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typically becomes a bottleneck.
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Chapter 1: Introduction

Imagine conducting a study to compare students’ grades in health class with their medical
records after they graduate, to test how well the class improves students’ health. Since the
grades are protected by FERPA and their medical records by HIPAA, it may be difficult
to get both datasets in one place legally. Imagine a sale of a private company whose value
depends on secret information, so neither the buyer nor the seller want to reveal their own
valuation. They only want to reveal whether the buyer values the company more than
the seller. Secure two-party computation (2PC)1 is the tool that accomplishes these tasks,
allowing two independent parties to learn a function of both their inputs, without revealing
anything else. Essentially, 2PC allows arbitrary operations (represented as boolean circuits)
to be performed on encrypted data—with different 2PC protocols using different kinds of
encryption.

There are many protocols for 2PC, but nearly all are based on a few core techniques
[EKR18]. First, some protocols are based on fully-homomorphic encryption (FHE) [AJL+12],
a specialized encryption technique where any arbitrary computation f may be evaluated
homomorphically. That is, given an encrypted input x, one may compute an encryption of
f(x), without any access to the decryption key. FHE tools work with a low communication
bandwidth, as essentially only the encrypted inputs and outputs need to be communicated.
Unfortunately, homomorphically evaluating each gate in the circuit has a high computational
cost.

There are several techniques based on secret sharing, including GMW [Gol04] and Beaver
triples [Bea92]. In secret sharing, the private inputs are divided into shares, and given out
to the two parties. An individual share is completely uncorrelated with the secret, but
the two shares together reveal it. Computing an AND gate requires interaction between
the two parties, using a specialized 2PC protocol that cheaply generates new shares of the
result of the AND gate. For Beaver’s technique, each AND gate uses a “Beaver triple”, a
triple of random bits (a, b, c) satisfying c = a ∧ b that is secret shared between the parties
during a preprocessing phase. If the function has high circuit depth (i.e. its evaluation is

1And secure multi-party computation more generally.
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not parallelizable), the parties will frequently have to wait for messages to arrive from each
other, creating a latency bottleneck.

Instead, this work will focus on the first secure 2PC technique, garbled circuits.

1.1 Garbled Circuits

Garbled circuits (GC) were introduced by Yao in the 1980s [Yao86], and can be viewed
as a compromise between FHE and secret sharing protocols. Like secret sharing, GC uses
communication for each gate, but this communication is just one big message, without
multiple rounds of interaction. Like FHE, GC requires computing some cryptographic
operations for each gate, but in GC these operations are orders of a magnitude cheaper. They
are extremely efficient because they are Minicrypt [Imp95], i.e., they use only symmetric-key
operations that can be instantiated with block ciphers or hash functions (modeled as random
oracles). In realistic deployments, each gate uses only a few calls to the AES block cipher,
which is implemented in hardware. But the communication required by GC is significant
— the parties must exchange Θ(λ) bits per gate, where λ is the security parameter.2 While
FHE bottlenecks on computation, and secret sharing 2PC bottlenecks on network latency,
GC bottlenecks on network bandwidth.

Garbled circuits gives the two parties roles, with one becoming the garbler and the
other the evaluator. For each wire W in the circuit, the garbler picks two wire labels:
W0 to represent a 0, and W1 to represent a 1. The garbler will tell the evaluator exactly
the wire labels corresponding to the real inputs. That is, if input I is set to 0, the evaluator
will learn I0, but not the opposite label I1. The garbler will then garble each gate in the
circuit, creating an encrypted lookup table that maps (Ai, Bj) to Cg(i,j), where g(i, j) is the
truth table of the gate. This lookup table is called a gate ciphertext. Each gate ciphertext
is Θ(λ) bits long, and sending them all to the evaluator is the most expensive step of the
protocol. The evaluator will then step through the circuit in topological order, evaluating
each gate using the corresponding gate ciphertext, and learn one wire label for each wire
in the circuit. Finally, the evaluator sends the output wire labels back to the garbler, who
interprets them to get the result of the 2PC.

Most improvements to garbled circuits have focused heavily on reducing their concrete
size [BMR90; NPS99; KS08; PSS+09; KMR14; GLN+15]. Originally, Yao’s protocol took

2That is, the cost of breaking the scheme must be on the order of 2λ operations.
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8λ bits for each gate. The state of the art for garbled (boolean) circuits was the half-gates
construction of Zahur, Rosulek, and Evans [ZRE15]. In the half-gates scheme, AND gates
are garbled with size 2λ bits, while XOR gates are free, requiring no communication. The
half-gates paper also establishes a lower bound for the size of garbled circuits. Specifically,
the authors define a model of linear garbling — which captured all known techniques
at the time — and proved that a garbled AND gate in this model requires 2λ bits. Thus,
half-gates is optimal among linear garbling schemes.

In Chapter 2 we present 3/2 garbling, the first technique that bypasses the half
gates lower bound. This result originally appeared in a paper at Crypto 2021 [RR21], in
collaboration with my advisor. In our scheme, XOR gates are free, and AND gates cost only
3
2λ+ 5 bits each. For the typical case of λ = 128 this is a concrete reduction of 23% in the
size of garbled circuits relative to half-gates. We also present a variant of our scheme suitable
for gate hiding garbling, where any two-input truth table can be garbled for 1.5λ+ 10 bits
while remaining hidden from the evaluator.

1.2 Oblivious Transfer

Garbled circuits only need Minicrypt assumptions, and so cannot be a stand alone 2PC
protocol [IR90]. In fact, they depend on a functionality called oblivious transfer (OT).
The garbler needs to give the evaluator the correct input wire labels, without learning the
evaluator’s inputs. This is exactly what OT provides. In OT, one party (“the receiver”) gets
exactly one of two messages from the other (“the sender”), without the sender learning which
one. More generally, for any 0 ≤ K ≤ N there is

(
N
K

)
-OT (or K-out-of-N OT), where the

receiver gets exactly K out of the sender’s N messages. For garbled circuits, one OT is
needed for each bit of the evaluator’s input.

We need a batch of many OTs, perhaps millions, yet most OT protocols in the literature
are described in terms of a single OT instance. Looking ahead, we will use a technique called
OT extension to reduce the number of OTs needed to only λ, but this is still a sizeable
batch. Obviously any single-instance OT protocol can be invoked λ times to produce λ OTs;
however, this overlooks the possibility of optimizations for the batch setting.

In Chapter 3, we investigate naïve batching, a natural way to optimize certain 2-round
OT protocols for the batch setting. This work originally appeared at Asiacrypt 2021 [MRR21],
in collaboration with my advisor Mike Rosulek and my colleague Ian McQuoid. When the OT



4

sender is first to speak, it seems natural to reuse their protocol message for all OT instances
in the batch. In Section 3.3, we show that it is not guaranteed to be secure. Unfortunately,
improper batching (including naïve batching) has been implemented in several protocol
libraries [Rin; CMR; Kel20; Sma] and appeared in several papers [CO15; HL17; CSW20]. But
it is simple and cheap to fix. We constructed a batch protocol called POPF OT (Fig. 3.3),
based on our non-batched OT protocol from CCS 2020 [MRR20]. It has been correctly
optimized for the batch setting, yielding an efficient batched OT protocol with roughly half
the communication compared to repeating the non-batched OT protocol.

1.3 Oblivious Transfer Extension

Unfortunately, POPF OT is based on public-key primitives, like all “base OT” protocols.
This makes it computationally slow compared to garbled circuits. Unfortunately, OT cannot
be constructed from scratch in the Minicrypt model [IR90]. Nevertheless, it is possible
to generate a large number of “extended OTs” from symmetric-key primitives and a small
number of base OTs, thanks to an idea called OT extension [Bea96]. With OT extension,
parties can generate many OT instances where the marginal cost of each instance involves
only cheap symmetric-key operations. This became very practical with the protocol of Ishai
et al. [IKN+03] (hereafter, IKNP), which is fast enough to still be in widespread use.

INKP has similar strengths and weaknesses to garbled circuits. It is computationally
very efficient because it uses only Minicrypt operations, i.e. calls to symmetric-key primitives.
But it sends λ bits per extended OT, so it bottlenecks on network bandwidth in any
realistic implementation. Recent works under the heading of Silent OT [BCG+18; BCG+19b;
SGR+19; BCG+19a; YWL+20; CRR21] have communication complexity that grows only
logarithmically in the number of oblivious transfers. Consequently, they are favored when
communication is slow. On the other hand, IKNP has the advantage for computational cost:
of the Silent OT protocols, only Silver [CRR21] uses a comparable amount of computation to
IKNP. Additionally, while IKNP uses only Minicrypt assumptions, Silent OT is based on the
learning parity with noise (LPN) assumption, which is not Minicrypt. Efficient instantiations
depend on highly structured versions of this problem, with the most efficient protocol, Silver,
owing its efficiency to a novel variant of LPN that was introduced solely for that work.
Compared with a tried-and-true block cipher like AES, these assumptions are too recent to
have received as much cryptanalysis.
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Chapter 4 addresses IKNP’s communication inefficiency with SoftSpokenOT, an OT
extension protocol that was originally presented at Crypto 2022 [Roy22]. It is the first
OT extension in the Minicrypt model to make an asymptotic improvement over IKNP’s
communication cost. For any parameter k ≥ 1, SoftSpokenOT can implement OT extension
using only λ/k bits per OT, compared to IKNP’s λ bits. This is a communication–computation
tradeoff, as the sender in our protocol must generate λ ·2k/k pseudorandom bits, while IKNP
only needs to generate 2λ bits. In practice, fast hardware implementations of AES make
IKNP network bound, so when k is small (e.g. k = 5) this extra computation will have no
effect on the overall SoftSpokenOT protocol latency. And for k = 2, no extra computation is
required, making SoftSpokenOT a pure improvement over IKNP.

1.4 Security Model

In 2PC, one or more parties may be corrupt, and there are two models for what the corrupted
parties may do. In the semi-honest (a.k.a. honest but curious) model, they report everything
they see to the adversary, but otherwise follow the protocol honestly. For malicious security,
the adversary may program the corrupted parties to do anything; there’s no requirement to
follow the protocol. We prove POPF OT secure in the stronger,3 malicious model. We have
also proven malicious security for SoftSpokenOT, when it is combined with a consistency
check. However, like most garbling schemes, 3/2 garbling is vulnerable to a malicious garbler,
and only has semi-honest security. This means that our 2PC stack is only secure in the
semi-honest model.

3For most protocols, semi-honest security follows easily from malicious security.
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Chapter 2: 3/2 Garbling

Mike Rosulek and Lawrence Roy. Three halves make a whole? Beating the
half-gates lower bound for garbled circuits. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 94–124,
Virtual Event. Springer, Heidelberg, August 2021. doi: 10.1007/978-3-
030-84242-0_5

2.1 Introduction

Garbled circuits (GC) were introduced by Yao in the 1980s [Yao86] in one of the first secure
two-party computation protocols. They remain the leading technique for constant-round
two-party computation. Garbled circuits exclusively use extremely efficient symmetric-key
operations (e.g., a few calls to AES per gate of the circuit), making communication rather
than computation the bottleneck in realistic deployments — the parties must exchange O(λ)

bits per gate. For that reason, most improvements to garbled circuits have focused heavily
on reducing their concrete size [BMR90; NPS99; KS08; PSS+09; KMR14; GLN+15]. The
current state of the art for garbled (boolean) circuits is the half-gates construction of Zahur,
Rosulek, and Evans [ZRE15], in which AND gates are garbled with size 2λ bits, while XOR
gates are free, requiring no communication.

The half-gates paper also has a lower bound for the size of a garbled AND gate. Specifically,
all known techniques at the time were covered by the linear garbling model that the authors
defined. They proved that at least 2λ bits are required to garbled an AND gate in this model.
Thus, half-gates is optimal among linear garbling schemes. In response, there has been a line
of work focused on finding ways around the lower bound. Several works [KKS16; BMR16;
WM17] were successful in constructing an AND gate using only λ bits, using techniques
outside of the linear-garbling model. However, these constructions work only for a single
AND gate in isolation, so they do not result in any improvement to half-gates for garbling
general circuits.1 Garbling an entire arbitrary circuit with less than 2λ bits per AND-gate

1These constructions require the input labels to have a certain correlation that they do not guarantee for
the gate’s output labels.

https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5


7

remained an open problem. We discuss the linear garbling lower bound and different paths
around it later in Section 2.7.

2.1.1 Our Results

We show a garbling scheme for general boolean circuits, in which XOR gates are free and
AND gates cost only 1.5λ + 5 bits. This is the first scheme to successfully bypass the
linear-garbling lower bound for all AND gates in a circuit, not just a single isolated AND
gate. For the typical case of λ = 128 this is a concrete reduction of 23% in the size of
garbled circuits relative to half-gates. Our construction compares to half-gates along other
dimensions as follows:

• Hardness assumption: All free-XOR-based garbling schemes require a function H

with output length λ and satisfying a circular correlation-robust property. In short, this
means that terms of the form H(X⊕∆) and H(X⊕∆)⊕∆ are indistinguishable from
random, for adversarially chosen X and global, secret ∆. Our construction requires a
slight generalization. First, we require H that gives outputs of length λ/2. Second, the
secret ∆ is split into two halves ∆ = ∆L∥∆R, and we require terms like H(X⊕∆)⊕∆L,
H(X ⊕∆)⊕∆L ⊕∆R, etc. to be indistinguishable from random.

• Computation: Our scheme requires 50% more calls to H per AND gate than half-
gates (6 vs 4 for the garbler, and 3 vs 2 for the evaluators). Similar to other work, we
can instantiate the necessary H using just 1 call to AES with a key that is fixed for
the entire circuit. As a result, the computational cost of our scheme is comparable to
prior work.

Additionally, since we require H with only λ/2 bits of output, certain queries to H for
different AND-gates can be combined into a single query to a λ-bit-output function.
The effect of this optimization depends on the circuit topology but in some cases our
construction can have identical or better computation to half-gates (see Section 2.6.2).

We bypass the [ZRE15] lower bound by using two techniques that are outside of its linear-
garbling model. We refer to the techniques collectively as slicing-and-dicing.

• Slicing: In our construction the evaluator slices wire labels into halves, and uses
(possibly different!) linear combinations to compute each half. We stress that this does
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not halve the security — the hash H is still given the whole wire label with λ bits of
entropy. To the best of our knowledge, this technique is novel in garbled circuits. As
we demonstrate in detail later, introducing more linear combinations for the evaluator
increases the linear-algebraic dimension in which the scheme operates, in a way that
lets us exploit more linear-algebraic structures that prior schemes could not exploit.

• Dicing: The evaluator first decrypts a constant-size ciphertext containing “control
bits”, which determine the linear combinations (of input label [halves], gate ciphertexts,
and H-outputs) he/she will use to compute the output label [halves]. The control
bits are chosen randomly by the garbler (i.e., by tossing “dice”) in a particular way.
Randomized control bits are outside of the linear garbling model, which requires the
evaluator’s linear combinations to be fixed. This technique first appeared in [KKS16].

We also describe a variant of our scheme that can garble any kind of gate (e.g., XOR
gates, even constant-output gates) for 1.5λ+ 10 bits, in a way that hides the gate’s truth
table from the evaluator. This improves on the state of the art for gate-hiding garbling,
due to Rosulek [Ros17], in which each gate is garbled for 2λ+ 8 bits, and constant-output
gates are not supported. Additionally, our gate-hiding construction is fully compatible with
free-XOR, meaning that the circuit can contain both “public” XOR gates (evaluator knows
that this gate is an XOR) and “private” XOR gates (only the garbler knows that this gate is
an XOR), with the public ones being free.

2.1.2 Related Work

The garbled circuits technique was first introduced by Yao [Yao86], although the first
complete description and security proof for Yao’s protocol was given much later [LP09].
Bellare, Hoang, and Rogaway [BHR12] promoted garbled circuits from a technique to well-
defined cryptographic primitive with standardized security properties, which they dubbed a
garbling scheme. In this work, we use their framework to formally express our schemes
and prove security.

The garbling scheme formalization captures many techniques, but in this work we focus
on “practical” GC techniques built from symmetric-key tools (PRFs, hash functions, but
not homomorphic encryption or obfuscation). In the realm of practical garbling, there have
been many quantitative and qualitative improvements over the years, especially focused on
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GC size calls to H per gate
(λ bits / gate) garbler evaluator

scheme AND XOR AND XOR AND XOR assump.
unoptimized textbook Yao 8 8 4 4 2.5 2.5 PRF
Yao + point-permute [BMR90] 4 4 4 4 1 1 PRF
4→ 3 row reduction [NPS99] 3 3 4 4 1 1 PRF
4→ 2 row reduction [PSS+09] 2 2 4 4 1 1 PRF
free-XOR [KS08] 3 0 4 0 1 0 CCR
fleXOR [KMR14] 2 {0, 1, 2} 4 {0, 2, 4} 1 {0, 1, 2} CCR
half-gates [ZRE15] 2 0 4 0 2 0 CCR
[GLN+15] 2 1 4 3 2 1.5 PRF
ours 1.5 0 ≤6 0 ≤3 0 CCR

Table 2.1: Comparison of efficient garbling schemes. Gate size ignores small constant additive
term (i.e., “2” means 2λ + O(1) bits per gate). CCR = circular correlation robust hash
function.

reducing the size of garbled circuits. These works are showcased in Table 2.1. Of particular
note are the Free-XOR technique of Kolesnikov & Schneider [KS08] and the half-gates
consruction [ZRE15], mentioned above. Free-XOR allows XOR gates in the circuit to be
garbled with no communication, and our construction inherits this technique to achieve
the same feature. The free-XOR technique requires a cryptographic hash with a property
called circular correlation-resistance [CKK+12]. As mentioned above, the half-gates paper
introduced a lower bound for garbling, which several works have bypassed in some limited
manner. We discuss the lower bound and these related works in more detail in Section 2.7.

Several garbling schemes are tailored to support both AND and XOR gates while hiding
the type of gate from the evaluator [KKS16; WM17; Ros17]. These works are compared in
Table 2.2. They differ in the exact class of boolean gates they can support — all gates, all
symmetric gates (satisfying g(0, 1) = g(1, 0)), or all non-constant gates.

2.2 Preliminaries

2.2.1 Circuits

We represent a circuit f = (inputs, outputs, in, leak, eval) by choosing a topological order of
the |f | inputs and gates in the circuit. Let inputs be the number of inputs in the circuit,
which we require to come first in the ordering. Each gate is then labeled by its index in
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GC size calls to H per gate supported
scheme (λ bits/gate) garbler evaluator gates assump.
Yao + point-permute [BMR90] 4 4 1 all PRF
4→ 3 row reduction [NPS99] 3 4 1 all PRF
[KKS16] 2 3 1 symmetric CCR
[WM17] 2 3 1 symmetric CCR
[Ros17] 2 4 1 non-const PRF
ours 1.5 ≤6 ≤3 all CCR

Table 2.2: Comparison of gate-hiding garbling schemes, where the garbled circuit leaks only
the topology of the circuit and not the type of each gate. Gate size ignores small constant
additive term (i.e., “2” means 2λ+O(1) bits per gate). CCR = circular correlation robust
hash function. “Symmetric” means all gates g with g(0, 1) = g(1, 0). “Non-const” means all
gates g except g(a, b) = 0 and g(a, b) = 1.

the order. For every gate index g in the circuit, its two input indices2 are in1(g) and in2(g),
where ini(g) < g. Each gate can be evaluated using a function eval(g) : {0, 1}2 → {0, 1}.
Finally, the outputs are a subset of the indices outputs ⊆ [1, |f |].

Garbling only hides only partial information about the circuit. What is revealed is
contained in the “leakage function” Φ(f). Sometimes two gates in a circuit may both be e.g.
XOR-gates, but one will publicly be XOR while the operation performed by the other gate
will be hidden. To support this, each gate is associated with some leakage leak(g). Gates
with different leakages may compute the same function, but have different rules about how
much information is revealed. We then define Φ(f) to be (inputs, outputs, in, leak), containing
the circuit topology and partial information about the gates’ truth tables.

2.2.2 Garbling Schemes

We use a slightly modified version of the garbling definitions of [BHR12].

Definition 2.2.1. A garbling scheme consists of four algorithms:

• (F, e, d)← Garble(1λ, f).

• X := Encode(e, x). (deterministic)
2We assume that all gates take two inputs. NOT gates can be merged into downstream gates — e.g. if x

goes into a NOT gate, and then into an AND gate with another input y, this is equivalent to a single x ∧ y
gate.
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• Y := Eval(F,X). (deterministic)

• y := Decode(d, Y ). (deterministic)

such that the following conditions hold.

Correctness: For any circuit f and input x, if (F, e, d) ← Garble(1λ, f) then f(x) =

Decode(d,Eval(Encode(e, x))) holds with all but negligible probability.

Privacy with respect to leakage Φ: There must be a simulator S such that for any circuit
f and input x the following distributions are indistinguishable.

(F, e, d)← Garble(1λ, f)
X := Encode(e, x)
return (F,X, d)

(F,X, d)← S(1λ,Φ(f), f(x))
return (F,X, d)

Obliviousness w.r.t. leakage Φ: There must be a simulator S such that for any circuit f
and input x the following distributions are indistinguishable.

(F, e, d)← Garble(1λ, f)
X := Encode(e, x)
return (F,X)

(F,X)← S(1λ,Φ(f))
return (F,X)

Authenticity: For any circuit f and input x, no PPT adversary A can make the following
distribution output true with non-negligible probability.

(F, e, d)← Garble(1λ, f)
X := Encode(e, x)
Y ← A(F, d,X)

return Decode(d, Y ) /∈ {f(x),⊥}

The definitions differ from [BHR12] in two ways. First, we change correctness to allow a
negligible failure probability.3 Secondly, we strengthen the authenticity property by giving d

3Most garbling schemes actually do not have perfect correctness. If an output wire has labels W0,W1,
then d will contain both H(W0) and H(W1). Correctness is violated if H(W0) = H(W1).
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to the adversary. This stronger property is easy to achieve by simply changing what one
takes as garbled output Y .

2.2.3 Circular Correlation Robust Hashes

Our construction requires a hash function H with a property called circular correlation
robustness (CCR). A comprehensive treatment of this property is presented in [CKK+12;
GKW+20b].

The relevant definition of [GKW+20b] is tweakable CCR (TCCR). For a hash function
H, define a related oracle O∆(X, τ, b) = H(X ⊕∆, τ) ⊕ b∆. Then H is a TCCR if O∆ is
indistinguishable from a random oracle, provided that the distinguisher never repeats a (X, τ)

pair in calls to the oracle.
We modify their definition in several important ways:

• We require H to have different input and output lengths. In the original definition,
the adversary used the argument b ∈ {0, 1} to determine whether ∆ was XOR’ed with
the output of H. We generalize so that the adversary can choose a linear function
of (the bits of) ∆ that will be XOR’ed with the output of H. Our construction
ultimately needs only 4 linear functions reflecting our slicing of wire labels in half:
La,b(∆L∥∆R) = a∆L ⊕ b∆R, for a, b ∈ {0, 1}.

• [GKW+20b] observe that a “full” TCCR is stronger than what is needed for garbled
circuits. In order to construct a TCCR that uses only one call to an ideal permutation,
they prove TCCR security against adversaries that query only on “naturally derived”
keys. It is somewhat cumbersome to generalize “naturally derived” keys to our setting,
where the values are sliced into pieces.

We instead relax TCCR so that H is drawn from a family of hashes, and the adversary
only receives the description of H after making all of its oracle queries. This relaxation
suffices for garbled circuits (the garbler chooses H and reveals it only in the garbled
circuit description, after all queries to H have been made), and simplifies both our
definition and our proof.

Definition 2.2.2. A family of hash functions H, where each H ∈ H maps {0, 1}n × T →
{0, 1}m for some set of tweaks T , is randomized tweakable circular correlation robust
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(RTCCR) for a set of linear functions L from {0, 1}n to {0, 1}m if, for any PPTs A1,A2

that never repeat an oracle query to OH,∆ on the same (X, τ),∣∣∣∣ PrH,∆

[
v ← A

H,OH,∆

1 ;A2(v,H) = 1
]
− Pr

H,R

[
v ← A

H,R
1 ;A2(v,H) = 1

]∣∣∣∣
is negligible, where R is a random oracle and OH,∆ is defined as

OH,∆(X ∈ {0, 1}n, τ ∈ T , L ∈ L):
return H(X ⊕∆, τ)⊕ L(∆)

In Appendix A.1 we show that if Fk(X) is both a (plain) CCR hash for L when k is fixed
and a PRF when k is random, and {(X, τ) 7→ X ⊕U(τ) | U ∈ U} is a universal hash family,4

then
{
(X, τ) 7→ Fk(X ⊕ U(τ)) | k ∈ {0, 1}λ, U ∈ U

}
is a secure RTCCR hash family for L.

For our recommended instantiation, let σ be a simple function of the form σ(XL∥XR) =

αXL∥αXR, where α is any fixed element in F2λ/2 \ F22 . Then AESk(X) ⊕ σ(X) is both a
PRF for random k, and a CCR for any fixed k (modelling AESk as an ideal permutation).
Hence we get an RTCCR of the form:

(X, τ) 7→ AESk

(
X ⊕ U(τ)

)
⊕ σ(X ⊕ U(τ))

U can likewise be a simple function, e.g., when |τ | ≤ λ/2 then we can use U(τ) = u1τ∥u2τ
where u1, u2 are random elements of F2λ/2 .

2.3 A Linear-Algebraic View of Garbling Schemes

In this section we present a linear-algebraic perspective of garbling schemes, which is
necessary to understand our construction and its novelty. This perspective is inspired by the
presentation of Rosulek [Ros17], where the evaluator’s behavior (in each of the 4 different
gate-input combinations) defines a set of linear equations that the garbler must satisfy, and
we rearrange those equations to isolate the values that are outside of the garbler’s control.

4Equivalently, U is 2−λ-almost-XOR-universal (AXU).
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2.3.1 The Basic Linear Perspective

Throughout this section, we consider an AND gate whose input wires have labels (A0, A1)

and (B0, B1). We will always consider the free-XOR setting [KS08], where all wires have
labels that xor to a common global ∆; i.e., A0 ⊕A1 = B0 ⊕B1 = ∆. Our view of garbling
will always start with the circuit evaluator’s perspective; hence we consider the subscripts
to be public. In other words, if the evaluator holds Ai, then he knows the value i. In some
works these subscripts are called “color bits” or “permute bits.” The garbler secretly knows
which of {A0, A1} represent true and which of {B0, B1} represent true.

Let’s take an example of a textbook Yao garbled gate, using the point-permute technique.
The garbled gate consists of 4 ciphertexts G00, . . . , G11. When the evaluator has input labels
Ai, Bj , he computes the output label by decrypting the (i, j)’th ciphertext, as H(Ai, Bj)⊕
Gij .5 In order to correspond to an AND gate, this evaluation expression must result in some
label C (which could be either C0 or C1) representing (false) in 3 cases and C ⊕∆ (true) in
the other. Suppose (A1, B0) is the case corresponding to inputs (true,true), then the garbler
needs to arrange for:

C = H(A0, B0)⊕G00 C ⊕∆ = H(A1, B0)⊕G10

C = H(A0, B1)⊕G01 C = H(A1, B1)⊕G11

We can rearrange these equations as follows:


1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1




C

G00

G01

G10

G11

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



H(A0, B0)

H(A0, B1)

H(A1, B0)

H(A1, B1)

⊕

0

0

1

0


︸︷︷︸

t

∆

In this equation, values that the garbler cannot control are on the right, and the results of
the garbling process (gate ciphertexts and output labels) are on the left. The vector marked
t is the truth table of the gate (when inputs are ordered by color bits), and known only to
the garbler.

5For now, assume H is a random oracle. We ignore including the gate ID as an additional argument to H.
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In order for the scheme to work, for all possible values on the right-hand side (including
all choices of secret t!) the garbler must be able to solve for the variables on the left-hand
side. In this case the left-hand side is under-determined so solving is easy. The garbler can
simply choose random C and move it to the right-hand side. Then the matrix remaining
on the left-hand side is an invertible identity matrix. Multiplying by the inverse solves for
the desired values. Clearly this can be done for any t, meaning that this approach works to
garble any gate (not just AND gates).

2.3.2 Row-Reduction Techniques

Row reduction refers to any technique to reduce the size of the garbled gate below 4 ciphertexts.
The simplest method works by removing the ciphertext G00, and simply having the evaluator
take H(A0, B0) as the output label when he has inputs A0, B0.

C = H(A0, B0)

C = H(A0, B1)⊕G01

C ⊕∆ = H(A1, B0)⊕G10

C = H(A1, B1)⊕G11

⇒


1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1




C

G01

G10

G11

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



H(A0, B0)

H(A0, B1)

H(A1, B0)

H(A1, B1)

⊕

0

0

1

0


︸︷︷︸
t

∆

The matrix on the left is now a square matrix, and invertible. Thus for any choice of t, the
garbler can solve for C and the Gij values by multiplying by the inverse matrix.

2.3.3 Half-Gates

The previous example shows that decreasing the size of the garbled gate from 4 to 3 causes
the matrix on the left to change from size 4× 5 to 4× 4. Reducing the garbled gate further
(from 3 ciphertexts to 2) would cause the matrix to be 4 × 3, and the system of linear
equations would be overdetermined! So how does the half-gates garbling scheme [ZRE15]
actually achieve a 2-ciphertext AND gate?

Let us recall the gate-evaluation algorithm for the half-gates scheme, which is considerably
different from all previous schemes. On inputs Ai, Bj the evaluator computes the output
label as H(Ai)⊕H(Bj)⊕ i ·G0 ⊕ j(G1 ⊕Ai), where G0, G1 are the two gate ciphertexts.

Suppose as before that A1 and B0 correspond to true. Then the garbler must arrange for
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the following to be true:

C = H(A0)⊕H(B0)

C = H(A0)⊕H(B1) ⊕G1 ⊕A0

C ⊕∆ = H(A1)⊕H(B0)⊕G0

C = H(A1)⊕H(B1)⊕G0 ⊕G1 ⊕ (A0 ⊕∆)︸ ︷︷ ︸
A1

Rearranging in our usual way, we get:


1 0 0

1 0 1

1 1 0

1 1 1


 C

G0

G1

 =



1 0 1 0 0 0

1 0 0 1 1 0

0 1 1 0 0 0

0 1 0 1 1 1

⊕

0 0 0

0

1

0 0 ︸︷︷︸
t

0






H(A0)

H(A1)

H(B0)

H(B1)

A0

∆


Note that ∆ is used both in the truth table adjustment (t) and in the usual operations
of the evaluator (implicitly, in the one case where he includes A1 = A0 ⊕∆ in the linear
combination).

As promised, the matrix on the left is only 4× 3. We cannot solve for the left-hand side
by inverting this matrix as in the previous cases. Instead, the garbler takes advantage of the
fact that the matrices on both sides have the same column space. Specifically, the
columns on the left span the space of all even-parity vectors. For any choice of t containing
just a single 1 (corresponding to the truth table of an AND gate), every column on the right
also has even parity! Concretely, suppose the evaluator solved the first three rows of this
system of linear equalities (which is possible since the first three rows on the left form an
invertible matrix), then the fourth row would automatically be in equality since on both
sides it is the sum of the first 3 rows.6 One can see that this technique works only for gates
whose truth table has odd parity (e.g., AND gates).

Half-gates was the first garbling scheme to structure its oracle queries as H(Ai) and
H(Bj), instead of H(Ai, Bj). Our linear-algebraic perspective highlights the importance

6More generally, multiplying by a left-inverse of the matrix on the left-hand side “just works,” as in the
case where the matrix on the left-hand side is invertible.
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of this change. For a 2-ciphertext AND gate, the matrix on the left will be 4 × 3, so the
matrix on the right must have rank 3. An expression like H(Ai, Bj) can be used by the
evaluator in only one combination of inputs, leading to an identity matrix minor that has
rank 4. By contrast, each H(Ai) and H(Bj) term is used for two input combinations, so the
corresponding matrix can have rank 3.

Our linear algebraic perspective confirms and provides an explanation for a prior finding
of Carmer & Rosulek [CR16]. They used a SAT solver to show that no garbling scheme (in
the linear model of the half-gates paper) could achieve a 2-ciphertext AND gate, when the
evaluator makes only one query to H. This reiterates the importance of half gates using
H(A), H(B) oracle queries to achieve a 2-ciphertext AND gate.

2.4 High-Level Overview of Our Scheme

In the previous section, we saw that it was important that the evaluator used oracle queries
like H(Ai) and H(Bj) in the half-gates scheme. For every term of the form H(Ai) there
are two gate-input combinations in which the evaluator uses this term. This property
led to a desirable redundancy in the matrix that relates H-queries to input combinations.
Redundancies in this matrix lead to smaller garbled gates. We push this idea further using
several key observations.

2.4.1 Observation #1: Get the Most out of the Oracle Queries

H(Ai) and H(Bj) are not the only oracle queries that can be made in two different gate-input
combinations. We can also ask the evaluator to query H(Ai ⊕Bj). Because of the free-XOR
constraint, A0 ⊕ B0 = A1 ⊕ B1, and A0 ⊕ B1 = A1 ⊕ B0, so these queries also can each
be computed in two cases of evaluation. Fig. 2.1 shows which oracle queries can be made
for each gate-input combination. Can we use these extra queries to introduce even more
redundancy in the relevant matrices?

2.4.2 Observation #2: Increase Dimension by Slicing Wire Labels

Our linear-algebraic perspective of garbling includes only 4 linear equations, corresponding
to the 4 different gate-inputs. Having only 4 linear equations makes it difficult to take
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A0B0 A0B1

A1B1A1B0

H(A0)

H
(B

0
)

H
(A
0 ⊕

B
0 )

H
(A

0
⊕
B 1
) H

(B
1 )

H(A1)

Figure 2.1: All oracle queries used by our new garbling scheme. The points represent
gate-input combinations; they are labeled by the wire labels known to the evaluator. The
three lines incident to a point are the three H-queries that can be made by the evaluator
given those gate inputs. Half-gates only uses the outside square of oracle queries.

advantage of any new structure introduced by observation #1. Our second observation, and
perhaps the key to our entire approach, is to split each wire label into a left and right
half, and let the evaluator compute the two halves (of the output label) with different linear
combinations. This results in 8 linear equations in our linear-algebraic perspective — 2
equations for each of the 4 gate-input combinations.

Consider the following proposal,

H(A0) H(A1) H(B0) H(B1) H(A0 ⊕B0) H(A0 ⊕B1)

(0,0) left ✓ ✓

(0,0) right ✓ ✓

(0,1) left ✓ ✓

(0,1) right ✓ ✓

(1,0) left ✓ ✓

(1,0) right ✓ ✓

(1,1) left ✓ ✓

(1,1) right ✓ ✓

(2.1)

For example, on gate-input (0,0) the evaluator will compute the left half of the output label
as H(A0)⊕H(A0⊕B0)⊕ · · · (plus other terms, involving gate ciphertexts and input labels).
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There are several important features of this table to note:

• H(·) is used in a linear equation to compute half of an output label, therefore H(·) is a
function with λ/2 bits of output. Three of these half-sized hash functions are combined
to encrypt the gate output.7 However, we still will use the entire input wire labels as
input to H — using wire-label halves as input to H would cut the effective security
parameter in half.

• For an evaluator with gate-input (0,0), the values H(A1), H(B1), and H(A0 ⊕ B1)

are all jointly indistinguishable from random. With that in mind, consider the linear
combinations for any other gate-input. For example, in the (1,0) case the evaluator
will compute the output as

left = H(A1)⊕H(A0 ⊕B1)⊕ · · ·

right = H(B0)⊕H(A0 ⊕B1)⊕ · · ·

Because H(A1) and H(A0 ⊕B1) are pseudorandom, this makes both of these outputs
jointly pseudorandom. The entire output of the (1,0) case is pseudorandom from the
perspective of the evaluator in the (0,0) case. This is a necessary condition, since
sometimes the (0,0) and (1,0) cases give different outputs. This pattern holds with
respect to any pair of evaluation cases, because they will always have exactly one oracle
query in common (see Fig. 2.1).

• If we interpret Eq. (2.1) as a matrix (✓=1, empty cell=0), we see that it has rank 5.
This suggests that the garbling process can result in only 5 output values, where in this
case each of these values is λ/2 bits. Two of the values are the halves of the output
wire label C, leaving 3 values to comprise the garbled gate ciphertexts. In other words,
we are on our way to a garbled gate with only 3λ/2 bits, if only we can get all of the
relevant linear equations to cooperate.

2.4.3 Observation #3: Randomize and Hide the Evaluator’s Coefficients

Let us apply our observations so far to our linear perspective of Section 2.3. Since wire labels
are divided into halves, we use notation like A0R to denote the right half of A0. Note that

7Hence the title: “Three Halves Make a Whole”.
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the free-XOR constraint applies independently to the wire label halves; i.e., A1R = A0R⊕∆R

and so on.
The evaluator computes each half of the output label separately, using a linear combination

of available information: oracle responses, gate ciphertexts, and the 4 (!) halves of the input
labels. If we account for all 8 of the evaluator’s linear equations, while using the oracle-query
structure suggested in Eq. (2.1), we obtain the following system:



1 0 ? ? ?

0 1 ? ? ?

1 0 ? ? ?

0 1 ? ? ?

1 0 ? ? ?

0 1 ? ? ?

1 0 ? ? ?

0 1 ? ? ?




CL

CR

G0

G1

G2

 =





1 0 0 0 1 0 ? ? ? ? ? ?

0 0 1 0 1 0 ? ? ? ? ? ?

1 0 0 0 0 1 ? ? ? ? ? ?

0 0 0 1 0 1 ? ? ? ? ? ?

0 1 0 0 0 1 ? ? ? ? ? ?

0 0 1 0 0 1 ? ? ? ? ? ?

0 1 0 0 1 0 ? ? ? ? ? ?

0 0 0 1 1 0 ? ? ? ? ? ?


⊕



0 0 0 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0 ︸︷︷︸
t

0 0







H(A0)

H(A1)

H(B0)

H(B1)

H(A0 ⊕B0)

H(A0 ⊕B1)

A0L

A0R

B0L

B0R

∆L

∆R



(2.2)

The first row represents the evaluator’s linear equation to compute the left half CL of the
output label on input A0, B0, etc. Note that the truth table t now consists of 2× 2 identity
blocks and 2× 2 zero-blocks.

For everything to work correctly, we need to replace the “?” entries, so that for every
choice of t, the matrices on both sides have the same column space.

• The columns on the right-hand side (representing the H outputs) already span a space
of dimension 5, so there is no choice but to extend the left-hand side matrix to a basis
of that space.

• The “?” entries on the right are subject to other constraints, so that they reflect
what an evaluator can actually do in each input combination. For example, on input
A0, B1, the evaluator cannot include B0R in its linear combination, it can only include
B1R = B0R ⊕∆R. Note that the matrix is written in terms of B0 only.

Unfortunately, it is not possible to complete the right-hand-side matrix subject to these
constraints. For every t, there is a valid way to replace the “?” entries, but there is
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no one way that works for all t.
To get around this problem, we randomize and encrypt the entries of the matrix.

