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CMOS process, this architecture showed a significant noise reduction of 12.3dB at 

the 3rd harmonic distortion and 13.1dB at the 5th harmonic distortion as compared to 

the conventional scheme. In additional, a rail-to-rail input and output operational 

amplifier was designed in a 180nm process with the complementary input pair and 

class-AB output stage. 
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Chapter 1: Introduction 
 
 

1.1. Overview  
 

In recent years, the development of the transceiver system in wireless communication 

and biomedical equipment has motivated many design challenges, specifically in low-

voltage and high-performance integrated circuits.  

Filter design is one of the most important topics in signal processing. Many 

techniques are available to design analog as well as digital filters. Many researchers 

engaged in analog filter design focus on innovative circuit designs with better 

performance and methods, or on developing more reliable, efficient, and convenient 

design algorithms. Moreover, in analog and mixed analog-digital circuits, the circuit 

technique used most often for analog signal processing is based on switched-capacitor 

(SC) stages for two main reasons. First, chip area is minimized by replacing the 

resistors with capacitors. Another reason is that in the proper clock operations, the 

performance of SC circuits is generally comparable to that of conventional RC 

circuits. In additional, SC circuits fan out at the different bandwidths performing 

tunable and flexible frequency response when their clock frequency modifies also 

tunable SC circuits. Thus, SC circuits are used in a wide range of applications, such 

as analog filters, feedback amplifiers, analog-to-digital converters, and DC-DC 

regulators. SC circuits mainly consist of MOS switches, OTAs, and capacitors. 

Hence, they should consume less power, should exhibit small die-area, and must not 

limit the overall performance of the system. 
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1.2. Design Objective 
 

The linearity, power, and area efficiencies of a filter design are critical for wireless 

applications with low hardware complexity and cost. Some approaches for linearity 

enhancement have been introduced in SC circuits, [1,2]. Both the approaches use an 

active operational transconductance amplifier (OTA) to implement linearity 

improvement In this project, we not only used presenting the passive charge 

compensation (PCC) technique [3] that can improve the linearity performance of a 

filter with less power consumption as compared to a conventional filter without a 

CCT circuit, but also extended the application of the PCC technique during this 

evaluation. 

 
 

1.3. Thesis Organization 

 

There are five chapters in this thesis. Chapter 1 mentions the background of this 

thesis and thesis organization. Chapter 2 introduces the fundamental theory and 

operation of filters. Chapter 3 describes the fundamental theory and operation of the 

SC circuit, how important the linearity is, and the concepts and PCC technique used 

in this thesis. In this chapter, the equations for low-pass filters and circuit 

implementation of SC filters have been derived. The implementation of such filters 

involved a fully differential, high bandwidth, and conventional common-mode 

feedback circuit (CMFB). It also discusses the simulation results demonstrating the 

potential of the PCC techniques for application in analog filters. Chapter 4 concludes 

this thesis and discusses the perspectives of the future studies on improving the 

linearity of SC analog filters. 
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Chapter 2: Filter Introduction 
 
 

In this chapter, the fundamental concepts in the design of filters, and the frequency 

response of filters are discussed. Filters are classified according to the functions they 

perform. As our filters were designed for low frequency (LF) applications, we have 

focused on low-pass filters (LPFs) in this thesis. 

 

2.1 Background 

Filters are used in a wide range of applications such as data conversion, signal 

processing, and phase-locked loops, owing to their accurate frequency response, 

linearity, and dynamic range. Figure 2.1 shows the block diagram of a DSP system, 

filters that locate the front-end of ADC or the back-end of DAC allow the 

transmission of the desired electric signals within a certain frequency range and 

cancel out the transmission of the unwanted electric signals outside this range.

 

Figure 2.1. Block diagram of a DSP system. 

A filter is an electrical network that alters the amplitude and/or phase characteristics 

of a signal with respect to frequency. The frequency-domain behavior of a filter is 

described mathematically in terms of its transfer function or network function. This is 

the ratio of the Laplace transforms of its output and input signals. The voltage transfer 

function H(s) of the filter shown in Figure 2.2 can be written as follows. 
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𝐻(𝑠) =
( )

( )
                                                                 (2.1) 

 

Figure 2.2. Block diagram of a filter. 

where 𝑉 (𝑠) and 𝑉 (𝑠) are the output and input signal voltages, respectively, and s 

is the complex frequency variable [4]. 

 

2.2 Type of Filters 

Depending on the characteristics of the filter’s frequency response, filters can be 

classified into four types, namely, generally such as low-pass filter, high-pass filter, 

band-pass filter, band-reject filters, etc. . Those are shown in Figure 2.3.  

Figure 2.3 (A) shows an ideal low-pass filter. It allows the transmission of the desired 

electric signals at a frequency lower than the cut-off frequency, fc. An ideal high-pass 

filter allows the transmission of the desired electric signals at a frequency higher than 

the cut-off frequency, fc (Figure 2.3 (B)). Bandpass filters (Figure 2.3 (C)) pass only 

the frequencies below fl and above fh, and bandstop filters block only the frequencies 

below fl and above fh (Figure 2.3 (D)).  

