


AN ABSTRACT OF THE DISSERTATION OF

Eman Almadhoun for the degree of Doctor of Philosophy in Computer Science

presented on December 17, 2021.

Title: Exploratory Study to Uncover Student Mental Models of Singly Linked Lists in

the C Programming Language

Abstract approved:
Jennifer Parham-Mocello

In computer science, learning abstract fundamental programming concepts requiring stu-
dents to understand memory management can be very difficult and lead to misunder-
standings that carry on into advanced topics. This is especially true in data structures
with abstract data types. Understanding how novice students think and reason about
data structures is important for improving teaching and learning in computer science.
Most studies focus on student misunderstandings of advanced algorithms and data struc-
tures related to topics such as heaps, binary search trees, hash tables, dynamic program-
ming, and recursion. Whereas, fewer studies focus on more elementary data structures,
such as arrays and linked lists.

Since linked lists serve as a bridge to understanding more advanced data structures,
we believe that it is critical to identify students’ conceptual and procedural misunder-
standings earlier rather than later. Therefore, directly after learning about linked lists
using the C language, we conduct semi-structured, think-aloud interviews with 11 under-
graduate students to uncover their mental models about singly linked lists in C, and how
they apply their knowledge about singly linked lists to understand other types of linked
lists. To determine the factors that might contribute to their understanding about linked
lists, at the end of the interview, we ask students about the difficulties they had while
learning about linked lists, and we give students a 10-minute visual-spatial reasoning test.
Using rubrics to code responses to the interview questions, we quantify the accuracy of



their mental models and reveal common misunderstandings, such as confusion between
the node containing a node pointer and being a node pointer, failure to create a node
structure, lack of knowledge regarding typecasting malloc, and lack of attention to the
importance of the NULL value.

We find that none of the participants have an accurate mental model of a singly
linked list in C, after learning about and implementing them in their data structures
course. Even though students struggle with expressing their conceptual understanding
with enough detail in their verbal responses to interview questions, their performance on
the coding questions is much better. The majority of students have a good procedural
understanding of how to create and use the pieces of a linked list, and they understand
how to implement most operations on a singly linked list in C. However, many students
continue to struggle with C syntax and the prerequisite knowledge needed to understand
linked lists in C, such as pointer manipulation and memory management. While we do
not find a relationship between students’ visual-spatial ability and their conceptual or
procedural understanding of linked lists in C, students report that the abstract nature of
pointers and relating linked lists to the real world and prior knowledge about dynamic
arrays contribute the most to their difficulties with linked lists in C.



©Copyright by Eman Almadhoun
December 17, 2021
All Rights Reserved



Exploratory Study to Uncover Student Mental Models of Singly
Linked Lists in the C Programming Language

by

Eman Almadhoun

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented December 17, 2021
Commencement June 2022



Doctor of Philosophy dissertation of Eman Almadhoun presented on
December 17, 2021.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Eman Almadhoun, Author



ACKNOWLEDGEMENTS

First of all, I would like to thank Allah, the Almighty, for His generosity of blessings and
giving me the power and patience throughout my research to complete it successfully.

Then, I would like to express my deep and sincere gratitude to my advisor, Profes-
sor Jennifer Parham-Mocello, for being my advisor and providing invaluable guidance
throughout my dissertation. It was a great privilege and honor to work under her super-
vision. Her vision, sincerity, and motivation have deeply inspired me. I would also like to
thank her for her friendship, kindness, and empathy. I am extending my deepest thanks
to her family for their acceptance and patience during the discussions and the Zoom calls
I had with her.

I also thank my committee members, Professors Margaret Burnett, Mike Bailey,
Christopher Sanchez, and Maggie Niess for their helpful discussions, insights, and feed-
back.

I extend my thanks to all graduate writing center consultants for their help and
support in scheduling and writing, especially Adam Haley for working with me during
my whole academic journey. I also thank Aiden Nelson, Kaitlin Hill, Paris Kalathas,
Mahsa Saeidi, and Abdullah Azzouni for helping me review my writing and giving me
valuable feedback.

I am very thankful to my parents for their love, prayers, and care. I am extremely
grateful to my beloved husband, Hasan, and my wonderful kids, Tamara, Yara, and Amer,
for their love, understanding, prayers, and continued support to complete this research.
Also, I express my thanks to all my sisters and brother for their support and valuable
prayers.

Finally, thank you to all my friends and neighbors who supported and encouraged
me in the toughest situations that I have ever experienced before, especially to Abrar
Fallatah and Mahsa Saeidi.



TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Proposed Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Literature Review 5

2.1 Learning Abstract Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Why Mental Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Misconception Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Motivation for a Linked List Concept Inventory . . . . . . . . . . . . . . . . 8

2.5 Reasoning and Spatial Visualization . . . . . . . . . . . . . . . . . . . . . . 10

3 Research Method 12

3.1 Categorization of Linked List Concepts: . . . . . . . . . . . . . . . . . . . . 12
3.1.1 Linked List Concepts: . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Linked List Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 The Survey and Semi-Structured Interview Questions: . . . . . . . . . . . . 20
3.3.1 Collect Expert Feedback and Revision: . . . . . . . . . . . . . . . 21
3.3.2 Mapping Survey and Interview Questions to the Linked List Con-

cepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Data Collection: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Evaluation and Data Analysis: . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results and Discussions 34

4.1 RQ1: What are students’ mental models of linked lists in the C programming
language, and how accurate are their mental models? . . . . . . . . . . . . . 35

4.1.1 RQ1.1: How accurate are students’ mental models about the types
and pieces of linked lists and operations on linked lists? . . . . . . 36

4.1.2 RQ1.2: What are students’ misunderstandings or gaps in knowl-
edge about the types and pieces of linked lists and operations on
linked lists? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



TABLE OF CONTENTS (Continued)
Page

4.2 RQ2: What difficulties do students face while learning about linked lists in
the C programming language? . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 RQ3 & RQ4: The Purdue Visualization of Rotations Test (ROT) . . . . . . 106
4.3.1 RQ3: What is the relationship between students’ understanding

about linked lists and their visual-spatial reasoning? . . . . . . . . 107
4.3.2 RQ4: What is the relationship between drawing pictures while

reasoning about linked lists and students’ visual-spatial reasoning? 108

5 Threats to Validity 111

6 Conclusion 112

7 Future Work 114

Bibliography 115

Appendices 126

A Survey Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B Verbal Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C Coding Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

D Recognition Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

E Participants’ Grading in the Survey . . . . . . . . . . . . . . . . . . . . . . 191

F Scores Per Categories in the Survey for Interviewed Participants . . . . . . 194



LIST OF FIGURES
Figure Page

3.1 Linked List Concept Categories . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Linked List Framework illustrating the relationship among prerequisite
knowledge, a singly linked list, and applying this knowledge to different
linked lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Demographics and backgrounds of 40 consenting participants in the survey. 27

3.4 Example rubric for an open-ended survey question with coding for partic-
ipants Joe and Bob. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Example rubric for a verbal interview question with coding for participant
Joe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Grading participant Xeng on the coding interview question about creating
an empty list using the generated coding rubric. . . . . . . . . . . . . . . . 32

3.7 Grading Chemi’s explanation about code changing when adding a tail
pointer variable using the explanation code rubric. . . . . . . . . . . . . . 33

4.1 Percentage of students with the correct answer on each survey question.
Note: Q21 is out of 10 participants, and Q22-28 are out of 27 participants. 36

4.2 Survey Question 23: Identify the meaning of a pointer variable declaration. 44

4.3 Question 24: Identify the legality of pointer variable assignments in the
survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Question 25: Identify the legality assignments of the pointer variable in
the survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Question 28: Identify the code’s output about pointer variable manipu-
lations and dereferencing using asterisk and ampersand operators in the
survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Survey Question 1: Identify a node from a picture. . . . . . . . . . . . . . 49

4.7 Survey picture of a singly linked list with a head and a tail pointer variables
used in Q4-Q7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Suzy (left) and Feng (right) node structure. . . . . . . . . . . . . . . . . . 52



LIST OF FIGURES (Continued)
Figure Page

4.9 Ecer’s node structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 Suzy (top) and Nate (bottom) responses to adding a new node at the
beginning operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Feng’s response to inserting a new node at the beginning of a list. . . . . . 58

4.12 Suzy’s response to creating an empty list. . . . . . . . . . . . . . . . . . . 61

4.13 Joe’s response to creating an empty list. . . . . . . . . . . . . . . . . . . . 62

4.14 Chemi’s response in coding empty list operation. . . . . . . . . . . . . . . 63

4.15 Ecer’s response to creating an empty list. . . . . . . . . . . . . . . . . . . 63

4.16 Chemi’s response to adding a new node at the beginning operation. . . . . 64

4.17 A visual representation of an empty list. Note that the electrical ground
symbol at the end represents the NULL value. . . . . . . . . . . . . . . . . 66

4.18 Nate’s response to checking if a list is empty operation. . . . . . . . . . . . 67

4.19 Suzy’s response to checking if a list is empty operation. . . . . . . . . . . . 67

4.20 The diagram of a singly linked list presented in the survey and used in Q21. 68

4.21 Question 21: Recognizing the steps for clearing a singly linked list. . . . . 68

4.22 Recognition question 4 for clearing the linked list nodes. . . . . . . . . . . 69

4.23 Joe’s response to adding a new node at the beginning operation. . . . . . 71

4.24 Xeng’s response to adding a new node at the beginning operation. . . . . 71

4.25 A singly linked list provided to the participants in coding question 6. . . . 72

4.26 Joe’s response to adding a node at the end of a singly linked list. . . . . . 73

4.27 Suzy’s response to adding a node at the end of a singly linked list. . . . . 73

4.28 Feng’s response to adding a node at the end of a singly linked list. . . . . 74

4.29 Joe’s response to adding a new node at a specific location in a singly linked
list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



LIST OF FIGURES (Continued)
Figure Page

4.30 Max’s response to adding a new node at a specific location in a singly
linked list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.31 Suzy’s response to adding a new node at a specific location in a singly
linked list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.32 Ecer’s response to adding a new node at a specific location in a singly
linked list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.33 Nate’s response to deleting a node at the beginning operation. . . . . . . . 78

4.34 Joe’s response to deleting the last node in a singly linked list. . . . . . . . 78

4.35 Phil’s response to deleting the last node in a singly linked list. . . . . . . . 79

4.36 Suzy’s response to deleting a node in the middle of a singly linked list. . . 80

4.37 Ecer’s response to deleting a node at the middle of a singly linked list. . . 81

4.38 A singly linked list provided to the participants in recognition questions. . 83

4.39 Recognition question 1 for swapping two adjacent nodes in a singly linked
list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.40 Bill’s sketches while solving recognition question 1 for swapping two adja-
cent nodes in a singly linked list. . . . . . . . . . . . . . . . . . . . . . . . 85

4.41 Xeng’s sketches while solving recognition question 1 for swapping two ad-
jacent nodes in a singly linked list. . . . . . . . . . . . . . . . . . . . . . . 85

4.42 Chemi’s sketches while solving recognition question 1 for swapping two
adjacent nodes in a singly linked list. . . . . . . . . . . . . . . . . . . . . . 87

4.43 Suzy’s sketches while solving recognition question 1 for swapping two ad-
jacent nodes in a singly linked list. . . . . . . . . . . . . . . . . . . . . . . 87

4.44 Max’s sketches while solving recognition question 1 for swapping two ad-
jacent nodes in a singly linked list. . . . . . . . . . . . . . . . . . . . . . . 88

4.45 Ecer’s sketches while solving recognition question 1 for swapping two ad-
jacent nodes in a singly linked list. . . . . . . . . . . . . . . . . . . . . . . 89

4.46 Feng’s response to finding the length of a linked list. . . . . . . . . . . . . 91



LIST OF FIGURES (Continued)
Figure Page

4.47 Suzy’s response to finding the length of the linked list. . . . . . . . . . . . 92

4.48 Chemi’s response to finding the length of the linked list. . . . . . . . . . . 92

4.49 Recognition question 2 for finding the x value in a singly linked list. . . . 93

4.50 Recognition question 3 for printing the values stored in the singly linked
list nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.51 Question 4: Identify a singly linked list type. . . . . . . . . . . . . . . . . 97

4.52 Question 12: Identify a singly circular linked list type. . . . . . . . . . . . 99

4.53 Question 13: Identify a doubly linked list type. . . . . . . . . . . . . . . . 101

4.54 Question 11: Identify a doubly circular linked list type. . . . . . . . . . . . 102

4.55 Suzy’s sketches while describing a doubly circular linked list type. . . . . . 103



LIST OF TABLES
Table Page

3.1 A comprehensive list of prerequisite knowledge and linked list concepts
with their definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Mapping linked list concepts to the corresponding survey and interview
questions in which they appear. Note that S-Qx refers to survey question,
IV-Qx refers to interview verbal question, IC-Qx refers to interview coding
question, IE-Qx refers to interview explanation question, IR refers to in-
terview recognition, SLL refers to singly linked list, SCLL refers to singly
circular linked list, DLL refers to doubly linked list, and DCLL refers to
doubly circular linked list. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Demographics of 11 Consenting Interview Participants. Note: PID (Par-
ticipants’ ID), LL (Linked List), CS (Computer Science), Chem. Eng.
(Chemical Engineering), ECE (Electrical & Computer Engineering), and
PSU (Portland State University). . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Each participants’ percentage of points earned on each question from the
verbal, coding, and recognition sections of the interview. Note: Light-red
(< 80%), blue (80-89%), gray (90-99%), and green (100%). . . . . . . . . . 38

4.2 Scores per linked list concept based on conceptual (light-purple) and pro-
cedural (orange) understandings. . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Overall score for each linked list category. . . . . . . . . . . . . . . . . . . 41

4.4 Spatial Visualization Test Score. Note that N is the sample size, M is the
mean, Min. is the minimum score, and Max. is the maximum score. . . . 106

4.5 Students accuracy score per section, and ROT score (ROT percentage
score in the parenthesis). Note that the presented data is organized based
on the high to low scores in the overall linked list concepts. . . . . . . . . 108

4.6 The Number of students’ drawings per section, and ROT score (ROT per-
centage score in the parenthesis). Note that the presented data is organized
based on the high to low scores in the overall linked list concepts. . . . . . 109



LIST OF APPENDIX TABLES
Table Page

E.1 Participants’ scores on each question from in the survey. The green check-
mark for the correct answer and the red cross-mark is for the wrong answer.
Note that the highlighted results are the results for the 11 participants we
interviewed in semi-structured interview. . . . . . . . . . . . . . . . . . . . 193

F.1 Scores per linked list concept in the survey based on conceptual (light-
purple) understanding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



Chapter 1: Introduction

1.1 Motivation

Learning and teaching data structures is difficult, due to the abstraction and data struc-
ture manipulation that students cannot see or touch in order to build a model of the
dynamic process [32], and yet, understanding algorithms and data structures are some of
the most important courses for computer science (CS) undergraduate students because
they serve as a foundation for their upper-division courses.

There are prior studies advancing educators’ knowledge on student misconceptions
about advanced data structures, such as heaps, binary trees, and hash tables [22, 64, 85],
but much of the prior work is missing the important subject of basic data structures, like
arrays and linked lists [76, 120]. We focus on linked lists because they serve as a bridge to
understanding more advanced data structures [89]. For example, the concept of a node
from linked lists is important for understanding a binary tree later. Instead of having a
node with next and previous pointer variables, as with doubly linked lists, a binary tree
has a node with left and right pointer variables.

To address this gap in the literature, we conduct semi-structured, think-aloud inter-
views with 11 students to uncover their reasoning and misunderstandings about singly
linked lists. This initial exploratory case study aims to empirically identify students’ lack
of knowledge and difficulties with understanding and implementing singly linked lists,
which is typically the first data structure taught after arrays. This includes students’
struggles with syntax and the prerequisite knowledge needed to conceptually and proce-
durally understand and implement singly linked lists. While it is important for students
to have factual knowledge, which includes the terminology and specific details about
linked lists, we are more interested in students’ conceptual and procedural knowledge
that leverage their factual and metacognitive knowledge [4].

In particular, our study focuses on singly linked lists in the C programming language,
which is the language used at the participating university. In C, a linked list is a linear
structure that has nodes stored at non-contiguous memory locations and linked using



2

pointers [67]. Typically, the simplest singly linked list is implemented with a head pointer
variable on the stack that either points to a node on the heap that begins the list or is
NULL if the list is empty. Each node is an instance of a user-defined struct that contains
list data of an appropriate type (int for a list of integers, char * for a list of strings, etc.)
and a node pointer, which either points to the next node in the list or is NULL if the node
is the last one in the list. In addition to the concepts of a node and head pointer variable,
students’ need to conceptually and procedurally understand the node’s two members for
a total of four basic pieces of a list: 1) the head pointer variable and 2) the node with 3)
the list data and 4) a node pointer. We recognize that many implementations include a
tail pointer variable, but we only ask students conceptual questions about the tail pointer
variable because they do not implement a list in this way at their university.

Cognitive science uses the term “mental models” to describe a cognitive representation
of an abstract structure or a part of an abstract structure of the real-world, situations,
events, tasks, problems, procedures, concepts, activities, or phenomena and the relations
between them [43, 81, 49]. Mental models are very important for learning a new concept,
especially abstract concepts [121]. According to Johnson-Laird, mental models help us
understand problems, find a suitable solution, and predict outcomes based on actions [59].
If learners construct correct mental models, know how to use them well, and understand
the network of connections between them, then they will save time on understanding
some concepts and solving problems, as well as improve their overall learning [49] and
reasoning [59].

Understanding how students reason about a concept provides insight into their mental
model about the concept [59]. However, exploratory research on students’ mental models
of linked lists in CS is not well-known. Therefore, we believe the CS community benefits
from more research on mental models and students reasoning, especially in fundamental
areas such as data structures and algorithms.

1.2 Thesis Statement

Based on the lack of research on students’ mental models about linked lists in CS, we
construct the following thesis statement as the basis for our research in this exploratory
study. Computer science undergraduate students struggle with linked lists in the C lan-
guage, due to having inaccurate mental models with misunderstandings about linked lists



3

concepts and low visual-spatial reasoning to visualize abstract concepts.

1.3 Research Questions

In order to support our thesis statement, we answer the following specific research ques-
tions.

1. What are students’ mental models of linked lists in the C programming language,
and how accurate are their mental models?

(a) How accurate are students’ mental models about the types and pieces of linked
lists and operations on linked lists?

(b) What are students’ misunderstandings or gaps in knowledge about the types
and pieces of linked lists and operations on linked lists?

2. What difficulties do students face while learning about linked lists in the C pro-
gramming language?

3. What is the relationship between students’ understanding about linked lists and
their visual-spatial reasoning?

4. What is the relationship between drawing pictures while reasoning about linked
lists and students’ visual-spatial reasoning?

To answer our research questions, we use a mixed-methods approach with quanti-
tative and qualitative data. The results of this study help us determine how students
reason about linked lists in a data structures course and identify the misunderstandings
that students have that lead them to struggle while learning about linked lists in the C
language. This includes students’ struggles with syntax and the prerequisite knowledge
needed to conceptually and procedurally understand linked lists in C. In addition, we
investigate correlations between students’ reasoning about linked lists and their visual-
spatial reasoning.

1.4 Proposed Contributions

In this thesis, we present the following key contributions from this exploratory research
study:



4

• Develop a categorization and a comprehensive list of linked list concepts.

• Develop a set of questions along with example rubrics for assessing a person’s
conceptual and procedural understandings about singly linked lists in C.

• Measure the accuracy of students’ mental models about linked list.

• Identify misunderstandings and gaps in knowledge about linked list concepts.

• Explore connections between students’ mental models about linked lists and visual-
spatial reasoning.



5

Chapter 2: Background and Literature Review

In this research study, we evaluate students’ conceptual and procedural understanding to
measure the accuracy of their mental model and explore how they reason about linked
lists in a data structures course. We believe that constructing correct mental models of
algorithms and data structures, as well as knowing how to use them, are vital cognitive
processes that help students efficiently solve problems on their own. This work builds
upon prior research on learning abstract concepts, mental models, misconceptions, con-
cept inventories, and visual-spatial reasoning to gain a better understanding of students’
conceptual and procedural understanding of linked list concepts in the C programming
language.

2.1 Learning Abstract Concepts

Learning computer programming for CS undergraduate novice students is challenging
[12, 29, 69, 58, 86, 87]. This is because computer programming consists of many abstract
concepts, instructions, and processes that one needs to follow [103]. Students may feel
frustrated and unable to continue to learn to program because they do not have a good
visualization of the flow of these processes, and past research shows that visualization is
especially critical for algorithms and data structures [29].

Data structures are abstract containers used to store, organize, and access data ef-
ficiently, while an algorithm contains the processes or steps that are followed to solve a
specific problem [29]. Many educational institutions teach algorithms and data structures
using code and syntax with definitions and drawing pictures for illustration. However,
some students may struggle to understand the code, the pictures, or the link between the
two.

The more abstract a concept is, the more thinking needed in order for a learner to
understand the concept [24]. “A Taxonomy for Learning, Teaching and Assessing: A
Revision of Bloom’s Taxonomy of Educational Objectives” presents 4 types of knowl-
edge, which are: factual, conceptual, procedural, and metacognitive [4]. These types of



6

knowledge are ordered from more concrete (factual) to more abstract (metacognitive).
In this research study, our focus is on the conceptual and procedural knowledge needed

to have a deep understanding of linked lists. Conceptual knowledge is defined as “the
interrelationships among the basic elements within a larger structure that enable them
to function together”, while procedural knowledge is defined as “how to do something,
methods of inquiry, and criteria for using skills, algorithms, techniques, and methods”
[4]. Conceptual and procedural understanding are not independent, and many philoso-
phers studying theories of knowledge claim that procedural understanding is based on
conceptual understanding [35, 43], and likewise, conceptual knowledge is built upon fac-
tual knowledge. Therefore, we ask students’ about their conceptual understanding of
the pieces that make up a singly linked list, and then we observe their procedural un-
derstanding of using these pieces in common linked list operations to better understand
students’ mental models.

2.2 Why Mental Models

Norman defines mental models as internal representations built on individual experiences
in the real world [83]. Mental models can be naïve or immature [57] and can be inaccurate
and sometimes incomplete [59, 43]. Henderson and Tallman [49, p. 36] argue that “Errors
can occur because we do not activate all our knowledge at one time”, which can come from
building several mental models in the short-term memory due to thinking limitations [59].

Novices who have limited experience and knowledge in solving problems construct
partial mental models or map prior mental models to the new situation [49]. For example,
when novice students want to find errors in a program, they will try all possible sequences
to find the errors, but this is impractical and time-consuming. If students know how
to build a correct mental model of the situation and strategically map the concepts
with other similar mental models, they can check one possible sequence and discard all
irrelevant ones [80, 5]. Therefore, we believe it is important to build accurate mental
models of abstract concepts to help individuals correctly solve problems.

Many methods elicit students’ mental models by asking students to talk about their
understandings or explain them correctly [56]. These methods include having students
think-aloud while performing a task [94, 114], writing a “Task Reflection” after solving
a coding problem [33, 73, 91], and diagramming tasks to create a visualization based on



7

their prior knowledge of the process [55]. All of these research methods produce quali-
tative data, but some methods gain a richer understanding of the participants’ mental
models and the way they are reasoning and thinking than others.

2.3 Misconception Research

In CS, many studies identify students’ misconceptions in areas outside data structures,
including operating systems [110], computer architecture [88], discrete mathematics [3],
digital logic [51, 53], and algorithms [11, 27, 62, 117, 46]. Other studies focus on students’
misconceptions of advanced topics in data structures, such as heaps, binary trees, and
hash tables[22, 85, 64]. However, there are not many studies on misconceptions about
linked lists, except for one recent study identifying student difficulties with learning about
basic data structures including ArrayLists, singly and doubly linked lists, and binary
search trees [120].

Zingaro et al. focuses on students’ procedural understanding of specific operations on
lists, and the authors collect data from 249 students in an exam study session for a Java
CS2 course. When the authors ask students to add a node to the end of a list, they find
that 16% of the students did not update the tail reference referring to the last node in
the list, 12% wrongly attached the new node to the list, and 10% iterated through all the
nodes in the list to find the last node, rather than simply using the tail reference [120].
Zingaro et al. also reveals that some students believed that the doubly linked list can be
searched in both directions in parallel, and students memorized the concepts of the data
structures, rather than recalling and knowing how to use these concepts for each data
structure [120].

Even though Zingaro et al. show that students make common mistakes when working
with linked lists, they do not measure the dynamic process of the students thinking
and reasoning about linked lists in real time [120]. We believe that observing students’
thinking related to linked lists, pointer variables, and memory management in C can
provide researchers with a deeper understanding of students’ mental models. In addition,
Zingaro et al. research on students’ understanding of linked lists does not ask the students
fundamental conceptual questions about linked lists in C, such as what a node and a node
pointer are, what the benefits of having a tail pointer variable are, etc., and we believe
that students have misunderstandings or are unsure about the basic pieces of linked



8

lists, which are needed to understand operations on linked lists and more complex data
structures.

There are various methods for identifying misconceptions, which include analysis of
1) exam papers with think-aloud interviews from the instructor and/or students’ [3, 11,
22, 64], 2) general interviews with students [53], 3) think-aloud interviews with students
[51, 62, 117] 4) the combination of think-aloud interviews and a pilot of the Concept
Inventory (CI) with students [52], and 5) final exam study sessions [120]. In this research
study, we examine students’ misunderstandings about the basic concepts of linked lists
using semi-structured think-aloud interviews asking students to verbally define these
concepts, as well as implement them. Since we do not consider students’ preconceived
notions or mistaken beliefs, we avoid using the term “misconceptions” in this dissertation,
and instead use the term “misunderstandings”.

2.4 Motivation for a Linked List Concept Inventory

Concept inventories (CI) are one type of assessment tool used to evaluate students un-
derstanding of concepts in a particular topic [37]. A CI is a standardized multiple-choice
test used to help instructors identify concepts that students do not understand and what
their misconceptions are [100]. Only one option is correct in each question, and the other
options are distractors from student misunderstandings identified by a long history of
qualitative studies, such as the Force Concept Inventory (FCI) [54]. Hestenes’ FCI is
used in physics to examine post-secondary students’ understanding about force and mo-
tion concepts. The researchers find that most students could state Newton’s Third Law
and only a few of them fully understood it [54].

There are CIs in CS for discrete mathematics [3], digital logic [51, 53], and data
structure topics related to heaps and binary search trees [22, 108], and more recently there
is a CI developed for basic data structures including lists, trees, stacks, and sets with a
heavy emphasis on lists and trees [90]. While there is a need to develop a comprehensive
CI for linked lists in general and specific to languages, there is a lack of qualitative
studies revealing student conceptual and procedural misunderstandings about linked lists
to create such inventories. Within the computer science education literature, there are
many research papers on visualization tools [115, 23, 70, 95, 96, 34, 31, 79, 10, 41, 68]
and pedagogical techniques [47, 42, 9, 99, 119, 7, 38, 19, 48, 63, 93] to help students learn



9

linked lists better. However, there are very few research studies focusing on how students
think about linked lists, such as their difficulties, misunderstandings, misconceptions,
and mental models [120, 109, 15, 76, 90].

Some of the research studies on linked lists measure how students’ performance, un-
derstanding, or motivation improves after using a visualization tool or new pedagogical
technique, such as active learning, multimedia, or games, with pre- and post-tests, home-
work, or student evaluations [115, 31, 119, 63, 93, 48, 47], but these studies do not discuss
the concepts students have trouble understanding. In addition, most of the tools and
techniques are for helping students learn linked lists in Java [23, 119, 70, 95, 96, 34, 31],
Python [79, 68, 41], or without any programming using schematic diagrams [38]. While
there are some tools focused on learning linked lists in C [115, 10] or a combination of C
and Python [68, 41], the developers of the tools do not provide students’ misunderstand-
ings about linked lists in C that provide the foundation for creating the tool.

There are some research papers that discuss students’ difficulties or misunderstandings
about linked list concepts, but they do not provide a comprehensive view of students’
mental models about linked lists in C [120, 109, 15, 76, 90]. One study introduces the
idea of exploring students’ mental models about linked lists and suggests that students
understand the general concept of linked lists and struggle with pointers [15], but the
study is only one page with little detail. A study the year before compared students views
of using arrays and linked lists in C versus Java [109], but the author only measures the
time students spend on their implementations and student perspectives of what they
thought was different and similar between their Java and C implementations. Another
study repeating a study from 1996 shows how students think about recursive versus
iterative code for searching and copying linked lists in Java and Pascal [76], but the
study does not use C and only reports on how easily students recognize iterative versus
recursive code for two operations.

Zingaro et al. is the closest related research describing students’ difficulties thinking
about a tail pointer, runtime, and iterating when adding a node to the end of a linked list
[120], which later they use to create questions for their Basic Data Structures Inventory
(BDSI) [90, 111]. However, in all of these examples of research on linked lists in CS
education, none 1) present a comprehensive list of prerequisite knowledge and linked list
concepts in the C programming language and 2) systematically measure students’ concep-
tual and procedural understanding of all the concepts and prerequisite knowledge about



10

pointers and memory management to gain insights into students’ mental models about
linked lists in C. Therefore, the broader goal of this research study is to contribute qual-
itative information about students’ conceptual and procedural understanding of linked
lists in C that CS education researchers can use for the creation of a linked list CI.

2.5 Reasoning and Spatial Visualization

Teaching and learning CS involves drawing and sketching to support understanding
through visualization of the program execution [104]. Many students start solving pro-
gramming problems by drawing pictures or drawing code traces [21]. The pictures repre-
sent how the students think and the strategy used to solve the problems [50]. We believe
drawing pictures is related to the students’ spatial ability.

Researchers show that spatial reasoning is the cognitive ability to understand the
relationship between objects in space [60], and spatial skills are important for navigat-
ing the real world and abstract information [113, 65]. In computer science education,
researchers show that spatial ability is an important factor in program comprehension
[25, 20, 61]. When programmers are trying to comprehend a program, they construct very
high cognitive skills and structure [17] to support understanding by adapting and com-
bining existing skills [16]. Programmers seem to use mental models and spatial imagery
when coding programming concepts [39] and to describe the code’s purpose, operation,
and abstractions [30].

Spatial skills also play a very important role in success in science, technology, en-
gineering, and mathematics (STEM), including biology [98], chemistry [102, 8], physics
[66], mathematics [14, 105], computer programming [60], design [72], engineering graphics
[74], geometry [107], and engineering [2, 106]. One spatial skill is spatial visualization
[40], which is an individual’s ability to mentally rotate, fold or unfold flat objects and
manipulate two- and three-dimensional stimulus objects (e.g. the performance of se-
rial operations) in short-term memory [40, 78]. There is a well-known test in chemistry
called the Purdue Visualization of Rotations (ROT) test for measuring an individual’s
visual-spatial ability [8].

The ROT test has 20 multiple-choice questions, and it must be completed in 10
minutes to restrict analytic processing. At the top of each question, there is an example
picture of an object that is rotated in a specific direction, and the student is asked to



11

rotate a different object in the same manner. The test creators show a highly significant
correlation between students’ performance in introductory chemistry courses and this
visual-spatial test [8]. The researchers find that students who did well on the visual-
spatial test did well on the exam questions that required problem-solving skills and mental
manipulations of two-dimensional representations of a molecule. Therefore, they claim
that the test might be used to determine students who may have difficulty learning
abstract concepts, solving spatial tasks, and visualizing a three-dimensional structure
from a two-dimensional space, such as a drawing [8].

Several CS education studies also research the connection between spatial ability
and programming success [18, 28, 97, 30, 60, 61, 75, 112]. Fincher et al. find a small
positive correlation between CS students’ grades and spatial skills across eleven post-
secondary educational institutions, mainly in Australia [28]. Jones and Burnett conduct
a study with students in a Masters IT course in the UK, and they find that students with
high spatial ability completed code comprehension exercises faster than students with
lower spatial ability [61]. Also, they find a strong correlation between spatial ability and
results in programming modules, and one year later, Jones and Burnett find a correlation
between visualization (mental rotation) skills and programming success [60], which aligns
with many prior studies.

In 1984, Webb finds that spatial ability in students aged 11-14 was a predictor of
how well a student could use basic Logo commands and create graphical Logo programs,
after learning Logo programming for one week [112]. Two years later, Mayer et al. show
that “success in learning Basic was related to general intellectual ability, especially logical
reasoning, and spatial ability” [75]. Two decades later, Fisher, Cox, and Zhao conduct
a study with both undergraduate and graduate students from Engineering, Science, and
Computer Science with experience in Java, and they find that “similar cognitive skills are
used for spatial cognition and program comprehension/development” [30].

Since a person’s visual-spatial reasoning contributes to their ability to think abstractly
[118], this may impact reasoning about linked lists. In this research study, we use the
ROT test to assess the relationship between students’ reasoning about linked lists and
their ROT test scores. Using the ROT test will help us identify whether students’ visual-
spatial reasoning plays a role in how well they are able to understand and visualize linked
lists.



12

Chapter 3: Research Method

The purpose of our study is to 1) examine how students think and reason about linked lists
in data structures, 2) explore how well students understand the linked lists, 3) examine
what misunderstandings students have about linked list concepts, and 4) determine if
there is a relationship between understanding linked lists and visual-spatial reasoning to
provide more insights into factors that play a role in students’ reasoning and learning
about linked list. We use observations of students solving problems in a semi-structured,
think-aloud interview and a survey of their conceptual understanding to identify the
quality of a student’s mental model of linked lists in C. In the following sections, we
provide a comprehensive inventory of linked list concepts in C and a framework for how
the concepts relate to one another, and then, we present how we collected and evaluated
the data.

3.1 Categorization of Linked List Concepts:

Before we discuss the linked list concepts, we present a categorization of the linked lists
concepts in the C language. These four categories include 1) the prerequisite knowledge
about pointer variables and memory that is required before learning about linked lists,
2) the pieces (or parts) of linked lists, 3) the different types of linked lists, and 4) the
operations performed on linked lists (see Figure 3.1).



13

Linked List Types:

Singly, Doubly, Singly Circular, Doubly Circular

Linked List Pieces:

Node, List Data, Node Pointer, Head Pointer, Tail Pointer

Prerequisite Knowledge:

Pointers, Memory Management

Linked List Operations:

Create Empty List, Check Empty,  Insert Node, Delete 
Node, Iteration, Find Length, Swap Nodes, Find 

Value, Print, Clear

Figure 3.1. Linked List Concept Categories

The pieces of a linked list include 1) the node with 2) the list data and 3) the node
pointer members, as well as 4) the head pointer variable and 5) the tail pointer variable.
We realize that the tail pointer variable is not required, but we believe it is an important
concept for students to conceptually understand. We identify ten operations on linked
lists that include 1) creating an empty list, 2) checking if it is empty, 3) iterating through
a list, 4) clearing a list, 5) finding the length, 6) finding a value, 7) printing the list,
8) swapping nodes, and 9) inserting and 10) deleting nodes. These categories provide a
comprehensive set of prior knowledge and concepts required to have a complete mental
model to assess in the survey and interview, and we list each of these concepts within
their corresponding category in Figure 3.1 and expand on each concept in detail in the
following Section 3.1.1.



14

3.1.1 Linked List Concepts:

After categorizing a set of linked list concepts, we define what it means for a student
to understand each concept to uncover how students reason about these concept after
learning them in class. We consider every linked list concept in our study to help us fully
examine students’ mental models of linked lists.