To the best of our knowledge, the technique first appeared in the garbling scheme of [KKS16],
and was also used in [WM17; Ros17]. The garbler will complete the matrices so that the
system of equations can be solved (i.e., the column spaces coincide). This causes the matrix
entries to now depend on the garbler’s secret t. Next, the garbler will encrypt these matrix
entries, so that when the evaluator has input Ai, Bj , he can decrypt only those matrix
entries needed for that particular input combination — not the entire matrix. For example,
the evaluator can use A0, B0 to decrypt the top two rows of the matrix — just enough to
determine the coefficients of the linear combinations computing the output label. Unlike
other schemes, there is a step of indirection (decrypting this additional ciphertext) before the
evaluator determines which linear combinations to apply — the linear combination does not
depend solely on the color bits of the input labels. We call the contents of these ciphertexts
control bits, which tell the evaluator what linear combination to apply. The control bits
are of small constant size, so encrypting them adds only a constant number of bits to the
garbling scheme.

The garbler completes the missing entries in the matrix by drawing them randomly from
a distribution over matrices. The distribution depends on t, as we mentioned — however, it
can be arranged that each marginal view of the matrix is independent of t. Since the
evaluator sees only such a marginal view, not the entire matrix, the value of t is hidden.

2.5 Details: Slicing & Dicing

In this section we complete the full picture of our construction. We direct the reader to a
guide to notation/symbols in Fig. 2.2.
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∆ free-XOR wire label offset (sometimes a vector of slices [∆L,∆R]
⊤)

λ security parameter (e.g., 128)

πk point-permute bit of wire k: wire label Wk represents plaintext value πk

Φ circuit leakage function

A0, B0 input wire labels with color bit 0

A,B “active” wire labels (sometimes a vector of slices [AL, AR]
⊤)

C an output wire label (sometimes a vector of slices [CL, CR]
⊤)

d dimension of basis S for control bit marginal views Rij

Ek active wire label on wire k

G “gate space” = column space of all matrices in (Eq. (2.3))

G⃗ vector of gate ciphertexts (G⃗k for the kth gate)

H, H RTCCR hash function, family

H⃗ vector of responses from H: [H(A), H(A⊕∆), . . .] (Eq. (2.3))

H⃗0, H⃗∆ partition of H⃗ corresponding to active/inactive queries to H, respectively (in the security proof)

K basis matrix for cokernel of gate space G; i.e., every v ∈ G satisfies Kv = 0

L set of linear functions for an RTCCR hash

M matrix corresponding to linear combinations of H-responses (Eq. (2.3))

M0,M∆ partition of M corresponding to active/inactive queries to H, respectively (in the security proof)

R control bit matrix (Eq. (2.3)), specifying how input label slices are used in linear combinations

R(t) distribution over control matrices R corresponding to gate truth table t; sometimes takes gate leakage as
additional argument

R′ control bit matrix R after applying a basis change in the security proof

Rp control matrix that is always included for odd-parity gates

Rij marginal view of control matrix R, for one gate-input combination

R̄, R̄ij compressed representation of control matrix R, or of marginal view Rij , expressed in basis Sk

r⃗ vector encoding of control matrix R, for garbling the control bits

S basis for control bit marginal views Rij (basis elements Sj); sometimes has a leakage argument

t truth table of the gate: an 8× 2 matrix composed of 2× 2 identity blocks and 2× 2 zero blocks

tij the 2× 2 block of t corresponding to a single gate input combination (in correctness proof)

V matrix on LHS of the main garbling equation (Eq. (2.3)), corresponding to output label and gate
ciphertexts

Vij pair of rows from V used by the evaluator when lsb(A) = i and lsb(B) = j

V −1 a left-inverse of V

V −1
gate, V

−1
label partition of V −1 corresponding to gate ciphertexts and output label slices, respectively (in the security

proof)

Wk wire label on wire k with color bit 0

X⃗, Xij gate output wire labels (resp. wire label) before applying control matrix (Eq. (2.10), Fig. 2.6)

xk plaintext value on wire k (in security proof)

z⃗ garbling/encryption of control bit matrix R / its encoding r⃗ (z⃗k for the kth gate)

Figure 2.2: Guide to notation.
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2.5.1 Choosing the Matrices

Let us begin by filling out the question marks in Eq. (2.2). We rewrite this equation using
block matrices, and we group related parts together.

V

[
C

G⃗

]
= MH⃗ ⊕

(
R⊕

[
0 0 t

])A0

B0

∆

 (2.3)

Here C, A0, B0, and ∆ are two-element (column) vectors representing the two halves of
these wire labels; G⃗ is the vector of gate ciphertexts; and H⃗ =

[
H(A0) H(A1) H(B0) H(B1)

H(A0 ⊕ B0) H(A0 ⊕ B1)
]⊤ is the vector of H-outputs. t is the 8 × 2 truth table matrix,

which contains a 2× 2 identity matrix block for each case of the gate that should output
true. We have already filled out M — it is the portion of the right-hand side matrix in
Eq. (2.2) with no question marks, that operates on the hash outputs H⃗. R is called the
control matrix because it determines which pieces of input labels are added to the output.

Choosing V . Recall that the matrices on both sides of the equation must have the same
column space, and that M already spans this 5-dimensional space. Call this common column
space the gate space G. Then

G = colspace(V ) = colspace(M) ⊇ colspace
(
R⊕

[
0 0 t

])
.

It will be more convenient to represent G using linear constraints, rather than as the span of
the columns of M . We use a matrix K as a basis for the cokernel of M , so that any vector v
is in G if and only if Kv = 0. Then V must satisfy rank(V ) = 5 and KV = 0.
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Any K and V satisfying these constraints will suffice, and we will use the following:

K =

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 0 1 1 0 1 1

 V =



1 0 0 0 0

0 1 0 0 0

1 0 0 0 1

0 1 0 1 1

1 0 1 0 1

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0


Note that the columns of V corresponding to the gate ciphertexts (the 3 rightmost columns)
are the same as the columns in M corresponding to hash outputs H(A1), H(B1), H(A0⊕B1),
so they are clearly in the column space of M .

Constraints on choosing R. It remains to see how we choose the control matrix R. Using
our new notation, colspace

(
R⊕

[
0 0 t

])
⊆ G is equivalent to KR = K

[
0 0 t

]
, so we

must choose R to match Kt. Because t is composed of 2× 2 zero or identity blocks, we can
deduce:

KR = K
[
0 0 t

]
=

0 0 0 0 p 0

0 0 0 0 0 p

0 0 0 0 a b

 (2.4)

for some a, b ∈ {0, 1}, where p is the parity of the truth table. In our main construction,
p = 1 since it only considers garbling AND gates. However, the bits a, b reveal more than
the parity of the gate — they leak the position of the “1” in the truth table. Since R must
depend on these a, b bits, we resort to randomizing the control matrix R to hide a, b.

We also need the control matrix to reflect linear combinations that the evaluator can
actually do with the available wire labels. The linear constraints are expressed in terms of
A0, B0, and ∆, but when the evaluator has wire label, say, A1, he can either include it in the
linear combination (adding both A0 and ∆) or not (adding neither A0 nor ∆) — he cannot
include only one of A0,∆ in the linear combination. This means that R must decompose
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into 2× 2 matrices in the following way:

R =


R00A R00B 0

R01A R01B R01B

R10A R10B R10A

R11A R11B R11A ⊕R11B

 (2.5)

When the evaluator holds input labels Ai, Bj , the submatrix Rij =
[
RijA RijB

]
is enough

to completely determine which linear combination should be applied. We call Rij the
marginal view for that input combination. We will randomize the choice of R, subject
to the constraints listed above, so that any single marginal view leaks nothing about t.
That is, we want to find a distribution R(t) such that when R← R(t), KR = K

[
0 0 t

]
with probability 1, yet for every i, j ∈ {0, 1}, if t ← T and R ← R(t) then t and Rij are
independently distributed.

Basic approach to the distribution R(t): We must choose R to match the p, a, b bits
defined above (which depend on the truth table t). Suppose we have a distribution R0 with
the following properties:

• If R$ ← R0 then KR$ = 0

• For all i, j ∈ {0, 1}, if R$ ← R0 then (R$)ij (the marginal view) is uniform

and we also have fixed matrices Rp, Ra, Rb such that:

KRp =

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

 KRa =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

 KRb =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

, (2.6)

Define R(t) to first sample R$ ← R0 and output R = pRp ⊕ aRa ⊕ bRb ⊕R$. The result R

will always satisfy the condition of Eq. (2.4). The randomness in R$ also causes marginal
views of Rij to be uniform and therefore hide p, a, b. See Appendix A.2 for details of sampling
R$. Concrete values for Rp, Ra, Rb are given in Figures 2.3 and 2.4, as part of a different
construction.

If R0 is the uniform distribution over all matrices satisfying KR = 0, then the garbler
must encrypt the full marginal views Rij at 8 bits per view. A more thoughtful choice of
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distribution will allow the garbler to convey Rij marginal views with fewer bits.

Compressing the marginal views: Each marginal view Rij is a 2× 4 matrix. We can
“compress” these if we manage to restrict all Rij to some linear subspace S = span{S1, S2,

. . . , Sd} of 2× 4 matrices (presumably with dimension d < 8), while still maintaining the
other properties needed.

Let R̄ij denote the representation of Rij with respect to the basis S — i.e., a vector of
length d. Then the garbler can encrypt only the R̄ij ’s to convey the marginal views of R.
The choice of the subspace S depends on the class of truth tables that need to be hidden.

Parity-leaking gates: We performed an exhaustive computer search of low dimensional
subspaces to determine how to pick the basis S for different types of gates. For even-parity
gates (e.g. XOR or constant gates) we found a 2-dimensional subspace that works. Details of
the R(t) distribution are given in Fig. 2.3. For odd-parity gates (like AND, OR) we simply
use the even-parity distribution and add a public constant Rp (from Fig. 2.4) to the result.
This approach works when the parity of the gate is public, since the evaluator must know to
add Rp when decoding the description of their marginal view Rij .

The construction for odd-parity gates is our primary construction, which would be used
in most applications of garbling (in combination with free XOR gates).

Parity-hiding gates: To make the garbling scheme gate-hiding, we also need to hide the
parity of the truth table. In other words, the distribution on R$ must be random enough to
mask the presence (or absence) of a matrix Rp as in Eq. (2.6). The Rp in Fig. 2.4 is not in
the subspace S of control matrices in Fig. 2.3. Hence, to support parity-hiding we have had
to extend that subspace with two additional basis elements (the basis matrices S1, S2 are as
in the parity-leaking case). Our parity-hiding gates require 4 (compressed) control bits per
gate-input combination, corresponding to the 4-dimensional basis S. See Fig. 2.4 for details.

2.5.2 Garbling the Control Bits

So far we have glossed over the details of how the control bits actually get encrypted and
sent to the evaluator. We know that there will be some 4× d (d = 2 for parity-leaking gates
and d = 4 for parity hiding gates) matrix R̄, and that the evaluator should only get to see
a single row R̄ij of R̄ telling them what linear combination of S1, . . . , Sd to use as control
bits. The garbler can easily encrypt these values so that on input Ai, Bj the evaluator can
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S1 =

[
1 1 1 0
1 0 0 1

]
S2 =

[
1 0 0 1
0 1 1 1

]

R̄a =


0 0
1 1
0 1
1 0

 R̄b =


0 0
1 0
1 1
0 1

 R̄$ ← span



1 0
1 0
1 0
1 0

 ,


0 1
0 1
0 1
0 1




Ra =



0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 1 1 1
1 1 1 0 1 0
1 0 0 1 1 0
0 1 1 1 0 1
1 1 1 0 0 1
1 0 0 1 1 1


Rb =



0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 1 0
1 0 0 1 0 1
0 1 1 1 0 1
1 1 1 0 1 1
1 0 0 1 1 1
0 1 1 1 1 0


R$ ← span





1 1 1 0 0 0
1 0 0 1 0 0
1 1 1 0 1 0
1 0 0 1 0 1
1 1 1 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1
1 0 0 1 1 1


,



1 0 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 1
0 1 1 1 1 1
1 0 0 1 1 0
0 1 1 1 0 1
1 0 0 1 1 1
0 1 1 1 1 0




Figure 2.3: Control matrices for even-parity gates. The top row contains the two basis
matrices for S. The bottom row shows the full control matrices (Rp is not needed for
even-parity gates). The middle row shows the “compressed” representation of the control
matrices, in terms of the basis {S1, S2} (i.e., each row expresses which linear combination of
S1, S2 appears in the corresponding blocks of the control matrix). The reader can verify that
(1) each row in R̄$ is individually uniform; (2) KR$ = 0; and (3) Eq. (2.6) holds.

S1 =

[
1 1 1 0
1 0 0 1

]
S2 =

[
1 0 0 1
0 1 1 1

]
S3 =

[
0 0 1 0
0 0 0 0

]
S4 =

[
0 0 0 0
0 1 0 0

]

R̄p =


0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

 R̄$ ← span



0 0 1 0
1 1 1 0
0 1 1 0
1 0 1 0

 ,


0 0 0 1
1 0 0 1
1 1 0 1
0 1 0 1

 , . . .



Rp =



0 0 1 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


R$ ← span





0 0 1 0 0 0
0 0 0 0 0 0
0 1 0 1 0 1
1 1 1 0 1 0
1 0 1 1 1 0
0 1 1 1 0 1
1 1 0 0 1 1
1 0 0 1 1 1


,



0 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 1 0
1 1 0 1 0 1
0 1 1 1 0 1
1 0 1 0 1 0
1 0 0 1 1 1
0 0 1 1 1 1


, . . .


Figure 2.4: Control matrices for gate-hiding garbling. The top row contains the basis matrices
for S. The basis of Fig. 2.3 is a subset of this basis, so we can use the same Ra and Rb as
Fig. 2.3. The distributions on R̄$ and R$ also include the matrices from Fig. 2.3 (omitted
with “. . .” here). The middle row gives the control matrices in terms of the new basis, while
the bottom row shows them directly. The reader may verify that (1) each row of R̄$ is
individually uniform; (2) KR$ = 0; and (3) Eq. (2.6) holds.
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decrypt only R̄ij .
In order to reuse the calls to H that the evaluator already uses, it turns out that we can

use our new garbling construction to garble the control bits as well. At first it looks like this
would just give infinite recursion, as if we used something like Eq. (2.3) to garble the control
bits then that garbling would need its own control bits, which would need to be garbled,
and so on. In reality, the compressed control bits actually have a structure that allows us to
garble them without recursive control bits.

Conceptually, we can treat the bits of R̄ as wire labels and slice them as we do regular
wire labels. Collect the bits from odd and even-indexed positions of R̄ij into numbers rijL

and rijR ∈ F2d/2 , respectively. Define the vector

r⃗ =
[
r00L r00R r01L r01R r10L r10R r11L r11R

]⊤
We observed that for both our parity-leaking and parity-hiding constructions, this vector is
always in the gate subspace G — i.e., that Kr⃗ = 0. Looking at Fig. 2.3, the reader can check
that this holds for any possible r⃗ (which in this case is the same as R̄ read in row-major
order). And similarly for Fig. 2.4; this time the test for R̄ is equivalent to checking its two
4× 2 blocks individually.

Since the control bits, when expressed as r⃗, are always in the gate subspace G, they can
be garbled without needing their own control bits. The garbler can compute a constant-size
ciphertext z⃗ such that:

V z⃗ ⊕M lsb d
2
(H⃗) = r⃗, (2.7)

where V,M, H⃗ are as in Eq. (2.3). Here we assume that every hash has been extended by an
extra d/2 bits (or more realistically given that block ciphers have a fixed size, each wire label
slice has been shrunk by d/2 bits to make room), and that these extra bit can be extracted
with lsb d

2
. The remainder of the hash vector, msbλ

2
(H⃗), is used for garbling the wire labels

themselves. By the same reasoning as for usual garbling, when the evaluator has input labels
Ai, Bj , he can learn only the r⃗ij portions of r⃗.

We can combine Equations 2.3 and 2.7 into a single system, allowing the whole gate to
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be garbled at once.

V

(
z⃗
∥∥∥ [C

G⃗

])
⊕MH⃗ = r⃗

∥∥∥
(R⊕ [0 0 t

])A0

B0

∆


 , (2.8)

where ∥ denotes element wise concatenation, so e.g. the bits of r00L ∈ F2d/2 get concatenated
with some x ∈ F2λ/2 to get a value in F2(λ+d)/2 . We write the bits in little endian order, so
lsb d

2
(H⃗) ∥msbλ

2
(H⃗) = H⃗.

2.5.3 The Construction

We can now describe our garbling scheme formally. All of our different types of gates are
compatible, so we describe a single unified scheme. The circuit has a leak function that
indicates what information about each gate is public (which affects the cost of garbling each
gate):

SampleR(t, leak):
R← R(leak, t)
for i, j ∈ {0, 1}:

find coeffs c s.t. Rij =
⊕

k ck Sk(leak)
rijL := c1 ∥ · · · ∥ cd−1 // odd positions
rijR := c2 ∥ · · · ∥ cd // even positions

r⃗ =
[
r00L r00R r01L r01R r10L r10R r11L r11R

]⊤
if leak = ODD:
R := R⊕Rp(ODD)

return R, r⃗

Encode((∆,W, π), x):
for k = 1 to inputs:
Ek := Wk ⊕ (xk ⊕ πk)∆

return E

DecodeR(r⃗, leak, i, j):[
c1 ∥ · · · ∥ cd−1
c2 ∥ · · · ∥ cd

]
:= r⃗

Rij :=
⊕

k ck Sk(leak)
if leak = ODD:
Rij := Rij ⊕ (Rp(ODD))ij

return Rij

Decode((Φ, D), E):
(inputs, outputs, in, leak) := Φ
y := empty list
for k ∈ outputs:

if ∃j.Dj
k = H ′(Ek, k):

append j to y
else: abort

return y

Figure 2.5: Our garbling scheme (continued in Fig. 2.6).
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Garble(1λ, f):
(inputs, outputs, in, leak, eval) := f
H ← H

∆←
[
1 ∥ F2λ/2−1

F2λ/2

]
for k = 1 to inputs:

Wk ←
[
0 ∥ F2λ/2−1

F2λ/2

]
πk ← {0, 1}

for k = inputs + 1 to |f |:
A0, B0 := Win1(k),Win2(k)
πA, πB := πin1(k), πin2(k)
if leak(k) = XOR:
Wk := A0 ⊕B0

πk := πA ⊕ πB
continue

g := eval(k)
t :=

[
g(πA, πB) g(πA, 1− πB) g(1− πA, πB) g(1− πA, 1− πB)

]⊤
R, r⃗ := SampleR(t, leak(k))

z⃗k

∥∥∥ [ C
G⃗k

]
:= V −1

r⃗
∥∥∥ (R⊕ [0 0 t

])A0

B0

∆



⊕ V −1M



H(A0, 3k − 3)
H(A0 ⊕∆, 3k − 3)

H(B0, 3k − 2)
H(B0 ⊕∆, 3k − 2)
H(A0 ⊕B0, 3k − 1)

H(A0 ⊕B0 ⊕∆, 3k − 1)


πk := lsb(C)
Wk := C ⊕ πk∆

for k ∈ outputs, j ∈ {0, 1}:
Dj

k := H ′(Wk ⊕ (j ⊕ πk)∆, k)

return F = (Φ(f), H, G⃗, z⃗), e = (∆,W, π), d = (Φ(f), D)

Figure 2.6: Our garbling scheme (continued from Fig. 2.5 and in Fig. 2.7). V −1 is a left
inverse of V .
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Eval(F = (Φ, H, G⃗, z⃗), E):
(inputs, outputs, in, leak) := Φ
for k = inputs + 1 to |Φ|:
A,B := Ein1(k), Ein2(k)
i, j := lsb(A), lsb(B)
if leak(k) = XOR:
Ek := A⊕B

else

r⃗ ∥Xij := Vij

(
z⃗k

∥∥∥ [ 0

G⃗k

])
⊕
[
1 0 1
0 1 1

] H(A, 3k − 3)
H(B, 3k − 2)

H(A⊕B, 3k − 1)


Rij := DecodeR(r⃗, leak, i, j)

Ek := Xij ⊕Rij

[
A
B

]
return E

Figure 2.7: Our garbling scheme (continued from Fig. 2.6).

• EVEN: even-parity gate

• ODD: odd-parity gate

• XOR: free XOR gate

• NONE: no leakage (gate-hiding)

Because we need different control matrices depending on what kind of gate is being
garbled, we use the notation R(L, t), for L ∈ {EVEN,ODD,NONE} to denote the appropriate
distribution over control matrices. For EVEN/ODD gates, the distribution is as in Fig. 2.3
(with Rp added in the case of ODD), and for NONE the distribution is as in Fig. 2.4.

Our garbling scheme is shown in Figures 2.5 and 2.6. The garbler associates the kth wire
in the circuit with a wire label Wk (and its opposite label Wk ⊕∆) and a point-and-permute
bit πk. Wk is the label with color bit lsb(Wk) = 0 (visible to the evaluator). The label
Wk ⊕ πk∆ is the wire label representing false on that wire. Equivalently, Wk is the wire
label representing logical value πk.

For each non-free gate, the garbler first samples a control matrix R and encodes its
marginal views (i.e., expresses each view in terms of the basis {Sj}j). We have factored
out this sampling procedure into a helper function SampleR, along with a corresponding
decoding function DecodeR used by the evaluator to reconstruct its marginal view of the
control matrix. One thing to note about SampleR is that in the case of a ODD gate, the
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control matrices include the term Rp, but Rp is not in the subspace spanned by the basis
{Sj}j . The compressed representation of each marginal view excludes the contribution of Rp,
but in these cases it is publicly known that the evaluator should compensate by manually
adding Rp.

For each gate k, we have a master evaluation equation in the style of Eq. (2.8). This
equation expresses constraints that must be true about that gate, but the garbler is interested
in computing garbled gate ciphertexts G⃗k, control bit ciphertexts z⃗k, and output wire label
that satisfy the constraints. As previously discussed, we can solve for these values by
multipying both sides by V −1, a left inverse of V . One possible choice of V −1 is given below:

V −1 =


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 0 1 0

 (2.9)

The queries to hash function H include tweaks based on the gate ID, for domain
separation. Finally, for each output wire, the garbler computes hashes of the wire labels,
which will be used in Decode to authenticate labels and determine their logical value
(true or false). These hashes need λ bits for authenticity, so they are computed using
another hash function H ′(E, k) with output length λ instead λ+d

2 . It is simplest to set
H ′(E, k) = msbλ

2
(H(E, 3|f |+ 2k)) ∥msbλ

2
(H(E, 3|f |+ 2k + 1)), which puts together λ bits

from two evaluations of H, while avoiding any overlaps in tweaks.
The evaluator follows a similar process. Starting with the input wire labels E, it evaluates

the garbled circuit one gate at a time. The invariant is that on wire k, the evaluator will
hold the “active” wire label Ek = Wk ⊕ (xk ⊕ πk)∆, where xk is the logical value on that
wire, for the given circuit input. If A,B are the active wire labels on the input wires of this
gate, then the evaluator computes terms of the form H(A), H(B), H(A⊕B) and evaluates
the gate according to Eq. (2.8). The evaluator only knows enough for two rows of Eq. (2.8),
depending on the color bits i = lsb(A), j = lsb(B), so we let Vij be the corresponding pair
of rows from V . It only evaluates the gate partially at first, in order to find the encoded
control bits so that it can decode them with DecodeR and use them to finally compute the
output wire label.
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2.5.4 Security Proof

Theorem 2.5.1. Let H be a family of hash functions, with output length (λ+ d)/2 bits, that
is RTCCR for L = {Lab(∆L∥∆R) = 0d/2∥a∆L⊕ b∆R | a, b,∈ {0, 1}}. Then our construction
(Figures 2.5 and 2.6) is a secure garbling scheme.

Proof. We need to prove four properties of the construction.

Correctness: We need to prove an invariant: Ek = Wk ⊕ (xk ⊕ πk)∆ for all k, if xk is the
plaintext value on that wire. Encode chooses the inputs in this way, so at least it’s true for
k ≤ inputs, and it is trivially maintained for free-XOR gates. For any v ∈ colspace(V ) = G,
we have V V −1v = v, as there exists some u such that v = V u and V V −1V u = V u = v

because V −1 is a left inverse of V . In Section 2.5.1 we showed that colspace(M) = G,
colspace(R ⊕

[
0 0 t

]
) ⊆ G, and r⃗ ∈ G, so after multiplying both sides of garbler’s

equation by V on the left, the V V −1s will cancel, and taking a two-row piece of this equation
gives the evaluator’s equation. In this equation, Xij is the two rows of

X⃗ = C ⊕
(
R⊕

[
0 0 t

])A0

B0

∆

 , (2.10)

corresponding to the evaluation case i, j. The structure of R (see Eq. (2.5)) implies that the
evaluator’s row pair of R[A⊤0 B⊤0 ∆⊤]⊤ will be Rij [A

⊤ B⊤]⊤. Therefore

Ek = Xij ⊕R

[
A

B

]
= C ⊕ tij∆ = Wk ⊕ (eval(k)(πA ⊕ i, πB ⊕ j)⊕ πk)∆,

which maintains this invariant because

i = lsb(Ein1(k)) = lsb
(
Win1(k) ⊕ (xin1(k) ⊕ πin1(k))∆

)
= xin1(k) ⊕ πin1(k),

and similarly for j. Finally, Decode will correctly find that Dxk
k = H ′

(
Wk⊕ (xk⊕πk)∆, k

)
=

H ′(Ek, k), assuming that Dxk
k ̸= D1−xk

k , which has only negligible probability of failing.
Therefore it gives the correct result.

Privacy: We need to prove that generating (Φ, G⃗, z⃗), E, (Φ, D) with Garble and Encode is
indistinguishable from the output of Spriv. We give a sequence of intermediate hybrids, going
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Spriv(1
λ,Φ, x):

(inputs, outputs, in, leak) := Φ

(F,E)← Sobliv(1
λ,Φ)

E′ := Eval(F,E)
for k ∈ outputs:

D
xk
k := H ′(E′

k, k)

D
1−xk
k ← F2λ

return F,E, (Φ, D)

Sobliv(1
λ,Φ):

(inputs, outputs, in, leak) := Φ
H ← H
for k = 1 to inputs:

Ek ← F2
2λ/2

for k = inputs + 1 to |Φ|:
if leak(k) = XOR: continue
G⃗k ← F3

2λ/2

z⃗k ← F5

2d(leak(k)) /2

return (Φ, H, G⃗, z⃗), E

Hybrid1(1λ, f, x):
(inputs, outputs, in, leak, eval) := f
H ← H

∆←
[
1 ∥ F2λ/2−1

F2λ/2

]
for k = 1 to inputs:

Ek ← F2
2λ/2

for k = inputs + 1 to |f |:
A,B := Ein1(k), Ein2(k)

i, j := lsb(A), lsb(B)
xA, xB := xin1(k), xin2(k)

if leak(k) = XOR:
Ek := A⊕B
xk := xA ⊕ xB

continue
g := eval(k)
xk := g(xA, xB)

t :=


g(xA ⊕ i, xB ⊕ j)

g(xA ⊕ i, xB ⊕ j ⊕ 1)
g(xA ⊕ i⊕ 1, xB ⊕ j)

g(xA ⊕ i⊕ 1, xB ⊕ j ⊕ 1)


R, r⃗ := SampleR(t, leak(k))

R′ := R


1 0 0 0 i 0
0 1 0 0 0 i
0 0 1 0 j 0
0 0 0 1 0 j
0 0 0 0 1 0
0 0 0 0 0 1


H⃗0 :=

 H(A, 3k − 3)
H(B, 3k − 2)

H(A⊕B, 3k − 1)


H⃗∆ :=

 H(A⊕∆, 3k − 3)
H(B ⊕∆, 3k − 2)

H(A⊕B ⊕∆, 3k − 1)


(z⃗k)bot

∥∥∥ G⃗k := V −1
gate

r⃗
∥∥∥ (

R′ ⊕
[
0 0 t

])AB
∆


⊕ V −1

gate(M0H⃗0 ⊕M∆H⃗∆)

Ek := Vij

[
0

G⃗k

]
⊕

[
1 0 1
0 1 1

]
msbλ

2
(H⃗0)⊕Rij

[
A
B

]
(z⃗k)top := Vij

[
0

(z⃗k)bot

]
⊕

[
1 0 1
0 1 1

]
lsb d

2
(H⃗0)⊕ r⃗ij

for k ∈ outputs, j ∈ {0, 1}:
Dj

k := H ′(Ek ⊕ (j ⊕ xk)∆, k)

return (Φ(f), G⃗, z⃗), E, (Φ(f), D)

Figure 2.8: Left: simulators for privacy and obliviousness. Right: a hybrid for privacy.
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from the real garbler to the simulator.

Hybrid 1: This hybrid switches from the garbler’s perspective to the evaluator’s perspective
when garbling the circuit. Instead of keeping track of the “zero” wire label Wk for every
gate, we keep track of the “active” wire label Ek, and rewrite the garbling procedure in terms
of the “active” labels. This basically involves a change of variable names throughout the
garbling algorithm. The changes are extensive, and given in detail in Fig. 2.8:

• Replace point-and-permute bits πk with the equivalent expression xk ⊕ lsb(Ek).

• Write the control matrix part of the garbling equation in terms of active wire labels
A = Ein1(k) and B = Ein2(k) instead of A0 and B0.

replace R×

A0

B0

∆

 with equivalent R′ ×

AB
∆

 .

where a change of basis has been applied to R, that expresses A0 as the appropriate
linear combination of A and ∆, and expresses B0 in terms of B and ∆.

• Partition H⃗ into two pieces:

H⃗0 = [H(A) H(B) H(A⊕B)]⊤

H⃗∆ = [H(A⊕∆) H(B ⊕∆) H(A⊕B ⊕∆)]⊤

where again A and B are the active wire labels. Similarly partition the matrix M into
M0 and M∆, and replace M × H⃗ with (M0H⃗0 ⊕M∆H⃗∆).

• Note that the matrix V −1 has 5 rows, where the first 2 correspond to slices of the
output label and the last 3 correspond to the gate ciphertexts. Denote this division
of V −1 by V −1label and V −1gate. Instead of multiplying on the left by V −1 to solve for the
output label and gate ciphertexts, we now multiply on the left by V −1gate to solve for
only the gate ciphertexts. We then evaluate those gate ciphertexts with A and B to
learn the (active) output label Ek. This different approach has the same result by the
correctness of the scheme.

We can similarly partition the control bit ciphertexts z⃗k = [(z⃗k)top (z⃗k)bot], use V −1gate to
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compute (z⃗k)bot, and then use the evaluator’s computation to solve for (z⃗k)top. Solving
for (z⃗k)top is simplified by the first two columns of Vij being the identity matrix. In
this case, we solve for the missing positions using knowledge of the compressed control
bits rij .

All of the changes are simple variable substitutions or basis changes in the linear algebra, so
this hybrid is distributed identically to the real garbling.

Hybrid 2: In this hybrid, we apply the RTCCR property of H to all oracle queries of the
form H(· ⊕∆). We must show that ∆ is used in a way that can be achieved by calling the
oracle from the RTCCR security game.

We focus on the term

V −1gateMH⃗ = V −1gate(M0H⃗0 ⊕M∆H⃗∆)

First, consider the expression V −1×M , and recall that M is written in terms of the zero-labels
A0, B0. Using the V −1 given in Eq. (2.9), we can compute:

V −1M =


1 0 0 0 1 0

0 0 1 0 1 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 (2.11)

Thus V −1gate ×M will consist of the bottom three rows of Eq. (2.11).
Recall that the columns of M correspond to oracle queries H(A0), H(A0 ⊕∆), H(B0),

H(B0⊕∆), H(A⊕B), H(A⊕B ⊕∆), in that order. In the current hybrid M is partitioned
into M0 (corresponding to H-queries on active labels) and M∆ (corresponding to the other
queries). In other words, M∆ will consist of exactly one of rows {1, 2}, exactly one of rows
{3, 4}, and exactly one of rows {5, 6} from M . In all cases, the result of V −1gateM∆ (i.e., the
bottom 3 rows of V −1M∆) is the 3× 3 identity matrix!
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This means we can rewrite the hybrid in the following way:

(z⃗k)bot

∥∥∥ G⃗k := V −1gate

r⃗
∥∥∥ (R′ ⊕ [0 0 t

])AB
∆


⊕ V −1gate(M0H⃗0 ⊕M∆H⃗∆)

= H⃗∆ ⊕ [linear combinations of ∆]⊕ · · ·

Since all the H-queries in H⃗∆ include a ∆ term, we can compute this expression with 3
suitable calls to the RTCCR oracle.8 Finally, D1−xk

k = H ′(Ek ⊕ ∆, k) also uses ∆, and
will become two calls to the RTCCR oracle. These transformations successfully moves all
references to ∆ into the RTCCR oracle.

Applying RTCCR security, it has negligible effect to replace the results of these H-queries
with uniformly random values. This has the effect of making the entire expression uniform,
i.e.:

(z⃗k)bot

∥∥∥ G⃗k ← F3
2(λ+d)/2

Also, D1−xk
k is now sampled uniformly at random in F2λ .

Hybrid 3: After making the previous change, the only place that R is used is when we use
the marginal views Rij and r⃗ij to solve for the output label and for the missing pieces of
the control bit ciphertexts. In Section 2.5.1 we specifically chose R so that this marginal
views is uniform for all t and all i, j. Therefore instead of doing R, r⃗ ← SampleR(t, leak(k)),
we can simply choose uniform r⃗ij and use DecodeR to reconstruct Rij . The change has no
effect on the overall view of the adversary.

Note that after making this change, the control-bit ciphertexts (z⃗k)top become uniform
since r⃗ij acts as a one-time pad.

Hybrid 4: As a result of the previous change, the hybrid no longer uses t. Additionally, t
was the only place where the plaintext values xk were used, other than in the computation of
D. But D only uses plaintext values for the circuit’s output wires. In other words, the entire
hybrid can be computed knowing only the circuit output f(x). Additionally, all garbled
gate ciphertexts and control bit ciphertexts are chosen uniformly, and the active wire labels
on output wires are determined by the scheme’s evaluation procedure. Hence, the hybrid
exactly matches what happens in Spriv.

8Note also that the calls to H have globally distinct tweaks.



38

Obliviousness: Notice that Spriv calls Sobliv to generate (F,E), then samples some more
random bits for decoding and returns it all. Therefore, any adversary for obliviousness could
be turned into one for privacy by only looking at (F,E) and ignoring the rest.

Authenticity: The first two steps of the authenticity distribution are exactly the same as
the real privacy distribution, so we can swap them for the simulated distribution Spriv in a
hybrid. Then to break authenticity the adversary must cause Decode to choose j = 1− xk

for at least one output k, as otherwise it will either produce the correct answer or abort. But
D1−xk

k is fresh uniform randomness, so the probability that D1−xk
k = H ′(Ek, k) is 2−λ.

2.5.5 Discussion

Concrete costs. The garbler makes 6 calls to H per non-free gate, while the evaluator
makes 3 calls to H per non-free gate.

Each non-free garbled gate consists of gate ciphertexts G⃗ and encrypted control bits
z⃗. There are 3 gate ciphertexts, each being λ/2 bits long. The encrypted control bits are
a vector of length 5, where each component of the vector has length d/2 (where d is the
dimension of the control matrix subspace). For the standard (parity-leaking) instantiation of
our scheme, d = 2 and we get that the total size of a garbled gate is 1.5λ+ 5 bits. For the
gate-hiding instantiation, d = 4 and we get a size of 1.5λ+ 10 bits.

Comparison to half-gates. We assume that calls to H are the computational bottleneck,
in any implementation of both our scheme and in half-gates [ZRE15]. The following analysis
therefore ignores the cost of xor’ing wire labels and bit-fiddling related to color bits and
control bits.

In the time it takes to call H 12 times, half-gates generates 3 gates and sends 6λ bits (4
calls to H and 2λ bits per gate), while our scheme generates 2 gates and sends 3λ bits (6
calls to H and 1.5λ bits per gate). Thus, a CPU-bound implementation of our scheme will
produce garbled output at half the rate of half-gates. We evaluated the optimized half-gates
garbling algorithm from the ABY3 library [MR18], and found it capable of generating garbled
output at a rate of ∼850 Mbyte/s on single core of a i7-7500U laptop processor running at
3.5GHz. Thus, we conservatively estimate that a comparable implementation of our scheme
could generate garbled output at ∼400 Mbyte/s = 3.2 Gbit/s. This rate would still leave
our scheme network-bound in most situations and applications of garbled circuits. When
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both half-gates and our scheme are network bound, our scheme is expected to take ∼25%
less time by virtue of reducing communication by 25%.

2.6 Optimizations

2.6.1 Optimizing Control Bit Encryptions

In our scheme the control bit encryptions z⃗ is a vector of length 5, where the components in
that vector are each a single bit (in the case of parity-leaking gates) or 2 bits (in the case of
parity-hiding gates). These ciphertexts therefore contribute 5 or 10 bits to the size of each
garbled gate.

We remark that it is possible to use ideas of garbled row reduction [NPS99; PSS+09] to
reduce z⃗ to a length-3 vector. This will result in these ciphertexts contributing 3 or 6 bits to
the garbled gate. Such an optimization may be convenient in parity-hiding case, where the
change from 10 to 6 bits allows these control bit ciphertexts to fit in a single byte.

Recall that in the security proof, we partition the control bit ciphertexts z⃗ into (z⃗)top (2
components) and (z⃗)bot (3 components). Our idea to reduce their size is to simply fix (z⃗)top

to zeroes, so that these components do not need to be explicitly included in the garbled gate.
The evaluator can act exactly as before, taking the missing values from z⃗ to be zeroes. The
garbler must sample the control matrix subject to it causing (z⃗)top = 0.

A drawback to this optimization is that it significantly complicates the security proof
(and hence why we only sketch it here). When we apply the security of RTCCR in the
security proof, the hybrid acts as follows:

1. It uses the d/2 least significant bits of the H-outputs to determine how the control
bits are going to be “masked”.

2. Based on these masks, it chooses a consistent control matrix R that causes the first
two components of z⃗ to be 0.

3. The choice of R determines which linear combinations of wire label slices (including
slices of ∆) are applied.

So the reduction to RTCCR security must first read the low bits of several H(· ⊕∆) queries
before it decides which linear combination of ∆ should be XOR’ed with the remaining output
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of H. Of course the RTCCR oracle requires the choice of linear combination to be provided
when H is called. It is indeed possible to formally account for this, but only by modeling
the two parts of H’s output (for masking wire label slices and for masking control bits) as
separate hash functions for the purposes of the security proof.

2.6.2 Optimizing Computation

Our construction requires a RTCCR function H with output length (λ+ d)/2. We propose
an efficient instantiation of H which naturally results in λ-bit output, which is then truncated
to (λ+ d)/2. The hash produces nearly twice as many bits as needed, raising the question
of whether we are “wasting” these extra bits. In fact, if we reduce the security parameter
slightly so that H is derived from a (λ + d)-bit primitive, we can use these extra bits to
reduce the computation cost.

Suppose H ′ is a [RT]CCR with (λ+ d) bits of output. Then define

H(X, τ) =

first half of H ′(X, τ2 ) τ even

second half of H ′(X, τ−12 ) τ odd

Clearly H is also a [RT]CCR with (λ+ d)/2 bits of output. How can we use this H to reduce
the total number of calls to the underlying H ′?

When a wire with labels (A,A ⊕ ∆) is used as input to an AND gate, our scheme
makes calls of the form H(A, j), H(A ⊕ ∆, j) where j is the ID of that AND gate. Let
us slightly change how the tweaks are used. Suppose this wire with label (A,A ⊕ ∆) is
used as input in n different AND gates. Then those gates should make calls of the form
H(A, 0 ∥ i), H(A, 1 ∥ i), . . . ,H(A,n− 1 ∥ i), where i is now the index of the wire whose labels
are (A,A⊕∆). When H is defined as above, these queries can be computed with only ⌈n/2⌉
queries to H ′.