 

       

(a) Low-pass filter.                                      (b) High-pass filter. 

 



5 
 

 

 

(c) Band-pass filter.                                                  (d) Band-stop filter. 

Figure 2.3. Four Types of Filters. 

  

2.3 Frequency Response 

In the filter design process, first the filter type was selected. Then, the responses of 

the filters to the individual frequency components that constituted the input signal 

were defined. In practice, an LPF shows the following responses to different 

frequencies: pass-band, transition-band, or stop-band, as shown in Figure 2.4.  

 

Figure 2.4. Filter parameters. 

 

The pass-band response of a filter is its effect on the frequency components that are 

passed through unchanged. The frequencies within the stop-band of a filter are 

sharply attenuated. The transition-band represents the intermediate frequencies, which 
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may receive some attenuation, but are not removed completely from the output signal. 

In practice, the magnitude may not be a constant in the passband of a filter with a 

small amount of ripple in the pass band known as the “passband ripple”. Similarly, 

the filter response does not reduce to zero with a small, non-zero value in the stop-

band which is known as the “stop-band ripple”. These ripples are shown in Figure 

2.4. 

The ripple in the pass-band of a filter is denoted as δp, and its magnitude varies from 

1- δp to 1+ δp. δs is the ripple in the stop-band [5].  
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Chapter 3: SC Circuit Introduction and Design Of a 5th-order 
Elliptic SC Filter 

 
 

 
In this chapter, the fundamental concepts of filter design, and the frequency response 

of filters are discussed. Filters are classified according to the functions they perform. 

As our filters were designed for LF applications, we will focus on LPFs in this 

chapter.  

 
 

3.1 SC Circuits   

 

SC circuits can sample data efficiently and accurately and simulate continuous-time 

functions as a discrete-time signal processor. An SC circuit is realized with some 

basic function blocks including capacitors, switches, non-overlapping clocks, and 

OTAs. These blocks are discussed in this section. 

 

3.1.1 Capacitors   

A highly linear capacitance in an integrated circuit is constructed by two silicon areas 

(double poly capacitors), as shown in Figure 3.1(a). The desired capacitor is formed 

by the intersection of the two silicon layers. By growing a thin oxide between two 

conductive layers, it usually is accompanied by a 20% bottom plate parasitic 
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capacitor, as shown in Figure 3.1(b)[6]. 

  

(a) Physical construction.                            

 

 (b) Equivalent circuit. 

Figure 3.1.  Capacitor for SC circuits. 

 

3.1.2 SC circuit  

Consider the SC circuit shown in Figure 3.2. Assuming φ1 and φ2 are two 

nonoverlapping clocks. C is charged to V1 and then V2 during each clock period. 

Therefore, the change in charge over one clock period is given by 

∆𝑄 = 𝐶(𝑉 − 𝑉 ) .                                                                               (3.1) 

Then, we can also determine the equivalent average current over one clock period as 

follows. 

𝐼 =
( )

 ,                                                                                     (3.2) 
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where T is the clock period. The equivalent resistor of the SC shown in Figure 3.14 

over one clock period can be expressed as follows. 

𝑅 = = =  
∗

 ,                                                                     (3.3) 

where fs is the sampling frequency. 

 

Figure 3.2. An SC resistor. 

In Figure 3.2, we ignored the effect of the parasitic capacitors. Here, Cp represents the 

parasitic capacitor of the top plate of C as well as the non-linear capacitors associated 

with the two switches. It is in parallel with C, and therefore cause gain error of the 

circuit transfer function. To overcome this drawback, parasitic-insensitive structures 

have been developed to realize high accuracy. Figure 3.3 shows a parasitic-insensitive 

resistor equivalence of a positive SC. Figure 3.4 shows the same for a negative one 

[6]. 

 

Figure 3.3. Positive parasitic-insensitive SC resistor. 
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Figure 3.4. Negative parasitic-insensitive SC resistor. 

 

3.1.3 Switches 

The switches used in SC filters must have a very high “off” resistance, a relatively 

low “on” resistance, and no offset voltage when it turns on. In the present-day CMOS 

technology, MOSFETs are used as switches to meet these requirements. 

 

The non-ideal effects of MOS switches are the major limitation for the resolution of 

SC circuits. They cause errors by injecting unwanted charges into the circuit when the 

switches turn “off”. There are two types of non-ideal effects, namely charge injection 

and clock feedthrough. 

A. Channel Charge Injection[6] 

A simple sampling circuit is shown in Figure 3.5. The channel charge is given 

by 

        𝑄 = 𝑊𝐿𝐶 (𝑉 − 𝑉 − 𝑉 )                                                 (3.4) 
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Figure 3.5. Non-ideal effects of MOS switches. 