Table 3.1 presents each concept with the concept number we use when referring to and
analyzing the data, along with the definition of what it means for a student to understand
each concept. Since students must understand every concept to have a correct mental
model [59], we evaluate their prerequisite knowledge (PK1-PK10) and linked list concepts
(C1 - C28) in the survey and interview.

Concept No. Linked List Concept Definitions of Student Understand-
ing

Prerequisite Knowledge

PK1
Pointer Variable Decla-
ration

The student understands how to declare a
pointer variable in memory.

PK2
Pointer Variable Assign-
ment

The student understands how to assign a
value to the pointer variable.

PK3
Pointer Variable Initial-
izing

The student understands a node pointer
variable initialization and the importance
of doing that.

PK4
Pointer Variable Opera-
tors

The student understands how to use the
asterisk (*) and ampersand (&) operators

PK5
Dereferencing Pointer
Variable

The student understands the meaning of
dereferencing a pointer variable and how
the pointer variable is dereferenced.

PK6
Pointer Variable Manip-
ulation

The student understands how to manipu-
late the pointer variable.

PK7 Freeing Memory
The student understands the benefit of us-
ing free function and how to use it.



15

PK8 Memory Storage
The student understands the memory
model and how the data is stored and ar-
ranged in the memory.

PK9 Malloc() Command
The student understands what malloc
function does and what it returns.

PK10 Coding with Functions
The student understands the how to pass
the linked list through function parame-
ters and arguments.

Linked List Pieces

C1 Node

The student is able to identify the two
members of the node (list data and node
pointer) and what is the type of data that
can be stored.

C2 Node Pointer Variable

The student is able to identify the node
pointer variable’s data type, the type of
data that pointer variable can store, and
the different forms that it can come in.

C3 NULL Pointer

The student is able to identify the mean-
ing of NULL pointer, where it can be used
in the context of the linked list, and the
importance of including it.

C4 List Data
The student is able to identify the type of
data that stores in the node’s data section.

C5 Head Pointer Variable
The student knows the importance of the
head pointer variable and the benefit of
including it.

C6 Tail Pointer Variable
The student knows the importance of the
tail pointer variable and the benefit of in-
cluding it.



16

C7
Node Pointer vs. Node
for Head & Tail

The student is able to identify the head
and tail as node pointer variable and
knowing the importance of being node
pointer variable vs. node.

Linked List Types

C8 Singly Linked List
The student is able to identify all different
pieces of a singly linked list type.

C9 Doubly Linked List
The student is able to identify all different
pieces of a doubly linked list types.

C10
Singly Circular Linked
List

The student is able to identify all different
pieces of a singly circular linked list types.

C11
Doubly Circular Linked
List

The student is able to identify all different
pieces of a doubly circular linked list types.

Linked List Operations

C12 Node Allocation
The student understands how to allocate a
new node in memory and assign its mem-
ory to a pointer variable.

C13
Accessing Node Mem-
bers

The student understands how to access the
list data and node pointer members that
are stored in a node.

C14
Create an Empty List The student understands the steps for cre-

ating an empty list.

C15 Check Empty
The student understands the steps to
check for an empty list.

C16
Insert a Node at the Be-
ginning of the List

The student understands the steps for
adding a new node at the beginning of dif-
ferent types of linked lists.

C17
Insert a Node at the
End of the List

The student understands the steps for
adding a new node at the end of different
types of linked lists.



17

C18
Insert a Node at the
Specific Location of the
List

The student understands the steps for
adding a new node at the specific location
of different types of linked lists.

C19
Delete a Node at the Be-
ginning of the List

The student understands the steps for
deleting a node at the beginning of dif-
ferent types of linked lists.

C20
Delete a Node at the
End of the List

The student understands the steps for
deleting a node at the end of different
types of linked lists.

C21
Delete a Node at the
Specific Location of the
List

The student understands the steps for
deleting a node at the specific location of
different types of linked lists.

C22 Iteration
The student is understands the steps to
iterate through a linked list.

C23 Find List Length
The student understands the steps to find
the list length.

C24 Swap: Nodes vs. Data

The student is able to differentiate be-
tween swapping only the data or the node
as a whole and know the benefit of using
each of them.

C25 Swap Nodes
The student understands the steps for
swapping nodes.

C26 Find Value
The student understands the steps to find
the node that stored the intended value.

C27 Print List
The student understands the steps to print
the values stored in a linked list.

C28 Clear List
The student understands the steps to clear
the entire linked list.

Table 3.1. A comprehensive list of prerequisite knowledge and linked list concepts with
their definitions.



18

3.2 Linked List Framework

We measure students’ mental models of a singly linked list by examining students’ con-
ceptual understanding of the singly linked list pieces and their procedural understanding
of how to implement these pieces and operations on lists. We also evaluate how students
apply or use this knowledge to understand other types of linked lists, such as a doubly
linked list and a circular linked list.

Figure 3.2 shows a complete view of the framework used to examine students’ mental
models of a singly linked list in C. We use the C language in this research because it is
the language used in the data structures class at the participating university. The figure
shows that knowledge about singly linked lists (middle rectangle) requires prior knowl-
edge of pointers and memory management (left rectangle). Students must have a deep
understanding of this prerequisite knowledge to successfully understand and implement
a singly linked list in C, and the prerequisite knowledge and singly linked list knowledge
are required for understanding other types of linked lists (right rectangle).



19

Ap
pl
yi
ng

Kn
ow

le
dg

e

Prerequisite 
Knowledge

Pieces Singly Linked 
List Description

Singly Linked 
List Operations

Singly Linked List Knowledge

Data Node
Pointer

Head
Pointer Node

Tail
Pointer

Applying
Knowledge

Empty List

Check Empty

Insert Node 
Beginning

Iteration

Swap Nodes
Insert Node 

Specific 

Insert Node 
End

Delete Node 
Beginning

Delete Node 
Specific 

Delete Node 
End

Print List

Clear List

Find Value

Find Length

Pointers

Memory 
Management              

Pointer 
Declaration

Pointer 
Assignment

Pointer 
Operators

Pointer 
Initialization

Dereferencing 
Pointer 

Pointer 
Manipulation

Freeing 
Memory

Coding with 
Function

Memory 
Storage

Malloc()

Explain Code

Doubly Linked
List

Singly Circular 
Linked List

Singly Linked List 
with Tail Pointer

Singly Circular 
Linked List 
Description

Doubly Linked List 
Description

Doubly Circular 
Linked List 
Description

Other Linked List Knowledge

Node Pointer Node Pointer

Type Description

Figure 3.2. Linked List Framework illustrating the relationship among prerequisite
knowledge, a singly linked list, and applying this knowledge to different linked lists.

First, students must generally understand what a linked list is, which requires knowl-
edge of the pieces (parts) of the linked list but not necessarily the operations. Next, stu-
dents must understand the five pieces of a singly linked list in order to perform operations
on the list. In addition to measuring students’ conceptual and procedural understand-
ings of linked list pieces, we measure their procedural understanding of 14 operations on
singly linked lists (see Figure 3.2). We expand inserting and deleting nodes to include
the beginning, the end, and a specified location in the list. Due to time constraints, we
only ask students to recognize the code for swapping nodes, finding a value, printing the
list, and clearing the list, and we do not ask student to explain these four operations.
However, since students think aloud while implementing the linked lists, we are able to
infer their conceptual understanding.

There is a strong dependency between understanding the pieces of a linked list and
the ability to describe a singly linked list. If students have a deep understanding of the
linked list pieces, they can correctly combine these pieces to describe a singly linked list.



20

Therefore, after identifying students’ reasoning and understanding of individual linked
list pieces, we explore how students combine their reasoning about these pieces when
broadly describing a singly linked list and implementing operations on it.

Even though we do not directly measure all aspects of students’ prerequisite knowl-
edge about pointers and memory management, we do ask students some questions about
pointer assignment and freeing memory. However, we primarily evaluate their perquisite
knowledge from their interview responses and code for a singly linked list. Then, we
measure how students apply their knowledge of a singly linked list to describing different
types of linked list and explaining how their code changes for other types of linked lists.

3.3 The Survey and Semi-Structured Interview Questions:

For students to have a correct mental model of linked lists in C, they need to understand
all the linked list concepts, including the prerequisite knowledge. We use the linked list
categories, inventory of linked list concepts, and framework of linked list concepts as a
guide for building the survey and constructing the interview questions. The interview
and survey questions come from a variety of sources including Kruse’s “Data Structures
and Program Design in C” textbook [67], lecture notes and book created by one of
Oregon State University’s faculty members, online resources “GeeksforGeeks”1, classroom
discussions from a summer 2019 lecture, and the researchers based on linked list concepts
in Table 3.1. The observations in the classroom led to some questions being directly based
on summer 2019 students’ thinking at the participating university, which is helpful for
detecting the same misconceptions other students may have [1].

The survey mainly focuses on examining students’ conceptual understanding of a
subset of the linked list concepts identified in Table 3.1. We use the results from the
survey as a guide for our preliminary understanding of students’ mental models about
linked lists. The survey contains 28 questions with 12 multiple-choice questions, 5 open-
ended questions, and 11 multiple choice with a justification for the choice (see Appendix
A). The first part of the survey collects demographic and background information from
the participants; whereas, the rest of the survey is about linked lists and pointers.

Only the fundamental concepts are covered in the linked lists survey to keep the
time limit to 15 minutes. We ask students to recognize linked list pieces in drawings,

1https://www.geeksforgeeks.org/



21

identify the benefit of specific linked list pieces, recognize different types of linked list by
a drawing, and answer basic questions about pointers. While it is likely that the students
are reasoning about their choices on most of the survey questions, especially for those
where they must provide a justification for their answer, this survey primarily aims to
assess their conceptual understanding for a subset of concepts and not their reasoning or
procedural understanding.

Whereas, the semi-structured interview questions focus on measuring students’
conceptual and/or procedural understandings of the identified concepts in Table 3.1 and
the relationship between these concepts (see Appendices B - C). The interview questions
are open-ended and consist of three main types: verbal, coding, and recognition. In the
13 verbal type questions, we ask students for definitions and the importance of different
linked lists types and pieces. In the 9 coding questions, we ask students to write code or
pseudocode for operations on a singly linked list.

Even though students in their data structures class are taught about singly and doubly
linked lists with head and tail pointer variables, they only implement a singly linked list
with a head pointer variable by themselves. Therefore, we only ask students to write
code or pseudocode for a singly linked list with a head pointer variable. However, we
do ask the participants in the last 3 coding questions of the interview to explain any
modifications to their code if a tail was added to the end or if they changed the type of
linked list to a doubly or circular linked list. Based on Hoffman, we believe that students
who have accurate mental models of a singly linked list can apply this knowledge to
unseen problems, which is important to extract from students’ mental models [56]. The
students only need to mention the name of the functions that need to change and how
they are going to change them for the different types of lists.

In the last four questions, we ask students to recognize four functions about linked
list operations and the purpose of each function. Only two interview questions directly
ask students about their prerequisite knowledge, but the answers to the other questions
about linked lists depend on a good understanding of the prerequisite knowledge.

3.3.1 Collect Expert Feedback and Revision:

We collect feedback by three experts who previously taught linked lists (2 graduate
students and one professor) to pilot and revise the linked list categories, concept list,



22

survey questions, and interview questions. The experts agree on the importance of all
concepts listed in Table 3.1, and they did not have any additional questions for the survey
and the interview. However, the experts did suggest fixing misspelled words and adding
clarity to questions that were confusing or needed to be split into two questions. We
revised the survey and the interview questions many times, and the survey and interview
questions in Appendices A - D reflect the final version.

3.3.2 Mapping Survey and Interview Questions to the Linked List
Concepts

Since each survey and interview question assesses a specific linked list concept identified
in Table 3.1, we map the concepts to the corresponding survey and interview questions
to make sure we have coverage, as well as to see the dependencies concepts have with
other concepts (see Table 3.2).

The questions have a letter identifying which area of the study we asked the question.
The questions prefaced with a ’S’ are from the survey, and the questions prefaced with
an ’I’ are from the interview. Then, we separate the interview questions into those that
ask students for a verbal response (IV), to write code or pseudocode (IC), or to recognize
what a piece of code does (IR). Within the coding questions, we label questions with an
’IE’ to indicate when students are asked to explain their code or how it might change
given a new concept. The prerequisite knowledge at the end of the table is not directly
related to the linked list knowledge, but it is essential knowledge that the students need
in order to successfully understand linked lists. Even though we only have a few questions
to directly assess prerequisite knowledge, we analyze students’ prerequisite knowledge as
part of the rubric for all interview questions.

As seen in Table 3.2 mapping, some concepts are assessed using multiple questions
from the survey or interview, which allows us to get multiple perspectives of how students
understand individual concepts needed for an accurate mental model of linked lists, and
we have complete coverage of the concepts in the interview. We recognize there are
dependencies between the 28 linked list concepts identified in Table 3.1, such as when
answering questions about operations on linked lists which require the understanding of
linked list pieces. We show the mapping of the dependencies in the survey and interview
in the “Concepts” column on the far right of Table 3.2.



23

Survey Interview

Pieces Questions
Verbal

Questions
Coding

Questions
Recognition
Questions

Concepts

Node S-Q1, Q7 IV-Q1, Q12
IC-Q1, Q3,
Q6.1, Q6.2

PK1-5,PK9,C1,
C2,C3,C4,C6,C12,
C13

Node Pointer
S-Q2,Q5,
Q8,Q10

IV-Q1, Q2, Q4,
Q5, Q6, Q7

IC-Q3,
Q6.1,Q6.2

PK1-6,PK10,
C1,C2,C3,C6,C7

Data
S-Q15,Q16,

Q17
IV-Q9

IC-Q6.1,
Q6.2

PK1-5,
C3,C12,C13

Head S-Q6 IV-Q3, Q3.1,Q3.2 IC-Q1,Q3 C1,C2,C5,C7,C8

Tail S-Q9 IV-Q3,Q3.1,Q3.2 IE-Q7 C1,C2,C6,C7,C8

Types

SLL
S-Q4
S-Q18

IV-Q4 C1,C2,C3,C4,
C5,C8

SCLL S-Q12 IV-Q6 IE-Q8 C1,C2,C3,C4,
C5,C10

DLL S-Q13, Q19 IV-Q5 IE-Q9 C1,C2,C3,C4,
C5,C9

DCLL S-Q11 IV-Q7 C1,C2,C3,C4,
C5,C11

Operations

Create Empty
List

S-Q3 IC-Q1 PK1-5,PK8,
PK10,C1,C3,C5,
C8,C13,C14,C17

Check Empty IC-Q2 PK1-5,PK8,
PK-10,C2,C5,
C13,C15

Insert
Beginning

IC-Q3 PK1-5,PK7-9,
C1,C5,C8,C12,
C13,C16

Insert Specific
Location

IC-Q6.2 PK1-6,PK8-10,
C1,C4,C5,C8,
C12,
C13,C18,C22,C26



24

Insert End IC-Q6.1 PK1-6,PK8-10,
C1,C3,C4,C5,
C8,C12,C13,C17
C22

Delete
Beginning

S-Q20 IC-Q4 PK1-7,PK10,
C5,C8,C13,
C15,C16,C19

Delete Specific
Location

IC-Q6.4 PK1-7,PK10,
C5,C8,C13,
C21,C22,C26

Delete End IC-Q6.3 PK1-7,PK10,
C3,C5,C8,
C13,C20,C22

Iteration
IC-Q5, 6.1,
6.2, 6.3, 6.4

PK1-
5,PK8,PK10,
C5,C8,C13,C22

Find Length IC-Q5 PK1-
5,PK8,PK10,
C5,C8,C13,
C22,C23

Swap Nodes IV-Q13 IR-Q1 PK1-5,PK8,
C5,C8,C13,
C22,C24,C25

Find Value IR-Q2 PK1-5,PK8,
C5,C8,C13,
C22,C26

Print list IR-Q3 PK1-5,PK8,
C5,C8,C13,
C22,C27

Clear list S-Q21 IR-Q4 PK1-8,
C5,C8,C13,
C22,C28

Prerequisite Knowledge

Freeing
Memory

S-Q22 PK7



25

Pointer Variable
Declaration

S-Q23 PK1

Pointer Variable
Assignment

S-Q24, Q25,
Q26, Q27

PK1-2

Pointer Variable
Manipulation

S-Q28 PK1-6,

Dereferencing
Pointer Variable

IV-Q11,
Q11.1

PK5

Table 3.2. Mapping linked list concepts to the corresponding survey and interview
questions in which they appear. Note that S-Qx refers to survey question, IV-Qx refers
to interview verbal question, IC-Qx refers to interview coding question, IE-Qx refers to
interview explanation question, IR refers to interview recognition, SLL refers to singly
linked list, SCLL refers to singly circular linked list, DLL refers to doubly linked list, and
DCLL refers to doubly circular linked list.

3.4 Data Collection:

With permission from the Institutional Review Board (IRB) to recruit students, we
visited the data structures class at Oregon State University (OSU) in the fourth week,
after covering linked lists, to ask students to participate in this study. After the class
visit, we emailed the 250 students with a link to the consent and survey to determine
who was interested in the interview and if we had variation among participants. Out
of the 40 students who took the survey and expressed interest in the interview, only 11
out of the 40 students responded back to schedule the 2-hour, $15/hr semi-structured
think-aloud interview.

While the number of participants is small and the results are not generalizable to
linked lists in other programming languages, we believe the rich data yielded from these
participants provides meaningful, initial insights about patterns of students’ conceptual
and procedural knowledge about singly linked lists in the C programming language that
other researchers can leverage for future studies and educators can use to improve their
instruction or assessment of linked lists in C. Since there is not much research on how
students think about linked lists to use as a foundation, this research is similar to an
initial, empirical study on 12 students’ understanding of free fall [13], which was later



26

used by other researchers to develop the Force Concept Inventory, which is one of the
most well-known misconception assessments in physics [77, 44].

Materials and Procedure: The online survey was constructed in Qualtrics, and the
semi-guided interview, which was held in a Kelley Engineering Center conference room at
OSU, followed a think-aloud technique that asks an individual to verbally express their
thoughts as they answer a question or solve a problem [26]. We used the technique to
capture the dynamic process of thinking, and throughout the semi-structured interview,
we reminded the students to think-aloud.

All the interviews were audio and screen recorded using a Windows 7 touch screen
tablet to capture what the student said, coded, and drew. Applications, such as Notepad++,
MobaXterm, PuTTY, Microsoft Word, and the Google Chrome browser, were installed
and saved as shortcuts on the desktop and taskbar for the participant’s use. We gave
all participants a printout of the interview questions, and there was no time limit for
answering each question in the interview to reduce the students’ stress level.

Even though students knew that they could run the code they wrote on the computer,
we reminded them of this when they were not sure about the correctness of their code.
We also reminded students that they could draw on the tablet with the stylus. While we
were careful not to lead or bias student responses during the interview, when students
did not say much, we asked students follow-up questions, such as “What do you mean?”,
“Why do you think that?”, “Can you elaborate more?”, etc., or to express additional
comments/thoughts to obtain more information to narrow their knowledge gap or clarify
their misunderstandings. We also explained questions in more detail when they needed
a question clarified or seemed confused by a question.

At the end of the interview, we gave the students a 20 item spatial visualization test
called the Purdue Visualization of Rotations Test (ROT) [8]. A spatial visualization
test measures the ability to mentally rotate, fold or unfold flat objects and manipulate
two- and three-dimensional stimulus objects (e.g. performance of serial operations) in
short-term memory [40][78]. The test had a 10-minute time limit to reduce the amount
of analytic processing of the shapes, as suggested by the authors. We compare students’
visual-spatial reasoning with how they reason about linked lists to provide more insight
into their mental models about linked lists.

Demographics: Figure 3.3 shows the demographic and background information for
the 40 survey participants, and Table 3.3 shows the demographics for the 11 interview



27

participants. The majority of the students students self-identify as white male majoring
in computer science, and most students had knowledge of linked lists before the data
structures class, which is typically covered at the end of the second programming class
at the participating university to transition the students from C++ to pure C before
the data structures course. Even though the two programming courses prior to the data
structures course are in C++, it is worth noting that the participating university begins
teaching pointers halfway into the first programming class, and the curriculum continues
to stress pointers and memory management throughout the second programming class.

Most participant demographics closely represent the demographics in the data struc-
tures course at the participating university. Even though there are about 30% ECE
majors in the data structures class, the number of female students is sadly not much
higher with only approximately 15% of the course identifying as female. In this research
study, we give the interview students pseudonyms for their names that reflect their de-
mographics, such as Ecer is the ECE student and Chemi is the chemical engineering
student.

Figure 3.3. Demographics and backgrounds of 40 consenting participants in the survey.



28

PID GPA Gender Race Major
Take CS162
at OSU

Other
School

LL
Knowledge
Prior CS261

Joe 3.54 Male White CS Yes Yes

Bob 3.2 Male White CS No PSU Yes

Suzy 2.88 Female Asian CS Yes No

Bill 3.29 Male White CS Yes No

Max 2.97 Male White CS Yes Yes

Phil 3.5 Male White CS Yes No

Feng 3.16 Male Asian CS Yes Yes

Xeng 3.36 Male Asian CS Yes Yes

Chemi 3.98 Male Asian
Chem.
Eng.

Yes Yes

Ecer 2.99 Male White ECE Yes No

Nate 3 Male White CS Yes Yes

Table 3.3. Demographics of 11 Consenting Interview Participants. Note: PID (Partici-
pants’ ID), LL (Linked List), CS (Computer Science), Chem. Eng. (Chemical Engineer-
ing), ECE (Electrical & Computer Engineering), and PSU (Portland State University).

3.5 Evaluation and Data Analysis:

Since we capture undergraduate students’ misunderstandings and knowledge gaps of
linked list concepts using surveys and interviews, we use a mixed-method approach (quan-
titative and qualitative). We use the survey to gain a preliminary understanding of the
students’ conceptual knowledge of basic linked list concepts, such as the pieces and types
of linked lists, but to gain a deeper understanding of students’ mental models and fac-
tors that impact their understanding, we use the semi-structured interview to assess
every linked list concept identified and mapped in Table 3.2, except for students’ prior
knowledge of pointers and memory explicitly.

For the five open-ended questions in the survey (questions 6, 9, 10, 17, and 22), we
generated a correct (or perfect) solution (see the blue answers in the rubrics in Appendix



29

A), and then, we assigned points to the details within the perfect solution for each
question. This provided us an initial rubric to use for inter-rater reliability (IRR).

For each open-ended question, the main author of this study and a senior, under-
graduate researcher independently coded 20% of the 40 participants (8 participants). To
compute the IRR for each question, we used the average agreement between raters for
the 8 participants.

For each question having an IRR below 80% agreement, the researchers 1) discussed
their differences, 2) made changes to the rubric, and 3) graded a different set of 8 par-
ticipants. The two researchers reached a 100% IRR for questions 9, 17, and 22, and they
reached a 93.75% IRR for questions 6 and 10.

Given this reliability, each researcher used the agreed upon final rubrics in Appendix
A to independently grade the remaining participants, as well as re-grade any participants
where IRR was not reached earlier. Figure 3.4 shows the rubric used to grade question
6, which asks about the benefit of including the head pointer variable (labeled as A in
the question 4 diagram) at the beginning of the list, and we provide an example coding
for the first two participants.

Figure 3.4. Example rubric for an open-ended survey question with coding for partici-
pants Joe and Bob.



30

As with the open-ended survey questions, first, two researchers (one of them is an
expert with many years of experience teaching linked lists in C) wrote the correct (or
perfect) solutions for each question in the semi-structured interview (see the blue answers
in the rubrics in Appendices B - D), and then we broke down the expert solutions into
small pieces to create an initial rubric. Since most of the linked list concepts involve
understanding other concepts, e.g. a node component involves understanding the list
data, node pointer, and NULL pointer concepts (see Table 3.2), we make sure to separate
these concepts in the rubric with their own individual points to allow us to analyze
dependent concepts within concepts and other pieces of information.

After transcribing the audio data from the 11 participants for each interview question,
the same two researchers for the survey questions independently coded 20% of the data
using the initial rubrics, which was two participant responses for each question. To
compute the inter-rater reliability (IRR) for applying the rubric to student responses, we
used the same method mentioned above, i.e. the average agreement between raters for
each piece of the solution in the rubric for both participants. For each question having an
IRR below 80%, the researchers discussed their differences, made changes to the rubric,
and graded two different participants with the updated rubric. After reaching an 80%
or above IRR for each question, each researcher used the agreed upon final rubric in
Appendices B - D to independently grade the remaining participants, as well as re-grade
any participants where IRR was not reached earlier.

The final rubrics for the verbal and recognition questions are the same format with
two points for each correct piece of the expert solution and one point for partial credit
in the cases where a student only mentions part of what is in the expert solution (see
Figure 3.5). We include the reasons for not being correct or partially correct, as well as
any other observations we find surprising in the students’ response. Figure 3.5 shows the
final rubric used to score the first verbal question asking the student to describe a node
in a linked list, and the figure includes an example coding for the first participant, Joe.



31

Figure 3.5. Example rubric for a verbal interview question with coding for participant
Joe.

For the coding questions, the final rubrics have two sections: the core section, which
covers the understanding of the linked list concepts, and an additional/prerequisite knowl-
edge section covering knowledge of other related concepts to the linked list (after the bold
line in Figure 3.6). To have a complete procedural understanding of the singly linked
list concepts, students must correctly implement each piece of the solution in the core
section. Each piece of the solution is worth three points for correctly implementing it,
and students get two points for trying to implement a piece of the solution or expressing
it in pseudocode. Students get one point for stating what needs to be done and showing
conceptual understanding, even if they lack procedural understanding. Because there
are multiple ways to implement solutions, we had alternative wording in the rubrics to
accommodate for multiple solutions.

For example, the first coding question asks students to create an empty list, and
since we do not state that students must make a function to do this, creating a function



32

is not part of the core section (see Figure 3.6). Even if students write a function, we
accommodate for the different ways a student might write this function. However, a
student must be able to implement all pieces in the core section to successfully implement
the operation. Figure 3.6 shows that the rubric for one solution to the first coding question
and provides an example coding for participant Xeng. We use the results from coding
questions and the survey questions as a triangulation for the missing or incorrect data in
the verbal responses to interview questions. This provides more meaning and clarity to
the data that is missing in these questions.

Figure 3.6. Grading participant Xeng on the coding interview question about creating
an empty list using the generated coding rubric.

During the interview, only two students compile their code. In the situation when the
compiler fixes their errors, we do not give them full points, but we give them full points
when they fix their bugs in later questions by themselves as a result of the earlier compiler
message. Points are not deducted when students perform minor errors in coding, such as



33

missing semicolons, missing brackets, or do not typecast the return memory address by
malloc when a new node is created. This is because these syntax errors do not directly
correlate to misunderstanding the linked list concepts.

The rubrics for the explanation questions in the coding section of the interview are
updated to include additional details needed to make the change. Figure 3.7 is an ex-
ample of the rubric used to grade Chemi’s explanation about code modifications when
adding a tail pointer variable. We consider the concept below the bold line as additional
information because we provided the picture of the linked list for the participants. We
did not expect that the participants would think about the case where inserting a node
at a specific location would be after the last node. The rubric is very similar to the verbal
and recognition question rubrics, but it has extra credit for stating what function needs
to be changed (see Appendices A - D for more details about the rubrics).

Figure 3.7. Grading Chemi’s explanation about code changing when adding a tail
pointer variable using the explanation code rubric.



34

Chapter 4: Results and Discussions

After coding all participant responses to the survey and interview questions using the
final rubrics in Appendices A - D, we use the coded rubrics as the data for our analysis of
student mental models and misunderstandings. In this chapter, we discuss our method
for answering each research question and present the results from our analysis of the
multiple-choice survey responses, coded rubrics of answers to open-ended questions, and
visual-spatial reasoning test scores to answer our four main research questions.

• RQ1: What are students’ mental models of linked lists in the C programming
language, and how accurate are their mental models?

• RQ2: What difficulties do students face while learning about linked lists in the C
programming language?

• RQ3: What is the relationship between students’ understanding about linked lists
and their visual-spatial reasoning?

• RQ4: What is the relationship between drawing pictures while reasoning about
linked lists and students’ visual-spatial reasoning?

In Section 4.1, we uncover students’ mental models about linked lists and the accuracy
of their mental models to answer RQ1. In Section 4.2, we address RQ2 by presenting
the difficulties students’ report having while learning about linked lists in C. In Section
4.3, we correlate students’ mental models and drawing pictures of abstract concepts
with their score on the Purdue Visualization of Rotations Test (ROT) [8] to gain a better
understanding of how students’ visual-spatial reasoning might impact their understanding
of linked lists to answer RQ3 and RQ4.



35

4.1 RQ1: What are students’ mental models of linked lists in the C
programming language, and how accurate are their mental mod-
els?

We uncover students’ mental models about linked lists and how accurate they are by
addressing each sub-question individually. First, we measure the accuracy of students’
mental models using the quantitative scores given on the coded rubrics, and then, we ad-
dress the details of students’ mental models by analyzing students’ qualitative responses
to the survey and think-aloud, semi-structured interview questions (see RQ1.1 and RQ1.2
below).

• RQ1.1: How accurate are students’ mental models about the types and pieces of
linked lists and operations on linked lists? We measure accuracy by calculating
each student’s overall score for each survey and interview question based on the
correctness of their multiple choice answer or the total points received on a rubric
for grading an open-ended question. We use the question scores and mapping to
concepts in Table 3.2 to evaluate how accurate students’ conceptual and procedural
understandings are, which addresses how accurate students’ overall mental models
of linked lists are.

• RQ1.2: What are students’ misunderstandings or gaps in knowledge about the types
and pieces of linked lists and operations on linked lists? We classify students’
misunderstandings as incorrect responses, and we define gaps in knowledge as a
lack or absence of knowledge in the students’ responses. To determine students’
understanding of the types and pieces of linked lists, as well as the operations on
linked lists, we analyze students’ answers to multiple-choice survey questions and
the coded rubrics with respect to each concept identified and mapped in Table 3.2.
We present a content analysis for each linked list concept with descriptions/themes
of students’ misunderstandings and lack of knowledge, as well as an analysis of their
prerequisite knowledge.



36

4.1.1 RQ1.1: How accurate are students’ mental models about the
types and pieces of linked lists and operations on linked lists?

We define accuracy as the correctness of the students’ answers to survey and interview
questions compared to an expert. We identify students’ mental models by examining
students’ conceptual and procedural understanding of linked lists in the C programming
language. Since students are not asked to implement other linked lists beyond a singly
linked list with a head pointer variable, we do not measure the accuracy of students’ pro-
cedural understanding of different types of linked lists or a tail pointer variable. However,
we do measure students’ conceptual understanding of all types and pieces of linked lists,
in addition to their procedural understanding of singly linked lists.

Survey Performance: First, we calculate the percentage of students with the cor-
rect answer for each multiple-choice survey question (see Figure 4.1). The results from
the 11 students who participated in the interview are compared with the other 29 par-
ticipants who only took the survey. There are not many differences in the two groups of
students, which indicates that the interview participants are largely representative of all
the students who participated in the survey.

79 76 79

83

34

83

72

41

3

83

97 97

93

86

90

10
0

24

97

90

79

93

15

59

96

85

74

70

85

91

10
0

73

55

27

82

73

45

0

91

10
0

10
0

82

73

10
0

10
0

18

91 91

73 70

18

55

91

82

73

45

91

0

20

40

60

80

100

120

Q 1 Q 2 Q 3 Q 4 Q 5  Q 6 Q 7 Q 8 Q 9 Q 1 0 Q 1 1 Q 1 2 Q 1 3 Q 1 4 Q 1 5 Q 1 6 Q 1 7 Q 1 8 Q 1 9 Q 2 0 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 2 5 Q 2 6 Q 2 7 Q 2 8

%
 C

O
RR

EC
T 

RE
SP

O
N

SE
 R

AT
ES

QUESTION NUMBERS

THE PERCENTAGE OF CORRECT RESPONSE RATES FOR SURVEY-ONLY  
PARTICIPANTS VS. INTERVIEW PARTICIPANTS PER SURVEY QUESTION

29 Participants 11 Participants

Figure 4.1. Percentage of students with the correct answer on each survey question.
Note: Q21 is out of 10 participants, and Q22-28 are out of 27 participants.

In Q2 about the node pointer, the interview participants outperform those who only
took the survey; whereas, the students who only took the survey outperform the interview



37

students in Q4 (about a singly linked list), Q21 (clearing the list), and Q27 (pointer
variable assignment). Most students from both groups lose points on questions Q5, Q8,
Q9, and Q17, which are about a node pointer being part of a node, like with the next
pointer variable, and being separate from a node, like with a head or tail pointer variable
(see Appendix E for more details).

Interview Performance: Since the interview questions are open-ended, we calcu-
late students’ percentage of points earned on each interview question using rubrics from
Appendices B - D with many points for partial credit. Table 4.1 shows the participants’
scores on each question for the verbal, coding, explanation, and recognition sections of
the interview, as well as the overall total score for each section. Students who get 100%
for a concept being evaluated by an interview question are said to have knowledge of
that linked list concept and are colored green. Participants getting a 90% or higher (but
not a perfect score) are colored gray and are labeled as having a very close to correct
understanding of the concept, and those getting an 80-89% are colored blue indicating
their understanding is above average. Those with a score below an 80% are colored in
light-red to indicate a concern.

Verbal Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

Q1 67% 67% 17% 50% 50% 50% 83% 50% 50% 67% 67%

Q2 40% 30% 50% 30% 60% 30% 20% 20% 40% 20% 20%

Q3 33% 33% 17% 33% 33% 33% 33% 33% 33% 33% 17%

Q3.1 46% 29% 8% 25% 0% 17% 17% 29% 17% 21% 8%

Q3.2 50% 50% 25% 50% 50% 100% 100% 50% 75% 50% 0%

Q4 72% 67% 72% 72% 72% 28% 61% 44% 50% 56% 78%

Q5 68% 64% 50% 64% 68% 27% 55% 18% 50% 32% 55%

Q6 67% 67% 61% 72% 61% 44% 67% 28% 39% 44% 67%

Q7 82% 45% 45% 73% 59% 36% 64% 32% 45% 45% 64%

Q8 31% 13% 19% 34% 31% 34% 0% 16% 34% 19% 28%

Q9 100% 100% 0% 50% 100% 100% 100% 100% 100% 100% 100%

Q10 33% 100% 33% 100% 100% 100% 100% 100% 100% 100% 33%

Q11 67% 67% 0% 67% 67% 67% 67% 67% 67% 67% 67%

Q11.1 100% 100% 50% 100% 100% 100% 100% 100% 100% 100% 50%



38

Q12 100% 63% 13% 50% 88% 38% 38% 63% 50% 38% 38%

Q13 100% 33% 33% - 100% 100% 33% 67% 33% 67% 100%

Total 59% 48% 34% 53% 52% 40% 45% 36% 44% 41% 46%

Coding Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

Q1 19% 100% 44% 94% 100% 63% 81% 100% 81% 25% 75%

Q2 43% 100% 0% 100% 100% 100% 71% 100% 71% 71% 43%

Q3 77% 100% 15% 100% 100% 92% 85% 85% 54% 69% 31%

Q4 81% 78% 6% 78% 100% 81% 94% 81% 75% 63% 0%

Q5 82% 100% 41% 82% 95% 91% 86% 100% 95% 91% 95%

Q6.1 82% 100% 25% 93% 100% 93% 86% 100% 96% 79% 93%

Q6.2 71% 100% 21% 82% 68% 93% 82% 100% 96% 82% 86%

Q6.3 74% 100% 11% 100% 58% 89% 58% 100% 95% 68% 89%

Q6.4 100% 100% 23% 100% 77% 100% 64% 100% 95% 86% 86%

Total 74% 98% 23% 91% 87% 89% 79% 97% 88% 73% 74%

Explain

Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

Q7 20% 40% 33% 53% 20% 20% 40% 53% 20% 33% 20%

Q8 33% 28% 0% 50% 0% 39% 11% 56% 56% 39% 33%

Q9 67% 19% 5% 57% 14% 71% 14% 57% 29% 57% 38%

Total 43% 28% 11% 54% 11% 46% 20% 56% 35% 44% 31%

Recognition

Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

Q1 50% 50% 0% 50% 50% 50% 50% 50% 50% 50% 50%

Q2 100% 100% 50% 100% 100% 100% 100% 100% 100% 100% 100%

Q3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Q4 100% 100% 0% 100% 100% 100% 100% 100% 100% 100% 100%

Total 80% 80% 30% 80% 80% 80% 80% 80% 80% 80% 80%

Table 4.1. Each participants’ percentage of points earned on each question from the
verbal, coding, and recognition sections of the interview. Note: Light-red (< 80%), blue
(80-89%), gray (90-99%), and green (100%).