Note that both the garbler and evaluator can take advantage of this optimization, with the
garbler always requiring exactly twice as many calls to H ′ (if in some scenario the evaluator
needs H ′(X) then the garbler will need H ′(X) and H ′(X⊕∆)). Our AND gates require calls
to H of the form H(A), H(B), H(A⊕B), and so far we have discussed optimizing only the
H(A) and H(B) queries. Similar logic can be applied to the queries of the form H(A⊕B);
for example, if a circuit contains gates a ∧ b and (a⊕ b) ∧ c, then both of those AND gates
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circuit baseline optimized improvement half-gates [ZRE15]
64-bit adder 6.00 6.00 0% 4.00
64-bit division 6.00 5.75 4.1% 4.00
64-bit multiplication 6.00 4.99 16.8% 4.00
AES-128 6.00 4.31 28.2% 4.00
SHA-256 6.00 5.77 3.8% 4.00
Keccak f 6.00 4.00 33.3% 4.00

Figure 2.9: Number of calls to λ-bit H ′ RTCCR function (per AND gate) to garble each
circuit, with and without the optimization of Section 2.6.2. Evaluating the garbled circuit
costs exactly half this number of calls to H ′.

will require H(A⊕B) terms that can be optimized in this way.
We explored the effect of this optimization for a selection of circuits.9 The results are

shown in Fig. 2.9. The improvement ranges from 0% to 33.3%. As a reference, our baseline
construction requires 6 calls to ((λ + d)/2-bit output) H to garble an AND gate, while
half-gates requires 4 calls (to a λ-bit function). Interestingly, in the Keccak f -function every
wire used as input to an even number of AND gates, so that our optimized scheme has
the same computation cost as half-gates (4 calls to H ′ per AND gate). In principle, this
optimization can result in as few as 3 calls to H ′ per AND gate,10 but typical circuits do not
appear to be nearly so favorable.

2.7 The Linear Garbling Lower Bound

In [ZRE15], the authors present a lower bound for garbled AND gates in a model that
they call linear garbling. The linear garbling model considers schemes with the following
properties:

• Wire labels have an associated color bit which must be {0, 1}.

• To evaluate the garbled gate, the evaluator makes a sequence of calls to a random oracle
(that depend only on the input wire labels), and then outputs some linear combination
of input labels, gate ciphertexts, and random oracle outputs. The linear combination
must depend only on the color bits of the input labels.

9Circuits were obtained from https://homes.esat.kuleuven.be/~nsmart/MPC/
10This can happen, e.g., when for every a ∧ b gate there is a corresponding a ∨ b = a ∧ b gate.

https://homes.esat.kuleuven.be/~nsmart/MPC/
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The bound of [ZRE15] considers only linear combinations over the field F2λ , and it is unclear
to what extent the results generalize to other fields.

Several works have bypassed this lower bound, and we summarize them below. All of
these works show how to garble an AND gate for λ + O(1) bits, but only a single AND
gate in isolation. These constructions all require the input wire labels to satisfy a certain
structure, but do not guarantee that the output labels also satisfy that structure.

• Kempka, Kikuchi, and Suzuki [KKS16] and Wang & Malluhi [WM17] both use a
technique of randomizing the control bits. The evaluator decrypts a constant-size
ciphertext to determine which linear combination to apply. This approach is outside of
the linear garbling model, which requires that the linear combination depend only on
the color bits. These works also add wire labels in Z2λ rather than XOR them (as in
F2λ). Apart from these similiarities, the two approaches are quite different.

• Ball, Malkin, and Rosulek [BMR16] deviate from the linear garbling model by letting
each wire label have a color “trit” from Z3 instead of a color bit from Z2. There is no
further “indirection” of the evaluator’s linear combination — it depends only on the
colors of the input labels. They also perform some linear combinations on wire labels
over a field of characteristic 3.

As described earlier, we bypass the lower bound by adopting the control-bit randomization
technique of [KKS16] but also introducing the wire-label-slicing technique.

2.8 Open Problems

We conclude by listing several open problems suggested by our work.

Optimality. Is 1.5λ bits optimal for garbled AND gates in a more inclusive model than the
one in [ZRE15]? A natural model that excludes “heavy machinery” like fully homomorphic
encryption is Minicrypt, in which all parties are computationally unbounded but have
bounded access to a random oracle. Conversely, can one do better — say, 4λ/3 bits per AND
gate? Does it help to sacrifice compatibility with free-XOR? In our construction, free-XOR
seems crucial.

Computation Cost. In Section 2.6.2 we described how to reduce the number of queries to
an underlying λ-bit primitive, with an optimization that depends on topology of the circuit.
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Is there a way to reduce the computation cost of our scheme (measured in number of calls
to, say, a λ-bit ideal permutation), for all circuits?

In the best case, we can garble a circuit for only 3 (amortized) calls per AND gate, whereas
all prior schemes require 4. Setting aside garbled circuit size and free-XOR compatibility,
is there any scheme that can garble arbitrary circuits for less than 4 (amortized) calls to a
λ-bit primitive per AND gate?

Hardness Assumption. Free-XOR garbling requires some kind of circular correlation
robust assumption (see [CKK+12] for a formal statement). The state-of-the-art garbling
scheme based on the minimal assumption of PRF is due to Gueron et al. [GLN+15], where
AND gates cost 2λ and XOR gates cost λ bits. Can our new techniques be used to improve
on garbling from the PRF assumption, or alternatively can the optimality of [GLN+15] be
proven? Again, our construction seems to rely heavily on the free-XOR structure of wire
labels, which (apparently) makes circular correlation robustness necessary.

Privacy-Free Garbling. Frederiksen et al. [FNO15] introduced privacy-free garbled
circuits, in which only the authenticity property is required of the garbling scheme. The
state-of-the-art privacy-free scheme is due to [ZRE15], where XOR gates are free and AND
gates cost λ bits. Can our new techniques lead to a privacy-free garbling scheme with less
than λ bits per AND gate (with or without free-XOR)?

Simpler Description. Is there a way to describe our construction as the clean composition
of simpler components, similar to how the half-gates construction is described in terms of
simpler “half gate” objects? The challenge in our scheme is the way in which left-slices and
right-slices of the wire labels are used together.
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Chapter 3: POPF OT

Ian McQuoid, Mike Rosulek, and Lawrence Roy. Batching base oblivious
transfers. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT
2021, pages 281–310, Cham. Springer International Publishing, 2021. isbn:
978-3-030-92078-4. url: https://eprint.iacr.org/2021/682

3.1 Introduction

Oblivious transfer (OT) is a fundamental primitive for cryptographic protocols. It is
well-known that OT cannot be constructed in a black-box way from symmetric-key primi-
tives [IR90]. Nevertheless, thanks to an idea called OT extension [Bea96], it is possible to
generate a large number of OTs from symmetric-key primitives and a few “base OTs”. With
OT extension, the cost of the base OTs can be rapidly amortized over numerous extended
OT instances, because the marginal cost of each instance involves only cheap symmetric-key
operations. Modern OT extension protocols, such as SoftSpokenOT (Chapter 4), can generate
millions of OTs per second.

OT extension protocols require λ (e.g., 128) base OTs, and yet most base-OT protocols in
the literature are described in terms of a single OT instance. Obviously any single-instance
OT protocol can be invoked λ times to produce base OTs; however, this overlooks the
possibility of optimizations for the batch setting. In this work we provide a full treatment of
the batch setting for recent leading OT protocols.

3.1.1 Overview of Our Results

Naïve batching is insecure. We describe a natural way to optimize certain 2-round OT
protocols for the batch setting. If the OT sender is first to speak, or at least the sender’s
message does not depend on what the receiver says, it is natural to reuse their protocol
message for all OT instances in the batch. We call this method naïve batching.

We show that naïve batching is not guaranteed to be secure. Not only does naïve batching
fail to achieve an appropriate security notion, but it is also demonstrably unsuitable as the

https://eprint.iacr.org/2021/682
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Sender Receiver
a← KA.R (input c ∈ {0, 1})
A = KA.msg1(a) A

b← KA.R
B = KA.msg2(b, A)

B̃ = Π(B)⊕ c

M0 := KA.key1(a,Π−1(B̃)) Mc = KA.key2(b, A)
M1 := KA.key1(a,Π−1(B̃ ⊕ 1))

Figure 3.1: Our conceptually simple 1-of-2 random OT protocol, from instantiating [MRR20]
with a new “programmable-once public function.” Π± is an ideal permutation and KA is a
2-message key agreement whose “B-messages” are pseudorandom bit strings.

base OTs for certain OT extension protocols. Specifically, we show a serious attack on the
1-out-of-N OT extension protocol of Orrù, Orsini, and Scholl [OOS17], when its base OTs are
generated with naïve batching. Unfortunately, we find improper batching (including naïve
batching) implemented in several protocol libraries [Rin; CMR; Kel20; Sma] and appearing
in several papers [CO15; HL17; CSW20].

Proper batching of base OTs. We then give a complete treatment of how to correctly
optimize leading OT protocols for the batch setting. Fortunately, it is simple and cheap to
fix naïve batching, although the complete security analysis requires care. We show how to
correctly optimize the recent OT protocol of McQuoid, Rosulek, and Roy [MRR20] (hereafter,
MRR) for the batch setting. As we show, the Masny-Rindal protocol [MR19] is a special
case of the MRR protocol, so our analysis applies to that protocol as well. A comparison of
our batched-OT/base-OT protocol to existing work is shown in Table 3.1.

Other improvements. We present several additional improvements to the OT protocol
paradigm of McQuoid-Rosulek-Roy (MRR). The MRR protocol can provide 1-out-of-N
random-OT, for essentially any N . Modern OT extension protocols require the base OTs
to provide only 1-out-of-2 OT. Our optimizations to the MRR approach center around the
special case of 1-out-of-2 OT1 and specific properties of the batch setting.

• The MRR protocol revolves around an object called a programmable-once public
function (POPF). A POPF with domain [N ] leads to a protocol for 1-out-of-N OT.

1Most of our improvements also apply to 1-out-of-N OT, for polynomial N .
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In introducing the concept of a POPF, MRR describe a POPF with domain {0, 1}∗,
which is useful in some applications but overkill for the special case of 1-out-of-2 OT.

We show several improved POPF constructions for small domains (such as N = 2).
One particularly interesting and new POPF is in the ideal random permutation model2

and is inspired by the Even-Mansour block cipher construction [EM93]. When we
instantiate MRR with this new POPF, we obtain an endemic OT protocol that is
efficient, incredibly simple to describe, and may have pedagogical value as well (Fig. 3.1).

• The MRR protocol constructs OT from a POPF and a key agreement (KA) protocol.
These two components must be compatible, and in [MRR20] it was shown how to
make elliptic-curve Diffie-Hellman KA compatible with POPFs, by using hash-to-curve
operations or Elligator [BHK+13] encoding steps. In this work, we present an alternative
approach that avoids using either of these somewhat costly operations, based on a trick
due to Möller [Möl04]. Möller-DHKA also avoids curve point addition, allowing us to
use Montgomery ladders to multiply, which are more efficient. Adopting the Möller
technique requires doubling the length of the sender’s protocol message; however, in the
batch setting it is exactly this sender’s message that is reused across all OT instances in
the batch, so the effect of doubling its size is minimal. In our performance benchmark,
we found that the Möller technique affords up to a 36% increase in efficiency when
batching OTs. This allows for UC secure constructions with comparable runtime to
those with standalone security. See Table 3.2.

Finally, we show how our batch OT protocol can be used as the base OTs in 2-round
OT extension.

3.2 Preliminaries

Endemic OT. We use the security definitions for universally composable OT suggested by
[MR19] (ideal functionality given in Fig. 3.2), which are a convenient middle-ground between
random OT and chosen-message OT. An OT protocol results in outputs r0, r1 for the sender
and rc for the receiver (who has choice bit c). In endemic OT, a corrupt party may choose
their own OT outputs, and all other OT outputs are chosen uniformly by the functionality.

2The ideal random permutation model is like the random oracle model, except that all parties have access
to a random permutation on {0, 1}2λ, and its inverse!
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Scheme Assumption Setup Flows Exp (Send/Receive) Com (Send/Receive)

SimplestOT [CO15] Gap-CDH PRO 2 1f (m+ 1)v / mf mv 1G / mG
BlazingOT [CSW20] CDH ORO 3 1f (m+ 1)v / mf mv mλ+ 1G / 2λ+mG
EndemicOT [MR19] DDH PRO 2 2mf 2mv / mf mv 2mG / 2mG
EndemicOT [MR19] iDDH PRO 1 mf 2mv / mf mv mG / 2mG
Ours (MR) ODH PRO 1 2fM 2mvM / mfM mvM 2G / 2mG
Ours (EKE) ODH IC 1 2fM 2mvM / mfM mvM 2G / mG
Ours (Feistel) ODH PRO 1 2fM 2mvM / mfM mvM 2G / mG

Table 3.1: Comparison of m-instance random 1-of-2 OT protocols. “Exp” denotes exponenti-
ations (f = fixed-base, v = variable-base, fM = fixed-base Montgomery, vM = variable-base
Montgomery). “Com” denotes communication (G = one group element). PRO = pro-
grammable random oracle; ORO = observable random oracle; IC = ideal cipher.

Hence, a corrupt sender can choose both r0 and r1. A corrupt receiver can choose rc and the
functionality will ensure that r1−c is uniform. As shown in [MR19], OT extension protocols
are secure if the base OTs satisfy this notion of endemic OT.

3.3 Problems With Naïve Batching

3.3.1 Naïve Batching

Consider any 2-round protocol for (endemic) OT, with the following syntax:

Sender Receiver (input c ∈ {0, 1})
sS ← {0, 1}λ

MS = OT.msgS(sS)
MS

sR ← {0, 1}λ

MR = OT.msgR(sR,MS , c)

MR

(r0, r1) = OT.outS(sS ,MR) rc = OT.outR(sR,MS , c)

Where the four functions OT.{msg, out}{S,R} are abstracted from the raw OT protocol. In
such a protocol, the sender’s message MS is clearly independent of the receiver’s influence.
In many protocols MS is additionally a message from a KA protocol, and it is well-known
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Functionality FbatchEOT
The functionality FbatchEOT is parameterized by the length of the OT strings ℓ and the
number m of OTs in the batch. It interacts with two parties, a sender S and a receiver
R via the following queries:

On input (ready, (r̃1,0, r̃1,1, . . . , r̃m,0, r̃m,1)) from S, with r̃i,c ∈ {0, 1}ℓ:

• If S is corrupt, and there has been no previous ready command from S, then
internally record ri,c = r̃i,c for all i ∈ [m], c ∈ {0, 1}. Otherwise do nothing.

On input (ready, (c1, . . . cm) ∈ {0, 1}m, (r̃1, . . . , r̃m)) from R, with r̃i ∈ {0, 1}ℓ:

• Do nothing if there has been a previous ready query from R.

• Internally record (c1, . . . cm)

• If R is corrupt, then internally record ri,ci = r̃i for each i ∈ [m].

After receiving ready queries from both S and R:

• For all i ∈ [m], c ∈ {0, 1}, if ri,c is not already defined, then sample ri,c ← {0, 1}ℓ.

• Output (r1,c1 , . . . , rm,cm) to R and ((r1,0, r1,1), . . . , (rm,0, rm,1)) to S.

Figure 3.2: Ideal functionality for a size m batch of endemic 1-out-of-2 oblivious transfers,
FbatchEOT. Adapted from the endemic OT functionality of [MR19].

that a KA message can be reused for many KA instances, in certain circumstances. These
observations suggest reusing the first OT protocol message in the following way, when
generating a batch of m OTs:

Sender Receiver (inputs {ci}i∈[m])
sS ← {0, 1}λ

MS = OT.msgS(sS)
MS

for i ∈ [m]:
sR,i ← {0, 1}λ

MR,i = OT.msgR(sR,i,MS , ci)

MR,1, . . . ,MR,m

for i ∈ [m]: for i ∈ [m]:
(ri,0, ri,1) = OT.outS(sS ,MR,i) ri,ci = OT.outR(sR,i,MS , ci)
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We call this protocol transformation naïve batching. All four component functions taken
from the base OT protocol will be given the same (sub)session ID because they are treated
as a single batch instance. They are reused in such a way that disallows for internal domain
separation.

Lemma 3.3.1. Naïve batching does not securely realize batch endemic OT (Fig. 3.2).

Proof. The attack is simple: a corrupt receiver simply sends MR,1 = · · · = MR,m. As a result,
the sender must compute (r1,0, r1,1) = · · · = (rm,0, rm,1). There is no way for the simulator
to influence the sender’s output in this way in the ideal model, hence this constitutes an
attack.

Why not trivially patch this attack? The attack is for the receiver to send the same
OT response for all instances. We could simply tell the sender to abort if it receives any
repeated OT responses.

However, the simple attack that we have described is only the tip of the iceberg. In all of
the 2-round OT protocols that we consider, a corrupt receiver can induce more complicated
correlations among the OT values. For example, a receiver can act honestly in the first OT
instance to learn r1,0. Then r1,1 is unknown to the receiver. But there is a more sophisticated
strategy for the receiver to force the ratio r1,1/r2,0 to be a certain value. (The details of
this strategy depend on the details of a specific base OT protocol, so we defer them to
Appendix B.1.)

Based on this kind of attack, one might wish to weaken the endemic OT functionality.
Why not allow the simulator to specify these kinds of correlations in the ideal model? Even
this will not work, because the attack is perfectly indistinguishable from honest behavior by
the receiver. Thus, there is simply no way for the simulator to distinguish this kind of an
attack (where the receiver must learn r1,1/r2,0) vs. honest behavior (where the receiver must
learn r2,0).

For these reasons, we believe there is no way to closely capture the security of naïve
batching in a UC ideal functionality.

3.3.2 Implications for OT Extension

Since the main application for batch OTs is as base OTs for OT extension, it is natural to
wonder whether the simple attack above jeopardizes the security of OT extension. It has
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been established that OT extension can be securely realized from base OTs with weakened
security. For example, [CSW20] show that certain input-dependent aborts in the base OTs
do not harm the security of OT extension.

We show that our simple attack on naïve batching indeed compromises security of some
OT extension protocols. Specifically, we consider the protocol of Orrù, Orsini, and Scholl
(OOS) [OOS17]. This OT extension protocol generates many instances of 1-out-of-2t OT,
where in each one the sender obtains r1, . . . , r2t and the receiver learns only rc, where c is an
input. It will be convenient to consider c to be an element of {0, 1}t in the natural way.

The OOS protocol is secure when the base OTs securely realize endemic batch OT; see
[MR19] for details. However, it loses security when using naïve batching to generate its base
OTs.

Lemma 3.3.2. The OOS protocol [OOS17] is demonstrably insecure when its base OTs are
instantiated via naïve batching.

Proof. The complete details of OOS can be found in [OOS17]. We sketch the relevant details
of their protocol here. Let Alice be the OOS sender (with no inputs), and Bob be the OOS
receiver (with choice value ci ∈ {0, 1}t for the ith OT instance). The protocol proceeds as
follows:

• The parties run m base OT instances, with Alice acting as receiver and Bob acting as
sender. Bob obtains base-OT outputs (k1,0, k1,1), . . . , (km,0, km,1). Alice’s inputs and
outputs are not relevant here.

• When extending to N OTs, Bob constructs two N ×m matrices K and R as follows:

– The jth column of K is PRG(kj,0)⊕ PRG(kj,1).

– The ith row of R is C(ci) where C : {0, 1}t → {0, 1}m is a suitable binary error
correcting code (the details of which are not relevant here).

Bob sends K ⊕R to Alice.

These details of OOS are enough to understand the attack. A corrupt Alice will attack the
base OTs (in the role of OT receiver as above) so that all ki,0’s are the same and all ki,1’s
are the same. As a result, every column of K is identical. In other words, every row of K is
either 0m or 1m.
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Then the ith row of Bob’s matrix K⊕R is either C(ci) or its complement. This means that
if c, c′ ∈ {0, 1}t are any two choices for Bob whose codewords are not bitwise complements of
each other, then Alice can distinguish between Bob having choice c vs c′ in each extended
OT. For some choices of C, learning C(x) up to complement uniquely reveals x. This attack
results in almost complete leakage of Bob’s private input.

What if C is a repetition code? C is a binary error-correcting code, the simplest of
which is the repetition code C : {0, 1} → {0, 1}m. This corresponds to the case of t = 1,
and hence 1-out-of-2 OT extension. Specifically, instantiating OOS with a repetition code
collapses it to the Keller-Orsini-Scholl 1-out-of-2 OT extension protocol (KOS) [KOS15], at
least from the viewpoint of a malicious KOS sender.3

In this case the only two codewords are 0m and 1m. Since these are bitwise complements
of one another, it is not clear that our attack leads to any security problems. The rows of
matrix R (encoding Bob’s private input) are masked by either 0m or 1m, depending on a bit
that is unknown to Alice. We are not sure whether a more sophisticated attack on naïvely
batched OTs can break KOS OT extension.

Punctured PRFs. More recent OT extensions, such as Silent OT [BCG+19b] and Soft-
SpokenOT (Chapter 4), do not use their base OTs directly. Instead, they use a technique
called punctured OT, which builds a set of punctured PRFs out of the base OTs. Here, naïve
batching can cause even more severe issues. The punctured PRFs are built out of a GGM
tree, with the top two nodes’ values coming from the first OT (see Fig. 4.13). Let the corrupt
base OT receiver attack the first base OT associated to each punctured PRF, by sending
the same MR each time, making the corresponding OT messages match across all of these
base OTs. Since the whole GGM tree is determined by these values, the two GGM trees will
also agree everywhere, and so the punctured PRFs will be identical. The base OT receiver
can then choose different choice bits for the other base OTs, which corresponds to picking
different places to puncture each PRF. This lets them learn all the unpunctured PRFs, as
they are all identical, completely breaking whatever OT extension is based on them.

3KOS and OOS have significantly different consistency checks, but their only purpose is to protect against
a malicious receiver.
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3.3.3 Problematic Batching Found in the Wild

Looking ahead, the fix for naïve batching is simple and essentially free (although the security
analysis of the fix requires some care, as we show in the next sections). In Diffie-Hellman-
based OT protocols, the OT outputs r0, r1 are computed by taking a (random oracle) hash
of a Diffie-Hellman value. The fix is to include the OT index in that key derivation — i.e.,
instead of r0 = H(sid, gab), use r0 = H(sid, gab, i) in the ith OT instance in the batch. That
way, even if all gab values are identical (or correlated strangely), the final OT values are
independently random.

Given that both the attack and the fix are so simple, one may wonder whether this
problem is well-known. In fact, we found problems related to OT batching in many libraries
that implement malicious-secure OT extension. 4 We focus on the implications for the overall
OT extension protocols, which are minor in most cases. However, the consequences would be
more severe for developers that directly access the base-OT functionalities of these libraries.

• The libote OT extension library [Rin] implements Masny-Rindal [MR19] base OTs
and applies naïve batching. The original Masny-Rindal paper considers only the
single-instance setting and does not discuss security of the batch setting under naïve
batching. In some configurations, the libote implementation of OOS indeed uses these
naïvely batched base OTs, thus falling victim to our attack. Other configurations use a
hybrid approach, first naïvely batching 128 base OTs, then using KOS to extend to
512 OTs, and using those 512 OTs as base for OOS. As mentioned above, we are not
aware of any attacks on KOS extension related to naïve batching, but our observations
merely raise some concerns about its security with naïvely batched OTs.

• The swanky MPC library [CMR] implements the Chou-Orlandi protocol and reuses
the sender’s message, but uses good domain separation in key derivation.5 However,
it allows the sender’s protocol message to be reused across several batches, while the
domain separation is local to the batch! In other words, parties could execute two
batches of OTs, and the receiver could cause the batches to produce identical outputs,
by replaying its protocol messages.

4We notified the maintainers of these libraries about the issues and the suggested fix. By the time of
writing, all maintainers have either already fixed or planned to fix their handling of batch OTs.

5The authors explicitly justify their correct key derivation as a bug in the Chou-Orlandi paper, and
reference the attack in which all base OTs generate identical output. See chou_orlandi.rs.

https://github.com/GaloisInc/swanky/blob/27c2a3888342822c172805dfd0fb4f8ae6cb00a6/ocelot/src/ot/chou_orlandi.rs#L14
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In this library’s implementation of OT extension, they first apply the transformation
in [MR19] from endemic OT to uniform-message OT on the base OTs. This prevents
the receiver from forcing OT extension to operate on identical base OTs. If not for this
additional step, even 1-out-of-2 OT extension would leak information across different
batches. As it is, only the XOR of PRG seeds is leaked under our attack on naïve
batching, which is unlikely to lead to a concrete attack.

• The mp-spdz [Kel20] and scale-mamba [Sma] library implementations of OT use naïve
batching of Chou-Orlandi base OTs. These libraries implement only KOS and not
OOS, and therefore we know of no concrete attack related to naïve batching against
their OT extension.

We have also identified problematic handling of OT batching in several papers:

• The Chou-Orlandi OT protocol [CO15] explicitly considers the batch setting and uses
naïve batching to achieve it. As such, the protocol as written is not suitable as the
base OT for certain OT extensions.

• Since security flaws (unrelated to batching) were discovered in the Chou-Orlandi
protocol, several works have attempted to address and repair them. Of those works,
both [HL17] and [CSW20] explicitly consider the batch setting. The paper of Hauck &
Loss [HL17] maintains the naïve batching of the original.

• The “Blazing OT” construction of Canetti, Sarkar, and Wang [CSW20] does not
technically use naïve batching, since it introduces a joint consistency check across all
instances in the batch. However, the key derivation in their base OTs does not include
the OT index. This means that the attack in Theorem 3.3.1 has the intended effect:
causing all OT instances to give identical output. The paper only considers a combined
protocol with batched Chou-Orlandi base OTs and KOS OT extension, and as such
we are not aware of an explicit attack on their final OT extension protocol. However,
their security analysis does not seem to acknowledge the possibility of all base OTs
giving identical outputs.

We found one instance of totally correct batching, in the implementation of Chou-Orlandi
OT in emp-toolkit [WMK16], despite naïve batching being described in the paper.



54

3.4 Properly Batching OTs

In this section we describe how to repair naïve batching. We focus on the McQuoid-Rosulek-
Roy (MRR) protocol [MRR20] since it subsumes the Masny-Rindal protocol, while the
Chou-Orlandi protocol does not achieve UC security. As we saw, the main problem is that a
corrupt receiver can force correlations among the OT outputs in different instances — even
causing some OT values to be equal. The solution is to enforce “domain separation” among
the different instances. Intuitively, parties should hash each instance’s OT outputs under a
random oracle, with domain separation (i.e., include the index of that instance in the hash).

However, proving the security of this change requires some care. For example, we cannot
prove security merely from the single-instance security of the OT protocol, since the single-
instance protocol is not being used correctly. Instead, we must use some known structure of
the protocol. The MRR protocol derives its outputs from its underlying KA protocol, and we
require stronger properties from that KA. The KA must accept an extra “tag” argument, so
that even if the KA messages are identical, the resulting keys will be different under different
tags.

3.4.1 Tagged KA

A tagged KA is identical in syntax to a traditional KA, except that the KA.key1 and KA.key2
algorithms take an additional tag argument. Correctness is that for all a, b ∈ KA.R and all
tags τ :

KA.key1(a,KA.msg2(b,KA.msg1(a)), τ) = KA.key2(b,KA.msg1(a), τ)

Looking ahead to our batch OT protocol, we will let the tag τ be the index of the OT
instance (e.g., OT instance 1, 2, 3, . . .).

Intuitively, we will require that KA outputs under different tags appear independently
random. This should hold not only when the KA protocol messages are identical, but
also when the KA messages (e.g., KA.msg2) are correlated, since we previously observed
(Section 3.3) that the adversary could induce arbitrary correlations across OT/KA instances.
This definition may be of independent interest—specifically, in scenarios where KA protocol
messages are reused.

Definition 3.4.1. A tagged KA protocol is tag-non-malleable if a session with tag τ∗

is secure, even against an eavesdropper that has oracle access to KA.key1(a, ·, ·), provided
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the eavesdropper never queries the oracle on tag τ∗. Formally, the following distributions
are indistinguishable, for all τ∗ and every PPT A that never queries its oracle with second
argument τ∗:

a, b← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)

K = KA.key1(a,M2, τ
∗)

return AKA.key1(a,·,·)(M1,M2,K)

a, b← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)

K ← KA.K
return AKA.key1(a,·,·)(M1,M2,K)

Like [MRR20], we also require the KA protocol to satisfy the following randomness
property:

Definition 3.4.2. A key agreement protocol has strongly random responses if the honest
output of KA.msg2 is indistinguishable from random, even to an adversary who (perhaps
maliciously) generated M1. Formally, for all polynomial time A, the following distributions
are indistinguishable:

(M1, state)← A()

b← KA.R
M2 = KA.msg2(b,M1)

return (state,M2)

(M1, state)← A()

M2 ← KA.M
return (state,M2)

3.4.2 Programmable-Once Public Functions

The MRR protocol uses a primitive called programmable-once public functions (POPFs). We
introduce definitions for POPF here, which slightly differ from the original definitions. We
have specialized the definitions for the case of 1-out-of-2 OT 6 — [MRR20] define POPFs in a
way that is useful for 1-out-of-N OT (with exponential N) and also password-authenticated
key exchange. In the original POPF definitions, a simulator simulated the random oracle
setup in the service of a single POPF instance; in our batch setting there will be many
POPF instances, thus we must adapt the definitions to explicitly allow simulation of multiple
POPFs in a non-interfering way.

6All of the POPFs in this paper have straightforward generalizations to the 1-out-of-N case, for polynomial
N , and some to exponential N as well, but we restrict ourselves to the 1-out-of-2 case for simplicity.
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Definition 3.4.3. A 1-weak random oracle is a function F : N → O such that the
following two distributions are indistinguishable,

x← N
y := F (x)

return x, y

x← N
y ← O
return x, y

when the adversary does not have access to F other than through these experiments.

Note that F is only allowed to be used once this definition. This makes it an extremely
weak property — it’s even satisfied by universal hashes.

Definition 3.4.4 (Syntax). A batch 2-way programmable-once public function (batch
2-POPF) consists of algorithms:

• Eval :M×{0, 1} → N

• Program : {0, 1} × N →M

Both algorithms access some local setup H — depending on the instantiation, H could consist
of common reference strings, random oracles, ideal ciphers, etc. All parties (adversaries)
may access the setup directly as well, although it is local to a single instance of the batch
2-POPF. The setup may be stateful (e.g., the “lazy” formulation of a random oracle, which
samples outputs on the fly).

A 2-POPF must also include alternative local setups, which are used in different security
definitions:

• HHSim must provide the same interface as H as well as an additional method HSim : N ×
N →M.

• HExtract must provide the same interface as H as well as an additional method Extract :M→
{0, 1}. Extract must not modify the private state of HExtract.

We write AH to denote an algorithm A with oracle access to all methods provided by
the setup H.

Definition 3.4.5 (Correctness). A batch 2-POPF satisfies correctness if Eval(ϕ, x∗) = y∗

with all but negligible probability, whenever ϕ← Program(x∗, y∗).



57

Definition 3.4.6 (Security). A batch 2-POPF is secure if it satisfies the following properties:

1. Indistinguishable Local Setups: The local setups H, HHSim and HExtract all imple-
ment a common interface. The setups must be indistinguishable to an adversary that
only queries on this interface. Formally, if A is a polynomial-time algorithm that only
queries its setup on the interface of H then the following probabilities are negligibly
close:

Pr[AH() = 1]; Pr[AHHSim() = 1]; Pr[AHExtract() = 1]

2. Honest Simulation: Any ϕ that is generated honestly as ϕ← Program(x∗, y∗), with
y∗ chosen uniformly, is indistinguishable from ϕ generated via the HSim algorithm
of HHSim. Since HSim does not have a “preferred” input x∗, this establishes that an
honestly generated ϕ hides the x∗ on which it was programmed.

Formally, define the following functions:

real_phi(x∗ ∈ {0, 1},D):
(s, y∗)← D

ϕ← Program(x∗, y∗)

r0 := Eval(ϕ, 0)
r1 := Eval(ϕ, 1)
return s, ϕ, r0, r1

sim_phi(x∗ ∈ {0, 1},D):
(s, y∗)← D

rx∗ := y∗

r1−x∗ ← N
ϕ← HSim(r0, r1)

return s, ϕ, r0, r1

Then for all polynomial time A,

Pr[AHHSim,real_phi() = 1]− Pr[AHHSim,sim_phi() = 1]

is negligible. Here we restrict A to always query with D a distribution over {0, 1}∗ ×
N such that the marginal distribution of y∗ is indistinguishable from the uniform
distribution over N . The other component s appears for technical reasons; the reader
can think of it as the coins used to sample y∗.

Note that sim_phi calls the HSim method of the local setup, and that A may even
query the HSim method (both the real and ideal experiments use HHSim).

3. Uncontrollable Outputs: For any ϕ generated by the adversary, the Extract method of
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HExtract can identify an input x∗ such that the adversary has no control over Eval(ϕ, 1−
x∗). We say that Eval(ϕ, 1− x∗) is beyond the adversary’s control if F (Eval(ϕ, 1− x∗))

is indistinguishable from random, for any 1-weak-RO F .7

Formally, the following distributions must be indistinguishable for all polynomial-
time A1,A2 and all 1-weak-RO F :

(ϕ, state)← A
HExtract
1 ()

x∗ := Extract(ϕ)
r := F (Eval(ϕ, 1− x∗))

return A
HExtract
2 (state, r)

(ϕ, state)← A
HExtract
1 ()

r ← N
return A

HExtract
2 (state, r)

As above, the left distribution calls the Extract method of the HExtract setup, and the
adversary may query this method as well. Note that A does not have any access to F

beyond the one call provided by this experiment.

The reader may be curious why we forced y∗ to be sampled inside Honest Simulation,
instead of letting the adversary choose it like in [MRR20]. The answer is that otherwise
an ideal cipher would not be a POPF. An adversary could have already run Program(0, y∗)

earlier, and because for each x there is a bijection between values of y and ϕ, a call to
HSim(y∗, r1) would be forced to return the same ϕ as before. Ideal ciphers were used as a
motivating example for POPFs in [MRR20], so this is clearly a mistake. Ideal ciphers satisfy
our new definition (Section 3.5.1).

3.4.3 The Batch OT Protocol

In Fig. 3.3 we present the batch variant of the OT protocol of [MRR20]. The protocol is
essentially the naïve batching of the single-instance protocol, except we use a tagged KA
and use different tags for each KA output.

Theorem 3.4.7. When instantiated with a secure batch POPF and a tag-non-malleable KA
scheme (Theorem 3.4.1) with strongly random responses (Theorem 3.4.2), the OT protocol

7There are 1-weak ROs whose outputs can be distinguished from random when inputs are chosen in a
certain adversarial way. Hence, requiring the RO outputs to remain random is a way of requiring that these
values are not chosen in an adversarial way.
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Sender Receiver (with input {ci}i∈[m])
a← KA.R
MS = KA.msg1(a)

MS for i ∈ [m]:
bi ← KA.R
MR,i := KA.msg2(bi,MS)
ϕi := Program(ci,MR,i)

for i ∈ [m]: ϕ1, . . . , ϕm

for j ∈ {0, 1}: for i ∈ [m]:
ri,j = KA.key1(a,Eval(ϕi, j), i ∥ j) ri,ci = KA.key2(bi,MS , i ∥ ci)

Figure 3.3: Our m-batch 1-of-2 oblivious transfer protocol.

in Fig. 3.3 is a UC secure batch endemic OT (Fig. 3.2), if the POPF’s output satisfies
N = KA.M2.

Proof. Correctness of the POPF and KA clearly show that the protocol is correct in the
case where both parties are honest. When both parties are corrupt, the simulator has direct
access to both parties and can simulate the real protocol by just running it. This leaves the
two interesting cases, where one party is malicious and the other is honest. We prove each
case by giving first a simulator, then a sequence of hybrids showing indistinguishability. The
hybrids start from the real world and end at the ideal world: the simulator composed with
an ideal batch endemic OT.

Simulator for Malicious Sender: The simulator uses HHSim instead of H to implement
the local setup. It then waits until the sender provides its protocol message MS . It
creates fresh random values bi,j ∈ KA.R for i ∈ [m], j ∈ {0, 1}, then computes the KA
messages Mi,j = KA.msg2(bi,j ,MS). Then it chooses ϕi ← HSim(Mi,0,Mi,1) and sends
ϕ1, . . . , ϕm as the simulated protocol message from the honest receiver. Finally, it submits
ri,j = KA.key2(bi,j ,MS , i ∥ j) to the ideal functionality, for i ∈ [m] and j ∈ {0, 1} (as the
endemic OT values).

Sequence of Hybrids for Malicious Sender: Starting at the real interaction between
malicious sender and honest receiver:

1. Replace local setup H with HHSim. This change is indistinguishable by the Indistin-
guishable Local Setups property of the POPF.
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2. Change how ϕi is generated:

replace
bi ← KA.R
MR,i = KA.msg2(bi,MS)

ϕi ← Program(ci,MR,i)

with

bi ← KA.R
Mi,ci = KA.msg2(bi,MS)

Mi,1−ci ← KA.M
ϕi ← HSim(Mi,0,Mi,1)

This is indistinguishable by the Honest Simulation property. Recall that this property
requires bi,Mi,ci to come from a distribution D over {0, 1}∗ ×N where the marginal
distribution of the second element is indistinguishable from uniform. This holds because
KA has strongly random responses.

3. Change how Mi,1−ci is sampled:

replace

bi ← KA.R
Mi,ci = KA.msg2(bi,MS)

Mi,1−ci ← KA.M
ϕi ← HSim(Mi,0,Mi,1)

with

bi,0, bi,1 ← KA.R
Mi,0 = KA.msg2(bi,0,MS)

Mi,1 = KA.msg2(bi,1,MS)

ϕi ← HSim(Mi,0,Mi,1)

Later references to bi become references to bi,ci . This is indistinguishable because KA
has strongly random responses.

This final hybrid describes the ideal world. The receiver’s inputs ci are not used to simulate pro-
tocol messages to the sender; they are used only to determine which ri,j

def
= KA.key2(bi,j ,MS)

the receiver takes as output. In the ideal world the simulator sends identically defined ri,j to
the ideal functionality, which uses the receiver’s ci inputs to determine which ones to deliver
as the receiver’s output.

Simulator for Malicious Receiver: The simulator uses HExtract instead of H to implement
the local setup. It generates MS in the same way as an honest sender and sends it to
the corrupted receiver. When the receiver provides ϕ1, . . . , ϕm, the simulator runs ci =

Extract(ϕi) for all i ∈ [m], and submits them to the ideal functionality. It also computes
ri,ci = KA.key1(a,Eval(ϕi, ci), i ∥ ci), and submits these to the ideal functionality as well (as
the endemic OT values).
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Sequence of Hybrids for Malicious Receiver:

1. Replace local setup H with HExtract, an indistinguishable change.

2. Rearrange how ri,j are computed:

replace
for j ∈ {0, 1}:
ri,j = KA.key1(a,Eval(ϕi, j), i ∥ j)

with
ci ← Extract(ϕi)

ri,ci = KA.key1(a,Eval(ϕi, ci), i ∥ ci)
ri,1−ci = KA.key1(a,Eval(ϕi, 1− ci), i ∥ 1− ci)

This is indistinguishable because running Extract has no effect on the local setup’s
internal state.