 When the transistor turns off, this charge moves to the source and drain, 

 which is called channel charge injection. The charge moving to the input is 

 absorbed by the input source but the output is affected by the remaining 

 channel charge deposited on to the capacitor. The output voltage deviation due 

 to channel charge is 

∆𝑉 =
( )

                                                                   (3.5) 

 Assuming that the total channel charge moves on to the sampling capacitor, 

then the output voltage is given by 

𝑉 ≈  𝑉 −
( )

                                                        (3.6) 

 and ignoring the phase shift between the input and output, the output is given 

 by 

𝑉 = 𝑉 1 + −
( )

                                      (3.7) 

B. Clock Feedthrough 
As can be observed from Figure 3.5, the overlap capacitors between the gate 

and junctions inject additional charge into the circuit when the switches turn 

“off”. This effect is called clock feedthrough. The voltage error due to the 

clock feedthrough is given by 

 

∆𝑉 =  −(∅ − ∅ )                                                           (3.8) 
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where ∅ℎ is VDD and ∅𝑙 is ground.  

According to equations (3.6) and (3.7), the error caused by clock feedthrough 

is small and signal-independent, which can be eliminated by employing a 

fully-differential structure. On the other hand, the error caused by charge 

injection is much larger. We can also divide charge injection into two parts, 

signal-dependent and signal-independent. Switches connected to the analog 

ground and virtual ground cause the signal-independent error because their 

turn-on voltage is constant. Just like the error caused by clock feedthrough, 

these errors can be eliminated by employing a fully-differential structure. 

Moreover, switches connected to the signal cause the signal-dependent error, 

which changes with the signal. This error is important because it significantly 

affects the resolution of the circuit. Therefore, the reduction in this error is a 

critical issue in SC circuits. These approaches are discussed in the following 

sections. 

1. CMOS Switch 

MOS switches includes NMOS, PMOS, and CMOS switches, as shown as 

Figure 3.6. NMOS switches are applicable in low-voltage ranges, and 

PMOS switches are applicable at high voltages. However, CMOS 

switches combine the advantages of both the NMOS and PMOS switches 

and work at all voltages.  

 

Figure 3.6. MOS switches. 
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2. Dummy Switch 

Figure 3.7 shows a dummy switch (M2) driven by inverse clock added to 

the circuit. Therefore, the charge injected by the main switch (M1) can be 

removed to M2 after M1 turns “off” and M2 turns “on”. Note that both the 

source and drain of M2 are connected to the output node and the size of 

M2 is half of that of M1 so that ∆q1 = -∆q2. 

 

Figure 3.7. A MOS switch with a dummy switch.  

 

3. Bottom-plate sampling method 

As shown in Figure 3.8, we added a pair of clocks (φ1a ,φ2a) that were 

slightly advance as compared to the original clocks (φ1 ,φ2 ) in an SC 

integrator. When M1 turns “off”, the injected charge 1 ∆q does not cause 

any change in the charge stored in Cl as M2 has already turned “off” and 

the right side of C1 is connected to an effective open circuit. Therefore, by 

this approach, the circuit is affected only by M2 and M4, which are 

connected to the virtual ground or analog ground. The charges injected by 

these transistors are signal-independent and are cancelled by the fully-

differential structure. 
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Figure 3.8. Bottom-plate sampling implementation in an SC integrator. 

The size of MOS switches is discussed in the following section. 

 

3.2 Design of a 5th Order Elliptic Low Pass SC Filter    

 

To design the low-pass switch capacitor filter, we calculated the transfer function and 

the capacitance of the filter using Matlab. Then the non-idealities of the operational 

amplifier (OPA) and sampling switches were simulated in Cadence. To reduce the 

effect of the chip area on the idealities of the OPA, dynamic range and impedance 

scaling were conducted. Finally, a folded cascade full differential OPA and 

transmission gate switches were designed to implement the filter. 

 

3.2.1 Filter Specification 

Table I lists the filter specifications, which we aimed to design in this study. Switch 

capacitor filter is discrete time;  and therefore it is was necessary to transfer the 

design parameters accordingly to discrete time domain specifications. 
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Table I. 5th order Elliptic Filter Specification. 

 

The design was implemented considering the addition of some margin on the filter. 

The pass-band ripple was set at 0.25 dB. The stop-band gain was selected to be -50 

dB. Table II lists the orders of different types of filters. The elliptic filter requires the 

minimum filter order. Therefore, the LPF used in this study was designed using the 

elliptic filter structure. 

 

Table II. Filter order calculation. 
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3.2.2 Pole and Zero 

The Bilinear transform is used to design a sampled-data filter from the analog 

counterpart. The relationship for the transformation of the s domain to the z domain is 

as follows. 

𝑆 =                                                                                               (3.9) 

where T is the sampling period. As 

𝑆 = 𝑗𝛺                                                                                                 (3.0) 

𝑧 = 𝑒                                                                                                  (3.11) 

Ω and ω can be related as 

𝛺 =  tan ( )                                                                                       (3.12) 

The transfer function, poles, and zeros can be calculated by using the MATLAB 

elliptic low pass filter design. This function can directly return the value in the z-

domain. After getting the pole and zero result in the z-domain, equation (3.9) is used 

to change the poles and zeros from the z-domain to the s-domain in order to calculate 

the Q value of the 2ndorder transfer function. 