39

Students’ score much higher on coding and recognition questions about operations
on linked lists in the interview (see Table 4.1). Overall, students do not do well on
questions asking them to verbalize/explain their understanding of concepts. This might
be because students can arrive at the correct solution through trial and error with code
or lack enough detail in their responses to show a complete understanding of the concept.

For a more detailed view, we break down students’ accuracy on interview questions
by concept (see Table 4.2). The light-purple rows represent conceptual understanding,
and the light-orange rows represent procedural understanding. In the interview, we only
measure students’ conceptual understanding of different types of linked lists and about
dereferencing a pointer variable, but we measure both their conceptual and procedural
understanding of the pieces of and operations on a singly linked list.

Only about 36% of the participants (Bob, Bill, Max, and Xeng) accurately code the
node structure piece of a singly linked list in C, and only 27% of the participants (Bob,
Bill, and Xeng) know how to correctly code the next node pointer variable as part of
a node. Even fewer, only 18% of the participants (Bob and Max), accurately code the
head pointer variable, and almost half of the participants (45%) do not have a complete
understanding of the data piece of a linked list (Suzy, Bill, Phil, Ecer, and Nate).

The pieces of a linked list are fundamental concepts and required for understanding
other linked list concepts. While none of the students have an accurate conceptual or
procedural understanding of all the pieces of singly linked lists, there are many students
who have an accurate procedural understanding of some pieces (see the top four orange
rows in Table 4.2). However, most students do not have a good conceptual understanding
of different types of linked lists (see the top four light-purple rows in Table 4.2), and
overall, most students do not well on most conceptual questions in the interview.



40

Type Description Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

SLLa 72 67 72 72 72 28 61 44 50 56 78
SCLLb 67 67 61 72 61 44 67 28 39 44 67
DLLc 68 64 50 64 68 27 55 18 50 32 55
DCLLd 82 45 45 73 59 36 64 32 45 45 64

SLL Pieces Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

Node 80 65 15 50 65 45 65 55 50 55 55
33 100 38 100 100 93 87 100 93 84 91

Overall Node 60 80 25 71 80 66 74 74 69 68 70

Data 100 100 0 50 100 100 100 100 100 100 100
100 100 33 67 100 67 100 100 100 67 67

Overall Data 100 100 20 60 100 80 100 100 100 80 80

Node Pinter 40 30 50 30 60 30 20 20 40 20 20
74 100 21 100 72 97 87 100 95 77 77

Overall Node Pointer 67 86 27 86 69 84 73 84 84 65 65

Head & Tail 43 33 13 30 15 30 30 33 28 28 10
60 100 13 93 100 73 93 93 67 67 33

Overall Head & Tail 47 51 13 47 38 42 47 49 38 38 16

SLL Operations Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

Create Empty List 19 100 44 94 100 63 81 100 81 25 75

Check Empty 43 100 0 100 100 100 71 100 71 71 43

Insert Beginning 77 100 15 100 100 92 85 85 54 69 31

Insert Specific Location 71 100 21 82 68 93 82 100 96 82 86

Insert End 82 100 25 93 100 93 86 100 96 79 93

Delete Beginning 81 78 6 78 100 81 94 81 75 63 0

Delete Specific Location 100 100 23 100 77 100 64 100 95 86 86

Delete End 74 100 11 100 58 89 58 100 95 68 89

Iteration 100 100 9 100 100 97 45 100 100 88 97

Find Length 82 100 41 82 95 91 86 100 95 91 95

Swap Nodes 100 33 33 100 100 33 67 33 67 100
50 50 0 50 50 50 50 50 50 50 50

Overall Swap Nodes 80 40 20 50e 80 80 40 60 40 60 80

Find Value 100 100 50 100 100 100 100 100 100 100 100

Print List 100 100 100 100 100 100 100 100 100 100 100

Clear List 100 100 0 100 100 100 100 100 100 100 100

Prerequisite Knowledge Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate

Dereferening Pointer 67 67 0 67 67 67 67 67 67 67 67
Pointer Operator 100 100 50 100 100 100 100 100 100 100 50

aSLL refers to a singly linked list
bSCLL refers to a singly circular linked list.
cDLL refers to a doubly linked list
dDCLL refers to a doubly circular linked list.
eScore is calculated differently due to missing responses.

Table 4.2. Scores per linked list concept based on conceptual (light-purple) and proce-
dural (orange) understandings.



41

Overall Accuracy: Lastly, we compare the 11 interview students’ overall score for
each linked list category identified in Figure 3.1 and evaluated in the survey and interview
(see Table 4.3). One student did not answer a question in the survey, and another student
did not answer a question in the interview due to time. Instead of counting these as
incorrect answers, we excluded the points from the total points when calculating the
average (see the overall score in red in Table 4.3).

Survey Interview

PID
Overall
Types

Overall
Pieces

Overall
Operations

Overall
LLa

PKb
Overall
Types

Overall
Pieces

Overall
Operations

Overall
LL

PK

Joe 83 78 67 78 61 73 59 76 69 75
Bob 100 74 100 84 82 60 72 95 80 75
Suzy 50 44 33 44 39 56 21 23 29 13
Bill 100 70 100 82 68 70 67 91c 77 75
Max 83 59 100 71% 75 65 61 87 74 75
Phil 100 78 100 87 100 34 63 90 70 75
Feng 100 74 67 80 46 61 65 77 69 75
Xeng 83 67 67 71 46 30 69 95 74 75
Chemi 83 85 100 87 100 46 63 87 71 75
Ecer 83 81 0 71 96 44 56 74 62 75
Nate 83 78 50c 73 61 65 48 76 64 63

aLL refers to linked list.
bPK refers to prerequisite knowledge.
cScore is calculated differently due to missing responses.

Table 4.3. Overall score for each linked list category.

None of the participating students have a completely accurate mental model of linked
lists evaluated in the survey or the interview (see Table 4.3). Phil and Chemi have
the highest score (87%) in the survey, but they do not have the highest scores in the
interview. However, Bob has the next highest score (84%) in the survey and the highest
score (80%) in the interview. Suzy, who could not write in code and preferred pseudocode,
has the lowest score on both the survey (44%) and the interview (29%) questions. Even
though Suzy selected not having seen linked lists prior to the data structures class in the
demographic survey, she states during the interview that this is her second time taking
the data structures class, and she is still struggling.

Overall, students perform better on the survey than in the interview, but the survey
is not as comprehensive as the interview. For example, the four out of the five students



42

receiving a ’B’ grade on the survey do not make above an 80% in the interview. We
also notice that students are better at identifying types of linked lists in the survey (four
receive a 100%) than describing them in the interview. This is because describing an
answer to a question requires the student to express more detail, and none of the students
accurately describe different types of linked lists with as much detail as an expert does
(see Appendix F for more details).

Also, students perform better on questions about the operations on linked lists than
they do on the pieces of linked lists in both the survey and interview. Table 4.3 shows
that five students have accurate mental models of the operations covered in the survey,
and these same students are some of the higher performers on the operation questions
in the interview. In the survey, we only ask the students three multiple-choice questions
about checking if a linked list is empty, deleting a node at the beginning of a list, and
clearing a list. Whereas, in the interview, we ask about all the operations on a linked list
identified in Table 3.1. We find that the majority of students conceptually understand the
operations, but they lose points because they fail to correctly write the syntax in C for
the operations due to misunderstandings about some pieces of a linked list or prerequisite
knowledge.

4.1.2 RQ1.2: What are students’ misunderstandings or gaps in knowl-
edge about the types and pieces of linked lists and operations
on linked lists?

In order for us to address students’ conceptual and procedural understanding of linked
lists in the C programming language, we must first analyze students’ prerequisite knowl-
edge about pointers and memory management that are required for working with linked
lists in C. To answer RQ1.2, we begin with an evaluation of students’ prerequisite knowl-
edge in Subsection 4.1.2.1 followed by their understanding of the pieces of and operations
on singly linked lists in Subsections 4.1.2.2 and 4.1.2.3. Lastly, in Subsection 4.1.2.4,
we discuss students conceptual understanding of different types of linked lists, and we
organize student misunderstandings and lack of knowledge as themes within the four
categories identified in Section 3.1 (see Figure 3.1).



43

4.1.2.1 Prerequisite Knowledge

Given that linked lists have pointer variables and require many pointer variable manipula-
tions in C, we ask students 7 background questions in the survey (Q22-28) about memory
management and pointer variable declaration and assignment to assess students’ general
prior knowledge about pointers and memory. Later, in the interview, we ask them to
explain what dereferencing a pointer means and how a pointer is dereferenced.

4.1.2.1.1 Freeing Memory

In the survey, we ask an open-ended question (Q22) about the benefit of using the free()
function in the C language. We look for students to say something about deallocating
(or freeing) the memory space allocated by the function malloc(), as well as that memory
can be reused by a subsequent malloc function calls. We find that only two interview
participants (Phil and Chemi) correctly answer this question, while four participants
(Bob, Suzy, Bill, and Ecer) almost answer the question correctly by mentioning that the
free function is responsible for deallocating memory space, but they say the benefit is
to prevent memory leaks, rather than allowing the memory to be reused. Other partici-
pants (Max, Feng, Xeng, and Nate) only mention what the free function does, which is
deallocating the memory assigned by malloc. Joe, on the other hand, says the benefit is
to prevent memory leaks. The free function can prevent memory leaks, but this is due
to being able to reuse the freed memory space. Joe continues to show an understanding
of the benefit of the free function during the interview, which is not the case for others
who correctly state what the function does. Many students either forget to use the free
function or answer questions about deleting a node at the beginning of the list incorrectly
because they do not understand when to free the node.

4.1.2.1.2 Declaring a Pointer Variable

After asking students about the free function, we ask students to identify the meaning
of char *p (the l-value in the first assignment statement in Figure 4.2). The correct
answer is to “Create a pointer to a character” (second option). Six students out of the 11
correctly answer the question, while the other students incorrectly select the “Create an
array of characters” option (Bill, Max, Feng, Xeng, and Nate). While p can be used to



44

point to the address of the first element in an array of characters, the declaration itself
is not used to create an array of characters. The array is created using the malloc()

command.

Figure 4.2. Survey Question 23: Identify the meaning of a pointer variable declaration.

4.1.2.1.3 Pointer Variable Assignment

The next multiple-choice question (Q24) asks students the meaning of the p = q assign-
ment (see Figure 4.3). The correct answer is “Make p point to the same thing as q”
(second option), and we find that students do very well on this question. Only one stu-
dent (Joe) chooses “Make q point to the same place as p”. However, in the interview, Joe
seems to have a good understanding of pointer variable assignment, which means this
answer could have been a mistake.



45

Figure 4.3. Question 24: Identify the legality of pointer variable assignments in the
survey.

In the following three questions (Q25-27), we ask students to identify whether a
variety of assignment statements between two character pointer variables (p and q) are
legal or illegal (see Figure 4.4 as an example). First, we ask students if *p = *q is legal,
and we find that 9 out of 11 students correctly answer that the statement is legal, while
Suzy and Feng choose that it is illegal. Feng claims that “*p is a dereference”, but Suzy
does not provide any reasoning for her answer.

Figure 4.4. Question 25: Identify the legality assignments of the pointer variable in the
survey.

The second two questions (Q26 and Q27) ask students if p = *q and *p = q are
legal. We find that only 3 of the 11 participants (Suzy, Feng, and Xeng) incorrectly
believe that it is legal to assign a character value to a place that stores addresses, while
6 of the 11 participants (Joe, Bob, Suzy, Bill, Xeng, and Nate) incorrectly believe that it



46

is legal to assign an address of a memory location to a place that stores character values.
Regardless of what the compiler allows, one should not do either of these assignments.

When assigning a character value to a place that stores addresses (p = *q), Feng
believes that this is legal because “they are both pointer(s)”, but Suzy and Xeng do not
mention any reason for their choice. On the other hand, for assigning a memory address
to a character (*p = q), some students believe that it is legal to overwrite the memory
address with a value and state that the compiler is not going to throw any errors. Bill
states, “Now, p is pointing to a memory address”, and Bob claims, “You will set the data
value of p to a pointer, but the compiler will work with this as it will set p’s new data
value to the q’s address.” These students do not seem to truly understand the importance
of matching types and what the dereference operator ‘*’ means.

The last question in the survey (Q28) is a synthesis of understanding pointer variable
declaration and assignment using the asterisk and ampersand operators (see Figure 4.5).
Out of the 11 students interviewed, Suzy is the only participant who incorrectly answers
this question in the survey and who struggles the most with pointer manipulation in the
interview. While most students understand how to follow code with the asterisk (derefer-
ence) and ampersand (address of) operators in the context of single number values, most
students do not explain the purpose of dereferencing a pointer variable in the interview.

Figure 4.5. Question 28: Identify the code’s output about pointer variable manipula-
tions and dereferencing using asterisk and ampersand operators in the survey.



47

4.1.2.1.4 Dereferencing a Pointer Variable

To understand students’ conceptual knowledge about dereferencing pointer variables, we
ask the students two closely related questions:

• “What does dereferencing a pointer mean?”

• “How is a pointer dereferenced or which operation can be used to dereference a
pointer?”

We find that most of the participants know how to explain what dereferencing a
pointer variable is, except Suzy. Suzy begins by saying, “it has to do with the star and
ampersand. So dereferencing, I cannot remember.” Then, she continues to say that it is
the ampersand for the background stored in the heap. It is clear that this student does
not know what dereferencing a pointer variable is.

All other students describe it as fetching the information (or a value) at the memory
location stored in the pointer variable. However, it is interesting that they do not state
that dereferencing is needed to store information, and as Feng writes code to show what
dereferencing a pointer variable is, the student writes int* = a; a = 1;. This shows
a misunderstanding in the pointer variable declaration and assignment to the pointer
variable, similar to what Caceffoe et al. found [11].

Contradictory to our expectation that all participants would state that the asterisk is
used to dereference a pointer variable in the follow-up question, we find that two students
mix up the asterisk and ampersand operators for dereferencing a pointer variable, and
most students write code to explain how to dereference a pointer variable. After declaring
a pointer to an integer, int *a;, Nate claims that “a[0]; would go to the memory address
of a”. This will work, but it is not needed if ’a’ does not point to an array. After that,
Nate writes a&; to claim another way to dereference a pointer variable, which is not
correct. This is similar to Suzy’s confusion about the ampersand when asked to describe
what dereferencing means.

4.1.2.2 Pieces of a Linked List

It is clear that students’ prerequisite knowledge about pointers and memory in C is
lacking, which influences their understanding of linked lists in C. This section presents



48

students’ reasoning and misunderstandings about the basic pieces of a singly linked list
in C. We begin by discussing students’ understandings of the concept of a node structure
containing a data member and next node pointer variable followed by details about the
head and tail node pointer variables outside the node structure.

4.1.2.2.1 The Node

Besided the prerequisite knowledge needed for understanding linked lists in C, the first
concept of a singly linked list for students to understand is the node structure. The
node structure contains two members: the list data of any type and a pointer to a node.
Students must understand how to define a node structure, how to allocate a node in
memory, and the importance of the NULL pointer for a complete understanding.

Conceptual Understanding

To examine students’ conceptual understanding of a node, we purposefully ask the
students, in the interview, a general question, “Describe a node in a linked list”, to see
what they say on their own. We are looking for students to specifically talk about 1)
what the node contains, 2) the purpose of each part of the node, and 3) the need for
setting the last node’s node pointer variable to NULL. While most students are not
as detailed as an expert in their description, when we triangulate their responses with
their responses to survey and other interview questions, we find that the majority of the
students are not lacking an understanding of what a node is. However, there are themes
of misunderstandings that emerge about the node and node pointer, types of list data
stored in the node, and the NULL pointer value.

Confusion around the node containing a node pointer and being a node
pointer: Even though Suzy is the only student who does not talk about the node
pointer as a member of the node structure when describing a node, we find that her
misunderstanding shows up in the survey and again when she defines a node. Suzy states
that there is a data piece and a hidden key in the node, and she says that there is
an additional piece outside the node, which is a pointer to connect the nodes. When we
follow up with this student about the hidden key, the student states, “like the information
is stored in a heap. So, it’s ... I forget the word. It’s like the ID of the, ID of the node
where it’s stored.” We believe Suzy is using the word ’key’ to mean pointer because the



49

student drew an arrow in her picture on the tablet, but she draws the arrow outside the
node. We think Suzy is mixing up linked list concepts with other data structures, such
as a hash/look-up table (or dictionary) that has a key. We also think she is struggling
with the concept of a node containing a node pointer and not being a node pointer.

We see this same confusion between a node and node pointer in the survey distributed
before the interview, where we ask students to identify a node in two multiple-choice
questions (Q1 & Q7). Q1 asks students to identify a node independent of a list (see
Figure 4.6), and Q7 asks students to identify a node (item B) within a picture of a singly
linked list (see Figure 4.7).

Figure 4.6. Survey Question 1: Identify a node from a picture.

C DBA

E

Figure 4.7. Survey picture of a singly linked list with a head and a tail pointer variables
used in Q4-Q7.

All students correctly answer Q1, except for Suzy, who chooses “Node Pointer” without



50

stating a reason. Suzy also selects “Node Pointer” as the answer for Q7 without a reason,
but Max also selects “Node Pointer” as the first node in the singly linked list. Max states,
“It contains data (even if NULL), and has a pointer to the next node.” It seems that this
student understands that a node contains the list data and a pointer to the next node
because he answers survey Q1 correctly and states that a node has a node pointer in the
interview. However, it is interesting that Max identifies a node by itself as a node but
refers to the first node in the linked list as a node pointer. Even though the confusion
between the node and node pointer is not directly seen in more students, there is further
evidence that other students confuse these concepts in other questions.

Unsure about any type of list data in the node: In addition to students knowing
that one member in a node is the list data, it is important for students to know that
the list data in a node can be of any type, such as an integer, double, character, pointer,
array, structure, etc. When asked to describe a node, Suzy, Bill, Feng, Xeng, Chemi,
and Ecer do not talk about the types of information associated with the list data in a
node, much less that the type can be anything. Even when asked “What kind of data can
be stored in a linked list?”, we find that Suzy and Bill continue to be unsure about the
possible types of list data in a node.

At first, Suzy says that the data can be everything but then concludes that it can
only be numbers and letters. This is similar to Bill who says, “I feel like a lot of kinds
of data can be stored. You can make the value field of the node in a linked list kind of
anything.”, but then he goes on to say he is unsure of this. Whereas, Nate begins unsure
and then concludes that it can be anything, i.e. “what kind of data! I’m not fully sure
about that one. I would assume that most if not every type of data could be stored in the
linked list.”. Even though everyone recognizes that the list data linked together can be
an integer, character, or pointer in the survey, they express uncertainty about this in the
interview.

Lack of knowledge about typecasting malloc: Not only does creating a linked
list in C require understanding how to define a node structure, it requires understanding
how to allocate a node on the heap. To first measure students’ conceptual understanding
of how to allocate a node in memory in C, we ask students what the following line of
code means/does.

struct node *new_node = (struct node*) malloc(sizeof(struct node));



51

All students are able to give a generic response to this question and state that this
line of code allocates a new node in memory, and Joe draws on the tablet after explaining
the syntax. However, very few students talk about other aspects of the code, such as
the typecasting or sizeof() function. When creating a new node on the heap in C, it is
good practice to typecast the address of the allocated node returned by malloc to a node
pointer, i.e. struct node*, even though it is not required. Unexpectedly, we find that
nine participants do not mention what the typecast does in the code, and even more
striking, Max, Phil, and Ecer mention that they had never seen the (struct node*)

typecast syntax before. This explains why none of the participants initially typecast
when writing code to allocate a new node. Two students (Bill and Phil) do typecast their
malloc after receiving an error message using a C++ compiler, instead of the C compiler.

Procedural Understanding

Not only do students need to understand the concept of a node, they should know
how to define a node structure and allocate a new node in memory using the C syntax
from their data structures class.

Failure to define a node structure: In C, understanding how to define the node
structure requires understanding the concept of a node, which contains the list data of
any type and a pointer to a node. The first coding question asking students to “Write
code/pseudocode to create an empty linked list” requires students to define a node structure
as the first step.

Suzy, Phil, Feng, and Ecer do not use the correct syntax to define the node structure.
This could be because the node structure definition is provided for the students in the
code template for the linked list assignment in their data structures class. However,
students should be able to recreate the structure on their own.

Interestingly, Suzy and Feng use pointer syntax with the node structure definition,
rather than defining a struct node (see Figure 4.8). These students know they need to
make a node, but they do not understand when they should use the pointer syntax and
when they should not.



52

Figure 4.8. Suzy (left) and Feng (right) node structure.

Not only do Suzy and Feng define a node pointer structure, instead of a node structure,
but they do not define the node pointer member in the node correctly either. Suzy writes
three variables names, i.e. cur, pre, and next, without stating their type, as well as
includes a key, and Feng writes *next; for the node pointer member, instead of struct
node *next;. Suzy’s misunderstanding of the node containing a key carries over into
her procedural understanding, when trying to define a node structure. In addition, Suzy
does not define pointer variables, which suggests that her confusion between the node
containing a node pointer is also carrying over. Whereas, Feng knows the node has a next
pointer variable, but he does not include the struct node type. This could be because he
defines the node structure incorrectly and gets confused.

Similarly, Phil and Ecer do not include the keyword struct when writing the syntax
for their node pointer variable in the node, which is required in C but not in C++ (see
Figure 4.9 for an example). We do not know whether they do not include this because
they do not know it is needed or because they are mixing up the syntax with C++. In
any case, students are reminded that they can compile and run their code to check for
errors, but only Bill and Phil try compiling their code during the interview. Since Phil
uses a C++ compiler, he does not see this as an error in C. In addition to leaving off
the keyword struct before the the node pointer variable in the node, Ecer defines the
list-data member in the node as void, but he states that the list-data member should be
a void pointer (see Figure 4.9).

Figure 4.9. Ecer’s node structure.



53

Misunderstanding of how to use the sizeof() function to allocate a node:
Students need to know how to allocate a node in order to create a linked list. To measure
students’ procedural understanding of allocating a node in memory, we look at how
students dynamically allocate the node on the heap using malloc when asked to “Write
code/pseudocode for inserting a new node at the beginning of a singly linked list.”. While
typecasting the address returned by malloc is not required in C, understanding that you
are allocating memory for the size of a node in memory is required for correctly allocating
a node.

When we ask students to explain the code for allocating a new node in memory, most
students recognize that malloc allocates the size of a new node in memory. However, Suzy
might have a misunderstanding about the role of malloc() versus the sizeof() function
because she states that the malloc command is used to “find the size of the node”, rather
than stating it allocates memory for the size of a node. Other students either ignore
talking about the sizeof() function or they simply read the syntax rather than explaining
it. Suzy, Joe, and Ecer continue to show a misunderstanding about the use of the sizeof()
function when allocating a new node, but their misunderstandings are about whether to
pass a node or a node pointer type to sizeof().

Joe and Ecer allocate memory for the size of a node pointer, rather than the size of a
node, which further indicates students’ misunderstanding of types and memory allocation.

malloc(sizeof(struct node*));

Although Joe explains the node’s allocation perfectly, he could not write the syntax
to allocate a new node successfully. In comparison, Ecer expresses uncertainty about
putting an asterisk, ‘*’, after the size of struct node or not and states, “I don’t know
if I can make it the size of that. I think that’s the size of the node.” These participants
understand they need to allocate a new node (not a node pointer), but they do not know
how to write the syntax.

4.1.2.2.2 The Node’s List Data

The data stored in a node is an essential concept of linked lists. As stated in the con-
ceptual part of Section 4.1.2.2.1, understanding that the list data in a node can be of
any type is important, which some students are unsure about. However, having the
procedural understanding of how to store and access list data in a node is also crucial.



54

Procedural Understanding

To examine students’ procedural understanding of the node’s data member, we an-
alyze how students declare the data member in the node and store and access the list
data. We observe two major procedural misunderstandings when students try to store
information in the node’s data member they declared as a void pointer variable and then
try to access the information referenced by the data member.

Confusion about how to store data in a void pointer variable: In the node
structure, some students define a void or void pointer variable as the list-data type in the
node. We find that the students defining a void pointer variable have trouble using the
variable when storing an integer value. For example, Bill, Ecer, and Nate try to assign
an integer value to the void pointer variable, which is supposed to hold addresses not
integers. Bill thinks that it would work better if he casts the void pointer variable to an
integer by writing the following.

(int)new_node->value = 6;

Even though Bill understands that these two types need to match, it is not correct
to typecast the operand on the left side of the assignment operator. The student should
assign the address of where an integer is in memory to the void pointer variable. Actually,
these students confuse themselves more by defining the list-data member as a void pointer,
when they only need to store an integer value. It is a waste of memory to use this style
of implementation for storing the address of a single value.

Misunderstanding about how to access the list data: In the coding question
requiring students to allocate a new node and access the list-data member of the node,
Phil thinks that accessing the list-data member in a node is different than accessing the
node pointer member. The student uses the dot ’.’ operator whenever accessing the
node’s list-data member on the heap without dereferencing the node pointer to access
the node’s data, but he accesses the node’s node pointer member correctly using the
arrow ->.

It seems that this student associates the arrow and dot operators with the type of
a node’s member, rather than how they are being accessed. He is able to fix his error
because he compiles his code and gets an error message that fixes the code for him. Even
though Phil writes correct syntax for accessing the list-data member of a node moving



55

forward, we believe that he is still carries some form of misunderstanding about what is
being dereferenced.

4.1.2.2.3 The Node’s Node Pointer

The node’s node pointer member refers to (or points to) a node by storing a node’s
memory address, and a node pointer can be a member of a node or independent of a
node. Students seem to conceptually understand a node pointer as a member of a node
(see Section 4.1.2.2.1), but understanding that a node pointer is independent of a node is
critical for accessing the node that begins a nonempty list. We ask students to describe a
node pointer in the interview, and we ask them to identify a node pointer in the survey.
We find that students struggle with similar issues as they do when describing a node.

Conceptual Understanding

In the interview, we ask students to “Describe a node pointer in a linked list”. We
explicitly look for students to talk about 1) what the node pointer type (struct node*)

is, 2) how a node pointer is used to define either a pointer variable inside a node that
points to the next node or declare a pointer variable independent of a node, and 3) the
benefit of having NULL as a possible node pointer value.

Probably because students are not implementing a node pointer variable, we find
that no one mentions the node pointer variable’s type (struct node*). Knowing the
node pointer’s type and being able to distinguish it from a node’s type, (struct node),
is important to understand when implementing linked lists in C, and we see students
procedurally struggle with these two types many times throughout the interview, which
we discuss in Section 4.1.2.2.1 and this section.

While all participants state that a node pointer in a node refers to the next node or
end of a list, only Joe, Bill, and Max state that a node pointer can be independent of the
node, and Bill draws on the tablet to help him explain his answer. Similar to describing
a node in Section 4.1.2.2.1, only Bill and Nate explicitly state that a node has a node
pointer referring to the next node. Most students only mention that it refers to the next
node without mentioning anything about addresses or how a node points to the next
node. Even though the majority of students seem to understand that a node pointer
variable can be independent of a node and refers to an address when creating the head



56

pointer variable, they do not explicitly talk about these concepts in the detail that an
expert would, when asked to generally describe a node pointer. This is not the same for
the concept of NULL. There are students who lack a conceptual understanding of the
benefits of NULL that continue into their procedural understanding.

Lack of attention to the importance of NULL: Assigning NULL to a pointer
variable means that the pointer is not valid, and in the context of linked lists, this means
that a node pointer does not refer to a node. When a node’s node pointer variable is
NULL, it signifies that there are no more nodes after (or before, as in the case of doubly
linked lists) the current node. When the head node pointer variable of a linked list is
assigned NULL, it signifies an empty list. These two concepts are extremely important
for successfully implementing linked lists in C.

Surprisingly, we find that the majority of the students do not give details about the
need for NULL when asked about the node pointer. We understand students not talking
about NULL when describing the node, but it is interesting that most students do not
mention NULL when asked to describe the node pointer.

All students correctly identify a picture of a pointer pointing to NULL in the survey
as a NULL pointer, which means that all students recognize what a NULL pointer is. All
students, except Suzy, are able to say something about NULL being used to know you
are at the end of the list or last node in other questions, but they do not talk about it
when asked to describe a node pointer. For some students, we see this lack of attention
to NULL carry over into their procedural understanding of the last node’s node pointer
member, as well as when they when they fail to assign the head pointer variable to NULL
when creating an empty list (see the procedural part of Section 4.1.2.2.4).

Procedural Understanding

In addition to understanding what a node’s node pointer member is, students must
be able to declare, access, and manipulate the node pointer variable inside a node. We
address a node pointer variable outside the node in Section 4.1.2.2.4 with students’ un-
derstanding of the head and tail node pointer variables..

When we ask students to insert a node at the beginning of the list, students need
to first make the node pointer variable in the new node point to the same as the head
pointer variable, regardless of whether the list is empty or not. Of course, this is only
true if the head node pointer variable was properly set to NULL for the empty list. We



57

find that Feng and Xeng still check for an empty list, and these students unnecessarily
repeat almost the same line of code when inserting a new node in a empty and non-empty
list, and Bill and Max begin drawing on the tablet before writing their syntax.

All participants writing code know to use an arrow to access the node pointer variable
in a node. This suggests that they understand how to access the node pointer member
in a node using a pointer to the node, but it is not clear they know why they are using
the arrow or which node pointer they are dereferencing when using the arrow, as seen
when accessing the list-data member in a node. However, there are students who do not
mention or set the node pointer variable in the node to the head pointer variable’s value
before changing what the head pointer variable points to.

Misunderstanding of how to set a new node’s node pointer variable to the
head pointer variable: When inserting a node to the beginning of the list, we need to
set its node pointer to the same as head pointer points, whether it is to the first node in
an existing list or the NULL value when the list is empty. Suzy conceptually understands
that the new node is connected to the previous first node, but she does not explain how
the node refers to the previous first node (see top of Figure 4.10). Even though we ask
the students to write in pseudocode, they need to be very specific about how the node
pointer within the node connects to the existing first node. On the other hand, Nate
does not even mention needing to set the new node’s node pointer to the old first node.
Instead, he sets the head pointer variable to the new node (see bottom of Figure 4.10),
and he confuses himself when he assumes that the node to be inserted was created. He
passes the node’s pointer to the function without ever using malloc(), rather than passing
a new node to the function.

Figure 4.10. Suzy (top) and Nate (bottom) responses to adding a new node at the
beginning operation.

Another student, Feng, correctly assigns the head to the new node inserted at the



58

beginning of the list, but he assigns the new node’s next to the second node in the
list (see Figure 4.11 on lines 61 & 62), rather than the first node in the list using
temp->next=list->head. This causes a memory leak by losing the first node on the
list each time.

Figure 4.11. Feng’s response to inserting a new node at the beginning of a list.

Continued lack of attention to the importance of NULL in operations at
the end of a list: Some students who did not pay attention to the importance of
NULL in their conceptual understanding continue to disregard the importance of NULL
in operations at the end of the list. Although only Ecer fails to assign the new node’s
next node pointer variable to NULL when inserting a node at the end, Joe, Suzy, Max,
and Ecer fail to set the new last node to NULL when deleting the last node in the list,
and Joe believes that the new last node will automatically point to NULL.

4.1.2.2.4 The Head & Tail Pointer Variables

In C, a head pointer variable is an important concept that every nonempty linked list on
the heap has. It is used to locate the first node that begins the linked list in memory.
A tail pointer variable is an another important concept. It points to the last node in
the linked list, which allows for increased efficiency when doing certain operations. We
do not evaluate students’ procedural understanding of the tail pointer variable because
they do not implement a linked list with a tail on their own in their data structures class.
However, we evaluate them conceptually about the tail pointer variable.

Conceptual Understanding



59

In the interview, we ask the students to describe the difference between the head and
the tail pointer variables in a linked list. In their responses, we are looking for them
to talk about 1) what the head and tail pointer variables are, 2) how they point to the
linked list, and 3) what they point to in the case of an empty list. All but Nate state
that the head pointer variable points to the first node in the list, and Suzy and Nate are
the only ones to incorrectly describe the tail pointer variable. Suzy says that the linked
list points to the tail and the tail points to NULL, and Nate thinks the last node’s next
node pointer variable is the tail pointer variable that helps identify the last node in the
list. As with the node pointer, no one explicitly mentions how the head and tail pointer
variables point to the first and last nodes or point to NULL when the list is empty.

Then, we ask the students a follow-up question, “What are the pros and cons of having
a head and tail pointer?”. We want the students to describe trade-offs and time complexity
with regard to operations on linked lists. Most students ignore the performance achieved
by head and tail pointers. They talk about the accessibility rather than time complexity,
but they do say that it “helps” without saying how.

While all participants mention that the head pointer variable provides access to the
beginning, participants did not mention that the tail is used to access the end of the
list, and only Bill directly discusses the time complexity when accessing the end of the
list with and without a tail pointer variable. It was unexpected to find that second-year
students do not talk about time complexity or space when discussing the pros and cons
to changing a data structure. This indicates students may not be able to differentiate
between choosing the suitable data structure to use for better performance, as Zingaro
et al. found with singly linked lists [120].

We find that Joe and Bob explicitly mention that the head pointer variable allows
for new nodes to be inserted into the list, but only Bob mentions that the head allows
for deleting a node at the beginning of a linked list. Joe and Bob also talk about the
operations impacted by having a tail pointer variable, but Bob continues to believes that
the tail pointer variable helps to insert and delete nodes at the end of the linked list,
which is similar to other findings [90]. Since you cannot go backwards in a singly linked
list, deleting a node from the end that has a tail pointer variable still requires iterating
through the list to set the new last node to NULL and update the tail pointer variable to
the new last node in the list. If the student is thinking about a doubly linked list, then
they are correct; otherwise, they have a misunderstanding.



