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CONTRIBUTION OF AUTHORS

This dissertation proposes the use of advanced time-varying approaches for modeling the

dynamics of the multipath channel in wireless communication networks. These advanced

time-varying approaches include the linear Kalman innovation model in observable block

companion form, and two neural network-based models, namely the neural network-based

autoregressive moving average with exogenous inputs (NN-ARMAX) model and the neural

network-based autoregressive with exogenous inputs (NN-ARX) model.

Previous published works that apply Kalman models for channel estimation [1–4] and

key generation [5–9] in wireless networks use the classical Kalman filter. Compared to

such classical Kalman approach, the Kalman innovation model used in this work has the

advantage that it does not require to estimate the properties of the noise, while maintaining

the typical estimation accuracy and time-varying features.

On the other hand, the neural network-based models used here outperform other black

box approaches using simple models such as double Gaussian [10] and trapezoidal [11].

In addition, compared to previous works that use neural networks approaches for modeling

the dynamics of wireless networks [12–46], the NN-ARX and NN-ARMAXmodels trained

using OS-ELM exhibit an outstanding accuracy and significantly greater training speed; the



latter makes them very suitable for identifyingmodels for describing time-varying dynamics

of different phenomena in wireless communication networks.
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Chapter 1: OVERVIEW

1.1 Introduction

Because of the significant worldwide growth in the number of users of wireless networks

in the previous two decades, two main challenges have arisen in the management of such

networks: achieve an optimal operation and guarantee secure communications for the users.

Optimal operation involves balancing two conflicting objectives, namely quality and

coverage. In particular, when the coverage area of a station or group of stations is wider

they serve more users, but the access speed (one of parameters that define the quality of

experience (QoE) perceived by users) tends to reduce for all these users. In contrast, when

such coverage area is narrower, the access speed is higher thus increasing the QoE, but there

is a smaller number of clients satisfied. Then, the goal becomes offering a sufficiently high

access speed to the greater number of users. In other words, it is desired to optimize the

network in order to satisfy the demand, with a minimum required quality and the minimum

amount of resources [1] [51].

Successfully solving this optimization task is a significant challenge due to the hetero-

geneity of current networks, because of the coexistence of different technologies, namely
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5G, 4G LTE, WCDMA (3RD generation) and GSM (2ND generation). Besides, actual net-

works are more heterogeneous (HetNet) because of the incorporation of WiFi networks,

various types of cells such as pico and femto cells [51], and even sensor networks that often

need to be secure [52–56].

Most mobile operators rely on experience and intuition to tackle the optimal operation

issue, but this strategy does not guarantee good results. A better choice might be to

apply more rigorous optimization strategies, based on mathematical models that accurately

describe the dynamics of the channel.

On the other hand, with respect to security, the shared nature of the wireless channel

provides a natural eavesdropping and intervention possibility to unintended users. Anyone

with a tuned receiver within a certain radius that has an adequate signal-to-interference-plus-

noise ratio (SINR)may eavesdrop [57]. It becomes critical to implement effective encrypting

mechanisms to guarantee secure communications between every pair of legitimate users

[47].

Cryptographic techniques demand the exchange of encrypted keys at one point during

the encryption. Traditional security mechanisms are mainly based on the generation,

distribution and renewal of shared secret keys in real time, for every active wireless link in

the network. This is a nontrivial task in large wireless networks, because of mobility and
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scalability issues [58].

Currently, wireless security relies on cryptographic techniques and protocols that lie at

the upper layers of the network [58]. These techniques require computationally demanding

and mathematically complex key management schemes, and have limited capacity for key

generation. A promising alternative might be to generate secret keys in the physical layer

(channel), exploiting the randomness produced by the multipath, which is time-varying

and unique for every user, and the Doppler effect of moving receivers [47]. A review of

methods for secret key generation in the physical layer is presented in [58] and [5]. Since

the capacity of generating secure keys is proportional to the randomness of the channel, in

theory a channel with multipath has an infinite capacity for generating keys. However, in

practice computational issues limit this capacity.

Such randomness is present in channel variables such as the gain, the received signal

strength (RSS), the angle of arrival (AoA), and the distance between the legitimate users.

In addition, variables suitable to be used for key generation (i) must be measurable by the

communicating parties, denoted as Alice and Bob, to guarantee they both can generate the

same key, (ii) must not be measurable by other malicious parties, to assure that the key

is completely secret, and (iii) should be independent of previous or future measurements,

to increase overall security [5]. The gain is commonly employed because both users can
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easily measure it. Now, the practical implementation of a key generation mechanism using

any variable that fulfills the aforementioned conditions requires finding a way to capture its

randomness.

From the discussion above, it can be stated that a model of the dynamics of the channel

becomes a rather critical tool to effectively tackle the aforementioned challenges. The

channel transforms the transmitted signal into the received signal. Characterizing the

channel in a wireless communication system, also known as channel estimation, is defined

as the process of characterizing the effect of the physical channel on the input sequence [6].

Channel estimation is currently an active research topic [48].

Now, creating models of the channel based on physical principles is difficult because of

the variety of services offered by the network, namely internet access, text messages and

calls. Black-box models identified from data become an attractive alternative to physical

principles models, especially considering the significant amount of measured data typically

available inmobile telephony andwireless networks, and the storage capacity and computing

power of actual computers [51].

Yazti and Krishnaswamy categorize the data from mobile networks in two groups,

namely network-level and app-level ( [12], [13]). The app-level is data generated by specific

applications in the network terminal elements; this data enables to closely investigate the
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profiles of the subscriber, but requires employingmore resources (energy and radio spectrum

resources, among others) and the permission from the user. On the other hand, the network-

level is data coming from network integrated elements (routers, switches, nodes, among

others); this data can be obtained relatively easier and without the permission from the user,

but does not provide information about the consumption’s profile [51].

Indeed, network-level data is the most frequently utilized when optimizing radio access

networks (RAN). Nevertheless, having some information about the profile of the user asso-

ciated to each node of the network is very useful, when it comes to finding the configuration

that generates greater profits, while guaranteeing a quality that satisfies the users.

Among the methods that use network-level data, the best for estimating channel param-

eters is known as channel state indicator (CSI), which consists of determining a complex

transfer function of the channel through the frequency response (CFR) ( [1–3, 57, 59]) or

impulse response (CIR) ( [3, 4, 59]). However, this method is computationally expensive.

As an alternative, the received signal strength indicator (RSSI) offers a much smaller

computational cost, at the expense of a reduced capacity. The RSSI is related to the power

of the signal and enables to distinguish one channel with multipath from another [48], and

has become the more common method for channel measurement, being available in most

of the actual transceivers ( [1, 60–64]).
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Motivated by the well-demonstrated ability of Kalman filters to build models of sys-

tems from noisy measurements, standard Kalman models have been applied for channel

estimation ( [1–4])

and key generation ( [5, 7–9, 65]) using RSSI measurements. McGuire [5] used a

standard Kalman filter to estimate the dynamics of the channel, and found that the method

is effective but more computational efficiency is required to increase security in the secret

keys [47].

Another choice to infer the profile of the clients without utilizing app-level data, is

modeling traffic data (payload) as a function of the users. Different black-box modeling

techniques have been used with this purpose [12]. Almeida et al. [10] presented differ-

ent simple models for describing the traffic of voice calls of a GSM network in Lisboa.

Specifically, trapezoidal and Gaussian models are proposed to classify the areas as densely

urban, urban and suburban. This work has been referenced by subsequent research works

that have developed models of the behavior of 2G [14,15], 3G [16–18], 4G [11,19,66] and

hybrid [20–24] networks.

Afterwards, Pina [11] uses the approaches presented in [10] for constructing space-time

models of data traffic in an LTE network, to characterize the consumption profile of the

users based on the applications they employ. This information is useful to optimize the
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network in terms of quality of service (QoS). Note that in [10] and [11] a type of model is

assumed a priori, and parameters that will make that model fit a particular data of traffic

are further calculated. Although simple, this approach is rather restrictive due to limited

number of models available [51].

Now, inmobile communication networks, traffic is significantly higher inmost populated

cities, where it follows a “swinging” behavior between residential areas, regularly located

in the outskirts of the city, and working/commercial areas in the downtown. The traffic of

data and calls also varies for the different locations and days of the week [51]. Therefore,

the performance of the models discussed in [12, 25–39] may be affected by this nonlinear

and time-varying dynamics.

On the contrary, neural networks-based models are a promising alternative for success-

fully solving this modeling task. First, neural network models can approximate any function

with arbitrary degree of accuracy [67]. In addition, these approaches have exhibited excel-

lent performance in analyzing, extracting information and identifying models from large

amounts of data [51]. At last, time-varying features can be obtained through on-line training

of the neural network model.

In fact, different types of neural networks have been applied to create models of traffic

from measurements, as summarized in the survey by Zhang et al. [12]. Yazti and Krish-
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naswamy [13] present research, practice and opportunities of big data analytics applied to

mobile communication networks. Some works ( [14–19,66]) describe models for optimiz-

ing the allocation of access channels and of the handover in the mobility and retain ability

of the connection. Other works ( [20–39]) propose predictive models that use the traffic of

the cells, in the search for optimizing the distribution of RAN and Core Network resources

based on QoE. Additional works present space-time models of traffic [40–46]. All these

models are then further used to optimize load balance and handover [33–39] in the various

technologies (2G, 3G, 4G, 5G and WiFi), and to predict the occurrence of undesired events

such as network congestion in certain nodes ( [25–39]).

Training speed is a key aspect when building a time-varying neural network model [68].

Even though standard backpropagation and its variants are the training algorithms most

commonly used in the reported work [68], the speed issue is against these gradient-based

algorithms that typically converge slowly because they require several iterations. In addition,

their performance depends critically on training parameters that must be specified by the

user, without well-established rules for selecting their values for a given training task [68].

This dissertation proposes the use of advanced time-varying approaches for modeling

the dynamics of the multipath channel in wireless communication networks. First, the

two initial case studies presented involve the use of linear time-varying Kalman innovation
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models for (i) describing measured RSSI in indoor multipath wireless channels [48] and (ii)

secret key generation in the physical layer of multipath wireless channels [47]. On the other

hand, the third case study evaluates the performance of two time-varying neural network-

based modeling schemes for describing traffic in mobile telephony networks, namely a

neural network-based autoregressive with exogenous inputs (NN-ARX) model [51], and a

neural network-based autoregressive moving average with exogenous inputs (NN-ARMAX)

model. The training speed issue in the neural network-models is resolved with the use of

the online sequential extreme learning machine (OS-ELM) algorithm ( [69, 70]).

With respect to the last case study, it will be shown that the time-varying NN-ARMAX

model may yield a linear time-varying Kalman innovation model, as opposed to the time-

varying NN-ARX model. It is important to remark that the NN-ARMAX model features

the modeling power of neural networks, while the obtained equivalent Kalman innovation

model enables the implementation of advanced schemes [68] for controlling the operation

of the wireless networks.

