior to 
takeoff. 

ArduPilot Mission Planner version 1.3.52 was used as the ground station and mission 

planning software for this flight. The flight was completed as to best replicate parameters 

typically used in industry, with the controlling parameters being the ground sampling 

distance (GSD) chosen to be 1.5cm, and overlap/sidelap each set to 80 percent. A screen 

shot of the planned mission from Mission planner and additional flight parameters are 

shown in Figure 11 and Table 7 respectively.  
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Figure 11: The waypoint mission plan used to acquire the aerial 
imagery as created by ArduPilot’s Mission Planner software. 

 

Table 7: A summary of the parameters from the planned mission, as shown in figure 11, 
used to collect the aerial imagery. 

Setting Value 

Area (acres) 8 
Flying altitude (ATO) (ft) 377  
Sidelap/Overlap (%) 80/80 
GSD (cm/pixel) 1.50 
Flying Speed (m/s) 5 
No. of Photos 163 
No. of flight strips 16 
Distance Between Lines (m) 18.0 
Distance Between Images (m) 12.0 
Estimated Flight Time (min:ss) 9:56  
Time between triggers (s) 2.39 

 
Special care was taken when setting image acquisition parameters for the camera, 

including ISO range, shutter speed, aperture, and white balance. All imagery was 

captured and processed in raw file format. The raw file format maintains all data acquired 

by the sensor while providing a high dynamic range that can decrease the total area of 

poorly exposed features in an image. Due to an increased time for the camera to 

processes the data in raw format compared to .jpg, the flying speed for the mission was 
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decreased to ensure the time between images was greater than 2.0 seconds. This 

minimum time between photos when captured in raw format was previously estimated in 

a lab environment and can vary based on camera make/model, SD card make/model, 

lighting conditions, and temperature. Note, if the time between images for a planned 

mission is less than the time required for the camera to process the image there is a 

chance that image triggers can be delayed, or in some cases skipped resulting in non-

uniform overlap/sidelap and/or data voids throughout the dataset. Table 8 contains the 

camera settings used for acquiring the imagery for the AOI. 

Table 8: Summary of the camera settings used for this data collection. 

Setting Value 

Camera Make/Model: Sony A6300 
Lens Make/Focal Length: Sigma 30mm 
File format: RAW (.arw) 
Camera Mode: Manual 
Shutter Speed: 1/1250 
Aperture: F5.6 
ISO [min, max] Auto [100, 400] 
White Balance 5850k 
Focus Auto (center) 

 
In order to properly georeference the imagery acquired by the Sony A6300 an event is 

captured by the GNSS receiver when the camera is triggered. This shutter event trigger is 

sent from the hot shoe flash adapter on the camera to the GNSS receiver as shown in 

Figure 12. When the camera shutter is opened, a pulse is sent to the GNSS receiver and 

the time stamp event is recorded for that particular image. The camera positions, and their 

covariances, for each time stamp plus half of the exposure time were then extracted from 

the GNSS trajectory using a custom MATLAB algorithm and saved in a comma 

delimited file structure with the corresponding image file name for import into Agisoft 

Photoscan.  
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Figure 12: The time synchronization setup used for georeferencing the 
aerial imagery acquired by the Sony A6300 camera. 

 

2.4.2 Structure from Motion Processing  

2.4.2.1 Image Georeferencing 

Using the post-processed kinematic GNSS trajectory of the mapping mission reduces the 

need for ground control points when using Structure from Motion software, thus 

decreasing the total data acquisition time. The position (X, Y, Z) of each photo is attained 

from the PPK trajectory and are used to seed the SfM algorithm. These seeded image 

coordinate values aid the SfM algorithm by constraining the position for each photo, 

rather than relying on established ground control points, allowing the algorithm to better 

refine the position (X, Y, Z) through the use of the least squares bundle block adjustment 

while also determining the remaining extrinsic (roll, pitch, yaw) and intrinsic parameters 

of the camera. 

To georeference the imagery acquired by the Sony A6300 an accurate flight trajectory 

was calculated from the onboard dual-frequency, carrier-phase GNSS receiver. The Piksi 

Multi GNSS binary file was converted to raw GNSS observables in RINEX (.obs), and 

navigation format (.nav) file formats using Sbp2Rinex.exe provided by Swift Navigation. 

Additionally, the camera trigger timestamps for all images were extracted from the 

logged binary file using Sbp2Report.exe, also provided by Swift Navigation. Once the 
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raw binary information was converted to the necessary formats, the aircraft trajectory was 

calculated and the acquired imagery was ready to be geotagged. The overall workflow for 

geotagging the imagery is shown in the flow chart, Figure 13. 

RINEX 
(aircraft.obs)

Piksi Multi Binary 
File (.sbp)

Sbp2rinex.exe 
(from manufacturer) 

Sbp2report.exe
(from manufacturer)

Navigation 
(aircraft.nav)

Camera 
Trigger 

Timestamps

Geotagging 
algorithm
(MATLAB)

Raw Imagery 
(.dng)

Manually Sort 
Images

(only keep images that 
have a timestamp)

Aircraft Location for each image 
(imagename/lat/lon/elipht.csv)

 RINEX
(Base Station-

CORS.18o)

RTKLIB

Aircraft 
Trajectory

(.pos)

 
Figure 13: A summary of the workflow used to georeference the aerial 
imagery. 