3. For each i ∈ [m] and j ∈ {0, 1}, create an oracle Fi,j = y 7→ KA.key1(a, y, i ∥ j). Then
rewrite the computation of ri,j in terms of these oracles as ri,j = Fi,j(Eval(ϕi, j)). In
Theorem 3.4.8 we show that every oracle Fi,j is a 1-weak random oracle.

4. Change how ri,1−ci is chosen:

replace
ci ← Extract(ϕi)

ri,ci = Fi,ci(Eval(ϕi, ci))

ri,1−ci = Fi,ci−1(Eval(ϕi, 1− ci))

with
ci ← Extract(ϕi)

ri,ci = Fi,ci(Eval(ϕi, ci))

ri,1−ci ← KA.K

This change is indistinguishable by the Uncontrollable Outputs property. Since each
Fi,j is a 1-weak RO, we can apply the Uncontrollable Outputs property once for each i

to make the change described here.

This final hybrid describes the ideal world. After seeing the receiver’s protocol message, the
simulator extracts ci values and also computes values ri,ci which will be part of the sender’s
output. The other OT values in the sender’s output (ri,1−ci) are sampled uniformly, just as
in the ideal world.

Lemma 3.4.8. For any tag-non-malleable key agreement KA with strongly random responses,
and for any set of tags T , the following distribution outputs a key agreement message and a
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collection of |T | weak random oracles from KA.M2 to KA.K.

a← KA.R
MS := KA.msg1(a)
for τ ∈ T :
Fτ := x 7→ KA.key1(a, x, τ)

return MS , {Fτ}τ∈T

Proof. We need to show that every Fτ is a weak random oracle. We describe a sequence of
hybrids starting from the real weak random oracle distribution and ending at random.

1. Sample the input x and compute y early, when the oracle Fτ is created, rather than
when the weak RO experiment is run.

2. Instead of sampling x← KA.M2, sample b← KA.R and set x = KA.msg2(b,MS). This
is indistinguishable by the strongly random responses property of KA.

3. We are now computing y = KA.key1(a, x, τ) for a random KA message x, then giving
oracle access to KA.key1(a, x′, τ ′) (from the other oracles Fτ ′), but only for τ ′ ≠ τ .
This is exactly the same as the real distribution for a tag-non-malleable KA, so it is
indistinguishable to switch to the random distribution by randomly sampling y ← KA.K
instead.

4. Use strongly random responses again, to sample x← KA.M2 and remove b.

5. Delay the sampling of x, y until the 1-weak RO distribution is run.

Our protocol considers an underlying KA with sequential messages. Yet Diffie-Hellman-
based KA protocols have independent messages that can be sent in any order. We call such
a KA protocol 1-flow, where KA.msg2(b) is independent of MS . When the KA is 1-flow, the
OT protocol can also be made 1-flow by sending both messages in parallel.

Theorem 3.4.9. Our OT protocol (Fig. 3.3) becomes a 1-flow UC secure batch endemic OT
when KA is 1-flow.
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Proof. This theorem largely the same as Theorem 3.4.7 from the previous one, but with key
changes. In the 1-flow instance, the adversary may rush the other party, requiring them to
send their message first before responding. For malicious receiver the adversary already went
last, but it’s different for malicious sender.

When the sender is corrupt, the simulator instead generates ϕ1, . . . , ϕm with HSim before
receiving MS , as each of the receiver’s messages from the key agreement may now be
sampled independently of the sender’s. The hybrid proof continues as before, after replacing
KA.msg2(b,MS) with KA.msg2(b).

3.5 New/Improved POPF Constructions

In this section, we describe several suitable POPF constructions for the batch OT protocol.

3.5.1 Ideal Cipher (EKE)

Our first POPF is inspired by the EKE password-authenticated key exchange protocol of
Bellovin & Merritt [BM92]. POPF was created as a generalization of an ideal cipher in the
EKE protocol, and it is no surprise that in fact an ideal cipher is a POPF. The full definition
is in Fig. 3.4. We are not aware of prior work pointing out the connection between EKE and
oblivious transfer. But it is easy to see that an ideal cipher is useful for OT: the adversary
can know the trapdoor to at most one of E−1(0, ϕ) and E−1(1, ϕ).

The local setup H is simply an ideal cipher. Actually, we have defined H in a way that
is indistinguishable from an ideal cipher — it chooses oracle responses uniformly, instead
guaranteeing that each E(x, ·) is a permutation. By a standard PRF/PRP switching lemma,
the difference is indistinguishable, and this choice makes the description of H simpler. HHSim

is similar to H, but it programs E−1 so that Eval(ϕ, i) = ri, to satisfy the honest simulation
property.

In HExtract, Extract(ϕ) finds the first ideal cipher call that produced ϕ — either as the
input to an E−1 query or the output of an E query. The idea is that once ϕ has appeared
in some ideal cipher query, future forward queries to E give output ϕ only with negligible
probability. Hence, all future calls that involve ϕ must be of the form E−1(·, ϕ), meaning
that the adversary has no control over the outputs of these queries (which are outputs of
Eval). This is precisely the property needed for a POPF.
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M := N

Program(x, y):
return E(x, y)

Eval(ϕ, x):
return E−1(x, ϕ)

H
T := empty list
E(x, y):

if ∃ϕ. (x, y, ϕ) ∈ T :
return ϕ

ϕ←M
append (x, y, ϕ) to T
return ϕ

E−1(x, ϕ):
if ∃y. (x, y, ϕ) ∈ T :

return y
y ← N
append (x, y, ϕ) to T
return y

HHSim

T := {}
// E and E−1 are same as in H
HSim(r0, r1):

if ∃x, ϕ. (x, rx, ϕ) ∈ T :
return ⊥

ϕ←M
append (0, r0, ϕ) to T
append (1, r1, ϕ) to T
return ϕ

HExtract

T := {}
// E and E−1 are same as in H
Extract(ϕ):

find first (x∗, y∗, ϕ) ∈ T :
return x∗

if none exist:
return 0

Figure 3.4: Batch 2-POPF based on an ideal cipher.

Theorem 3.5.1. Fig. 3.4 defines a secure and correct batch 2-POPF with all distinguisher
advantages except for Uncontrollable Outputs bounded by O

(
q2

|N |

)
, when the adversary

makes q ideal cipher lookups. Uncontrollable Outputs instead has advantage bounded by
qA(wRO) +O

(
q2

|N |

)
, where A(wRO) is the distinguisher advantage against the 1-weak RO

F .

Proof. We have deferred the security proofs for the POPF constructions to the appendix.
See Appendix B.2.1.
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M := N := {0, 1}α

Program(x, y):
return Π(y)⊕ x

Eval(ϕ, x):
return Π−1(ϕ⊕ x)

H
T := empty list
Π(u):

if ∃v. (u, v) ∈ T :
return v

v ← {0, 1}α
append (u, v) to T
return v

Π−1(v):
if ∃u. (u, v) ∈ T :

return u
u← {0, 1}α
append (u, v) to T
return u

HHSim

T := empty list
// E and E−1 are same as in H
HSim(r0, r1):

if ∃x, ϕ. (rx, ϕ⊕ x) ∈ T :
return ⊥

ϕ← {0, 1}α
append (r0, ϕ⊕ 0) to T
append (r1, ϕ⊕ 1) to T
return ϕ

HExtract

T := empty list
// E and E−1 are same as in H
Extract(ϕ):

find first (y∗, ϕ⊕ x∗) ∈ T :
return x∗

if none exist:
return 0

Figure 3.5: Batch 2-POPF based on an ideal permutation.

3.5.2 Even-Mansour POPF

In [MRR20] the authors construct a POPF with a 2-round Feistel cipher. Intuitively, a
POPF generalizes an ideal cipher, but is strictly weaker. So, while an 8-round Feistel
cipher is indifferentiable from an ideal cipher, a 2-round Feistel cipher suffices for a POPF.
Similarly, we suggest a POPF based on the Even-Mansour [EM93] construction. While the
Even-Mansour construction is not an ideal cipher unless many rounds are added [DSS+17], a
single round suffices for a POPF.

The construction (Fig. 3.5) is similar to the Ideal Cipher POPF, but with a few changes.
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The local setup H is not an ideal cipher, but a simpler ideal random permutation. In the
ideal cipher POPF, every query to the oracles included the x-value (as the key of the cipher).
In this Even-Mansour POPF the value x is used only by xor’ing with the ideal permutation
output — it is not directly available to the simulator (in Extract).

To deal with this challenge, we observe that x can be inferred by the simulator given
ϕ. The only situation where x is ambiguous given ϕ is when Π(y1)⊕ x1 = ϕ = Π(y2)⊕ x2

for distinct bits x1, x2. This event implies Π(y1)⊕Π(y2) = x1 ⊕ x2 = 1, which is negligibly
likely for forward queries to Π. This turns out to be enough for the simulator to extract. The
construction generalizes to strings x which are significantly shorter than the ideal permutation
output.

Theorem 3.5.2. Fig. 3.5 defines a secure and correct batch 2-POPF where the distinguisher
advantage is O(q22−α) when the adversary makes q ideal permutation lookups, except for
Uncontrollable Outputs which allows an additional advantage of qA(wRO).

Proof. We have deferred this proof to Appendix B.2.2.

3.5.3 Masny-Rindal POPF

This next POPF is inspired by the OT construction of Masny and Rindal [MR19]. Using this
POPF in the context of Fig. 3.3 we see that the Masny-Rindal OT protocol for 1-out-of-2
OT8 is then a specific instance of our protocol. The description of the POPF can be found
in Fig. 3.6.

The local setup H consists of two random oracles H0, H1 whose outputs are a group G.
In the resulting OT protocol, the KA scheme must have protocol messages that reside in
this group. HHSim is similar to H, but it also tracks the values r0, r1 that have been given to
HSim(R). To satisfy the honest simulation property, it further programs the random oracles
Hx to be consistent:

Eval(ϕ, x) = sx ·Hx(s1−x) = sx · (sx)−1 · rx = rx.

HExtract is also very similar to H, but it also tracks chronological order of the oracle
queries. Extract(ϕ), upon seeing ϕ = (s0, s1), checks if s1−x∗ was a query to the random

8Generalizing to 1-out-of-N for polynomial N works the same as in [MR19].
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M := G2

Program(x, y):
s1−x ← G
sx = y · (Hx(s1−x))

−1

return (s0, s1)

Eval((s0, s1), x):
return sx ·Hx(s1−x)

H
record calls in a transcript T
Hx(u):

if ∃v. (v ← Hx(u)) ∈ T :
return v

v ← G
return v

HHSim

record calls in a transcript T
U := empty assoc. array
Hx(u):

if ∃v. (v ← Hx(u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v ← G
return v

HSim(r0, r1):
ϕ = (s0, s1)←M
U [0, s1] := s−10 · r0
U [1, s0] := s−11 · r1
return ϕ

HExtract

record calls in a transcript T
// Hx is the same as in H
Extract((s0, s1)):

find first query Hx∗(s1−x∗) in T :
return x∗

if none exist:
return 0

Figure 3.6: Batch 2-POPF based on the OT construction of Masny-Rindal [MR19]. Here
H0, H1 : G→ G are random oracles, and (G, ·) is a group.

oracle Hx∗ , for either x∗ ∈ {0, 1}. Extract(ϕ) then chooses the first query (chronologically)
and returns the associated x∗, or chooses x∗ arbitrarily to be 0 if neither call was made. As
in the original proof in [MR19] the main idea is that for the adversary to program ϕ, they
need to query on one of the two sx values to find the other, unless the “other” is sampled
independently, in which case the adversary fails to program.

Theorem 3.5.3. Fig. 3.6 defines a secure and correct batch 2-POPF with all distinguisher
advantages except for Uncontrollable Outputs bounded by O

(
q2

|G|

)
when the adversary makes

q queries to the random oracles. Uncontrollable Outputs instead has advantage bounded by
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N := G
M := G× F

Program(x, y):
u← F
t := H(x, u)−1 · y
s := u− ι(t)x
return s, t

Eval((s, t), x):
return H(x, ι(t)x+ s) · t

H
record calls in a transcript T
H(x, u):

if ∃v. (v ← H(x, u)) ∈ T :
return v

v ← G
return v

HHSim

record calls in a transcript T
U := empty assoc. array
H(x, u):

if ∃v. (v ← H(x, u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v ← G
return v

HSim(r0, r1):
(s, t)← G× F
U [0, ι(t) 0 + s] := r0 · t−1
U [1, ι(t) 1 + s] := r1 · t−1
return (s, t)

HExtract

record calls in a transcript T
// H is the same as in H
Extract((s, t)):

find first query H(x∗, ι(t)x∗ + s):
return x∗

if none exist:
return 0

Figure 3.7: Variant of the Feistel POPF in [MRR20], where one random oracle has been
replaced with multiplication in a finite field F. ι is an injection with an efficient left inverse
ι−1, i.e., ∀t. ι−1(ι(t)) = t.

q2−q+2
2 A(wRO) +O

(
q2

|G|

)
.

Proof. We have deferred this proof to Appendix B.2.3.
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3.5.4 Streamlined Feistel POPF

[MRR20] propose a POPF based on 2-round Feistel, in which the ϕ value is 3λ bits longer
than the underlying value from N . We present an alternative construction (Fig. 3.7) that
improves on this when G = N can be represented with less than 3λ bits. This is useful
because elliptic curve points usually can be represented with 2λ bits.

As with [MRR20], we need N to be a group G, and the local setup H is a hash function
H mapping into G. However, instead of a second random oracle H ′(x, T ), we use an injection
ι from G into a finite field F. The hash call H ′(x, T ) in one of the Feistel rounds is then
replaced with multiplication ι(T )x. ι is required to have an efficiently computable left inverse
ι−1.

These changes eliminate the main bad event in the security proof of [MRR20], which
occurs when the adversary manages to delay making the H ′ query, which the simulator needs
to see in order to find what T the adversary chose, until after the simulator needs to use T

to program H. The simulator can now find T directly using ι−1.

Theorem 3.5.4. The streamlined Feistel POPF in Fig. 3.7 is a secure and correct batch
2-POPF. The distinguisher advantage is O

(
q2

|G|

)
when the adversary makes q ideal permu-

tation lookups, except for Uncontrollable Outputs which allows an additional advantage of
q2−q+2

2 A(wRO).

Proof. We have deferred this proof to Appendix B.2.4.

The original 2-round Feistel POPF in [MRR20] also satisfies our new definitions. We omit
the proof because it is substantially similar to the proof of Theorem 3.5.4, just preserving a
few more ideas from [MRR20].

3.6 Suitable Key Agreement Choices

Our batched OT protocol requires a tagged KA in which the receiver’s protocol messages
are indistinguishable from the uniform distribution over the domain of the POPF (outputs
of Eval). In this section we discuss several choices for KA, including one not considered in
[MRR20] but which is well-suited to the batch setting.

The main challenge is that traditional DHKA on an elliptic curve is not enough. Under
the usual encoding (the x-coordinate), points on the curve are easily distinguishable from
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random strings, while it is more natural to define a POPF operating on strings. Hence, some
care is involved in making the POPF and KA compatible.

3.6.1 Curve Mappings

In [MRR20], the authors suggest two ways to achieve compatibility between POPF and KA
over elliptic curves.

One choice is to ensure that the KA protocol messages are uniform bit strings. This can
be done using the Elligator technique of [BHK+13] to encode curve elements. Elligator is
an injective and efficiently invertible function ι from {0, 1}λ to a large subset of the elliptic
curve. If some party wishes to make their KA protocol message a uniform string, they simply
sample from points in the image of ι. This is achieved in practice by re-sampling a DH scalar
until the resulting curve point is in ι({0, 1}λ). If the range of ι is a large fraction of the
elliptic curve, then the expected number of re-samples is small. See Fig. 3.8 for a formal
description of tagged Elligator ECDHKA.

Another choice is to ensure that the POPF Eval function only outputs values on the
curve. In the POPF construction of [MRR20] this can be achieved by instantiating a random
oracle that gives outputs in the curve.

These techniques incur nontrivial computational overhead. The Elligator approach
requires resampling each curve element some constant number of times on average. The state-
of-the-art techniques for hashing-to-curve [BCI+10; FFS+10; TK17] have cost roughly 25%
that of a scalar multiplication on the curve, and the POPF requires at least 2 hash-to-curve
operations per party.

3.6.2 Möller Variant of ECDHKA

We now suggest a more efficient approach that is well suited for the batch setting. Before
continuing, let us give a brief review of elliptic curves. For the remainder of this section,
we will consider curves over prime fields with order larger than 3. Further results and
descriptions can be found in Silverman [Sil09].

Definition 3.6.1. An elliptic curve Ea,b over a field Fp is defined by a congruence of the
form Y 2 = X3 + aX + b parameterized by elements a, b ∈ Fp such that 4a3 + 27b2 ≠ 0. The
elements of Ea,b are given by tuples (X,Y ) satisfying the congruence along with a neutral
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Sender (tag τ) Receiver (tag τ)
do:

a← Fp b← Fp

A = aG B = bG
while B ̸∈ ι({0, 1}λ)

A

B̃ = ι−1(B)

return H(a · ι(B̃), τ) return H(bA, τ)

Figure 3.8: Tagged Elligator ECDHKA. G is a generator of the curve and ι is the injective
Elligator mapping of [BHK+13].

element O, the point at infinity.

We may equip this set with a group law called the chord-and-tangent law such that we
arrive at a commutative group where the usual Diffie-Hellman problems are believed to be
hard.

Definition 3.6.2. Given an elliptic curve Ea,b over a field Fp and c ∈ Fp, we may consider
the elliptic curve E′c : cY 2 = X3 + aX + b. If c is a quadratic residue in Fp then E′ is
isomorphic to E, otherwise, E′ is called the (quadratic) twist of E.

As a twist of a given curve is unique up to isomorphism, we may consider, singly, a
primary curve and its twist curve. It follows from the definition that any x ∈ Fp is the
abscissa (x-coordinate) of a point on E or of a point on the twist E′.

Lemma 3.6.3. Let c ≠ 0 be a quadratic non-residue in the field Fp, and let Ea,b be an elliptic
curve over Fp with twist E′c. Then for every x ∈ Fp:

1. If x3 + ax+ b is a non-zero quadratic residue, then (x,±
√
x3 + ax+ b) are points on

Ea,b. Furthermore, (x3 + ax+ b)/c is a quadratic non-residue and x is not the abscissa
of any point on E′c

2. If x3 + ax+ b is a quadratic non-residue, then x is not a point on Ea,b. Furthermore,
(x3 + ax+ b)/c is a quadratic residue and (x,±

√
(x3 + ax+ b)/c) are points on E′c.

3. If x3 + ax+ b = 0, then (x, 0) is a point on Ea,b and E′c.
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This idea is of importance as for many curves and applications; only the abscissa of a
point is needed. This means that we can work with bitstrings using the implicit mapping
defined above.

Furthermore, there are a similar number of points on the twist as there are on the curve.
If one were to toss a coin b← {0, 1}, and then sample an x-coordinate of a random curve
point (if b = 0) or a random twist point (if b = 1), the result would be statistically close to
the uniform distribution on the set of bitstrings.

Lemma 3.6.4 ([CFG+06, Corollary 11]). Given a curve Ea,b and its twist E′c over Fp,
where 2q − p < 2q/2 (i.e., p is very close to a power of 2), the following distribution is
indistinguishable from the uniform distribution in {0, 1}q

D = {β ← {0, 1}, x0 ← [Ea,b]abscissa, x1 ← [E′c]abscissa : K = xβ},

with statistical distance

δ =
1

2

∑
x∈Fp

∣∣∣∣ Pr
K←F2q

[K = x]− Pr
K←D

[K = x]

∣∣∣∣ ≤ 1 +
√
2

2q/2
.

This suggests the key agreement approach in Fig. 3.9. The receiver will sample an
x-coordinate as above. The sender cannot anticipate the receiver’s choice, so she prepares
a DH message on both the curve and the twist, then chooses the correct one to compute
the final key. Theorem 3.6.4 establishes that the receiver’s KA message is statistically
indistinguishable from the uniform distribution on strings.

Note that the sender sends two curve/twist elements instead just one as in standard
DHKA. However, in batched OT it is exactly this sender message that is reused across all OT
instances. Hence a slight increase in its size has minimal effect on the overall OT protocol’s
efficiency.

Similar approaches to representation have been used in the context of PAKE [BMN01],
pseudo-random permutations [Kal91], authenticated key exchange [CFG+06], and by Möller [Möl04]
in the context of ElGamal.
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Sender (tag τ) Receiver (tag τ)
a0 ← [n] b← [n]
a1 ← [n] β ← {0, 1}
A0 = a0G0 B = bGβ

A1 = a1G1
A0, A1

Babscissa,sign

if B on the curve:
β = 0

else: β = 1
return H(aβ ·B, τ) return H(b ·Aβ, τ)

Figure 3.9: Möller tagged ECDHKA. G0 is a generator of the curve and G1 is a generator of
its twist.

3.6.3 Curve Choice and Security

We now discuss the security of the Möller variant (tagged) KA protocol. The choice of curve
must satisfy the following

• The finite field must have order at least 2q − 2q/2.

• The curve and its twist must be cryptographically secure.

• The curve and its twist must be cyclic.

More specifically, we need a security property similar to the oracle Diffie-Hellman
(ODH) assumption [ABR01]. That definition is as follows:

Definition 3.6.5 ([ABR01]). Let G be a cyclic group of order n, with generator g, and
let H : {0, 1}∗ → {0, 1}ℓ be a hash function. Then the oracle Diffie-Hellman (ODH)
assumption holds in G with respect to H if the following distributions are indistinguishable,
for all A that do not query their oracle at bg.

a, b← [n]

def Ha(X) = H(aX)

K = H(abg)

return AHa(ag, bg,K)

a, b← [n]

def Ha(X) = H(aX)

K ← {0, 1}ℓ

return AHa(ag, bg,K)
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Our applications require a variant of ODH where the hash function H takes an additional
tag argument:

Definition 3.6.6. Let G be a cyclic group of order n, with generator g, and let H : {0, 1}∗×
{0, 1}∗ → {0, 1}ℓ be a hash function. Then the tagged oracle Diffie-Hellman (TODH)
assumption holds in G with respect to H if the following distributions are indistinguishable,
for all tags τ∗ and all A that do not query their oracle with second argument τ∗:

a, b← [n]

def Ha(X, τ) = H(aX, τ)

K = H(abg, τ∗)

return AHa(ag, bg,K)

a, b← [n]

def Ha(X, τ) = H(aX, τ)

K ← {0, 1}ℓ

return AHa(ag, bg,K)

In [ABR01] the authors show that standard ODH is secure in the generic group model
when H is a random oracle. This proof is easily adapted to the new TODH assumption as
well.

Proposition 3.6.7. Möller tagged DHKA (Fig. 3.9) satisfies tag nonmalleability (Theo-
rem 3.4.1) if the TODH assumption holds in both the curve and its twist.

A further small optimization is possible for Montgomery curves. The multiplication
algorithm only depends on the x-coordinate of its input and is uniform for both the curve
and its twist, in the sense that the usual multiplication algorithm for the curve also correctly
multiplies in the twist if the input is on the twist. So if the sender in Fig. 3.9 chooses a0 = a1

then there is no need to check whether the receiver’s B is on the curve or twist. Instead,
the sender simply multiplies B without any checking. However, security of this optimization
requires that a kind of TODH assumption hold for the curve and twist jointly (instead of
separately/independently for the curve and for the twist).

3.6.3.1 Instantiation

When creating a concrete instantiation of Möller ECDHKA, we chose to use Curve25519
[Ber06]. The main reasons for this choice were:

1. The base field Fp is of prime order 2255 − 19 > 2255 − 2255/2.

2. Curve25519 is explicitly designed to have a twist that is as secure as the curve itself.
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Sender Receiver (with input {ci}i∈[N ])

ϕ1 . . . ϕλ ← Base OT Receiver ϕ1, . . . , ϕλ MS , {ri,j} ← Base OT Sender
{ui} ← OT Extension Receiver
chal := H({ϕi},MS , {ui})

ri,ci ← Base OT Receiver MS , {ui}, resp resp← OT Extension Receiver
chal := H({ϕi},MS , {ui})
check that resp answers chal
{r′i,j}i,j ← OT Extension Sender {r′i,ci}i ← OT Extension Receiver
return {r′i,j}i∈[N ],j∈{0,1} return {r′i,ci}i∈[N ]

Figure 3.10: Sketch of the composition of our batch OT protocol with a maliciously secure
OT extension protocol, such as OOS or SoftSpokenOT, in 2 rounds.

3. Curve25519 can take full advantage of Montgomery Ladders for scalar multiplication
which allows us to use only the abscissa in computations.

4. Curve25519 and its twist have large prime subgroups of size #E/8 and #E′c/4.

Curve25519 also provides additional evidence for the security of the above optimization
of setting a0 = a1, because [Ber06] recommends not checking whether a given point is on the
curve or twist before performing scalar multiplication. This optimization is why Curve25519
was chosen to have a secure twist, and in fact the reference implementation does not check if
an elliptic curve point is on the curve. This requires a similar additional security assumption
to our optimization because it uses the same key for both the curve and its twist.

3.7 2-round Endemic OT Extension

When our protocol is used for base OTs, we can achieve a 2-round Endemic OT extension
protocol if the Fiat-Shamir heuristic is used. First, recall that our batch OT protocol is 1-flow
when instantiated with a 1-flow KA protocol, e.g., any Diffie-Hellman-based KA protocol.
This gives us the flexibility to send base OT messages in any order.

Second, we summarize the 1-out-of-2 OT extension protocol of [KOS15]:

• The parties perform base OTs

• The receiver (who is base OT sender) sends data as in all IKNP-based [IKN+03]
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extension protocols.

• To protect against a malicious receiver, the sender gives a random challenge

• The receiver sends a response to this challenge, which the sender checks.

We can order the messages of the base OTs so that the receiver can send their IKNP data
along with their base OT sender message. Additionally, we can collapse the malicious
consistency check using the Fiat-Shamir heuristic, since the sender’s challenge is random.
The resulting OT extension protocol is sketched in Fig. 3.10.

In related work, [CSW20] show how to use the Chou-Orlandi base OT protocol to achieve
3-round OT extension. This is inevitable since their base OTs already require 3 rounds.
[BCG+19a] show a 2-round OT extension protocol based on newer “silent OT” techniques.
Note however that both these papers achieve chosen message OT, while Fig. 3.10 only
achieves endemic OT and would require a third round to derandomize the sender’s messages.

3.8 Performance Evaluation

In this section, we will explore the concrete performance benchmarks of multiple instantiations
of the protocol in Fig. 3.3.

3.8.1 Implementation Details

We implemented9 our protocol inside the libote OT extension library [Rin], modifying the li-
brary to use Rijndael-256 [DR99; BÖS11] to instantiate an ideal cipher and libsodium [Den20]
to implement elliptic curve operations. The library uses Blake2 [ANW+13] to instantiate a
random oracle. We then tested the protocols on a machine running on an Intel Xeon E5-
2699 v3 CPU, without assembly optimizations or multi-threading. For benchmarking, each
protocol was run in a batch of 128 OTs for two settings of simulated latency and bandwidth
limiting. The two settings are meant to shed light on the LAN vs WAN environments that
these protocols may run in. The number of OTs to run was chosen to provide a realistic
setting in the case of 128 base OTs as is common in OT extension.

We compared the following implementations:
9Source code is at https://github.com/Oreko/popfot-implementation.

https://github.com/Oreko/popfot-implementation
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• Chou-Orlandi (Simplest OT).

• Naor-Pinkas OT

• Masny-Rindal (Endemic OT), with and without reusing the sender’s message. This
protocol uses hash-to-curve operations.

• Our protocol instantiated with Möller’s DHKA and various POPFs. We used the
original Feistel POPF of MRR, as well as the POPFs presented presented in Section 3.5.
Because the messages from Möller’s scheme are uniformly random bit strings, our
POPFs avoid the hash-to-curve operations that are needed in [MR19]. We did not
evaluate the Even-Mansour POPF (Fig. 3.5) since its performance would be identical
to the EKE POPF (Fig. 3.4) when Rijndael is used to instantiate both the ideal cipher
and ideal permutation.

• Our protocol with traditional DHKA, and all POPF instantiations excluding EKE and
Masny-Rindal. We did not implement the EKE POPF using DHKA; however, this
might be possible using Elligator or a similar mapping to construct an ideal cipher on
a subset of the curve points. We did not implement our protocol with Masny-Rindal
POPF as it would be nearly identical to the Masny-Rindal protocol.

3.8.2 Results & Discussion

The performance benchmarks can be found in Table 3.2 for both settings.
As we would expect, when comparing the three instances of Masny-Rindal OT, each

with their own improvement, we see a marked increase in efficiency. Specifically, reusing the
sender’s message reduced the total time spent by both parties by 18% / 11% in the low latency
and high bandwidth setting / the high latency and low bandwidth setting, respectively.
Moving to Möller’s KA caused an additional 24% / 9% improvement, respectively, for the
Masny-Rindal construction. On average, for the three protocols with both DHKA and Möller
DHKA versions (Masny-Rindal and the two Feistel POPF variants) we saw an improvement
of 31% / 12%, respectively, when moving to Möller’s KA.

As expected, the Simplest OT protocol outperforms our instantiations for the sender since
it uses fewer exponentiations in the group. One point to take note of in the evaluation data
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Protocol Security Sender (ms) Receiver (ms)

0.1ms latency, 10000Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) standalone 35 17
Naor-Pinkas OT [NP01] (Sender-reuse) standalone 43 34
Endemic OT [MR19] (No reuse) UC 79 42
Endemic OT (Sender-reuse) UC 62 37
Ours (Feistel POPF [MRR20] — DHKA) UC 82 40
Ours (Field Feistel POPF Fig. 3.7 — DHKA) UC 80 40
Ours (Feistel POPF — Möller DHKA) UC 49 26
Ours (Field Feistel POPF — Möller DHKA) UC 50 27
Ours (MR POPF Fig. 3.6 — Möller DHKA) UC 48 27
Ours (EKE POPF Fig. 3.4 — Möller DHKA) UC 50 25

30ms latency, 100Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) standalone 105 111
Naor-Pinkas OT [NP01] (Sender-reuse) standalone 101 107
Endemic OT [MR19] (No reuse) UC 161 53
Endemic OT (Sender-reuse) UC 137 53
Ours (Feistel POPF [MRR20] — DHKA) UC 155 47
Ours (Field Feistel POPF Fig. 3.7 — DHKA) UC 155 47
Ours (Feistel POPF — Möller DHKA) UC 128 44
Ours (Field Feistel POPF — Möller DHKA) UC 128 44
Ours (MR POPF Fig. 3.6 — Möller DHKA) UC 128 44
Ours (EKE POPF Fig. 3.4 — Möller DHKA) UC 128 44

Table 3.2: Running time to generate a batch of 128 OT instances. We report the average of
100 trials for each experiment.

is the large gap in the performance for the receiver between the Naor-Pinkas and Simplest /
Blazing OT constructions and the POPF and Masny-Rindal constructions in the high latency
/ low bandwidth setting. This is due to the different flow requirements between the two sets
of protocols. Simplest OT and Naor-Pinkas constructions all require an additional flow (or
two) which, in the WAN setting, will accrue more time for the party which needs to wait. It
then follows that the advantages of our protocol over Simplest OT is our UC security and
round/flow complexity.
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Chapter 4: SoftSpokenOT

Lawrence Roy. SoftSpokenOT: communication–computation tradeoffs in
OT extension. In CRYPTO 2022, LNCS. Springer, Heidelberg, August
2022. url: https://eprint.iacr.org/2022/192. To be published.

4.1 Introduction

Oblivious transfer (OT) is a basic building block of multi-party computation (MPC), and for
many realistic problems, MPC protocols may require millions of OTs. [Bea96] introduced
the concept of OT extension, where a small number of OTs called base OTs are processed
to efficiently generate a much larger number of extended OTs. [IKN+03] (hereafter, IKNP)
was the first OT extension protocol to make black-box use of its primitives, a significant
improvement in efficiency. Because of its speed, it is still widely used for semi-honest OT
extension.

However, IKNP has a bottleneck: communication. It transfers λ bits for every extended
random OT. Recent works under the heading of Silent OT [BCG+18; BCG+19b; SGR+19;
BCG+19a; YWL+20; CRR21] have improved on this. Their total communication complexity
grows logarithmically in the number of oblivious transfers, so they are favored when commu-
nication is slow. Yet IKNP is still more computationally efficient, as only Silver [CRR21]
among the Silent OT protocols has similar computational cost to IKNP. Additionally, Silent
OT requires stronger assumptions than IKNP, as unlike IKNP it requires a non-Minicrypt
assumption: learning parity with noise (LPN). Efficient Silent OT instantiations depend on
highly structured versions of LPN, with Silver, the most efficient protocol, introducing a
novel variant of LPN solely to improve its efficiency. These assumptions are too recent to
have received much cryptanalysis, especially when compared to widely-used symmetric key
primitives such as AES.

Improvements to IKNP also benefit a number of derived protocols. For maliciously secure
OT extension, the main approach [KOS15] (hereafter, KOS) is to combine IKNP with a
consistency check, although Silent OT can also achieve malicious security. [KK13] achieved(
N
1

)
-OT extension by noticing that part of IKNP can be viewed as encoding the OT choice

https://eprint.iacr.org/2022/192
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Figure 4.1: Sequence of ideal functionalities and protocols used for OT extension. Here
q = pk is the size of the small field VOLE, and L = Affine(FknC

p ) is the set of allowed selective
abort attacks against the base OT receiver. Protocols below the arrows are consistency
checks needed for maliciously security.

bits with a repetition code. They replaced it with a more sophisticated error correcting
code. [OOS17] (hereafter, OOS) and [PSS17] (hereafter, PSS) then devised more general
consistency checking protocols to achieve maliciously secure

(
N
1

)
-OT extension. [CCG18]

(hereafter, CCG) generalized OOS to work over larger fields, which have better linear codes.
This allowed for fewer base OTs, but required more communication per extended OT.

4.1.1 Our Results

Our technique, SoftSpokenOT, makes an asymptotic improvement over IKNP’s communica-
tion cost. It is the first OT extension to do so in the Minicrypt model. While IKNP needs
λ bits of communication for each OT, SoftSpokenOT can implement

(
2
1

)
-OT maliciously

secure extension using only λ/k bits, for any parameter k ≥ 1. This comes at the cost of
the sender generating λ · 2k/k pseudorandom bits (and a similar number by the receiver),
while IKNP only needs to generate 2λ bits. In practice, IKNP is network bound due to fast
hardware implementations of AES, so when k is set to be appropriately small (e.g. k = 5)
SoftSpokenOT’s extra computation will have no effect on the overall protocol latency. Note
that when k = 2, SoftSpokenOT requires no extra computation is required, making it a
pure improvement over IKNP. Asymptotically, setting k = Θ(log(ℓ)) generates ℓ OTs with
sublinear communication Θ

(
λ·ℓ

log(ℓ)

)
, in polynomial time.

We present a sequence of protocols (Fig. 4.1), starting with base OTs, continuing through
vector oblivious linear evaluation (VOLE), and ending at OT extension. First, we present a
novel silent protocol for VOLE over polynomial-sized fields, which may be of independent
interest. A VOLE generates correlated randomness (u⃗, v⃗) and (∆, w⃗) where w⃗− v⃗ = u⃗∆. Our
next stepping stone is an ideal functionality that we call subspace VOLE, which produces
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correlations satisfying W − V = UGC diag( ⃗∆). Here, GC is the generator matrix for a linear
code C. Note that ∆-OT (a.k.a. correlated OT) is a special case of subspace VOLE, as is the
correlation used by PaXoS [PRT+20]. Our ∆-OT works over any field of polynomial size, so
it can encode the inputs for arithmetic garbling [BMR16]. Finally, we hash the subspace
VOLE using a correlation robust (CR) hash to build random

(
N
1

)
, a correlation (x,mx) and

(m0, . . . ,mN−1) where the my are all random. These may be used directly, or to encode
lookup tables representing multiple small-secret

(
2
1

)
-OTs [KK13].

We generalize OOS to construct a consistency checking protocol that achieves maliciously
secure subspace VOLE, albeit with a selective abort attack. However, while proving our
protocol secure, we found flaws (Section 4.4.1) in three existing works on consistency checks
for OT extension. For OOS this is minor — just a flaw in their proof — and a special case of
our new proof shows that OOS is still secure. We found two attacks on KOS which show that
it is not always as secure as claimed, though it’s still secure enough in practice. We leave to
future research the problem of finding a sound proof of security for KOS. However, PSS’s
flaw is more severe, as we found a practical attack that can break their

(
256
1

)
-OT extension

at λ = 128 security in time 234 with probability 2−8.
There is an existing work on OT extension consistency checking that we did not find to

be flawed. CCG base their proof on [CDD+16]’s careful analysis of consistency checking for
homomorphic commitments. CCG’s check is similar to ours in that it works over any field.
However, similarly to [CDD+16] and unlike CCG we use universal hashing to compress the
random challenge of the consistency check. Additionally, we prove a tighter concrete security
bound than either work, which halves the number of rows that must be consistency checked.

The final step, going from correlated randomness (i.e. subspace VOLE) to extended OTs,
requires a CR hash function. For malicious security, a mechanism is needed to stop the
receiver from causing a collision between CR hash inputs. [GKW+20b] solve this with a
tweakable CR (TCR) hash, using a tweak to stop these collisions. TCR hashes are more
expensive than plain CR hashes, so Endemic OT [MR19] instead prevent the receiver from
controlling the base OTs, proving that it is secure to forgo tweaks in this case. However, their
proof assumes stronger properties of the consistency checking protocol than are provided by
real consistency checks, allowing us to find an attack on their OT extension (see Section 4.5).
We follow [CT21] in using a universal hash to prevent collisions, only using the tweak to
improve the concrete security of the TCR hash. We optimize their technique by sending
the universal hash in parallel with our new consistency check — our proof shows that the
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receiver has few remaining choices once it learns the universal hash.
We implemented SoftSpokenOT for

(
2
1

)
-OT in the libOTe [Rin] library. When tested

with a 1Gbps bandwidth limit, our protocol has almost a 5× speedup over IKNP with
k = 5, resulting from a 5× reduction in communication. The only case where SoftSpokenOT
was suboptimal among the tested configurations was in the WAN setting, where it took
second place to Silver. However, the assumptions needed by SoftSpokenOT are much more
conservative than those used by Silver.

4.1.2 Technical Overview

SoftSpokenOT is a generalization of the classic oblivious transfer extension of IKNP, which
at its core is based on what can be viewed as a protocol for F2-VOLE. This VOLE protocol
starts by using a PRG to extend

(
2
1

)
-OT to message size ℓ. The base OT sender, PS , gets

random strings m⃗0, m⃗1 and the receiver, PR, gets its choice bit b ∈ F2 and its chosen message
m⃗b. PS then computes u⃗ = m⃗0 ⊕ m⃗1 and v⃗ = m⃗1 = 0 m⃗0 ⊕ 1 m⃗1, while PR computes
∆ = 1 ⊕ b, and w = m⃗b = ∆m⃗0 ⊕ (1 ⊕∆)m⃗1.1 Then w⃗ ⊕ v⃗ = ∆m⃗0 ⊕∆m⃗1 = ∆u⃗, which
is a VOLE correlation: PS gets a vector u⃗ ∈ Fℓ

2 and PR gets a scalar ∆ ∈ F2, and they
learn secret shares v⃗, w⃗ of the product. While u⃗ was chosen by the protocol, it possible to
derandomize u⃗ to be any chosen vector. If PS wants to use u⃗′ instead, it can send ū = u⃗⊕ u⃗′

to PR, who updates its share to be w⃗′ = w⃗ ⊕∆ū. This preserves the VOLE correlation,
w⃗′ ⊕ v⃗ = ∆u⃗⊕∆ū = ∆u⃗′, while hiding u⃗′.