60

Students do not talk about the disadvantage of having a tail pointer variable. It
would waste space if a node is never added to the end of the list. Xeng believes there are
no disadvantages of having the head or tail pointer variable, and Chemi and Ecer believe
that the disadvantage of having a head and a tail pointer variable is the complexity of
managing two pointers in the code. However, the latter students have more difficulty
with pointers in coding than some others, as shown in the node and node’s node pointer
sections (see 4.1.2.2.1 and 4.1.2.2.3).

Misunderstandings around the tail pointer variable: Contradictory to our
expectation, Max mistakenly believes that we can have only a tail pointer variable without
a head pointer variable in a doubly linked list or a circularly linked list. While students
do not program a doubly or circularly linked list, they talk about doubly linked lists in
class. So, it is interesting that students do not think that the head pointer variable is
an essential part of every kind of linked lists, and it is even more interesting that Max
and Phil think that the tail pointer variable has to exist in a doubly linked list. They
may have learned that using a tail pointer variable with a doubly linked list improves
performance, as Joe mentions, but they cannot elaborate on the use of the tail pointer
variable.

Head or tail pointer variables are a node: Before asking the students to write
code for creating a head pointer variable, we ask students “Do you create the head or
tail of a linked list as a node or node pointer?” to find out if they think about the head
pointer variable as as being independent of a node or within a node. This is because
we believe some students have a misunderstanding about the head pointer variable being
within a node with an unused data member, rather than a pointer independent of a node.
Nate continues to state that the head pointer variable is the first node in the list, which
we see show up again in his procedural understanding when he declares and uses the
head pointer variable.

Interestingly, Nate’s response to the open-ended survey question asking about the
benefit of the head pointer variable is that “A is the head, and it helps act as a pointer
to the rest of the list”, and while in the interview, the student states that the head is
the first node in the list. Nate also seems to be confused as to whether the tail pointer
variable is either the last node or part of the last node. Whereas, Suzy believes that the
tail is a node.



61

Procedural Understanding

Even though we assess students’ conceptual understanding of the tail pointer variable,
we do not assess their procedural understanding of this piece of a linked list because
students do not implement a list in this way in their class. On the other hand, students
need to know how to declare the head pointer variable and set it to NULL or the address
of the first node that begins the list. Since you cannot have a linked list without a pointer
to the first node in the list, then the head pointer variable should be created on the stack
in the main function in C. We first discuss how most students waste memory by either
putting the pointer to the first node of a list on the heap or creating the head pointer
variable as a node. Then, we discuss how many students fail to assign the head pointer
variable to NULL when creating an empty list or update the head pointer variable when
inserting a node to the beginning of a list.

Wasting memory when creating the head pointer variable: Carried over
from his conceptual misunderstanding that the head pointer variable is a node, Nate
not only wastes memory by creating a node for a pointer to the beginning of the list,
but he creates the node on the heap, which requires an additional pointer to the node,
i.e. struct node *head = malloc(sizeof(struct node)). Then, he assigns the node’s
next pointer variable to NULL with head->next = NULL. The student does not think about
the wasted memory for the empty data in the node and the additional pointer to the node,
as well as the added complexity of accessing the head pointer. Similarly, Joe and Suzy
create a head pointer variable, and then, they put a node on the heap when creating an
empty list (see Figures 4.12 and 4.13).

Figure 4.12. Suzy’s response to creating an empty list.



62

Figure 4.13. Joe’s response to creating an empty list.

All other students, except for Nate, Joe, and Suzy, define two user-defined structures.
One is a list structure for storing the head pointer variable (and possibly a tail pointer
variable), and the other is a node structure for storing the data and next node pointer
members. This is an excellent coding style that allows developers to send one list structure
to functions when there is a head and tail, and it avoids the head pointer variable from
being a double pointer to a node, if you pass it and need to change it inside a function.

However, just as the students using only a node structure, all students using a list
structure as a container for the head pointer variable waste memory by storing their list
structure on the heap using malloc(sizeof(struct list)), instead of the stack with
struct list l, but at least they do not waste more memory by making a node with
a data member that is never used. Since Bob, Max, Feng, Xeng, and Ecer create their
list structure in a function, like Suzy with the node (see Figure 4.12), they have to store
the list structure on the heap to be able to access it after the function is executed. Even
though Ecer defines the node and creates his list structure when inserting a node, neither
Ecer nor Feng returns the address of the list on the heap.

In any case, all students should create their list structure with the head pointer
variable on the stack in the main function. Even students not using a function store the
list structure with the head pointer variable on the heap (e.g., Phil), like Nate and Joe
do with a node (see Figure 4.13). Beyond wasting memory, we also notice that students
have many other errors with their code, such as returning a value in a void function,
creating unnecessary pointers, and typecasting malloc, which are issues with prerequisite
knowledge.

Misunderstanding of how to create an empty list: Joe, Suzy, and Phil fail to
assign the head pointer variable to NULL when creating an empty list. Phil creates a head
pointer variable but does not set the node pointer to NULL or mention anything about
setting it to NULL. In contrast, Joe and Suzy declare a head pointer variable and set it
to point to one node for an empty list (see Figures 4.12 and 4.13). This is likely because
Joe and Suzy treat the next node pointer variable in the first node of the list as the head
pointer variable, like Nate. However, they do not set the node’s next pointer variable to



63

NULL.
Like Phil, Chemi creates a list structure with a head pointer variable and does not

assign it to anything. He believes that if the list has nothing inside, then it is empty. He
says, “there would be nothing inside that would be reasonably empty.” However, after
performing a check for an empty list, Chemi, unlike Phil, realizes the need to go back
and store a NULL in the head pointer variable, and he fixes his code (see Figure 4.14).

Figure 4.14. Chemi’s response in coding empty list operation.

On the other hand, Ecer believes that the list structure with a head pointer variable
set to NULL is an empty list, but he incorrectly assigns the head pointer variable to
NULL inside the list structure definition (see Figure 4.15). Not only does he forget the
keyword “struct”, but it is illegal to assign a member a value in a struct definition in C.

Figure 4.15. Ecer’s response to creating an empty list.

Failure to update the head pointer variable: When inserting a new node to the
beginning of the list, the head pointer variable’s value needs to be updated to point to
the new first node. When using a function, the function should either return the new
node’s address or receive the address of the head pointer variable (a double pointer to
a node or a pointer to a list structure with a head pointer variable) to update what the
head pointer variable on the stack in main points to. However, all the students store the
head node pointer on the heap, rather than the stack. Therefore, the students do not
need to pass the address of the list or head pointer variable. Passing the pointer variable
passes the address of where their head pointer variable is.

However, we find that Suzy, Chemi, and Ecer fail to update the head pointer variable
because of a mismatch between the type a function is supposed to return or receive as
input and the type of value being returned or provided as an argument. Suzy returns
the address of the new node inserted in the linked list, but the function return type is



64

int, which means it returns an integer value, instead of a node pointer. Chemi and Ecer
send the list pointer to the insert function, but they do not make the parameter a pointer
to a list (see Figure 4.16). These students struggle with making their function return
types and argument/parameter types match, as discussed previously in Section 4.1.2.2.3.
Chemi and Ecer know to set the head pointer variable to the new node, but they do
not make the parameter a struct list *l, which is similar to what you see again with
forgetting to make a pointer variable to store the address returned by malloc on line 21
(see Figure 4.16).

Figure 4.16. Chemi’s response to adding a new node at the beginning operation.

4.1.2.3 Operations on a Linked List

Assessing students’ conceptual understandings of operations on linked list is very impor-
tant for examining their ability to recognize when to use the operations and know which
operations to use. However, since time is a limitation in this study, we created the survey
to be short to increase the completion rate, and we limited the interview to two hours.
Therefore, in the survey, we only ask students about their conceptual understanding of
three essential linked list operations: checking if a list is empty, deleting a node, and
clearing the entire list. Whereas, in the interview, we ask them about all the operations
on linked lists identified in Table 3.1.

In the interview, we only ask them to implement five operations with three variations
of inserting and deleting nodes in a list. These operations include 1) create an empty list,
2) check if the list is empty, 3) insert at the beginning, after a specific location, and at the
end of the list, 4) delete at the beginning, after a specific location, and at the end of the
list, and 5) find the length. For assessing students’ understanding of the other operations
in the interview, we ask the students to recognize or explain how to swap nodes, find a
value in a list, print a list, and clear a list. When recognizing the code for an operation,
we ask students to “use one sentence to explain what the following function does”, similar



65

to studies asking students to recognize recursive functions [6, 76].
Even though we do not specifically ask students to write functions when implementing

operations, most of the participants (everyone but Joe and Bill) do. Joe and Bill are
really good students, but they do not even include a main function in their code for the
operations. Whereas, Chemi writes the first half of the operations as functions and the
rest in the main function. Suzy tries to write the C syntax in the first two questions
about creating an empty list and checking if the list is empty, but after that, she switches
to writing pseudocode or comments. This is likely due to her weakness in coding and
misunderstandings about linked list concepts, pointers, and memory management.

In the following subsections, we present students’ reasoning and misunderstandings
about specific singly linked list operations that students struggle with in the C language.
We divide this subsection into five categories of operations. These categories include 1)
working with empty lists, 2) inserting nodes, 3) deleting nodes, 4) swapping nodes, and
5) iterating through a list. In the empty lists category, we include the questions about
checking if a list is empty and clearing the entire list. We do not cover creating an empty
linked list in this section because we cover this with students’ procedural understanding
of the head pointer variable concept in Section 4.1.2.2.4. The inserting and deleting nodes
categories include all three questions about inserting or deleting a node at the beginning,
a specific location, and the end of a list. The swapping nodes category includes a question
about why swapping nodes is better than swapping values and a question asking students
to recognize the code for swapping adjacent nodes. Instead of manipulating lists, the last
category of operations only requires iterating through the list, such as finding the length
of a list, finding a value in a list, and printing a linked list.

4.1.2.3.1 Empty Lists

The simplest linked list is an empty linked list, which is a node pointer variable on the
stack pointing to the NULL value (see Figure 4.17 for the visual representation we use for
an empty list). As mentioned before, we discuss creating an empty list with students’
procedural understanding of the head pointer variable (see Section 4.1.2.2.4). In this
section, we measure students’ procedural understanding of both checking whether the
list is empty and clearing a list by deleting all nodes from an existing list.



66

0×0

head

Figure 4.17. A visual representation of an empty list. Note that the electrical ground
symbol at the end represents the NULL value.

Checking for an Empty List

Since many operations require checking for an empty list, we ask students to “Write
code/pseudocode to check if a linked list is empty.” To check whether the list is empty,
students only need to check if the head pointer variable is equal to the NULL value. We
find that the four students who correctly created an empty list (Bob, Bill, Max, and
Xeng), in addition to Phil, correctly check whether the list is empty. Ecer and Chemi
understand how to check if a list is empty, but they forget the asterisk in the function
parameter to make a pointer to the list. Similarly, Feng also knows to check if the head
pointer variable is NULL, but his logic is backwards when he writes, “if (list->head)

print("empty") else print("not empty")”. In this case, the empty message will print
when the head pointer variable is not pointing to NULL. This leaves three other students
who have misunderstandings about how to check if a list is empty, such as checking the
data member of the node or using a loop to check all nodes in the list.

Misunderstandings about how to check if a list is empty: Suzy and Nate
incorrectly compare the node’s data value member to NULL (see Figures 4.18 & 4.19),
and Suzy believes that she needs a loop to check whether the list is empty. She says, “if
checking if it’s empty, it should loop through everything.” While it is the programmer’s
choice to return 1 or 0 for an empty list, a function checking if a list is empty or not
usually returns true when it is empty and false when it is not. However, Nate returns
true if it is not empty.



67

Figure 4.18. Nate’s response to checking if a list is empty operation.

Figure 4.19. Suzy’s response to checking if a list is empty operation.

Interestingly, we find that Joe chooses to use an assert() function to check if a list is
empty, rather than constructing a function himself. He writes the following line of code
as his response to checking if a list is empty:

assert(link_list_head); //check that head points to a node

The assert() function can check if a pointer is NULL, but the program will error and
stop running if it is. Since it is not an error to be an empty linked list, then it is a poor
coding choice to use this method for checking if a list is empty.

Clearing a Linked List:

Clearing a linked list means deleting all nodes in a linked list and setting the head
pointer variable to the NULL value. In the survey, we ask about deleting (clearing) the
entire singly linked list (see Figures 4.20 and 4.21). The correct answer is the third option
“while A is not pointing to NULL, assign a temporary node pointer to point to the same
place as A, assign A to point to the next node in the list, and free the node pointed to
by the temporary node pointer.”



68

Figure 4.20. The diagram of a singly linked list presented in the survey and used in
Q21.

Figure 4.21. Question 21: Recognizing the steps for clearing a singly linked list.

We find that Suzy, Xeng, and Ecer wrongly answer this question. Xeng incorrectly
selects the fourth option that states that the first and the second options are correct, and
Suzy and Ecer mistakenly select the second option. The first and second options cause
memory leaks by only deleting the first node in the list; therefore, nodes ’C’ and ’D’ are
lost. We are unsure whether these students incorrectly believe that deleting what the
head pointer variable points to would delete all the nodes in the list or not. Students
might not understand the question wording because the majority can identify the code
for clearing a linked list in the interview. It could also be the style of coding used in the
class with a linked list structure containing the head pointer variable that confuses them.

In the interview, we ask students to identify the purpose of the provided code for
clearing a list (see Figure 4.22). We find that ten participants give the correct answer,
even Xeng and Ecer who wrongly answer the survey question about clearing the entire
list. On the other hand, Suzy gets confused and thinks that there is an error in the
code when seeing the syntax of setting the current pointer variable to the next pointer
variable, after freeing the node that the current pointer variable points to. She believes



69

that the current pointer variable no longer exists, which indicates a misunderstanding of
what freeing memory means and how the free function works.

Figure 4.22. Recognition question 4 for clearing the linked list nodes.

4.1.2.3.2 Inserting Nodes

To examine students’ procedural understanding of inserting a new node in a singly linked
list in the interview, we ask them coding questions about inserting a new node at the
beginning of a singly linked list, at the end of the list, and after a specific location (in the
middle of the list), and we report students’ understanding of each of these operations in
following paragraphs.

Inserting a New Node at the Beginning

After asking students to create an empty list and check if a list is empty, we ask
students to “Write code/pseudocode for inserting a new node at the beginning of a singly
linked list”. In performing this operation, the students need to 1) create a new node, 2)
join the node to the beginning of the list, and 3) update the head pointer variable to
point to the new beginning node.

We find that eight participants fail to successfully insert a new node at the beginning
of the list. We find that most of the issues students have are problems with the basic



70

pieces of a list and not with the actual operation. For example, students 1) fail to create
a new node (see Subsection 4.1.2.2.1), 2) misunderstand how to access the data member
of a node (see Subsection 4.1.2.2.2), 3) fail to set the new node’s node pointer variable
to what the head pointer variable points to (see Subsection 4.1.2.2.3), 4) fail to update
the head pointer variable value (see Subsection 4.1.2.2.4). The other issues students have
are with misunderstanding how to access the first node of a list or making small syntax
errors regarding pointers.

Misunderstanding of how to access the first node of a list: Suzy cannot
describe the operation nor code; instead, she writes in pseudocode without a specific
explanation. Suzy is the only one who believes that finding the first node in the list
requires finding the list size and subtracting by zero. She claims, “subtract size by zero to
get the beginning node linked list element node” The student also reasons that accessing
a node in a linked list is the same as accessing a value in an array. She states, “I think
subtract 0 because if we think of an array, it should be the position is 0.”

Suzy mixes up linked list and array data structures. Suzy even wonders which side
the linked list starts by saying, “So, for this, where is the front would be in like (the)
linked list? Would it be at the left side or the right side?” Eventually, she concludes that
it starts from the left, but it is clear that the student is struggling with how to access the
beginning of the list and ignores the importance of the head pointer variable. However,
she knows that the head pointer variable points to the start of the list in the survey and
verbal interview questions. However, she cannot apply this knowledge in coding questions
because she relies more on recalling information from her memory without understanding
it.

Syntactical Errors: Some students have minor syntactical errors that they do not
notice, due to not tracing or compiling their code. For example, Joe understands that a
new node must point to the old first node, but he incorrectly writes node->ptr;, instead
of node->next = ptr;, to update the node pointer variable to point to the same node
as the head pointer variable (see Figure 4.23 line 10).



71

Figure 4.23. Joe’s response to adding a new node at the beginning operation.

Checking for an empty list is not required when inserting a new node at the beginning
of a linked list with only a head pointer variable. Students need to make the new node
point to what the head pointer variable points to, no matter whether the variable points
to a node or the NULL value. Interestingly, Xeng, in the empty case, dereferences the
head pointer variable, rather than the new node pointer variable, to store the data and
the address to the next node (see Figure 4.24 in lines 28 & 29). In the case of non-empty
list, the student correctly writes the code, but he uses l_head instead of l->head when
attempting to update the head pointer variable (see in Figure 4.24 in line 34).

Figure 4.24. Xeng’s response to adding a new node at the beginning operation.

Inserting a New Node at the End

To examine students’ understanding of adding a new node at the end, we provide a
picture of a singly linked list to the participants (see Figure 4.25) and ask them to “add
item (6) to the end of the list”. We want students to add a node that stores the value
’6’ to the end of the list, which we clarify when students are confused. Since there is no
tail pointer variable in the provided linked list, participants must iterate to the end of
the list to add the new node to the end of the list. The student participants should 1)
create a new node on the heap, 2) store the data and NULL values in the node, 3) iterate
to the end of the list, and 4) connect the last node to the new node.



72

1520 435 40

head

NULL

Figure 4.25. A singly linked list provided to the participants in coding question 6.

Similar to inserting a new node at the beginning of the list, most student participants
procedurally understand how to insert a node at the end of a list. However, some students
continue to struggle with using the pieces of a list, as discussed in Subsection 4.1.2.2.

Inefficient code for inserting a node at the end: Although Bill is the only
participant to directly discuss the time complexity when accessing the end of the list
with and without a tail, this participant and Suzy find the list’s size to get to the end of
the list rather than finding the last node pointing to NULL. This is not efficient because
they go through the list twice to find the length and use it to get to the end. This could
be due to asking them to find the list length directly before this question, but iterating
twice through the list is not necessary for traversing the list.

Since Joe does not use functions, he does not directly use the length function to de-
termine how many nodes to traverse to the end like Bill and Suzy. However, he continues
to use the same node pointer variable from previously finding the list’s length to directly
connect the new node to the end of the list (see lines 28-30 in Figure 4.26). This would
work if he had correctly assigned the pointer variable to the last node in the previous
question and created a new node the size of a node, instead of a node pointer (see Sub-
section 4.1.2.2.1). Regardless, students should implement the operations independent of
one another.



73

Figure 4.26. Joe’s response to adding a node at the end of a singly linked list.

Storing data before creating the node: According to Suzy’s psuedocode in
lines 53 and 54 in figure 4.27, she seems to struggle with sequencing steps when adding
a node to the end of the list. She adds the value to the node before creating it, but she
does not do this when inserting an new node at the beginning of a list. The student
understands the need to connect the new node to the end of the list, but she also gets
confused between the pointer variable and struct member names (see lines 56 & 57 in
Figure 4.27).

Figure 4.27. Suzy’s response to adding a node at the end of a singly linked list.

Misunderstanding how to manipulate the node pointer variable: In response
this question, Feng says, “I forgot how to get to the last last node”. He fails to reach the
end of the list because he does not use a loop. Instead, he uses an if-else statement
and incorrectly manipulates the node pointer variables (see Subsection 4.1.2.2.3). In
every coding question that requires traversing the list, Feng declares two temporary
pointer variables separated by a comma operator, and only the second pointer variable
is initialized (see line 20 in Figure 4.28). This student may have a misunderstanding of



74

the comma operator, and he may think that an assignment at the end is for both node
pointer variables. Each pointer variable needs its own initialization. Feng’s if statement
may never be executed because the curr pointer variable may not ever be NULL. When
the else statement is executed, the curr and next pointer variables are set to the second
node, since he cannot remember how to get to the end of the list.

Figure 4.28. Feng’s response to adding a node at the end of a singly linked list.

Inserting a New Node at a Specific Location

To measure students’ understanding of adding a new node to the middle of the list
after a particular node, we ask the student participants to “add item (50) after the node
that stores the value 35”. Students must 1) create a new node on the heap with the data
value of ’50’, 2) iterate to the node that stores the value ’35’, 3) connect the new node
to what the node with ’35’ is connected to, and 4) connect the node with ’35’ to the new
node. Since we provide the picture of the linked list with a node that has the value ’35’,
no one checked whether a node with ’35’ existed or not, but we did not deduct points for
this in the rubric. We only noted it as additional information.

Mixing up the order for inserting in the middle: Three students, Joe, Max, and
Suzy, attach the new node to the node with the value ’35’ before attaching the new node
to what the node with the value ’35’ is linked to. This shows that students are confused
by pointer manipulation, and this prevents these students from correctly inserting a new
node to the middle of the linked list.

Joe successfully traverses the list to the node that stores the value ’35’, but he assigns
the new node’s address to a temporary pointer variable that was used to iterate to the



75

node storing ’35’ in the list. Therefore, he loses the node’s location with the ’35’ value
and does not join the new node to the list or mention how to connect the new node (see
Figure 4.29). Joe could be confused because he does not use a different node pointer
variable to point to the new node. Even though he is able to delete a node at a specific
location, he seems to get confused by not having two different node pointer variables to
keep track of where the new node and the node with the ’35’ value are.

Figure 4.29. Joe’s response to adding a new node at a specific location in a singly
linked list.

While Max did very well on adding a new node to the beginning and the end of the
list, he seems to struggle with adding a node to a specific location. He uses an undeclared
and uninitialized node pointer variable to the head pointer variable in the loop, and he
gets confused by the sequence of steps needed to join the node to the list using the two
node pointer variables (see lines 79 & 80 in Figure 4.30). Instead of setting the next
variable in the new node to point to what the node at a specific location points to first,
Max points the pointer to the specific node to the new node, which should have been
the specific node’s next variable, i.e. curr->next = node;. This is similar to Joe, who
also set the pointer to the specific node, rather than the specific node’s next variable.
However, Joe was missing the first step altogether, instead of mixing the order. At least,
Max understands how to make the new node’s next point to what the specific node’s
next variable points to.



76

Figure 4.30. Max’s response to adding a new node at a specific location in a singly
linked list.

Suzy shows some understanding of iterating through the list to reach the node with
the value ’35’ and connecting the new node after the node that stores the value ’35’ in
the list (see lines 62, 64, & 65 in Figure 4.31). However, lines 61 and 63 in the same
figure show a misunderstanding of creating the new node, and Suzy does not explicitly
state the need to create the node or state that temp is a node pointer variable referring
to the new node. In addition, she also mixes up the order of operations by connecting
the specific node to the new node before using it to connect the new node to the list.

Figure 4.31. Suzy’s response to adding a new node at a specific location in a singly
linked list.

Creating an infinite loop: Not only does Ecer define a function without a return
type, but he also creates a list structure parameter and uses it as a pointer to a list
structure. Ecer’s bigger issue is that he creates an infinite loop inserting nodes with
the value ’50’, if a node with the value ’35’ is found in the list (see Figure 4.32). Ecer
should either move the pointer variable to the next node inside the if and else or move
the pointer variable regardless of the if.



77

Figure 4.32. Ecer’s response to adding a new node at a specific location in a singly
linked list.

4.1.2.3.3 Deleting Nodes

Similar to inserting a new node, we examine students’ procedural understanding of delet-
ing a node in a singly linked list. We ask coding questions to delete a node at the
beginning of the list, at the end of the list, and after a specific location (in the middle
of the list). We report students’ struggles with each of these operations in the following
paragraphs.

Deleting a Node at the Beginning

For deleting a node at the beginning of a singly linked list, the students need to 1)
assign a temporary pointer variable to point to the first node to save the first node’s
memory address, 2) update the head pointer variable to point to the second node, and
then 3) delete the first node. It is also essential to check for an empty list when deleting
a node in a linked list to prevent a segmentation fault.

Lack of checking whether the list is empty: We find that eight participants do
not check for an empty list (Joe, Bob, Suzy, Bill, Phil, Xeng, Ecer, and Nate). Although
Xeng checks for the empty list when inserting at the beginning, he does not check if
the list is empty when deleting a node at the beginning, which is necessary in this case.
These students do not fully understand the importance of handling the empty list case
when deleting a node from the beginning of the list.

Non-generalizable solution for deleting nodes at the beginning: Beyond not
checking whether the list is empty, Nate unnecessarily comments whether the last pointer



78

variable is NULL. He does not make a generalizable solution and tries to delete the node
added from question 3, which inserted a node to the beginning of the list. If the list is
empty or there is only one node, then the check to see if the second node’s next pointer
variable is NULL will cause the program to crash (see Figure 4.33 line 27). If there
are more than two nodes, then this solution will cause a memory leak when freeing the
second node before updating the head pointer variable (see Figure 4.33 line 29). Nate is
missing knowledge about pointers and memory management needed to successfully add
and delete nodes at the beginning of the list.

Figure 4.33. Nate’s response to deleting a node at the beginning operation.

.

Deleting a Node at the End

Question 6.3 in the interview asks students to “delete item (6)”. To do this, students
need to delete the last node at the end of the list. If students were confused by the
question, we explained the question in more detail. We will frame it more clearly in the
future. Students, in response to this question, need to 1) traverse to the second to last
node, 2) delete the last node, and 3) set the new last node’s next pointer variable to
NULL.

Deleting or dereferencing NULL when deleting the last node :
When deleting the last node in the list, we find that Joe provides a hard-coded answer

specific to the provided linked-list picture, rather than creating a generalized solution (see
Figure 4.34 line 42). Joe uses the node pointer variable’s value from the previous question
and writes the code for iterating over three nodes and deleting the fourth. By doing this,
Joe deletes NULL, instead of deleting the last node.

Figure 4.34. Joe’s response to deleting the last node in a singly linked list.



79

Unlike Joe, Phil creates a generalized function for deleting a node at the end and
specific location of a list. Phil was successfully able to delete the node at the specific
location, but his code causes a segmentation fault after deleting the node at the end
of the list. After the last node is deleted, Phil updates the current pointer variable to
point to NULL (see Figure 4.35 line 97). In line 87, the compiler will stop and cause a
segmentation fault because the student checks ‘‘current -> next != NULL”, and there
is no node’s next pointer anymore (see Figure 4.35 line 87). Phil needs to check after
deleting the last node whether there is a node or not to stop advancing the current node
pointer variable.

Figure 4.35. Phil’s response to deleting the last node in a singly linked list.

Deleting a Node at Specific Location

We also ask the student participants to “delete item (50)”, which is a node they
inserted in the middle of the list. They must 1) use two temporary pointer variables to
traverse the list: one is to point to the node before the one being deleted and the other is
to delete the specific node that has the value ’50’, 2) connect the nodes before and after
the one to delete together, and 3) delete the specific (middle) node.

Trouble manipulating two pointer variables: Suzy seems to have a conceptual
understanding of deleting a specific node in the middle of the list. She understands the
need to traverse the list searching for the value ’50’, and she has some understanding of



80

how to connect the node before and after the node with the ’50’ together (see Figure
4.36). Even though Suzy can state what dereferencing a pointer variable is, she does not
understand the difference between the node pointer variables inside and outside of a node
being referenced. Suzy connects the node members with the arrow operator in a way that
matches her linked list drawing. For example, when she draws a linked list to solve one of
the questions, she draws three nodes and labels them pre, cur, next. Suzy understands
the need to connect the previous node with the next node, and she understands the need
to delete the current node. However, she does not use the ’next’ node pointer variable
member in the node to connect the nodes, indicating a weak understating about how to
use pointers to structs to access struct members.

Figure 4.36. Suzy’s response to deleting a node in the middle of a singly linked list.

Ecer solves this question similar to how he solves the previous questions asking him
to insert a node with the value ’50’ and delete a node with the value ’6’. Instead of
using a while loop, he uses an if-else statement. He uses two temporary pointer variables:
one pointer variable to iterate through the list finding the node with the value ’50’ and
another one to point to the node just before the node with the ’50’ value. However, just
as with adding a node at a specific location, the node pointer variable that traverses the
list is not updated. However, unlike before, Ecer is not even updating the pointer variable
used to traverse the list in the case when the node with the value ’50’ is not found. This
shows that this student is having a hard time manipulating two node pointer variables
in one operation.



81

Figure 4.37. Ecer’s response to deleting a node at the middle of a singly linked list.

4.1.2.3.4 Swapping Nodes

Swapping nodes can be achieved efficiently by exchanging the memory addressees stored
inside the node’s node pointers of the intended nodes. In the interview, we ask the
students a verbal question to examine their conceptual understanding of why swapping
nodes is better than just the data inside a node. Then, we asked a recognition question
to measure their procedural understanding of swapping adjacent nodes.

Swapping Nodes vs. Swapping the Data

The swapping operation in a linked list can be done between adjacent nodes or non-
adjacent nodes, and some people swap data in the nodes rather than the nodes themselves.
Even though linked list nodes do not have to be physically adjacent in memory, they are
connected through a node’s next node pointer variable. Swapping nodes is better than
swapping list data values because swapping node data can be expensive when the data
is large. Whereas swapping nodes is always constant by exchanging the node pointer
values.

In this study, we want to measure students’ understanding of swapping nodes and
why this is better than swapping node data values. In the interview, we ask students the
following verbal questions, “If you want to swap two numbers, what do you think is better,
swapping the node or swapping the data?” and subsequently "Why do you think that?".
Bill is the only student not able to answer these questions due to time limitations in the
interview. However, we find that only four participants (Joe, Max, Phil, and Nate) give
a correct answer to this question.



82

Incorrect reason for why swapping nodes is better: We find that six out of the
ten participants (Joe, Suzy, Max, Phil, Ecer, and Nate) mention that swapping nodes
is better than swapping data, but they give a wrong reason. For example, Ecer thinks
that “swapping the nodes would be the least amount of steps.” Although Suzy knows
that swapping nodes is better, she shows a misconception of the logic of swapping node
pointers vs. values. She claims that swapping data requires searching for pointers, and
swapping pointers requires searching for values. Suzy states, “if you remove the number
try switch the numbers then you have to find the key (means pointer) of the linked list.
And usually, when you’re just switching the element of linked list elements like the box
things, you just look for the value instead.” Both swapping types need to look for the
values and pointers to swap or sometimes need to search only for pointers when the list
is reversed, or two adjacent nodes are swapped.

Misunderstanding that swapping data is better: However, Bob, Feng, Xeng,
and Chemi believe incorrectly that swapping the data is better than swapping nodes.
For example, Bob thinks that swapping data takes less time than swapping the pointers.
The student reasons, “because you would need a lot more written out code to have to
re-update all the pointers if you’re shifting entire node. Whereas if you’re just taking
what the next what next value is equal to and setting it to the current and then what
current value is setting it to next. That’s a lot quicker and less time cumbersome than
what changing all the pointers values are.”

At first, Xeng also believes that swapping nodes increases time complexity “because it
required moving the whole node”. However, Xeng, in the end, concludes “if it’s swapped
the data, that’s also fine. And if it’s where the nodes that’s also fine, like both ways we
can do things”. After this answer, we repeated the question to the student and clarified
that we wanted the reason to be in terms of efficiency. Then, Xeng changed his answer
to claim, “the efficient way, maybe the swapping the nodes because it could completely
change the nodes, both nodes and it will be more efficient. And if we just swap the data,
at some point, like at some edge cases.....because there are some edge cases in the linked
list where that swapping data can be like bad for that.”

Feng and Chemi believe that swapping the data is easier than swapping pointers.
Chemi explains that swapping data requires iterating the list two times to grab and swap
the data between the two nodes. The student states, “you can just traverse the list once,
find whichever node you want to the first node that you want to swap the data out. Pull



83

that out, continue traversing, find the next node, swap out the the data value, go back to
the beginning of the list, and then swap in the data value that you store from the second
node, which I think would be better than trying to find the pointers. It would just you
would have to do like maybe half as much swapping.”

The majority of the students do not think that the data stored in a node could be
significantly large. We may need to be very specific when asking this question to make
sure students think beyond integer and singular values as data in the nodes. The students
do not think broadly when answering this question.

Swapping Two Adjacent Nodes

We provide a picture of a singly linked list (see Figure 4.38), along with the C code for
constructing this list, for the students to use when answering the recognition questions
(see Appendix D). The first function in the recognition section is for swapping adjacent
nodes of the singly linked list (see Figure 4.39). After executing this function, the new
order of the list will be 2, 1, 4, 3, 5.

1 3 5

head

NULL

2 4

Figure 4.38. A singly linked list provided to the participants in recognition questions.



84

Figure 4.39. Recognition question 1 for swapping two adjacent nodes in a singly linked
list.

Quick to respond without reading and tracing all of the code: Although all
participants but Suzy recognize that the code swaps nodes, it is surprising that none of
the participants realize that the code is explicitly swapping adjacent nodes. Interestingly,
we find that seven participants (Joe, Bob, Bill, Max, Feng, Xeng, and Nate) conclude
that the function reverses the nodes in the list, and almost all of them (except Bill and
Max) fail to reason about the while loop. These students stop tracing the code after
recognizing that the first two nodes are swapped, instead of looking over all the code.
The students seem to link this function to one of the assignments they did with reversing
the list, rather than reading and tracing the entire code for confirmation.

Failure to redraw or start with the same provided picture of the linked list:
All participants (except Joe, Bob, and Nate) draw pictures while reading the function
(except Feng, who initially draws). However, they do not redraw or start with the same
provided list. Bill draws more nodes than what is in the provided figure 4.38 (see Figure
4.40), and four students (Max, Phil, Feng, and Xeng) draw fewer nodes than the list has,



85

which makes them incorrectly solve the problem (see Figure 4.41 for Xeng’s sketches).
We also find that some students (Bill, Phil, Feng, Xeng, Chemi,and Ecer) do not write
the integer values inside the nodes to help them visualize the node swapping and correctly
find the function purpose (see Figures 4.40 4.41 for examples).

Figure 4.40. Bill’s sketches while solving recognition question 1 for swapping two
adjacent nodes in a singly linked list.

Figure 4.41. Xeng’s sketches while solving recognition question 1 for swapping two
adjacent nodes in a singly linked list.

Confusion around the purpose of returning the head pointer variable from
the function: Only Joe, Bill, Ecer, and Nate state that the purpose of returning the
new head pointer variable value is to update the head pointer variable pointing to the
beginning of the list. Suzy, Phil, and Chemi claim that the return is for returning one
node, even though Suzy wonders why to return only the head pointer variable. These
students also think that the return type at the end of the function is a node type, rather



86

than the memory address of the node at the beginning of the linked list. It seems that
they do not think about the head pointer variable needing to be returned if the first
two nodes are swapped. This is similar to some of the participants not thinking about
updating the head pointer variable value when inserting or deleting at the beginning of
the list, due to structuring their code in such a way that automatically updates the head
pointer variable inside a list structure containing the head pointer.

Confusion around reassigning a next pointer variable using a pointer to the
previous node: Suzy and Chemi get confused with reassigning the next node pointer
variable to the previous node using the curr pointer variable that points to the previous
node, i.e. curr ->next -> next = curr;. In their drawing, they move the position
of the curr pointer variable to curr -> next -> next, rather than moving the curr

-> next -> next pointer to what the curr pointer variable points to. This indicates
students may not understand the reassignment of a node’s next pointer variable using
the next pointer variable of the previous node (see Figures 4.42 and 4.43). Due to the
mistakes with the node pointer variable assignment with the curr -> next -> next

statement mentioned above, Chemi gets confused when the fourth node gets lost without
any pointer variable pointing to it. After that, Chemi asks, “Is this removing the middle
node of the list?” The student rethinks the question again and wrongly concludes, “In
the case where you don’t do a while, ummm, the first and second node swap places. And
in the case that you go into the while, I’ll just say like, you leak every other node.”