 

The open-source GNSS processing software package, RTKLIB (Takasu and Yasuda, 

2009), was used in post processing kinematic (PPK) positioning mode to compute the 

remote aircraft’s trajectory. The following data for the acquisition date was downloaded 

from various sources: RINEX file from a continually operating reference station (CORS) 

located approximately 1.8 kilometers from the AOI, the precise ephemeris, and the 

satellite and station clock solution. After processing the trajectory, it was found that 

RTKLIB v2.4.2 was unable to solve for the integer ambiguities for GLONASS satellites. 
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Hence, the resulting trajectory was a GPS only L1/L2 solution with an average satellite 

vehicle (SV) count of 8. RTKLIB beta version 2.4.3 demo5 b29c (Everett, 2018), a 

modified version of 2.4.3 b29c for the improvement of GLONASS support, was also 

tested to see if this would improve the trajectory. Table 9 outlines the settings used in 

both versions of RTKLIB to process the trajectory. Note the processing settings for the 

two versions only differed for the integer ambiguity resolution for GLONASS parameter. 

The newer version of RTKLIB resulted in a trajectory solution that utilized both GPS and 

GLONASS with an average satellite vehicle count of 15. 

Table 9: A list of the non-default processing settings used in RTKLIB 2.4.2 

Setting Value 

Constellations Used: GPS, GLONASS 
Frequencies: L1/L2 
Ionosphere Correction: Broadcast 
Troposphere Correction: Saastamoinen 
Satellite Ephemeris/Clock: Precise 
Integer Ambiguity Resolution: 
GPS/GLO 

Continuous/ON (v2.4.2) 
Continuous/Fix&Hold (v2.4.3 demo 5) 

 
Lastly, to geotag the acquired imagery, both the processed trajectories and image time 

stamps were imported into a custom MATLAB script that determines the position for all 

images (latitude, longitude, ellipsoid height), and their covariances as produced by 

RTKLIB, for each time stamp plus one half of the exposure time. This addition of half 

the exposure time allowed the position to be extracted at approximately mid exposure, 

which is the ideal location to geotag the image (Turner, Lucieer and Wallace, 2014). 

Once the positions are extracted for each camera from the GNSS trajectory, they are 

saved in a comma delimited file structure with their corresponding image file name. After 

the file was exported the coordinates were transformed to the correct horizontal and 

vertical reference systems. To transform the horizontal coordinates from NAD83(2011) 

latitude and longitude to Washington State Plane South (4602) in meters NOAA NGS 

Coordinate Conversion and Transformation Tool (NCAT) was used. NOAA’s VDatum 

(v3.8) was then used to transform the vertical coordinates from NAD83 elliposoid heights 
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to  NAVD88 orthometric heights utilizing Geoid 12B. Once these transformations were 

applied, the trajectory was ready for import into Agisoft Photoscan. Note that no lever 

arms or offsets were applied to this trajectory. Therefore, the trajectory is the position of 

the phase center of the GNSS antenna. The lever arms from the phase center to the nodal 

point of the camera in respect to the cameras reference frame, as defined by Agisoft 

Photoscan, had been previously determined in Agisoft using a calibration flight with a 

dense control network. This method to attain the lever arm measurements was chosen 

because attaining accurate manual measurements to the poorly defined camera nodal 

point and antenna phase center can prove to be difficult. 

2.4.2.2 Agisoft Photoscan 

Because there were multiple datasets processed with varying constraints (satellite 

constellations used, and number of control points), a processing outline was used in order 

to ensure consistency between the datasets. In order to properly utilize the image 

coordinates acquired from the PPK GNSS trajectory the lever arm measurements, with 

respect to the camera local reference frame, were input into Agisoft Photoscan. In this 

case, because no antenna model or offsets were applied to trajectory during processing, 

the lever arms are measured from the nodal point of the camera to the phase center of the 

GNSS antenna with respect to the sensor reference frame. The sensor reference frame, as 

established by Agisoft, is described as follows when the camera is oriented in the nadir 

direction (lens point straight down) with the top of the camera (i.e. the hot-shoe of the 

A6300) pointing forward: 

• +X is to the right (for the A6300, towards the cameras handle) 

• +Y is forward (towards the top of the camera i.e. the hot-shoe) 

• +Z is straight up, or zenith (if looking through the eye piece of the camera this 

would be into your eye) 

Because of the image georeferencing only a few control points were utilized to help 

correct for any systematic errors in the position of the resulting 3D model. Therefore, 

only one or five of the control points were activated for any particular dataset, leaving the 

remaining control points to be utilized as check points. Figure 14 shows an orthomosaic 
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identifying the point ID and location for each of the control point(s) used. For datasets for 

which only one control point was used, the aerial target located nearest to the center of 

the AOI was used; Point ID A54. For the datasets utilizing 5 control points the aerial 

targets located nearest to the four corners of the AOI, and the center point was used; A12, 

A19, A23, A52, and A54.  