1.2 Contribution

This dissertation proposes the use of advanced time-varying approaches for modeling the

dynamics of the multipath channel in wireless communication networks. These advanced



10

time-varying approaches include the linear Kalman innovation model in observable block

companion form, and two neural network-based models, namely the neural network-based

autoregressive moving average with exogenous inputs model and the neural network-based

autoregressive with exogenous inputs model.

Previous published works that apply Kalman models for channel estimation ( [1–4]) and

key generation ( [5,7–9,65]) in wireless networks use the classical Kalman filter. Compared

to such classical Kalman approach, the Kalman innovation model used in this work has the

advantage that it does not require to estimate the properties of the noise, while maintaining

the typical estimation accuracy and time-varying features.

On the other hand, the neural network-based models used here outperform other black

box approaches using simple models such as double-Gaussian [10] and trapezoidal [11].

In addition, compared to previous works that use neural networks approaches for modeling

the dynamics of wireless networks ( [12–46, 66]), the NN-ARX and NN-ARMAX models

trained using OS-ELM exhibit an outstanding accuracy and significantly greater training

speed; the lattermakes themvery suitable for identifyingmodels for describing time-varying

dynamics of different phenomena in wireless communication networks.
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1.3 Summary of the Dissertation

The rest of the dissertation is structured as follows. Chapter II presents some theoretical

fundamentals of the research work. Specifically, notions related to wireless communica-

tions are first depicted, including general concepts, important aspects of design, Global

System for Mobile Communications (GSM), propagation properties (reflection, diffrac-

tion, dispersion and absorption), propagation in closed environments and multipath. Then,

some considerations about secrecy and security in wireless systems are provided, including

notions of secret key generation. At last, different schemes for modeling wireless com-

munication systems from data are presented, ranging from simple models to describe the

dynamics in time (double Gaussian and trapezoidal) and in space, to more advanced time-

varying approaches such as linear Kalman innovation modeling and neural network-based

modeling; these advanced approaches are the main subject of interest of this work.

Afterwards, Chapter III first describes the three case studies, which include (i) lin-

ear Kalman innovation modeling of indoor multipath wireless channels, (ii) secret key

generation in the physical layer in multipath wireless channels and (iii) time-varying neu-

ral network-based modeling schemes for describing traffic in mobile telephony networks.

Then, this chapter presents the criteria that will be utilized to evaluate the performance of

the advanced modeling approaches.
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At last, chapter IV presents and analyzes the results obtained in the different case studies,

followed by concluding remarks that include further directions of research.
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Chapter 2: SOME THEORETICAL FUNDAMENTALS

2.1 Wireless communications

This sub-section presents some basic concepts about wireless communication systems. The

concepts presented are based on Goldsmith [71].

2.1.1 General concepts

Wireless communications are defined as any connection that enables the exchange of infor-

mation between two or more points through radiation. In particular, by means of electro-

magnetic waves, with the air as the channel. Based on the location of the communicating

sites they are classified as terrestrial or satellite, and according to their mobility, they are

classified in fixed, mobile and nomadic.

This research considers mobile or fixed wireless terrestrial communications. Specifi-

cally, the case studies comprise, without loss of generality, WiFi access services, and GSM

mobile telephony service, including the evolutionary technologies UMTS, HSPA, HSDPA

and LTE.

In general, the transmission channel in wireless communications uses air as the medium,
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but there may be possibly obstacles in the trajectory. Propagation in free space refers to the

casewhere there are virtually no obstacles, and themediawith this geometry are called rural.

On the other hand, when there is a complicated geometry between the communicating sites

they are known as urban, which includes indoor propagation. The multipath phenomenon

occurs in the urban case, due to the multiple trajectories that a transmitted signal follows in

its way to the receiver because of its reflection on the multiple obstacles.

The maximum transmission speed of any communicating path is given by the capacity

of the channel, which is defined as [50]

C[bps] = B log2

(
1+

S
N

)
(2.1)

where C is the capacity of the channel in bits per second (bps), B is the bandwidth in

Hertz (Hz) and S/N is the signal-to-noise ratio. Equation (2.1) clearly shows that the

maximum capacity of the channel, i.e. its maximum allowed speed, is proportional to the

signal-to-noise ratio, which becomes the parameter under study.

In general, it is necessary to model the communication channel to predict the behavior of

the signals, for the design and control of the signal-to-noise ratio, among other applications.

In the signal-to-noise ratio, the noise is a random component. In addition, in channels

with multipath, the behavior is completely random; consequently, building models using
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physical principles is difficult, and data-driven models become a promising alternative. In

other words, describing the channel in wireless communication processes with multipath

may be more successful with the use of mathematical models identified from measured

data.

2.1.2 Important aspects of the design

For the design of any wireless system, it is first necessary to define if it is mobile or fixed.

Without loss of generality, in this work the GSM is considered as the case study for mobile

systems, whileWiFi is considered for fixed services. As amain feature, the wireless systems

under consideration may be divided in two subsystems (with their particularities) known as

core network (CN) and radio access network (RAN).

Obviously, the work is applied on the RAN, which is defined as the interconnection

between the service provider and the final user of the wireless channel. Some characteristics

of the GSM systemwill be described to illustrate basic concepts of wireless access networks.

2.1.3 Global System for Mobile Communications (GSM)

A GSM system, and in general any cellular telephony service establishes a communication

between two mobile stations (cell phones), or between a mobile station and a fixed system.



16

As shown in Figure 2.1, a GSM system is a network further subdivided in two subsystems,

namely the network subsystem (NSS) from the service provider to the interfaces of the base

station controller, and the base station subsystem (BSS) from the base station controller to

the user. The communication between the mobile terminal units and the base transmission

station (BTS) is known as radio access network; in any wireless communication technol-

ogy, the RAN is the communication between the users and the network. A full duplex

communication, i.e. with uplink (UL) and downlink (DL) channels, is established in the

RAN.

Figure 2.1: Basic architecture of a GSM system [49].
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2.1.3.1 Signals

A signal is a wave that carries information. For the case of telecommunications, it refers

to an electromagnetic wave that is distinguished from the others, because its variability

is such that it describes a pattern that can be decoded by a receiver that transforms it to

understandable and useful data.

In this work, signal refers to an electromagnetic wave that enables the communication

between the access network and the final user in both directions, namely:

• Uplink (UL) channel: The transmitter is the final user and the receiver is the node

(cell) in the radio access network.

• Downlink (DL) channel: The transmitter is the node (cell) in the radio access network

and the receiver is the final user.

2.1.3.2 Coverage

For a wireless system, the coverage refers to the geographic region where there is available

a service offer through the propagation of signals in the downlink (DL) channel. As will be

shown below, the manner in which the coverage is measured depends on the technology of

the network, i.e. 2G or GSM, 3G or UMTS, 4G or LTE, or WiFi Hotspot. In addition, in



18

each technology the signals in the DL channel have different bandwidth and a different way

to use such bandwidth to provide access to various users simultaneously.

The frequency hopping technology is employed in the case of GSM, which consists of

using carriers of 200 KHz that transmit a portion of the information along an instantaneous

time. Those carriers “hop” in a pseudorandom sequence in such a way that the never

interfere each other. Besides, between them there exists a control carrier per cell called

Broadcast Control Channel (BCCH) which is fixed, unique for every cell, and carries out

all the call signaling and control.

In terms of engineering ofmobile telecommunications, the coverage inGSM ismeasured

as the level of power (in dBm) of the downlink signal of the strongest BCCH at each

geographic point. Such level of power is known as Rx level, and its reading ranges are

shown in Table 2.1.

Table 2.1: Rx Level (GSM)

Signal level in dBm Qualification of Coverage
>−75 Good Coverage: It guarantees access and good quality

>−85 and <−75
Regular Coverage: It guarantees access, and guarantees quality in
voice but not in data

>−95 and <−85
Access Coverage: It guarantees access, but does not guarantee quality
in voice neither in data

<−95 Poor Coverage: It does not guarantee access

In the case of 3G or UMTS, the access technology is known as wideband code division
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multiple access (WCDMA), which utilizes all the bandwidth for all users at the same time.

Access is provided to all users simultaneously, through different codes for each user and

different codes for each cell. In this way, all signals are being transmitted at the same time,

but they do not interfere each other because of the orthogonality between the codes of the

different users, and the orthogonality between the codes of the different cells.

Table 2.2: RSCP (UMTS)

Signal level in dBm Qualification of Coverage
>−75 Good Coverage: It guarantees access and good quality

>−85y <−75
Regular Coverage: It guarantees access, and guarantees quality in
voice but not in data

>−95y <−85
Access Coverage: It guarantees access, but does not guarantee quality
in voice neither in data

<−95 Poor Coverage: It does not guarantee access

The code corresponding to each cell is known as scrambling code, and each cell employs

a portion of its power to provide each user with coverage and a specific control channel,

called common pilot channel (CPICH). The level of the downlink signal of the CPICH is

known as Received Signal Code Power (RSCP), which is the power received by the mobile

phone after decoding the signal and is the parameter used to measure coverage in 3G. The

reading ranges of the RSCP are shown in Table 2.2.

In the case of 4G or LTE, the access technology is known as Orthogonal Frequency

Division Multiple Access (OFDMA). In this technology the whole bandwidth is utilized
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simultaneously for all the users, and the way to provide access to all the users at the

same time is through different carriers of 200 kHz each, but orthogonal between them to

avoid interference. Each cell is distinguished from the other based on its synchronization

sequence, called physical cell indicator (PCI). The level of the downlink signal is known as

Radio Strength Resource Power (RSRP), which is measured in dBm, and its reading ranges

are shown in Table 2.3.

Table 2.3: RSRP (LTE)

Signal level in dBm Qualification of Coverage
>−85 Good Coverage: It guarantees access and good quality

>−95y <−85
Regular Coverage: It guarantees access, and guarantees middle quality
in data

>−100y <−95
Access Coverage: It guarantees access, but does not guarantee quality in
data

<−100 Poor Coverage: It does not guarantee access

In the 3G and 4G technologies, the system operates broadcasting signals according to

the traffic. If the traffic begins to grow somuch that the quality of servicemight be degraded,

the network reduces the power of the RSCP (3G) or RSRP (4G) to decrease the quantity

of users, and retaining only the number of users to which a good quality of service can

be guaranteed. In contrast, GSM operates with a constant Rx Level. Regarding the WiFi

technology, it also uses OFDM for multichanneling the Downlink band, and thus it exhibits

certain behavior similar to the LTE.
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Based on the previous considerations, it can be noted that the received signal strength

indicator (RSSI) is the variable common to all technologies to measure coverage. The RSSI

is defined as the power of the signal (in dBm) right before entering the receiver, and it

can be measured using a spectrum analyzer, a sniffer or any smart mobile device with an

appropriate application to store the measurements.

2.1.4 Propagation properties

The propagation of electromagnetic waves is the most used medium for transmitting infor-

mation in telecommunication systems. Some phenomena related to propagation in mobile

telephony systems are now pointed out.

Most communication systems use very complex propagation mechanisms, and it is

difficult to find a model that describes such mechanisms in a precise manner. The basic

propagation mechanisms present in wireless communication systems are reflection, diffrac-

tion, dispersion and absorption. These mechanisms are now briefly described.