Although Suzy draws the list with values correctly, she fails to read or assign the
node pointer variables in the drawing. For example, on the lines in Figure 4.39 where the
curr and prev pointer variables are created and assigned values, Suzy sets the curr node
pointer variable to the second node rather than the third node, and she sets the prev

node pointer variable on the top of the head pointer variable (see Figure 4.43), which
we assume means it points to the head pointer variable. The student does not seem to
understand that prev = head means setting the prev node pointer variable to what the
head pointer variable points to (i.e., to the first node). At the end, Suzy concludes that
the function is for “checking if the head is the only element in there or while if it is isn’t,
then they’re changing the positions of the elements of current, previous and next.” Suzy
not only struggles in coding, as we demonstrated previously, but she also struggles with
pointer variable manipulation.



87

Figure 4.42. Chemi’s sketches while solving recognition question 1 for swapping two
adjacent nodes in a singly linked list.

Figure 4.43. Suzy’s sketches while solving recognition question 1 for swapping two
adjacent nodes in a singly linked list.

Unaware of good strategies for reading and tracing code: Max is able to trace
the code correctly, but he draws only four nodes, which makes him initially include the
NULL in one of the nodes and then make the curr and next pointer variables point to the
NULL (See Figure 4.44). When Max manipulates the node pointer, he does not draw step
by step with the code to reduce the confusion of swapping nodes. When he redraws a list
for clarity and sees the nodes change position, he makes the head pointer variable point
to nothing. This is because he does not read the line where the next pointer variable
pointed to by the head pointer variable is set to point to the same as the previous pointer
variable, making him believe the code is removing the node that is at the beginning of the
list. He concludes eventually that the function “seemingly removes the second element



88

and reverses the list.” This suggests that some students do not use good strategies to
read and trace the code to successfully identify the code’s purpose.

Figure 4.44. Max’s sketches while solving recognition question 1 for swapping two
adjacent nodes in a singly linked list.

In the beginning, Ecer reads the code without drawing or writing anything and rea-
sons, “this is doing a lot of going forward into the node and swapping the current next
next equal current. I think that’s what it’s doing. I think this function returns the end
of the node basically, or the end of the list, I mean.” Then, he draws while tracing the
code again. He can correctly trace the code and manipulate the pointer variable, but
he does not make the changes when assigning the head’s next to points as the previous
pointer and the previous pointer to point as the current pointer points to. Eventually,
Ecer wrongly concludes, “So, I think this function is making a single circular, linked list.
I think that’s what it’s doing and then returns the head of that list, I think” (See Figure
4.45).



89

Figure 4.45. Ecer’s sketches while solving recognition question 1 for swapping two
adjacent nodes in a singly linked list.

Lack of Knowledge about passing a double-pointer value to the function:
Chemi is the only student who reads the code to construct the linked list, which uses the
push function, before trying to figure out what the code does that swaps nodes. In the
push function, Chemi gets confused about passing a double-pointer value to the function
to (see Appendix D). He states, “... Slightly different implementation from mine ... I was
just a little confused when I saw that...” This result suggests that students may not have
experienced using this style of coding or understand how and why to pass the address of
a head pointer variable to a function.

Confusion around the node pointer named ’next’: Some students may get
confused about the name of the next node pointer variable. For example, when Suzy, Bill,
Feng, Chemi, and Ecer see the declaration and initialization of the next pointer variable,
i.e. struct node* next = curr -> next -> next;, they state that it is making a new
node called next. We also notice that Suzy, Bill, Phil, Ecer do not draw the node pointer
variables as a separate component than the node. Instead, they put just the name on
the top of the node, and it seems like nodes’ names. All of these students, except Bill,
show misunderstandings around the pointer variable and memory management. It would
be better in the future to differentiate between the name of the node pointer variable
pointing to a node in the list and the name of the node pointer member in the node
structure. Instructors also need to teach students to draw a correct representation of a
linked list and its pieces to build an accurate mental model.



90

4.1.2.3.5 Iterating

The following operations do not require any memory management, but there is pointer
manipulation to update a node pointer variable for traversing a list. Students need to
iterate through a list to 1) find the length of the list, 2) find a particular value stored
in the list, and 3) print the list values. We ask students to write a code/pseudocode to
find the length of a list; whereas, we ask students to recognize the code for finding a
particular value in the list and printing the list values.

Finding the length

Coding question 5 in the interview asks participants to "Write code/ pseudocode to
find the length of the linked list", i.e. find the number of nodes in the linked list. To
do this, participants need to 1) create a loop to go through all the nodes in the list, 2)
traverse the list from one node to the next node, and 3) increment a counter that counts
the number of the nodes in the list.

Looping until the next node is NULL: Interestingly, we find that five participants
(Joe, Suzy, Max, Ecer, and Nate) check if the node’s next in the loop is NULL, rather
than the node itself (i.e., while(current -> next != NULL)). This causes the students
to write an extra line of the code outside the loop to count the last node (Joe) or not
count the last node (Suzy, Max, Ecer, and Nate), which leads these students to incorrectly
count the number of nodes in the list. In the case the list is empty with a head pointer
variable referring to NULL, this implementation will not work because they try to access
a node that does not exist. Therefore, they cause a segmentation fault for dereferencing
a pointer pointing to NULL.

Continued misunderstanding of how to use a node’s next pointer variable
to traverse a list: Students need to traverse a list when finding a list’s length. As
with inserting a new node to the end of a list (see Section 4.1.2.3.2, we find that Feng
struggles to iterate through the list. He writes next = list->head->next;, instead of
next = next->next;, to update the next pointer variable used to iterate through the list
(see Figure 4.46 line 34). Feng fails to move the pointer to the end of the list; instead,
he moves the pointer to the second node each time in the loop. This confusion may
be because the student uses the name ’next’ for both the node pointer variable used to
traverse the list and the node pointer member in the node, or they are getting confused



91

between the list pointer variable and the node pointer variable.

Figure 4.46. Feng’s response to finding the length of a linked list.

Unaware of using uninitialized/undeclared node pointer variable:
We find that some students use an undeclared (Suzy, Bill and Feng) or an uninitialized

node pointer variable (Joe, Suzy, Bill, and Feng) to iterate through the list. Undeclared
node pointer variables will be caught by the compiler, but the students do not compile
their code. However, uninitialized pointers can lead to a segmentation fault when it points
to somewhere in memory that cannot be accessed or could lead to incorrect results when
the pointer points to some accessible data different than the desired list.

If the students trace or run their code, they may detect their errors and correctly
find the length. For example, Feng declares two node pointer variables with a comma in
between ’curr’ & ’next’, but he only initializes ’next’ (see Figure 4.46). Actually, the
’curr’ pointer variable has no real purpose, but Feng uses temp, which is never declared.
When the student declares node pointer variables with a comma in between, we are unsure
whether they intend the initialization value for both node pointer variables. This could
be the case because the student uses this style in all the following coding questions in
which they need to traverse the list.

Incorrectly checking for the last node: Feng at least knows to check if the node
pointer variable used to traverse the list is NULL. Five students (Joe, Suzy, Max, Ecer,
and Nate) used while(curr->next != NULL) to find the length of a list, which will cause
a runtime error if the list is empty, and if the list is not empty, then the length will be
one less than it should be. To fix this problem, Joe adds one at the end, but this does
not fix the runtime error with an empty list.



92

Although Suzy correctly writes the iteration syntax when checking for an empty
list operation, she fails to iterate to find the length of the list. The student shows an
understanding of the meaning of finding the length, but she writes in comments and
misses essential concepts like passing the list to the function, declaring and initializing
the node pointer variable, and iterating through the list.

Figure 4.47. Suzy’s response to finding the length of the linked list.

Misunderstanding of using the recursive method to find the length of the
linked list: Chemi has a misconception of finding the length of the linked list using only
the recursive method. The student believes that “Yeah, can’t do it iteratively, I wouldn’t
make sense. You’d have to do it recursively. I’m fairly sure.” Moreover, the student
uses an unnecessarily intermediate function to pass only the list’s head and another
function for finding the length of the list (see Figure 4.48). However, by introducing
this unnecessary function, Chemi fails to include a return in front of the call to the
node_length() function inside the list_length() function.

Figure 4.48. Chemi’s response to finding the length of the linked list.

Finding a Value

We ask students to recognize a function for finding a desired integer, represented by



93

’x’, in the linked list (see Figure 4.49). The function loops to the end of the list and
compares each node’s data member with an integer number, ’x’. The function returns
’true’ if ’x’ exists in the list; otherwise, it returns ’false’. We expected everyone to correctly
answer this question because it is similar to, yet simpler than, adding and deleting a node
at a specific location.

Figure 4.49. Recognition question 2 for finding the x value in a singly linked list.

We find that everyone but Suzy correctly recognizes what the function does. Suzy
gives the correct solution at the beginning, but then she changes her answer and mentions,
“I might have to revise what I said, because I forgot it was inside a while.” The student
mentions the function returns ’true’ if the “current data” is equal to the integer ’x’ and
returns ’false’ if current is NULL (which means empty list). Suzy says, “So, if the current
value is an actual value it’s not NULL, then inside the if statement it checks if the current
data is equal to the integer x and then it returns true. But inside of the while, it keeps
on looping until it meets the requirements of the if statement, and then it will return
true and if the current is NULL return false.” The student does not state if the ’current’
node pointer variable reaches NULL and integer x is not found, then return ’false’. The
student traces the code line by line rather than correctly giving the overall purpose of
the function. This shows that Suzy struggles not only in writing code but also in reading
and tracing coding.



94

Moreover, we find that two participants (Suzy and Nate) claim that they have not
seen a ’Boolean’ data type in the C language before when they saw the function returns
’bool’ data type. They may come to this conclusion because they have never seen the
stdbool.h header included and the bool data type used in C.

Printing a List

The third function that the students need to recognize is for printing the entire
data stored in the linked list nodes (see Figure 4.50). As we expected, we find that
all participants correctly answer this question.

Figure 4.50. Recognition question 3 for printing the values stored in the singly linked
list nodes.

4.1.2.4 Types

In the survey and interview, we ask students about four types of linked lists: singly linked
list (SLL), singly circular linked list (SCLL), doubly linked list (DLL), and doubly circular
linked list (DCLL). Each type of lists has characteristics and features that differentiate
it from the other types of lists, such as the number of node pointer members in the
node, the value of the next pointer variable in the last node, the value of the previous
variable in the first node, and the visual representation of the list. Even though we only
ask students to write and recognize code for SLLs, we ask students conceptual questions
about all four types of linked lists in the survey and interview.



95

In the survey, we provide a picture of each type of linked list types mentioned above,
and we asked, “What type of list does the following drawing represent?”. We find that
all participants can identify a picture of the SCLL and DCLL, even though they did not
cover them in the class. However, some students cannot correctly identify the types they
have learned about in class. Only six students recognize the picture of the SLL, and
nine students identify the image of the DLL. Students may not recognize a detail in the
picture or the pictures look unfamiliar to them due to the tail pointer variable in the
picture of the SLL type.

In the interview, we ask participants to go beyond recognizing pictures of linked lists,
and we ask them to describe each type of linked list. We explicitly mention that they
are allowed to draw in all the questions because some students may think that they are
not allowed to draw anything on the paper or on the tablet, and drawing pictures helps
students reason better while solving problems [36].

We are looking for students to describe the structure of the linked list, i.e. whether
it is linear or circular, and they need to mention 1) how each node connects to another
node, 2) what each member of the node stores, and 3) the benefit from including the
NULL pointer value at the end of a non-circular list and at the head of any empty list.
Students need to express the following scenarios when describing a linked list: the zero
node case (empty list), one node, and more than one node. If students miss one of these
scenarios, especially the empty list case, they miss a very significant part of the linked
list, such as creating an empty linked list in the code, as we discussed earlier in Section
4.1.2.2.4.

We find that Joe is the only one who successfully describes the DCLL in the interview.
Students who performed the lowest on this question are the students who did not draw
or visualize the linked list on paper or the tablet as they were describing it. This is not
that surprising, since a doubly circular linked list is the most complex type of linked list.

Most students can correctly discuss the details when asked directly about individual
pieces of a linked list, but they are not detailed enough in these broader questions about
the types of linked lists. For example, they do not describe the node structure or the
benefit of the NULL value. They may not think to be as specific as the rubric requires
when describing a type of linked list. Sometimes they talk about certain pieces of a list in
one linked list type and forget to talk about these pieces again when describing a different
type of linked list, or they draw a box to represent a node without dividing it into data



96

and one or two pointer sections. We also find that only Joe and Nate mention the node’s
memory address that is stored in the pointer variable/s to point to the next/previous
node, while the majority of others neglect mentioning how the nodes are connected with
addresses.

None of the participants mention that the head pointer variable is pointing to NULL

to represent an empty list when describing any of the linked list types, and Phil and Ecer
do not mention the head pointer variable at all. They may think that the head pointer
variable is not an essential component that needs to be discussed when describing linked
lists, but it is the second most essential component after a node structure. Even when
describing linked list types, Nate continues to believe that the head is the first node
without data in it, and he states that there is “a pointer to it from somewhere else.” The
confusion could be that they call the first node a head, which is usually the term used
to refer to the pointer to the first node and not the first node itself. In addition to Nate,
we see this with Bob and Xeng when they call the first and last nodes the head and tail,
but unlike Nate, Bob and Xeng understand that the head and tail are separate pointer
variables to the beginning and the end of the list. It seems that many students use the
head and tail node terminologies for the first and last nodes in the list, in addition to the
head and tail pointer variables, but Nate gets confused and believes that the first node
is the head pointer variable.

The majority of the students draw or say something about the NULL pointer at the
end of a singly and doubly linked list, but the majority of the students do not state the
benefit of including the NULL pointer at the end of singly or doubly linked list. Only Bob
and Ecer (in a singly linked list) and Xeng and Ecer (in a doubly linked list) do not draw
or state that the last node is pointing to NULL when explaining singly and doubly linked
lists.

In the following subsections, we describe students’ specific reasoning and misunder-
standings about each different type of linked list assessed in the survey and interview
questions. We begin with the singly linked list, followed by the singly circular linked list,
doubly linked list, and then doubly circular linked list.



97

4.1.2.4.1 Singly Linked List

We define a singly linked list in C as a unidirectional, linear structure of nodes that are
connected together with pointers that refer to the next node in the list. Each node has
two members for the data, which can be of any type, and the node pointer, which is an
address to the next node or NULL in the case of the last node to indicate the end of the
list. There is a node pointer variable called the head (or head pointer) that points to
the first node in the list or NULL in the case of an empty list. Students must include all
pieces in their description to show a complete understanding of a singly linked list in the
think-aloud interview.

Incorrectly identify picture of SLL as SCLL: As discussed in Section 4.1.1 on
the accuracy of students’ mental models of linked lists, we provide a picture of a singly
linked list with head and tail pointer variables in the survey, and we ask the students to
identify the type of the list given five multiple-choice options with the four types of linked
lists and an "Other" option (see Figure 4.51 in Section 4.1.1 above). We find that only
six participants correctly answer this question. Joe and Ecer incorrectly choose a singly
circular linked list, and Max, Chemi, and Nate mistakenly select the "Other" option,
while stating that it is a circular linked list.

Figure 4.51. Question 4: Identify a singly linked list type.

It seems that most students have misunderstandings about the picture representing



98

a circular linked list, and maybe this is because there is a tail pointer variable in the
picture that makes it confusing. Here are some of the reasons for why Max, Chemi, and
Nate, as well as a survey-only participant, chose the "Other" option:

• "I cannot say it’s a doubly linked list as there aren’t pointers in a backwards manner
(D->C->B->A). There appears to be both a head (A) and tail (E) pointer, so it’s
not a standard Singly Linked List. I’m not sure what a Singly Circular Linked List
is, but this appears to be it."

• "Singly Linked List with a tail pointer. I’m not sure if that’s the same as a circular
linked list"

• "It is close to a singly linked list, but the addition of E makes it not."

• "Does not point backwards"

If students notice the NULL pointer at the end of the list and truly understand why it
is there, then they should not identify this as a circular linked list, even if they have not
talked about the circular linked list in the class. Comments also suggest that students do
not understand that the type of linked list does not change if the tail component exists
or not. The tail component is optional in all linked list types.

Failure to mention NULL or update nodes with NULL value: In the inter-
view, we ask the students to “Describe a singly linked list, and draw a picture if needed”.
We find that Ecer, who chooses the singly circular linked list option in the survey, fails
to mention the NULL pointer value when describing the node’s node pointer member in
both singly and doubly linked lists. He also fails to make the last and second to last node
point to NULL when adding and deleting a node at the end of a singly linked list in the
coding questions. This shows that Ecer does not have a deep procedural understanding
of the NULL concept, even though he correctly states the benefit of NULL when explicitly
asked in the survey.

4.1.2.4.2 Singly Circular Linked List

Like a singly linked list, we define a singly circular linked list in C as a unidirectional,
circular structure of nodes that are linked together with pointers that refer to the next
node in the list. Just as with a singly linked list, each node has two members, the data



99

and an address to the next node in the list, with the exception of the last node that
points back to the first node in the list making it circular. There is still a node pointer
variable named head, which points to the first node in the list or NULL in the case of an
empty list.

In the survey, we provide a picture of a singly circular linked list with only a head
pointer variable, and we ask students to identify the type of list (see Figure 4.52). All
students correctly identify the picture of the singly circular linked list. It seems that the
students can correctly identify the type when the drawing looks like a circle, which may
confirm the students’ confusion when seeing the tail pointer variable at the end of the
‘singly linked list‘ picture.

Figure 4.52. Question 12: Identify a singly circular linked list type.

Similar to the singly linked list, in the interview, we ask participants to “Describe a
singly circular linked list, and draw a picture if needed”. The students can recognize a
circular linked list structure when presented with a picture of the last node going back
to the beginning of the list, but the major problem is the students are not specific and
detailed when describing or/and drawing the list, as mentioned previously.

Incorrectly thinks the last node and the first node points to NULL: Max,
who incorrectly identifies the singly linked list as a singly circular linked list, believes
that the last node of a singly circular linked list points to NULL and points to the first
node in the list. The student claims that this helps to traverse back to the beginning
of the list by stating the following, “I would just have a conditional statement saying if



100

we’re at you know if we’re at the NULL, then allow us to go to the head.”
Confusion about which node to begin with in the SCLL: On the other hand,

Suzy confuses a circular linked list with an array. When explaining the circular linked
list, the student starts iterating from the middle of the list to the beginning of the list
without drawing the head pointer variable. Although the student knows the head pointer
variable points to the beginning of the list when describing the head concept, she gets
confused about the beginning of the list from the left or right side when creating an
empty list. In either case, it is clear that this student lacks the conceptual understanding
of a singly circular linked list.

4.1.2.4.3 Doubly Linked List

We define a doubly linked list in C as a bidirectional, linear structure of nodes that are
linked together with two pointers that refer to the next node and the previous node.
Each node has three members: the data, the address of the next node, and the address
of the previous node, with the exception of the first and the last node that point to NULL

to indicate the beginning and end of the list. There is still a node pointer variable called
the head that points to the first node in the list or NULL for an empty list.

Misidentify a DLL as a circular list: In the survey, we provide a picture of a
doubly linked list with only a head pointer variable, and we ask students to identify the
type of list (see Figure 4.53). We find that nine students correctly identify the doubly
linked list picture. However, Suzy selects a doubly circular linked list, and Xeng chooses
a singly circular linked list.



101

Figure 4.53. Question 13: Identify a doubly linked list type.

Both Suzy and Xeng ignore the NULL pointer at the end of the list and select a circular
linked list type. These students have no issues explaining a DLL in the interview and
show conceptual understanding of a doubly linked list, but they do ignore the NULL value
in their description during the interview. In this survey question, they either accidentally
choose the wrong type or the two electrical ground symbols for NULL confuse them, even
though we provide an explanation of this symbol.

Incorrectly assume a DLL must have a pointer variable to the last node:
Just as with the singly linked list types, we ask participants to “Describe a doubly linked
list, and draw a picture if needed” in the verbal section of the interview. We find that
Max and Phil have a misconception that a doubly linked list has to have a tail pointer
variable. They may have learned that using a tail with a doubly linked list improves
performance, as Joe mentions when describing a doubly linked list. Joe says,“I guess that
might be a good idea and also have a tail pointer variable, which points to the last node
in the list.” Due to students’ limited thinking, they cannot elaborate on the use of the
tail pointer variable with any other linked list.

Lack of attention to the importance of NULL for the first node’s previous
pointer variable: In a doubly linked list, to indicate the end of the list in both directions,
the first node’s previous pointer variable and the last node’s next pointer variable point to
NULL. We find that five participants out of 11 (Joe, Suzy, Xeng, Chemi, and Ecer) do not
mention the first node ever pointing to NULL when describing a doubly linked list, but that



102

is not surprising because Joe, Suzy, Chemi, and Ecer show misunderstandings or missing
knowledge about the NULL concept in other questions. For example, Joe and Suzy forget
about NULL when creating an empty singly linked list, and Ecer does not mention the
NULL pointer value in most of the interview questions, as discussed in Section 4.1.2.2.3.

4.1.2.4.4 Doubly Circular Linked List

Lastly, we define a doubly circular linked list in C as a bidirectional, circular structure of
nodes that are linked together in two directions with two pointers that refer to the next
node and the previous node. Each node stores three parts: the data, the address to the
next node, and the address to the previous node, except for the first and last nodes that
point to the last node as the previous and the first node as the next respectively. Just as
with all the previous linked lists types we defined, there is a node pointer variable called
the head, which points to the first node in the list or NULL for an empty list.

In the survey, we provide a picture of a doubly circular linked list, and we ask the
students to identify the type of the list (see Figure 4.54). As with the singly circular
linked list, we find that all participants correctly choose a doubly circular linked list. It
seems that students can easily recognize a circular linked list in a picture, regardless of
whether it is a singly or doubly linked list.

Figure 4.54. Question 11: Identify a doubly circular linked list type.

As with the other types of lists, we ask the students to “Describe a doubly circular



103

linked list, and draw a picture if needed”. Suzy and Feng mention uncertainty when
answering this question. They state that this is the first time they have talked about
a doubly circular linked list. Feng correctly draws the list, while Suzy is not confident
when describing it. Suzy mentions that it is like the doubly linked list, but it can circle
from the front to the end and end to the front. However, she only shows and states
that the last and first nodes are connected together in both directions, and she does not
draw two pointers out of each node pointing to the next and previous nodes (see Figure
4.55). Suzy correctly identifies the doubly linked list and doubly circular linked list in
the survey, but she cannot correctly describe them in the interview.

Figure 4.55. Suzy’s sketches while describing a doubly circular linked list type.

4.2 RQ2: What difficulties do students face while learning about
linked lists in the C programming language?

After assessing students understanding of linked lists in C, we ask students in the survey
and the interview about any difficulties they had learning and understanding linked lists
while taking the data structures class, CS 261, at Oregon State University. We find that
linked lists are not only difficult for students learning about them for the first time in
CS 261 but also for those who learned about them before CS 261. Students find that the
conceptual understanding of linked lists is easy, but they struggle the most with their
implementation due to pointer manipulation. They are also confused between linked lists
and arrays and cannot differentiate when and where the two are more or less useful.

From the survey results, we find that a few students, who learned about linked lists
before CS 261, state having a hard time understanding abstract data structures because
they do not have any examples of their uses in the real world. For example, one of the
survey responses notes, “Understanding drawings aren’t hard but the code is because we
aren’t shown the code or a real life application of the linked list. It would be really cool



104

if we could do a real life scenario with code and we would walk step by step through it
instead of drawing it all” In addition, other students comment on pointer manipulation
making it hard to implement linked lists, regardless of whether they had knowledge about
linked lists before CS 261. One student, who learned about linked lists prior to CS 261,
makes the following comment about reversing a list, “Learning how to reverse a linked
list properly – the pointer management and setting the head of the list correctly at the
end is difficult.”

Some students find linked lists concepts more difficult than arrays. This is because
you can directly access the items in an array with square brackets, which do the address
arithmetic for you without the need for direct pointer manipulation. In addition, as
one student says, “they didn’t understand the value linked lists had over an array or
what situations you would use them for.” Students seem to be exposed to arrays more
than linked lists in the first-year classes and have not been taught the advantages and
disadvantages between arrays and linked lists in their data structures class.

In the interview, we ask the students again about any difficulties in understanding
and learning linked list while taking the CS 261 data structures class. Surprisingly, we
find that 55% of the students (Joe, Bob, Max, Phil, Feng, and Xeng) claim that they
did not have any difficulties while learning linked lists. This could be because all of
them, except for Phil, have prior knowledge about linked list before the data structures
class and may have faced difficulties in the class before the data structures class, as Joe
mentions. However, Joe, Phil, and Feng show procedural misunderstandings about some
linked list concepts, such as using node pointer variables and accessing data members in
a node as discussed in Section 4.1.2.2, even though Feng states that linked lists are very
easy to learn and understand.

Other students (Suzy, Chemi, and Nate), who have experience with linked lists in a
programming language that does not require direct pointer manipulation, like Java and
Python, claim that they have difficulties learning linked lists in C, and their experience
might have affected their performance in solving problems in C. Suzy, who retook the
class, finds linked lists to be one of the most challenging topics in the data structure class
when she took the class for the first time. She finds learning linked lists hard because
the instructor only spends one class explaining them, and the linked list has too much
information to absorb during one lecture. Suzy, instead of trying to understand linked
list concepts, finds that memorization is the main challenge of coding linked lists, as well



105

as the challenge with the previous instructor’s testing style.
In the interview, Chemi, Ecer, and Nate mention that they do not have an issue with

the conceptual understanding of linked lists, but they find it hard to code them. Bill also
finds learning linked list challenging, and he struggles the most with pointer variables,
as with many other students. He finds that the most challenging concept is iterating
through the list to the nth node and keeping track of the previous node pointer when
deleting at the end of a singly linked list without a tail pointer variable. Bill spends
time understanding his weaknesses while learning linked lists in CS261, and he is one of
the students who get the higher coding scores. Bill also claims that there is less focus
on linked lists than on arrays in previous classes, as well as in CS 261. As a result, we
see some students find the list length to iterate to the end of a list, rather than taking
advantage of the NULL pointer at the end of the list to reduce the time complexity of
traversing the list twice.

In addition, Nate says there is no need to use the linked lists because “we have access to
dynamic arrays.” He mentions the advantage of direct access versus linear time added by
the complication of iterating in linked lists, but the student does not seem to understand
the limitations of the dynamic array over the importance of linked lists in some situations
and where linked lists are helpful in real applications.

As explained previously, they struggle the most with pointer manipulation, and Nate
finds that deleting and reversing functions are the most challenging. All students show
misunderstandings of pointers, memory management, and some pieces of a linked list.

From the survey and the interview results, we find that students conceptually under-
stand linked lists, but they struggle with C syntax and the prerequisite knowledge about
pointers and memory management. They also fail to understand the reasons for using
linked lists over arrays. It could be very helpful for the students to visualize how linked
lists are used in the real-world and walking through code with the examples. In addition,
educators need to pay more attention to explaining the advantages and disadvantages
between linked lists and dynamic arrays and apply their uses to different types of lists
correctly when needed.



106

4.3 RQ3 & RQ4: The Purdue Visualization of Rotations Test (ROT)

In the previous sections, we discuss the accuracy of students’ mental models of linked lists,
their conceptual and procedural misunderstandings, and the difficulties that students face
while learning linked lists. This section shifts the focus to investigating visual-spatial
reasoning as a contributing factor to student struggles with abstract data structures.
We use the Purdue Visualization of Rotations Test (ROT) to measure students’ visual-
spatial reasoning, and we correlate students’ understanding about linked list concepts
and drawing pictures with their ROT scores. We hypothesize that there is a relationship
between students’ ROT scores and both their understanding of linked list and drawing
pictures while solving problems. We explain the Purdue Visualization of Rotations Test
and individually address each question below.

Research shows that students who score at least 60 percent or higher (12 points out
of 20) on the ROT generally have the necessary spatial visualization skills to succeed in
engineering, chemistry, math, and physics courses, and students with a score less than
60 percent (below 12 points) need to develop better visual-spatial skills to be successful
in the courses within these majors [105, 84]. Out of the 11 students from the interview,
the highest ROT score in this study is 20 points, and the lowest score is 13 points (see
Table 4.4). The average score obtained by the participating university students on the
ROT is 16 points.

N M Min. Max.
ROT 11 16 (80%) 13 (65%) 20 (100%)

Table 4.4. Spatial Visualization Test Score. Note that N is the sample size, M is the
mean, Min. is the minimum score, and Max. is the maximum score.

None of the participants score below 60%, which indicates that all participants have at
least the basic visual-spatial skills. It is interesting to note that the Chemical Engineering
student (Chemi) scored a perfect score on the ROT, and Suzy, who seems to struggle
the most with linked lists, is one of the lowest ROT scores. It is also interesting that
Chemi has the highest GPA (3.98), and Suzy and Max, who receive the lowest ROT
scores (65%), have the lowest GPAs (2.88 & 2.97, respectively). This is not the case for
all participants, such as Xeng, who has an above average GPA (3.36) and receives a below
average ROT score (70%). In the following subsections, we analyze correlations between



107

students’ ROT scores and their understanding of linked lists and drawing pictures while
working with linked lists to determine if visual-spatial reasoning is a contributing factor
to students successes or struggles with understanding linked lists in C.

4.3.1 RQ3: What is the relationship between students’ understanding
about linked lists and their visual-spatial reasoning?

To answer this research question, we use the students’ overall scores on the linked list
concepts measured in RQ1.1 in Section 4.1.1 with their ROT scores (see Table 4.5). While
the highest overall score on linked list concepts is 80%, we notice that the student with
this highest score does not have the highest ROT score, and the student with the highest
ROT score has an “Overall LL” score of 71. Also, there does not seem to be a pattern
with the lowest ROT scores and the lowest overall linked list scores, except with the case
of Suzy. At this time, we do not see a relationship between students’reasoning about
linked lists and their spatial visualization ability.



108

Accuracy Score Per Section

Overall
Types

Overall
Pieces

Overall
Operations

Overall LL ROT

Bob 60 72 95 80 15 (75)
Bill 70 67 91 77 19 (95)
Max 65 61 87 74 13 (65)
Xeng 30 69 95 74 14 (70)
Chemi 46 63 87 71 20 (100)
Phil 34 63 90 70 19 (95)
Joe 73 59 76 69 17 (85)
Feng 61 65 77 69 17 (85)
Nate 65 48 76 64 18 (90)
Ecer 44 56 74 62 16 (80)
Suzy 56 21 23 29 13 (65)

Table 4.5. Students accuracy score per section, and ROT score (ROT percentage score
in the parenthesis). Note that the presented data is organized based on the high to low
scores in the overall linked list concepts.

4.3.2 RQ4: What is the relationship between drawing pictures while
reasoning about linked lists and students’ visual-spatial reason-
ing?

To answer RQ4, we compare the number of times students draw pictures when answering
questions about linked lists and their reasons for drawing with their ROT test scores (see
Table 4.6). Since research shows that visualization or drawing pictures helps students
reason better while solving problems [36], we want to see if there is a relationship be-
tween drawing pictures while reasoning about linked lists in C and students visual-spatial
reasoning, which could be a factor into why some students draw more or less than others
and for what reasons they are drawing pictures.



109

# Drawing Per Section

Verbal Coding
Explain
Code

Recognition
Total

Drawing
ROT

Bob 4 0 0 0 4 15 (75)
Bill 7 3 1 1 12 19 (95)
Max 6 6 0 1 13 13 (65)
Xeng 0 4 2 2 8 14 (70)
Chemi 2 0 0 1 3 20 (100)
Phil 0 0 0 1 1 19 (95)
Joe 6 0 0 0 6 17 (85)
Feng 5 0 0 1 6 17 (85)
Nate 6 3 2 2 13 18 (90)
Ecer 4 1 0 1 6 16 (80)
Suzy 6 0 0 1 7 13 (65)

Table 4.6. The Number of students’ drawings per section, and ROT score (ROT per-
centage score in the parenthesis). Note that the presented data is organized based on the
high to low scores in the overall linked list concepts.

We notice that students who have a higher spatial visualization score draw fewer
pictures when coding, which could be because they are able to correctly visualize the
process of the operation in their head (see Table 4.6). Chemi and Phil, who receive a
95% or higher ROT scores, do not draw in the coding questions or use drawing to explain
the coding process to the interviewer, like Bill.

Bill, in the delete at the beginning operation, mistakenly deletes the first node without
using a temporary pointer variable to hold the memory address of that node. Then, he
notices the problem during his think-aloud process without drawing any pictures, and he
fixes his code accordingly. Chemi seems to have a good spatial ability to visualize things
due to his field of study and thinking about linked lists as a “chain of atoms” that bond
together. He finds that linked lists are easy to understand conceptually, but he struggles
with the C language syntax, especially when dealing with pointers, memory management,
and using the pointer operator ‘*’ when defining the list.

We explore the purpose of the students’ drawing while solving coding questions, and
we find that only five participants (Bill, Max, Xeng, Ecer, and Nate) draw in the cod-



110

ing questions. We observe that these students use drawing pictures while solving the
coding questions in four different ways: 1) draw first before writing the code to help
them create/construct the code (Max, Ecer, Nate), 2) draw after being stuck in writing
code (Ecer), 3) draw after writing the code to find bugs and check if the code works
perfectly (Max, Ecer, Nate), or 4) draw after writing the code to explain the process of
the operation (Bill and Xeng).

We also find that all students, who draw pictures in coding questions (Bill, Max,
Xeng, Ecer, and Nate), draw a picture when deleting a node after a specific location.
Only Bill and Xeng, who purposely draw after coding this operation to explain, have a
complete understanding of this operation. Others, who draw to construct the code, have
errors related to the pointer variable. However, we do not find any relationship between
why the students draw pictures and their ROT score.



111

Chapter 5: Threats to Validity

We identify five threats to the validity of this study. First, we did not pilot the questions
with students prior to the study, which means there are likely issues with the questions
used. We asked experts to review the questions, but some experts might have overlooked
some issues, such as ambiguous wording, that could have led to confusion for the student.
For example, we used ’head pointer’ and ’head’ for the ’head pointer variable’, but we
were consistent with the language used in the course. Second, there is a possibility that
we interpret small syntax mistakes as misunderstandings, but we triangulate issues with
other data to minimize this threat. Third, we interview only A and B students. Students
with lower grades might have different misunderstandings. Fourth, this study reveals
the misunderstandings from these 11 participants. It is not likely that the small sample
size represents all the misunderstandings or lack of knowledge students have about basic
linked list concepts in C. If we conducted this same study with other students, we may or
may not see the same misunderstandings, and we would likely see new ones. Finally, this
study is limited to misunderstandings about linked lists in C. Some misunderstandings
may or may not be generalized to other languages.