 

 
Figure 14: The five control points used for the the SfM processing. For 
datasets where only one control point was used the aerial target located 
nearest to the center of the AOI was used; Point ID A54. For the 
datasets utilizing 5 control points the aerial targets located nearest to 
the four corners of the AOI, and the center point was used; A12, A19, 
A23, A52, and A54  

Ground points were then classified utilizing the Classify Ground Points tool within 

Agisoft Photoscan. After the initial classification was completed a quality assurance 

check was conducted to ensure the resulting ground points were classified correctly. This 

required a fair amount of manual point classification in areas of dense vegetation, and 

areas where the ground slope was greater than 15 degrees. 

This processing methodology was used to create four different models: (i) 1 control point 

with GPS & GLONASS trajectory; (ii) 1 control point with GPS only trajectory; (iii) 5 

control point with GPS & GLONASS trajectory; (iv) 1 control point with GPS only 

trajectory. To reduce the introduction of user errors or biases the models using 5 control 

points were created using the initial alignment created for the models with 1 control 

point. 
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2.4.2.3 Grid Ground Points 

One of the primary products derived from SfM-MVS processing is the dense point cloud. 

An issue is that this dense point cloud can sometimes be so dense that it can be overly 

demanding for current lidar point cloud processing software suites that were primarily 

developed for working aerial lidar data from manned aircraft, which typically have much 

lower point densities. In addition to this larger demand there is also a substantial amount 

of noise in the data. To help reduce this noise and decrease the overall point density, a 

binning algorithm was implemented in MATLAB. Using this binning algorithm the 

exported .las file from Agisoft was read in and binned into user specified grid cell sizes. 

In this case, a 5cm grid was used to ensure there were enough points to produce confident 

statistical values without over smoothing, or removing, vertical features from the dataset. 

This grid cell size also corresponded well with the average point spacing from the UAS 

based lidar mission, which resulted in a point spacing of ~5cm. After the data was binned 

statistics (mean, median, number of points, variance from the mean, standard deviation, 

minimum, and maximum) were computed for the Z values of the points within these 

cells. Displaying color-ramped raster images of these statistics also facilitated visual 

assessment of the spatial variation in noise throughout the dataset. For the comparison 

between various different acquisition equipment, the median value for the bins will be 

used as it does the best job at not being influenced by outliers in each bin that would 

typically affect the mean more drastically. 

2.5 Aerial Lidar (UAS) 

2.5.1 Aerial Lidar Data Collection  

The UAS-lidar data was collected using a Phoenix Lidar System AL3-32 integrated 

Lidar-INS system comprised of a Velodyne HDL-32E lidar sensor and NovAtel 

KVH1725 GNSS aided inertial navigation system (INS) mounted on a DJI M600 Pro 

UAS with an A3 flight controller (Figure 15) by local survey firm, Klein and Associates, 

located in Hood River, Oregon. The mission flight plan was created using Phoenix Aerial 

Systems SpatialExplorer ground station program which also creates a real time, typically 

less accurate than post processed, display of the acquired data. The system was flown at 
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180 feet above ground level (AGL) emitting pulses at a rate of 695 kHz with a scan angle 

in the direction of travel ranging from 30.67° forward from nadir and 10.67° backward 

from nadir, for a total field of view equal to 41.34°.  

 
Figure 15: The Phoenix Aerial al3-32 Scanner mounted on a DJI m600 
Pro. Image courtesy of Phoenix Lidar Systems, 
https://www.phoenixlidar.com/al3-32/ 

The acquisition settings were developed to yield points with a native density greater than 

150 pulses per square meter. Note, the native pulse density is the number of pulses 

emitted from the scanner, whereas, the delivered pulse density is the number of pulses 

returned to the sensor. Surfaces such as dense vegetation, water, etc. commonly return 

fewer pulses than the sensor emitted, but this decrease in pulse returns can be remediated 

by the sensor’s ability to acquire dual returns per pulse. To solve for the laser point 

position it is crucial to have highly accurate observations of the sensors position (X, Y, Z) 

and attitude (Roll, Pitch, Yaw). The GNSS was set to log at 1 Hz, while the IMU logged 

inertial sensor measurements at 200 Hz. The GNSS base station was located 

approximately 0.1 km from the center of the AOI. Overall, there were a total of 20 flight 

lines used to acquire the data over the AOI as shown in Figure 16. 
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Figure 16: An image of the 20 flight lights used for acquiring the aerial 
lidar dataset. 

2.5.2 Aerial Lidar Processing 

For processing the aerial lidar data three different software suites were utilized: 

NovAtel’s Inertial Explorer™, Phoenix Aerial Systems SpatialFuser, and TerraSolid’s 

TerraScan/TerraMatch which is built on top of Bentleys’ CAD software, MicroStation. 

NovAtel’s Interial Explorer is used to iteratively refine the measured lever arms from the 

IMU reference frame origin to the GNSS antenna phase center until the values coalesced. 