The quality factors (Q) of the s-domain poles are 6.748 and 0.674, respectively, to the 

two complex poles shown in Table III. The poles and zeros close to each other 

formed the biquadratic section. These poles and zeros could be obtained through the 

MATLAB transcript given in appendix I. The corresponding transfer function 

calculated by Matlab is  

𝐻(𝑧) =  
. . . . . .

. . . . .
                               (3.13) 

The single-ended version of each of the three filter blocks is delivered in [6] and [8], 

along with derivations for all of the capacitor values.  

 



17 
 

 

Table III. Poles and zeros in the s- and Z-domains.

 

 

3.2.3 Filter Design  

The 5th order transfer function was designed as a cascade of a linear section and two 

second order sections. The poles and zeros were used to form biquadratic sections, a 

bilinear section, a high-quality (high-Q) factor section, and a low-quality (low-Q) 

factor section as follows. 

a. Bilinear section 

𝐻 =  
. ( )

.
                                                                   (3.14) 

b. High-Q section, Q = 6.748  

𝐻 =  
.

. .
                                                               (3.15) 

c. Low-Q section, Q = 0.674 

𝐻 =  
.

. .
                                                               (3.16) 

The pole location, zero location, and frequency response plots are shown in Figures 

3.9, 3.10, and 3.11, respectively.  
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Figure 3.9. Z-domain pole and zero map. 

 

Figure 3.10. Z-domain frequency response. 
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Figure 3.11. Frequency response of the elliptic filter, linear section, low-Q section, 

and High-Q section. 

The frequency response of the elliptic filter with ripple plot, as obtained using 

MATLAB, is shown in Figure 3.12. 

 

Figure 3.12. Frequency response of the elliptic filter with pass-band ripple. 
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3.2.4 Circuit implementation  

 

1. Dynamic and chip area scaling 

Dynamic range scaling is performed to optimize the output swing of each node of a 

filter. This can be done by measuring the output voltage of the amplifier in each 

stage.  

Then by scaling the area of the capacitors, which occupy larger area than the other 

components, we built out the core die on a chip. Reducing the chip area is one of the 

most important considerations in circuit design. Therefore, chip area scaling is 

implemented in the design. This technique not only reduces the on-chip area, 

impedance level scaling, and chip area scaling, but also minimizes the noise. Chip 

area scaling is carried out by using the smallest capacitance connected to the input 

node of the OTA and setting it to the minimum allowable capacitance. In addition, all 

the other capacitances connected to the input node (for that stage) are scaled 

according to the ratio of the scaled factor for the smallest capacitance. Then, this 

procedure is repeated for all the stages, including the bilinear, high-Q, and low-Q. 

The output response does not change after implementing the chip area scaling. As we 

noticed, it multiplies all the capacitances by a scaling factor to the entire stage instead 

of only multiplying to the input node-connected capacitances, which do not affect the 

overall transfer function. Thus, the overall chip area is minimized. 

 

2. Filter Cascade  

The order of a filter is implemented to achieve high performance. The linear section 

is placed at the input in order to reject high-frequency noise. The high-Q section is 

placed in the middle to reduce the sensitivity and power supply rejection ratio. The 

low-Q section is placed at the end. The filter cascading structure is shown in Figure 

3.13. 
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Figure 3.13. The cascading structure of an elliptic filter. 

 

3. Fully differential structure 

In most of the analog applications, it is desirable to keep signals in the differential 

mode. Fully-differential signals imply that the difference between two lines 

represents the signal component. Thus, any noise that appears as a common-mode 

signal on those two lines does not affect the signal. Fully differential circuits should 

also be balanced, implying that the differential signals operate symmetrically around 

a DC common-mode voltage, which is called the analog ground. Fully differential 

circuits have another advantage that if each single-ended signal is distorted 

symmetrically around the common-mode voltage, the differential signal will have 

only odd-order distortion terms. These terms are often much smaller than the single-

ended structure. Consider the block diagram shown in Figure 3.15, if two non-linear 

elements are identical then each of the outputs can be determined as a Taylor series 

expansion given by 

𝑉 = 𝑘 𝑉 + 𝑘 𝑉 + 𝑘 𝑉 + ⋯                                                            (3.17) 

−𝑉 = −𝑘 𝑉 + 𝑘 𝑉 − 𝑘 𝑉 + ⋯                                                      (3.18) 

where ki are the constant terms. In this case, the differential output signal, Vdiff, 

consists of only the odd-order terms, 

𝑉 = 2𝑘 𝑉 + 2𝑘 𝑉 + 2𝑘 𝑉 + ⋯                                                (3.19) 

With these two important advantages, most of the modern switched-capacitor circuits 

are realized using fully differential structures. 
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Figure 3.14. A fully differential structure with even-order term cancellation.  