The next step of the IKNP protocol is to stack λ of these F2-VOLEs side by side, while
sending λ · ℓ bits to derandomize the u⃗ vectors to all be the same. That is, for the ith VOLE,
they get a correlation W·i ⊕ V·i = ∆iu⃗, where V·i means the ith column of a matrix V . In
matrix notation, this is an outer product: W ⊕ V = u⃗ ⃗∆, where ⃗∆ is the row vector of all the
∆i. Then looking at the jth row gives Wj· ⊕ Vj· = uj ⃗∆, which make uj the choice bit of a
∆-OT. That is, PR has learned ⃗mj0 = Wj· and ⃗mj1 = Wj· ⊕ ⃗∆, while PS has its choice bit
uj and ⃗muj = Vj· , the corresponding message. Notice that this is a correlated OT, but now
the OT sender is PR and the OT receiver is PS — they have been reversed from what they
were for the base OTs. Hashing the ⃗mjx then turns them into uncorrelated OT messages.

1Note that this is backwards from the usual description of IKNP — it’s more usual to set ∆ to be the
b, the index of the message known to PR. A key insight in SoftSpokenOT is that the unknown base OT
message is the most important.
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SoftSpokenOT instead bases the OT extension on a F2k -VOLE, where u⃗ is restricted to
taking values in F2. We now only need λ/k of these VOLEs to get the λ bits per OT needed
to make the hash secure. Derandomizing u⃗ for each OT then only needs λ/k bits per OT, as
for each VOLE the elements of u⃗ are in F2, reducing a major bottleneck of IKNP. Instead of(
2
1

)
-OT, our F2k -VOLE is based on

(
2k

2k−1
)
-OT, which can be instantiated using a well known

protocol [BGI17] based on a punctured PRF; see Section 4.6 for details.
In
(

2k

2k−1
)
-OT a random function F : F2k → Fℓ

2 is known to PS , while PR has a random
point ∆ and the restriction F ∗ of F to F2k \ {∆}. The earlier equations for the vectors u⃗, v⃗,
and w⃗ were chosen to be suggestive of their generalizations:

u⃗ = F (0)⊕ F (1) =⇒ u⃗ =
⊕
x∈F

2k

F (x)

v⃗ = 0F (0)⊕ 1F (1) =⇒ v⃗ =
⊕
x∈F

2k

xF (x)

w⃗ = ∆F ∗(0)⊕ (1⊕∆)F ∗(1) =⇒ w⃗ =
⊕
x∈F

2k

(x⊕∆)F ∗(x).

Notice that the formula for w⃗ multiplies F ∗(∆) by 0, which is good because F (∆) is unknown
to PR. Therefore, w⃗ ⊕ v⃗ =

⊕
x∆F (x) = ∆u⃗.

Reducing communication by a factor of k comes at the expense of increasing computation
by a factor of 2k/k. While there are now only λ/k VOLES, they each require both parties to
evaluate F at every point (except the one that PR does not know) in a finite field of size 2k.

4.2 Preliminaries

4.2.1 Notation

We start counting at zero, and the set [N ] is {0, 1, . . . , N − 1}. The finite field with p

elements is written as Fp, the vector space of dimension n as Fn
p , and set of all m × n

matrices as Fm×n
p . The vectors themselves are written with an arrow, as x⃗, while matrices

are capital letters M . Row vectors are written with a backwards arrow instead: ⃗x. The
componentwise product of vectors is x⃗⊙ y⃗ = [x0y0 · · · xn−1yn−1]⊤. Diagonal matrices are
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notated diag(x⃗) =

 x0

xn−1

, which makes x⃗⊙ y⃗ = diag(x⃗)y⃗. The ith row of a matrix

M is Mi·, while the jth column is M·j . The first r rows of M are M[r]·, and the first c

columns are M·[c].
There are two finite fields we will usually work with: the subfield Fp, and its extension

field Fq, where q = pk. Usually p will be prime, but that is not necessary. In a few places we
will equivocate between Fq, Fk

p, and [q], using the obvious bijections between them.

Linear Codes. Let C be a [nC , kC , dC ] linear code, that is, C is a kC-dimensional subspace
of FnC

p with minimum distance dC = min ⃗y∈C\{0} ∥ ⃗y∥0, where ∥ ⃗y∥0 is the Hamming weight of
⃗y. For a matrix A, we similarly let the Hamming weight ∥A∥0 be the number of nonzero

columns of A. Let GC ∈ FkC×nC
p be the generator matrix of C. We follow the convention that

the messages and code words are row vectors, so a row vector ⃗x encodes to the codeword
⃗xGC ∈ C. The rows of the generator matrix must form a basis of C, which can be completed

into a basis TC of FnC
p ; that is, the first kC rows of TC are GC . Then TC has an inverse T−1C ,

the last nC − kC columns of which form a parity check matrix for C.
There are two specific codes that come up most frequently. The trivial code, Fn

p , has
all vectors as code words. That is, GFn

p
= TFn

p
= 1n, where 1n is the n× n identity matrix.

The repetition code, Rep(Fn
p ), consists of all vectors where all elements are the same. Its

generator matrix is GRep(Fn
p )

=
[
1 · · · 1

]
.

Algorithms. We use pseudocode for our constructions. In many cases there will be two
similar algorithms side by side (e.g. sender and receiver, or real and ideal), and we use
whitespace to align matching lines. Sampling a value x uniformly at random in a set X is
written as x $← X.

4.2.2 Universal Hashes

We make extensive use of universal hashes [CW79], essentially as a more efficient replacement
for a uniformly random matrix. We depend on the extra structure of the hash function being
linear, so we give definitions specialized to that case.

Definition 4.2.1. A family of matrices R ⊆ Fm×n
q is a linear ϵ-almost universal family if,

for all nonzero x⃗ ∈ Fn
q , PrR $←R

[
Rx⃗ = 0

]
≤ ϵ.
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Definition 4.2.2. A family of matrices R ⊆ Fm×n
q is linear ϵ-almost uniform family if, for

all nonzero x⃗ ∈ Fn
q and all y⃗ ∈ Fm

q , PrR $←R
[
Rx⃗ = y⃗

]
≤ ϵ.

For characteristic 2, this is equivalent to being ϵ-almost XOR-universal. Clearly, a
family that is ϵ-almost uniform is also ϵ-almost universal. In Appendix C.6.1, we prove two
composition properties of universal hashes.

Proposition 4.2.3. Let R and R′ be ϵ and ϵ′-almost universal families, respectively. Then
R′R for R ∈ R, R′ ∈ R′ is a (ϵ+ ϵ′)-universal family.

Proposition 4.2.4. Let R and R′ be ϵ-almost uniform families. Then [R R′] for R ∈
R, R′ ∈ R′ is a ϵ-uniform family.

4.2.3 Ideal Functionalities

The protocols in this paper are analyzed in the Simplified UC model of [CCL15], so whenever
an ideal functionality takes inputs or outputs, the adversary is implicitly notified and allowed
to delay or block delivery of the message. The functionalities deal with three entities: the
sender PS , the receiver PR, and the adversary A. Instead of the usual event-driven style
(essentially a state machine driven by the messages), we use a blocking call syntax for our
ideal functionalities, where it stops and waits to receive a message. While we will not need
to receive multiple messages at once, it would be consistent to use multiple parallel threads

of execution, with syntax like recv. x from PS

∥∥∥ recv. y from PR . We omit the “operation

labels” identifying the messages, instead relying on the variable names and message order to
show which send corresponds to each receive. We assume the protocol messages themselves
are delivered over an authenticated channel.

All of our functionalities are for different kinds of random input VOLE or OT, meaning that
the protocol pseudorandomly chooses the inputs of each party. Essentially, the functionalities
just generate correlated randomness. Using random VOLE or OT, the parties can still choose
their inputs using derandomization, if necessary.2 However, we cannot guarantee that a
corrupted participant does not exercise partial control over the outputs of the protocols. For
this reason, we use the endemic security notion of [MR19], where any corrupted participants
get to choose their protocol outputs, then the remaining honest parties receive random outputs,

2See [MR19] for details on derandomizing OT messages.
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FN,ℓ,L
OT-1

for i ∈ [ℓ]:
if PS is corrupted:

recv. Fi ∈
(
{0, 1}λ

)[N ] from A

else:
Fi

$←
(
{0, 1}λ

)[N ]

if PR is corrupted:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈ {0, 1}λ from A

Fi(x
∗
i ) := F ∗i

else:
x∗i

$← [N ]

F ∗i := Fi(x
∗
i )

send {Fi}i∈[ℓ] to PS

Send/Abort
(
{x∗i }i∈[ℓ], {F ∗i }i∈[ℓ],L

)

FN,ℓ,L
OT-1

for i ∈ [ℓ]:
if PS is corrupted:

recv. Fi ∈
(
{0, 1}λ

)[N ] from A

else:
Fi

$←
(
{0, 1}λ

)[N ]

if PR is corrupted:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈
(
{0, 1}λ

)[N ]\{x∗
i } from A

Fi(x) := F ∗i (x), ∀x ∈ [N ] \ {x∗i }
else:
x∗i

$← [N ]

F ∗i (x) := Fi(x),∀x ∈ [N ] \ {x∗i }
send {Fi}i∈[ℓ] to PS

Send/Abort
(
{x∗i }i∈[ℓ], {F ∗i }i∈[ℓ],L

)
Figure 4.2: Ideal functionalities for a batch of ℓ endemic OTs, with

(
N
1

)
-OT on the left and(

N
N−1

)
-OT on the right. Differences are highlighted .

Fp,q,C,ℓ,L
VOLE

if PS is corrupted:
recv. U ∈ Fℓ×kC

p , V ∈ Fℓ×nC
q from A

else:
U $← Fℓ×kC

p , V $← Fℓ×nC
q

if PR is corrupted:
recv. ⃗∆ ∈ FnC

q ,W ∈ Fℓ×nC
q from A

V := −UGC diag( ⃗∆) +W
else:

⃗∆ $← FnC
q

W := UGC diag( ⃗∆) + V
send U, V to PS

Send/Abort( ⃗∆,W,L)

Figure 4.3: Ideal functionality for endemic
subspace VOLE. C is a linear code.

Send/Abort(x ∈ X, y ∈ Y,L ⊆ 2X):
if PS is malicious:

recv. L ∈ L from PS

if x /∈ L:
send “check failed” to PR

abort
send x, y to PR

Figure 4.4: Output with leakage function.
Sends x, y to PR, after allowing PS to do a
selective abort attack on x.
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subject to the correlation. One difference, however, is that in our ideal functionalities an
honest OT receiver doesn’t get to choose its choice bits. Instead, all protocol inputs are
random for honest parties.3

The ideal functionalities for length ℓ batches of
(
N
1

)
-OTs or

(
N

N−1
)
-OTs are presented

in Fig. 4.2. In each OT, the sender PS gets a random function F : [N ]→ {0, 1}λ, which is
chosen by the adversary if PS is corrupted. If N is exponentially large, F should be thought
of as an oracle, which will only be evaluated on a subset of [N ]. The receiver PR gets a
choice element x∗ ∈ [N ], as well as F ∗, which is either the one point F (x∗) for

(
N
1

)
-OT, or

the restriction of F to every other point [N ] \ x∗ for
(

N
N−1

)
-OT. Again, if PR is corrupted

then the adversary gets to choose these values.
In Fig. 4.3, we present subspace VOLE, a generalized notion of VOLE. Instead of

a correlation of vectors w⃗ − v⃗ = u⃗∆, where u⃗ ∈ Fℓ
p and v⃗ ∈ Fℓ

q are given to PS , and
w⃗ ∈ Fℓ

q and ∆ ∈ Fq to PR [BCG+18], subspace VOLE produces a correlation of matrices
W −V = UGC diag( ⃗∆), where U gets multiplied by the generator matrix GC of a linear code
C. Subspace VOLE is essentially nC independent VOLE correlations placed side-by-side,
except that the rows of U are required to be code words of C. For p = q = 2, this matches
the correlation generated internally by existing

(
N
1

)
-OT extensions.

Selective Aborts. Our base
(

N
N−1

)
-OT OT and subspace VOLE protocols achieve malicious

security by using a consistency check to enforce honest behavior. However, the consistency
checks allow a selective abort attack where PS can confirm a guess of part of PR’s secret
outputs. This is modeled in the ideal functionality using the function Send/Abort (Fig. 4.4).
Let x ∈ X be the value subject to the selective abort attack, and y ∈ Y be the rest of PR’s
output. When PS is malicious, it can guess a subset L ⊆ X, and if it is correct (i.e. x ∈ L)
then the protocol continues as normal. But if the guess is wrong then PR is notified of the
error, and the protocol aborts.

The subset L that PS guesses is restricted to being a member of L, for some set of allowed
guesses L ⊆ 2X . It is required to be closed under intersection, and contain the whole set
X. For VOLE, where X is a vector space, we also require that L − ⃗Loff ∈ L when L ∈ L
and ⃗Loff ∈ X. We use one main set of allowed guesses, Affine(Fn

q ). It is the set of all affine
subspaces of Fn

q , i.e. all subsets that are defined by zero or more constraints of the form
a0x0 + · · ·+ an−1xn−1 = an, for constants a0, . . . , an ∈ Fq. Since Fq can be viewed as the

3This is similar to the pseudorandom correlation generators (PCGs) used in [BCG+19b] to build Silent
OT. In fact, the small field VOLE constructed in Section 4.3.1 can be viewed as a PCG.
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Fp,q,C,ℓ,L,M
VOLE-pre

if PS is malicious:
recv. Wpre ⊆ {0, 1}∗ from A

recv. Upre : Wpre → Fℓ×kC
p from A

recv. Vpre : Wpre × FnC
q → Fℓ×nC

q from A

recv. Lpre : Wpre → L from A

send “commit” to PR

run Fp,q,C,ℓ,L
VOLE

instead of Send/Abort:
if PS is malicious:

recv. wpre ∈ Wpre, ⃗Loff ∈ FnC
q from A

if U ̸= Upre(wpre) ∨ V ̸= Vpre(wpre, ⃗∆) ∨ ⃗∆+ ⃗Loff /∈ Lpre(wpre)
send “check failed” to PR

abort
send ⃗∆,W to PR

Figure 4.5: Modification of Fig. 4.3 to get an ideal functionality for subspace VOLE with a
pre-commitment notification. We make two additional requirements on A. There must be a
polynomial upper bound M ≥ |Wpre| on the number of input choices PS has. And, for all ⃗∆,
⃗∆+ ⃗Loff ∈ Lpre(wpre) must imply V = Vpre(wpre, ⃗∆), to ensure that checking Vpre does not

make the selective abort any more powerful.

vector space Fk
p, we have a superset relationship Affine(Fnk

p ) ⊇ Affine(Fn
q ). There is also

{X}, the trivial guess set, which only allows a malicious PS to guess that x ∈ X. This guess
is trivially true, and so leaks no information at all.

Pre-committed Inputs. Our malicious OT extension protocol uses a universal hash to
stop PR from causing collisions between two distinct extended OTs, which is sent in parallel
with the VOLE consistency check for efficiency. However, the universal hash must be chosen
after PR (who acts as the VOLE sender) picks its VOLE outputs U, V and its guess L. In
Fig. 4.5, we modify the VOLE functionality to notify the VOLE receiver once U, V, L are
almost fixed — unfortunately, the consistency check still allows U, V, L to vary somewhat.
Specifically, U may have polynomially many options (which can be computationally hard to
find), L can get shifted by an offset ⃗Loff, and V can depend on the part of ⃗∆ that is guessed.

To address these difficulties, we identify the possible input choices with witnesses wpre,
and have A output a witness checker, i.e. an implicitly defined set Wpre of valid witnesses.
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Then we require U , V , and L to be fixed in terms of wpre, using functions Upre(wpre),
Vpre(wpre, ⃗∆), and Lpre(wpre). We require a polynomial upper bound M ≥ |Wpre| on the
number of witnesses. Additionally, so that the correctness check for Vpre does not leak any
information, for all ⃗∆ we require that ⃗∆+ ⃗Loff ∈ Lpre(wpre) implies V = Vpre(wpre, ⃗∆).

These changes are behind “if PS is malicious” checks, so in the semi-honest case FVOLE is a
equivalent to FVOLE-pre. For malicious security, FVOLE-pre gives the adversary less power than
FVOLE because it forces some of the choices to be made early, so any protocol for FVOLE-pre

is also a protocol for FVOLE.

4.2.4 Correlation Robust Hashes

The final step of OT extension is to hash the output from the subspace VOLE. This requires
a security assumption on the hash function H. We generalize the notion of a tweakable
correlation robust (TCR) hash function [GKW+20b] to our setting. While this definition will
most likely be used with p = 2 for efficiency, there are extra theoretical difficulties associated
with p > 2.

Definition 4.2.5. A function H ∈ FnC
q × T → {0, 1}λ is a (p, q, C, T ,L)-TCR hash if the

oracles given in Fig. 4.6 are indistinguishable.4 Formally, for any PPT adversary A that
does not call query twice on the same input ( ⃗x, ⃗y, τ),

AdvTCR =
∣∣∣Pr[ATCR-realH,p,q,C,L

() = 1
]
− Pr

[
ATCR-idealH,p,q,C,L

() = 1
]∣∣∣ ≤ negl.

Our definition is quite similar to the TCR of [GKW+20b] in the special case where C
is the repetition code. However, we explicitly include selective abort attacks in the TCR
definition, while they require that the hash be secure for any distribution for ⃗∆ with sufficient
min-entropy. Their definition has issues when instantiated from idealized primitives such as
random oracles, because, when the TCR is used for OT extension, the distribution for ⃗∆

would have to depend on these primitives [CT21]. In the standard model, their definition
is impossible to instantiate: H( ⃗∆, 0) must be random by TCR security, yet restricting ⃗∆

so that the first bit of H( ⃗∆, 0) is zero only reduces the min-entropy by approximately one
4Note that we do not consider multi-instance security. In fact, there is a generic attack: given N instances,

the attacker chooses an L that contains ⃗∆ with probability 1/N , then brute forces ⃗∆ for instances where
⃗∆ ∈ L. Thus, it is N -times cheaper to brute force attack H for N instances than to target a single one.
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TCR-realH,p,q,C,L

⃗∆ $← FnC
q

query( ⃗x ∈ FkC
p \ {0}, ⃗y ∈ FnC

q , τ ∈ T ):

return H( ⃗xGC ⊙ ⃗∆+ ⃗y, τ)

leak(L ∈ L):
abort if ⃗∆ /∈ L

(a) Real world.

TCR-idealH,p,q,C,L

⃗∆ $← FnC
q

query( ⃗x ∈ FkC
p \ {0}, ⃗y ∈ FnC

q , τ ∈ T ):
z $← {0, 1}λ
return z

leak(L ∈ L):
abort if ⃗∆ /∈ L

(b) Ideal world.

Figure 4.6: Oracles for TCR definition. Calls to query must not be repeated on the same
input.

bit and allows an efficient distinguisher. [CT21] fix the former issue with a definition TCR*
that only applies to the ideal model, while ours allows the possibility of standard model
constructions.

We now give two hash constructions, which we prove secure in Appendix C.1. Correlation
robust hashes were inspired by random oracles (ROs), so it should be no surprise that a RO
is a TCR hash.

Proposition 4.2.6. A random oracle RO : FnC
q × {0, 1}t → {0, 1}λ is a (p, q, C, {0, 1}t,

Affine(FknC
p ))-TCR hash, with distinguisher advantage at most τmax

(
q + 1

2q
′)q−dC . Here,

τmax is the maximum number of times query is called with the same τ , q is the number of
RO queries made by the distinguisher, and q′ is the number of calls to query.

The next construction comes from [GKW+20a]. It is the classic x 7→ π(x)⊕x permutation-
based hash function, but it uses an ideal cipher so that the tweak can be the key. Changing
keys in a block cipher requires recomputing the round keys, so there is a cost to changing
the tweak with this method. It needs a injection ι to encode its input; when p = 2, ι can be
the identity map.

Proposition 4.2.7. Let Enc : {0, 1}t × {0, 1}λ → {0, 1}λ be an ideal cipher, and ι : FnC
q →

{0, 1}λ be an injection. Then H( ⃗y, τ) = Enc(τ, ι( ⃗y))⊕ ι( ⃗y) is a (p, q, C, {0, 1}t,Affine(FknC
p ))-

TCR hash. The distinguisher’s advantage is at most τmax
(
(2q+ 1

2q
′)q−dC + 1

2q
′2−λ

)
, with q

and q′ as in Theorem 4.2.6.
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PS PR

Fq,1,L
OT-1

for x ∈ Fq:
r⃗x := PRG(F (x))

u⃗ :=
∑

x∈Fq
r⃗x

v⃗ := −
∑

x∈Fq
r⃗x x

output u⃗, v⃗

∆ := x∗

for x ∈ Fq \ {∆}:
r⃗x := PRG(F ∗(x))

w⃗ :=
∑

x∈Fq\{∆}

r⃗x (∆− x)

output ∆, w⃗

F x∗, F ∗

Figure 4.7: Protocol for small field VOLE. If Fq,1,L
OT-1

instead outputs “check failed” , it should
be passed straight through to PR.

4.3 VOLE

4.3.1 For Small Fields

We already presented our F2k -VOLE in Section 4.1.2. This VOLE is generalized in Fig. 4.7
to work over any small field Fq, specifically fields where q is only polynomially large, with u⃗

taking values in any subfield Fp. It is based on a
(

q
q−1
)
-OT, and a pseudorandom generator

PRG : {0, 1}λ → Fℓ
p. While this is a VOLE protocol, we analyze it using our subspace VOLE

definition by setting C to be the length one, dimension one code, i.e. GC = [1]. This makes
U , V , and W all become column vectors and ⃗∆ become a scalar.

Theorem 4.3.1. The VOLE given in Fig. 4.7 in the Fq,1,L
OT-1 hybrid model securely realizes

Fp,q,Fp,ℓ,L
VOLE , in both the semihonest and malicious models.

Proof. The proof of correctness is simple enough. Notice that the x = ∆ term of the sum for
w⃗ would be multiplied by ∆ −∆ = 0, so it makes no difference that it must be excluded
because PR does not know r⃗∆. Therefore,

w⃗ =
∑

x∈Fq\{∆}

r⃗x (∆− x) =
∑
x∈Fq

r⃗x (∆− x) =
∑
x∈Fq

r⃗x∆−
∑
x∈Fq

r⃗x x = u⃗∆+ v⃗. (4.1)

Corrupt PS. After receiving F from A, the simulator will compute u⃗, v⃗ honestly and submit
them to Fp,q,Fp,ℓ,L

VOLE . If PS is malicious, it will also forward L ∈ L to the ideal functionality.
In the real world, Fq,1,L

OT-1
will generate a random x∗ = ∆ and send it to PR, who will compute
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w⃗ = u⃗∆+ v⃗ by Eq. (4.1). In the ideal world, Fp,q,Fp,ℓ,L
VOLE will pick ∆ randomly, receive u⃗, v⃗

from the simulator, and compute w⃗ = u⃗∆+ v⃗. These are identical, implying that these two
worlds are indistinguishable and that this case is secure.

Corrupt PR. After receiving F ∗, x∗ from A, the simulator will compute ∆ = x∗ and w⃗

honestly, and submit them to Fp,q,Fp,ℓ,L
VOLE . We do a hybrid proof, starting from the real world

and going to the ideal world.

1. In the real world, Fq,1,L
OT-1

sets F (x) = F ∗(x) for x ̸= x∗, generates F (x∗) randomly,
and sends them to PS , who will compute r⃗x = PRG(F (x)) and u⃗, v⃗. By Eq. (4.1),
v⃗ = w⃗ − u⃗∆.

2. Because F (x∗) is only used to compute r⃗x∗ , the security of PRG implies that r⃗x∗ can
be replaced with a uniformly sampled value.

3. Instead of sampling r⃗x∗ randomly, sample u⃗ uniformly at random and set r⃗x∗ =

u⃗−
∑

x ̸=x∗ r⃗x. This is an identical distribution.

4. We are now at the ideal world, where Fp,q,Fp,ℓ,L
VOLE will pick u⃗ randomly, receive ∆, w⃗

from the simulator, and compute v⃗ = w⃗ − u⃗∆.

If both parties are corrupt then security is trivial, as then the simulator can just forward
messages between the corrupted parties.

Efficient Computation. Let a be a generator of Fq over Fp. For computation, it’s convenient
to represent v⃗ as a sequence of Fp vectors: v⃗ = v⃗0+av⃗1+ · · ·+ak−1v⃗k−1. Similarly, the index
x becomes x0 + ax1 + · · ·+ ak−1xk−1. Naïve computation of v⃗ using the sum then becomes
v⃗i =

∑
x xir⃗x, but this would require O(kq) vector additions and scalar multiplications over

Fp.
This can be improved to O(q + q

p + q
p2

+ · · · ) = O(q) vector additions and no scalar
multiplications. For all x′ ∈ Fq where x′0 = 0, let r⃗′x′ =

∑
x0∈Fp

r⃗x′+x0 , and notice that all
v⃗1, . . . , v⃗k−1 (and u⃗) depend only on the r⃗′x′ . Therefore, after computing all q

p vectors r⃗′x′ , the
outputs v⃗1, . . . , v⃗k−1 can be found by recursion on a smaller problem size. As a byproduct,
computing the r⃗′x′ produces sequences of partial sums

∑
x0≤i r⃗x′+x0 , and adding all of these

together then gives
∑

x′
∑

x0
(p− x0)r⃗x′+x0 = v⃗0. PR can use the same algorithm to compute

w⃗ by just reordering the r⃗x vectors at the start, because
∑

x r⃗x(∆− x) =
∑

x r⃗x+∆(−x).
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PS PR

Fp,q,FnC
p ,ℓ,{X}

VOLE[
U C

]
:= U ′T−1C

output U, V
W := W ′ −

[
0 C
]
TC diag( ⃗∆)

output ⃗∆,W

U ′, V ⃗∆,W ′

C ∈ Fℓ×(nC−kC)
p

Figure 4.8: Protocol for subspace VOLE.

Concatenation. While this does not directly follow directly from the UC theorem, it should
be clear that running the protocol Fig. 4.7 on a batch of n OTs will produce a batch of n
VOLEs. The proof trivially generalizes. More precisely, it achieves Fp,q,Fn

p ,ℓ,L
VOLE in the Fq,n,L

OT-1
hybrid model, where Fn

p is the trivial code with GFn
p
= 1n. This will be the basis for our

subspace VOLE.

4.3.2 For Subspaces

For
(
2
1

)
-OT extension, the next step would be for PS to send a correction to make all columns

of U be identical, so that each column would use the same set of choice bits. Efficient
(
N
1

)
-OT

extension protocols like [KK13] instead must correct the rows of U to lie in an arbitrary
linear code C, rather than the repetition code. We implement subspace VOLE to handle
these more general correlations.

Our protocol for subspace VOLE is presented in Fig. 4.8. It starts out with a VOLE
correlation W ′ − V = U ′ diag(∆). Then, PS divides U ′ into parts, the message U ∈ Fℓ×kC

p

and the correction syndrome C ∈ Fℓ×nC−kC
p , sending the correction to PR. PR then corrects

W to maintain the VOLE correlation property after PS removes C. Unfortunately, PS can
just lie when it sends C to PR, so the protocol only achieves semi-honest security. Since the
leakage set L only matters for malicious security, we simplify by assuming that L is trivial
(i.e. {X}).

Theorem 4.3.2. The protocol in Fig. 4.8 is a semi-honest realization of Fp,q,C,ℓ,{X}
VOLE in the

Fp,q,Fn
p ,ℓ,{X}

VOLE hybrid model.
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Proof. First, the protocol outputs correctly satisfy the VOLE correlation:

W = W ′ −
[
0 C
]
TC diag( ⃗∆)

= V + U ′ diag( ⃗∆)−
[
0 C
]
TC diag( ⃗∆)

= V +
([
U C

]
TC −

[
0 C
]
TC
)
diag( ⃗∆)

= V + UGC diag( ⃗∆).

For security, notice that any U, V, ⃗∆,W output by the protocol and any C that the adversary
eavesdrops on (because the communication is over an authenticated, but not private, channel)
corresponds to a unique U ′, V, ⃗∆,W ′ from the underlying VOLE. Specifically, U ′ =

[
U C

]
TC

and W ′ = W +
[
0 C

]
TC diag( ⃗∆). This implies the adversary does not learn anything new

by corrupting either party, as they could already predict what that party knows. They
only gain the power to program that the base VOLE’s outputs for that party, but the
simulator gains the corresponding power to program that party’s protocol outputs to match.
In more detail, S should receive from A the programed base VOLE outputs for the corrupted
parties, simulate doing exactly what they would do in the protocol (while sampling a fake
C $← Fℓ×(nC−kC)

p if PS is honest), and program the protocol outputs to be the result.
In the ideal world, S generates a uniformly random consistent adversary view U, V, ⃗∆,W

(together with U ′ or W ′ if PS or PR was corrupted). In the real world, the underlying VOLE
functionality picks U ′, V, ⃗∆,W ′ uniformly at random subject to the constraints of the VOLE
correlation and any outputs programmed by the adversary, and then the adversary gets to
see the protocol run. There is a bijection between consistent adversary views and outputs
of the underlying VOLE U ′, V, ⃗∆,W ′, and this bijection implies that these two views are
identically distributed.

4.4 Malicious Security

Our small field VOLE construction in Section 4.3.1 was easily proved maliciously secure. It
does not involve any communication, and so there are no opportunities for any of the parties
to lie. However, Section 4.3.2 requires PS to reveal part of U , allowing a malicious PS to lie.
Following KOS and OOS, we solve this by introducing a consistency check (Fig. 4.9) that
is run immediately afterwards, to provide a guarantee that if PS lies then the protocol will
either abort or work properly. Then the last few rows of U , V , and W are thrown away so
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PS PR

output U[h]·, V[h]·
output “commit”
R $← R

∼
U := RU
∼
V := RV

abort if
∼
V ̸= RW −

∼
UGC diag( ⃗∆):

output ⃗∆,W[h]·

R ∈ R

∼
U ∈ Fm×kC

q ,
∼
V ∈ Fm×kC

q

Figure 4.9: Consistency checking protocol, which should be used with Fig. 4.8. R must be
a ϵ-universal hash family, where all R ∈ R is Fh

p -hiding. The “abort if" means that “check
failed” is output if the check fails. If instead of giving ⃗∆,W ′ to PR, the base VOLE outputs
“check failed”, PR should continue to play along with the protocol and only output “check
failed” when it completes.

that the values revealed in the consistency check do not leak anything. This still allows the
possibility of selective abort attacks, however.

KOS, OOS, PSS, and CCG all compute their consistency checks by multiplying each
row of U with a random value — an element of an extension field for KOS or just a vector
for OOS and PSS. V and W are also multiplied by random values, in a consistent way. We
follow [CDD+16] in generalizing this to use linear universal hashes. Any linear ϵ-almost
universal hash family R ⊆ Fm×ℓ

q will work, as long as the following condition is met by every
R ∈ R, which guarantees that throwing away the last few rows of U is sufficient to keep the
others hidden.

Definition 4.4.1. A matrix R ∈ Fm×ℓ
q is Fh

p -hiding if the first h inputs to R will stay hidden
when the remaining inputs are secret and uniformly random. More precisely, if x⃗ $← Fℓ

p then
Rx⃗ must be independently random from x⃗[h]

Note that if R is Fh
p -hiding then that it is Fh

q -hiding, so if R is able to keep U ∈ Fℓ×kC
p

hidden then it will keep V ∈ Fℓ×nC
q hidden as well.

Many useful universal hashes with elements in Fp satisfy this definition, including hashes
based on polynomial evaluation or cyclic redundancy checks. That is, the last m columns of
R will span the others, so R will be Fh

p -hiding for h = ℓ−m. However, this only works if
the universal hash is over Fp, rather than Fq, as otherwise there won’t be enough entropy in
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the last m columns to completely hide the other inputs. On the other hand, using a hash
over Fq gives better compression. For a universal hash over Fp, the best possible ϵ is about
p−m, while for Fq it is q−m = p−km. We believe that the best approach is to compose two
universal hashes, first applying a Fℓ−m′

p -hiding hash R ∈ R ⊆ Fm′×ℓ
p , then further reducing

the output down to m entries with a second hash R′ ∈ R′ ⊆ Fm×m′
q where m′ ≥ km. The

composed hash will be Fℓ−m′
p -hiding, and will still be universal by Theorem 4.2.3.

Remark 4.4.2. PS outputs U[h]·, V[h]· in the first round, just after sending C and much
before the protocol has actually completed. In applications where U will be derandomized
immediately (e.g. chosen point OT extension), it is convenient to derandomize U at the same
time as sending C. The protocol returning early is what allows this within the UC framework.

Remark 4.4.3. After sending C, PS will not have many useful options to choose from,
so the protocol notifies PR with “commit” (as in Fp,q,C,h,L,M

VOLE-pre ) to indicate that PS’s inputs
(mostly) fixed. In Section 4.5, this notification is used to send a second universal hash at the
same time as R.

4.4.1 Flaws in Existing Consistency Checks

Given the similarity of Fig. 4.9 to the KOS, PSS, and OOS consistency checks, it seems
natural to adapt their proofs to the subspace VOLE consistency checking protocol. However,
it turns out that all three are flawed. We first present the flaw in OOS, because it is most
similar to our protocol.

4.4.1.1 Flaw in OOS’s Proof.

To get the OOS consistency check, take the protocol in Fig. 4.9 and set p = q = 2 and
R =

[
X 1m

]
, where X $← Fm×ℓ−m

2 is uniformly random. There are a couple of differences,
but these do not affect the consistency check proper. Our sender is their receiver and vice
versa, because they are implementing OT extension and we are doing subspace VOLE. And,
they send a correction C for the whole of U ′ at once, instead of just the syndrome, because
their OT choice bits are chosen rather than random. To avoid the confusion of introducing a
separate set of notations for essentially the same protocol, we ignore these differences and
discuss their proof using our notation and protocol. See Appendix C.2 for a discussion using
OOS’s original language.
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Let [U C̄] = U ′T−1C ⊕
[
0 C
]
, so C̄ is the error in the correction syndrome C sent by the

malicious PS . Similarly, let Ū = RU ⊕
∼
U and V̄ = RV ⊕

∼
V be the errors in the consistency

check messages sent by PS . The consistency check then becomes V̄ = [Ū RC̄]TC diag( ⃗∆)

(see the proof of Theorem 4.4.5 for details). OOS define a set E ⊆ [nC ] of column indices i

where
(
[Ū RC̄]TC

)
·i is nonzero. These are the indices i where ∆i will have to be guessed by

PS in order to pass the consistency check. They then attempt to prove that the indices in
E will be the only ones that PS lied about. That is, their simulator tries to correct U to
get PS ’s real output U⋆, so that if Z = [U⋆ C]TC ⊕ U ′ then the indices of all the nonzero
columns of Z are in E. This would let S update V accordingly, getting V ⋆ = V ⊕Z diag( ⃗∆),
which it could find because PS must guess ∆i for i ∈ E.

The flaw is in their proof that S can (with high probability, assuming that the check
passes) extract U⋆. Their technique is to look at Y = [U C̄]TC = U ′ ⊕

[
0 C
]
TC , whose rows

would be in C if PS were honest, and remove the columns in E to get a punctured matrix
Y−E . Then they decode the rows of Y−E using the punctured code C−E to get U⋆, since
Y ⊕ Z = U⋆GC and Z−E should be 0. For this to work, they need the rows of Y−E to be in
C−E . They try to prove this using the following lemma.

Lemma 4.4.4 (OOS, Lem. 1). Let D be a linear code and B ∈ Fℓ×nD
2 be a matrix, where

not all rows of B are in D. If X $← Fm×ℓ−m
2 and R =

[
X 1m

]
, then the probability that all

rows of RB are in D is at most 2−m.

They apply this lemma with D = C−E and B = Y−E . Note that RY = [Ū RC̄]TC⊕
∼
UGC ,

so RY−E =
∼
UGC−E

has all rows in C−E . They conclude that with all but negligible probability,
all rows of Y−E are in C−E . However, the lemma cannot be used in this way. The lemma
requires that D and B be fixed in advance, before X is sampled, yet C−E and Y−E both
depend on E. Recall that E is the set of nonzero columns of [Ū RC̄]TC , which depends on
both R directly, and on the consistency check message

∼
U sent by PS after it learns X.

While this shows that OOS’s proof is wrong, we have not found any attacks that contradict
their theorem statement. Additionally, a special case of our new proof (Theorem 4.4.5) shows
that the OOS protocol is still secure, with statistical security only one bit less than was
claimed.
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4.4.1.2 Attack For PSS’s Protocol.

The PSS consistency checking protocol is similar to OOS’s, though they only consider Walsh–
Hadamard codes, and they generate R $← Fm×ℓ

2 using a coin flipping protocol. In Lemma
IV.5, they have a similar proof issue to OOS, using Corollary IV.2 on dependent values
when the corollary assumes they are independent. However, we focus on a more significant
problem, which we summarize here, using our own notation. See Appendix C.3 for a more
detailed discussion, using their notation.

The most important difference from OOS is that PSS attempt to compress the consistency
check by summing the columns of

∼
V to get ∼v =

∼
V [1 · · · 1]⊤. The consistency check is

then that ∼v must equal
(
RW ⊕

∼
UGC diag( ⃗∆)

)
[1 · · · 1]⊤ = RW [1 · · · 1]⊤ ⊕

∼
UGC∆⃗. Let C̄,

Ū , and v̄ be defined analogously to our discussion of OOS. Then the consistency check is
v̄ = [Ū RC̄]TC∆⃗. This means that a malicious receiver only needs to guess XORs of multiple
bits from ⃗∆, rather than the individual bits themselves.

We used this to create an attack against PSS. Have PS lie about the bits in U ′ in length
N intervals, where in the first OT it lies about the first N bits of U ′0·, and in the next OT
the second N bits of U ′1·, and so on. Here, N is a parameter defining the tradeoff between
computational cost and attack success rate. Then [Ū RC̄]TC will have rows spanned by these
N bit intervals, so [Ū RC̄]TC∆⃗ only depends on ⌈nC

N ⌉ different values:
⊕N−1

j=0 ∆Ni+j for
i ∈
[
⌈nC
N ⌉
]
. Therefore, the consistency check passes with probability 2−⌈nC/N⌉, even though

we have lied about all nC bits. Later, having gotten away with these lies, the hashes output
by the OT extension can be brute forced to solve for each N -bit chunk of ⃗∆ individually.
This breaks the OT extension in time ⌈nC

N ⌉2
N−1. At the λ = 128 security level, nC = 256,

so by setting N = 32 we get an attack with success probability 2−8 that uses only 234 hash
evaluations.

4.4.1.3 Flaw in KOS’s Proof.

Like with OOS, in this section we will discuss KOS by analogy with our consistency checking
protocol Fig. 4.9. See Appendix C.4 for a more detailed account, using KOS’s notation for
their protocol.