After the lever arms are refined, the trajectory measured from the GNSS aided INS is 

recomputed and exported in SBET (smoothed best estimate trajectory) file format. The 

final trajectory was then imported into Phoenix Aerial’s proprietary software, 

SpatialFuser, which is used to combine time synchronized laser observations, with the 

SBET to create the 3D point cloud. Specific details of the software are company-

proprietary, but the general procedure likely follows the following basic steps: 
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1. Apply approximate boresight between lidar sensor origin and GNSS aided INS 

origin 

2. Interpolate position (X, Y, Z) and attitude (roll, pitch, heading) from the trajectory 

for all lidar returns 

3. Apply geolocation equations, which include transforming 3D coordinates from 

the laser scanner frame to the INS frame, local level frame, earth centered earth 

fixed (ECEF) frame, and finally to the specified mapping frame 

4. Export georeferenced point cloud 

After the 3D point cloud has been generated it is refined using TerraSolid’s TerraMatch 

software. TerraMatch is primarily used to maximize relative accuracy between flight 

lines by refining boresight values and accounting for changes in the measured lever arms.  

To refine the boresight values the software solves for global, flight line, and fluctuation 

corrections for the position and attitude of all flight lines. These corrections are then 

applied to the trajectory to maximize the relative accuracy of the various flight lines. As a 

result of this process, a more seamless data set is achieved, because the systematic 

orientation and position errors have been largely removed. To increase the global 

accuracy, a single control point taken on a horizontal, flat, and hard surface at the center 

of the AOI, was used to apply a vertical offset to the data to alleviate any offsets caused 

by random or systematic errors remaining in the data set. 

Once the georeferencing of the point cloud was completed, an automated point 

classification algorithm was implemented within TerraScan to create the following 

classification fields: ground, low/medium/high vegetation, buildings, low/high noise, and 

water. Finally the point cloud was colorized by applying RGB values to each point from 

an overlaid orthophoto created using co-acquired RGB imagery. 

2.6 Vertical Accuracy Assessment 

The most common metric for comparing various 3D data is by comparing their spatial 

accuracies. Therefore, the vertical accuracy of the various processed datasets were 

computed using the reference data acquired in the control survey. A summary of the 

datasets being analyzed are shown in Table 10. For the vertical accuracy assessment the 
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reference data was separated into 3 categories based on surface type: asphalt, bare earth 

and grass; quantities are summarized in Table 11. Each of these vertical check points 

were collected in accordance with ASPRS vertical checkpoint density and accuracy 

standards. These standards specify that checkpoints should be surveyed on flat uniformly-

sloped open terrain away from abrupt changes in elevation, with slopes of 10% or less. 

Additionally, these standards require a minimum number of 20 checkpoints for each 

surface type distributed evenly throughout the mapping area when possible (American 

Society for Photogrammetry and Remote Sensing, 2014).   

Table 10: Summary of the processed datasets to be compared using the numerous, 
unobstructed, vertical check points. 

Dataset Sub-dataset 
Total 

number of 
datasets 

Terrestrial Lidar N/A 1 
Aerial Lidar N/A 1 
SfM – 1 CP – GPS Only Median of Bin, Raw 2 
SfM – 1 GCP – GPS+GLO Median of Bin, Raw 2 
SfM – 5 CP – GPS Only Median of Bin, Raw 2 
SfM – 5 GCP – GPS+GLO Median of Bin, Raw 2 
 Total: 10 

 

Table 11: Summary of the quantities of the unobstructed control points being used for the 
vertical accuracy analysis. 

Surface Type Quantity 

Asphalt 43 
Bare Earth 32 
Grass 25 

 

The vertical analysis was completed empirically using QCoherent LP360. This 

assessment is accomplished by comparing the point cloud data sets against the reference 

control, often referred to as “ground truth.” To do this assessment LP360 first creates a 

triangulated irregular network (TIN) for each point cloud and then computes a point-to-

TIN offset, in the vertical direction only, for each control point. After these offset values 
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are determined, summary stats such as mean, median, range, standard deviation, and 

RMSEz are calculated and compared. 

3 Results and Discussion 

3.1 Point Cloud Properties/Characteristics 

The progress in miniaturizing INSs and lidar systems onto UAS platforms is relatively 

new, but the basic methodology and limitations of UAS-lidar are comparable to 

traditional airborne lidar from manned aircraft. SfM-MVS applications for topographical 

mapping has more recently been developed for implementation in industry. This research 

indicates that UAS-SfM is capable of providing satisfactory topographic mapping results 

with a simple, user friendly, acquisition and processing interface. The average point 

density and point spacing of each of the point clouds were calculated using LP360 point 

density tool. Table 10 summarizes these densities, showing that UAS-SfM is capable of 

providing greater density when compared to UAS-Lidar. UAS-SfM does provide many 

advantages over UAS-Lidar, but it is less robust to the operating environment, and there 

are specific cases in which it can fail.  

Table 12: A summary of the average point density and spacing for the point clouds 
being compared. 

Point Cloud Average Point 
Density (pts/m2) 

Average Point 
Spacing (cm) 

Terrestrial lidar (reference data set)         7000          1.2    
UAS-lidar             50        14.5 
UAS-SfM raw         5500          1.3 
UAS-SfM grid           350          5.4 

 

The results enabled an analysis of the specific conditions that impacted the quality of the 

SfM results. For example, the output of the binning algorithm implemented on the SfM 

raw dense point cloud (ground only) enabled extraction of statistical information (mean, 

median, number of points, variance from the mean, standard deviation, minimum, and 

maximum) for each of the 5 cm × 5 cm square bins, which contained an average of 24 

points per bin. Figure 17 contains an orthomosaic image of the AOI (top), and the 
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resulting binned point cloud, bottom, colored by standard deviation from the mean where 

blue indicates a standard deviation of 0.00 centimeters and yellow a value of 0.10 

centimeters. Visualizing the point cloud by standard deviation allows for easily 

identifying areas containing increased noise in the data. These areas of increased noise 

help determine what specific site conditions lead to less reliable surface reconstructions.  