2.1.4.1 Reflection

Reflection occurs when an electromagnetic wave that propagates through air hits an object

of large dimensions, compared to the wavelength of the signal. This response depends
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mainly on: (i) physical properties of the object, such as geometry, texture and composition,

and (ii) properties of the signal, such as angle if incidence, orientation and wavelength.

Perfect conductors will entirely reflect the signal. Other materials reflect a part of the

incident energy and transmit the rest. The exact amount of transmission and reflection

depends of the angle of incidence, the thickness and dielectric properties.

When an electromagnetic signal is transmitted through air, most probably it will reach

the receiver following multiple paths. The signals coming from such alternative paths will

arrive slightly delayed and with smaller amplitude with respect to the direct signal; this

causes a fading effect.

2.1.4.2 Diffraction

Diffracted waves are formed when the propagation path of the radio wave is obstructed by

an impenetrable object whose surface is irregular, or has sharp or angled edges. Based on

the principle of Huygens, the result are secondary waves around and behind the obstacle,

even in zones without direct visibility between transmitter and receiver.

Closed environments contain many types of objects with these characteristics, oriented

both in the vertical and horizontal planes. The diffracted signal depends on the geometry

of the object, and on the amplitude, phase and polarization of the incident wave at the point
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of diffraction.

The Fresnel zones represent successive regions where the path of the secondary waves

from the transmitter to the receiver has a length nλ/2 larger than the total length of the

direct path, where n represents the layer of the Fresnel zone and λ is the wavelength. The

Fresnel zones explain the concept of diffraction losses as a function of the distance of the

path around the object.

In wireless systems the diffraction losses are due to the obstruction of secondary waves,

such that only a portion of the energy is diffracted around an obstacle. In other words, an

obstruction causes a blockage of energy from some of the Fresnel zones, and consequently

only part of the transmitted energy reaches the receiver. Depending on the geometry of

the obstruction, the received energy will be the vector sum of the energy contributions of

all Fresnel zones not being obstructed. In general, if 55% of the first Fresnel zone is kept

clear, then the zone of free space beyond such Fresnel zone does not significantly alter the

diffraction losses.

2.1.4.3 Dispersion

Dispersion occurs when the signal finds in its path objects whose dimensions are small

compared to the wavelength. As a result, the wave front breaks or disperses in multiple
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directions.

The disperse waves are produced by uneven surfaces, small objects and other irregular-

ities in the channel. The structure of most modern constructions contain forged iron beams,

water pipes and ducts for electrical services. In practice, foliage, traffic signs or lanterns

may produce dispersion in wireless communication systems.

2.1.4.4 Absorption

Absorption occurs when part of the electromagnetic energy becomes heat, during propa-

gation of the wave. This is a consequence of the polarization due to the orientation of the

water molecules, which appears for frequencies in the microwave and radio waves bands.

Other types of polarization, namely ionic and electronic, are produced at other frequencies

(infrared and ultraviolet).

2.1.4.5 Losses due to penetration in a closed environment

One of the most precise concepts of these losses defines them as the difference between the

average of the signal measured at the ground of a building, and the average of the signal

measured at the floor of interest.

The propagation in indoor communications systems is influenced by parameters asso-
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ciated to the construction, such as thickness of the walls, materials and internal structures;

these parameters and the diffraction coefficients of many internal structures are seldom

known. This lack of knowledge also hampers the possibility of using simulation tools to

get precise, secure and computationally efficient predictions, for the purpose of devising a

strategy to reduce the indoor RF propagation losses.

In addition, the propagated signal frequently finds many obstacles, thus reflecting and

generating multiple paths to the receiver. As will be described below, this phenomenon

is random and time varying, thus making difficult modeling the dynamics of the channels.

Besides, attempts to trace the signal solely based on propagation models may be inadequate.

Based on the above, analyzing and forecasting propagation features in a closed environ-

ment poses challenges. As a consequence, this topic is of great interest for researchers in

the area of radiofrequency (RF) propagation.

2.1.4.6 Propagation in a closed environment

The propagation of electromagnetic waves may occur both outdoor or in closed environ-

ments. The former is influenced by atmospheric conditions such as clouds, rain and snow,

among others. On the other hand, in closed environments it is mainly affected by the

construction materials and by the geometric configuration of the space.
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When studying the propagation in a closed environment, the configuration of both the

sites where the communication takes place and of the coverage zones where the network

services are provided, with the purpose of physically characterizing the environment (office,

home, among others).

Phenomena such as reflection, diffraction, dispersion and absorption in the transmitted

wave, because of obstacles in the path of the signal, should be considered in the case of

propagation in closed environments. This results in the signal reaching the receiver through

more than one path, in which there may or may not be direct line of sight from the transmitter

to the receiver, even if such signals travel short distances. The former situation will make

more difficult determining parameters such as the capacity of the channels or the quality of

the communication links.

2.2 Multipath

2.2.1 Overview

Multipath is a phenomenon that appears when the electromagnetic waves propagate in

environments with complex geometry, in which multiple reflections generate multiple paths

between transmitter and receiver. Therefore, the information reaches the receiver various

times at different instants, following a random pattern. Therefore, deterministic channel
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models are rarely available in practice, thus multipath channels must be characterized

statistically [49], and it is necessary to model them by means of a random time-varying

impulse response [72].

Multipath channels are often modeled as a linear time-invariant channel over a limited

time interval. Even though diffuse scattering can occur and would be modeled by a

continuous impulse response, in most cases the channel is modeled as tapped delay line

with impulse response given by

h(τ) = α0e− jθ0δ (τ− τ0)+
N

∑
n=1

αne− jθnδ (τ− τn) (2.2)

where α0, θ0 and τ0 are the power, carrier phase and propagation delay, respectively, of the

signal received in the direct path, while αn, θn and τn (n = 1, . . . ,N) are the power, carrier

phase and propagation delay, respectively, of the N signals received through other paths;

besides, each of these additional paths have associated a Doppler frequency. Note that the

sum of impulses from the different paths depends on random elements such as the delay,

amplitude and phase of those paths. Depending on the random phase shift associated with

each received signal, they might add up destructively, resulting in a phenomenon called

fading [6].
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Then, the received signal y(t) can be represented in compact form as

y(t) =
N

∑
i=1

αis
(
t− τi(t)

)
(2.3)

where N is the number of rays arriving to the receiver, s(t) is the bandpass input signal, αi

is the path attenuation and τi is the path delay. If s(t) is written as

s(t) = Re
{

s̃(t)e j2π fct
}

(2.4)

the complex channel output is given as

ỹ(t) =
N

∑
i=1

α̃is̃
(
t− τi(t)

)
(2.5)

where α̃i = αie j2π fct , with fc the frequency of the carrier.

Therefore, the time-varying discrete multipath channel can be described by the time

varying complex impulse response:

h̃(τ, t) =
N

∑
i=1

α̃iδ
(
t− τi(t)

)
(2.6)

where α̃i is the time varying complex attenuation of each path. It can be seen that given

a fixed number N of paths and path delays τi, based on equation (2.6) it is possible to

characterize the time-varying channel if the properties of the complex attenuation α̃i for
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each path are specified.

Based on the assumption of wide sense stationary uncorrelated scattering (WSSUS),

the delayed cross power spectral density is defined as:

Rc(τ,∆t) =
1
2

E
[
h̃∗(τ, t)h̃(τ, t +∆t)

]
. (2.7)

The average power as a function of path delay can be obtained considering ∆t = 0 in (2.7),

i.e.

Rc(τ,∆t) = Rc(τ). (2.8)

The function Rc(τ) is known as Multipath Intensity Profile or Delayed Power Spectrum.

The range of τ for which Rc(τ) is essentially non-zero is called the Multipath Delay Spread.

Another important characterization of the channel is the Scattering function, which describes

the relationship between the power spectrum and the path delays, and is represented as

S(τ,v) = F
{

Rc(τ,∆t)
}
=
∫

∞

−∞

Rc(τ,∆t)e− j2πv∆td(∆t) (2.9)

where F{x} is the Fourier transform operator. For fixed τ , the scattering function describes

the power spectral density in the frequency variable v, referred to as the Doppler Frequency.

Considering again the tapped delay line model (2.2), if it is assumed that the number
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of scatterers in each path is infinitely large, according to the central limit theorem (as will

be seen later) h̃(τ, t) can be modelled as a complex Gaussian process. If this process is

assumed to be zero mean, then the envelope |h̃(τ, t)| follows a Rayleigh distribution, and the

channel is said to be a Rayleigh fading channel. If a part of the signal reaches the receiver

directly and the remaining arrives to it through a continuum of paths, then h̃(τ, t) can be

modeled as a Gaussian process with nonzero mean, which corresponds to a ricean-fading

channel. Therefore, in order to represent the impulse response of a multipath radio channel,

the tap gains have to be chosen as sampled versions of a complex Gaussian process. Then,

the tapped delay model has the following characteristics [6]:

• The number of taps is TMW +1, where TM is the delay spread andW is the information

bandwith.

• The tap spacing is 1/W , which is the resolution of the multipath channel model.

• The tap gain function g̃(t) is a discrete time complex Gaussian processes with the

variance of each component given by

σ
2
m =

1
W 2 Rc

(m
W

)
(2.10)
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• The PSD of g̃(t) is

Sgg =
1

W 2 S
(m

W
,v
)

(2.11)

In summary, the multipath channel is a discrete-time complex Gaussian process, and it

should be estimated using techniques associated to stochastic processes applied to the data.

2.2.2 Description of the dynamics of the multipath Channel [47]

As it was described before, signal multipath occurs when the transmitted signal arrives at

the receiver via multiple propagation paths, direct and (possibly) various reflection paths.

Each path may have a different phase, attenuation, delay and Doppler frequency. Therefore,

because of the randomness introduced by multipath, the channel between any pair of

communicating users, Alice (transmitter) and Bob (receiver) is unique.

This random channel is typically described as a fading channel of Rayleigh type with

Jake’s model [64], with auto-correlation of the gain given by [6, 58]

Rgg(τ) = E
[
g(t)g(t + τ)

]
= J0(2π fdτ) (2.12)

where J0(·) denotes the zeroth order Bessel function of the first kind, and fd is the maximum



32

Doppler frequency. The power spectral density (PSD) of this fading process is [6, 58]

Pgg( f ) =
1

π fd
√

1− ( f/ fd)2
for | f |< fd. (2.13)

2.3 Security in Wireless Communication Systems

2.3.1 Overview

The theory of secure communication systems is based on various works in the area of

Information Theory. Some basic assumptions related to secure coding are: (i) a third

element, known as Eavesdropper (Eve), tries to obtain the message, (ii) the channel is

vulnerable to Eve and (iii) Eve knows how to demodulate the information.

Figure 2.2 shows the schematic of a general secrecy system. Note that the Encipherer

has two sources, message source and key source. The message source is the origin of

the communication, while the key source is the coder of a sufficiently random key, to

prevent it from being discovered. The Encipherer takes both signals and mixes them in

a pseudorandom manner, thus generating a signal known as cryptogram, which is finally

carried to the channel through a transmitter.