To turn out consistentcy check into KOS’s, start by fixing p = q = 2 and C = Rep(Fλ
2).

Let R = Fλ×ℓ
2 , which means that R is Fℓ−λ−σ

2 -hiding with probability at least 1 − 2−σ.



99

They use a coin flipping protocol to make sure that PR cannot pick an R that is is not
hiding. Let α a primitive element of F2λ , meaning that {1, α, . . . , αλ−1} is a basis for F2λ

over F2. The first half of the consistency check,
∼
U , works as normal, except that it gets

encoded into a field element u =
⊕

i

∼
U i·α

i = α⃗⊤
∼
U , where α⃗ = [1, α, . . . , αλ−1]⊤. The other

half,
∼
V , is compressed from λ2 bits down to λ bits by turning it into a single field element

v =
⊕

ij

∼
V ijα

i+j = α⃗⊤
∼
V α⃗. Similarly, let w = α⃗⊤RWα⃗ and δ = ⃗∆α⃗. Then the consistency

check becomes

v = α⃗⊤RWα⃗⊕ α⃗⊤
∼
UGC diag( ⃗∆)α⃗

= w ⊕ uGC diag( ⃗∆)α⃗ = w ⊕ u[1 · · · 1] diag( ⃗∆)α⃗ = w ⊕ uδ.

Because C is a repetition code, U ′ is supposed to be derandomized so that all columns
are identical to U . Let Y = U ′ ⊕

[
0 C

]
TC be the derandomization of U ′. Then columns i

and j are called consistent if they imply the same values of U , i.e. if Y·i = Y·j . Also let S∆

be the set of possible ∆ that cause the consistency check to succeed. KOS’s proof of security
for malicious PS depends entirely on their Lemma 1, which states several properties of their
consistency check. Most importantly, it implies that for any u, v sent by PS , with probability
1− 2−λ there exists k ∈ N such that |S∆| = 2k and k is at most the size of the largest group
of consistent columns.

KOS gave no proof for Lemma 1, instead citing the full version of their paper, which has
not been made public. However, the authors of KOS were kind enough to give an unpublished
draft [KOS21]. Unfortunately, their proof has a similar flaw to OOS’s, because they assume
that R is sampled after S∆ is known.

Unlike OOS, we found a counterexample to show that KOS’s Lemma 1 is false, which we
call a collision attack. Let the malicious PS choose C uniformly at random (so Y will also
be uniformly random) but still provide an honest v during the consistency check. Because of
the correction PR applies, W will be

W = V ⊕ (U ′ ⊕
[
0 C
]
TC) diag( ⃗∆) = V ⊕ Y diag( ⃗∆)
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Let ⃗y = α⃗⊤RY . The consistency check is then

v = α⃗⊤RV α⃗⊕ α⃗⊤RY diag( ⃗∆)α⃗⊕ uGC diag( ⃗∆)α⃗

0 = ( ⃗y ⊕ u[1 · · · 1]) diag( ⃗∆)α⃗.

If u is set to be some element yi of ⃗y, the consistency check at least won’t depend on ∆i.
Since Y is uniformly random, ⃗y will be as well, so the probability of a collision among the yi

is roughly λ22−λ−1. If there is a collision yi = yj and PR sets u = yi, then |S∆| = 2k = 4.
This contradicts KOS’s Lemma 1 because k should be at most 1 as no two columns are
consistent.

In Appendix C.4.2 we present (using KOS’s notation) a stronger attack against special
parameters of KOS. Assuming that a certain MinRank problem always has a solution (and
heuristically it should have 2λ/5 solutions on average), the attack succeeds in recovering ∆

with probability 2−
3
5
λ using O(2λ/5) random oracle queries. While this is still not a practical

attack, according to KOS’s proof of their Theorem 1, an attack with this few random oracle
queries should only succeed with probability O(2−

4
5
λ).

4.4.2 Our New Proof

The biggest hurdle in the proof is the case where PS is malicious. If PS lies when it sends C,
then it will have to guess some entries of ∆, but which entries depends on what

∼
U it decides

to send. As with OOS’s flawed proof, PS does not have to make up its mind until after
seeing R, and generally speaking universal hashes are only strong when used on data that
was chosen independently of the hash. We need to find some property that only depends
on C and R so that we can show that it holds (with high probability) based on C being
independent of R, then use it to prove security.

The property we found was that R should preserve all the lies in C. More precisely, if C̄
is the difference between the honest C and the one PS sent, then RC̄ and C̄ should have the
same row space.5 The idea is that, if R were the identity, the consistency check would clearly
ensure that whatever incorrect value C that PS provides, it can still guess matrices U, V

that make the VOLE correlation hold. Although R is not the identity matrix, the check still
ensures that the VOLE correlation holds for

∼
U,

∼
V . The lie-preserving property of R then

5This fails if there are too many lies; however the VOLE would likely abort anyway.
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Sp,q,C,ℓsub-VOLE-mal-R

recv. ⃗∆ ∈ FnC
q ,W ′ ∈ Fℓ×nC

q from A

send ⃗∆,W ′ to PR

C $← Fℓ×(nC−kC)
p

send C to PR

W := W ′ −
[
0 C
]
TC diag( ⃗∆)

send ⃗∆,W[h]· to Fp,q,C,h,L,M
VOLE-pre

recv. R ∈ R from PR

U$
$← Fℓ×kC

q
∼
U := RU$
∼
V := RW −

∼
UGC diag( ⃗∆)

send
∼
U,

∼
V to PR

Precom(C̄, R,R−1):
Wpre := {Ū ∈ Fm×kC

q | t ≥ ∥ [Ū RC̄]TC∥0}
U⋆

pre(Ū) := U −R−1Ū

V ⋆
pre(Ū , ⃗∆) := V +R−1[Ū RC̄]TC diag( ⃗∆)

L′0 := L′ − ⃗∆0 for some ⃗∆0 ∈ L′

Lpre(Ū) :=

{
⃗∆ ∈ L′0 where

0 = [Ū RC̄]TC diag( ⃗∆)

}
return Wpre, U

⋆
pre, V

⋆
pre, Lpre

Sp,q,C,ℓsub-VOLE-mal-S

recv. U ′ ∈ Fℓ×nC
p , V ∈ Fℓ×nC

q from A

send U ′, V to PS

recv. L′ ∈ L from PS :
recv. C ∈ Fℓ×(nC−kC)

p from PS

[U C̄] := U ′T−1C −
[
0 C
]

R $← R
abort if rank(RC̄) < rank(C̄)
find R−1 ∈ Fℓ×m

q s.t. R−1RC̄ = C̄

Wpre, U
⋆
pre, V

⋆
pre, Lpre := Precom(C̄, R,R−1)

send Wpre, U
⋆
pre, V

⋆
pre, Lpre to Fp,q,C,h,L,M

VOLE-pre
send R to PS

recv.
∼
U ∈ Fm×kC

q ,
∼
V ∈ Fm×nC

q from PS

Ū := RU −
∼
U ; U⋆ := U⋆

pre(Ū)
V̄ := RV −

∼
V ; V ⋆ := V −R−1V̄

send U⋆
[h]·, V

⋆
[h]· to Fp,q,C,h,L,M

VOLE-pre
find ⃗Loff ∈ −L′ s.t.

V̄ = [Ū RC̄]TC diag( ⃗Loff)
abort if none exist
send Ū , ⃗Loff to Fp,q,C,h,L,M

VOLE-pre

Figure 4.10: Simulators for malicious security of Fig. 4.8 combined with Fig. 4.9, for a single
corrupt party. Sp,q,C,ℓsub-VOLE-mal-R is for corrupt PR, while Sp,q,C,ℓsub-VOLE-mal-S is for corrupt PS .

shows that they contain enough information to correct the whole of U and V so that they
do satisfy the VOLE correlation.

The proof of [CDD+16] is based on a similar lie-preserving property, but they analyze
this property independently from the consistency check. This leads to a bound of Θ(

√
ϵ)

on the distinguisher’s advantage. We instead consider these events together, because the
distinguisher only succeeds when it violates the property and passes the consistency check.
The product of these event’s probabilities is smaller than either individual probability, so we
prove a much smaller distinguisher advantage bound of Θ(ϵ).

Theorem 4.4.5. The subspace VOLE protocol in Fig. 4.8 combined with the consistency
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checking protocol in Fig. 4.9 is a maliciously secure implementation of Fp,q,C,h,L,M
VOLE-pre if L ⊇

Affine(FnC
q ), assuming that R ⊆ Fm×ℓ

q is a ϵ-almost universal family where all R are Fh
p-

hiding. The distinguisher has advantage at most ϵq
q−1 + q−t−1, where t = dC

1+

√
1+

dC
nC
− 1

n2
C

≥ dC
2

and M = nC(dC − t).

Note: when instantiated as in OOS, ϵ = 2−m and q = 2, so our proof shows that OOS
has only 1 bit less statistical security than was claimed. The q−t−1 term only matters for
the pre-commitment property, which OOS does not consider.

Proof. There are four cases, depending on which parties are corrupted. If both parties are
corrupted then the real protocol can be simulated trivially, by ignoring the ideal functionality
and just passing messages between the corrupted parties. If both players are honest, the
situation is very similar to the semi-honest protocol (Theorem 4.3.2). The only difference
is the additional two rounds, which can be simulated by picking a random R ∈ R, as well
as sampling fake PS values U$

$← Fℓ×kC
p and V$

$← Fℓ×nC
p and simulating the third round as

∼
U = RU$,

∼
V = RV$. Since both parties are honest, U and V are uniformly random, and so

Theorem 4.4.1 guarantees that these fakes are indistinguishable from the real consistency
check.

The situation is similar when only PR is corrupted (simulator in Fig. 4.10, top left).
Following the same principle as for the semi-honest protocol, S starts by performing the
computations that an honest PR would, while randomly sampling a fake syndrome C to
send. To simulate the consistency check, after receiving R, the simulator fakes

∼
U like in the

honest–honest case, then solves for
∼
V as the only possibility that will pass the consistency

check. The real protocol and the simulation are indistinguishable because the honesty of PS

implies that the consistency check will always pass, so the formula for
∼
V must always hold,

and PR cannot tell that
∼
U was generated from the fake U$ because R is Fh

p -hiding.
The most interesting case is when PS is corrupt. We present a hybrid proof, starting with

the real world, where the real protocol gets executed using the underlying ideal functionality
Fp,q,FnC

p ,ℓ,L
VOLE , and work towards the ideal world, where the simulator (Fig. 4.10, right) liaises

between the corrupted sender and the desired ideal functionality Fp,q,C,h,L,M
VOLE-pre .

1. Compute what PS ’s honest output would be, and the difference between the honest
syndrome and the one PS provided: [U C̄] = U ′T−1C −

[
0 C

]
. Add a check after PS

sends
∼
U and

∼
V , where if rank(RC̄) < rank(C̄), “check failed” is sent to PR and the
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protocol aborts. The environment’s advantage for this step is the probability that
this abort triggers and the protocol would not have aborted anyway. We bound this
probability using the following lemma.

Lemma 4.4.6. Let R ⊆ Fm×n
q be a linear ϵ-almost universal family, and let A be any

matrix in Fn×l
q . Then, ER $←R

[
qrank(A)−rank(RA) − 1

]
≤ ϵ(qrank(A) − 1).

Proof. By the rank–nullity theorem, R defines an isomorphism Fn
q / ker(R) ∼= colspace(R).

Its restriction to colspace(A) gives an isomorphism colspace(A) / ker(R) ∼= colspace(RA).
Therefore,

rank(RA) = dim
(
colspace(RA)

)
= dim(colspace(A))− dim(colspace(A) ∩ ker(R))

= rank(A)− dim(colspace(A) ∩ ker(R)).

We then want to bound the expected value of X = qdim(colspace(A)∩ker(R)) − 1 =

|colspace(A)∩ker(R) \ {0}|. That is, X is the number of nonzero v ∈ colspace(A) such
that Rv = 0. By Theorem 4.2.1, for any particular v ≠ 0 the probability that Rv = 0

is at most ϵ. Since X is the sum of |colspace(A) \ {0}| = qrank(A) − 1 indicator random
variables, we get E[X] ≤ ϵ(qrank(A) − 1).

For the real protocol to not abort,
∼
V = RW −

∼
UGC diag( ⃗∆) must hold. Because PR

is uncorrupted, ⃗∆ is sampled uniformly in FnC
q and W ′ is computed as U ′ diag( ⃗∆) + V .

Therefore,

W = W ′ −
[
0 C
]
TC diag( ⃗∆) = (U ′ −

[
0 C
]
TC) diag( ⃗∆) + V

= [U C̄]TC diag( ⃗∆) + V.

Let Ū = RU −
∼
U and V̄ = RV −

∼
V be the differences between the honest consistency

check messages and the ones sent by PS . Then the consistency check is equivalent to
−V̄ = [Ū RC̄]TC diag( ⃗∆). Next, we need to bound

P = Pr
[
abort ∧ check passes

]
= Pr

[
rank(RC̄) < rank(C̄) ∧ −V̄ = [Ū RC̄]TC diag( ⃗∆)

]
.
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Triggering this condition requires guessing [Ū RC̄]TC diag( ⃗∆), i.e. guessing ∆i for
every nonzero column

(
[Ū RC̄]TC

)
·i. Let N = ∥ [Ū RC̄]TC∥0 be the number of these

nonzero columns. A lower bound for N is rank([Ū RC̄]TC), because every zero column
does not contribute to the rank. TC is invertible, so multiplying by it does not change
the rank. Adding extra columns only increases rank, so rank([Ū RC̄]) ≥ rank(RC̄).
Up until the consistency check, the behavior of PR has been independent of ⃗∆, and
N is also independent of ⃗∆, so Pr

[
check | N

]
≤ q−N . Let r = rank(C̄) − rank(RC̄),

so N ≥ rank(C̄) − r. Then P ≤ E
[
q− rank(C̄)+r

1r≥1
]
, since the added abort occurs

exactly when r ≥ 1, and expectation of conditional probability is marginal probability.

Now, apply Theorem 4.4.6 to C̄ to get E[qr − 1] ≤ ϵ(qrank(C̄) − 1). If r ≥ 1 then
qr

qr−1 ≤
q

q−1 . Multiply both sides by qr − 1 to get

qr1r≥1 ≤
q

q − 1
(qr − 1).

P ≤ E
[
q− rank(C̄)+r

1r≥1
]
≤ ϵ

q

q − 1

(qrank(C̄) − 1)

qrank(C̄)
≤ ϵ

q

q − 1

2. After checking that rank(RC̄) = rank(C̄), find R−1 ∈ Fℓ×m
q such that R−1RC̄ = C̄.

To do this, find the reduced row echelon forms F = ARC̄ and F ′ = BC̄ of RC̄ and
C̄, where A ∈ Fm×m

q and B ∈ Fℓ×ℓ
p are invertible matrices. Because they have the

same rank, RC̄ and C̄ must have the same row space. The uniqueness of reduced row
echelon forms implies that all nonzero rows of F and F ′ will be identical, so

F ′ =

[
F

0

]
and C̄ = B−1F ′ = B−1

[
1m

0

]
F = B−1

[
1m

0

]
ARC̄,

which gives a formula for R−1.

Correct PS ’s VOLE correlation as U⋆ = U − R−1Ū and V ⋆ = V − R−1V̄ . Then,
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assuming that the consistency check passes,

W = [U C̄]TC diag( ⃗∆) + V

=
[
(U⋆ +R−1Ū) C̄

]
TC diag( ⃗∆) + V ⋆ +R−1V̄

= U⋆GC diag( ⃗∆) + V ⋆ +R−1
([

Ū RC̄
]
TC diag( ⃗∆) + V̄

)
= U⋆GC diag( ⃗∆) + V ⋆.

3. Let Wpre = Fm×kC
q , then run Precom(C̄, R,R−1) to get the pre-commitment functions

U⋆
pre, V

⋆
pre, Lpre as in the simulator, as well as ⃗∆0 ∈ L′ and L′0 = L′ − ⃗∆0. Also, find

some ⃗Loff ∈ −L′ where V̄ = [Ū RC̄]TC diag( ⃗Loff). Replace the underlying guess ⃗∆ ∈ L′

and the consistency check −V̄ = [Ū RC̄]TC diag( ⃗∆) with ⃗∆+ ⃗Loff ∈ Lpre(Ū). When
such an ⃗Loff exists, we need to show that this is equivalent to the consistency check. L′0
is the linear subspace obtained by shifting L′ to go through the origin, so ⃗∆+ ⃗Loff ∈ L′0
if and only if ⃗∆ ∈ L′ because ⃗∆+ ⃗Loff is the difference of two elements of the affine
subspace L′. When ⃗∆+ ⃗Loff ∈ L′0, we have that ⃗∆+ ⃗Loff ∈ Lpre(Ū) is equivalent to
0 = [Ū RC̄]TC diag( ⃗∆+ ⃗Loff), which equals [Ū RC̄]TC diag( ⃗∆) + V̄ . The latter being
zero is the consistency check.

We must also show that if the consistency check would pass, then a solution ⃗Loff

must exist. Assume that there exists some ⃗∆1 ∈ L′ that would pass the consistency
check, i.e. −V̄ = [Ū RC̄]TC diag( ⃗∆1). Then − ⃗∆1 ∈ −L′ is a valid solution for ⃗Loff.

4. Factor out the sampling of ∆, the computation of W[h]· = U⋆
[h]· diag( ⃗∆) + V ⋆

[h]·, and
the selective abort attack ⃗∆+ ⃗Loff ∈ Lpre(Ū) into the ideal functionality Fp,q,C,h,L,M

VOLE-pre .
The ideal functionality also includes an abort if U⋆ ̸= U⋆

pre(Ū) or V ⋆ ̸= V ⋆
pre(Ū , ⃗∆), and

we must show that neither will occur. The former cannot occur because that is exactly
how U⋆ is calculated. For the latter, when the consistency check passes we have

V ⋆
pre(Ū , ⃗∆) = V +R−1[Ū RC̄]TC diag( ⃗∆) = V −R−1V̄ = V ⋆.

5. We are now almost at the ideal world. We just need to changeWpre to be {Ū ∈ Fm×kC
q |

t ≥ ∥ [Ū RC̄]TC∥0}, as in the simulator, and show that |Wpre| ≤M . Changing Wpre is
only detectable if Ū /∈ Wpre and the consistency check still passes. Then the adversary
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must guess ∥ [Ū RC̄]TC∥0 ≥ t+ 1 entries of ⃗∆, which has negligible probability q−t−1.
We just need to choose t to be as large as possible while keeping M small.

Finding a Ū such that [Ū RC̄]TC = ŪGC + [0 RC̄]TC has few nonzero columns is
equivalent to a bounded distance decoding problem over Fqm . That is, interpreting
each column as an element of Fqm , ŪGC must be a code word close to −[0 RC̄]TC in
Hamming weight. The simplest choice would be to set t to be the decoding radius
⌊dC−12 ⌋ of C, guaranteeing that there is at most a single element of Wpre. To get a
tighter bound, we use the Cassuto–Bruck list decoding bound [CB04], which implies
M ≤ nC(dC − t) when t = dC

1+

√
1+

dC
nC
− 1

n2
C

.

Optimizations. There are a couple ways that the communication complexity of Fig. 4.9
can be improved. First, if the universal hash R contains a lot of entropy, a seed s ∈ {0, 1}λ

may be sent instead, so R = PRG(s). The only place the randomness of R was used was to
upper bound the probability that rank(RC̄) < rank(C̄). C̄ cannot depend on s, so if using a
PRG changed this probability more than negligibly then there would be an attack against
the PRG.

A second optimization is to hash
∼
V with a local random oracle Hash before sending it,

because all that’s needed is an equality check. The simulator (in the malicious PS case) could
then extract

∼
V from its hash, then continue as usual. Interestingly, for concrete security it

would be fine even if Hash were just an arbitrary collision resistant hash. Looking at just
C̄ and

∼
U , the simulator can see which entries of ⃗∆ are being guessed, though not what the

guesses are. By looping through a random subset of 2σ possible guesses (and for the usual
setting of σ = 40 this is quite feasible), S can find the preimage of Hash(

∼
V ) often enough to

only give the distinguisher an additional advantage of 2−σ.

4.5 OT Extension

Now that we have constructed subspace VOLE, it is time to go back to our original goal:
OT extension. Like previous OT extensions, we hash our correlated randomness in order to
get random OTs. For malicious security, our protocol (Fig. 4.11) follows [CT21] in using a
universal hash to avoid collisions between extended OTs, avoiding the need for a TCR hash.
However, a TCR hash allows for better concrete security (at they expense of performance)
by reducing τmax, which is the maximum number of queries H( ⃗y, τ) on the same tweak τ .
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PR PS

for i ∈ [ℓ]:
⃗x∗i := Ui·

output { ⃗x∗i }i∈[ℓ] Fp,q,C,ℓ,L
VOLE

R $← R

for i ∈ [ℓ]:
r⃗i := R⃗i

F ∗i := H(Vi· + r⃗⊤i , t(i, ⃗x∗i ))
output {F ∗i }i∈[ℓ]

for i ∈ [ℓ]:
r⃗i := R⃗i

⃗yi( ⃗x) := Wi· + r⃗⊤i − ⃗xGC ⊙ ⃗∆
Fi( ⃗x) := H( ⃗y( ⃗x), t(i, ⃗x))

output {Fi}i∈[ℓ]

“commit”

R

U, V

⃗∆,W

Figure 4.11:
(
pkC
1

)
-OT extension protocol. Note that the parties for the base VOLE are

swapped, with PS (instead of PR) getting ⃗∆. If PS receives “check failed” from the VOLE
then the protocol is aborted immediately. For semi-honest security, the “commit” and R steps
are skipped, and r⃗i := 0.

We allow an arbitrary function t(i, ⃗x) to control how many different hashes use the same
tweak. Unlike [CT21], our analysis allows R to be sent in parallel with the VOLE protocol,
saving a round of communication.

For generality, we allow any finite field, but we expect that p = 2 will be most efficient
in almost all cases. We equivocate between the choices Ui· in FkC

p from the VOLE, and the
choices x∗i in

[
pkC
]

expected for OT. This can be thought of as writing x∗i in base p.

Theorem 4.5.1. The protocol in Fig. 4.11 achieves FpkC ,ℓ,{X}
OT-1 with malicious security in

the Fp,q,C,ℓ,L,M
VOLE-pre hybrid model, assuming that H : FnC

q × T → {0, 1}λ is a (p, q, C, T ,L)-TCR

hash, and R ⊆ FnC×⌈logq(ℓ)⌉
q is an ϵ-almost uniform family. The distinguisher advantage is

at most ϵMℓ(tmax − 1)/2 + AdvTCR, where tmax is the maximum number of distict OTs that
can have the same tweak under t. For the TCR itself, τmax will be the maximum number of
evaluations Fi( ⃗x) where t(i, ⃗x) outputs a given tweak. For semi-honest security, R is unused;
instead set ϵ = q−nC and M = 1.

Proof. See Appendix C.6.2.
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PS PR

output U

Fp,p,Rep(Fn′
p ),ℓ,L

VOLE

R $← R

output V R output ⃗∆R,WR

“commit”

R

U, V

⃗∆,W

Figure 4.12: Non-leaky maliciously secure ∆-OT, a.k.a. subspace VOLE for the repetition
code. If PR receives “check failed” from the VOLE then the protocol is aborted immediately.

The Importance of Universal Hashing. For malicious security, it is critical that
tweaking or some other mechanism is used to stop collisions in the input to H. This was
noted by [GKW+20b; MR19], who show that when a malicious receiver can control its own
randomness V (as we assume), they can force all H evaluations to be equal between two
different extended OTs, causing two different OTs to have the same messages. However, this
depends on controlling the seeds used for the underlying IKNP OT extension. Endemic OT
uses this loophole, giving a protocol where PS chooses its seeds, and claim to show that it is
secure to omit the tweak in this case [MR19, Sect. 5.3]. In Appendix C.5, we give an attack
against their protocol, using only the partial control over V that comes from the correction
C. When the security parameter is λ = 128, it should have success probability a constant
times 2−24 on a batch of 107

(
2
1

)
-OTs.

4.5.1 ∆-OT

A common variant of OT extension is ∆-OT (a.k.a. correlated OT), where all OT messages
follow the pattern m0,m1 = m0⊕∆. It is useful for authenticated secret sharing and garbled
circuits. More generally, over a larger field, it works as mx = m0 + x∆, and is useful for
encoding the inputs to arithmetic garbling [BMR16].

∆-OT works easily as a special case of subspace VOLE where q = p and C = Rep(Fn
p ),6

except which party is called the sender and which the receiver is swapped, like with OT
extension. However, in the malicious setting our subspace VOLE allows a selective abort

6Note that subspace VOLE with q = pk and C = Rep(Fn
p ) can easily be turned into VOLE for q = p and

C = Rep(Fkn
p ), by interpreting Fq as a vector space over Fp.
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attack, and while for some applications (such as garbling) it may be allowed to leak a few bits
for ∆, in others it may not. [BLN+15] solve this problem by multiplying the ∆-OT messages
by a uniformly random rectangular matrix, throwing away some of the OT message. With
high probability, any correlation among the bits of ∆ is also lost, resulting in a non-leaky
∆-OT. In Fig. 4.12, we generalize this idea to use a universal hash, which can be more
computationally efficient than a random matrix.

Theorem 4.5.2. The protocol in Fig. 4.12 achieves Fp,p,Rep(Fn
p ),ℓ,{X}

VOLE with malicious security

in the Fp,p,Rep(Fn′
p ),ℓ,Affine(Fn′

p ),M

VOLE-pre hybrid model, assuming that R ⊆ Fn′×n
p is a ϵ-almost uniform

family and n′ ≥ n. The advantage is bounded by ϵM(pn − 1).

Proof. See Appendix C.6.3.

Note that if R has the optimal ϵ = p−n
′ , such as when it is a uniformly random matrix,

the environment’s advantage is upper bounded by Mpn−n
′ . Therefore, n′ should be set to

n+ logp(2)σ for security.

4.6 Base OTs

Our small field VOLE (Fig. 4.7) is based on
(

q
q−1
)
-OT, yet actual base OTs are generally(

2
1

)
-OT. We follow [BGI17] in using a punctured PRF to efficiently construct

(
N

N−1
)
-OT.

Our protocol (see Fig. 4.13) is based on the optimized version in [SGR+19], which generates( pk

pk−1
)
-OT from k

(
p

p−1
)
-OTs.

It depends on a PRG : {0, 1}λ →
(
{0, 1}λ

)p. The xth block of λ bits from this PRG is
written as PRGx(s). The PRG is used to create a GGM tree [GGM86]. Starting at the root

of the tree, PR gets p− 1 of the p children from Fp,k,Affine(Fk
p)

OT-1
, and at every level down the

tree the protocol maintains the property that PR knows all but one of the nodes at that
level. Each level i of the tree is numbered from 0 to pi − 1, with the yth node in the layer
containing the value siy. This means that the children of node siy are si+1

py+x = PRGx(s
i
y), for

x ∈ [p]. PS computes the whole GGM tree in BuildPPRF, finds the totals tix =
⊕

y s
i+1
py+x for

each x, and uses the ith base OT to send all but one of these totals to PR. Let y∗i be the
index of the node on the active path in layer i, i.e., the layer i node that PR cannot learn.
Then PR will know every siy except for siy∗i

, so it can compute si+1
py∗i +x = tix ⊕

⊕
y ̸=y∗i

si+1
py+x.

Thus, it learns si+1
y for all y ̸= y∗i+1. At the end, this process gives pk − 1 of the pk leaf nodes
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PS PR

Fp,k,L
OT-1

G, t := BuildPPRF(F )

output G output EvalPPRF(x∗, F ∗, t)

{Fi}i∈[k] {x∗i , F ∗i }i∈[k]{
tix ∈ {0, 1}λ

}
1≤i<k,x∈[p]

BuildPPRF(F ):
for x ∈ [p]:
s1x := F0(x)

for i := 1 to k − 1:
for y ∈

[
pi
]
, x ∈ [p]:

si+1
py+x := PRGx(s

i
y)

for x ∈ [p]:
tix := Fi(x)⊕

⊕
y∈[pi]

si+1
py+x

return (y 7→ sky), t

EvalPPRF(x∗, F ∗, t):
for x ∈ [p] \ {x∗0}:
s∗ 1x := F ∗0 (x)

y∗1 := x∗0
for i := 1 to k − 1:

for y ∈
[
pi
]
\ {y∗i }, x ∈ [p]:

s∗ i+1
py+x := PRGx(s

∗ i
y )

for x ∈ [p] \ {x∗i }:
s∗ i+1
py∗i +x := tix ⊕ F ∗i (x)⊕

⊕
y∈[pi]\{y∗i }

s∗ i+1
py+x

y∗i+1 := py∗i + x∗i
return y∗, (y 7→ s∗ k−1y )

Figure 4.13: Protocol for
(

q
q−1
)
-OT based on

(
p

p−1
)
-OT, using a punctured PRF.

sky .

Theorem 4.6.1. Figure 4.13 constructs Fq,1,{X}
OT-1

out of Fp,k,{X}
OT-1

, and is secure in the
semi-honest model.

Proof. See Appendix C.6.4.

While the protocol only does a single
(

q
q−1
)
-OT from a batch of k

(
p

p−1
)
-OTs, it should

be clear that a batch of n
(

q
q−1
)
-OT can be constructed from a batch of nk

(
p

p−1
)
-OTs. For

p = 2, the base
(

p
p−1
)
-OTs are just

(
2
1

)
-OTs. For p > 2, they can be constructed from chosen

message
(
p
1

)
-OT, by sending just the messages PR is supposed to see.
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PS PR

∼s,
∼
t := ProvePPRF(G)

output PRG′1 ◦G
abort if ∼s ̸= VerifyPPRF(y∗, G∗,

∼
t)

output y∗,PRG′1 ◦G∗

∼s,
∼
t ∈ {0, 1}2λ

ProvePPRF(G):
for y ∈ [q]:

∼sy := PRG′0(G(y))
∼
t :=

⊕
y∈[q]

∼sy

∼s := Hash(∼s0 ∥ · · · ∥ ∼sq−1)

return ∼s,
∼
t

VerifyPPRF(y∗, G∗,
∼
t):

for y ∈ [q] \ {y∗}:
∼s∗y := PRG′0(G

∗(y))
∼s∗y∗ :=

∼
t ⊕

⊕
y∈[q]\{y∗}

∼s∗y

∼s := Hash(∼s∗0 ∥ · · · ∥
∼s∗q−1)

return ∼s

Figure 4.14: Consistency checking protocol for
(

q
q−1
)
-OT. This makes Fig. 4.13 maliciously

secure.

4.6.1 Consistency Checking

In Fig. 4.14, we present the consistency check from the maliciously secure
(

2k

2k−1
)
-OT of

[BCG+19a]. We prove a stronger property of their check, that PS can only check guesses
for the x∗i s individually, not all of them together, which shows that any possible selective
abort attack is in Affine(Fk

p). This assumes that that PRG is collision resistant for its
whole output, so there are no s ̸= s′ such that PRGx(s) = PRGx(s

′) for all x ∈ [p]. As in
[BCG+19a], the protocol needs a second PRG, PRG′ : {0, 1}λ → {0, 1}2λ × {0, 1}λ, which
must be collision resistant in its first output PRG′0. In the consistency check, PS sends the
total of all ∼sky = PRG′0(s

k
y) so that PR can reconstruct ∼sky∗ . PR then evaluates a collision

resistant hash of all the ∼sky and checks that it matches the hash from PS . This commits PS

to a single possibility for each ∼sky .
In Appendix C.6.5 we use these assumptions to prove the following.

Proposition 4.6.2. The selective abort attack allowed in Fig. 4.14 will always be in L =

Affine(Fk
p).

Theorem 4.6.3. Figure 4.14 (composed with Fig. 4.13) is a maliciously secure Fq,1,Affine(Fk
p)

OT-1

in the Fp,k,Affine(Fk
p)

OT-1 hybrid model.



112

4.7 Implementation

We implemented7 our
(
2
1

)
-OT semi-honest and malicious protocols in the libOTe library

[Rin], so that we could assess efficiency and parameter choices. We focus only on the case of
binary fields (p = 2), as for this problem there is little benefit to using a larger p. First, we
discuss the choices we made in instantiation.

For semi-honest security, our protocol depends on only a PRG and a TCR hash. We
instantiate the TCR hash using Theorem 4.2.7, with AES as the ideal cipher. To keep τmax

low, we set t(i, ⃗x) = ⌊i/1024⌋, changing the tweak every 1024 OTs. We also used the hash as
a PRG, evaluating it as H(s, t(0)), H(s⊕ 1, t(1)), . . . for a seed s. This allows the same AES
round keys to be used across the many different PRG seeds used by OT extension, while
AES-CTR would need to store many sets of round keys — too many to fit in L1 cache.

Malicious security additionally requires a universal hash for Fig. 4.9. As recommended
in Section 4.4, we construct the universal hash in two stages. First, take each block of 64
bits from x⃗ and interpret it as an element of F264 . These blocks become the coefficients of
a polynomial over F264 , which is evaluated at a random point to get Rx⃗. We choose the
constant term to always be zero, which makes this a uniform family (not just universal),
allowing the use of Theorem 4.2.4 to sum multiple hashes together. Limiting each hash to 220

blocks (each 64-bits long) before switching to the next (generated from a PRG seed) makes
this a 2−44-almost uniform family over F2. The second stage R′ of the universal hash is over
F2k . It further compresses the output in F64

2k
down to only F⌈40/k⌉

2k
. We made the simple

choice of a uniformly random matrix in F⌈40/k⌉×64
2k

, which achieves the optimal ϵ = 2−k⌈
40
k
⌉

for a uniform family of this size.
Fig. 4.11 also needs a uniform hash, and we use multiplication over F2128 , multiplying

each tweak by a 128-bit hash key to get a 128-bit hash. Guessing the hash would require
guessing this hash key, so it is a 2−128-almost uniform family.

The punctured PRF (Fig. 4.14) requires collision resistant primitives PRG, PRG′, and
Hash. For PRG, we assume that it is hard to find s ̸= s′ such that H(s, 0) = H(s′, 0) and
H(s, 1) = H(s′, 1), which is true in the ideal cipher model. We use Blake2 [ANW+13] for
PRG′8 and Hash.

7Source code is at https://github.com/ldr709/softspoken-implementation.
8H would also work, assuming that PRG′

0 concatenates two output blocks from H.

https://github.com/ldr709/softspoken-implementation
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Semi-honest Security Malicious Security

Protocol
Communication Time (ms) Time (ms)

KB bits/OT localhost LAN WAN localhost LAN WAN
IKNP [IKN+03] / KOS [KOS15] 160010 128 391 1725 15525 443 1802 15662
SoftSpoken (k = 1) 160009 128 243 1590 15420 298 1637 15648
SoftSpoken (k = 2) 80009 64 210 815 7730 255 893 7985
SoftSpoken (k = 3) 53759 43 223 568 5208 322 677 5419
SoftSpoken (k = 4) 40008 32 261 433 3995 311 530 4114
SoftSpoken (k = 5) 32510 26 337 348 3271 454 465 3447
SoftSpoken (k = 6) 27509 22 471 488 2811 588 613 2985
SoftSpoken (k = 7) 23760 19 777 843 2380 899 966 2554
SoftSpoken (k = 8) 20008 16 1259 1314 1916 1293 1322 2130
SoftSpoken (k = 9) 18759 15 2302 2338 2439 2460 2457 2590
SoftSpoken (k = 10) 16259 13 3984 3983 4097 4126 4132 4223
Ferret [YWL+20] 2976 2.38 2156 2160 2825 2240 2242 3108
Silent (Quasi-cyclic) [BCG+19a] 127 0.10 7735 7736 8049
Silent (Silver, weight 5) [CRR21] 127 0.10 613 613 746

Table 4.1: Time and communication required to generate 107 OTs, averaged over 50 runs.
The best entry in each column is bolded, and the second best is underlined. Communication
costs for maliciously secure versions are within 10 KB of the semi-honest ones. The setup
costs are included.

Semi-honest Security

Protocol
Time (ms)

Comm. localhost LAN WAN
KB PR PS PR PS PR PS

IKNP [IKN+03] 4.2 27 19 32 21 94 54
SoftSpoken (k in 1–10) 8.3–9.8 27–29 28–30 32–44 33–45 86–101 127–142
Silent (Quasi-cyclic) [BCG+19a] 53.4 31 33 32 34 102 146
Silent (Silver, weight 5) [CRR21] 53.4 28 30 33 35 102 147
Ferret [YWL+20] 1166.8 65 65 70 65 552 342

Malicious Security
KOS [KOS15] 4.2 28 28 33 32 105 145
SoftSpoken (k in 1–10) 9.3–16.8 27–33 28–34 32–38 32–38 100–109 141–151
Ferret [YWL+20] 1175.3 73 73 75 73 608 553

Table 4.2: One-time setup costs for OT protocols in Table 4.1. SoftSpokenOT protocols have
nearly identical setup costs, and so only a range is given.

4.7.1 Performance Comparison

In Tables 4.1 and 4.2, we present benchmarks of our implementation in both the semi-honest
and malicious settings, for a variety of communication settings and parameter choices. We
also compare to existing OT extensions. All results were measured on an Intel i7-7500U
laptop CPU, with the sender and receiver each running on a single thread. The software was
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compiled with GCC 11.1 with -O3 and link-time optimizations enabled, and executed on
Linux. In the localhost setting, there is no artificial limit on the communication between
these threads, though the kernel has overhead in transferring the data, which is why our
k = 2 is faster than k = 1 even in this case. We simulated communicating over a LAN by
applying a latency of 1 ms and a 1 Gbps bandwidth limit. For the WAN setting, this becomes
40 ms and 100 Mbps. Base OTs were generated using POPF OT (Fig. 3.3), instantiated
with the EKE POPF (Section 3.5.1).9 The choice bits of SoftSpokenOT were derandomized
immediately, as were the choice bits for Ferret, to provide the most direct comparison with
IKNP and KOS. The choice bits for the Silent OTs were not derandomized, slightly biasing
the comparison in their favor.

Although for k = 1 our protocol is the same as IKNP in the semi-honest setting, our
implementation is significantly faster. This mainly comes from a new implementation of
128× 128 bit transposition, based on using AVX2 to implement Eklundh’s algorithm [TE76].
This gave a 6× speedup for bit transposition, which is a significant factor of IKNP’s overall
runtime.

In our benchmark, Silver did not perform as well as IKNP in the localhost setting, while
[CRR21] found that Silver was nearly 60% faster than IKNP. We attribute this difference to
using a lower quality computer, which has less memory bandwidth than the machine used
for their benchmark. This is important for Silver’s transposed encoding, a memory intensive
operation. Compared to Silent OT, we achieve better concrete performance in the localhost
and LAN settings, but the extremely low communication of Silent OT puts Silver in first
place for the WAN setting. We claim another a benefit to our protocol over Silver, since
SoftSpokenOT only needs fairly conservative assumptions about well-studied objects like
block ciphers, while Silver depends on hardness of LPN for a novel family of codes that has
yet to receive much cryptanalysis. More conservative versions of Silent OT, based on either
quasi-cyclic codes [BCG+19a] or local linear codes [YWL+20], are slower than SoftSpokenOT
across the tested settings.

For malicious security, we use a more efficient universal hash function compared to KOS10,
who require the additional generation of 128 bits from a PRG for every OT as part of the
consistency check. We have not benchmarked maliciously secure implementations of Silent

9Silent OT needs more than λ base OTs, and so as an optimization it generates them using KOS, which
needs only λ base OTs.