 

4. Linear section 

The schematic of a linear section is shown in Figure. 3.15. The signal-flow-graph is 

shown in Figure. 3.16, and the corresponding values of the capacitors are listed in 

Table IV. The transfer function of the linear section is given by equation (3.20), 

which can be derived from its signal-flow-graph. The capacitor calculation is 

performed using equation (3.14) to determine C1_S1, C2_S2, and C3_S1, when 

simplifying the calculation, CA is set to 100fF.  

𝐻(𝑧) =
( )

( )
=  −

_ _

_
= −

_ _ _

_
        (3.20) 

 

 

Figure 3.15. First linear stage. 
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Figure. 3.16 Signal-flow-graph of the linear section. 

 

Table IV First Stage capacitances. 

 

 

5. High-Q section 

The high-Q section, which has a pole quality factor of 6.748, is placed at the middle. 

The schematic of the high-Q section and the capacitances in the second stage (Table 

V are shown in Figure 3.17. The signal-flow-graph is shown in Figure. 3.18. The 

quality factor of each filter is determined from the pole frequency as follows. 

𝑄 =
 |  |

( )
                                                                                            (3.21) 

The transfer function of the linear section is expressed as (3.21), which can be derived 

from its signal-flow-graph and equation (3.15). 

𝐻(𝑧) =
𝑉 (𝑧)

𝑉 (𝑧)
  

= −
( _ ) ( _ _ _ _ _ ) ( _ _ _ )

( _ _ _ _ ) ( _ _ )
      (3.22) 
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Figure. 3.17 Second high-Q stage. 

 

Figure 3.18. Signal-flow graph of the high-Q section. 

 

Table V. Capacitance of the second stage.
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6. Low-Q section 

The low-Q section, which has a pole quality factor of 0.67, is placed at the end. The 

schematic of the low-Q section and the capacitances in the third stage (Table VI) are 

shown in Figure 3.19. The signal-flow-graph is shown in Figure. 3.20.  

The transfer function of the linear section is expressed as (3.23), which can be derived 

from its signal-flow graph and equation (3.16). 

𝐻(𝑧) =
𝑉 (𝑧)

𝑉 (𝑧)
 

= −
( _ _ ) ( _ _ _ _ ) ( _ )

( _ ) ( _ _ _ )
                            (3.23) 

 

Figure 3.19. Third low-Q stage. 

 

Figure 3.20. Signal-flow graph of the low-Q section. 
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Table VI. Third stage capacitances. 

 

 

7. Switches Sizing [8] 

Clock feedthrough and charge injection cause setup error voltage in sampling signals. 

And the nonlinearity of switches introduces harmonics to the sampling signals. At the 

beginning, we took biquad filters as two first-order systems with a single delay 

around the loop because of the negative SC resistor. In addition, the output error of an 

ideal first-order system is given by the following equation. 

𝑉 (𝑡) = 𝑒                                                                                                       (3.24) 

where τ is the RC time constant of the first-order system and ts is the settling time of 

the first-order system. Assuming the circuit has a resolution of N bits, then (3.16) can 

be rewritten as 

              𝑒 ≤                                                                                         (3.25) 

If we set the capacitance loading to 2 pF, the settling time as the half of the clock 

period, and the resolution as 8 bits, then the turn-on resistance limitation is given by 

𝑅 ≤
( ) ( )

≈ 0.13 𝑘Ω                                                                 (3.26) 
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From equation (3.25), we can determine the size of the NMOS switches. As for the 

CMOS switches, we still have to consider the ratio of the sizes of the NMOS and 

PMOS switches. 

First of all, we recall that the equation of transistor current vs. voltage in the triode 

region is given by 

𝐼 = 𝜇𝐶 [ 𝑉 − 𝑉 𝑉 − 𝑉 ]                                               (3.27) 

Then turn-on resistance of MOS switches is given by 

𝑅 = ( ) =
( )

)                                              (3.28) 

According to (3.19) the size of the switch transistor is 

=
( )

 ≈ 3                                                         (3.29) 

Assuming the length of the channel to be minimum i.e., L = 0.18 µm, then W = 0.54 

µm. Generally, the mobility of a PMOS switch is the one-third of that of an NMOS 

switch. Thus, the size of a PMOS switch should be three times larger that of an 

NMOS switch to provide equivalent resistance. 

Figure 3.21 shows the switch used in our LPF. It consisted of four NMOS transistors 

with the W/L ratio of 0.54/0.18, and a CMOS inverter was used for providing an 

opposite phase clock to the dummy switches. 
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Figure 3.21. Proposed charge injection canceling switch. 

 ∆𝑉 =  −
( )

≈ −
( )

                                                    (3.30) 

 

7. Design of OTA 

The TSMC 180nm CMOS technology was used to design the OTAs. The OTAs 

designed in this study are shown in Figures 3.22–3.26. The folded cascade structure 

was used, the minimum length of the transistors in the output path was set to 1 µm to 

achieve a gain of 60 dB. The CMFB was utilized to provide an output DC operation 

point for the OPA, and the trans-conductance of the CMFB circuit was about the half 

of the input trans-conductance that could provide enough common-mode bandwidth. 