The Eavesdropper, who is in the channel, is considered an Enemy Cryptanalyst, i.e. a

receiver with the ability of deciphering and demodulating the transmitted signal. However,
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Figure 2.2: Schematic of a general secrecy system [50]

that should not be possible because of the randomness of the Cryptogram.

In the receiver, the Decipherer receives the transmitted signal and demodulates and

deciphers it; this can be done because the key has been received through other secure

communication channel. Then, the original message is obtained from the message source.

The Key Source should have an entropy sufficiently large to mislead Eve at all times,

and the key should be continuously updated to prevent the Eavesdropper from learning it.

The entropy is a measure of the randomness of a set of symbols. Now, two definitions

associated to this process are stated.

Definition 1. A length-N secret key generation system over alphabets XA, XB, K, S is a

triplet of functions: (i) f : XN
A → KNB, which maps Alice’s source of randomness into the

secret key, (ii) gA : XN
A → Sm, which defines the public message that Alice sends to Bob and
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(iii) gB : XN
B Sm→ XN

A , which is Bob’s decoding function that maps his observation and the

public message into his estimate of Alice’s observation. If Bob’s estimate is correct, the key

will be recovered [59].

Given a source of randomness pXN
A ,XN

B
(xN

A ,x
N
B ), where xN

A ∈ XN
A and xN

B ∈ XN
B , the secret

key capacity is the supremum of the achievable secret key rates. An achievable secret key

rate is defined as follows.

Definition 2. For any sufficiently large secret key, the key rate is achievable if the following

inequalities hold:

i NR log |K| −H( f (XN
A )) ≤ ε , which implies that the secret key is nearly uniformly

distributed

ii Pr[ f (XN
A ) 6= f (gB(XN

B ,gA(XN
A )))]≤ ε , which represents an upper bound for the prob-

ability error in key recovery.

iii
1
N

I( f (XN
A ),gA(XN

A )) ≤ ε , which is the secrecy guarantee, i.e., it guarantees that the

public message tells little about the key.
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2.3.2 Secret key generation in the physical layer

The algorithm for generating secret keys through the physical layer in wireless systems

comprises six steps [47]:

Step 1. Initialization or beacon exchange. Both Alice and Bob start to exchange the

signal that will be used to estimate the physical layer characteristic. Multiple exchanges

might be necessary based on the required length and rate of the key.

Step 2. Estimation of the common source of randomness. Based on the received signal

from the other legitimate node, Alice and Bob estimate the variable that constitute the

common source of randomness, using a model of the channel. The variable that will be

used for key generation should be the same for Alice and Bob, and both must generate as

similar as possible measurements of the variable (with slight deviations due to different

noise at the measuring sites).

Step 3. Quantization. Alice and Bob map the estimated value of the variable into one of

2n possible discrete levels, where n is the number of bits used to encode the secret key. The

most popular technique for quantization is the uniform quantization, which defines equally

spaced discrete levels.

Step 4 Encoding. Alice and Bob convert the quantized value into a string of bits, which

correspond to the secret key. The conventional secret key length is between 128 and 512
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bits.

Step 5. Information Reconciliation. Consists of using protocols, which involve per-

mutation and parity check algorithms, to increase security by minimizing the discrepancy

between the bit streams generated by Alice and Bob (particularly at very low SNR levels).

Step 6. Privacy Amplification. The eavesdropper can still use minimum leaked infor-

mation from reconciliation, to guess the rest of the secret key. In this step Alice and Bob

use the same randomly selected hash function to solve this issue, generating a shorter but

higher in entropy bit stream.

Alice andBob cannot take simultaneousmeasurements, since standard radio transceivers

cannot simultaneously transmit and receive. Denote as Mu the number of measurements of

the channel gains that each user makes before switching modes, and select the block length

M to be an integer multiple of 2Mu. Denote the indices of Alice’s measurements as

nA =
[
1 . . .Mu,2Mu +1 . . .3Mu,M−2Mu +1 . . .M−Mu

]T
,

and the indices of Bob’s measurements as nB = [Mu+1 . . .2Mu,3Mu+1 . . .4Mu,M−Mu+

1 . . .M]T [58].

At the corresponding indices, each radio transceiver will get noisy measurements of the
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channel RSSI described by

ĝX(nX T ) = g(nX T )+ eX(nX T ) (2.14)

where the superscript X is A for Alice or B for Bob, g(nX T ) is the true RSSI measured

value, eX(nX T ) is zero mean additive white Gaussian noise (AWGN) of variance σ2 and

independent of the channel gain process, and T is the sampling period [58].

2.4 Wireless Communication Systems modeling from data

2.4.1 Simple space-time traffic models

Time and space traffic models are being studied from the beginning of the wireless com-

munications through GSM.

2.4.1.1 Time traffic models

Initial works were carried out to investigate functions that exhibit a good fit the dynamics of

the demand in time. The double-Gaussian ( [10, 11]) and trapezoidal functions ( [6, 10, 11,

43]) were used to obtain models of the traffic as a function of time. The double-Gaussian

function [10] is a function of generalized use, and consists of two Gaussian functions

centered at the morning and afternoon busy hours, respectively, with a breakpoint at the
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lunch hour.

The double-Gaussian function, which is shown in Figure 2.3, is defined as

apGauss(tsh) =


p1 · e

− (tsh−h1sh)
2

2d2
1 , for tsh < hlsh

p2 · e
− (tsh−h2sh)

2

2d2
2 , for tsh > hlsh

(2.15)

where p1 is the amplitude of the first Gaussian, h1sh is the shifted morning peak hour, d2
1 is

the variance of the first Gaussian, hlsh is the shifted lunch hour, p2 is the amplitude of the

second Gaussian, h2sh is the shifted afternoon peak hour and d2
2 is the variance of the second

Gaussian. Continuity is ensured at the transition point, where ap takes the minimum value

of the two Gaussians.

Figure 2.3: Double-Gaussian model [11].
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The trapezoidal function is an upper limited Gaussian, which is more appropriate in

areas were the evening traffic has a significant weight [10]. This function is shown in Figure

2.4 and is defined as

apTrap(tsh) =


p · e
− (tsh−htsh)

2

2d2
t , for tsh < tq1sh

c, for tq1sh ≤ tsh ≤ tq2sh

p · e
− (tsh−htsh)

2

2d2
t , for tsh > tq2sh

(2.16)

where p is the amplitude of the Gaussian, htsh is the shifted Gaussian peak hour, d2
t is the

variance of the Gaussian, c is the upper limit, tq1sh is the shifted first breakpoint and tq2sh is

the shifted second breakpoint. Continuity is ensured at both breakpoints [10].

Figure 2.4: Trapezoidal model [11].



40

2.4.1.2 Space traffic models

This type of models consist of a configuration of the geographic distribution of stations and

users in the area of coverage. They are obtained according to the following procedure.

First, geographic quadrants are generated in which it is assumed that the superficial

density of the traffic is constant. The dimension of such quadrants is defined based on the

population density of the area of interest; a dimension of 50m×50m is typical. Then, the

quadrant with the largest concentration is located and, at last, it is studied the traffic density

in different directions from this point of largest concentration. These models are updated

every hour, to describe the spatial behavior of the traffic in a static manner. A dynamic

modeling requires a more thorough study.

To describe the variation of the traffic density as a function of distance, three models

have been tested, namely, exponential, given by

mod e(d) = e−d/De (2.17a)

exponential/linear, defined as

mod el(d) =

{
e−d/Del , d ≤ dq

Cel, d > dq
(2.17b)
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and piecewise linear, given as

mod pl(d) =


1−Apl ·d, d ≤ dq1

Bpl−Cpl ·d, dq1 < d ≤ dq2

Dpl, d > dq2

. (2.17c)

In (2.17), De is the exponential decay factor, Del is the exponential/linear decay factor,

dq is the exponential/linear breakpoint, Cel is the exponential/linear constant factor, Apl is

the piecewise first piece slope, dq1 is the piecewise first breakpoint, Bpl is the piecewise

second piece constant,Cpl is the piecewise second piece slope, dq2 is the piecewise second

breakpoint and Dpl is the piecewise constant factor.

Even though these models were extensively used during the expansion of GSM at the

beginning of 2000s, because they exhibited the best fit at the time, researchers concluded

that they were inaccurate, and that it was necessary to develop more complex models that

could yield a better representation of the traffic dynamics [10].

2.4.2 Advanced approaches for modeling traffic

2.4.2.1 Linear time-varying Kalman innovation model in observable block
companion form

Canelon et al. [68] presented a linear Kalman innovation model in observable block com-

panion form which is described next [47]. As opposed to the classical Kalman filter, the
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Kalman innovation model used in this work has the advantage that it does not require to

estimate the properties of the noise, while maintaining the typical estimation accuracy and

time-varying features.

After the measurement y(k+1) of the output at time instant k+1 is obtained, the aim is

to identify and continuously update a linear autoregressive moving average with exogenous

inputs (ARMAX) model of the form

ŷ(k+1) =−ak
1y(k)−·· ·−ak

py(k− p+1)

+bk
1u(k)+ · · ·+bk

pu(k− p+1)+dk
1e(k)+ · · ·+dk

pe(k− p+1)
(2.18)

where u(k) is the measured value of the input and e(k) is the innovation error, both at time

instant k, and p is the number of previous values of the output, input and innovation error.

Specifically, the vector of parameters

θk =
[

ak
1 · · · ak

pbk
1 · · · bk

pdk
1 · · · dk

p

]

of the linear ARMAX model is recursively updated using the extended least squares algo-

rithm [68], i.e. by means of the formula

θk+1 = θk +
Pkϕk+1

λk+1 +(ϕk+1)T Pkϕk+1
ek+1 (2.19)
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where

ϕk+1 =
[
y(k) · · · y(k− p+1)u(k) · · · u(k− p+1)e(k)

· · · e(k− p+1)
]

is the data vector,

ek+1 = y(k+1)− (θk)
T

ϕk+1 (2.20)

is the innovation (estimation) error of the previous model on the actual measured value, Pk

is a matrix updated using the formula

Pk+1 =
1

λk+1

(
Pk−

Pkϕk+1(ϕk+1)
T Pk

λk+1 +(ϕk+1)T Pkϕk+1

)
(2.21)

and

λk+1 = λaλk +(1−λa) (2.22)

is a forgetting factor with an initial value 0.9 < λ0 < 1, and an update factor 0 < λa < 1.

Then, the time-varying linear Kalman innovation model in observable block companion

form is given by [68]

xo(k+1) = Ak
oxo(k)+Bk

ou(k)+Kk
oe(k) (2.23a)
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ŷ(k) = Coxo(k) (2.23b)

where xo(k) ∈ Rp×1, u(k) ∈ R, e(k) ∈ R and ĝ(k) ∈ R are the observed state vector, the

input, the innovation vector and the estimated output, respectively, at time instant k,

Ak
o =


−ak

1 1 0 · · · 0
−ak

2 0 1 0
... ... ... . . . ...

−ak
P 0 0 · · · 0

 ∈ Rp×p,

Bk
o =


bk

1

bk
2
...

bk
p

 ∈ Rp×1,

Kk
o =


dk

1−ak
1

dk
2−ak

2
...

dk
p−ak

p

 ∈ Rp×1

and Co is fixed given by

Co =
[
1 0 · · · 0

]
R1×p.