Visual analysis reveals that areas of high standard deviation in Figure 17, identified by 

the dashed rectangles, generally correspond to areas with a combination of poor texture 

and a decrease in overlap/sidelap, due to being on the edge of the flight plan and being 

surrounded by large vertical objects (trees and/or buildings). Similarly, the higher 

standard deviations in the dashed ovals correspond to a combination of homogenous 

texture, poor lighting, and increase in camera obstructions.  
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Figure 17: Includes the orthophoto created within Agisoft photoscan 
(top), and the standard deviation of the points within each 5 cm bin 
used to grid the resulting SfM point cloud data. The point cloud is 
colored with 0.0 meter standard deviation in blue and a 0.1 meter 
standard deviation in red. The selected area identified by the light 
dashed lines on the images indicate areas with higher standard 
deviations, or noise, in the data.  

This analysis provides insight into the effects of poor illumination and of low texture, 

both individually and in combination.  Detailed cross sections of two areas being 

shadowed by nearby trees are shown in Figure 18 and Figure 19. The first cross section 

shown in Figure 18 is of asphalt, a low texture surface, where the combination of poor 

texture and poor lighting conditions resulted in an increase in noise for the SfM data set 

compared to the lidar data sets that showed no change. The second cross section, shown 

in Figure 19, is of an area of bare earth, a higher texture surface. In this case, the higher 

texture was sufficient to overcome the challenges of poor illumination. This suggests that 

it is the combination of low texture and poor illumination that poses the greatest 

challenge.  
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Figure 18: Top view of a shaded segment of asphalt (top) with a profile 
that intersects the shaded region (bottom). This is a prime example of 
the downside of using a passive sensor as the poor lighting can lead to a 
decrease in captured texture, thus increasing noise in SfM processed 
data sets. 



 

Page 35 

 

 

 
Figure 19: Top view of a shaded segment of bare earth (top) with a 
profile that intersects the shaded region (bottom). This is an example 
that depicts that some surfaces are not impacted by the poor lighting 
conditions and are able to maintain adequate texture for accurate 
surface reconstruction when compared to active sensors such as 
terrestrial and drone based lidar. 

In order to compare the performance of aerial drone-based lidar to drone-based SfM, a 

cross section was taken, shown in Figure 20, for each of the main surface types: asphalt 

(top), bare earth (middle), and grass (bottom). Each of the cross sections contains the 

following datasets: SfM Raw, which is the SfM point cloud prior to being gridded; the 

median of the gridded SfM point cloud; the terrestrial lidar point cloud, the aerial drone-

based lidar; and the points from the control survey being considered the “ground truth” 

identified as triangles. Note each profile also has a close-up image of the corresponding 

surface type to help identify the level of surface texture.  
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Figure 20: A plot of three profiles for varying surface types, with 
images of each corresponding surface to the right. Each cross section 
includes the following data sets: SfM raw (not gridded), terrestrial 
lidar, SfM median of bins after being gridded at 5cm, aerial lidar, and 
ground truth points from the control survey. 

The raw SfM data set on the asphalt has greater noise when compared to the bare earth 

and grass profiles shown in Figure 20. This increased noise corresponds to the relatively 

poor surface texture of the asphalt. After computing the median of the gridded data, the 

surface is smoothed, reducing the overall noise, but the results are still, in general, worse 

than the UAS-based lidar for this surface type. Comparing the UAS-lidar to the terrestrial 

lidar in this profile clearly shows that the UAS-lidar does deviate from the terrestrial data. 

Looking at the high textured bare earth profile, there are almost indistinguishable 

differences between the terrestrial lidar and SfM datasets when inspecting them at this 

level of detail, whereas the UAS-lidar deviates from the terrestrial lidar similarly to the 

asphalt profile. Inspecting the grass profile, it is apparent that all of the point clouds are 

higher than the ground truth points collected through the control survey. The majority of 
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these offsets are inherently due to the height of the grass where the control was observed 

at the base of the grass and the point cloud observations would be of the top of the grass, 

as none of the methods would have been capable of penetrating through the dense 

vegetation. 