The size of the transistors, the bias circuit, and specification are listed in Tables VII – 

Table XV. The frequency response of the first stage OTA is summarized in Table 

VII, the DC gain was approximately 54.15 dB, the bandwidth was 6.2 MHz, and the 

phase margin of the OTA was 92.35°. The frequency response of the filter at each 

stage and the overall frequency response of the filter with the real OTA are 

summarized in Tables VII–XV. The pass-band ripple was approximately 0.229 dB 
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and the stop-band attenuation was -51dB. When the amplitude of the input sine signal 

was 2 Vpp and the frequency was 30 kHz, the output waveform of the filter and the 

FFT results are shown in Figures. 3.27– 3.30. Sampling caused glitches in the output 

signal. The 3rd harmonic was  -110.25 dB and the 5th harmonic was -124.42 dB. 
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Figure 3.22. Schematic of the first stage real OPA. 

 

Table VII. Specification Of First transistor. 

 

 

Table VIII. Size Of First transistor and biasing circuit.
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Figure 3.23 Schematic of the second stage real OPA. 

 

Table IX. Specification of the second transistor.

 

 

Table X. Size of the second transistor and biasing circuit.
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Figure 3.24. Schematic of the third stage real OPA. 

 

Table XI. Specification of the third transistor.

 

 

Table XII. Sizes of the third transistor and biasing circuit.
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Figure 3.25 Schematic of the fourth stage real OPA. 

 

Table XIII. Specification of the fourth transistor.

 

 

Table XIV. Size of the fourth transistor and biasing circuit.
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Figure 3.26 Schematic of the fifth stage real OPA. 

 

Table XV. Specification of the fifth transistor.

 

 

Table XVI. Size of the fifth transistor and biasing circuit.
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Figure 3.27 Frequency response of the linear section between the ideal and transistor 

levels.   

 

Figure 3.28 Frequency response of the high-Q section between the ideal and transistor 

levels.  
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Figure 3.29. Frequency response of the low-Q section between the ideal and transistor 

levels.    

 

Figure 3.30. Frequency response of the LPF between the ideal and transistor levels.  

In this work, a 5th order elliptic LPF was analyzed and designed. To ensure the high 

performance of the LPF, the non-idealities of the OPA and sampling switches were 

simulated. The TSMC 0.18 µm CMOS technology was employed to verify this 

design. The transistor level simulation results are summarized in Table XVII. 
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Table XVII. Specification for the LPF. 

 

 

 

3.3 PCC Technique [3]    

The linearity, power, and area efficiencies of a filter design are critical for wireless 

applications with low hardware complexity and cost. These integrators in filter 

application should have high linearity to achieve a high SNDR and to avoid the input 

referred noise, which affects the overall linearity performance [9]. 

Several techniques have been proposed to improve the slew rate of OTAs in switched 

capacitor circuits [10][11]. These techniques involve the designing of an active 

component and auxiliary amplifier to share the redundant current flows, resulting in 

the settling down of the fully-differential OPA circuit to the common ground level 

with enough current flows. These approaches enhance the linearity by improving the 

slew rate, but at the expense of chip efficiency. This study focuses on the slew rate 

enhancement, which would reduce the settling time with an additional passive charge 

compensation path adding at the output of the OTA [3]. The proposed technique is 

shown in Figure 3.31. During phase S1, the input is sampled onto C1, while the charge 

compensation capacitor C3 holds the previous output voltage. During the charge 

transfer phase S2, the OTA needs to provide charge equal to C1Vin to the top plate of 

C2 in addition to charging the load capacitor. In the charge compensation technique, 

an additional charge proportional to the input voltage is also provided onto the top 

plate of C2 provided through C3. Ideally, if Vin between S1 and S2 does not change,  
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and if the optimum value of C3 is chosen, the OTA does not need to provide any 

charge, hence power can be saved in biasing the OTA. If the input varies slowly (i.e., 

it is oversampled) the charge provided by the OTA can still be greatly reduced as 

only the charge proportional to the difference between the previous input voltage and 

current input voltage needs to be provided. Considering the effect of CL, C3 can be 

expressed as (3.31). 

 

𝐶 = 𝐶
( )

( )
= 𝐶 , 𝑠𝑖𝑛𝑐𝑒 𝐶 /𝐶 < 1                                     (3.31) 

 

Figure 3.31. A charge-compensated integrator [3]. 

 

3.3.1 PCC Technique Design and Implementation 

In the LPF design, the DC-gain loops of each OTA were less than 1, we derived the 

capacitance needed at the output of the OTA of the linear , high-Q, and low-Q 

sections. We added PCC paths at the output of the 1st integrator in the high-Q and 

low-Q sections during the evaluation because the output of the 2nd integrator 

connected the unknown capacitor load.  

1. Designing the PCC capacitance of the linear section 

The linear section with a PCC path is shown in Figure 3.32. 
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Figure 3.32. Linear section with a PCC path. 

During the Φ2 phase, by KCL, we can derive equations (3.21) – (3.24), to determine 

the CPCC_Linear. 