This procedure is repeated for every measurement.

The use of a forgetting factor will yield better performance for time-varying systems,

due to the fact that the forgetting factor assigns smaller weights as the data is older. In

addition, extended least squares is computationally more efficient since the update of Pk
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requires no matrix inversion [68].

2.4.2.2 Neural network-based models of dynamic systems

2.4.2.2.1 Definition and elements of a neural network

The development of artificial neural networks started in the 1940s, due to attempts of

different research groups to model the behavior of biological nervous systems as highly

interconnected systems of a large amount of simple elements that try to emulate the neurons.

It was expected that a complex phenomenon such as intelligence emerged as a result of a

training process. Nowadays, neural networks are included in a discipline known asMachine

Learning.

Different definitions of artificial neural networks, or simply neural networks, have been

presented in the literature. For instance, Fausset [73] states that a neural network (NN) is a

system for information that has certain characteristics common with the biological neural

networks. On the other hand, for Hecht-Nielsen [74], a NN is a structure for parallel and dis-

tributed information processing, constituted by elements known as neurons, units or nodes,

which may have local memory and are interconnected through unidirectional connections.

In addition, Haykin [75] defines a NN as a parallel, massive and distributed processing

system, constituted by simple units that have the capability of storing knowledge obtained
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through experience; this knowledge may be used later. Specifically, such knowledge is

stored in synaptic weights, or simply weights, which express the strength of connection

between neurons. A training procedure modifies the weights in ordered manner, in order to

fulfill the desired objective.

Neural networks have been successfully used to identify models of processes with

complex dynamics; in general, this complexity is related to features such as nonlinearity,

large number of variables, high dimension, uncertainty, among others, or it may simply

be impractical to determine models based on physical principles. Indeed, neural networks

are capable of approximating any functional relationship between variables, with arbitrary

degree of accuracy [67].

A neural network is completely defined when the following elements are indicated:

a) Architecture: specifies the number of neurons and how they are connected to ac-

complish a particular task, and thus determines how the information flows through

the network. Different architectures have been developed, including feedforward, ra-

dial basis functions, support vector machines and recurrent neural networks, among

others. Feedforward neural networks are described with more detail in this work,

since it has been the architecture with the greater amount of reported applications in

modeling of dynamic systems, and are used here to describe the dynamics of wireless
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communication networks.

b) Transfer function: specifies how the output values of the network are calculated as a

function of the inputs.

c) Training or learning algorithm: specifies how the weights are adjusted during the

training process of the network. The learning algorithms or rules may be (i) super-

vised, in which the target values of the outputs are given, or (ii) unsupervised, in

which those target values are unknown, and the network seeks to group the data in

clusters, or extract probabilistic features.

2.4.2.2.2 Feedforward neural network (FFNN)

As previously mentioned, this is the model with the greatest number of applications related

to the modeling of dynamic systems.

a) Architecture of the FFNN

It is constituted by various layers of nodes, connected sequentially. The FFNN comprises

three types of layers: (i) one input layer, in which the input to the network is applied,

(ii) one output layer, in which the output of the network is obtained and (iii) one or

more hidden layers, which are located between the input and output layers. The flow of

information is unidirectional, and occurs from input to output layer. According to a theorem

by Kolmogorov [76], one hidden layer is enough to achieve arbitrary precision accuracy;
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however, a hidden layer with many units may be replaced by various hidden layers of smaller

size for practical purposes.

Figure 2.5 shows a FFNN with an input layer of I units (input vector of size I), a hidden

layer of J units and an output layer of O units (output vector of size O). This FFNN is

denoted as I× J×O. Each node of a layer is connected to all nodes of the subsequent

layer, and each connection has associated a weight (represented as black squares in the

figure) which is adjusted during the training process. The bias of each hidden and output

unit is included as an additional weight whose input is always 1 (connections shown by

discontinuous lines in the figure).

Figure 2.5: Feedforward neural network.
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The weights of the connections between the input and hidden nodes are identified using

letter v, and the weights between the hidden and output nodes are identified using letter w.

In particular, v ji represents the weight from the ith input unit to the jth hidden unit, while

wo j denotes the weight from the jth hidden unit to the oth input unit. Then, all weights

between the input and hidden layers may be grouped in matrix

V =


v10 v11 · · · v1I

v20 v21 · · · v2I
... ... . . . ...

vJ0 vJ1 · · · vJI

 ∈ RJ×(I+1) (2.24a)

where vector v j, which corresponds to the jth row of V, contains all weights directed to

the jth hidden unit. Similarly, all weights between the hidden and output layers may be

gathered in matrix

W =


w10 w11 · · · w1J

w20 w21 · · · w2J
... ... . . . ...

wO0 wO1 · · · wOJ

 ∈ RO×(J+1) (2.24b)

where vector wo corresponds to the oth row of W and contains all weights directed to the

oth output unit.

b) Transfer function of the FFNN

The input units do not carry out any processing, they only receive the inputs and distribute

it to the units in the hidden layer.
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Figure 2.6: Hidden and output unit of a FFNN.

On the other hand, the unit shown in Fig. 2.6 is a general representation of the hidden

and output units. The output y of the unit in the figure is calculated as

y = f (w0 + x1w1 + x2w2 + · · ·+ xnwn) (2.25)

where xi (i = 1, . . . ,n) are the inputs, wi (i = 1, . . . ,n) are the corresponding weights, w0

is the bias of the unit and f is the activation function of the unit. Therefore, if the input

vector x = [1 x1 x2 · · ·xn]
T and the weight vector w = [w0 w1 w2 · · ·wn]

T are defined,

equation (2.25) may be rewritten as

y = f (xT w). (2.26)
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The activation functions of the output units may be chosen as the sigmoid (shown in

Figure 2.7a), the hyperbolic tangent (Figure 2.7b) or the identity (Figure 2.7c). On the other

hand, since the activation function of the hidden units are required to be nonlinear, these can

be only be chosen as the sigmoid or the hyperbolic tangent. The mathematical definition of

these functions, and their corresponding derivatives are shown in Table 2.4.

Table 2.4: Mathematical definition and derivative of the activation functions

Activation function Mathematical definition Derivative

sigmoid f (τ) =
1

1+ e−τ
f ′(τ) =

e−τ

(1+ e−τ)2

hyperbolic tangent f (τ) = tanh(τ) f ′(τ) = sech2(τ)

identity f (τ) = τ f ′(τ) = 1

Given the input vector

δ =
[
δ1 δ2 δ3 · · · δI

]T
(2.27)

the transfer function of the feedforward neural network of Fig. 2.5 is given by the equations

h = fh(Vδ
′) (2.28a)

ζ = fζ (Wh′) (2.28b)
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where δ ′ is the modified input vector

δ
′ =
[
1 δ1 δ2 · · · δI

]T
(2.29)

h is the vector of responses of the H units in the hidden layer

h =
[
h1 h2 h3 · · · hJ

]T
(2.30)

h′ is the vector

h′ =
[
1 h1 h2 · · · hJ

]T
, (2.31)

ζ is the output vector of the FFNN

ζ =
[
ζ1 ζ2 ζ3 · · · ζJ

]T
, (2.32)

V and W are the matrices defined in (2.24), fh is the activation function of the hidden units

and fζ is the activation function of the output units.

c) Training algorithm

Different algorithms have been developed to train a FFNN. The backpropagation training

algorithm was developed by Rummelhart et al. in 1986 [77], and boosted the research in
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feedforward neural networks. Given a set of S training vectors

Input Output
δ 1

1 δ 1
2 · · · δ 1

I ζ 1
1 ζ 1

2 · · · ζ 1
O

δ 2
1 δ 2

2 · · · δ 2
I ζ 2

1 ζ 2
2 · · · ζ 2

O
... ...

δ S
1 δ S

2 · · · δ S
I ζ S

1 ζ S
2 · · · ζ S

O

for a FFNN I× J×O, the backpropagation algorithm uses the method of steepest descent

to search for the weights that minimize a function of the network error. This gives rise to

two versions of the algorithms, namely (i) off-line, in which the weights are updated after a

complete pass through all the training vectors, i.e. the objective function to be minimized

is given by

E =
1
2

S

∑
s=1

O

∑
o=1

(
ζ

s
o− ζ̂

s
o

)2
(2.33)

and (ii) on-line, in which the weights are updated after each training vector is presented, i.e.

the aim is to minimize

E =
1
2

O

∑
o=1

(
ζ

s
o− ζ̂

s
o

)2
s = 1, . . . ,S. (2.34)

In (2.33) and (2.34), superscript s identifies the training vector and subscript o refers to the

output unit, ζ s
o is the target value of the oth output in the sth training vector, and ζ̂ s

o is the

network estimate for ζ s
o . Note that any of the versions involves an iterative procedure to find
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successive approximations of the minimum, due to the significantly high dimensionality of

the search space, given by J× (I +1)+O× (J+1). The on-line version is described here,

since the interest is to update the model after each measurement from the network becomes

available.

According to the backpropagation algorithm, the weight wo j is updated using the equa-

tion

wo j(k+1) = wo j(k)−η
∂Es

∂wo j
o = 1, . . . ,O j = 1, . . . ,J (2.35)

where wo j(k) is the value of such weight in the kth training iteration, and η is a constant

known as training rate. Now, from equations (2.28a) and (2.34), and applying the chain

rule, it can be shown that
∂Es

∂wo j
in (2.35) is given by

∂Es

∂wo j
=−

(
ζ

s
o− ζ̂

s
o

)[
f ′o(σ) |σ=ao

]
h j (2.36)

where

ao =
J

∑
j=0

ζ
s
owo j (2.37)

and f ′o(σ) is the derivative of the activation function of the output units (from Table 2.4).
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On the other hand, the weight v ji is updated by means of the equation

v ji(k+1) = v ji(k)−η
∂Es

∂v ji
j = 1, · · · ,J i = 1, · · · , I (2.38)

where v ji(k) is the value of the weight in the kth training iteration and η is the training rate.

As before, from (2.28a) and (2.34), and applying the chain rule, it is obtained that
∂Es

∂v ji
in

(2.38) is given as

∂Es

∂v ji
=−

O

∑
o=1

(
ζ

s
o− ζ̂

s
o

)[
f ′o(σ)

∣∣∣
σ=ao

]
wo j

[
f ′h(σ)

∣∣∣
σ=b j

]
δ

s
i (2.39)

where

b j =
I

∑
i=0

δ
s
i v ji (2.40)

and f ′h(σ) is the derivative of the activation function of the hidden units (from Table 2.4).

As any gradient-based method, the backpropagation algorithm is susceptible to be

trapped in local minima, thus it is suggested to carry out various trainings processes with

different initial weights, and select the one that exhibits the best performance. As an

alternative, different variants of the backpropagation algorithm [77] have been developed

which use more efficient minimization approaches such as Newton method and conjugate

gradient, among others. One of these variants is known as Levenberg-Marquardt, which
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has exhibited very good training performance.