10The implementation of KOS in libOTe has the CR hashing flaw discussed in Section 4.5.
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OT and Silver, but they likely have very similar performance to the semi-honest case.
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Appendix A: 3/2 Garbling

A.1 Randomized Tweakable Circular Correlation Robust Functions

A.1.1 Circular Correlation Robustness

We build to our final construction in two steps, the first of which is to construct a simpler
circular correlation robust hash in the ideal permutation model.

Below we give the definition of circular correlation robustness from [GKW+20b], but
generalized to support non-matching input/output lengths and a family of linear functions L.
The original definition corresponds to the case n = m and L containing the identity function
and the all-zeroes function.

Definition A.1.1. Let H : {0, 1}n → {0, 1}m, and let L be a set of linear functions from
{0, 1}n → {0, 1}m. Then H is circular correlation robust for L if for all PPT A,∣∣∣∣Pr∆ [AOH,∆() = 1

]
− Pr

R

[
AR() = 1

]∣∣∣∣
is negligible, where Occr

H,∆ is defined as:

OH,∆(X ∈ {0, 1}n, L ∈ L):
return H(X ⊕∆)⊕ L(∆)

We show how to construct such a function for n = m in the ideal permutation model.
Our constructions require m ≤ n, and such a function can be obtained by simply truncating
one with n = m.

Lemma A.1.2. Fix a set of linear transformations L, and let σ be any function such that:

• σ is linear, so that σ(X ⊕ Y ) = σ(X)⊕ σ(Y )

• X 7→ L(X)⊕ σ(X) is invertible for all L ∈ L.



129

If π is an ideal permutation (all parties have oracle access to a random permutation π and
its inverse π−1), then

H(X) = π(X)⊕ σ(X)

is circular correlation robust for L.

This construction is the natural generalization of the one from [GKW+20b], who consider
L to contain only the zero-function and the identity function. In that case, our restrictions
on σ amount to requiring that σ is an orthomorphism.

Proof. Consider the following game, in the style of Bellare & Rogaway [BR06]:
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∆← {0, 1}n

π(A):

if ∃B : (A,B) ∈ Π∗:
bad1 = 1

return B

B ← {0, 1}n \ right(Π)

while ∃A′ : (A′, B) ∈ Π∗:
bad3 = 1

B ← {0, 1}n \ right(Π)


B ← {0, 1}n \ right(Π ∪Π∗)

add (A,B) to Π

return B

π−1(B):

if ∃A : (A,B) ∈ Π∗:
bad2 = 1

return A

A← {0, 1}n \ left(Π)

while ∃B′ : (A,B′) ∈ Π∗:
bad4 = 1

A← {0, 1}n \ left(Π)


A← {0, 1}n \ left(Π ∪Π∗)

add (A,B) to Π

return A

O(X,L):

if ∃B : (X ⊕∆, B) ∈ Π:
bad1 = 1

return B ⊕ σ(X ⊕∆)⊕ L(∆)

Z ← {0, 1}n

B = Z ⊕ σ(X ⊕∆)⊕ L(∆)

while ∃A : (A,B) ∈ Π ∪Π∗:
bad5 = 1

Z ← {0, 1}n

B = Z ⊕ σ(X ⊕∆)⊕ L(∆)


B ← {0, 1}n \ right(Π ∪Π∗)

Z = B ⊕ σ(X ⊕∆)⊕ L(∆)

add (X ⊕∆, B) to Π∗

return Z

The adversary gets oracle access to these 3 oracles and finally outputs a bit. Without loss of
generality, assume that the adversary does not repeat identical queries, does not query π

on a previous output of π−1, and does not query π−1 on a previous output of π — in all of
these cases, the answer to the query is already known. We make the following observations:
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• Without the highlighted lines, the game matches the “ideal” CCR experi-
ment. The π± oracles instantiate an ideal permutation on the fly, in the usual way,
keeping track of the input/output pairs in the set Π. left(Π) and right(Π) denote the
left/right element of all tuples in Π, respectively. O is instantiated as an independent
random function.

• With the highlighted lines, the game matches the “real” CCR experiment. A
query of the form O(X,L) = Z corresponds precisely to an internal query of the form
π(X ⊕∆) = Z ⊕ σ(X ⊕∆)⊕ L(∆). This game maintains a set Π∗ of input/output
pairs for π± that are defined as a result of a query to O. The added if-statements
ensure consistency when the same π input/output pair is used in both a query to π±

and to O. The added while-statements ensure that π always remains a permutation.
Note that the added while-statements, along with the preceding lines, can be simplified
as we show to the right.

• The two games are identical-until-bad. With or without the highlighted lines,
the games execute identical statements until one of the badi flags is set to 1.

From [BR06], we have that the distinguishing advantage of the adversary is bounded by
Pr[any badi is set to 1]. This probability can be calculated with respect to the ideal game
(highlighted code is not executed, except to set the badi flags). Since the badi flags do not
affect the execution in the ideal game, it is most convenient to consider that the adversary
makes all queries, and only when the game is over do we inspect the execution and determine
whether the badi flags are set. It suffices to show that each badi flag is set to 1 with only
negligible probability.

• bad1 is set to 1 (in either of two places) only if the adversary manages to directly query
π(A) and also O(X,L) where X = A ⊕∆ — the two queries can happen in either
order. Note that in the ideal game variant, ∆ is independent of the adversary’s view.
It is equivalent to choose ∆ at the end of the execution, after all queries have been
made, and when we are checking whether any badi flag was set. For a two specific
queries (one to π and one to O), the probability that they satisfy X = A⊕∆ is 1/2n.
Hence if the adversary makes a total of q oracle queries, bad1 is set with probability at
most q2/2n by a simple union bound.

• bad2 is set to 1 only if the adversary manages to query O(X,L) = Z and later query
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π−1(B) where Z = B ⊕ σ(X ⊕∆)⊕L(∆). As above, imagine ∆ being chosen after all
queries have been made. For a specific pair of queries (one to π−1 and one to O), the
probability that

Z = B ⊕ σ(X ⊕∆)⊕ L(∆)

= B ⊕ σ(X)⊕
(
σ(∆)⊕ L(∆)

)
is 1/2n since σ ⊕ L is a bijection. Hence if the adversary makes a total of q oracle
queries, bad2 is set with probability at most q2/2n by a simple union bound.

• bad3 is set to 1 only if B is chosen from right(Π∗). At any given time the size of
right(Π∗) is bounded by q, the total number of queries made by the adversary. Hence
the total probability that bad3 gets set is bounded by q2/2n.

• bad4 is similar to bad3: it is set to 1 only if A is chosen from left(Π∗).

• bad5 is set to 1 only if B ∈ right(Π ∪Π∗). Note that when Z is uniform, so is B. So
as above, on each call to O the probability that bad5 is set is at most q/2n, and the
overall probability of bad5 being set is at most q2/2n.

Since each badi flag is set to 1 with negligible probability, the two games are indistinguishable,
and the construction satisfies the CCR security definition.

Instantiations. Our main construction truncates a CCR from λ to λ/2 bits. Let the input
X to the CCR be λ bits and split it into two halves as X = XL∥XR. Our construction uses
linear functions Lab(∆L∥∆R) = (a∆L ⊕ b∆R)∥0λ/2, for a, b ∈ {0, 1}.

Our optimization in Section 2.6.2 uses a single λ-bit CCR to derive two calls to a λ/2-bit
CCR, each with possibly different linear transformations. This corresponds to a λ-bit CCR
with linear functions Labcd(∆L∥∆R) = (a∆L ⊕ b∆R)∥(c∆L ⊕ d∆R), for a, b, c, d ∈ {0, 1}.

Our construction requires an XOR-homomorphic function σ such that σ(X)⊕ L(X) is
invertible for any L in this class. The simplest examples of such a σ is as follows: split the
input X into two halves XL∥XR, then define σ(XL∥XR) = (αXL)∥(αXR), where α is any
fixed element in F2λ/2 \ F22 , and the multiplication is in F2λ/2 . Then we get

σ(∆)⊕ Labcd(∆) =

[
α⊕ a b

c α⊕ d

][
∆L

∆R

]
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Since a, b, c, d ∈ {0, 1}, the determinant of this matrix is a degree-2 polynomial in α with
binary coefficients. And since α is chosen not to be in F22 , it is not the root of any such
degree-2 polynomial. Hence the determinant of the matrix is nonzero, and σ(∆)⊕ Labcd(∆)

is invertible.

A.1.2 Randomized Tweakable CCR

Lemma A.1.3. Define H∗k,U as:

H∗k,U (X, τ) = Fk(X ⊕ U(τ))

and denote the family of all such function as H∗ = {Hk,U | k ∈ {0, 1}λ, U ∈ U}. If F is a
secure PRF, and for every (fixed) k, Fk is CCR for L, and {(X, τ) 7→ X ⊕ U(τ) | U ∈ U} is
a universal hash family, then H∗ is a secure RTCCR hash family for L.

Proof. Consider an adversary (A1,A2) in the “real” RTCCR experiment. Its first phase A1

makes queries to H∗ ∈ H∗ and to Ortccr
H∗,∆ before learning the parameters k and U .

Claim: it is with only negligible probability that A1 makes distinct queries (X, τ), (X ′, τ ′)
to its oracles such that X ⊕ U(τ) = X ′ ⊕ U(τ ′).

Proof of claim: Consider the following reduction algorithm M which has oracle access to
the construction H∗k,U , with k and U uniform. It internally runs A1 and chooses a random ∆.
When A1 queries its H∗ oracle, M relays that query directly to its oracle. When A1 queries
its O oracle on (X, τ, L), M queries its H∗ oracle and returns H∗k,U (∆⊕X, τ)⊕ L(∆).

Clearly M perfectly simulates the view of A1. Since Fk is a PRF and (X, τ) 7→ X ⊕U(τ)

is a universal hash function, the construction H∗k,U (X, τ) = Fk(X⊕U(τ)) is exactly a Carter-
Wegman MAC/PRF [BHK+99]. The usual security proof of Carter-Wegman establishes that
it is only with negligible probability that an adversary with oracle access to the MAC causes
an internal collision in the universal hash.

Now consider the following reduction algorithm M ′ which has an oracle for just Fk and
the (plain) CCR oracle Occr

Fk,∆
. It internally runs A1 and chooses a random U ← U . When

A1 queries its H∗ oracle at (X, τ), M ′ queries its Fk oracle at X ⊕ U(τ). When A1 queries
its Ortccr oracle at (X, τ, L), M ′ queries its Occr

Fk,∆
oracle at (X ⊕U(τ), L). Furthermore, M ′

aborts if two distinct queries ever result in the same X ⊕ U(τ). After A1 finishes, M ′ runs
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A2 and gives it k and U .
Note that

Occr
Fk,∆

(X ⊕ U(τ), L) = Fk(∆⊕X ⊕ U(τ))⊕ L(∆)

= H∗k,U (X ⊕∆, τ)⊕ L(∆)

= Ortccr
H∗,∆(X, τ, L)

and so, conditioned on M ′ not aborting, it perfectly simulates the view of (A1,A2). By
the argument above, M ′ aborts with only negligible probability. Note that M ′ is a valid
adversary in the (plain) CCR experiment as it never repeats an argument X ⊕ U(τ) to its
Occr

Fk,∆
oracle. It is important that the CCR experiment allows Fk to be public, so that M ′

can give k to A2.
By the fact that Fk is CCR (for fixed k), this interaction is indistinguishable from one in

which Occr
Fk,∆

is replaced with a random function. Making such a replacement causes A1’s
Ortccr oracle to be replaced by a random function. The fact that this view for (A1,A2) is
indistinguishable shows that H∗ is RTCCR.

Instantiation A simple choice of U is multiplication (in F2λ) by a random field element.
Consider the map (X, τ) 7→ X⊕U(τ) = X⊕u · τ where u← F2λ . For fixed (X, τ) ̸= (X ′, τ ′),
we have the following cases:

• If τ = τ ′ then X ̸= X ′ so X ⊕ uτ ̸= X ′ ⊕ uτ ′.

• If τ ̸= τ ′ then Pr[X ⊕ uτ = X ′ ⊕ uτ ′] = Pr[(X ⊕X ′)(τ ⊕ τ ′)−1 = u] = 1/2λ since u is
uniform.

In either case, the probability of (X, τ) and (X ′, τ ′) being a collision is negligible, so the map
is a universal hash.

In the reasonable event that all tweaks are at most λ/2 bits, we can interpret τ as an
element of F2λ/2 and define U(τ) = (uLτ)∥(uRτ) where uL, uR are independently uniform in
F2λ/2 . For λ = 128, this way of defining U involves more efficient 64-bit operations.
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A.2 Randomizing the Entire Control Matrix

We used computerized linear algebra to generate a basis for the 14-dimensional linear space
of matrices R$ such that KR$ = 0.

R$ ← span





1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

1 0 1 0 1 0

1 0 0 0 1 0

0 0 1 0 1 0


,



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1

0 1 0 0 0 0

0 0 0 1 0 0

0 1 0 1 0 1

0 1 0 0 0 1

0 0 0 1 0 1


,



0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

1 0 1 0 0 0


,



0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 1 0 0


,



0 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 1 0

0 0 1 0 1 0

0 0 1 0 1 0


,



0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 0 1

0 0 0 1 0 1

0 0 0 1 0 1


,



0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 1 0

1 0 0 0 0 0

0 0 1 0 0 0

1 0 1 0 1 0

1 0 0 0 1 0

0 0 1 0 1 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 0 1

0 1 0 0 0 0

0 0 0 1 0 0

0 1 0 1 0 1

0 1 0 0 0 1

0 0 0 1 0 1


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

0 0 0 0 0 0

1 0 0 0 1 0

0 0 0 0 0 0


,



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 0
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As you can see, projecting this basis unto a single evaluation case’s control matrix R$ij will
always give a uniformly random result, so this technique is sufficient to hide the entire control
matrix when using control indirection. This is easiest to see with the case i = j = 0 (the top
two rows of each matrix) because of the particular basis we chose, which is in echelon form
when the matrices are written as vectors in row-major order.
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Appendix B: POPF OT

B.1 Correlation Attack on Naïvely Batched MRR-OT

Consider the following strategy for a corrupt receiver, against naïve batching of the MRR
OT protocol.

• The sender first sends its (reused) KA message A = ga.

• In the first instance, run honestly with choice bit c1 = 0. Generate ϕ1 = Program(0, gb)

for known b.

• The receiver can compute the value B̃ = Eval(ϕ1, 1). The security of the POPF is that
the receiver has no control over this value (i.e., doesn’t know its discrete log). The
sender will compute OT output from this instance r1,1 = B̃a.

• In the second instance, set ϕ2 = Program(0, B̃ · gs) for known s. This means that the
sender will compute OT output from this instance

r2,0 = Eval(ϕ2, 0)
a = (B̃gs)a = B̃agas = r1,1g

as = r1,1A
s

Note that the receiver can indeed compute As, and therefore it knows the ratio r2,0/r1,1.
Note also that if s is uniform then B̃ · gs is distributed uniformly. From the simulator’s

point of view, the receiver’s behavior is identically distributed to honest behavior — running
Program(0, X) for a uniform group element X. Hence, even if the ideal functionality is
weakened to allow the receiver to specify correlations among the OT values, in this protocol
the simulator has no way of detecting which correlation is appropriate.
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B.2 Security Proofs for POPFs

B.2.1 Security Proof for Ideal Cipher (EKE) POPF

First, we have that HHSim,H,HExtract are indistinguishable, because they are all identical
other than HSim and Extract. Extract only reads HExtract’s state, but does not modify it.
Correctness follows directly from the correctness property of ideal ciphers.

There is an invariant that must be maintained for the ideal cipher to continue working
properly. For any x, ϕ there must not be y1 ̸= y2 such that (x, y1, ϕ) ∈ T and (x, y2, ϕ) ∈ T .
Similarly, for any x, y there must not be ϕ1 ̸= ϕ2 such that (x, y, ϕ1) ∈ T and (x, y, ϕ2) ∈ T .
If either case happened, the output of E or E−1 would not be well-defined. A birthday
bound shows that E and E−1 maintain this invariant. HSim explicitly aborts if it is asked to
break the invariant.

Honest Simulation: Recall that the y∗ sampled by D must be uniform. By a birthday
bound it is unique, not overlapping any previous y in T , with all but negligible probability.
Then when real_phi samples ϕ ← Program(x∗, y∗), E will choose a uniformly random
ϕ, the same distribution as sampled by HSim. It will also add (x∗, y∗, ϕ) to T . A similar
birthday bound allows us to assume that this ϕ is also unique. Then a E−1(1− x∗, ϕ) query
will be freshly random, so we can equivalently sample it ahead of time in a random value
r1−x∗ and add (1− x∗, r1−x∗ , ϕ) to T . But this is exactly what happens in sim_phi, as the
abort in HSim will not occur because r0 and r1 will be unique.

Uncontrollable Outputs: We provide a sequence of hybrids, starting from the real
distribution and ending at the ideal distribution.

1. Create an empty associative array Z at the start of HExtract. Inside E−1, whenever y is
sampled as freshly random, compute and save Z[y] = F (y). Then use the precomputed
value as r in Uncontrollable Outputs instead of finding it again; since y = Eval(ϕ, 1−x∗)

is calculated Z[y] must have been precomputed. This step just rearranges the order of
computations, and so is indistinguishable.

2. For the first E−1 query, instead of finding F (y), sample Z[y] as a uniformly random
value in O. We would like to use the 1-weak RO’s security to prove that this is
indistinguishable, but it seems like we are using F multiple times, and so cannot use
the security property. However, this multiple use is illusory, as only single value in Z
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will ever be used and the rest will be discarded.

More concretely, if we construct a reduction from this change in the hybrid proof
to the 1-weak RO security, without loss of generality we can assume that the adversary
aborts if this first Z[y] does not end up being used to find r. If it is not used, then
the two distributions are identical anyway. Now the other computations of F are
completely unused and can be removed, allowing us to reduce to 1-weak RO security.

3. Repeat Step 2 for subsequent E−1 queries.

4. Undo the changes in step 1. That is, delay randomly sampling the entries of Z until
Uncontrollable Outputs is run, so r will be uniformly random.

The advantage is bounded by adding up the advantages of every step. All security
properties used a constant number of birthday bounds, which give the adversary an advantage
of O

(
q2

N

)
. Additionally, Uncontrollable Outputs used the security of the 1-weak RO once in

each E−1 query, for a total advantage of qA(wRO).

B.2.2 Security Proof for Even-Mansour POPF

The proof is very similar to that of Theorem 3.5.1, and we will only describe the differences.
The invariant no longer mentions x, and just says that each u should have at most one v and
vice versa. Honest Simulation works similarly to before, pre-programming the randomness
that Eval will produce. It will preserve the invariant as long as it does not produce the same
ϕ or ϕ ⊕ 1 as one produced previously — ignoring a single bit should not affect collision
resistance.

For extraction, the only additional complication is arguing that the x∗ produced by
Extract is the only one where Eval(ϕ, x∗) is not freshly random on its first call. The only
way for it to not be random is for there to have been a previous Π(u) call that returned
ϕ⊕ x, but this cannot happen for multiple x as we have assumed that the other bits of ϕ are
unique. Extract checks T to find the unique call v = Π(u) where this happened, which must
have been the first, then finds x∗ such that v = ϕ⊕ x∗.
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B.2.3 Security Proof for Masny-Rindal POPF

First, we have HHSim ∼∼∼ H ∼∼∼ HExtract, because they are all identical when neither HSim nor
Extract have been called, though some have extra bookkeeping. Extract only reads HExtract’s
state, but does not modify it. Correctness is ensured as if ϕ = (s0, y · (H1(s0))

−1) ←
Program(1, y) then y = y · (H1(s0))

−1 ·H1(s0) = Eval(ϕ, 1), and similarly for x∗ = 0.

Honest Simulation: In the generation of ϕ = (s0, s1), we have that s1−x∗ is uniform by
construction, and furthermore since y∗ is sampled from D and must be uniform we have that
Program will generate uniform sx∗ . sx∗ is distinguishable only if Hx∗(s1−x∗) had previously
been queried which for uniform s1−x∗ only happens with probability at most q

|G| .
We also have uniqueness of s0, s1 with all but negligible probability by an application of

a birthday bound over G, so using U to program Hx will not interfere with any previous
Hx queries or other HSim calls. Finally, we have that Eval(ϕ, 1− x∗) = s1−x∗ ·H1−x∗(sx∗)

is close to uniform (since the query H1−x∗(sx∗) will be fresh with probability 1 − q
|G|), so

we can sample it early and save it in U . This is exactly how HSim functions in the ideal
world. Finally, by the enforced consistency of HSim we have that the outputs r0, r1 from
Eval are the values provided to HSim. This can be verified as if ϕ = (s0, s1)← HSim(r0, r1)

then Eval(ϕ, x) = sx ·Hx(s1−x) = sx · (sx)−1 · rx = rx.

Uncontrollable Outputs: Similarly to the proof of Claim 4.3 in [MR19], we would like to
guess a query Hx∗(u∗). Following [MRR20], we will call this query an anchor query. The
idea is that this is the query made by Program, or however the adversary constructed ϕ. Any
subsequent query H1−x∗(u) can be programmed to be u∗−1 · y to make Eval(ϕ, 1− x∗) = y if
we guessed correctly. We will know we guessed correctly if later u∗ is part of the ϕ that is
input to Extract.

However, instead of guessing a query like in [MR19], we will use a hybrid proof to get the
same result. Some hybrids will make changes that are only useful if a guess is correct, but
do nothing if the guess is wrong. Here is our sequence of hybrids starting with an interaction
with the real protocol and ending with the ideal world.

1. Create a new associative array Z at the start of HExtract. When a uniformly random
value v is sampled in Hx(u), look for possible anchor queries by iterating over all previous
queries H1−x(u

∗), and in each iteration, compute and save Z[x, u∗, u] = F (u∗ · v).

2. Use the precomputed value Z[1 − x∗, s1−x∗ , sx∗ ] as r in the Uncontrollable Outputs
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distribution, instead of finding it again with F (Eval(ϕ, 1− x∗)), if it has already been
computed.

3. For 1 ≤ i ≤ q and 1 ≤ j < i, repeat the following sequence of hybrids. That is, perform
these transformations for the ith query to H and jth iteration of the loop over prior
queries in H, for a total of q(q−1)

2 repetitions.

(a) Instead of sampling v ← G in the ith query Hx(u), use u∗ from the jth iteration
of the loop over possible anchor queries to sample y ← G and set v = u∗−1 · y.

(b) In the jth iteration of the ith query to H, instead of computing Z[ϕ, x] = F (y),
sample Z[ϕ, x] as a uniformly random value in O. This change is indistinguishable
because F is a 1-weak RO.1

(c) Undo the changes in step 3a, so v is sampled as v ← G again.

4. Undo the changes in step 1. That is, wait until the Uncontrollable Outputs distribution
is run before sampling the entries in Z. If Z[1− x∗, s1−x∗ , sx∗ ] is present, the Uncon-
trollable Outputs distribution now gets a uniformly random r instead of the output of
F .

5. Finally, also replace r with random if it does not appear in Z. In this case, either H0(s1)

or H1(s0) must not have been queried before, as otherwise whichever was queried first
would be the anchor query and then in the second query r would be precomputed and
saved in Z. Either x∗ will be the query that was made, or neither were queried — either
way, Hx∗(s1−x∗) must not have been queried. Therefore Eval(ϕ, 1− x∗) must return a
fresh uniformly random value, and the 1-weak RO property allows us to replace F ’s
output with random.

For Honest Simulation, the adversary just gets a birthday bound advantage O
(
q2

N

)
. But

in Uncontrollable Outputs we use the security of 1-weak RO, which allows them an additional
advantage. We use it q(q−1)

2 times in step 3b, and one additional time in step 5. Therefore,
Uncontrollable Outputs allows the adversary an advantage of q2−q+2

2 A(wRO), on top of the
birthday bounds.

1Although it appears that F is used in multiple places, only a single one is actually used in the end. See
the proof for the EKE POPF for details.
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B.2.4 Security Proof for Feistel POPF

All three Hs are clearly indistinguishable on their common interface, as without any HSim
queries they behave identically. For correctness, notice that

Eval(Program(x∗, y∗), x∗) = H(x∗, ι(t)x∗ + u− ι(t)x∗) · t

= H(x∗, u) ·H(x∗, u)−1 · y = y

Honest Simulation: real_phi chooses u uniformly randomly, so the H(x∗, u) query
will return fresh randomness as it has negligible probability of overlapping with any other
query. Therefore ϕ = (s, t) will be uniformly random, the same distribution as produced
by HSim. Next, we just need to prove that HSim successfully programs Eval, i.e., that r0

and r1 will match between real_phi and sim_phis. It succeeds if the second if-statement
in H(x, ι(t)x + s) is triggered, because then Eval(ϕ, x) will produce H(x, ι(t)x + s) · t =
rx · t−1 · t = rx.

There are two ways that it could fail: either H(x, ι(t)x+ s) had already been queried
before HSim was called, or U [x, ι(t)x + s] gets overwritten by another HSim query. The
former case has negligible probability because there are at most q previous queries H(x, u),
each would cause a failure only if s = u− ι(t)x, and s is chosen uniformly at random after
the H(x, u) query. For the latter case, notice that every ϕ = (s, t) defines a unique line
u = ι(t)x + s. A pair of such lines would have to intersect at some x ∈ {0, 1} for U to
be overwritten. They can only intersect for a single value of x, and since both lines are
uniformly random, this x will be uniformly random in F, so there is negligible probability of
an intersection for x ∈ {0, 1}.2

Uncontrollable Outputs: We use MRR20’s notion of anchor queries for this proof. An
anchor query is a query made during Program that can be used by HExtract to identify ϕ

before it is revealed by the adversary. More specifically, a query H(x∗, u∗) is the anchor
query if it is the first query on the line u∗ = ι(t)x∗ + s. It is, in fact, the query that Extract
searches for in order to find x∗. The anchor query is needed to find t early and program the
subsequent H queries such that Eval outputs a random value for the weak random oracle.

[MRR20] guessed the anchor query, taking a factor q security loss, and we will do
2When handling exponentially large x this becomes problematic, but can be fixed by hashing x with

another random oracle H ′ before multiplying by ι, so that the adversary would need to solve a hard preimage
problem to find the x corresponding to an intersection.
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something similar with hybrids. In a chain of hybrids, we guess a possible anchor query
and make some changes that make progress if the guess was correct and do nothing if we
are wrong. Once the anchor query H(x∗, u∗) has been made, on each subsequent query
H(x, u) we assume it is on the same u = ι(t)x+ s line and use this to find ϕ and program
H(x, u). Specifically, t = ι−1

(
u−u∗

x−x∗

)
can be found from the slope of the line through the

points (x∗, u∗), (x, u), and s = u− ι(t)x is the u-axis intercept. If this assumption is wrong
there is no harm, similarly to the anchor query.

We use the following sequence of hybrids, from the real distribution to the ideal distribu-
tion.

1. Create an empty associative array Z at the start of HExtract. Inside H, whenever v

is sampled as freshly random, iterate over all previous queries H(x∗, u∗) for x∗ ≠ x

to look for possible anchor queries. For each such query, compute ϕ = (s, t) as
described above. Skip to the next H-query if this ϕ came up in a previous iteration, as
then it is impossible for H(x∗, u∗) to be the anchor query for ϕ. Compute and save
Z[ϕ, x] = F (v · t).

2. Use the precomputed value Z[ϕ, 1−x∗] as r in the Uncontrollable Outputs distribution
if it is present, instead of computing it again as F (Eval(ϕ, 1− x∗)).

3. For 1 ≤ i ≤ q and 1 ≤ j < i, repeat the following sequence of hybrids. That is, perform
these transformations for the ith query to H and jth possible anchor query, for a total
of at most q(q−1)

2 repetitions.

(a) Instead of sampling v ← G in the ith query H(x, u), use the inferred ϕ = (s, t)

from the jth possible anchor query to sample y ← G and set v = y · t−1.

(b) In the jth iteration in the ith query to H, instead of computing Z[ϕ, x] = F (y),
sample Z[ϕ, x] as a uniformly random value in O. This change is indistinguishable
because F is a 1-weak RO.3

(c) Undo the changes in step 3a, so v is sampled as v ← G again.

4. Undo the changes in step 1. That is, delay randomly sampling the entries in Z until
Uncontrollable Outputs is run. If Z[ϕ, 1− x∗] is present, the Uncontrollable Outputs

3Although it may seem that F is used multiple times, only one of these values will actually be used in the
end. For more details, see the proof for the EKE POPF.
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distribution now gets a uniformly random r instead of the output of F .

5. Finally, if Z[ϕ, 1 − x∗] is not present, replace the output r of the 1-weak RO with
random. In this case H

(
1− x∗, ι(t)(1− x∗) + s

)
cannot have been queried before, as

otherwise either the anchor query would be at 1 − x∗ not x∗, or the anchor query
H(x∗, ι(t)x∗ + s) would have been made before the other query and so Z[ϕ, 1 − x∗]

would be present, which are both contradictions. Therefore, the call to Eval(ϕ, 1− x∗)

in the Uncontrollable Outputs distribution must return fresh randomness, and then
the 1-weak RO property allows us to replace r with random.

Again, we bound the advantage by summing the advantages of each step in the hybrid
proof. Excluding the birthday bounds, the only advantage the adversary gets is in Uncontrol-
lable Outputs, when we use the 1-weak RO property. We use it q(q−1)

2 times in step 3b, once
for each pair of oracle queries, because we must loop over every previous query as a possible
anchor query. Finally, we use it one last time in step 5. Therefore, Uncontrollable Outputs
allows the adversary an advantage of q2−q+2

2 A(wRO), on top of the birthday bounds.
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Appendix C: SoftSpokenOT

C.1 Correlation Robust Hash Constructions

Proposition 4.2.6. A random oracle RO : FnC
q × {0, 1}t → {0, 1}λ is a (p, q, C, {0, 1}t,

Affine(FknC
p ))-TCR hash, with distinguisher advantage at most τmax

(
q + 1

2q
′)q−dC . Here,

τmax is the maximum number of times query is called with the same τ , q is the number of
RO queries made by the distinguisher, and q′ is the number of calls to query.

Proof. We argue indistinguishability, going from the ideal oracle to the real oracle. But first,
we must define two bad events, and bound the probability of their occurrence in the ideal
world. For both events, we actually use a slightly modified ideal world where the abort in
leak is delayed to the end. This makes no difference, as it will always give the same output
(i.e. “abort”) in the end. These bad events are:

1. Adversary runs queries RO(τ, ⃗u) and query( ⃗x, ⃗y, τ) such that ⃗u = ⃗xGC ⊙ ⃗∆+ ⃗y.

2. Adversary runs queries query( ⃗x, ⃗y, τ) and query( ⃗x′, ⃗y′, τ) such that ⃗xGC ⊙ ⃗∆+ ⃗y =

⃗x′GC ⊙ ⃗∆+ ⃗y′. Equivalently, ⃗y − ⃗y′ = ( ⃗x′ − ⃗x)GC ⊙ ⃗∆.

For both events, an equation of the form ⃗y = ⃗c⊙ ⃗∆ must hold, for some non-zero code
word ⃗c ∈ C. Since ∥ ⃗c∥0 ≥ dC , any such equation has probability at most q−dC . There are at
most qτmax suitable query pairs for the first bad event, and q′τmax/2 suitable pairs for the
second. Therefore, the union bound shows the probability of either event occurring is at
most τmax

(
q+ 1

2q
′)q−dC .

In query we can replace the sampling of z ← {0, 1}λ with its value in the real oracle,
RO( ⃗xGC ⊙ ⃗∆+ ⃗y, τ). Assuming that the bad events never happens, no RO query in query

will have the same inputs as any other RO query, from either the adversary (Event 1) or
another call to query (Event 2). Therefore this change is indistinguishable. We are now at
the real world.

Proposition 4.2.7. Let Enc : {0, 1}t × {0, 1}λ → {0, 1}λ be an ideal cipher, and ι : FnC
q →

{0, 1}λ be an injection. Then H( ⃗y, τ) = Enc(τ, ι( ⃗y))⊕ ι( ⃗y) is a (p, q, C, {0, 1}t,Affine(FknC
p ))-

TCR hash. The distinguisher’s advantage is at most τmax
(
(2q+ 1

2q
′)q−dC + 1

2q
′2−λ

)
, with q
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and q′ as in Theorem 4.2.6.

Proof. We start by defining four bad events, and prove an upper bound on the probability
of their occurrence when the distinguisher is given access to the oracle TCR-idealH,p,q,C,L.
As with the RO-based TCR, we modify the ideal world slightly so as to ignore the aborts
when bounding the bad events. The first two bad event are essentially the same as for the
RO-based TCR hash, while the others come from Enc having an inverse. Note that if the
adversary queries Enc, it is also counted as a Enc−1 query for the purposes of the bad events
— all that matters for these events is the relation between Enc inputs and outputs.

1. Adversary queries Enc(τ, u) and query( ⃗x, ⃗y, τ) such that u = ι( ⃗xGC ⊙ ⃗∆+ ⃗y). Equiva-
lently, ι−1(u) exists and equals ⃗xGC ⊙ ⃗∆+ ⃗y.

2. Adversary queries query( ⃗x, ⃗y, τ) and query( ⃗x′, ⃗y′, τ) such that ι( ⃗xGC ⊙ ⃗∆ + ⃗y) =

ι( ⃗x′GC ⊙ ⃗∆+ ⃗y′). Equivalently, ⃗y − ⃗y′ = ( ⃗x′ − ⃗x)GC ⊙ ⃗∆.

3. Adversary queries Enc−1(τ, v) and z = query( ⃗x, ⃗y, τ) such that v⊕z = ι( ⃗xGC⊙ ⃗∆+ ⃗y).
Equivalently, ι−1(v ⊕ z) exists and equals ⃗xGC ⊙ ⃗∆+ ⃗y.

4. Adversary queries z = query( ⃗x, ⃗y, τ) and z′ = query( ⃗x′, ⃗y′, τ) such that z ⊕ z′ =

ι( ⃗xGC ⊙ ⃗∆+ ⃗y)⊕ ι( ⃗x′GC ⊙ ⃗∆+ ⃗y′).

Events 1–3 all require ⃗c⊙ ⃗∆ to take a specific value, for some nonzero codeword ⃗c ∈ C.
Each has probability at most q−dC , for any pair of queries. Event 4 instead requires that
z ⊕ z′ take a particular value, when either z or z′ will be a freshly random λ-bit string.
Therefore, it has probability at most 2−λ, for any pair of queries. There are at most qτmax

suitable query pairs for Events 1 and 3, and at most q′τmax/2 suitable pairs for Events 2 and
4. Therefore, a union bound shows that probability of any bad event occurring is it most
τmax

(
(2q+ 1

2q
′)q−dC + 1

2q
′2−λ

)
.

Next, we argue indistinguishability. Replacing the ideal oracle with the real oracle replaces
the random value z ← {0, 1}λ with z = Enc(τ, u) ⊕ u, where u = ι( ⃗xGC ⊙ ⃗∆ + ⃗y). The
Enc call will always return fresh randomness, which will never be revealed again, because
it cannot overlap with any Enc call (Event 1) or other call to query (Event 2). Past Enc
calls also rule out using those same value again, so z ⊕ u cannot be the output of another
Enc call, nor can it equal z′ ⊕ u′ for another call to query. But these are exactly what is
ruled out by Event 3 and Event 4, respectively. Therefore, once the bad events have been
excluded, the real and ideal worlds oracles identically.
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C.2 OOS Details

This section is written in using the notation of OOS. Please review that paper to familiarize
yourself with the notation.

In their proof for security against a malicious receiver, OOS define a set E ⊆ [nC ] of
indices of the sender’s secret b. Passing the consistency check requires that the receiver guess
some bits of b; E is the set of these bits. E depends on the corrections uj sent by the receiver,
and it also depends on the consistency check choice bits, which would be computed by an
honest receiver as w(ℓ) =

∑
i∈[m]wix

(ℓ)
i +wm+ℓ. For example, assume that OOS is used for(

2
1

)
-OT by setting C to be the repetition code, and that the receiver lies in its correction for

a single one of the extended OTs by providing the first half of the correction as if its choice
bit was zero, and the second half as if it were one. During the consistency check it could
compute the w(ℓ) as if its choice bit were 0, or as if the choice bit were 1. In the former case,
E would be the index range

[
nC
2 + 1, nC

]
, while in the latter it would be

[
1, nC

2

]
.

The flaw in OOS’s proof is in the proof of Proposition 2, which states that the simulator
can extract the receiver’s choice bits wi from the consistency check, such that the encoded
choice bits C(wi) agree with correction the receiver sent, except at the indices in E. The
proposition is quoted below.

Proposition 2. If the check passes then with probability at least 1−2−s−2−dC ,
S can extract values wi ∈ FkC

2 , ei ∈ FnC
2 , for i ∈ [m], such that

1. ci = C(wi) + ei

2. ei[j] = 0 for all j /∈ E

Its proof is based on the following lemma.

Lemma 1. Let C be a linear code of length nC , m′ = m+ s be an integer and
ci ∈ FnC

2 , for i ∈ [m′], such that there exists at least one j ∈ [m] with cj /∈ C.
Then, if x(ℓ)i

$← F2, we have that:

Pr
(
∀ℓ ∈ [s],

∑
i∈[m]

ci · x(ℓ)i + cm+ℓ ∈ C
)
≤ 2−s.

Proof. . . .
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This seems reasonable enough. The span of the ci is not contained in C, so a collection
of random vectors in the span are unlikely to all be in C. Notice that this assumes that C
and the ci are known before the x

(ℓ)
i are sampled, which matches the lemma statement. Now

let’s see how this lemma is used:

. . . For a vector c ∈ FnC
2 , define c−E to be the vector obtained by removing

the positions j ∈ E. Let C−E be the punctured code consisting of the codewords
{c−E : c ∈ C}.

By definition of E, we must have c
(ℓ)
−E = 0, and because c

(ℓ)
∗ = c(ℓ)+C(w(ℓ)

∗ ),
we also have (c

(ℓ)
∗ )−E ∈ C−E , for every ℓ ∈ [s]. Therefore, by applying Lemma

1 with the code C−E and vectors (c1)−E , . . . , (cm′)−E , it holds that for every
i ∈ [m], (ci)−E ∈ C−E , except with probability ≤ 2−s. . . .

Note that the code given to Lemma 1 is not the code C that is fixed in advance, it
is the punctured code C−E , which depends on E. Additionally, the punctured vectors
(c1)−E , . . . , (cm′)−E also depend on E. Here is the problem: E depends on the consistency
check choice bits w(ℓ) that the receiver sent, after receiving the challenge bits x

(ℓ)
i

$← F2.
That is, E can depend on x

(ℓ)
i

$← F2, so Lemma 1 cannot be applied here.