112

Chapter 6: Conclusion

Identifying students’ misunderstandings is one of the most important aspects of CS ed-
ucators’ competence [92], and understanding students’ reasoning about a concept can
provide insight into their mental models about that concept [59]. Most previous studies
for discovering students’ misconceptions in CS focus on procedural understanding by ask-
ing students to write code or fill in a missing piece of code. However, lacking conceptual
understanding could make learning the procedural knowledge difficult. This study con-
tributes to educators understanding of how students reason and think about the linked
list concepts in C. If students struggle with the basic data structures, then they cannot be
expected to understand more complex data structures or manipulating data structures.

The education philosophers suggest that educators make sure the materials they teach
are correct and do not have any misleading aspects [82], but it is hard to do this without
an inventory of concepts required for a complete understanding of a specific topic. This
research contributes a categorization of essential linked list concepts and a framework for
assessing and evaluating students’ mental models about linked list. As we can see from
this initial investigation, some students face difficulties understanding linked lists in C,
even if they learn about them before their data structures class. This is largely due to
their misunderstandings about pointers, which is a fundamental prior concept needed to
fully understand linked lists in the C programming language. For example, the concept of
a node pointer variable, inside and outside the node structure, appears to be confusing,
which might be because students are still struggling with pointer variable concepts in
general. Not only are participants have difficulties with learning linked lists, but other
participants in other studies have found linked lists to be a challenging topic in data
structures [101, 116, 71].

The interview results demonstrate that these A and B students have significant con-
ceptual and procedural misunderstandings about basic linked lists concepts in C, after
learning about linked lists in their data structures class. While GPA is not directly
correlated to these students’ misunderstandings, the participant with the lowest GPA is
the lowest performing participant in the interview, which we learn is retaking the data



113

structures class.
We also find that none of the students have an accurate mental model of a singly

linked list. Students do not address every aspect of the linked list concepts in their verbal
responses to general questions. They highlight common knowledge and give high-level
information, but they do not provide very detailed information. In addition, students do
not focus on edge cases, such as an empty list and the importance of NULL, and this
carries across coding questions for some students. Students need to think more broadly
and in more detail like an expert would. On the other hand, students still struggle with
prerequisite knowledge related to allocating memory with malloc, pointers variables and
memory management concepts, and matching types in functions that impact their ability
to understand and implement a singly linked list in C.

In addition to investigating students’ understanding about linked lists in C, this re-
search also explores relationships between students’ performance on the linked list con-
cepts and drawing pictures with their performance on the Purdue Visualization of Rota-
tions Test (ROT) [8]. Even though all our participants receive a score higher than 60%
on the ROT, which indicates that they have the necessary spatial visualization skills,
we do not see that the students with higher ROT scores perform better on the linked
list questions in the survey or interview. In fact, we see that some students who have
high overall linked list scores have lower ROT scores. It could be due to their struggles
thinking abstractly about 2-D or 3-D shapes or being exhausted by the end of the in-
terview. However, we notice that students who have high visual-spatial skills draw less
when coding or explaining the coding process, but this might be due to being able to
visualize well in their head.



114

Chapter 7: Future Work

This research study contributes a categorization and comprehensive list of linked list
concepts with a set of questions and example rubrics for assessing students’ mental mod-
els about a singly linked list in C, but more importantly, it contributes to the future
work in creating a linked list concept inventory using the misunderstandings and gaps
in knowledge about linked list concepts identified in this exploratory research. As the
force concept inventory authors [54] suggest, teaching students about their misconcep-
tions is not effective in improving learning and overcoming these misconceptions. Using
“a well-designed and tested instructional method is essential” to obtain visible conceptual
change.

Halloun and Hestenes in [45] modified the initial diagnosis physics (mechanic) test
many times over three years while administering the different versions on more than 1000
college students in introductory physics courses to validate the instrument and use the
students’ misconceptions in the final version of the multiple-choice test. It also took them
years to interview students to build a well-known validated force concept inventory in
physics that helps educators assess the commonsense beliefs of their students. However,
our data are only from one data structures class. We are in the first stage in the whole
process, and our plan is to collect more data from more students in different universities
to build a concept inventory for linked lists.

Following Hestenes et al. method of validating the (mechanic’s) test, we want to
perform a content validity to our survey and interview questions using the following
steps:

1. More discussion of the test questions with data structure professors and graduate
students.

2. Give the questions to different graduate students to see how well they solve the
questions and make changes until they all agree on the correct answers.

3. Provide the questions to more students and follow-up with students about the
questions to ensure they understood them.



115

Bibliography

[1] Wendy K Adams and Carl E Wieman. Development and validation of instruments
to measure learning of expert-like thinking. International Journal of Science Edu-
cation, 33(9):1289–1312, 2011.

[2] Maizam Alias, Thomas R Black, and David E Gray. Effect of instruction on spatial
visualization ability in civil engineering students. International Education Journal,
3(1), 2002.

[3] Vicki L Almstrum, Peter B Henderson, Valerie Harvey, Cinda Heeren, William
Marion, Charles Riedesel, Leen-Kiat Soh, and Allison Elliott Tew. Concept inven-
tories in computer science for the topic discrete mathematics. In ACM SIGCSE
Bulletin, volume 38, pages 132–145. ACM, 2006.

[4] Lorin W Anderson, David R Krathwohl, et al. A revision of bloom’s taxonomy of
educational objectives. A Taxonomy for Learning, Teaching and Assessing. Long-
man, New York, 2001.

[5] Yuichiro Anzai and Herbert A Simon. The theory of learning by doing. Psychological
review, 86(2):124, 1979.

[6] Alan C Benander, Barbara A Benander, and Howard Pu. Recursion vs. iteration:
An empirical study of comprehension. Journal of Systems and Software, 32(1):73–
82, 1996.

[7] Stephen Bloch. Teaching linked lists and recursion without conditionals or null. J.
Comput. Sci. Coll., 18(5):96–108, may 2003.

[8] George M Bodner and Roland B Guay. The purdue visualization of rotations test.
The Chemical Educator, 2(4):1–17, 1997.

[9] Elizabeth Boese. Linked-list vs array in memory: An unplugged active learning
experience (abstract only). In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, SIGCSE ’18, page 1106, New York, NY, USA,
2018. Association for Computing Machinery.

[10] Sarah Buchanan, Brandon Ochs, and Joseph J LaViola Jr. Cstutor: a pen-based
tutor for data structure visualization. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, pages 565–570, 2012.



116

[11] Ricardo Caceffo, Steve Wolfman, Kellogg S Booth, and Rodolfo Azevedo. Develop-
ing a computer science concept inventory for introductory programming. In Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education,
pages 364–369. ACM, 2016.

[12] Jason Carter and Prasun Dewan. Contextualizing inferred programming difficul-
ties. In Proceedings of the 3rd International Workshop on Emotion Awareness in
Software Engineering, pages 32–38, 2018.

[13] Audrey B Champagne et al. Interactions of students’ knowledge with their com-
prehension and design of science experiments. A Technical Report at the University
of Pittsburgh, 1980.

[14] Yi-Ling Cheng and Kelly S Mix. Spatial training improves children’s mathematics
ability. Journal of Cognition and Development, 15(1):2–11, 2014.

[15] Harrison Chotzen, Alasdair J. Johnson, and Parth M. Desai. Exploring the mental
models of undergraduate programmers in the context of linked lists. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education, SIGCSE
’19, page 1261, New York, NY, USA, 2019. Association for Computing Machinery.

[16] Eric Chown, Stephen Kaplan, and David Kortenkamp. Prototypes, location, and
associative networks (plan): Towards a unified theory of cognitive mapping. Cog-
nitive Science, 19(1):1–51, 1995.

[17] Andy Clark. Microcognition: Philosophy, cognitive science, and parallel distributed
processing. MIT Press, 1991.

[18] Stephen Cooper, Karen Wang, Maya Israni, and Sheryl Sorby. Spatial skills training
in introductory computing. In Proceedings of the eleventh annual international
conference on international computing education research, pages 13–20, 2015.

[19] Felicia-Mirabela Costea, Ciprian-Bogdan Chirila, and Vladimir-Ioan Creţu. Auto-
generative learning objects for learning linked lists concepts. In 2020 International
Symposium on Electronics and Telecommunications (ISETC), pages 1–4, 2020.

[20] Anthony Cox, Maryanne Fisher, and Philip O’Brien. Theoretical considerations on
navigating codespace with spatial cognition. In PPIG, page 9, 2005.

[21] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial. Us-
ing tracing and sketching to solve programming problems: replicating and extend-
ing an analysis of what students draw. In Proceedings of the 2017 ACM Conference
on International Computing Education Research, pages 164–172, 2017.



117

[22] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. Detecting and understand-
ing students’ misconceptions related to algorithms and data structures. In Proceed-
ings of the 43rd ACM technical symposium on Computer Science Education, pages
21–26. ACM, 2012.

[23] Herbert L Dershem, Ryan L McFall, and Ngozi Uti. Animation of java linked
lists. In Proceedings of the 33rd SIGCSE technical symposium on Computer science
education, pages 53–57, 2002.

[24] John Dewey. How we think. Courier Corporation, 1997.

[25] Chris R Douce, Paul J Layzell, and Jim Buckley. Spatial measures of software
complexity. 1999.

[26] K Anders Ericsson and Herbert A Simon. Protocol analysis: Verbal reports as data.
the MIT Press, 1984.

[27] Mohammed F Farghally, Kyu Han Koh, Jeremy V Ernst, and Clifford A Shaffer.
Towards a concept inventory for algorithm analysis topics. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education, pages
207–212. ACM, 2017.

[28] Sally Fincher, Bob Baker, Ilona Box, Quintin Cutts, Michael de Raadt, Patricia
Haden, John Hamer, Margaret Hamilton, Raymond Lister, and Marian Petre. Pro-
grammed to succeed?: A multi-national, multi-institutional study of introductory
programming courses. 2005.

[29] Sally Fincher and Marian Petre. Computer science education research. CRC Press,
2004.

[30] Maryanne Fisher, Anthony Cox, and Lin Zhao. Using sex differences to link spatial
cognition and program comprehension. In 2006 22nd IEEE International Confer-
ence on Software Maintenance, pages 289–298. IEEE, 2006.

[31] Davide Fossati, Barbara Di Eugenio, Christopher W Brown, Stellan Ohlsson,
David G Cosejo, and Lin Chen. Supporting computer science curriculum: Exploring
and learning linked lists with ilist. IEEE Transactions on Learning Technologies,
2(2):107–120, 2009.

[32] Eric Fouh, Monika Akbar, and Clifford A Shaffer. The role of visualization in
computer science education. Computers in the Schools, 29(1-2):95–117, 2012.

[33] Shane Frederick. Cognitive reflection and decision making. Journal of Economic
perspectives, 19(4):25–42, 2005.



118

[34] David Furcy. Jhavepop: Visualizing linked-list operations in c++ and java. Journal
of Computing Sciences in Colleges, 25(1):32–41, 2009.

[35] Rochel Gelman and Charles R Gallistel. The child’s understanding of number.
Harvard University Press, 1978.

[36] Dedre Gentner and Albert L Stevens. Mental models. Psychology Press, 1983.

[37] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey L Herman, Lisa Kaczmarczyk,
Michael C Loui, and Craig Zilles. Setting the scope of concept inventories for
introductory computing subjects. ACM Transactions on Computing Education
(TOCE), 10(2):5, 2010.

[38] Michael Goldwasser. A gentle introduction to linked lists. In Proceedings of
the Thirty-Fourth SIGCSE Technical Symposium on Computer Science Education:
SIGCSE 2003, page 413, 2003.

[39] Thomas RG Green and R Navarro. Programming plans, imagery, and visual pro-
gramming. In Human—Computer Interaction, pages 139–144. Springer, 1995.

[40] Joy Paul Guilford and John I Lacey. Printed classification tests: Report no. 5.
1947.

[41] Philip J Guo. Online python tutor: embeddable web-based program visualization
for cs education. In Proceeding of the 44th ACM technical symposium on Computer
science education, pages 579–584. ACM, 2013.

[42] Mark Guzdial and Barbara Ericson. Listening to linked lists: Using multimedia to
learn data structures (abstract only). In Proceedings of the 43rd ACM Technical
Symposium on Computer Science Education, SIGCSE ’12, page 663, New York,
NY, USA, 2012. Association for Computing Machinery.

[43] Graeme S Halford. Children’s understanding: The development of mental models.
Hillsdale, NJ: Erlbaum, 1993.

[44] I. A. Halloun and D. Hestenes. The initial knowledge state of college physics
students. American Journal of Physics, 53(11):1043–1048, 1985.

[45] Ibrahim Abou Halloun and David Hestenes. The initial knowledge state of college
physics students. American journal of Physics, 53(11):1043–1055, 1985.

[46] Sally Hamouda, Stephen H. Edwards, Hicham G. Elmongui, Jeremy V. Ernst,
and Clifford A. Shaffer. A basic recursion concept inventory. Computer Science
Education, 27(2):121–148, 2017.



119

[47] B Hardiyana, L Fadilah, and D Effendi. Application of linked list algorithm based
on multimedia. In IOP Conference Series: Materials Science and Engineering,
volume 879, page 012087. IOP Publishing, 2020.

[48] Sarah S. Heckman. An empirical study of in-class laboratories on student learning
of linear data structures. In Proceedings of the Eleventh Annual International Con-
ference on International Computing Education Research, ICER ’15, page 217–225,
New York, NY, USA, 2015. Association for Computing Machinery.

[49] Lynette D Henderson and Julie Tallman. Stimulated recall and mental models: Tools
for teaching and learning computer information literacy, volume 2. Scarecrow Press,
2006.

[50] Geoffrey L Herman and Dong San Choi. The affordances and constraints of di-
agrams on students’ reasoning about state machines. In Proceedings of the 2017
ACM Conference on International Computing Education Research, pages 173–181,
2017.

[51] Geoffrey L Herman, Lisa Kaczmarczyk, Michael C Loui, and Craig Zilles. Proof
by incomplete enumeration and other logical misconceptions. In Proceedings of the
fourth international workshop on computing education research, pages 59–70. ACM,
2008.

[52] Geoffrey L Herman, Michael C Loui, and Craig Zilles. Creating the digital logic con-
cept inventory. In Proceedings of the 41st ACM technical symposium on Computer
science education, pages 102–106. ACM, 2010.

[53] Geoffrey L Herman, Craig Zilles, and Michael C Loui. Work in progress-students’
misconceptions about state in digital systems. In 2009 39th IEEE Frontiers in
Education Conference, pages 1–2. IEEE, 2009.

[54] David Hestenes, Malcolm Wells, and Gregg Swackhamer. Force concept inventory.
The physics teacher, 30(3):141–158, 1992.

[55] Robert R Hoffman and Peter A Hancock. Measuring resilience. Human factors,
59(4):564–581, 2017.

[56] Robert R Hoffman, Shane T Mueller, Gary Klein, and Jordan Litman. Metrics for
explainable ai: Challenges and prospects. arXiv preprint arXiv:1812.04608, 2018.

[57] Christine Howe, Andrew Tolmie, Anthony Anderson, and Mhairi Mackenzie. Con-
ceptual knowledge in physics: The role of group interaction in computer-supported
teaching. Learning and Instruction, 2(3):161–183, 1992.



120

[58] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. A study of code design skills in
novice programmers using the solo taxonomy. In Proceedings of the 2016 ACM
Conference on International Computing Education Research, pages 251–259, 2016.

[59] Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of
language, inference, and consciousness. Number 6. Harvard University Press, 1983.

[60] Sue Jones and Gary Burnett. Spatial ability and learning to program. Human
Technology: An Interdisciplinary Journal on Humans in ICT Environments, 2008.

[61] Sue Jane Jones and Gary E Burnett. Spatial skills and navigation of source code.
ACM SIGCSE Bulletin, 39(3):231–235, 2007.

[62] Lisa C Kaczmarczyk, Elizabeth R Petrick, J Philip East, and Geoffrey L Herman.
Identifying student misconceptions of programming. In Proceedings of the 41st
ACM technical symposium on Computer science education, pages 107–111. ACM,
2010.

[63] Vinayak Teoh Kannappan, Owen Noel Newton Fernando, Anupam Chattopadhyay,
Xavier Tan, Jeffrey Yan Jack Hong, Hock Soon Seah, and Hui En Lye. La petite
fee cosmo: Learning data structures through game-based learning. In 2019 Inter-
national Conference on Cyberworlds (CW), pages 207–210. IEEE, 2019.

[64] Kuba Karpierz and Steven A Wolfman. Misconceptions and concept inventory
questions for binary search trees and hash tables. In Proceedings of the 45th ACM
technical symposium on Computer science education, pages 109–114. ACM, 2014.

[65] RJ Keeble and Robert D. Macredie. Assistant agents for the world wide web
intelligent interface design challenges. Interacting with computers, 12(4):357–381,
2000.

[66] Maria Kozhevnikov, Michael A Motes, and Mary Hegarty. Spatial visualization in
physics problem solving. Cognitive science, 31(4):549–579, 2007.

[67] Robert L. Kruse, Clovis L. Tondo, and Bruce P. Leung. Data Structures and
Program Design in C. Prentice-Hall, Inc., USA, 1996.

[68] NS Kumar, PN Revanth Babu, KS Sai Eashwar, MP Srinath, and Sreyans Bothra.
Code-viz: Data structure specific visualization and animation tool for user-provided
code. In 2021 International Conference on Smart Generation Computing, Commu-
nication and Networking (SMART GENCON), pages 1–8. IEEE, 2021.

[69] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the diffi-
culties of novice programmers. Acm sigcse bulletin, 37(3):14–18, 2005.



121

[70] Ah-Fur Lai, Ting-Ting Wu, Gon-Yi Lee, and Horng-Yih Lai. Developing a web-
based simulation-based learning system for enhancing concepts of linked-list struc-
tures in data structures curriculum. In 2015 3rd International Conference on Arti-
ficial Intelligence, Modelling and Simulation (AIMS), pages 185–188. IEEE, 2015.

[71] Lucas Layman, Yang Song, and Curry Guinn. Toward predicting success and
failure in cs2: A mixed-method analysis. In Proceedings of the 2020 ACM Southeast
Conference, pages 218–225, 2020.

[72] Hanyu Lin. Influence of design training and spatial solution strategies on spatial
ability performance. International Journal of Technology and Design Education,
26(1):123–131, 2016.

[73] Katherine D Lippa, Helen Altman Klein, and Valerie L Shalin. Everyday expertise:
cognitive demands in diabetes self-management. Human Factors, 50(1):112–120,
2008.

[74] Gordana Marunic and Vladimir Glazar. Spatial ability through engineering
graphics education. International Journal of Technology and Design Education,
23(3):703–715, 2013.

[75] Richard E Mayer, Jennifer L Dyck, and William Vilberg. Learning to program
and learning to think: what’s the connection? Communications of the ACM,
29(7):605–610, 1986.

[76] Renee McCauley, Brian Hanks, Sue Fitzgerald, and Laurie Murphy. Recursion vs.
iteration: An empirical study of comprehension revisited. In Proceedings of the 46th
ACM technical symposium on computer science education, pages 350–355. ACM,
2015.

[77] L. McDermott. Research on conceptual understanding in mechanics. Physics Today,
37(7):24–32, 1984.

[78] Mark G McGee. Human spatial abilities: Psychometric studies and environmental,
genetic, hormonal, and neurological influences. Psychological bulletin, 86(5):889,
1979.

[79] Pedro Moraes and Leopoldo Teixeira. Willow: A tool for interactive programming
visualization to help in the data structures and algorithms teaching-learning pro-
cess. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering,
pages 553–558, 2019.

[80] Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume 104.
Prentice-Hall Englewood Cliffs, NJ, 1972.



122

[81] Douglas P Newton. Causal situations in science: a model for supporting under-
standing. Learning and Instruction, 6(3):201–217, 1996.

[82] Nel Noddings. Philosophy of education. Routledge, 2018.

[83] Donald A Norman. Some observations on mental models. In Mental models. Psy-
chology Press, 1983.

[84] Richard M Onyancha, Matthew Derov, and Brad L Kinsey. Improvements in spa-
tial ability as a result of targeted training and computer-aided design software use:
Analyses of object geometries and rotation types. Journal of Engineering Educa-
tion, 98(2):157–167, 2009.

[85] Wolfgang Paul and Jan Vahrenhold. Hunting high and low: instruments to detect
misconceptions related to algorithms and data structures. In Proceeding of the 44th
ACM technical symposium on Computer science education, pages 29–34. ACM,
2013.

[86] Martinha Piteira and Carlos Costa. Computer programming and novice program-
mers. In Proceedings of the Workshop on Information Systems and Design of Com-
munication, pages 51–53, 2012.

[87] Martinha Piteira and Carlos Costa. Learning computer programming: study of
difficulties in learning programming. In Proceedings of the 2013 International Con-
ference on Information Systems and Design of Communication, pages 75–80, 2013.

[88] Leo Porter, Saturnino Garcia, Hung-Wei Tseng, and Daniel Zingaro. Evaluating
student understanding of core concepts in computer architecture. In Proceedings
of the 18th ACM conference on Innovation and technology in computer science
education, pages 279–284. ACM, 2013.

[89] Leo Porter, Daniel Zingaro, Cynthia Lee, Cynthia Taylor, Kevin C Webb, and
Michael Clancy. Developing course-level learning goals for basic data structures in
cs2. In Proceedings of the 49th ACM technical symposium on Computer Science
Education, pages 858–863. ACM, 2018.

[90] Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C Webb,
Cynthia Lee, and Michael Clancy. Bdsi: A validated concept inventory for basic
data structures. In Proceedings of the 2019 ACM Conference on International
Computing Education Research, pages 111–119, 2019.

[91] N Praetorius and KD Duncan. Verbal reports: a problem in research design. In
Tasks, errors, and mental models, pages 293–314. 1988.



123

[92] Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM Transactions on Computing
Education (TOCE), 18(1):1, 2017.

[93] Sarika Rajeev and Sharad Sharma. Motivational game-theme based instructional
module for teaching binary tree and linked list. In Proceedings of 28th International
Conference, volume 64, pages 31–40, 2019.

[94] Jens Rasmussen, Annelise Mark Pejtersen, and Len P Goodstein. Cognitive systems
engineering. 1994.

[95] Robert Ravenscroft. An html5 browser application for modeling and teaching linked
lists. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, pages 1106–1106, 2018.

[96] Robert A Ravenscroft Jr. Dynamic data structures, a web based tool for teaching
linked lists and binary trees. Journal of Computing Sciences in Colleges, 33(6):97–
106, 2018.

[97] Anthony Robins, Ken Sutton, Denise Tolhurst, and Jodi Tutty. Programmed to
succeed?: A multi-national, multi-institutional study of introductory programming
courses.

[98] K Rochford. Spatial learning disabilities and underachievement among university
anatomy students. Medical education, 19(1):13–26, 1985.

[99] Timothy J. Rolfe. Classroom exercise demonstrating linked list operations. In
Working Group Reports on ITiCSE on Innovation and Technology in Computer
Science Education, ITiCSE-WGR ’06, page 83–84, New York, NY, USA, 2006.
Association for Computing Machinery.

[100] Mary A Sadowski and SA Sorby. Engineering graphics concepts: A delphi study.
In ASEE Annual Conference Proceedings, 2015.

[101] Beth Simon, Mike Clancy, Robert McCartney, Briana Morrison, Brad Richards,
and Kate Sanders. Making sense of data structures exams. In Proceedings of the
Sixth international workshop on Computing education research, pages 97–106, 2010.

[102] Melinda Y Small and Mary E Morton. Research in college science teaching: Spa-
tial visualization training improves performance in organic chemistry. Journal of
College Science Teaching, 13(1):41–43, 1983.

[103] B. J. Smith and H. S. Delugach. Work in progress 2014; using a visual programming
language to bridge the cognitive gap between a novice’s mental model and program



124

code. In 2010 IEEE Frontiers in Education Conference (FIE), pages F3G–1–F3G–
3, Oct 2010.

[104] Amber Solomon. The role of spatial representations in cs teaching and cs learning.
In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 237–238. IEEE, 2019.

[105] Sheryl Sorby, Beth Casey, Norma Veurink, and Alana Dulaney. The role of spatial
training in improving spatial and calculus performance in engineering students.
Learning and Individual Differences, 26:20–29, 2013.

[106] Sheryl A Sorby. Educational research in developing 3-d spatial skills for engineering
students. International Journal of Science Education, 31(3):459–480, 2009.

[107] K Suzuki. Improvement of spatial ability through descriptive geometry education.
Journal of the Graphic Science of Japan, 49:21–28, 1990.

[108] Cynthia Taylor, Daniel Zingaro, Leo Porter, Kevin C Webb, Cynthia Bailey Lee,
and Michael Clancy. Computer science concept inventories: past and future. Com-
puter Science Education, 24(4):253–276, 2014.

[109] Tammy VanDeGrift. Compare and contrast in data structures. J. Comput. Sci.
Coll., 34(1):195–201, oct 2018.

[110] Kevin C Webb and Cynthia Taylor. Developing a pre-and post-course concept
inventory to gauge operating systems learning. In Proceedings of the 45th ACM
technical symposium on Computer science education, pages 103–108. ACM, 2014.

[111] Kevin C Webb, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Cynthia Lee,
Michael Clancy, and Leo Porter. Student performance on the bdsi for basic data
structures. ACM Transactions on Computing Education (TOCE), 22(1):1–34, 2021.

[112] Noreen M Webb. Microcomputer learning in small groups: Cognitive requirements
and group processes. Journal of Educational Psychology, 76(6):1076, 1984.

[113] SJ Westerman and T Cribbin. Navigating virtual information spaces: Individual
differences in cognitive maps. Proceedings of the UK Virtual Reality Special Interest
Group, 1999.

[114] Michael D Williams, James D Hollan, and Albert L Stevens. Human reasoning
about a simple physical system. In Mental models, pages 139–162. Psychology
Press, 2014.



125

[115] Chen-Chih Wu, Greg C Lee, and Janet Mei-Chuen Lin. Visualizing programming
in recursion and linked lists. In Proceedings of the 3rd Australasian conference on
Computer science education, pages 180–186, 1998.

[116] Lucy Yeomans, Steffen Zschaler, and Kelly Coate. Transformative and trouble-
some? students’ and professional programmers’ perspectives on difficult concepts
in programming. ACM Transactions on Computing Education (TOCE), 19(3):1–27,
2019.

[117] Shamama Zehra, Aishwarya Ramanathan, Larry Yueli Zhang, and Daniel Zingaro.
Student misconceptions of dynamic programming. In Proceedings of the 49th ACM
technical symposium on Computer Science Education, pages 556–561. ACM, 2018.

[118] Philip David Zelazo. The Oxford Handbook of Developmental Psychology, Vol. 1:
Body and Mind, volume 1. Oxford University Press, 2013.

[119] Jinghua Zhang, Mustafa Atay, Elvira R Caldwell, and Elva J Jones. Reinforcing
student understanding of linked list operations in a game. In Frontiers in Education
Conference (FIE), 2015 IEEE, pages 1–7. IEEE, 2015.

[120] Daniel Zingaro, Cynthia Taylor, Leo Porter, Michael Clancy, Cynthia Lee, Soohyun
Nam Liao, and Kevin C Webb. Identifying student difficulties with basic data
structures. In Proceedings of the 2018 ACM Conference on International Computing
Education Research, pages 169–177. ACM, 2018.

[121] Rolf A Zwaan. Situation models, mental simulations, and abstract concepts in
discourse comprehension. Psychonomic bulletin & review, 23(4):1028–1034, 2016.



126

APPENDICES



127

Appendix A: Survey Materials



1/21/20, 4(46 PMQualtrics Survey Software

Page 1 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

I agree to participate in this study.

I do not agree to participate in this study.

CS Concept Inventory Consent

WHAT IS THE PURPOSE OF THIS FORM?
This form contains information you will need to help you decide whether to be in this research study or not.  Please read the
form carefully and ask the study team member(s) questions about anything that is not clear.
WHY IS THIS RESEARCH STUDY BEING DONE?
This project aims at understanding how students reason about pieces of and operations on linked list and the connections
this has to visual-spatial reasoning. This research seeks to uncover students mental models and misunderstandings about
linked list to develop a concept inventory to improve learning. Some findings of the study will be used for a student's
thesis/dissertation. The study team members include Jennifer Parham-Mocello and Eman Almadhoun.
WHY AM I BEING INVITED TO TAKE PART IN THIS STUDY?
You are being asked to take part in this study because you are a student in CS 261.
What will happen if I take part in this research study? 
You will participate in a 15-20 minute survey on linked lists, and depending on your responses to the survey, you may be
recruited to participate in a semi-structured interview for $15/hour. At this time, we are asking your permission to use the
survey data for research purposes only.
Study duration: The survey will take no longer than 20 minutes.
WHAT ARE THE RISKS AND POSSIBLE DISCOMFORTS OF THIS STUDY?
The security and confidentiality of survey information collected cannot be guaranteed.  Information collected online or sent
by email can be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses.  The research team will
do its best to keep data secure and confidential.
WHAT ARE THE BENEFITS OF THIS STUDY?
This study is to advance our understanding of how students reason about linked lists and improve learning through
qualitative research. 
WHO WILL SEE THE INFORMATION I GIVE?
The information that you give us will only be used for this study. We will not share information about you with others or use it
in future studies without your consent. There is still a chance that someone could figure out that the information is about
you.
The information you provide during this research study will be kept confidential to the extent permitted by law.   Research
records will be stored securely and only researchers will have access to the records. Federal regulatory agencies and the
Oregon State University Institutional Review Board (a committee that reviews and approves research studies) may inspect
and copy records pertaining to this research.  Some of these records could contain information that personally identifies
you. If the results of this project are published your identity will not be made public, unless permission is given to share
audio publicly.
What other choices do I have if I do not take part in this study?
If you decide to participate, you are free to withdraw at any time without penalty. If you choose to withdraw from this project
before it ends, the researchers may keep information collected about you and this information may be included in study
reports. Your decision to take part or not take part in this study will not affect your relationship with your instructor,
researchers, or the University.
WHO DO I CONTACT IF I HAVE QUESTIONS?
If you have any questions about this research project, please contact: Jennifer Parham-Mocello at (541) 737-8895 or
parhammj@oregonstate.edu.  If you have questions about your rights or welfare as a participant, please contact the Oregon
State University Institutional Review Board (IRB) Office, at (541) 737-8008 or by email at IRB@oregonstate.edu.
WHAT DOES MY AGREEMENT ON THIS CONSENT FORM MEAN?
Your agreement indicates that this study has been explained to you, that your questions have been answered, and that you
agree to take part in this study. 

Demographic/Background

128



1/21/20, 4(46 PMQualtrics Survey Software

Page 2 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Male

Female

Transgender Male

Transgender Female

Non-Conforming

Not Listed

Prefer not to answer

18 - 24

25 - 33

34 - 42

43 or more

Computer Science

Electrical Engineering

Other:

What is your GPA?

To which gender identity do you most identify?

What is your age?

Choose one or more races that you consider yourself to be:
White Asian

Black or African American Native Hawaiian or Pacific Islander

American Indian or Alaska Native Other 

What is your major?

129



1/21/20, 4(46 PMQualtrics Survey Software

Page 3 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Yes: what was your previous program/major?

No

Yes

No

Yes

No

Other

Yes

No

Yes

No

Have you ever changed your program/major?

Are you studying in a double degree program? 

Did you take CS 162 - Introduction to Computer Science II class at Oregon State University
(OSU)?

Which quarter did you take CS 162 at OSU?

Who was your instructor in CS 162 at OSU? 

Did you have any knowledge of linked lists prior to CS 261?

Did you have any difficulties while learning linked lists in this class?

130



1/21/20, 4(46 PMQualtrics Survey Software

Page 4 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Node Pointer

Node

Data

NULL Pointer

Other

Node Pointer

Node

Data

What difficulties did you have while learning linked lists? and why?

Linked Lists

In the following questions,  represents NULL 

Q1. What does the following drawing represent? Please write why you choose this answer?  

      

Q2. What does the following drawing represent? Please write why you choose this answer?
 

          

BC the 2 parts: data and pointer

131



1/21/20, 4(46 PMQualtrics Survey Software

Page 5 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

NULL Pointer

Other

A

B

All of the above

None of the above

Other

Singly Linked List

Doubly Linked List

Singly Circular Linked List

Doubly Circular Linked List

Q3. Which drawing is an empty list? Please write why you choose this answer?
 

 

Q4. What type of list does the following drawing represent? (Questions 5 - 23 are referred to
this drawing)
 

​​​​​​​

132



1/21/20, 4(46 PMQualtrics Survey Software

Page 6 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Other

Node Pointer

Node

Head

Tail

Other

Node Pointer

Node

Head

Tail

Other

Node Pointer

Node

Q5. From Q4, what is the data type of A? Please write why you choose this answer?

Q6.  From Q4, what is the benefit from including A at the beginning of the list?

Q7. From Q4, what is B?  Please write why you choose this answer?

Q8. From Q4, what is the data type of E?  Please write why you choose this answer?

BC the 2 parts: data and pointer

This is the head which stores the address of the first node of the list

To indicate the start/beginning of the linked list

133



1/21/20, 4(46 PMQualtrics Survey Software

Page 7 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Head

Tail

Other

Singly Linked List

Doubly Linked List

Singly Circular Linked List

Doubly Circular Linked List

Other

Q9. From Q4, what is the benefit from including E at the end of the list?

Q10. From Q4, what is the benefit from including this element ( ) at the end of the list?

Q11. What type of list does the following drawing represent?

Q12. What type of list does the following drawing represent?

To indicate the end of a linked list

To allow access the end of the list in constant time O(1) and ease add a new node 
to the end of a linked list. 

134



1/21/20, 4(46 PMQualtrics Survey Software

Page 8 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Singly Linked List

Doubly Linked List

Singly Circular Linked List

Doubly Circular Linked List

Other

Singly Linked List

Doubly Linked List

Singly Circular Linked List

Doubly Circular Linked List

Other

Contiguously

Non-Contiguously

Other

Integer

  

Q13. What type of list does the following drawing represent?

Q14. In a linked list, how are the nodes stored/arranged in memory?

Q15. What type of data can be stored in a node of a linked list? Please write why you choose
this answer? (You can Choose more than one answer)

135



1/21/20, 4(46 PMQualtrics Survey Software

Page 9 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Character

Memory Address

Null

All of the above

I do not know

Data

Pointer

Other

0

1

2

3

4

0

1

Q16. A node in a singly linked list has two parts, what are they? (You can choose more than
one answer)

Q17. From Q16, please explain what each part stores?

Q18. In a singly-linked list, how many pointers are in a node?

Q19.  In a doubly-linked list, how many pointers are in a node?

Data part: stores any value, such that int, char, double, memory address, object... 
Pointer part: stores memory address of the next node point to or Null 

136



1/21/20, 4(46 PMQualtrics Survey Software

Page 10 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

2

3

4

Assign A to point to C and then free B

Free B

Assign a temporary node pointer to point to B, assign A to point to C, and then free B

Free A

Free A

While A is not pointing to NULL, free what A points to and assign A to the next node.

While A is not pointing to NULL, assign a temporary node pointer to point to the same place as A,
assign A to point to the next node in the list, and free the node pointed to by the temporary node
pointer.

Both a and b are correct

None of the above

Q20. Suppose you have a singly linked list, you want to delete B from the list, please select
the best answer to do so:

 

Q21. From Q20, suppose you want to delete the entire linked list, please select the best
answer:

Pointers

Q22. In the C language, what is the benefit to using the free() function in your code?