As stated before, the training speed becomes a key issue when using a neural network to

identify a time-varying model, as it is the case when describing traffic in wireless networks.

In particular, the aforementioned algorithms may be rather slow because they may require

several iterations before converging. Besides, their performance depends critically of some

training parameters that should be specified by the user, and no clear rules exists for selecting

appropriate values of these parameters for a particular application.

In order to overcome the training speed issue, in this work the neural networks are

trained using the online sequential extreme learning algorithm (OS-ELM) [69], which is

obtained as a recursive version of the extreme learning machine (ELM) [70]; the universal

approximation capability of the OS-ELM is demonstrated in [78]. Extended least-squares

( [68, 79]) (also called approximate maximum-likelihood method) is used to implement

OS-ELM, instead of recursive least squares used in [69].

Consider again the above feedforward neural network with I input units, one layer of J

hidden units, and O output units. For the OS-ELM algorithm, the activation function of the

hidden and outputs units are the hyperbolic tangent and the identity functions, respectively.

In other words, given the input vector δ = [δ1 δ2 δ3 · · · δI]
T , the response of the jth
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hidden unit is calculated as

h j = ρ

(
vT

j δ
′
)
, j = 1, . . . ,J (2.41)

where ρ(·) = tanh(·) is the activation function for the hidden units and, as before, δ ′ =

[1 δ1 δ2 · · · δI]
T and v j = [v j0,v j1, . . . ,v jI]

T is the weight vector for the jth hidden

unit, where v j0 is the bias of such hidden unit, and v ji is the weight connecting the ith input

unit to the this hidden unit. Considering the identity activation function for the output units,

the response of the oth output unit is given by

ζ̂o = h′T wo, o = 1, . . . ,O (2.42)

where h′ = [1 h1 h2 · · · hJ]
T and wo = [wo0,wo1, . . . ,woJ]

T is the weight vector for

the oth output unit, with wo0 the bias of such output unit, and wo j the weight connecting the

jth hidden unit to the this output unit.

After choosing the number J of hidden units, the OS-ELM algorithm involves two

phases:

A) Initialization

An initial set of S0 training vectors is used to implement the following initialization proce-

dure:
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(i) Randomly assign the weights between the input and hidden layers. Random assign-

ment (with any distribution) of these weights guarantees that the approximation error can

be made arbitrarily small ( [68, 69]).

(ii) Compute matrix

H(0) =


h11 · · · h1J
... . . . ...

hS01 · · · hS0J

 (2.43)

of size S0× J, containing the responses of the J hidden units for the training vectors in the

initial set.

(iii) For each output unit, estimate the initial vector of weights connecting such unit and

the hidden units as

wo(0) = P(0)HT (0)ζo(0), (2.44)

where

P(0) =
[
HT (0)H(0)

]−1
(2.45)

and ζo(0) is the vector containing the target values for the oth output in the initial set.

(iv) Set k = 1.
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B) Sequential learning

While there are more sets of data

(i) Pick the kth set with Sk training vectors.

(ii) Calculate the partial hidden layer output matrix H(k), of size Sk× J, containing the

responses of the J hidden units for the training vectors in kth set.

(iii) For each output unit, update the vector of weights connecting such unit and all

hidden units using the equation

wo(k) = wo(k−1)+
P(k−1)HT (k)

α(k)+H(k)P(k−1)HT (k)

[
ζo(k)−H(k)wo(k−1)

]
(2.46)

where ζo(k) is the vector containing the target values for the oth output in the kth chunk,

P(k) =
P(k−1)

α(k)

[
I+

HT (k)H(k)P(k−1)
α(k)+H(k)P(k−1)HT (k)

]
(2.47)

and α(k) is a forgetting factor given by the difference equation

α(k) = αoα(k−1)+(1−αo) (2.48)

with initial condition 0.9 < α(0) < 1, and an updating factor 0 < αo < 1. The use of

a forgetting factor will give a better performance for time-varying systems. In addition,

extended least squares is computationally more efficient since the update of P(k) requires
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no matrix inversion.

(iv) Set k = k+1.

Prior to the training, all entries of the input and target vectors in the training set are

linearly normalized to span the interval [−1,1], using the formula

θ =−1+2
Θ−Θmin

Θmax−Θmin
(2.49)

where Θ and θ represent the original and normalized values, respectively, while Θmin and

Θmax are the corresponding lower and upper bounds, respectively. Using this normalization

procedure, the neural network showed good learning performance with the random weights

adjusted using a Gaussian distribution with zero mean and standard deviation one.

From (2.49), the normalization function

θ = nor(Θ) =
2

Θmax−Θmin
Θ− Θmax +Θmin

Θmax−Θmin
(2.50)

and the denormalization function

Θ = dnor(θ) =
Θmax−Θmin

2
θ +

Θmax +Θmin

Θmax−Θmin
(2.51)

can be defined [68]. Then, the denormalized (original) value of the oth output of the neural
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network is given by

Ẑo = dnor(ζ̂o) = dnor(h′T wo, o = 1, . . . ,O. (2.52)

Then, in the above definitions of δ and δ ′, δi (i = 1, . . . , I) can be equivalently expressed as

δi = nor(∆i), i = 1, . . . , I (2.53)

where ∆i is the original value of the ith input.

In summary, since the the neural network model is used to estimate original values

of the outputs from original values of the inputs, the nonlinear input-output relationship

implemented by the neural network model can be described by

Ẑo = dnor(hT wo), o = 1, . . . ,O (2.54a)

wherewo = [wo0,wo1, . . . ,woJ]
T is the weight vector for the oth output unit, withwo0 the bias

andwo j the weight connecting the jth hidden unit to this output unit, and h′= [1,h1, . . . ,hJ]
T

with

h j = ρ(vT
j δ
′), j = 1, . . . ,J (2.54b)

where ρ(·) = tanh(·) is the activation function for the hidden units, v j = [v j0,v j1, . . . ,v jI]
T
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is the weight vector for the jth hidden unit, where v j0 is the bias and v ji is the weight

connecting the ith input unit to this hidden unit, and δ ′ = [1,nor(∆1), . . . ,nor(∆I)]
T .

2.4.2.2.3 Optimal linearization of a FFNN-based model

The neural network nonlinear model defined by (2.54) can be written in a simplified form

as

Ẑo = fo(∆∆∆), o = 1, . . . ,O (2.55)

where ∆∆∆ = [∆1, . . . ,∆I]
T , and fo : RI → R is the nonlinear function that calculates the oth

output. Given a particular input point ∆∆∆ = ∆∆∆, it is desired to find a linear model of the form

Ẑo = GT
∆∆∆, o = 1, . . . ,O (2.56)

withG= [γ1, . . . ,γI]
T , which is locally equivalent to (2.55)) around ∆∆∆. Taylor’s linearization

approach, which has been the most commonly used local linearization technique, is not

applicable in the vicinity of any input point of the system. Even if such input point

is an equilibrium point, this technique will yield an affine rather than a linear model if

such equilibrium is not the origin [68]. In order to overcome this drawback, the optimal

linearization approach proposed by Teixeira and Żak [80] is used for local linearization of

the neural network model. This approach is now described [68].
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Equation (2.55) can be approximated around ∆∆∆ = ∆∆∆ by a Taylor series expansion, i.e.

Ẑo = fo(∆∆∆)≈ fo(∆∆∆)+∇∆T fo(∆∆∆)[∆∆∆−∆∆∆] = fo(∆∆∆)+∇∆T fo(∆∆∆) ·∆∆∆−∇∆T fo(∆∆∆) ·∆∆∆ (2.57)

where ∇∆T fo(∆∆∆) is the Jacobian of fo(∆∆∆) evaluated at ∆∆∆ = ∆∆∆. Note that, for the approxima-

tion to be linear

fo(∆∆∆)−∇∆T fo(∆∆∆) ·∆∆∆ = 0 (2.58)

for which the linear model is given by

Ẑo = GT
∆∆∆ (2.59)

with GT = ∇∆T fo(∆∆∆). Now, (2.58) holds only if ∆∆∆ is the origin and if that origin is an

equilibrium point. Therefore, even though Taylor linearization is not applicable in the

vicinity of any operation point of the system because in general (2.58) does not hold, it is

the linearization method most commonly used with the linear model calculated according

to (2.59), thus resulting in a degradation of the quality of this linear approximation.

Then, according to the optimal linearization approach, given a particular operating point

∆∆∆ = ∆∆∆ it is desired to find a linear model of the form

Ẑo = GT
∆∆∆, o = 1, · · · ,O (2.60)
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such that, at the operating point

fo(∆∆∆) = GT
∆∆∆ (2.61)

and in the vicinity of the operating point

fo(∆∆∆)≈GT
∆∆∆ (2.62)

according to the least squares criterion, where ∆∆∆ represents a point close to ∆∆∆.

As stated before, the Taylor series approximation of fo(∆∆∆) around ∆∆∆ is given by

fo(∆∆∆)≈ fo(∆∆∆)+∇∆T fo(∆∆∆)[∆∆∆−∆∆∆] (2.63)

where∇∆T fo(∆∆∆) is the Jacobian of fo(∆∆∆) evaluated at ∆∆∆= ∆∆∆. Considering (2.61) and (2.62),

equation (2.63) can be rewritten as

GT
∆∆∆≈GT

∆∆∆+∇∆T fo(∆∆∆)[∆∆∆−∆∆∆] (2.64)

which is equivalent to

GT [∆∆∆−∆∆∆]≈ ∇∆T fo(∆∆∆)[∆∆∆−∆∆∆]. (2.65)



65

In order for (2.65) to be satisfied, it must hold that

GT ≈ ∇∆T fo(∆∆∆) (2.66)

which gives rise to the objective function

Γ =
1
2

∥∥∥GT −∇∆T fo(∆∆∆)
∥∥∥2

2
. (2.67)

The optimal linear model can be determined minimizing (2.67), subject to the constraint

(2.61).

According to the method of Lagrange multipliers, the augmented function to be mini-

mized is given by

Γa =
1
2

∥∥∥GT −∇∆T fo(∆∆∆)
∥∥∥2

2
+λ [ fo(∆∆∆)−GT

∆∆∆] (2.68)

where λ is a scalar Lagrange multiplier that can be determined by setting the gradients of

Γa with respect to GT and λ equal to zero, and solving for GT to obtain

GT = ∇∆T fo(∆∆∆)+
fo(∆∆∆)−∇∆T fo(∆∆∆)∆∆∆

∆∆∆
T

∆∆∆

∆∆∆
T (2.69)

where

∇∆T fo(∆∆∆) =

[
∂ fo

∂∆1
(∆∆∆), · · · , ∂ fo

∂∆I
(∆∆∆)

]
(2.70)
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where (according to (2.54) and (2.57))

∂ fo

∂∆i
=

d
dθ

dnoro(θ)×
J

∑
j=1

wo j ·
[

d
dβ

ρ(β )

]∣∣∣∣∣
β=β

· v ji ·
d

dΘ
nori(Θ)

 (2.71)

where

β =
I

∑
i=0

v ji ·nori(∆i), (2.72)

and, from (2.50) and (2.51)

d
dΘ

nori(Θ) =
2

Θmaxi−Θmini

(2.73)

and

d
dθ

dnoro(θ) =
Θmaxo−Θmino

2
. (2.74)

In (2.73)) and (2.74),Θmaxi andΘmini represent the upper and lower bounds, respectively,

for the ith input, andΘmaxo andΘmino represent the upper and lower bounds, respectively, for

the oth output. The optimal linear model will have exactly the same dynamics of the original

nonlinear model at the input point, and minimum modeling error in the neighborhood of

such point [68].
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Note that if ∆∆∆
T

∆∆∆ = 0, equation (2.69) becomes

GT = ∇∆T fo(∆∆∆) (2.75)

i.e., the optimal linearization approach reduces to Taylor’s linearization.