3.2 Vertical Accuracy Analysis  

Before comparing the accuracy of UAS-SfM to UAS-lidar a comparison between the 

various UAS-SfM datasets was first completed. The UAS-SfM assessment compares the 

effects of using a GPS only PPK trajectory versus a GNSS PPK trajectory used to geotag 

each image. It also includes a brief GCP sensitivity comparison to determine the overall 

impact of utilizing more GCPs has when the imagery is precisely georeferenced. Note, as 

described in section 2.6, the check points acquired in the control survey are being used as 

the referenced control dataset. The results of this analysis are summarized in the plots in 

Figures 22-24. In each plot, five different elevation data products generated using 

different processing procedures are assessed by comparison against total station reference 

data acquired from the control survey: 1) terrestrial lidar (solid orange bars); 2) median 

filtered UAS-SfM  with 1 ground control point using GPS only (solid red bars); 3) 

median filtered UAS-SfM with 1 ground control point using GPS+GLONASS (cross-

hatched red bars); 4) median filtered UAS-SfM with 5 ground control points using GPS 

only (solid blue bars); and 5 median filtered UAS-SfM with 5 ground control points using 

GPS+GLONASS (cross-hatched blue bars). The results of these comparisons were first 

expressed in terms of vertical accuracy at the 95% confidence level, computed as  1.96 ∙

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑍𝑍, following FGDC’s National Standards for Spatial Data Accuracy (FGDC, 

1998):  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑍𝑍 = �∑ �𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑍𝑍𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 (4) 

Next, the comparison results were decomposed into a mean (or bias) and standard 

deviation about the mean. This breakdown is helpful to gain insight into whether the 

differences between the total station reference data and various elevation data sets are 
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dominated by a large systematic error (bias), or are more indicative of a large random 

uncertainty. Note that for large n, the following relationship between the RMSE, the 

mean, µ, and the standard deviation, σ, is expected to hold (Stewart et al., 2009): 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑍𝑍2 ≈ 𝜇𝜇2 + 𝜎𝜎2 (5) 

 

 
Figure 21: Vertical accuracy at 95% confidence level (computed as 
1.96*RMSEz) from comparison of each of the 5 elevation data sets 
against the reference total station data 
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Figure 22: Mean difference (bias) from comparison of each of the 5 
elevation data sets against the reference total station data.  

 
Figure 23: Standard deviation about the mean from comparison of each 
of the 5 elevation data sets against the reference total station data. 

The following general observations can be made from Figures 22-24: 

1. In grass, the terrestrial lidar data exhibits a larger bias, attributable to the depth of 

the grass (~5cm from the surface of the grass to the ground where the control was 
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measured) and poor viewing geometry to penetrate the top surface of the 

vegetation, compared to the SfM data sets which have a more nadir viewing 

geometry allowing for more surface penetration. 

2. The results of including GLONASS for georeferencing the imagery were mixed: 

sometimes GLONASS helped, and other times, it did not. But it did typically 

provide a solution closer to the terrestrial lidar results. 

3. When using accurate georeferenced imagery the inclusion of more control (i.e. 5 

control points (blue) vs. 1 control point (red)) did not have a large influence when 

comparing the standard deviation, but it did reduce the bias on hard surfaces. 

The next step in the analysis consisted of examining three different acquisition systems: 

1) SfM-MVS processing of drone-based imagery after a median filter has been applied, 

2) airborne, drone-based lidar, and 3) terrestrial lidar for reference. The results of this 

analysis are summarized in Figures 25-27. Once again, the results are summarized first in 

terms of accuracy at the 95% confidence level, followed by a decomposition into a mean 

(bias) and standard deviation about the mean.  

 
Figure 24: Vertical accuracy at 95% confidence level (computed as 
1.96*RMSEz) from comparison of each of the 3 primary comparison 
elevation data sets against the reference total station data. 
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Figure 25: Mean difference (bias) from comparison of each of the 3 
primary comparison elevation data sets against the reference total 
station data. 

 

 

 
Figure 26: Standard deviation about the mean from comparison of each 
of the 3 primary comparison elevation data sets against the reference 
total station data. 
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Analysis of Figures 25-27 leads to the following observations: 

1. Drone-based SfM or lidar is not nearly as accurate to terrestrial lidar on hard, flat 

surfaces (asphalt or bare earth), but both perform similarly to, if not better than, 

terrestrial lidar over grass. This similarity over grass is expected as the grass is a 

very dense vegetation, making it difficult for all platforms to consistently observe 

to the ground surface. However, because of the viewing geometry of the airborne 

systems, they are able to penetrate down into the vegetation slightly, resulting in a 

decreased bias to the ground truth. The increase in standard deviation over the 

grass seen for both aerial platforms is most likely attributed to the variability of 

the grass density which affects how deep into the vegetation the sensors can see 

(UAS-SfM) or penetrate (UAS-lidar) at each checkpoint. 

2. Relatively small differences in accuracy are observed between drone-based SfM 

and drone-based lidar for all surface types using these specific sensors and 

acquisition parameters. 

3.3 Synthesis and Discussion of Results 

3.3.1 Overall Benefits and Limitations 

The primary difference between the two mapping techniques compared in this paper is 

that UAS-lidar is an active sensor, and UAS-SfM is based on data acquired from a 

passive sensor. The passive sensors are inherently susceptible to the lighting conditions 

of the area of interest, and, as a result, the final product can be greatly impacted, as 

shown in the example areas containing poor lighting caused by tree shadows. This 

limitation has a hindrance on acquisition times and/or locations when compared to aerial 

lidar, an active sensor. For example, it would be very difficult to collect reliable data for 

SfM processing at night, whereas an active sensor should not have any difficulty 

(assuming, of course, that it is possible to obtain an FAA waiver for nighttime 

operations). Another major limitation to SfM processing is that it requires that the 

surfaces being reconstructed are well as textured in order for the algorithm to function 

correctly. This paper has shown that on surfaces with high texture, such as bare earth in 
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this case, the accuracy of the reconstructed model is comparable to the UAS-lidar. 