 

Figure 3.33. Linear section with a PCC path during the Φ2 phase operation. 

q [n] = 𝐶 _ ∗ 𝑉 [ 𝑛 − 1
2 ]                                                             (3.32) 

q [n] = 𝐶 ∗ {𝑉 (𝑛) − 𝑉 𝑛 − 1
2 }                                           (3.33) 

As we know, 𝑞  𝑎𝑛𝑑 𝑞  are discharged to ground.  

Then, 𝑞 =[𝑉 [ 𝑛 − 1
2) -0 –(𝑉 [(𝑛 − 1) − 0)] 

So, 𝑉 [n − 1
2] = 𝑉 [𝑛 − 1]                                                                   (3.34) 

Put (3) into (3.22), q [n] = 𝐶 ∗ {𝑉 (𝑛) − 𝑉 [(𝑛 − 1))] 

𝑉 (𝑛) − 𝑉 (𝑛 − 1) = _  𝑉 (𝑛 − 1
2) 

 q [n] = 𝐶 ∗ 𝑉 [𝑛] − 0 − 𝑉 𝑛 − 1
2 − 0  
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                = 𝐶 ∗ 𝑉 [𝑛] − 𝑉 𝑛 − 1
2  

                = 𝐶  _  𝑉 (𝑛 − 1
2)                                                                   (3.35) 

𝐶 _ = 𝐶1_𝑆1 =  𝐶1_𝑆1

𝐶2_𝑆1

𝐶2_𝑆1 𝐶1_𝑆1

 ≈ 264𝑓𝐹                                      (3.36)

2. Designing the PCC capacitance of the high-Q section 

The high-Q section with a PCC path is shown in Figure 3.34.  

 

Figure 3.34. High-Q section with a PCC path. 

 

Figure 3.35. High-Q section with a PCC path at the Φ2 phase. 

During the Φ2 phase, by KCL, we derived equations (3.32) – (3.35) to derive 

CPCC_High-Q,  
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q [n] = 𝐶 _ ∗ 𝑉 [ 𝑛 − 1
2 ]                                                         (3.37) 

q [n] = 𝐶 ∗ {𝑉 (𝑛) − 𝑉 𝑛 − 1
2 }                                       (3.38) 

As we know, if 𝑞  𝑎𝑛𝑑 𝑞  are discharged to ground.  

Then, 𝑞 =[𝑉 [ 𝑛 − 1
2) -0 –(𝑉 [(𝑛 − 1) − 0)] 

So, 𝑉 [n − 1
2] = 𝑉 [𝑛 − 1]                                                                (3.39) 

Put (3) into (3.22), q [n] = 𝐶 ∗ {𝑉 (𝑛) − 𝑉 [(𝑛 − 1))] 

𝑉 (𝑛) − 𝑉 (𝑛 − 1) = _  𝑉 (𝑛 − 1
2) 

 q [n] = 𝐶 ∗ 𝑉 [𝑛] − 0 − 𝑉 𝑛 − 1
2 − 0  

                = 𝐶 ∗ 𝑉 [𝑛] − 𝑉 𝑛 − 1
2  

                = 𝐶  _  𝑉 (𝑛 − 1
2)                                                                  (3.40) 

 

𝐶 _ = 𝐶 _ _
=  𝐶 _

_
  ≈ 186.6𝑓𝐹                         (3.41) 

3. Designing the PCC capacitance of the low-Q section 

The low-Q section with a PCC path is shown in Figure 3.36.  

 

Figure 3.36. Low-Q section with a PCC path. 
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Figure 3.37. Low-Q section with a PCC path at the Φ2 phase. 

During the Φ2 phase, by KCL, we derived equations (3.32) – (3.35) to determine 

CPCC_High-Q,  

q [n] = 𝐶 _ ∗ 𝑉 [ 𝑛 − 1
2 ]                                                         (3.42) 

q [n] = 𝐶 _ ∗ 𝑉 [ 𝑛 − 1
2 ]                                                        (3.43) 

q [n] = q [n] + q [n] = 𝐶 _ + 𝐶 _ ∗ 𝑉 [ 𝑛 − 1
2 ]           (3.44) 

q [n] = 𝐶 ∗ {𝑉 (𝑛) − 𝑉 𝑛 − 1
2 }                                         (3.45) 

As we know, 𝑞  𝑎𝑛𝑑 𝑞  are discharged to ground.  