To de-allocate the memory allocated by the functions malloc ( )

137



1/21/20, 4(46 PMQualtrics Survey Software

Page 11 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Create a character variable

Create a pointer to a character

Create an array of characters

Other

Make q point to the same place as p

Make p point to the same place as q

All of the above

Other

Legal

Illegal

Q23. Suppose you have the following:

char *p = (char) malloc(sizeof(char) *10);
char *q = (char) malloc(sizeof(char) *10);

What does the part char *p mean?

Q24. What does p = q mean? Please write why you choose this answer?

Q25. Is the following operation legal or not?  Please write why you choose this answer?

*p = *q;
 

Same data type

To deallocate the memory space assigned by the functions malloc ( )
 and to be reused by a sebsequent malloc()

138



1/21/20, 4(46 PMQualtrics Survey Software

Page 12 of 12https://oregonstate.ca1.qualtrics.com/Q/EditSection/Blocks/Ajax/GetSurveyPrintPreview

Legal

Illegal

Legal

Illegal

eebff768 2.71828 3.14159 3.14159

eebff768 3.14159 3.14159 2.71828

3.14159 3.14159 2.71828 eebff768

3.14159 3.14159 eebff768 2.71828

Q26. Is the following operation legal or not?  Please write why you choose this answer?

p = *q;
 

Q27. Is the following operation legal or not?  Please write why you choose this answer?

*p = q;
 

Q28. What is the output after the execution of the following code:
     
          double *p;
     double pi, e;
     p = &e;
    *p = 2.71828
     p = &pi;
    *p = 3.14159;
     printf( "%p %g %g  %g\n", p, *p, pi, e);   
 

Different data type, *p is a character while q is an address

Different data type, p is an address while *q is a character

139



Open-Opened Survey Questions,  
Answer and Rubric 

 

 

 

 

Q6. From Q4, what is the benefit from including A (head) at the beginning of 
the list?  

Answer:  
To indicate the start/ beginning of the linked list  
 
Rubric:  
The question rewards one point: 
 
1 pt (explicitly states indicate the start/ beginning/front of the list) 
0.5 pt (knows it points to a linked list, but not explicitly state start/ beginning of the list) 
0 pt (doesn’t mention indicate start/beginning/point/front  
 

ID Answer Grade Reason for deducting points 
P1    
P2    
…    

P40    
 

Q9. From Q4, what is the benefit from including E (tail) at the end of the list?  

Answer: 
To allow access the end of the list in constant time and ease add a new node to the end of a 
linked list. 
 
Rubric: 
 The question rewards two points one point for each part: 
 
1 pt (explicitly states constant and linear) 
0.5 pt (knows it is faster, but not explicitly state constant/linear) 
0 pt (doesn’t mention complexity/time/faster) 
  
1 pt (explicitly states only add and not delete)  

140



0.5 pt (combines all operations on the end (add and delete)) 
0 pt (nothing about operations on the end) 
 

ID Answer Grade Reason for deducting points 
P1    
P2    
…    

P40    
 

Q10. From Q4, what is the benefit from including this element (  ) (NULL) 
at the end of the list?  

Answer:  
To indicate the end of linked list 
 
Rubric: 
The question rewards one point:  
 
1 pt (explicitly states the indication of end of the list) 
0.5 pt (knows it points to NULL, but not explicitly state indication of end) 
0 pt (doesn’t mention the indication of the end of the list) 
 

ID Answer Grade Reason for deducting points 
P1    
P2    
…    

P40    

 

Q17. From Q16, please explain what each part stores (in a node)?  

Answer:  
Data part: stores any type of data or value, such that int, char, double, memory address, object... 
… 
Pointer part:  stores memory address of the next node point to or NULL 

Rubric: 
The question rewards two points, one point for each part: 
 
1 pt (explicitly states there is a data part and it stores any value/info/data)  
.5 pt (states there is a data part, but doesn’t explicit state that it stores any value/info/data) 
0 pt (doesn’t explicitly state that there is a data part or that it stores any value/info/data) 
 

141



1 pt (explicitly states there is a pointer part and it stores memory address of the next node) 
0.5 pt (mentions there is a pointer part, but doesn’t state that it stores a memory address to next 

node (stating that it stores a pointer/reference to another node isn’t the same as the address 
because it is a pointer/reference, and it holds/stores an address)) 

0 pt (doesn’t mention pointer part stores memory address/pointer of the next node) 

ID Answer Grade Reason for deducting points 
P1    
P2    
…    

P40    

 

Q22. In the C language, what is the benefit to using the free() function in your 
code?  

Answer:   
To deallocate the memory space assigned by the function malloc() to be reused by a subsequent 
malloc() 
 
Rubric: 
The question rewards 1 point:  
 
1 pt (explicitly states deallocate/free/release memory space to be reused) 
0.75 pt (does not explicitly state that memory can be reused, but they state that 
deallocate/free/release memory space to prevent memory leaks) 
0.5 pt (does not explicitly state that deallocate/free/release memory space, but they state that 
memory can be reused or prevent memory leak) 
.25 pt (does not explicitly state that memory can be reused or prevent memory leak, but they 
state that it deallocate/free/release the memory space) 
0 pt (doesn’t mention that memory can be reused or deallocate/free/release or /prevent memory 
leaks) 
 

ID Answer Grade Reason for deducting points 
P1    
P2    
…    

P40    
 

 
 

 

142



143

Appendix B: Verbal Questions



Interview Verbal Questions, Answer and Rubric 
 
Q1. Describe a node in a linked list. 
A node in a linked list is a container or an object that stores data of any type and pointer 
(or memory address) of the next node or Null to indicate the end (or last node) of the 
linked list. 
 

Total 
Points: 

/12 

Point Divvy: 
Gain points for mention of each 
of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 A node stores data    
2 The data can be any type    
2 A node stores a pointer or 

memory address 
   

2 The pointer points to a 
different/next node  

   

2 The pointer points to Null     
2 Null pointer indicates the end 

(or last node) of the linked list 
   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 
 
Q2. Describe a node pointer in a linked list. 
A node pointer points (refers) to the next node in a list by storing/using the memory 
address of the next node or Null to indicate the end (or last node). A node pointer also 
can come by itself as a head or tail. In a doubly linked list, there is an extra pointer points 
to the previous node. 
 

Total 
Points: 

/10 
/2 

Point Divvy: 
Gain 1 point for 
mention of each of 
these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or anything 
else interesting about their 
conceptual understanding 

2 
The node pointer 
points (refers) to the 
next node in the list  

   

2 

The node pointer 
holds the memory 
address of another 
node (explicitly 
mentions the term 
“memory address”) 

   

2 
The value held by the 
node’s pointer can be 
Null  

   

144



2 
Null pointer indicates 
the last (ending) node 
of the linked list 

   

2 
A node pointer can 
come by itself as a 
head or a tail 

   

2 

In a doubly linked 
list, there is an extra 
pointer points to the 
previous node.  

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 
 

Q3. Describe the difference in a head pointer vs. a tail pointer in a linked list. 
A head pointer: 

§ is a node pointer referring (pointing) to the first node in a linked list  
§ contains the memory address of the first node in a linked list or NULL for 

an empty list 
A tail pointer  

§ is a node pointer that refers (points) to the last node in the list. 
§ contains the memory address of the last node in a linked list or NULL for 

an empty list. 
 

Total 
Points: 

/12 

Point Divvy: 
Gain 1 point for 
mention of each of 
these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or anything 
else interesting about their 
conceptual understanding 

Head Pointer: 

2 
points to or references 
the first node in a 
linked list 

   

2 
stores the memory 
address of the first 
node 

   

2 
can be assigned Null 
to represent an empty 
list 

   

Tail Pointer: 

2 
points to or references 
the last node in a 
linked list 

  
 

 

2 
stores the memory 
address of the last 
node 

   

145



2 
can be assigned Null 
to represent an empty 
list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 
 

• 3.1 What are the pros and cons of having a head and tail pointer? 
Pros: 
A head pointer: 

§ provides ability to access the beginning of a linked list in memory 
§ allows inserting or deleting a node at beginning in constant time O(1). 

 
A tail pointer: 

§ provides ability to access the end of a linked list in memory in constant 
time O(1). 

§ allows inserting at the end of the list in a constant time O(1).  
 

 
Cons:  
A tail pointer: 

§ more memory storage (4 bytes on 32-bit CPU / 8 bytes on 64-bit CPU) to 
store a reference to the end of the list 

§ deleting a node at the end with the tail in singly linked list still takes 
linear time O(n) 
 

Having only head pointer (no tail pointer): There are no cons for having a head 
pointer since it requires to access the list 

§ Finding the end of the list is not constant time 
§ Add a new node to the end is linear time O(n) (not constant time) 

 

Total 
Points: 

/24 

Point Divvy: 
Gain 1 point for mention 
of each of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or 
anything else interesting 
about their conceptual 
understanding 

Pros of Head Pointer: 

2 
provides the ability to 
access the beginning of a 
linked list in memory 

   

2 
allows for inserting or 
deleting a node at the 
beginning of a linked list 

   

2 
allows for insertion and 
deletion operations to take 
constant time O(1) 

   

146



Note: give a point for 
above cell when this is 
present 

Pros of Tail Pointer: 

2 
provides the ability to 
access the end of a linked 
list 

   

2 

allows for access to the 
end of the linked list to 
take constant time O(1) 
Note: give a point for 
above cell when this is 
present 

   

2 
allows for inserting a 
node at the end of a 
linked list 

   

2 

allows for inserting a 
node at the end of a 
linked list to take constant 
time O(1) 
Note: give a point for 
above cell when this is 
present 

   

Cons of Tail Pointer: 

2 
The tail pointer has a con 
of more memory storage  

   

2 

more memory storage to 
store a reference to the 
end of the list (the last 
node) 

   

2 

provides deleting a node 
at the end of the singly 
linked list in linear time 
O(n) 

   

Cons of having only Head Pointer (not having a tail pointer): 

2 Finding the end of the list 
is not constant time 

   

2 
Add a new node to the 
end is linear time (not 
constant time) 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 
 
 
 

147



 
• 3.2 Do you create the head or tail of a linked list as a node or node pointer?  

§ Why? 
Node pointer because less memory storage for avoiding unnecessary data 
storage. 
 

Total 
Points: 

/4 

Point Divvy: 
Gain points for mention of each 
of these topics: 

Partially 
Correct Correct 

Comment: Reason for 
not getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 Use node pointer to create 
head and tail. 

   

2 

Reasoning: Storing only the 
memory address will take up 
less space than a full node 
would 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 
 

Q4. Describe a singly linked list? Draw a picture if needed. 
A singly linked list is a linear structure of nodes that are linked together in one direction 
(unidirectional) from beginning/front to last/end with a pointer that refers (points) to the 
next node. Each node stores two parts the data and address of the next node with the 
exception of the last node that points to NULL to indicate the end of the list, and there is 
a node pointer (or pointer to a node) called the head that points to the first node in the list 
or NULL for an empty list. 
 

Total 
Points: 

/18 

Point Divvy: 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 A singly linked list is a linear 
structure 

   

2 

A singly linked list consists of 
nodes linked together in a 
single direction 
(unidirectional) 

   

2 

A singly linked list’s nodes 
are linked together with a 
pointer that points (or 
refers) to the next node 

   

2 Each node stores two parts     

2 Each linked list node has a 
data value 

   

148



2 
Each linked list node has a 
memory address of the next 
node  

   

2 

The last node points to or 
holds a memory address of 
NULL to indicates the end of 
the list 

   

2 
A node pointer called the 
head points to the first node 
in a linked list 

   

2 A head can point to Null to 
indicate an empty list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 
 

Q5. Describe a doubly linked list? Draw a picture if needed.  
A doubly linked list is a linear structure of nodes that are linked together in two directions 
(bidirectional) from beginning/front to last/end and last/end to beginning/front with two 
pointers that refer (point) to the next node and the previous node. Each node stores three 
parts: the data, the address of the next node and the address of the previous node with the 
exception of the first and the last node that points to NULL to indicate the end of the list 
(in the backward or forward direction), and there is a node pointer (or pointer to a node) 
called the head that points to the first node in the list or NULL for an empty list. 
 

Total 
Points: 

/22 

Point Divvy: 
Can still gain points if they are 
pointing out differences 
between their description of a 
singly linked list 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 A doubly linked list is a 
linear structure 

   

2 
A doubly linked list consists 
of nodes linked together in 
both directions (bidirectional) 

   

2 

A doubly linked lists’ nodes 
are linked together with 
pointers that points (refers) 
to the next node and the 
previous node 

   

2 Each node stores three parts    
 

2 Each linked list’s node has a 
data value 

   

149



2 
Each linked list node has a 
memory address of the next 
node 

   

2 
Each linked list node has a 
memory address of the 
previous node 

   

2 

The first node point to or 
holds a memory address of 
NULL to indicates the end of 
the list 

   

2 

The last node point to or 
holds a memory address of 
NULL to indicates the end of 
the list 

   

2 
A node pointer called the head 
points to the first node in a 
linked list 

   

2 A head can point to Null to 
indicate an empty list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 
Q6. Describe a singly circular linked list? Draw a picture if needed. 
A singly circular linked list is a circular a structure of nodes that are linked together in 
one direction (unidirectional) from beginning/front to last/end with a pointer that refers 
(points) to the next node. Each node stores two parts the data and address of the next 
node with the exception of the last node that points back to the first node in the list, 
which makes it circular, and there is a node pointer (or pointer to a node) called the head 
that points to the first node in the list or NULL for an empty list. The end of the list is 
known by checking to see if the address in the node pointer section of a node is the same 
address in the head node pointer. 
 

Total 
Points: 

/18 

Point Divvy: 
Can still gain points if they are 
pointing out differences between 
their description of other linked 
lists 
Gain points for mention of each 
of these topics: 

Partially 
Correct Correct 

Comment: Reason for 
not getting full marks 
or anything else 
interesting about their 
conceptual 
understanding 

2 
A singly circular linked list is a 
circular (circle, linked start to 
end, looped, etc.) structure 

   

2 
A singly circular consists of 
nodes linked together in a single 
direction (unidirectional) 

   

150



2 

A singly circular linked list’s 
nodes are linked with a pointer 
that points (or refers) to the 
next node 

   

2 Each node stores two parts     

2 Each linked list node has a data 
value 

   

2 
Each linked list node has a 
memory address of the next 
node 

   

2 
The last node points back to or 
holds a memory address of the 
first node 

   

2 
A node pointer called the head 
points to the first node in a 
linked list 

   

2 A head can point to Null to 
indicate an empty list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
            
            Q7. Describe a doubly circular linked list? Draw a picture if needed. 

A doubly circular linked list is a circular structure of nodes that are linked together in two 
directions (bidirectional) from beginning/front to last/end and last/end to beginning/front 
with two pointers that refer (point) to the next node and the previous node. Each node 
stores three parts: the data, the address of the next node and the address of the previous 
node with the exception of the last node that points back to the first node in the list and 
the first node that points to the last node in the list, which makes it doubly circular, and 
there is a node pointer (or pointer to a node) called the head that points to the first node in 
the list or NULL for an empty list. 
 

Total 
Points: 

/22 

Point Divvy: 
Can still gain points if they are 
pointing out differences 
between their description of 
other linked lists 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 

A doubly circular linked list 
is a circular (circle, linked 
start to end, looped, etc.) 
structure 

   

2 

A doubly circular list 
consists of nodes linked 
together in both 
(bidirectional) directions 

   

151



2 

A doubly circular inked list’s 
nodes are linked together 
with pointers that points (or 
refers) to the next node and 
the previous node 

   

2 Each node stores three parts     

2 Each linked list node has a 
data value 

   

2 
Each linked list node has a 
memory address of the next 
node 

   

2 
Each linked list node has a 
memory address of the 
previous node 

   

2 
The last node points back to 
or has holds a memory 
address of the first node  

   

2 
The first node points to or 
holds a memory address of 
the last node  

   

2 
A node pointer called the 
head points to the first node 
in a linked list 

   

2 A head can point to Null to 
indicate an empty list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

Q8. What are the advantages and disadvantages of using a linked list over a dynamic 
array?  
 
Advantages: 

• Linked list is much more efficient to insert at the front and back and delete 
in the front with a singly linked list [time complexity: O(1)], and delete from 
the back is constant time for a doubly linked list with tail node pointer vs 
dynamic array takes linear time always for insertion and deletion an item in 
the array  
 

• Linked list takes half the time of an array O(n/2) (find the middle and 
add/delete in constant time) in deletion/Insertion at the middle vs dynamic 
array takes linear time (need to copy over all elements to new array). 
 

• Linked list does not need to be copied over to a different place in memory 
when its size/capacity is changed vs Dynamic Array has to be copied over to a 
different place in memory when its size/capacity is changed (deletion or 

152



insertion causes array to be reconstructed) as the whole array needs to be 
copied to a different place in memory. 

 
• Linked list does not require specifying the size/capacity of the list in 

advance unlike a dynamic array 
 

Disadvantages: 
• Accessing items in a linked list are less efficient O(n) than direct access to 

specific element location (e.g. 3rd item in the list) using address arithmetic in 
dynamic arrays. 

 
• Nodes are stored in non-contiguous locations in memory, which can lead to 

cache misses when accessing data in the list vs items in dynamic arrays are 
stored in contiguous order which can be accessed through address arithmetic 
and lead to more cache hits for items right beside each other. 
 

• Requires more memory storage due to storing 1-2 memory addresses in 
addition to the actual data vs dynamic array requires less memory storage due 
to storing just the actual data. 
 

• Same search time for item of a specific value as linked list (linear time O(n)). 
 
 

Total 
Points:  

/32 

Point Divvy: 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or anything 
else interesting about their 
conceptual understanding 

Advantages of Linked List Over Dynamic Array:  

2 

A linked list is more 
efficient/faster/better time 
complexity in some cases 
OR 
A dynamic array is less 
efficient/slower/worst time 
complexity in some cases 

   

2 

Linked list takes constant 
time (O(1)) for inserting a 
new node at the head 
OR 
Dynamic array takes linear 
time (O(n)) for inserting of 
an item at the beginning  

   

2 

Linked list takes constant 
time (O(1)) for inserting a 
new node at the end with a 
tail 
OR 

   

153



Dynamic array takes linear 
time (O(n)) for inserting a 
new item at the end when 
the capacity is exceeded 

2 

Linked list takes constant 
time (O(1)) for deleting a 
node from the front  
OR 
Dynamic array takes linear 
time (O(n)) for deleting an 
item from the front 

   

2 

Linked list takes constant 
time (O(1)) in deleting a 
node from the back of a 
doubly linked list with a tail  
AND/OR 
Dynamic array takes linear 
time (O(n)) in deleting an 
item from the back  

   

2 

Linked list takes constant 
time inserting a new node in 
the middle in addition of 
searching time (O(n/2) time)  
OR 
Dynamic array takes linear 
time (O(n)) in inserting an 
item in the middle  

   

2 

Linked list takes constant 
time (O(1)) in deleting a 
node in the middle in 
addition of searching time 
(O(n/2) time)  
OR 
Dynamic array takes linear 
time (O(n)) in deleting an 
item in the middle  

   

2 

Linked list does not need to 
be copied over to a 
different place in memory 
when its size/capacity is 
changed  
OR 
Dynamic Array has to be 
copied over to a different 
place in memory when its 
size/capacity is changed 
(deletion or insertion causes 
array to be reconstructed) 

   

2 Linked list does not 
require specifying the 

   

154



size/capacity of the list in 
advance 
OR 
Dynamic array requires 
specifying the size/capacity 
of the array in advance 

Disadvantages of Linked List Over Dynamic Array: 

2 

A linked list is less 
efficient/slower/worst time 
complexity in some cases 
OR 
A dynamic array is more 
efficient/faster/better time 
complexity in some cases 

   

2 

Accessing items in a linked 
list is less efficient (or O(n)) 
than an array 
OR 
A dynamic array is more 
efficient (or O(1)) for 
accessing specific element 
locations (direct access)  

   

2 

Nodes in linked list are 
stored in non-continuous 
locations in memory 
OR 
A dynamic array has 
contiguous order to its 
elements 

   

2 

The non-continuous 
locations of the nodes can 
lead to cache misses when 
accessing data in the list 
OR 
A dynamic array’s 
contiguous elements can 
allow for more cache hits 
for items right beside each 
other  

   

2 

Linked list requires more 
memory storage 
OR 
A dynamic array requires 
less storage 

   

2 

Linked list requires storing 
1-2 memory address(es) in 
addition to the data  
OR 

   

155



A dynamic array requires 
less storage for storing just 
the actual data. 

2 

Linked list and dynamic 
array have the same search 
time for item of a specific 
value (linear time O(n)) 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

Q9. What kind of data can be stored in a linked list? 
The data part in a linked list can be any type of data e.g. integer, char, double…  
 

Total 
Points: 

/2 

Point Divvy: 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for 
not getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 The data part in a linked list 
can be any type of data 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
Q10. What possible operations can be performed on a linked list?  
Insert node (at the beginning, add at the end, add at specific location), delete node (at the       
beginning, add at the end, add at specific location), find, clear, swap, create an empty list, 
check empty, find the length of the list, reverse, and print… 
 

Total 
Points: 

/6 

Point Divvy: 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 
Insertion (at the beginning, 
add at the end, add at 
specific location) 

   

2 
Deletion (at the beginning, 
add at the end, add at 
specific location) 

   

2 Other operations     
Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

156



 
           Q11. What does “dereferencing” a pointer mean?  

Dereferencing a pointer means to go to the memory address that is stored in the pointer 
to storing or fetching the information stored at that location. 
 

Total 
Points: 

/6 

Point Divvy: 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for 
not getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 
Mentions go to the memory 
address that is stored in the 
pointer 

   

2 To store information at that 
location (memory address) 

   

2 
To fetch the information 
stored at that location 
(memory address) 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

• How is a pointer “dereferenced”? (OR which operation can be used to do so).  
   Using the * operator  
 

Total 
Points: 

/2 

Point Divvy: 
Gain points for mention of 
each of these topics: 

Partially 
Correct Correct 

Comment: Reason for not 
getting full marks or 
anything else interesting 
about their conceptual 
understanding 

2 * (an asterisk)    
Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 
Q12. What does this line of the code mean/do? 

struct node* new_node = (struct node*) malloc(sizeof(struct node)); 
This line means during runtime, dynamically allocate memory on the heap the 
size of a node structure and type cast this address to a pointer to a node structure, 
then assign this address to new_node, which is a pointer to a node structure. 

 
 
 

157



Total 
Points: 

/8 

Point Divvy: 
Gain points for 
mention of each of 
these topics: 

Partially 
Correct Correct 

Comment: Reason for not getting 
full marks or anything else 
interesting about their conceptual 
understanding 

2 
Allocates memory 
during runtime on 
the heap 

   

2 Size of a node 
structure  

   

2 

Type casts the 
address of 
allocated memory 
returns by malloc 
to a node 
structure pointer 

   

2 

Assigns this 
address to a 
pointer to a node 
structure (node 
pointer) called a 
new_node 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 
Q13. If you want to swap two numbers, what do you think is better, swapping the node or 
swapping the data? 

• Why do you think that? 
 

Swapping the Nodes is better. It should be swapped by changing the pointers. 
Swapping data of nodes is expensive when data is very large. 

 

Total 
Points: 

/6 

Point Divvy: 
Gain points for mention 
of each of these topics: 

Partially 
Correct) Correct 

Comment: Reason for 
getting/not getting full marks 
or anything else interesting 
about their conceptual 
understanding 

2 States that swapping 
nodes is better. 

   

2 
Should be swapped by 
changing pointers 
(memory addresses). 

   

2 
States that swapping 
data is expensive when 
data is large. 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

 

158



159

Appendix C: Coding Questions



 

Semi-Structured Interview Questions 
 

Q1. Write code/pseudocode to create an empty linked list.  
   
struct Node {  
    int data;  
    struct Node *next;  
};  
 
struct Node *createEmptyList(){ 

 
struct Node *head = NULL; 
 

    return head; 
} 
 

Total 
Points: 

/16 
/6 

Point Divvy: 
Gain points for 
mention of each of 
these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts 
to execute 
(or states) 
how to 
implement 
the what 
(procedural) 

Correctly 
executes how 
to implement 
the what 
(procedural) 

Comment: Reason for 
getting/not getting full 
marks or anything 
else interesting about 
their conceptual and 
procedural 
understanding 

3 Defines a node     
3 Node has data part     

3 Node has pointer 
part 

    

3 
Creates a node 
pointer (creates 
head) 

    

3 
Assigns node 
pointer (head) to 
NULL 

    

1 
The empty list 
is successfully 
created 

  

3 Creates a function     
3 Returns head pointer     

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 
 
 
 
 
 

160



 

Q2. Write code/pseudocode to check if a linked list is empty. 
 
 
bool checkEmpty(struct Node *head){ 
 
if (head == NULL) 
    return true; 
else 
    return false; 
 
} 
 

Total 
Points: 

/7 
/6 

Point Divvy: 
Gain points for 
mention of each of 
these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts 
to execute 
(or states) 
how to 
implement 
the what 
(procedural) 

Correctly 
executes how 
to implement 
the what 
(procedural) 

Comment: Reason for 
getting/not getting full 
marks or anything else 
interesting about their 
conceptual and 
procedural 
understanding 

3 
Uses an if statement 
(or similar logic 
structure) 

    

3 Checks the head 
against NULL. 

    

1 
The empty list 
is successfully 
checked 

  

3 
Creates a function 
with a pointer to 
beginning of list 

    

3 Return True/False     
Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

161



 

Q3. Write code/pseudocode for inserting a new node at the beginning of a singly linked 
list. 
 //Q3. Function for inserting a new node at the beginning of a 
singly linked list 

 struct Node *insertBeginning(struct Node *head, int x){ 
     

//dynamic allocating on the heap for a new node and storing 
the memory address for that location in a node pointer called 
new_node 
struct Node *new_node = (struct Node*) malloc(sizeof(struct 
Node)); 
     
//store the x value (inserted by the user) inside the data 
portion in the node pointed by new_node pointer 
Order does not matter for this line and the following line 
new_node -> data = x; 
     
//make the new node pointer portion points to same as head 
points to by storing the memory address as the head 
new_node ->next = head; 
     
// return the address of the new head 
return new_node; 

 } 
 

//Alternative solution for Q3. Function for inserting a new node 
at the beginning of a single linked list using double pointer to 
modify on the head pointer 
void insertBeginningDoublePointer(struct Node **head_ref, int x){ 
     

//dynamic allocating on the heap for a new node and storing 
the memory address for that location in a node pointer called 
new_node  
struct Node *new_node = (struct Node*) malloc(sizeof(struct 
Node)); 
     
//store the x value (inserted by the user) inside the data 
portion in the node pointered by new_node pointer 
Order does not matter for this line and the following line 
new_node -> data = x; 
     
//make the new node pointer portion points to same as head 
points to by storing the memory address as the head 
new_node ->next = *head_ref; 
     
//update the head pointer to point the same node as new_node  
pointer points to (the new node is just added) 

      *head_ref = new_node; 
} 
 
 

162



 

 

Total 
Points: 

/13 
/9 

Point Divvy: 
Gain points for 
mention of each 
of these topics 

States what 
needs to be 
done 
(conceptual) 

Attempts to 
execute (or 
states) how 
to 
implement 
the what 
(procedural) 

Correctly 
executes 
how to 
implement 
the what 
(procedural) 

Comment: Reason for 
getting/not getting full 
marks or anything else 
interesting about their 
conceptual and 
procedural 
understanding 

3 Creates a new 
node  

    

3 
Assign to 
pointer/referenc
e 

    

3 

Make new node 
point to the 
old/previous first 
node  

    

3 Update head to 
point to new node 

    

1 

A new node is 
successfully 
added at the 
beginning 

  

3 

Store/Get the 
data inside the 
new node (you 
can infer that they 
will store if they 
refer to getting or 
putting a value 
into the new 
node) 

    

3 

Creates a 
function with a 
pointer to 
beginning of list  
OR 
Creates a 
function with 
pointer to the 
head pointer of 
list 

    

3 

Return the 
address of the 
new node to 
update the head 

    
 

163



 

OR 
Updates the 
head inside the 
function, rather 
than returning the 
address to new 
node. 

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 
 
 

Q4. Write code/pseudocode for deleting a node at the beginning of a singly linked list. 
//Q4. Function for deleting a node at the beginning of a singly 
linked list 
struct Node *deleteBeginning(struct Node *head){ 
     

//declare a node pointer (temp) and set it to point the same 
as what the head points to by storing the memory address of 
the first node. You must have a temp in this function, 
otherwise you will access something after freeing it, and 
that should be a grade deduction! 

    struct Node *temp = head; 
         
    //If the list is not empty 
    if(head != NULL) { 

   //update the head to point to the second node by story      
the memory address that stored in head->next portion 

        head = head->next; 
         

//delete temp (the memory allocation that set for the 
first node) 
free(temp);        

    } 
 
 
 

// return the address of the new head 
return head; 

 
} 
 
 
 
 
 
 
 

164



 

//Alternative solution for Q4. Function for deleting a node at 
the beginning of a singly linked list using double pointer 
void deleteBeginningDoublePointer(struct Node **head){ 
     

 //declare a node pointer (temp) and set it to point the same 
as what the head points to by storing the memory address of 
the first node. You must have a temp in this function, 
otherwise you will access something after freeing it, and 
that should be a grade deduction! 

    struct Node *temp = *head; 
     
    //If the list is not empty 
    if(*head != NULL) { 
        //update the head to point to the second node by storing 

the memory address that stored in head->next portion 
        *head = (*head)->next; 
         
        //delete temp (the memory allocation that set for the 

first node) 
        free(temp); 
    }  
} 
 
 

Total 
Points: 

/16 
/6 

Point Divvy: 
Gain points for mention 
of each of these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts 
to execute 
(or states) 
how to 
implement 
the what 
(procedural) 

Correctly 
executes how 
to implement 
the what 
(procedural) 

Comment: Reason 
for getting/not 
getting full marks 
or anything else 
interesting about 
their conceptual and 
procedural 
understanding 

3 Has a temp pointer.     

3 Set temp to point to what 
head points to (first node) 

    

3 
Includes a check the 
make sure the list is not 
empty. 

    

3 
Stores next node after 
head to indicate new 
beginning of the list. 

    

3 
Remove original head 
node to prevent memory 
leak. 

    

1 The first node is 
successfully deleted 

  

165



 

3 

Creates a function with a 
pointer to beginning of 
list   
OR 
Creates a function with a 
pointer to head pointer. 

    

3 

Return the address of 
the new node to update 
the head 
OR 
Correctly dereferences 
and updates the head 
pointer within the 
function 

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 
//Alternative solution for Q4. Function for deleting a node at 
the beginning of a singly linked list 
struct Node *deleteBeginning(struct Node *head){ 
     

//declare a node pointer (temp) and set it to point the 
second node You must have a temp in this function, otherwise 
you will access something after freeing it, and that should 
be a grade deduction! 

    struct Node *temp = head->next; 
         
    //If the list is not empty 
    if(head != NULL) { 

   //delete the first node 
        free(head); 
         

//update the head to point to the second node (store the 
memory address the same as temp  
head = temp;        

    } 
 
 

// return the address of the new head 
return head; 

 
} 
 
 
 

166



 

//Alternative solution for Q4. Function for deleting a node at 
the beginning of a singly linked list using double pointer 
void deleteBeginningDoublePointer2(struct Node **head){ 
     

//declare a node pointer (temp) and set it to point the 
second node You must have a temp in this function, otherwise 
you will access something after freeing it, and that should 
be a grade deduction! 

    struct Node *temp = (*head)->next; 
         
    //If the list is not empty 
    if(*head != NULL) { 

   //delete the first node 
        free(*head); 
         

//update the head to point to the second node (store the 
memory address the same as temp  
*head = temp;        

    } 
} 
 
 

Total 
Points: 

/16 
/6 

Point Divvy: 
Gain points for mention of 
each of these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts to 
execute (or 
states) how 
to implement 
the what 
(procedural) 

Correctly 
executes how 
to implement 
the what 
(procedural) 

Comment: Reason 
for getting/not 
getting full marks 
or anything else 
interesting about 
their conceptual and 
procedural 
understanding 

3 Has a temp pointer     
3 Set temp to point to head 

next (second node) 
    

3 Includes a check the make 
sure the list is not empty 

    

3 Remove original head 
node 

    

3 The new head is set to the 
original head’s next node 

    

1 The first node is 
successfully deleted 

  

3 Creates a function with a 
pointer to beginning of 
list   
OR 
Creates a function with a 
pointer to head pointer. 

    

167



 

3 Return the address of 
the new node to update 
the head 
OR 
Correctly dereferences 
and updates the head 
pointer within the function 

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 
	
Q5. Write code/pseudocode to find the length of the linked list. 
//Q5. Function for finding the length of the linked list using 
while loop 
int findLength(struct Node *head){ 
 
    int count = 0; 
     

//declare a node pointer (temp) and set it to point the 
same as what the head points to by storing the memory 
address of the first node.  The temp is not necessary, so 
we don’t want to grade down for not having it. You could 
use head, since it is not changing the head outside the 
function. 

    struct Node *temp = head; 
 

//traverse until temp reach the last node in the list by 
changing the location of temp pointer 

    while(temp != NULL) 
    { 
        //add one each time temp visits a node 
        count++; 
        temp = temp->next; 
    } 
     
    //return the number of the node in the list 
    return count; 
} 
 
 
//Alternative solution for Q5 function for finding the length of 
the linked list using for loop 
int findLength_for(struct Node *head){ 
     

 //declare a node pointer (temp) and set it to point the 
same as what the head points to by storing the memory 
address of the first node. The temp is not necessary, so we 

168



 

don’t want to grade down for not having it. You could use 
head, since it is not changing the head outside the 
function. 

    struct Node *temp = head; 
 

//traverse until temp reach the last node in the list by 
changing the location of temp pointer 

    for(int count=0; temp != NULL; count++) 
    { 
        //add one each time temp visits a node 
        temp = temp->next; 
    } 
     
    //return the number of the node in the list 
    return count; 
}  
 

//Alternative solution for Q5 function for finding the length of the 
linked list using double pointer 
int findLengthDoublePointer(struct Node **head){ 
 
    int count = 0; 
     
    //declare a node pointer (temp) and set it to point the same as 
what the head points to by storing the memory address of the first 
node 
    struct Node *temp = *head; 
 
    //traverse until temp reach the last node in the list by changing 
the location of temp pointer 
    while(temp != NULL) 
    { 
        //add one each time temp visits a node 
         count++; 
        temp = temp->next; 
        
    } 
     
    //return the number of the node in the list 
    return count; 
} 

 
//Alternative solution for Q5 function for finding the length of the 
linked list using recursion 
int findLengthRecursion(struct Node *head){ 
 
    if(head == NULL) 
        return 0; 
    else 
        return 1+findLengthRecursion(head->next); 
} 

169



 

 
 

Total 
Points: 

/22 
/6 

Point Divvy: 
Gain points for mention of 
each of these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts to 
execute (or 
states) how 
to 
implement 
the what 
(procedural) 

Correctly 
executes 
how to 
implement 
the what 
(procedural) 

Comment: Reason 
for getting/not 
getting full marks 
or anything else 
interesting about 
their conceptual 
and procedural 
understanding 

3 Has a temp pointer     

3 Set temp to point to what head 
points to (first node) 

    

3 Includes a counter variable 
to keep track of length 

    

3 Set the counter to zero      

3 Includes a loop to go through 
the list 

    

3 Increment the counter by 
one 

    

3 Iterates from node to node 
in list 

    

1 The length of linked list is 
successfully counted  

  

3 

Creates a function with a 
pointer to beginning of list  
OR 
Creates a function with 
pointer to the head pointer 
of list  

    

3 
Returns/displays/give final 
count (return the number of 
nodes in the linked list) 

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 
 
 
 
 
 
 
 
 

170



 

Q6. Suppose we have a singly linked list as follows: 
 

 
 
 
 
 
 
 

1) add item(6) to the end of the list. 
 