2.4.2.2.4 Nonlinear modeling approaches based on feedforward neural networks and
linear Kalman innovation models

The linear Kalman innovation model described previously may not exhibit a good modeling

performance when describing nonlinear phenomena in wireless communication networks.

Nonlinear modeling approaches become an alternative to overcome this limitation, espe-

cially those based on neural networks, since they have universal approximation capabili-

ties [67].

2.4.2.2.4.1 NN-ARX

Aljerme and Liu [51] presented a discrete-time time-varying neural-network based au-

toregressive with exogenous inputs (NN-ARX) model of the traffic in mobile telephony

networks, which is identified and continuously updated.

In the case of a NN-ARX model of a process, a neural network is trained to estimate

the output y(k+1) at time instant k+1, as a nonlinear function of p previous values of the
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output and input, i.e.

ŷ(k+1) = F(k)
[
y(k), · · · ,y(k− p+1),u(k), · · · ,u(k− p+1)

]
(2.76)

where y(k) and u(k) are, respectively, the output and input at time instant k, F denotes the

nonlinear function implemented by the neural network (equation (2.54)), and the superscript

(k) indicates that the NN-ARX model has been updated using the data vectors up to the kth

sample. Note that the neural network corresponding to the NN-ARX model (2.76) has one

output and 2p inputs.

As shown later in the Results section, the NN-ARX model (2.76) exhibited good per-

formance in describing traffic in a mobile telephony network. However, as stated before,

it should be remarked that this model cannot be transformed into a Kalman model, which

limits its application in control tasks.

2.4.2.2.4.2 NN-ARMAX

As an alternative, it can be used a discrete-time time-varying neural network-based au-

toregressive moving average with exogenous inputs (NN-ARMAX) model, which may be

converted into a locally equivalent linear time-varying Kalman innovation model, after

optimally linearizing the NN-ARMAX at the current operating point.

A NN-ARMAX model of a process is built to estimate y(k+1) as a nonlinear function
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of p previous values of the output, input and innovation error, i.e.

ŷ(k+1) = F(k)
[
y(k), · · · ,y(k− p+1),u(k), · · · ,u(k− p+1)

e(k), · · · ,e(k− p+1)
] (2.77)

where e(k) is the innovation error at time instant k. Compared to an NN-ARX model,

it can be seen that the NN-ARMAX model has p previous values of the innovation error

as additional inputs, thus resulting in a total of 3p inputs. These additional inputs enable

constructing a linear Kalman innovation model applying the following procedure for each

training data vector [68]: (i) update the NN-ARMAXmodel by executing a new iteration of

the OS-ELM algorithm, (ii) carry out the optimal linearization at the data point to obtain a

locally equivalent linear ARMAXmodel and (iii) construct the linear time-varying Kalman

innovation model, from the linear ARMAX model obtained in the previous step.

Step (i) involves executing the OS-ELM algorithm for each data vector that becomes

available, while step (iii) entails the same process explained above, through which the linear

Kalman innovation model (2.23) is constructed from the linear ARMAX model (2.18).

Now, according to step (ii), the linear ARMAX model of the form given by (2.18) is

obtained by optimal linearization of the NN-ARMAX model (2.77) at the current input

point [68].

Now, it is important to remark that any neural network-basedmodel, including NN-ARX
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and NN-ARMAX, are black-box model, i.e. their parameters do not have physical meaning

in terms of the process they are describing, which in this work is the dynamic of wireless

networks. Nevertheless, this does not limit their application in optimization and control

approaches, in which it is mainly required to describe the input-output relationship.
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(a) (b)

(c)

Figure 2.7: Common activation functions: (a) sigmoid, (b) hyperbolic tangent and (c) identity.
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Chapter 3: METHODOLOGY

3.1 First case study: linear Kalman innovation modeling in indoor multipath
wireless channels

This case study evaluates the performance of linear Kalman innovationmodels in observable

block companion form [68], for describing the dynamics of measured Received Signal

Strength Indicator (RSSI) in indoor multipath wireless channels [48].

As stated before, multipath occurs when the transmitted signal arrives at the receiver

through multiple propagation paths, i.e., the direct and/or reflection paths. The multipath

phenomenon appears in wireless environments with complex geometry, in which the wave

reflects on large enough uniform surfaces, and the reflected ray is coherent and produces

inter-symbol interference (ISI) with the ray in the line of sight. Each path may have a

different phase, attenuation, delay and Doppler frequency [48]. The multipath channels

may be of two types: (i) Rayleigh, which considers no line of sight between transmitter

and receiver nodes, i.e. only echoes of the original signal are received, and (ii) Ricean, in

which the signal comprises the ray in the line of sight plus delayed and attenuated versions

of it [48].
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Specifically, this case study involves the identification of a model that describes the

Received Signal Strength Indicator (RSSI, output) as a function of the speed of the link

(LinkSpeed, input) [48]. The RSSI is related to the power of the signal and enables to

distinguish one channel with multipath from another.

The measuring process was conducted by the application G-NetWiFi Pro, in a channel

with multipath constituted by an indoor environment, specifically a single-story housing,

with obstacles sufficiently uniform and of size larger than the wave length. The transmitter

node (Alice) is aWiFi router with protocol 5.8 GHz 802.11/g, while the receiver node (Bob)

corresponds to a smartphone being used to download and watch a movie (heavy file) in real

time, and simultaneously run G-NetWiFi Pro [48].

Figure 3.1 illustrates the floor plan of the housing, in which the WiFi router is at

a fixed location, while the smartphone is moved around and placed at different positions,

guaranteeing that there are many obstacles betweenAlice and Bob and that there is no line of

sight between them. Therefore, the following conditions are met during the measurement

process: (i) the channel is of Rayleigh type, and (ii) the RSSI, given in dBm, and the

LinkSpeed, in Megabits per second (Mbps), are measured at the Bob end, with a sampling

time of 1 sec; this sampling time is appropriate according to the variability of the signal.

Figures 3.2a and 3.2b plot the 1561measurements of RSSI andLinkSpeed, respectively [48].
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Figure 3.1: Floor plan of the housing and location of the WiFi router during the measurement
procedure [48].

Considering RSSI as the output and LinkSpeed as the input, the procedure described in

chapter II is used to construct a linear Kalman Innovation model of the form (2.23), varying

the number of previous values of the output, input and innovation error.
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(a)

(b)

Figure 3.2: Plot of measured values of (a) RSSI, (b) LinkSpeed [48].

3.2 Second case study: secret key generation in the physical layer inmultipath
wireless channels

A positive capacity for key generation can be achieved if the correlation between the

measurements of the legitimate users (Alice and Bob) is higher than the correlation between

measurements of a legitimate user and an eavesdropper (Eve). This guarantees that Eve
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will not be able to get the secret key, unless Eve has the same location as Alice or Bob [4].

As it was described before, the algorithm for generating secret keys in the physical layer

involves six steps [60]: (i) Initialization or beacon exchange, (ii) estimation of the common

source of randomness, (iii) quantization, (iv) encoding, (v) information reconciliation and

(vi) privacy amplification.

Framed in step 2, this case study proposes the use of linear time-varying Kalman

innovation models, identified from real RSSI measurements, for secret key generation in

multipath wireless channels. The multipath introduces randomness because the trajectories

of the reflected rays depend on the geometry of the channel between Alice and Bob. As

a result, the channel between any pair of communicating users is unique, and this feature

is exploited for secret key generation. Specifically, after the identification has converged,

the residuals will be highly random and can be utilized to generate secret keys, as will

be shown later. As stated before, RSSI is used because CSI has a significantly greater

computational cost, which hampers its possibility of fulfilling the requirement that each key

must be generated quickly and renewed frequently [47].

Successive blocks of RSSI measurements are generated during the conversation of Alice

and Bob, and the key should be renewed at the end of each block to limit the amount of

unsecure information in case the key is correctly guessed by an eavesdropper. These RSSI
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measurements are used by Alice and Bob to identify separate linear time-varying Kalman

innovation models in observable block companion form of the multipath channel between

them; the order P of these models is given by [5]

P =
⌈
2M fdT

⌉
+5 (3.1)

where
⌈
2M fdT

⌉
denotes the smallest integer greater than 2M fdT .

Now, the linear Kalman innovation models used here are a variant of the ones presented

in section II, as explained in the following [47]. After the true RSSI measurement gX(k+1)

at time instant k+1 is obtained, a linear autoregressive moving average (ARMA) model of

the form

ĝX(k+1) =−aX
1,kgX(k)−·· ·−aX

P,kgX(k−P+1)

+dX
1,keX(k)+ · · ·+dX

P,keX(k−P+1)
(3.2)

where X is A for Alice and B for Bob, is recursively updated according to the extended least

squares algorithm with

θ
X
k =

[
aX

1,k · · · aX
P,kdX

1,k · · · dX
P,k

]

the vector of model parameters, and

ϕ
X
k+1 =

[
gX(k) · · · gX(k−P+1)eX(k) · · · eX(k−P+1)

]
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the data vector. Then, the linear time-varying Kalman innovation model of the channel is

given by [47]

xX
o (k+1) = AX

k xX
o (k)+KX

k eX(k) (3.3a)

ĝX(k) = CxX
o (k) (3.3b)

where xX
o (k)∈RP×1, eX(k)∈R and ĝX(k)∈R are the observed state vector, the innovation

error vector and the estimated output, respectively, at time instant k,

AX
k =


−aX

1,k 1 0 · · · 0

−aX
2,k 0 1 · · · 0
... ... ... . . . ...
−aX

P,k 0 0 · · · 0

 ∈ RP×P,

KX
k =


dX

1,k−aX
1,k

dX
2,k−aX

2,k
...

dX
P,k−aX

P,k

 ∈ RP×1

and C is fixed given by

C =
[

1 0 · · · 0
]
R1×P.

When calculating xX
o (k+ 1), eX(k) is the innovation error. This procedure is repeated for

every measurement.

The measurement process was conducted on the single-story housing of Figure 3.3.
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However, in this experiment the Alice node is a smart phone used as a WiFi router with

protocol 2.4 GHz 802.11/g, and the Bob node is a Gw Instek 9 Khz∼ 3 GHz spectrum

analyzer model GSP-830 with preamplifier, and a TP link omnidirectional antenna with

a gain of 2.15 dB; in addition there is a laptop with appropriate software and a USB

interconnection cable [47].

Figure 3.3: Measurements of RSSI in the Rayleigh Channel [47].