C.3 PSS Details

At a high level, PSS’s consistency check seems the same as OOS’s specialized to Walsh–
Hadamard codes CκWH, which have length κ and minimum distance κ/2. Random bits w(l)

i are
sampled for l ∈ [µ] and i ∈ [m+ µ]. They choose linear combinations of the OT correlations
for a consistency check:

a(l) =

m+µ⊕
i=1

w
(l)
i ai b(l) =

m+µ⊕
i=1

w
(l)
i bi e(l) =

m+µ⊕
i=1

w
(l)
i ei,

where a(l) is computed by the sender, while b(l) and e(l) are computed by the receiver. If the
consistency check were a(l) = b(l)⊕ (s⊙ e(l)) for all l, with the e(l) required to be code words
in CκWH, then it would work the same as OOS. However, PSS attempt to save communication
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by only checking the XOR of all bits in each a(l). That is, the PSS consistency check is

κ⊕
j=1

a
(l)
j =

κ⊕
j=1

b
(l)
j ⊕

κ⊕
j=1

sje
(l)
j ,

so that b(l) =
⊕κ

j=1 b
(l)
j can be sent instead of b(l). Unfortunately, a malicious receiver can

take advantage by making guesses on XORs of several bits from s, rather than having to
guess each bit individually.

Have the receiver pick ei to have an interval of 1 bits, and the rest be zeros. That is,
when i ≤ ⌈ κN ⌉, set eji = 1 if N(i− 1) < j ≤ Ni, and 0 otherwise, where the interval width
N is a parameter of the attack. The remainder, where i > ⌈ κN ⌉, are all set to be zero. For
the consistency check, send all zeros for e(l) (more precisely, send the index of the all zeros
codeword in the Walsh–Hadamard code), and send the honest value for b(l). The sender’s
values ai equal bi ⊕ (s⊙ ei), so the consistency check becomes

κ⊕
j=1

m+µ⊕
i=1

w
(l)
i aji =

κ⊕
j=1

m+µ⊕
i=1

w
(l)
i bji

0 =
κ⊕

j=1

m+µ⊕
i=1

w
(l)
i sjeji

0 =

⌈κ/N⌉⊕
i=1

w
(l)
i

Ni⊕
j=N(i−1)+1

sj .

Therefore, the consistency check passes if the XORs of intervals
⊕Ni

j=N(i−1)+1 s
j are all zero.

There are ⌈ κN ⌉ of these intervals, so this has probability 2−⌈κ/N⌉.
If the check passes, we can now break the OT extension with only ⌈ κN ⌉2

N−1 hash
evaluations. That is, if the sender sends the all zeros message for each of its first ⌈ κN ⌉ OT
results, the receiver can solve for s and learn every other OT message. The receiver can do
this by using the hash to check guesses of ai. Since ai = bi ⊕ (s⊙ ei) depends on only N

bits of s, and the XOR of these bits is known to be zero, there are only 2N−1 possibilities to
check. Repeating this for all i ≤ ⌈ κN ⌉ recovers s.

Proof Flaws. How was this attack missed by PSS’s proof? There are two major issues in
the proof that the attack exploits. First, PSS’s Lemma IV.4 proof implicitly assumes that
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there will not be a linear dependency between different bits of the consistency check, and
our attack causes such a linear dependency by forcing the consistency check to only depend
on s through

⊕Ni
j=N(i−1)+1 s

j . Second, while proving that their first and second hybrids are
indistinguishable they say that the sender’s mask for xi,j is H(i,bi ⊕ (s⊙ (cri ⊕ cj))), when
it is really H(i,ai ⊕ (s⊙ cj)). These are only equal when the receiver behaves honestly.

C.4 KOS Details

The notation of KOS is used for this section, so please review that paper if you need to.
The most important part of KOS’s proof of security against a malicious receiver is the

behavior of their consistency check. They give that information in the following lemma.

Lemma 1. Let S∆ ⊆ Fλ
2 be the set of all ∆ for which the correlation check

passes, given the view of the receiver. Except with probability 2−λ, there exists
k ∈ N such that

1. |S∆| = 2k

2. For every s ∈ {xi}i∈[λ], let Hs = {i ∈ [λ] | s = xi}. Then one of the
following holds:

• For all i ∈ Hs and any ∆(1),∆(2) ∈ S∆, ∆(1)
i = ∆

(2)
i .

• k ≤ |Hs|, and |{∆Hs}∆∈S∆
| = 2k, where ∆Hs denotes the vector

consisting of the bits {∆i}i∈Hs . In other words, S∆ restricted to the
bits corresponding to Hs has entropy at least k.

Furthermore, there exists ŝ such that k ≤ |Hŝ|.

Proof. See full version.

As of writing, no full version has been made public. However, the authors of KOS
were kind enough to provide an unpublished draft of the full version [KOS21]. It contains
an attempted proof of Lemma 1. They first observe that Lemma 1 is trivial if S∆ ≤ 2,
then define ∆1,∆2,∆3 to be three distinct elements of S∆. They let ∆′ = ∆1 + ∆2 and
∆′′ = ∆1 +∆3, then derive the following equation from the consistency check.
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0 =
ℓ∑

j=1

χj · ((xj ∗∆′) ·∆′′ − (xj ∗∆′′) ·∆′)︸ ︷︷ ︸
x̃j

.

Since {χj}j∈[ℓ] are independently random, the equality holds with probability
2−λ if not all {x̃j}j∈[ℓ] are 0 by the principle of deferred decisions. Hence, we
assume that x̃j = 0 for all j ∈ [ℓ].

The logic is to delay the sampling of χj until this sum is calculated, at which point it’s
clear that the output will be uniformly random in F2λ unless every x̃j is zero. However, we
cannot actually delay the sampling of χj until then, because they are used earlier. Similarly
to the problem with E in OOS, S∆ depends on which consistency check message x the
receiver sends. In an extreme case, if the receiver behaves entirely honestly, then S∆ will
be all of Fλ

2 , but if after looking at the χj they decide to send a different x instead, then
they will have to guess all of ∆ and so |S∆| will be 1. As differences between arbitrarily
selected members of S∆, ∆′ and ∆′′ also depend on the χj , making it impossible to delay
the sampling.

C.4.1 Collision Attack

Unlike OOS where we have not managed to find a counterexample to their stated Proposition
2, we have managed to find some (impractical) attacks that break KOS’s Lemma 1. The
simplest succeeds with probability roughly λ22−λ−1, based on getting a collision in a set of λ
vectors of length λ. It works by generating x1, . . . ,xℓ′ as uniformly random elements of Fλ

2 ,
instead of the monochrome vectors that an honest receiver would generate.

Similarly to how an honest receiver would compute its consistency check message as
x =

∑
j xj · χj , for each column i let x̄i =

∑
j x

i
j · χj . For an honest receiver every xi is the

same, so every x̄i will be exactly x. Similarly, instead of just computing t =
∑

j tj · χj and
q =

∑
j qj · χj , find t̄i =

∑
j t

i
j · χj and q̄i =

∑
j q

i
j · χj . Since qij = tij + xij ·∆i, we have

q̄i = t̄i + x̄i ·∆i.
Let α be the generator of F2λ that is being used by the protocol to represent elements of Fλ

2

as field elements in F2λ . That is, a vector v becomes the field element v1+α·v2+· · ·+αλ−1 ·vλ.
Then t = t̄1 + α · t̄2 + · · ·+ αλ−1 · t̄λ, and similarly for q. Assume that the receiver gives the
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honest value for t.1 Then the consistency check becomes

t = q + x ·∆ =
∑
i

q̄i · αi−1 + x ·∆ =
∑
i

t̄i · αi−1 +
∑
i

x̄i · αi−1 ·∆i + x ·∆

0 =
∑
i

x̄i · αi−1 ·∆i + x ·∆ =
∑
i

(x̄i + x) · αi−1 ·∆i.

Therefore, if the receiver sets x = x̄i for some i then they won’t have to guess ∆i. They will
only have to guess all ∆i′ for which x ̸= x̄i′ .

If there is a collision, so there are i ̸= i′ such that x̄i = x̄i′ , setting x = x̄i forces |S∆| ≥ 4

and so k ≥ 2. The x̄i will all be uniformly random elements of F2λ , so this happens with
probability roughly λ22−λ−1. For sufficiently large ℓ each |Hxi | will be 1, as the columns xi

of the matrix whose rows are xi will be unique. Therefore, this attack contradicts Lemma 1.

C.4.2 Subfield Attack

At least for a special case, a slightly more practical attack seems to be possible. Assume
that λ is divisible by 20, and that the minimal polynomial of α (the element being used to
represent F2λ) can be written in the form P (α5) for some irreducible polynomial P .2 Then
F2λ has a subfield F2λ/5 that is generated by α5. In a subfield attack, a malicious receiver
arranges the consistency check so that for any ∆ ∈ S∆ (i.e. any ∆ that allows the consistency
check to pass) and for any s ∈ F2λ/5 , s∆ is also in S∆. This makes S∆ be a vector space
over F2λ/5 . The receiver tries to make the dimension of S∆ over F2λ/5 as high as possible,
which seems to be 2 according to a heuristic analysis. This gives an attack that passes the
consistency check with probability 2−

3
5
λ, and can then recover ∆ using q = 5 · 2λ/5 queries to

the random oracle, contradicting the stated bound at the end of the proof of KOS’s Theorem
1, which would only allow a success probability of O(q2−λ) = O(2−

4
5
λ).

The importance of F2λ/5 being generated by α5 is that for any u ∈ F2λ/5 and y ∈ F2λ , we
have u ∗ v ∈ F2λ/5 . The proof is that for u to be in the subfield the only nonzero entries in it
must be at indices of the form 5i+ 1, so that they correspond to powers of α5. Then u ∗ v
will be zero wherever u is zero, and so will also be in the subfield.

1There seems to be no advantage for the receiver to ever lie about t.
2For any λ divisible by 20, a possible P may be found by picking a element of F2λ/5 that is not a

perfect power of 5, then setting P to be its minimal polynomial. Such an element must exist because∣∣F∗
2λ/5

∣∣ = 2λ/5 − 1 = 16λ/20 − 1 ≡ 0 (mod 5).



154

To make use of this fact, let the malicious receiver pick the OT corrections to make xij be
1 when 5 | i− j and 0 otherwise. Also assume that the malicious receiver sends the honest
value of t in its consistency check. Let δj = (xj ∗∆) · α1−j =

∑(λ/5)−1
i=0 α5i ·∆5i+j ∈ F2λ/5

for 1 ≤ j ≤ 5, and let δ⃗ = [δ1 · · · δ5]⊤. Also let α⃗ = [1 α · · · α4]⊤, so that α⃗⊤δ⃗ = ∆.
Let χ′j = αj−1∑

i χ5i+j . Write x =
∑5

j=1 x
′
j · αj−1 and χ′j =

∑5
i=1 χ

′
ji · αi−1 = α⃗⊤χ⃗′j for

x′j , χ
′
ji ∈ F2λ/5 and χ⃗′j = [χ′j1 · · · χ′j5]⊤. The consistency check then becomes

0 = t+ q + x ·∆

=
∑
j

(tj + qj) · χj + x ·∆

=
∑
j

(xj ∗∆) · χj + x ·∆

=
5∑

j=1

∑
i

δj · αj−1 · χ5i+j +
5∑

j=1

x′j · αj−1 · α⃗⊤δ⃗

=

5∑
j=1

δj · χ′j +
5∑

j=1

x′j ·
5∑

k=1

αj+k−2 · δk

= α⃗⊤
(
X+

5∑
j=1

x′j ·Aj

)
δ⃗, (C.1)

where X = [χ⃗′1 · · · χ⃗′5] and the matrices Aj are:

A1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 A2 =


0 0 0 0 α5

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 A3 =


0 0 0 α5 0

0 0 0 0 α5

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0



A4 =


0 0 α5 0 0

0 0 0 α5 0

0 0 0 0 α5

1 0 0 0 0

0 1 0 0 0

 A5 =


0 α5 0 0 0

0 0 α5 0 0

0 0 0 α5 0

0 0 0 0 α5

1 0 0 0 0
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Notice that in Eq. (C.1) both the matrix in parenthesis and the δ⃗ on the right are in the
subfield F2λ/5 . Since α generates F2λ , which is a degree 5 extension of F2λ/5 , the only way
for the equation to hold is if (

X+
5∑

j=1

x′j ·Aj

)
δ⃗ = 0.

δ⃗ will be uniformly random because ∆ is, so to maximize the chance of the consistency check
succeeding the receiver should minimize the rank of X+

∑5
j=1 x

′
j ·Aj .3 The question is, how

low can it go?
We believe that for most possible X (which is uniformly random), the minimum rank

will be 3. Unfortunately, we only have a heuristic justification for this. The number of rank

≤ 3 matrices over F2λ/5 is at least 2
21
5
λ, because any matrix of the form

[
13

Y

]
Z has rank

≤ 3 for Y ∈ F2×3
2λ/5

and Z ∈ F3×5
2λ/5

, and this representation is unique. Therefore, a uniformly
random matrix will have rank ≤ 3 with probability at least 2

21
5
λ2−

25
5
λ = 2−

4
5
λ. When X and

all the x′j are chosen uniformly at random then X+
∑5

j=1 x
′
j ·Aj will be uniformly random.

The solver gets to choose all of the x′j for a total of 2λ possibilities, making the expected
number of solutions be at least 2λ2−

4
5
λ = 2λ/5, so if the rank ≤ 3 matrices are relatively

evenly spread over all possible X then a solution is very likely to exist.
Assuming that a rank 3 solution exists, the receiver should send the corresponding

consistency check message x. Then |S∆| = 2k for k = 2
5λ, yet every Hs has size 1

5λ because
Hxj = {j, 5 + j, · · · , λ− 5 + j}. This contradicts Lemma 1.

This also gives an attack on the real KOS protocol. The consistency check will succeed
with probability 2−

3
5
λ. If it does and if the receiver gets to see both of the sender’s output

OT messages for the first five OTs, then it can do a brute force attack to recover ∆. Each
message was protected using only 1

5λ bits of ∆ because the Hamming weight of each xj is
1
5λ. Using 2

1
5
λ queries to the random oracle, these bits can be brute forced to learn a part of

∆. Doing this five times reveals all of ∆, and then the receiver can read every OT message.
3See [FLP08] for an algorithm to solve the MinRank problem that runs in O(λ) time for constant size

matrices. It should be fast in practice for this small problem size.
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C.5 Endemic OT Details

In this section, we describe our attack against the OT Extension Protocol With an Ideal
Cipher from Endemic OT [MR19, Sect. 5.3]. The flaw results from assuming a stronger
guarantee from consistency checking than protocols like KOS or OOS provide. When
describing their protocol in Figure 9, they state:

R proves in zero knowledge that

∀i ∈ [m], ∃w ∈ FkC
2 | 0 = b⊙ (ui + ti + t1,i + C(w))

Note: b ∈ FkC
2 is distributed uniformly in the view of R.

For example, the proof of KOS for N = 2 or OOS otherwise.

This is much stronger that what consistency checking protocols provide. At best, they merely
prove that b⊙ (ui + ti + t1,i + C(w)) was successfully guessed by R.

This opens an avenue for attack. Let R be corrupted, and behave honestly until T0, T1

are known. Find the closest pair of rows ti, tj of T0 in hamming distance (with i < j), so
D = ∥ti+ tj∥0 is as small as possible.4 Then set cj = ti⊕ tj , and all other ck = 0. Later, for
the consistency check, let w = 0 for each OT. The receiver will then have to guess b⊙ (ti⊕tj);
have it guess ti ⊕ tj , which is correct with probability 2−D. Then,

qj = cj · b⊕ tj = (ti ⊕ tj) · b⊕ tj = ti = ci · b⊕ ti = qi,

so extended OTs i and j will agree on all evaluations, breaking the security of the OT
extension.

For each u and v, ∥tu + tv∥0 follows a binomial distribution with parameters n = nC and
p = 1

2 . Given D, our attack succeeds with probability 2−D. In the simplest case of m = 2, the
success probability is then E[2−D] = ((1− p) + p2−1)n =

(
3
4

)n ≈ 2−0.415n, which is already
considerably higher than is claimed by Endemic OT. For greater m, we estimate D by finding
some D0 such that the event D ≤ D0 has constant probability. For any D0, the event D ≤ D0

is a union of the
(
m
2

)
events ∥tu + tv∥0 ≤ D0 for each pair u < v. While these events are not

independent, we estimate that Pr[D ≤ D0] will be constant if Pr
[
∥tu + tv∥0 ≤ D0

]
≥
(
m
2

)−1.
We can then choose D0 with the quantile function of the binomial distribution, and estimate

4This problem is important in the decoding of linear codes. See [MO15] for an efficient algorithm.
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that the success probability is around 2−D0 . We evaluated this for n = 128 and several
choices of m:

m D0

106 27

107 24

108 21

109 18

C.6 Extra Proofs

C.6.1 Universal Hash Proofs

Proposition 4.2.3. Let R and R′ be ϵ and ϵ′-almost universal families, respectively. Then
R′R for R ∈ R, R′ ∈ R′ is a (ϵ+ ϵ′)-universal family.

Proof. Let x⃗ ∈ Fn
q be nonzero. Except with probability ϵ, Rx⃗ ̸= 0. If it is nonzero, then

with probability at least 1 − ϵ′, R′Rx⃗ ≠ 0. Therefore R′Rx⃗ ≠ 0 with probability at least
(1− ϵ)(1− ϵ′) ≥ 1− ϵ− ϵ′, so R′R is (ϵ+ ϵ′)-universal.

Proposition 4.2.4. Let R ⊆ Fm×n
q and R′ ⊆ Fm×n′

q be ϵ-almost uniform families. Then
[R R′] for R ∈ R, R′ ∈ R′ is a ϵ-uniform family.

Proof. Let x⃗ =

[
x⃗0

x⃗1

]
be nonzero, for x⃗0 ∈ Fn

q , x⃗1 ∈ Fn′
q . Without loss of generality, assume

that x⃗0 is nonzero. For [R R′]x⃗ to equal y⃗, we must have Rx⃗0 = y⃗ + R′x⃗1. Because R is
independent of y⃗ and R′, this has probability at most ϵ by Theorem 4.2.2.

C.6.2 OT Extension Proof

Theorem 4.5.1. The protocol in Fig. 4.11 achieves FpkC ,ℓ,{X}
OT-1 with malicious security in

the Fp,q,C,ℓ,L,M
VOLE-pre hybrid model, assuming that H : FnC

q × T → {0, 1}λ is a (p, q, C, T ,L)-TCR

hash, and R ⊆ FnC×⌈logq(ℓ)⌉
q is an ϵ-almost uniform family. The distinguisher advantage is

at most ϵMℓ(tmax − 1)/2 + AdvTCR, where tmax is the maximum number of distict OTs that
can have the same tweak under t. For the TCR itself, τmax will be the maximum number of
evaluations Fi( ⃗x) where t(i, ⃗x) outputs a given tweak. For semi-honest security, R is unused;
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instead set ϵ = q−nC and M = 1.

Proof. First, we establish correctness, which will be used in most cases of the security proof.
Since the base VOLE gives a correlation W = UGC diag( ⃗∆) + V ,

Fi( ⃗x∗i ) = H(Wi· + r⃗⊤i − ⃗xGC ⊙ ⃗∆, t(i, ⃗x)) = H(Vi· + r⃗⊤i , t(i, ⃗x∗i )) = F ∗i .

Starting with the easiest case, if both parties are corrupted then the simulator can trivially
program the whole output, which will be consistent by correctness.

Corrupt PS. At the start of the protocol, the simulator sends “commit” to PS . For malicious
security, it receives R from PS , while for semi-honest security it generates it randomly and
puts it in the transcript instead. The simulator receives ⃗∆,W from A and forwards them to
PS . It then sets Fi( ⃗x) = H(Wi· + r⃗⊤i − ⃗xGC ⊙ ⃗∆, t(i, ⃗x)) and sends it to FpkC ,ℓ,{X}

OT-1
, for all

i ∈ [ℓ]. For malicious security, it sends X to the ideal functionality as well. By correctness
this works identically to the real protocol.

Corrupt PR. This is the first case where the TCR’s security is used. For malicious security,
S first receives Wpre, Upre, Vpre, and Lpre from A, then samples R $← R and sends it to
PR. In either case, the simulator then receives U, V from A and forwards them to PR. For
malicious security, S then receives wpre ∈ Wpre, ⃗Loff ∈ FnC

q from A, generates a uniformly
random ⃗∆ $← FnC

q , and aborts the protocol if the consistency check in Fp,q,C,ℓ,L,M
VOLE-pre would fail.

Finally, it sends x∗i = Ui· and F ∗i = H(Vi· + r⃗⊤i , t(i, ⃗x∗i )) to the ideal functionality, for i ∈ [ℓ].
Next, we prove that the real world, where the real protocol is run in the Fp,q,C,ℓ,L

VOLE-pre-hybrid
model, is indistinguishable from the ideal world, where the simulator is given access to the
ideal functionality FpkC ,ℓ,{X}

OT-1
. First, there is a bad event that we must show is unlikely. We

must show that there are no two distinct OT indices i < j satisfying Vi· + r⃗⊤i = Vj· + r⃗⊤j that
have overlapping tweaks, meaning that there exists ⃗xi and ⃗xj such that t(i, ⃗xi) = t(j, ⃗xj).
We start with the malicious case. For any such pair, Vi· − V ⊤j· = R(⃗j − i⃗), so if V were
independent of R then this would have probability at most ϵ because R is a uniform hash
family. Although V is allowed to depend on R, it must equal Vpre(wpre, ⃗∆), and wpre can
only be chosen from M options. There are at most ℓ(tmax − 1)/2 possible pairs of indices i, j
with overlapping tweaks, so by a union bound the probability of the bad event is at most
ϵMℓ(tmax − 1)/2.

However, in the semi-honest case r⃗i = 0 for all i. If V were uniformly random then we
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could instead use that Vi· = Vj· with probability only q−nC . But V isn’t uniformly random
because PR (who is the sender for the VOLE) is corrupted — it’s chosen by the adversary.
The trick is to prove security in a slightly different hybrid model, where the VOLE is required
to output a V such that Vi· ̸= Vj· when i ̸= j have overlapping tweaks. Any semi-honest
protocol that achieves FVOLE-pre based on functionalities which do not explicitly depend on
who is corrupt (such as a communication channel) also achieves the modified functionality.
That is, in semi-honest security, corruption does not give the adversary and environment
any new power other than to see more information, and the honest–honest case (where V is
guaranteed to be uniformly random) still gives enough information to see whether V has
distinct rows. Therefore, if when PS is corrupt the VOLE outputs a V with repeated rows
more often than random, then there is an attack against the honest–honest case of the VOLE.

Next, we present the hybrids.

1. Start from the real world, then rewrite the usage of H and ⃗∆ into oracle calls to
TCR-realH,p,q,C,L. That is, use leak(Lpre(wpre) − ⃗Loff) to implement the selective
abort, instead of checking ⃗∆+ ⃗Loff ∈ L directly, and change Fi( ⃗x) to be computed as
query( ⃗x∗i − ⃗x, Vi· + r⃗⊤i , t(i, ⃗x)) where ⃗x∗i = Ui·. This is the same because

H(Wi· + r⃗⊤i − ⃗xGC ⊙ ⃗∆, t(i, ⃗x)) = H((Ui· − ⃗x)GC ⊙ ⃗∆+ Vi· + r⃗⊤i , t(i, ⃗x∗i )),

by the correctness of the VOLE. This is just refactoring the computation, and so results
in no observable difference for the environment.

2. Use TCR security to swap TCR-realH,p,q,C,L for TCR-idealH,p,q,C,L. This is allowed
because the calls to query are distinct, as otherwise the bad event would trigger.

3. Inline the oracles calls to TCR-idealH,p,q,C,L. Notice that ⃗∆ is only used for the selective
abort attack, as in the simulator. Call the process of sampling Fi and outputting it to
PS the ideal functionality, and call the rest of this hybrid the simulator. We are now
at the ideal world.

Both Honest. This case has the simplest simulator. The simulator only needs to sample
R $← R and allow A to eavesdrop on it. We again use a hybrid proof, starting from the real
world.

1. Let ⃗c ∈ C be a non-zero code word. Instead of sampling W $← Fℓ×nC
q , sample sk $← FkC

p
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and W ′ $← Fℓ×nC
q , and set Wi· = W ′i· + ⃗c⊙ sk for all i ∈ [ℓ].

2. We now need to show that the functions F ∗i = H(Wi· + ⃗c⊙ sk+ r⃗⊤i − ⃗xGC ⊙ ⃗∆, t(i, ⃗x))

are uniformly random. They can be written in terms of query from TCR-realH,p,q,C,L,
using sk instead of ⃗∆ as the TCR key. There will be no duplicate queries, for the same
reason as in the case of corrupt PR. By the security of the TCR, all queries will be
uniformly random.

3. Forget about V,W, ⃗∆, which are now unused. We are now at the ideal world.

C.6.3 ∆-OT Extension Proof

Theorem 4.5.2. The protocol in Fig. 4.12 achieves Fp,p,Rep(Fn
p ),ℓ,{X}

VOLE with malicious security

in the Fp,p,Rep(Fn′
p ),ℓ,Affine(Fn′

p ),M

VOLE-pre hybrid model, assuming that R ⊆ Fn′×n
p is a ϵ-almost uniform

family and n′ ≥ n. The advantage is bounded by ϵM(pn − 1).

Proof. First, we need to show correctness, which is used for all cases of the proof.

WR = UGRep(Fn′
p ) diag(

⃗∆)R+ V R = U ⃗∆R+ V R

The two cases where PR is corrupt are trivial, as the simulator can program the protocol
output to be ⃗∆R,WR, and U is unchanged. When PR is honest, we need to use the following
lemma, which shows that the entropy in ⃗∆ is enough to make ⃗∆R uniform.

Lemma C.6.1. Let R ⊆ Fn′×n
p be an ϵ-almost uniform family and let A ∈ Fm×n′

p be full
rank, where m ≤ n′. Then

Pr
R $←R

[rank(AR) < n] ≤ ϵpn
′−m(pn − 1).

Proof. Let X = |ker(AR) \ {0}| = |ker(AR)| − 1. The statement that rank(AR) < n is
equivalent to X ≥ 1. Any nonzero x⃗ ∈ Fn

p has probability at most ϵpn
′−m of being in

ker(AR), because that implies Rx⃗ ∈ ker(A), which has size |ker(A)| = pn
′−m by the rank–

nullity theorem. Therefore E[X] ≤ ϵpn
′−m(pn − 1), and the lemma follows by Markov’s

inequality.
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If both parties are honest then all that’s needed is for R to be full rank, as then all it
does is throw away part of the VOLE output. This is true except with probability ϵ(pn − 1)

by Theorem C.6.1 with A = 1n′ . The only interesting case is when only PS is corrupt. The
simulator first receives Wpre, Upre, Vpre, and Lpre from A, then samples R $← R and sends
it to PS . The simulator receives U, V from A and forwards them to PS , and then receives
wpre ∈ Wpre, ⃗Loff ∈ Fn′

p from A. The simulator generates a uniformly random ⃗∆ $← Fn′
p , and

aborts the protocol if the guess in Fp,p,Rep(Fn′
p ),ℓ,L,M

VOLE-pre would fail. Finally, it sends U, V R to
the ideal functionality.

For security, we first define a bad event, and bound its probability. Let L = Lpre(wpre)−
⃗Loff, so the protocol aborts if ⃗∆ /∈ L. Because L ∈ Affine(Fn′

p ), there exists a vector ⃗∆0 ∈ Fn′
p

and a full rank matrix A ∈ Fm×n′
p such that L = ⃗∆0 + rowspace(A), where m = dim(L).

Also, A is independent of ⃗Loff, because ⃗Loff only shifts L. The bad event is that ⃗∆ ∈ L

and rank(AR) < n. The former has probability at most pm−n
′ , since ⃗∆ was sampled

uniformly and |L| = pm. If A were independent of R, the latter probability would be at most
ϵpn

′−m(pn − 1) by Theorem C.6.1. Though A sees R before choosing L, we can still use a
union bound. Lpre is chosen independently of R, and there are at most M possibilities for
Lpre(wpre), so the bad event has probability at most ϵM(pn − 1).

Next, the hybrid proof goes from the real world to the ideal world. The only information
PS learns about ⃗∆ is that ⃗∆ ∈ L, so it is equivalent to sample a second ∆′ ∈ L after the
check, let ∆′′ = ∆′R, and subsequently use ∆′′ instead of ∆R. Since we are assuming the bat
event does not trigger, rank(AR) has full rank, so it’s also equivalent to sample ∆′′ $← Fn

p .
Split into the simulator and the ideal functionality, with ∆′′ being sampled in the ideal
functionality. We are now at the ideal world.

C.6.4 Semi-honest PPRF Proof

Theorem 4.6.1. Figure 4.13 constructs Fq,1,{X}
OT-1

out of Fp,k,{X}
OT-1

, and is secure in the
semi-honest model.

Proof. First, we show correctness, as it is useful for all cases of the proof. We prove by
induction that siy = s∗ iy for all y ∈

[
pi
]
\{y∗i }. In the base case, F0(x) = s1x = s∗ 1x = F ∗0 (x) by

correctness of the first
(

p
p−1
)
-OT. For induction, PS and PR both compute si+1

py+x in exactly
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Sp,q,Lsub-PPRF-S

for i ∈ [k]:
recv. Fi ∈

(
{0, 1}λ

)[N ] from A

G, t := BuildPPRF(F )
PS sends

{
tix
}
1≤i<k,x∈[p] to PR

send G to Fq,1,L
OT-1

(a) Corrupt PS .

Sp,q,Lsub-PPRF-R

for i ∈ [k]:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈
(
{0, 1}λ

)[N ]\{x∗
i } from A

for i := 1 to k − 1, x ∈ [p]:
tix

$← {0, 1}λ
y∗, G∗ := EvalPPRF(x∗, F ∗, t)
send

{
tix
}
1≤i<k,x∈[p] to PR

send y∗, G∗ to Fq,1,L
OT-1

(b) Corrupt PR.

Figure C.1: Simulators for semi-honest security of Fig. 4.13. In (a), PS sending t to PR

means that the adversary is allowed to eavesdrop on a fake message from PS to PR.

the same way for all y ̸= y∗i . Then for any x ̸= x∗i ,

s∗ i+1
py∗i +x = tix ⊕ F ∗i (x)⊕

⊕
y∈[pi]\{y∗i }

s∗ i+1
py+x

= Fi(x)⊕
⊕
y∈[pi]

si+1
py+x ⊕ Fi(x)⊕

⊕
y∈[pi]\{y∗i }

si+1
py+x

= si+1
py∗i +x.

Therefore, si+1
y = s∗ i+1

y for all y ̸= y∗i+1 = py∗i + x∗i .
When both parties are honest, the simulator can generate the tix uniformly at random

and give them to the adversary as a fake eavesdropped message. In the hybrid proof, starting
from the real world, first replace the random sampling of all Fi(x) with instead sampling
tix

$← {0, 1}λ, then setting Fi(x) = tix ⊕
⊕
y∈[pi]

si+1
py+x. These are the same distribution. Next,

use correctness to replace s∗ iy with siy everywhere, so that the Fi(x) are all unused and can
be removed. Now the internal leaves of the GGM tree are unused, which makes the sky be all
the evaluations of a GGM PRF [GGM86]. Therefore, we can replace them all with uniform
randomness. Finally, since the x∗i ∈ [p] are all uniformly random, it is equivalent to sample
y $←

[
pk
]
, then let x∗0, . . . , x

∗
i−1 be its expansion in base p, in big endian order. We are now

at the ideal world.
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Next, assume that only PS is corrupt. The simulator for this case is illustrated in Fig. C.1a.
By correctness, the output from PR will be G∗, the punctured version of the G computed by
a simulator. Also, y will be uniformly random for the same reason as in the honest–honest
case. Therefore, the real protocol will be indistinguishable from the simulation.

Finally, we have the case where PR is corrupt (simulator in Fig. C.1b). Going from the
real world to the ideal world, we use the following hybrids.

1. In a sequence of hybrids, replace all the tix and siy∗i
with uniformly random values. For

i = 1, s1y∗1 = F0(x
∗
) is already sampled uniformly at random by the ideal functionality

Fp,k,{X}
OT-1

. For i > 1, first use that si−1y∗i−1
is uniformly random to sample sipy∗i−1+x =

PRGx(s
i−1
y∗i−1

) uniformly at random for all x ∈ [p]. Then instead of sampling the sipy∗i−1+x

at random, sample tix
$← {0, 1}λ, then compute sipy∗i−1+x as in EvalPPRF, for x ̸= x∗i−1.

Finally, ti−1x∗ can be also be sampled randomly, because the underlying ideal functionality
samples Fi−1(x

∗) $← {0, 1}λ. Continue this sequence of hybrids until i = k to get the
desired modifications.

2. Notice that G∗, the restriction of PS ’s output to x ≠ x∗ is now computed in exactly the
same way as EvalPPRF, and that G(y∗) = sky∗ is uniformly random. Put the computation
of the former in the simulator and the latter in the desired ideal functionality Fq,1,{X}

OT-1
.

Also notice that the tix are all sampled uniformly at random and put them in the
simulator. This is exactly the same as the ideal world, where the simulator talks to the
ideal functionality and generates a fake transcript of the protocol.

C.6.5 Maliciously Secure PPRF Proofs

Proposition 4.6.2. The selective abort attack allowed in Fig. 4.14 will always be in
L = Affine(Fk

p). More precisely, the L sent by Sp,q,Lsub-PPRF-mal-S (Fig. C.2) will always be
in Affine(Fk

p).

Proof. This is trivial if L = {}, so assume that L is not empty. The simulator will then find
a preimage for ∼s = Hash(∼s0 ∥ · · · ∥ ∼sq−1). By collision resistance, every time the simulator
calls VerifyPPRF(y∗, G∗,

∼
t) for y ∈ L, it finds the same ∼sy. Next, assume that L contains at

least two elements z and z′, because any L containing only a single element is trivially in
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Sp,q,Lsub-PPRF-mal-S

for i ∈ [k]:
recv. Fi ∈

(
{0, 1}λ

)[N ] from A

recv. L′ ∈ L from PS :
recv.

{
tix ∈ {0, 1}λ

}
1≤i<k,x∈[p] from PS

G(y) := 0,∀y ∈ [q]
L := ∅
for {x∗i }i∈[k] ∈ [p]k:
y∗, Gy∗ := EvalPPRF(x∗, F, t)
if ∼s = VerifyPPRF(y∗, Gy∗ ,

∼
t):

G(y) := Gy∗(y),∀y ∈ [q] \ {y∗}
L := L ∪ {y∗}

send PRG′1 ◦G to Fq,1,L
OT-1

send L ∩ L′ to Fq,1,L
OT-1

(a) Malicious PS .

Sp,q,Lsub-PPRF-mal-R

for i ∈ [k]:
recv. x∗i ∈ [N ] from A

recv. F ∗i ∈
(
{0, 1}λ

)[N ]\{x∗
i } from A

for i := 1 to k − 1, x ∈ [p]:
tix

$← {0, 1}λ
∼
t $← {0, 1}2λ
y∗, G∗ := EvalPPRF(x∗, F ∗, t)
∼s := VerifyPPRF(y∗, G∗,

∼
t)

send t, ∼s,
∼
t to PR

send y∗,PRG′1 ◦G∗ to Fq,1,L
OT-1

(b) Malicious PR.

Figure C.2: Simulators for malicious security of Fig. 4.14.

X. Then collision resistance of PRG′0 implies that Gz(y) = Gz′(y) for all y /∈ {z, z′}. That
is, every Gy∗(y) will agree with G(y) on every y they can compute. Use this to prove the
following lemma.

Lemma C.6.2. Let z, z′ ∈ L, let z1, . . . , zk and z′1, . . . , z
′
k be their active paths and

w0, . . . , wk−1 and w′0, . . . w
′
k−1 be their base OT choices. Let j be the first index where

they differ, so that zi ̸= z′i. Then for any y∗ ∈ [q] with base OT choice bits x∗0, . . . , x
∗
k−1 and

active path y∗1, . . . , y
∗
k, if x∗i = wi except when i = j, we have y∗ ∈ L.

Proof. The collision resistance of PRG implies that all s∗ iy computed by EvalPPRF(x∗, F, t)
that outputs either z or z′ will agree. They both miss the nodes of the GGM tree on their
common path z1, . . . , zj−1, but every other node in the tree can be computed by at least
one of them. Let siy be the seeds in the GGM tree that at least one of them may compute.
This implies a correctness property for the tix when i ≥ j − 1: any tix used by either z or z′

during evaluation of the PPRF must take its correct value of Fi(x)⊕
⊕
y∈[pi]

si+1
py+x. Otherwise

z (or z′) would reconstruct a different si+1
pzi+x during evaluation, which would not pass the
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consistency check.
Since the active path of y∗ agrees with z on its first j − 1 nodes, it will find the same

seeds siy for i < j and y ̸= y∗i . Additionally, y∗ agrees with z after its first j nodes, so it
only uses correct tix for i ≥ j. This only leaves the corrections tj−1x for the node on layer j.
Because z and z′ disagree on layer j, so wj−1 ̸= w′j−1′ , every tj−1x must be correct for this
layer. Therefore, the evaluation on y∗ will get exactly the same seeds siy for any y ̸= y∗i ,
and so Gy∗ must agree with Gz and Gz′ . Finally,

∼
t must be correct for there to be two

evaluations z and z′ that pass the consistency check, so the evaluation for y∗ will correctly
find all the ∼sy, and so y∗ ∈ L.

In each position i ∈ [k], either all y∗ ∈ L will have the same x∗i , or there will be at least
two different possible x∗i . Let L′ ⊇ L be the set of all y∗ that match with the x∗i in the
positions where all of L are the same. This allows y∗ ∈ L′ to take any value at the positions
where at least two x∗i differ. These are affine constraints so L′ ∈ Affine(Fk

p). We need to
prove that L′ = L.

Let z ∈ L and y∗ ∈ L′, where z ̸= y∗. Then the first place where they differ must be
a position that L′ does not constrain, so there must be some z′ ∈ L that disagrees at this
position. By Theorem C.6.2, there must be some z′′ ∈ L that is identical to z except at this
position, where it agrees with y∗ instead. Repeating this process eventually finds an element
of L that is exactly the same as y∗. Therefore, L′ = L.

Theorem 4.6.3. Figure 4.14 (composed with Fig. 4.13) is a maliciously secure Fq,1,Affine(Fk
p)

OT-1

in the Fp,k,Affine(Fk
p)

OT-1 hybrid model.

Proof. If both parties are honest then this is essentially the same as for the semi-honest
case. The consistency check messages ∼s,

∼
t can be simulated as a hash of uniformly random

values, and a uniformly random value in {0, 1}2λ. By the security of PRG′, the OT outputs
PRG′1 ◦G will be indistinguishable from uniformly random, as will the values ∼sy.

Malicious PS. The simulator for this case is shown in Fig. C.2a. The collision resistance of
Hash and PRG′0 implies that Gy∗(y) = G(y) for all y ̸= y∗, when y∗ ∈ L. Therefore, when
the desired ideal functionality computes PR’s output, it will match what PR would output
in the real protocol, assuming that y∗ ∈ L. When y∗ /∈ L, PR never gets to see the output,
so this is equivalent. Finally, Theorem 4.6.2 implies that L ∈ Affine(Fk

p), and the adversary
must always provide a L′ ∈ Affine(Fk

p), so L ∩ L′ ∈ Affine(Fk
p) because it is closed under
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intersection. Therefore, the real protocol is indistinguishable from the simulated protocol
using the desired ideal functionality.

Malicious PR. Because PR never sends any messages, malicious security is essentially the
same as semi-honest security for this case. The only difference from the semi-honest protocol
is the consistency check messages ∼s,

∼
t . By the security of PRG′, these will be indistinguishable

from being generated from uniformly random values ∼sy. Also, the OT outputs PRG′1 ◦ G
will be indistinguishable from uniformly random. Therefore, the protocol is secure in this
case.
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