Conversely, the model would have a decreased accuracy and a high standard deviation, or 

noise, on surfaces with low texture (e.g. asphalt).  

UAS-lidar primarily excels due to its low dependence on lighting and surface conditions. 

Unfortunately, typical drone based lidar systems have much greater cost than a typical 

SfM mapping platform, due to the intricate suite of costly sensors such as the lidar 

scanner, and the GNSS-aided INS. This increase in equipment cost might be justified, 

especially if the areas being mapped are not well suited to SfM processing. For example 

UAS-lidar would be more suitable in areas with poor illumination, thick canopy 

cover/vegetation and/or homogenous surface textures. Additionally, UAS-lidar is capable 

of providing point return intensities, which can be used to identify various surface 

characteristics. Although lidar point clouds can be colorized by RGB similar to the SfM 

derived points clouds, the technique used to colorize the lidar point clouds can be subject 

to parallax, leading to positional uncertainties in the RGB values. This is because the 

lidar is colorized by overlaying a co-acquired orthomosaic image over the resulting point 

cloud. Therefore, care should be taken when identifying items based on RGB color as 

opposed to intensity as any positional uncertainties in the orthomosaic image can result in 

a color shift on the point cloud. For that reason, in many cases, the derived products from 

UAS-SfM can be even more useful for surface characterization than UAS-lidar. 

The overall quality of the products generated from both mapping platforms discussed in 

this report relies heavily on the acquisition and processing procedures implemented. 

Therefore, in order to create accurate and precise final products from the UAS mapping 

technologies discussed, it is necessary to take notice of the procedures implemented 

during data acquisition and processing. The UAS-lidar data set used in this paper was 

acquired using typical acquisition scanning rates, flying height, and speeds. The 

acquisition parameters produced a point cloud less dense than preferred, resulting in the 

inability to accurately extract the center of the aerial control targets. This point density 

was noticeably decreased over dark surfaces such as the asphalt. In particular, these 

density artifacts could be corrected for by decreasing the flying altitude and speed, or 
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increasing the sidelap during data acquisition. Additionally, this paper has proven that 

using a median filter is an effective method for thinning the dense point cloud from the 

UAS-SfM data to a more manageable dataset as well as slightly increasing the accuracy 

of the model, as outliers of a surface are inherently ignored through the filtering process. 

Note that the median filter should be used with caution as it is possible that the filter can 

remove small vertical features from the data as a result of this smoothing effect. Table 13 

provides an overview of the primary advantages and disadvantages of each mapping 

platform in order to aid with decision making on which platform should be used for a 

particular project. 

Table 13: An overview of the advantages and disadvantages of each of the 3D point 
cloud acquisition techniques discussed in this paper as well as terrestrial lidar for 
reference purposes. 

 UAS-Lidar 
(directly georeferenced) 

UAS-SfM 
(w/ geotagged imagery) 

Advantages: 

− Fast data acquisition time 
− Provides specific surface 

characteristics using return 
strength (intensity) 

− Active sensor 
− Able to penetrate tree 

canopies/vegetation 
− Captures vertical features 
− Capable of good global 

accuracy (less than terrestrial 
lidar data) 

 

− Fast data acquisition time 
− Provides very dense 3D 

data 
− Low Cost 
− Simple acquisition system 
− Relatively Simple 

Processing Methodology 
− Capable of good global 

accuracy (comparable to 
drone based aerial lidar 
data) 

Disadvantages: 

− Processing requires more 
expertise 

− Higher cost 
− Poor return strength on dark 

surfaces (must limit acquisition 
altitude) 

− Complex positioning system 
required. (GNSS-aided INS) 

− Typically more sparse 3D data 
when compared to terrestrial 
lidar and SfM-MVS derived 
point clouds 
 

− Does not capture vertical 
features well when only 
nadir imagery is used 

− Passive sensor 
− Susceptible to increased 

noise in low texture areas  
− Unable to penetrate dense 

vegetation 
− Heavily reliant on 

computer processing 
resources  
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3.3.2 Summary of Comparison 

This study has demonstrated how two common drone mapping techniques used to create 

dense 3D point clouds, drone-based lidar and structure from motion photogrammetry, 

compare to each other when referenced and compared against two control data sets: 

sparse high accurate check points and terrestrial lidar. The overall goal of this research is 

to provide information to industry surveyors and mapping professionals about the 

limitations of each of the two mapping techniques. Although the two drone-based 

techniques are typically less accurate and precise than the well tested and used terrestrial 

lidar, their ability to collect copious amounts of data by covering larger areas in relatively 

little time, when compared to traditional surveying and terrestrial lidar techniques, makes 

them very cost effective when the higher order of accuracy is not required. This cost 

benefit is especially significant when UAS-SfM is being implemented, as a consumer 

level, off the shelf, SfM mapping platform with accurate image georeferencing has a 

relatively low equipment cost when compared to a UAS-lidar system. 