The following assumptions weremade during themeasurement process [47]: (i) channel

isRayleigh and geometrically complex, (ii) RSSI ismeasured only in one end, and alternately

assigned to Alice and Bob (since the measurements taken from any end should be the same),

and (iii) measurements are taken in discrete-time (through impulses). It was taken one block
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of M = 2000 measurements, which are plotted in Figure 3.3 [47].

Then, two Kalman models of the unique channel between Alice and Bob are simulta-

neously updated. Once the Kalman models have captured the dynamics of the multipath

channel, the innovation errors are suitable for key generation. The process is reinitialized at

the beginning of each block of measurements, and the innovation errors of the subsequently

identified Kalman models are used for key renewal purposes [47]. The applicability of the

innovation error for secret key generation is analyzed by means of tests such as random-

ness and correlation between the errors of Alice and Bob for the same block. In addition,

the maximum capacity of the channel for key generation is determined as a function of

SNR [47].

3.3 Third case study: time-varying neural network-based modeling schemes
for describing traffic in mobile telephony networks

In this application, NN-ARX [51] and NN-ARMAX models are identified for describing

traffic in mobile telephony networks. The available data corresponds to real traffic data

taken from an LTE (4G) network in a populated city, in particular data from two stations

(one cell per station) identified as A and B.

The data were collected with a sampling time of 1 hour, thus there are 24 samples in one
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day, and the total data span approximately 16 weeks. The output variable was the payload

(given in Mbps), while the input variable was the number of users. The total number

of data for station A was 2873 samples, with 2155 being used for training and 718 for

validation. Regarding station B, a total of 2841 samples were available, with 2143 and 698

used for training and validation, respectively [51]. The training set is utilized to identify and

recursively update the models, and the validation set is employed to test the performance.

3.4 Performance criteria

The criterion utilized to test the modeling performance of the identified models (linear

Kalman innovation, NN-ARX and NN-ARMAX), is the percentage of data samples with

relative errors smaller than a certain bound bnd. This percentage will be denoted as %bndT

or %bndV for the training and validation samples, respectively, and will be calculated and

plotted as a function of the number p of previous values. For the k-th data point, the relative

error is calculated as

erel(k) =
g(k)− ĝ(k)

g(k)
×100 (3.4)

Then, for the value of p giving the best performance on the validation set, a plot of the

relative error for the data samples in such set is included.
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On the other hand, regarding the application of secret key generation, RunsTest [81]

is used to test the randomness of the residuals, and the correlation between the residuals

of Alice and Bob for the same block is determined through the correlation coefficient. In

addition, the maximum channel capacity for secret key generation, which is a measure of

the maximum velocity at which the channel can generate secret keys, is calculated as [5]

B =
1
2

log2

(
|CAA| |CBB|
det(C)

)
(3.5)

given in bits/seconds/Hz, where

C = cov(θ A
k ,θ

B
k ) =

[
CAA CAB

CBA CBB

]
(3.6)

is the covariance matrix between θ A
k and θ B

k .
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Chapter 4: RESULTS

4.1 First case study [48]

Using the 1561 available samples of RSSI and LinkSpeed, linear ARMAX models of the

form (1) were identified and recursively updated, with p ranging from 1 to 20. Then, for

each p, all samples of RSSI in the data were estimated using the corresponding linear

Kalman innovation model at the final data sample. Subsequently, the percentage of data

samples with a relative error smaller than 15% as a function of p was calculated and plotted

(Figure 4.1). The best performance was obtained for p= 1, for which 99.87% of the samples

fulfilled the criterion.

Figure 4.2 plots the relative error for all samples of RSSI in the data for p = 1. The

corresponding Kalman model obtained at the last sample is [48]

xo(k+1) = 0.86xo(k)−0.07u(k)+0.83e(k) (4.1a)

ĝ(k) = xo(k) (4.1b)

Note that the relative error decreases as the sample number increases. This occurs

because the Kalman model corresponding to the last sample was used to generate such
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Figure 4.1: Plot of %15 vs. p [48].

curve, and due to the forgetting factor it is expected that the model behaves better for more

recent data. This is completely desirable in a practical application, because more recent

data is a more reliable representation of the current dynamics of the system [48].

Also note that the model exhibits robustness, since the percentage of samples of RSSI

with errors below 15% is above 95% for p≤ 16.
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Figure 4.2: Relative error for the 1561 samples of RSSI for p = 1 [48].

4.2 Second case study [47]

Kalman models of order P = 45 were identified for Alice and Bob. Figures 4.3a and 4.3b

show plots of the innovations sequences for Alice and Bob, respectively. The Kalman

models converge approximately at sample 50 for both Alice and Bob, time after which the

secret keys can be generated. Performance criteria and channel capacity were evaluated

after convergence.
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(a)

(b)

Figure 4.3: Innovation sequence for (a) Alice and (b) Bob, for M = 2000 [47].

First, RunstTest of the NIST standard indicated that both set of residuals are random

with a significance level of 95%. Therefore, the randomness requirement is fulfilled.

On the other hand, the correlation coefficient between the residuals of Alice and Bob for

the same block is 0.98, thus verifying that the high correlation requirement is also satisfied.
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At last, the maximum channel capacity B for secret key generation is calculated as a

function of signal-to-noise (SNR) ratio. Figure 4.4 plots discrete values of B vs. SNR, for

SNR 0 dB, 5 dB, 10 dB, 15 dB and 20 dB, and also plots a straight line fitted using least-

squares. The minimum and maximum values were 0.87 bps/Hz for 0 dB, and 2.82 bps/Hz

for 15 dB, respectively. On the other hand, the line has a positive slope, with approximate

extreme values of 0.8 and 2.87 for 0 dB and 20 dB, respectively. As a comparison, under

similar conditions McGuire [5] obtained values of B between 0.07 for 0 dB and 0.18 for

20 dB. Therefore, the maximum channel capacity for the Kalman innovation model was

approximately sixteen times greater [47].

4.3 Third case study

The procedure described in chapter II was used to identify NN-ARX models of the form

given by (2.76) [51], and NN-ARMAX models of the form (2.77), using the data available

for stations A and B. For both cases, the number p of previous values ranged from 1 to 20.

Table 4.1: Performance of the NN-ARX and NN-ARMAX models on the training data sets, for
stations A and B

NN-ARX NN-ARMAX
Station %10 T P %10 T P

A 68.9 2 65.3 1
B 65.0 2 66.2 1
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Figure 4.4: Plot of B vs. SNR [47].

The values of %10T are included in Table 4.1. Note that the performance of the two

models is very similar for both stations, with the NN-ARX performing slightly better for

station A and the NN-ARMAX for station B. For the two stations, the NN-ARX model

exhibits the best performance for p = 2, while the NN-ARMAX model yields the best

behavior for p = 1.

On the other hand, Table 4.2 shows the values of %10V . As before, the performance

of the two models is very similar, but the NN-ARMAX performs slightly better for both

stations. Again, the NN-ARX and NN-ARMAX models exhibit the best performance for
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p = 2 and for p = 1, respectively, for the two stations.

Table 4.2: Performance of the NN-ARX and NN-ARMAX models on the validation data sets, for
stations A and B

NN-ARX NN-ARMAX
Station %10 V P %10 V P

A 68.4 2 69.1 1
B 67.2 2 68.9 1

In addition, Figures 4.5a and 4.5b plot %10V as a function of p for station A, for the

NN-ARX and NN-ARMAXmodels, respectively, and Figures 4.6a and 4.6b show the same

plots for station B. From Figures 4.5 and 4.6 it can be seen that the NN-ARXmodel exhibits

a more consistent performance, with the values of %10V between 40% and 70% for all

values of p.

At last, Figure 4.7a plots the relative errors of the NN-ARX model for p = 2 for the

718 validation samples of station A, and Figure 4.7b displays the same plot for the NN-

ARMAX model for p = 1. Similarly, Figures 4.8a and 4.8b plot the relative errors of the

NN-ARX model for p = 2 and for the NN-ARMAX model for p = 1, respectively, for the

698 validation samples corresponding to station B.
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(a)

(b)

Figure 4.5: Values of %10 V as a function of p for station A: (a) NN_ARX model and (b)
NN-ARMAX model.
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(a)

(b)

Figure 4.6: Values of %10 V as a function of p for station B: (a) NN_ARX model and (b)
NN-ARMAX model.
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(a)

(b)

Figure 4.7: Relative errors on the validation samples for station A:(a) NN-ARX model for p = 2
and (b) NN-ARMAX model for p = 1.
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(a)

(b)

Figure 4.8: Relative errors on the validation samples for station B: (a) NN-ARX model for p = 2
and (b) NN-ARMAX model for p = 1.
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CONCLUSIONS

This work proposed the use of advanced time-varying approaches for representing the

dynamics of the channel in wireless networks.

In the first case study, a linear time-varying Kalman innovation model was identified

for describing RSSI as a function of the speed of the link, using 1561 samples measured in

an indoor multipath wireless channel. The performance of the model was tested for orders

varying between 1 and 20, and it showed to be (i) accurate, since for the best case (order

1) almost 100% of the samples exhibited a relative error less than 15%, and (ii) robust,

because it yielded more than 95% of precision for orders less or equal to 16.

Then, the second case study considered testing the suitability of using linear time-

varying Kalman innovation models of the RSSI, for secret key generation in the physical

layer of a multipath wireless channel between two communicating parties. In particular,

the Kalman models are identified for both users using a block of RSSI measurements,

to describe the dynamics of the channel between them. After the models converged, the

innovation errors (residuals) exhibit a significant potential for secret key generation because

of their significant randomness content. Furthermore, the proposed approach outperformed
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other reported approaches for secret key generation, by yielding values of maximum channel

capacity an order of magnitude greater for different signal-to-noise ratios.

At last, the third case study included the identification of a neural network-based au-

toregressive moving average with exogenous inputs (NN-ARMAX) model and a neural

network-based autoregressive with exogenous inputs (NN-ARX) model, for describing traf-

fic in a 4G-LTE network. According to the results obtained for different orders, both models

exhibited a similar performance for the best case, achieving a relative error less than 10%

in around 70% of the validation samples. It was also found that the NN-ARX model

showed to be more consistent, but the NN-ARMAX model has the advantage that it can be

converted to a linear time-varying Kalman innovation model, and thus can be used for the

implementation of advanced schemes for controlling the operation of the network.

Additional features of the advanced modeling approaches include simplicity of im-

plementation, high computational efficiency and small computational cost and excellent

performance in modeling time-varying systems. With respect to the Kalman innovation

modeling approach, it does not require to estimate the properties of the noise, in contrast

with the standard Kalman model.

Since the advanced time-varying modeling approaches exhibited an outstanding perfor-

mance, further research work will be first directed towards the extension of such approaches
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to identify models with multiple inputs and multiple outputs of wireless networks. Specif-

ically, the inputs may comprise different operating parameters of the network, while the

outputs may include different criteria that quantify QoE or that correspond to key perfor-

mance indicators. Then, a second research topic will be related to the implementation

of schemes to determine optimal operation schedules of wireless networks, based on the

models identified.
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