//Q6_1. Function for inserting a new node that has value 6 at 
the end of a singly linked list The student will not have a 
return type if they are not thinking of the empty list. 
void addLast(struct Node *head, int new_data) 
{ 
    //dynamic allocating on the heap for a new node and 
storing the memory address for that location in a node pointer 
called new_node 
    struct Node *new_node=(struct Node*)malloc(sizeof(struct 
Node)); 
     

 
    //store in the data portion of the new node the value that 
the user wants to insert 
    new_node->data = new_data; 
     
    //store in the pointer portion of the new node NULL value 
because this node will be the last node in the list. If 
student makes the new node next points to what the last node 
next in the list points to, they have to do that before assign 
the last node next to the new node 
    new_node->next = NULL; 
   
    //check if the list is empty. Students may not think about 
making this work for an empty linked list because the picture 
shows a list that isn’t empty.  They likely don’t hard code 
the value 6, so they should make this function general. Deduct 
points if this is not checked. 
    if (head == NULL){ 
       // make head point to new node 
 head = new_node; 
      return; 
    } 
    else{ 
        //traverse until temp reach the last node in the list 

by changing the memory address stored in temp pointer 
        while (head -> next != NULL) 
            head = head ->next; 
         

15 20 4 35 40 

head 

NULL 

171



 

       //change the next of last node to point to the new node 
        head ->next = new_node; 
        return; 
 } 
} 
 
//Alternative solution for inserting a new node that has value 
6 at the end of a singly linked list using double pointers The 
student will not have this alternative if they didn’t think 
about an empty list. 
void addLastDoublePointer(struct Node **head, int new_data) 
{ 

//declare a node pointer (temp) and set it to point the 
same as what the head points to by storing the memory 
address of the first node. Student cannot use the head 
pointer to add the new node because the list will be 
updated only with the last 2 nodes. 
  struct Node *temp = *head; 

 
    //dynamic allocating on the heap for a new node and 
storing the memory address for that location in a node pointer 
called new_node 
    struct Node *new_node = (struct Node*)malloc(sizeof(struct 
Node)); 
     
    //store in the data portion of the new node the value that 
the user wants to insert 
    new_node->data = new_data; 
     
    //store in the pointer portion of the new node NULL value 
because this node will be the last node in the list. If 
student makes the new node next points to what the last node 
next in the list points to, they have to do that before assign 
the last node next to the new node 
    new_node->next = NULL; 
   
    //check if the list is empty. Students may not think about 
making this work for an empty linked list because the picture 
shows a list that isn’t empty.  They likely don’t hard code 
the value 6, so they should make this function general. Deduct 
points if this is not checked. 
    if ((*head) == NULL) 
       // make head point to new node 
        *head = new_node; 
 
    else{ 
        //traverse until temp reach the last node in the list 

by changing the memory address stored in temp pointer 
        while (temp->next != NULL) 
            temp = temp ->next; 
         
       //change the next of last node to point to the new node 

172



 

        temp->next = new_node; 
 } 
} 
 

 

Total 
Points: 

/28 
/6 

Point Divvy: 
Gain points for mention 
of each of these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts 
to execute 
(or states) 
how to 
implement 
the what 
(procedural) 

Correctly 
executes how 
to implement 
the what 
(procedural) 

Comment: Reason 
for getting/not 
getting full marks 
or anything else 
interesting about 
their conceptual 
and procedural 
understanding 

3 Has a temp pointer     

3 Set temp to point to what 
head points to (first node) 

    

3 Creates a new node     

3 Assign to 
pointer/reference 

    

3 

Store/Get the data (6) 
inside the new node (you 
can infer that they will 
store if they refer to 
getting or putting a value 
into the new node) 

    

3 

Assigns the new node 
next pointer to NULL  
OR 
Make the new node 
next points to what last 
node points to. 

    

3 Includes a loop to find 
end of list 

    

3 Iterates from node to 
node in list 

    

3 
Put new node in list by 
making the last node 
points to the new node 

    

1 
New node is 
successfully added at 
the end 

  

3 
Includes a check the 
make sure the list is not 
empty 

    

3 
Creates a function with 
a pointer to beginning 

    

173



 

of list and the new 
value to be added   
OR 
Creates a function with 
a pointer to head 
pointer and the new 
value to be added   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

  
2) add item(50) after a node that stores value 35.  
//Q6_2. Function for inserting a new node (store 50) after 
a node that stores value 35. Student can use the head 
pointer to add the new node or use a temporary pointer.  
void insertAfter(struct Node* head, int new_data) 
{ 
    //dynamic allocating on the heap for a new node and 
storing the memory address for that location in a node 
pointer called new_node  
    struct Node *new_node = (struct Node*) 
malloc(sizeof(struct Node)); 
     
     
    //store in the data portion of the new node the value 
that the user wants to insert 
    new_node->data = new_data; 
         
    //traverse until temp reach the node that stores value 
35 by changing the memory address stored in temp pointer.  
    while(head != NULL && head ->data != 35) 
   { 
     head = head ->next; 
   } 
   if(head != NULL) { 
    //make next of new node points same as next of temp 
points to.  
    new_node->next = head ->next; 
    
    //move the next of temp to point to the new node 
    head->next = new_node; 
    } 
    else 
 //delete the new node if 35 not found. We might not 
need this line because students think that 35 node exists 
as a picture of linked listed with 35 on it is provided). 
  free(new_node); or only create in the if 

174



 

} 
 

 
//Alternative solution for inserting a new node that has value 50 
after a node that store value 35 of a singly linked list using double 
pointers 

void insertAfterDoublePointer(struct Node** head, int new_data) 
{ 
 
//declare a node pointer (temp) and set it to point the same as 
what the head points to by storing the memory address of the 
first node. Student cannot use the head pointer to add the new 
node because the list will be updated only with the last 2 nodes. 
    struct Node *temp = *head; 
 
    //dynamic allocating on the heap for a new node and storing 
the memory address for that location in a node pointer called 
new_node 
    struct Node *new_node = (struct Node*) malloc(sizeof(struct 
Node)); 
      
    //store in the data portion of the new node the value that the 
user wants to insert 
    new_node->data = new_data; 
             
    //traverse until temp reach the node that stores value 35 by 
changing the memory address stored in temp pointer 
    while(temp != NULL && temp->data != 35) 
   { 
     temp= temp->next; 
   } 
   if((*head) != NULL) { 
       //make next of new node points same as next of temp points 
to 
       new_node->next = temp->next; 
    
       //move the next of temp to point to the new node 
       temp->next = new_node; 
    } 
    else 
        free(new_node); //or only create in the if 
} 
 
 
 
 
 
 
 
 
 
 

175



 

Total 
Points: 

/28 
/6 

Point Divvy: 
Gain points for mention of 
each of these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts 
to execute 
(or states) 
how to 
implement 
the what 
(procedural) 

Correctly 
executes how 
to implement 
the what 
(procedural) 

Comment: Reason 
for getting/not 
getting full marks or 
anything else 
interesting about 
their conceptual and 
procedural 
understanding 

3 Has a temp pointer     

3 Set temp to point to what 
head points to (first node) 

    

3 Creates a new node     

3 Assign to 
pointer/reference 

    

3 

Store/Get the data (50) 
inside the new node (you 
can infer that they will 
store if they refer to getting 
or putting a value into the 
new node) 

    

3 Includes a loop to find the 
node that has value 35  

    

3 Iterates from node to 
node in list 

    

3 
Make the new node next 
points to what 35 next 
points to 

    

3 Make 35 next points to the 
new node 

    

1 New node is successfully 
added after 35  

  

3 
Delete the new node if 35 
is not found (fails 
elegantly)  

    

3 

Creates a function with a 
pointer to beginning of 
list and the new value to 
be added   
OR 
Creates a function with a 
pointer to head pointer 
and the new value to be 
added   

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 

176



 

 
 

3) delete item(6)  
//Q6_3. Function for deleting a node at the end of a singly 
linked list (node has value 6) Student can use the head 
pointer to add the new node or use a temporary pointer. 
void deleteLast(struct Node *head) 
{ 
 
    //return if the list is empty (there is no node in the 
list to delete) 
    if (head == NULL) 
        return; 
 

          // If the Linked List has only one node  
    else if (head->next == NULL) { 
       free(head); 
    } 
 
    else{ 
        //traverse until current pointer reaches the second 
to last node in the list by changing the memory address 
stored in the temp pointer. Students may not know they can 
reference the next from the next. 
        while((head->next)->next != NULL) 
        { 

//move temp to next node 
            head = head ->next; 
        } 
        //delete the last node 
       free(head->next); 
        //make previous next points to NULL 
        head->next = NULL; 
    } 
} 

  
 
//Alternative solution for deleting a node that has value 6 at the end 
of a singly linked list using double pointers 
void deleteLastDoublePointer(struct Node **head) 
{ 
  
    //declare a node pointer and set it to point the same as what the 
head points to by storing the memory address of the first node 
    struct Node *temp = *head; 
 
    //return if the list is empty (there is no node in the list to 
delete) 
    if ((*head) == NULL) 
        return; 
     

177



 

    // If the Linked List has only one node 
    if ((*head)->next == NULL) { 
       free(head); 
    } 
 
    else{ 
        //traverse until current pointer reach the last node in the 
list by changing the memory address stored in current pointer 
        while(temp->next->next != NULL) 
        { 
            temp = temp->next; 
        } 
    } 
     
    //delete what temp next pointer to(the memory allocation that set 
for the last node) 
       free(temp->next); 
     
    //make last next points to NULL 
    temp->next = NULL; 
} 

Total 
Points: 

/19 
/12 

Point Divvy: 
Gain points for mention 
of each of these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts 
to execute 
(or states) 
how to 
implement 
the what 
(procedural) 

Correctly 
executes how 
to implement 
the what 
(procedural) 

Comment: Reason for 
getting/not getting full 
marks or anything 
else interesting about 
their conceptual and 
procedural 
understanding 

3 Has a temp pointer     

3 Set the pointer to point 
to what head points to 

    

3 Include a loop to find 
the second to last node 

    

3 Iterates from node to 
node in list 

    

3 Delete the last node      

3 
Set the preceding 
node’s pointer to 
NULL  

    

1 
Node that has 6 is 
successfully deleted at 
the end 

  

3 
Includes a check the 
make sure the list is not 
empty 

    

3 
Includes a check the 
make sure the list has 
only one node 

    

178



 

3 Case is handled to 
search for 6 in the list 

    

3 

Creates a function with 
a pointer to beginning 
of list   
OR 
Creates a function with 
a pointer to head 
pointer  

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

4) delete item(50)  
//Q6_4. Function for deleting a node at a specific location 
in a singly linked list (node has value 50) 
void deleteAfter(struct Node *head, int x) 
{ 
     //declare 2 node pointer (current and previous) and 
set them to point the same as what the head points to by 
storing the memory address of the first node.  You must 
have two pointers to current and previous to delete in the 
middle, but you can also use head as one of those pointers, 
if you know you are not deleting at the beginning 
    struct Node *current = head, *previous = head; 
     
//what about when 50 is the first node in the list or the 
last node?  We will not grade down for not thinking of 
these situations. 
    //return if the list is empty (there is no node in the 
list to delete) 
    if (head == NULL) 
        return; 
    //search for x that needs to be deleted, keep track of 
the previous node as we need to change 'prev->next' 
    else{ 

    while (current != NULL && current ->data != x) 
    { 
        previous = current; 
        current = current->next; 
    } 
} 
   

         if(current != NULL){ 
 

    //make previous next points to same as current 
next points to 
      previous->next = current->next; 

179



 

   
  //delete current pointer (the memory allocation       
that set for the required node to be deleted) 
           free(current); 
  } 

     else{ 
        printf("\n 50 not found"); 
        return; 
  } 
 
} 
 

//Alternative solution for deleting a node that has value at specific 
location of a singly linked list using double pointers 
void deleteAfterDoublePointer(struct Node **head, int x) 
{ 
     //declare 2 node pointer (current and previous) and set them to 
point the same as what the head points to by storing the memory 
address of the first node 
    struct Node *current = *head, *previous = *head; 
     
    //return if the list is empty (there is no node in the list to 
delete) 
    if (*head == NULL) 
        return; 
     
    //search for x that needs to be deleted, keep track of the 
previous node as we need to change 'prev->next' 
    else{ 
        while (current != NULL && current ->data != x) 
        { 
            previous = current; 
            current = current->next; 
        } 
    } 
        if(current != NULL){ 

 //make previous next points to same as current next points to 
            previous->next = current->next; 
             

 //delete current pointer (the memory allocation that set for the 
required node to be deleted) 

            free(current); 
        } 
        else{ 
            printf("\n 50 not found"); 
            return; 
       } 
 
} 
 

180



 

Total 
Points: 

/22 
/9 

Point Divvy: 
Gain points for mention of 
each of these topics: 

States what 
needs to be 
done 
(conceptual) 

Attempts to 
execute (or 
states) how 
to implement 
the what 
(procedural) 

Correctly 
executes 
how to 
implement 
the what 
(procedural) 

Comment: 
Reason for 
getting/not 
getting full marks 
or anything else 
interesting about 
their conceptual 
and procedural 
understanding 

3 Have 2 node pointers      

3 

Set at least one of them to 
point to what head points 
to and the other pointer to 
NULL 

    

3 Include a loop to find the 
node that store 50  

    

3 Make one pointer point to 
50 or after 50   

    

3 
Make another pointer 
point to the node previous 
to 50 

    

3 
Make the previous pointer 
points to what 50 next 
points to  

    

3 Delete the node that store 
50 

    

1 Node that has 50 is 
successfully deleted 

  

3 Includes a check the make 
sure the list is not empty 

    

3 Case is handled if 50 is not 
found (fails elegantly) 

    

3 

Creates a function with a 
pointer to head pointer 
and the value to be deleted 
OR 
Creates a function with 
pointer to the head pointer 
of list and the value to be 
deleted    

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 

181



Interview Explanation about Coding Questions, Answer and Rubric 
 

Q7. Which of the functions you wrote would change if you add a tail pointer? 
o how would the functions change?  

The functions/codes would change are: 
1. Create an empty linked list: set an additional tail pointer to point to Null  
2. Insert beginning: if the list is empty (both head and tail point to Null), head and tail need to 

point to the new node. 
3. Delete beginning.: if there is only one node, set head and tail pointers to NULL 
4. Insert after maybe would change: if the node after is the last node, then same as insert at the 

end. (might not think about this if they didn’t think about adding to the end with this 
function, so we will not take off points for this) 

5. Insert at the end: direct access the end through the tail and add the new node and then update 
the tail to point to the new node. 

6. Delete at the end: We need to update the tail to point to the previous node by iterating the list 
to second last node, makes it points to NULL and then free the last node. 

 

Total 
Points: 

/15 
/3 

Point Divvy: 
Gain points for mention of each of these 
topics: 

States 
what 
needs to 
be 
change 

Partially 
Correct 
to states 
how to 
change 
the what 

Correctly 
states 
how to 
change 
the what 

Comment: Reason 
for not getting full 
marks or anything 
else interesting 
about their 
conceptual and 
procedural 
understanding 

3 Create an empty linked list: Set an 
additional tail pointer to point to NULL 

    

3 
Insert at the beginning: If the list is 
empty (both head and tail point to NULL), 
set head and tail to point to the new node. 

    

3 Delete at the beginning: If there is only 
one node, set head and tail to NULL 

    

3 

Insert at the end: Access the end directly 
through the tail and add the new node 
and update the tail to point to the new 
node 

    

3 

Delete at the end: Iterate the list to update 
the tail to point to the second last node, 
make this node to points to NULL and 
then free the last node 

    

3 

Insert after maybe would change: If the 
node after is the last node (same as insert 
at the end), add the new node and update 
the tail to point to the new node. 

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

182



 
 
 

Q8. Which of the functions you wrote would change if this was a circular linked list?  
o how would the functions change?  

1. Any while loop pointer checks will be for the head node instead of Null 
2. Insert at beginning: If the insertion is for the first node in the list (list is empty), put this 

node to point to itself instead of null. If the list is not empty: Find the last node, and now 
make the last node and the head/first node point to the new node to be inserted.  

3. Insert at end: Find the last node and make the last node point to the new node, and the new 
node will point to the head/first node. 

4. Delete at beginning: Find the last node, and then make last node point to the same as the 
head pointer points to after deletion. 

5. Delete at the end: Find the second to last node, delete the last node, and make the new last 
node point to the same as head. 

 

Total 
Points: 

/18 

Point Divvy: 
Gain points for mention of each of 
these topics: 

States what 
needs to be 
change 

Partially 
Correct to 
states how 
to change 
the what 

Correctly 
states how 
to change 
the what 

Comment: Reason 
for not getting full 
marks or anything 
else interesting 
about their 
conceptual 
understanding 

3 
Any function with a while loop: 
pointer checks will be for head/first 
node instead of NULL 

    

3 
Insert at the beginning: If the list is 
empty, put this node to point to itself 
instead of null. 

    

3 

Insert at the beginning: If the list is 
not empty, find the last node and 
make the last node and the head 
point to the new node to be inserted. 

    

3 

Insert at the end: Find the last node 
and make the last node point to the 
new node, and the new node will 
point to the head/first node. 

    

3 

Delete at the beginning: Find the last 
node, and then make last node point 
to the same as the head points to 
after deletion. 

    

3 

Delete at the end: Find the second to 
last node, delete the last node, and 
make the new last node point to the 
same as head. 

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

183



 
 

Q9. Which of the functions you wrote would change if this was a doubly linked list?  
o how would the functions change?  

1. Create an empty linked list: Add previous pointer in node struct  
2. Insert new node at beginning: If the list is empty, the new node previous and next 

are set to NULL.  If the list is not empty, the previous of the new node is set to 
NULL and the previous of the old first node is set to the new node. 

3. Insert new node after a specific node: If the specific node is the last node, set the 
previous of the new node points to the specific node to be inserted after. If the 
specific node is not the last node, then set the previous of the node, after the 
specific node to insert after, points to the new node and set the previous of the new 
node to point to the specific node to insert after. 

4. Insert new node at end:  If the list is empty, the new node previous and next are set 
to NULL.  If the list is not empty, the previous of the new node is set to the last 
node. 

5. Delete at the beginning: after deleting the node, set head->previous to point to 
Null.  

6. Delete node after a specific node: the previous of node after the node being deleted 
needs to point to the same thing as the previous of the node being deleted 

 

Total 
Points: 

/21 
/6 

Point Divvy: 
Gain points for mention of each of these 
topics: 

States 
what 
function 
needs to 
change 

Partially 
Correct 
to states 
how to 
change the 
what 

Correctly 
states how 
to change 
the what 

Comment: Reason 
for not getting full 
marks or anything 
else interesting 
about their 
conceptual 
understanding 

3 Create an empty linked list: Add 
previous pointer in node struct 

    

3 
Insert at the beginning: If the list is 
empty, set new node previous and next 
to NULL 

    

3 

Insert at the beginning: If the list is 
not empty, set the previous of the new 
node to NULL and set the previous of 
the old first node to the new node. 

    

3 

Insert at specific location:  If the 
specific node is not the last node, make 
the previous of the node, after the 
specific node to insert after, points to 
the new node and set the previous of 
the new node to point to the specific 
node. 

    

3 
Insert at the end: If list is not empty, 
Set the previous of the new node to 
the last node. 

    

3 Delete at the beginning: After 
deleting the node, set  

    

184



head->previous to point to Null. 

3 

Delete at specific location: Make the 
previous of node after the node being 
deleted needs to point to the same 
thing as the previous of the node 
being deleted. 

    

3 

Insert at specific location: If the 
specific node is the last node, set 
previous of the new node to point to 
the specific node to be inserted after 

    

3 
Insert at the end: If list is empty, set 
the new node previous and next to 
NULL 

    

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 

185



186

Appendix D: Recognition Questions



 

Interview Recognition Questions, Answer and Rubric 
 
 
 
 
 

 

 
 
 
 
A singly linked list stores the following numbers “1, 2, 3, 4, 5”, is constructed using the 
following C code: 
   
#include <stdio.h>  
#include <stdlib.h>  
#include <stdbool.h>  
 
struct node { 
 int data; 
 struct node* next; 
}; 
 
 
void push(struct node** head_ref, int new_data) 
{ 
 
struct node* new_node = (struct node*)malloc(sizeof(struct node)); 
new_node->data = new_data;  
new_node->next = (*head_ref);  
(*head_ref) = new_node; 
} 
 
int main() 
{ 
 
struct node* head = NULL; 
 
push(&head, 5); 
push(&head, 4); 
push(&head, 3); 
push(&head, 2); 
push(&head, 1); 
 
 
return 0; 
} 
 
 
 
 

1 3 5 

head 

NULL 

2 4 

187



 

 
1. Using one sentence to explain what the following function does. 

 
struct node* A(struct node* head) 
{ 

if (head == NULL || head->next == NULL) 
  return head; 
 

struct node* curr = head->next->next; 
struct node* prev = head; 
head = head->next; 
head->next = prev; 

 
 while (curr != NULL && curr->next != NULL)  

  {  
         prev->next = curr->next;  
         prev = curr;  
         struct node* next = curr->next->next;  
        curr->next->next = curr;  
        curr = next;  
   }  
       
    prev->next = curr;  
   
    return head;  
}  
 

   Swap adjacent nodes (2 1 4 3 5) 
 

Total 
Points: 

/4 

Point Divvy: 
Gain points for 
mention of each of 
these topics: 

Partially 
Correct Correct 

Comment: Reason for getting/not 
getting full marks or anything else 
interesting about their conceptual 
understanding 

2 Understands code is 
swapping nodes. 

   

2 
Understands the code 
is swapping adjacent 
nodes. 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

2. Using one sentence to explain what the following function does. 
 

bool B(struct node* head, int x)  
{  
    struct node* current = head; 
  
    while (current != NULL)  
    {  
        if (current->data == x)  

188



 

            return true;  
        current = current->next;  
    }  
    return false;  
}  
 
Find an integer x in a linked list 
 

Total 
Points: 

/2 

Point Divvy: 
Gain points for 
mention of each 
of these topics: 

Partially 
Correct Correct 

Comment: Reason for getting/not 
getting full marks or anything else 
interesting about their conceptual 
understanding 

2 

States the 
function is to find 
an integer x in a 
linked list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

3. Using one sentence to explain what the following function does. 
 
void C(struct node* head) 
{ 
 struct node* current = head; 
 
 while (current! = NULL)  

{ 
  printf("%d ", current->data); 
  current = current->next; 
 } 
} 
 
Print the whole linked list’s data 
 

Total 
Points: 

/2 

Point Divvy: 
Gain points for 
mention of each of 
these topics: 

Partially 
Correct Correct 

Comment: Reason for getting/not 
getting full marks or anything else 
interesting about their conceptual 
understanding Notes 

2 

States the function 
is to print the 
entire elements in 
the linked list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 

4. Using one sentence to explain what the following function do. 

189



 

 
void D(struct node *head) 
{ 

struct node *current = head; 
struct node *next; 
 
while(current != NULL) 
{ 

next = current->next; 
free(current); 
current = next; 

} 
head = NULL; 

} 
 
Clear the entire linked list 
 

Total 
Points: 

/2 

Point Divvy: 
Gain points for 
mention of each of 
these topics: 

Partially 
Correct Correct 

Comment: Reason for getting/not 
getting full marks or anything else 
interesting about their conceptual 
understanding 

2 

 States the function 
is to clear (or free) 
the entire nodes in 
the linked list 

   

Other Interesting Observations/Comments Student Responses/Answers: 
 
 
 

 
 
 
 
 

190



191

Appendix E: Participants’ Grading in the Survey



192

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

P
1

3
3

3
3

7
.5

3
3

.5
3

3
3

3
7

3
3

1.
5

3
3

7
3

.2
5

7
3

7
7

3
3

P
2

3
3

3
7

3
3

3
3

.5
3

3
3

3
3

3
3

1.
5

3
3

3
3

.2
5

3
3

3
3

3
3

P
3

7
3

3
3

7
3

7
7

7
7

3
3

7
7

3
3

1.
5

7
7

7
7

.7
5

3
3

7
7

7
7

P
4

3
3

3
7

7
3

7
7

.5
3

3
3

3
3

3
3

1
3

3
3

3
.2
5

7
3

3
3

3
3

P
5

3
3

3
3

7
3

3
7

1.
5

3
3

3
3

3
3

3
1.
5

3
3

3
3

3
3

3
3

3
3

3

P
6

3
3

3
3

7
3

3
7

7
3

3
3

7
3

3
3

1.
5

3
3

3
7

.2
5

7
3

3
7

7
3

P
7

3
3

3
3

3
3

3
7

7
3

3
3

3
3

1
3

1.
5

3
3

3
3

.2
5

3
3

7
3

3
7

P
8

3
3

3
3

3
3

7
3

.5
3

3
3

3
7

3
3

1
3

3
3

3
.7
5

3
3

3
3

7
3

P
9

3
3

3
3

7
7

3
7

3
3

3
3

3
1

3
1.
5

3
3

3
3

.2
5

7
3

3
3

3
7

P
10

3
7

3
3

3
3

3
3

1.
5

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

P
11

3
3

3
3

7
3

3
7

.5
3

3
3

3
3

3
3

1.
5

3
3

3
3

.7
5

7
3

3
3

7
3

12
3

3
3

7
3

3
3

3
.5

3
3

3
3

3
3

3
1.
5

3
3

3
3

3
3

3
3

3
3

3

P
13

3
3

3
3

7
3

3
7

.5
3

3
3

3
7

3
3

1
3

3
3

7
.5

7
7

3
3

7
3

P
14

3
3

7
7

7
3

3
7

1
3

3
3

3
3

3
3

3
3

3
3

3
.5

3
7

3
3

7
3

P
15

3
3

3
3

7
3

3
7

1
3

3
3

3
3

3
3

1
3

3
3

3
.5

7
3

3
3

3
3

P
16

3
7

7
3

7
3

3
7

7
.5

7
3

7
3

3
3

1.
5

3
3

3
3

.7
5

3
3

3
3

7
3

P
17

3
3

3
3

7
3

3
7

.5
3

3
3

3
3

3
3

1.
5

3
3

3
3

.2
5

3
3

3
3

3
3

P
18

3
3

3
3

7
3

3
3

.5
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

P
19

3
3

3
3

3
3

3
3

1.
5

.5
3

3
3

3
3

3
1

3
3

3
3

.5
3

3
3

3
3

3

20
3

7
3

3
7

3
3

7
3

3
3

3
3

3
1

3
1

3
3

3
3

.5
3

3
3

7
3

3

P
21

3
3

7
3

7
3

3
7

7
3

3
3

3
3

3
3

1
3

3
3

3
.2
5

3
3

3
7

7
7

P
22

3
7

3
7

7
3

3
3

7
3

3
3

3
3

3
3

3
3

3
3

3
.2
5

7
3

3
7

7
3

P
23

3
3

3
3

3
7

3
7

.5
3

3
3

3
3

3
3

1
3

3
3

3
3

7
3

3
7

3
3

P
24

7
3

3
3

7
3

3
7

.5
3

3
3

3
3

3
3

1.
5

3
3

7
3

.7
5

3
3

7
7

7
3

P
25

7
7

7
3

7
3

7
7

1.
5

3
3

3
3

3
3

3
1

3
3

3
3

.2
5

7
3

3
7

7
3

P
26

3
3

3
7

3
7

7
3

.5
3

3
3

3
3

3
3

1.
5

3
3

3
3

.5
3

3
3

3
3

3

P
27

3
3

3
3

7
3

3
7

.5
3

3
3

3
3

3
3

3
3

3
3

3
.7
5

7
3

3
3

3
3

P
28

3
3

3
3

7
3

3
7

.5
3

3
3

3
3

3
3

1.
5

3
3

3
3

.7
5

3
3

3
3

3
3



193

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

P
29

7
3

7
3

7
3

7
7

7
3

3
3

3
3

3
3

1
3

3
7

3

P
30

7
7

7
7

7
3

3
7

1
3

3
3

3
7

3
3

1.
5

3
3

7
3

3
7

3
7

7
3

3

P
31

3
3

3
3

3
3

3
3

1
3

3
3

3
3

3
3

3
3

3
3

3
.7
5

3
3

3
3

3
3

P
32

3
3

7
3

3
7

7
3

.5
.5

3
3

3
3

3
3

3
7

7
3

3
.2
5

3
3

3
3

3
3

P
33

3
3

7
7

3
3

3
3

7
3

3
3

3
3

3
3

1.
5

3
3

7
7

.7
5

3
3

3
3

3
3

P
34

3
3

3
7

7
3

3
7

7
7

3
7

7
7

3
3

1
3

7
7

7
.2
5

3
3

3
3

7
3

P
35

3
3

3
3

3
3

7
3

.5
3

3
3

3
3

3
3

1
3

3
3

3
.2
5

7
3

3
3

3
3

P
36

7
7

3
3

7
3

7
3

7
3

3
3

3
7

3
3

3
3

3
3

3
.7
5

7
3

7
3

3
3

P
37

3
3

7
7

7
.5

3
3

.5
3

3
3

3
3

3
3

3
3

3
3

.2
5

7
3

3
3

7
3

P
38

7
3

3
3

7
.5

7
7

.5
7

3
3

3
3

3
3

1
3

3
7

3
.2
5

7
3

3
3

7
3

P
39

3
3

3
3

7
3

3
3

.5
3

3
3

3
3

3
3

1
3

3
3

3
.2
5

3
3

3
3

3
7

P
40

3
3

3
3

7
3

3
7

7
3

3
3

3
3

3
3

1.
5

3
7

7
3

T
ab

le
E
.1
.

P
ar
ti
ci
pa

nt
s’

sc
or
es

on
ea
ch

qu
es
ti
on

fr
om

in
th
e
su
rv
ey
.

T
he

gr
ee
n

ch
ec
k-
m
ar
k
fo
r
th
e
co
rr
ec
t

an
sw

er
an

d
th
e
re
d
cr
os
s-
m
ar
k
is
fo
r
th
e
w
ro
ng

an
sw

er
.
N
ot
e
th
at

th
e
hi
gh

lig
ht
ed

re
su
lt
s
ar
e
th
e
re
su
lt
s
fo
r
th
e
11

pa
rt
ic
ip
an

ts
w
e
in
te
rv
ie
w
ed

in
se
m
i-s

tr
uc
tu
re
d
in
te
rv
ie
w
.



194

Appendix F: Scores Per Categories in the Survey for Interviewed
Participants



195

Type Description Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate Total
Points

# Correct
Response

SLLa - Q4 0 1 1 1 0 1 1 1 0 0 0 1 6
Q18 1 1 0 1 1 1 1 1 1 1 1 1 10

SCLLb - Q12 1 1 1 1 1 1 1 1 1 1 1 1 11
DLLc - Q13 1 1 0 1 1 1 1 0 1 1 1 1 9

Q19 1 1 0 1 1 1 1 1 1 1 1 1 10
DCLLd - Q11 1 1 1 1 1 1 1 1 1 1 1 1 11

Pieces Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate Total
Points

# Correct
Response

Node - Q1 1 1 0 1 1 1 1 1 1 1 1 1 10
Q7 1 0 0 1 0 1 1 1 1 1 1 1 8

Node pointer - Q2 1 1 1 1 1 1 1 1 1 1 1 1 11
Q5 0 1 0 0 0 0 0 0 1 1 0 1 3
Q8 0 1 0 0 0 0 1 0 1 1 1 1 5
Q10 1 1 0 1 1 1 1 1 1 1 1 1 10

List Data - Q15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 11
Q16 1 1 1 1 1 1 1 1 1 1 1 1 11
Q17 2 1 1.5 1.5 1 1.5 1.5 1.5 1.5 1.5 2 2 2

Head - Q6 1 1 1 1 1 1 0.5 1 1 1 0.5 1 9
Tail - Q9 1 0.5 0 0.5 0.5 1.5 0.5 0 0.5 0 0.5 2 0

Operations Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate Total
Points

# Correct
Response

Empty List - Q3 0 1 1 1 1 1 1 1 1 0 0 1 8
Delete Beginning

Q20 1 1 0 1 1 1 0 1 1 0 1 1 8

Clear List - Q21 1 1 0 1 1 1 1 0 1 0 1 7
Prerequisite
Knowledge Joe Bob Suzy Bill Max Phil Feng Xeng Chemi Ecer Nate Total

Points
# Correct
Response

Freeing
Memory - Q22 0.25 .75 .75 .75 .25 1 .25 .25 1 .75 .25 1 2

Pointer Variable
Declaration - Q23 1 1 1 0 0 1 0 0 1 1 0 1 6

Pointer Variable
Assignment - Q24 0 1 1 1 1 1 1 1 1 1 1 1 10

Q25 1 1 0 1 1 1 0 1 1 1 1 1 9
Q26 1 1 0 1 1 1 0 0 1 1 1 1 8
Q27 0 0 0 0 1 1 1 0 1 1 0 1 5

Pointer Variable
Manipulation-Q28 1 1 0 1 1 1 1 1 1 1 1 1 10

aSLL refers to a singly linked list
bSCLL refers to a singly circular linked list.
cDLL refers to a doubly linked list
dDCLL refers to a doubly circular linked list.

Table F.1. Scores per linked list concept in the survey based on conceptual (light-purple)
understanding.




	Introduction
	Motivation
	Thesis Statement
	Research Questions
	Proposed Contributions

	Background and Literature Review
	Learning Abstract Concepts
	Why Mental Models
	Misconception Research
	Motivation for a Linked List Concept Inventory
	Reasoning and Spatial Visualization

	Research Method
	Categorization of Linked List Concepts:
	Linked List Concepts:

	Linked List Framework
	The Survey and Semi-Structured Interview Questions:
	Collect Expert Feedback and Revision:
	Mapping Survey and Interview Questions to the Linked List Concepts

	Data Collection:
	Evaluation and Data Analysis:

	Results and Discussions
	RQ1: What are students' mental models of linked lists in the C programming language, and how accurate are their mental models?
	RQ1.1: How accurate are students' mental models about the types and pieces of linked lists and operations on linked lists?
	RQ1.2: What are students' misunderstandings or gaps in knowledge about the types and pieces of linked lists and operations on linked lists?

	RQ2: What difficulties do students face while learning about linked lists in the C programming language?
	RQ3 & RQ4: The Purdue Visualization of Rotations Test (ROT)
	RQ3: What is the relationship between students' understanding about linked lists and their visual-spatial reasoning?
	RQ4: What is the relationship between drawing pictures while reasoning about linked lists and students' visual-spatial reasoning?


	Threats to Validity
	Conclusion
	Future Work
	Bibliography
	Appendices
	Survey Materials
	Verbal Questions
	Coding Questions
	Recognition Questions
	Participants' Grading in the Survey
	Scores Per Categories in the Survey for Interviewed Participants