The two primary mapping techniques being compared both require the same level of data 

collection efforts. This ease of data collection for both techniques is largely attributable to 

their ability to georeference the data, thus eliminating the need for a control survey. For 

the drone-based lidar this georeferencing is accomplished by directly measuring the 

position and attitude of the sensor using the onboard GNSS-aided INS system and 

applying a boresight correction to the lidar measurements. Similarly, for UAS-SfM, the 

position (X, Y, Z) of each photo is attained through the use of an onboard dual-frequency 

GNSS receiver and PPK processing to seed the SfM algorithm. This seeded value for the 

position aids the SfM algorithm by constraining the position for each photo, rather than 

relying on established ground control points, allowing the algorithm to better refine the 

position (X, Y, Z) through the use of the least squares bundle block adjustment while also 

determining the remaining extrinsic parameters (roll, pitch, yaw) and intrinsic parameters 

of the camera.  

Even though the data from both platforms are “directly” georeferenced, constant biases 

(typically in elevation) may remain in the derived model. To increase the accuracy of the 
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resulting model, it is tremendously beneficial to establish control points on surfaces 

throughout the scene. These control points can then be leveraged to perform coordinate 

shifts on the dataset, thus, alleviating systematic errors, or biases. Setting control targets 

for aerial mapping missions, especially for UAS-SfM, is time consuming and not cost 

effective. For this reason, industry has been migrating towards the implementation of 

PPK/RTK positioning for image georeferencing on UAS-SfM platforms. That said, the 

inclusion of more ground control points will aid in removing systematic and/or random 

errors in the final product. As shown in section 3.2, the results from comparing the SfM 

product derived from using 1 control point versus 5 control points showed little effect on 

the standard deviation but the additional control points did help reduce the bias between 

the resulting point cloud and the reference checkpoints. 

Although the data collection efforts for UAS-lidar and UAS-SfM are similar, the 

processing requirements for the two techniques differ greatly. The UAS-lidar processing 

methodology can require multiple software packages to attain the final product, resulting 

in a decrease in the general usability. Overall, both methods compared well to the 

numerous checkpoints used on the various surface types, i.e. grass, bare earth, and 

asphalt, although it has been noted they each have scenarios where they do not achieve 

the same level of accuracy and detail as terrestrial lidar, a proven and well trusted 3D 

data acquisition technique. While Table 13 concisely summarizes the relative advantages 

and disadvantages of the two UAS technologies, the results are further generalized in 

Table 14 which presents a qualitative comparison of the two UAS technologies along a 

number of dimensions. 
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Table 14: Summary of the qualitative comparisons between UAS-lidar and UAS-SfM. 

 UAS-Lidar UAS-SfM 

Cost high low 
Acquisition time low low 
User-input processing time high moderate 
Demand on computing 
resources 

moderate high 

Operational expertise required high low 
Processing expertise required high low 
Sensor type lidar (active) RGB camera (passive) 
Variables of each data point position & intensity position & RGB 
Georeferencing position and orientation position only 
Point Density (pts/m2) 30-250 350-5500 
Point Spacing (cm) 6-20 1-5 
Can penetrate dense vegetation yes no 
Reliant on surface texture no yes 
Reliant on lighting conditions no yes 

5 Conclusion 

This study has identified some of the strengths and weaknesses of UAS-SfM and UAS-

lidar for topographical mapping to inform professional surveyors and mappers about the 

limitations of these newly developed mapping platforms. Although the two techniques 

typically provide comparable data accuracies (with some differences, as a function of 

terrain and ground cover type), the application of UAS-SfM is generally less expensive, 

imposes less stringent requirements for the remote aircraft, requires less expert 

knowledge and training, and yields higher data densities. Therefore, a primary 

recommendation from this research is that SfM processing should be the default platform 

used for typical small scale, less than 2 square kilometers, high density topographic 

mapping applications based on its low cost, attainable accuracy, and usability. However, 

UAS-lidar should be used when any of the following conditions apply: 

• AOI has homogenous surface texture over a large area 

• Data acquisition through thick canopy is required 

• Poor light conditions (extreme amounts of shadowing throughout the AOI, data 

collection at night, etc.) are anticipated 
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• Surface characteristics derived from intensity returns are required 

• Substantial vertical gradients throughout the AOI 

• Large amount of tall (relative to flying height) vertical obstructions located 

throughout the AOI. 

Neither of the two options discussed in this research will work for all applications; there 

are some circumstances that may require the use of both techniques together, possibly in 

addition to other more well-known mapping techniques, in order to adequately map a 

desired area. No matter which mapping system is being used, a thorough understanding 

of the acquisition platform and processing procedures is recommended to produce 

accurate final products. 

As this study focused on empirical analyses, a recommendation for future work is to 

perform a total propagated uncertainty (TPU) analysis for each discussed mapping 

platforms. It would also be beneficial to analyze SfM processing limitations through the 

use of simulations (e.g., Slocum and Parrish, 2017) to determine the specific conditions 

in which SfM fails and what acquisition parameters could be adjusted to limit these 

failures (e.g., increased sidelap/overlap, higher GSD, addition of oblique imagery, 

supplemental ground control, etc.). Through this ongoing work, it is anticipated that both 

UAS-SfM and UAS-lidar will continue to become increasingly useful technologies to the 

surveying and mapping community, as their respective strengths, weaknesses and 

synergies are better understood.  
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