Then, 𝑞 =[𝑉 [ 𝑛 − 1
2) -0 –(𝑉 [(𝑛 − 1) − 0)] 

So, 𝑉 [n − 1
2] = 𝑉 [𝑛 − 1]                                                                 (3.46) 

Put (3) into (3.22), q [n] = 𝐶 ∗ {𝑉 (𝑛) − 𝑉 [(𝑛 − 1))] 

𝑉 (𝑛) − 𝑉 (𝑛 − 1) = _ _  𝑉 (𝑛 − 1
2) 

 q [n] = 𝐶 ∗ 𝑉 [𝑛] − 0 − 𝑉 𝑛 − 1
2 − 0  

                = 𝐶 ∗ 𝑉 [𝑛] − 𝑉 𝑛 − 1
2  
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                = 𝐶  _ _  𝑉 (𝑛 − 1
2)                                                           (3.47) 

𝐶 _ = (𝐶 _ + 𝐶 _ ) ( _ _ )

_

=  (𝐶 _ + 𝐶 _ ) _

_ _ _
 ≈ 56𝑓𝐹 (3.48) 

The completed LPF circuit with the proposed PPC technique is shown in Figure 3.38.  
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Figure 3.38. Completed work with proposed PCC technique. 
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3.3.2 Simulation Result 

Among the three stages, the linear stage had the highest requirement for slew rate 

(SR), so the SR requirements of this stage are discussed. The output harmonics with 

different SR when the input signal frequency was 30 KHz with Vpp sine signal, ± 1.8 

vol, are shown in Figure 3.39, and the comparison of the transient response is shown 

in Figure 3.40. Table XVIII lists the amplitude values of the 3rd and 5th harmonics at 

the conventional LPF circuit. The PCC result shoed that the noise improvement ( 

12.34 dB) noise improvement at the 3rd harmonic distortion was reduced from -

105.79dBc to -118.13dBc & improve 13.15dB at 5th harmonic distortion was reduced 

from -115.25dBc to -128.40dBc.  

 

Figure 3.39. Distortions of the conventional LPF. 
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Figure 3.40. LPF transient time responses of the ideal and transistor levels. 

 

Table XVIII. Simulation results for the macro-module and transistor level. 

 

The dynamic powers at each SC circuit and the individual PCC techniques are given 

in Table XIX, whereas the comparison between with and without the PCC techniques 

is given in Table XX. The corresponding dynamic power consumption with the PCC 

is 0.363 uW as low as expected.   
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Table XIX. Simulation results of dynamic power at the transistor level circuit. 

 

 

Table XX. Simulation results of the dynamic power comparison. 
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Chapter 4: Conclusion and Future Work 
 
 

 
Designing analog LPF circuits with good linearity, low cost, and area efficiency is 

critical for the present day mixed-signal designs. In this study, we designed a fully-

differential 5th-order elliptic low-pass SC filter with a sampling frequency of 600 

kHz, a corner frequency of 36 kHz using the PCC technique. This technique 

improved the linearity of the LPF with a noise reduction of 12.3 dB at the 3rd 

harmonic distortion and 13.1 dB at the 5th harmonic distortion without using the 

active blocks. This indicates that the PCC technique is an efficient approach for 

designing LPFs. 

The future research will focus on the utilization of the PCC technique for designing 

FIR filters with low power consumption. 
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APPENDIX I 
 

 

Matlab script for the design of a 5th order elliptic LPF  

% 626 filter - using James' values... 
  
  
  
clear all; 
%% Input specs 
Fs = 600e3;              % 600kHz 
fpass = 36e3;           % 36kHz 
% fstop = [72e3 240e3];   % Hz   % why this is a range???..I think 
that it is because at Fs/2 the filter goes to -inf and the ripple is 
unbounded 
  
fstop = 72e3 ;              % 72kHz 
ripple_passband = 0.15 ;    % dB    -- peak to peak ripple inside 
passband 
gain_stopband = 51 ; %was 51       % dB    -- max gain in passband 
minus max gain in stopband 
  
  
%% STEP 1: Choosing lowest order implementation: 
%{ 
%  { I will compare the different filters to see which has lowerst 
order: 
% filter_dig =  designfilt('lowpassiir','SampleRate', Fs); 
  
% Normalize specs so they can be fed to matlab functions that give 
order 
% and cut-off (normalized) freq of each of the digital IIR filters: 
Wp = fpass/(Fs/2); 
Ws = fstop/(Fs/2); 
Rp = ripple_pass;  
Rs = ripple_stop;  
  
% butterworth: 
[n(1) , Wcut_off(1)] = buttord(Wp,Ws,Rp,Rs); 
% chebyshev I: 
[n(2) , Wcut_off(2)] = cheb1ord(Wp,Ws,Rp,Rs); 
% chebyshev II: 
[n(3) , Wcut_off(3)] = cheb2ord(Wp,Ws,Rp,Rs); 
% elliptic: 
[n(4) , Wcut_off(4)] = ellipord(Wp,Ws,Rp,Rs); 
  
% denormalize the cut off freq 
f_3db = Wcut_off * (Fs/2); 
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% CONCLUSION: the lowest order filter is achieved with an ELLIPTIC 
%} 
%% STEP 2: Get filter coefficients: 
  
% Get order and cut-off: 
[order , fcutoff_norm] = 
ellipord(fpass/(Fs/2),fstop/(Fs/2),ripple_passband,gain_stopband); 
  
% denormalize cutoff freq: 
fcutoff = fcutoff_norm*(Fs/2); 
  
% Get elliptic filter coeffs: 
[Hdig.n , Hdig.d] = ellip(order , ripple_passband , gain_stopband , 
fcutoff_norm); 
  
% define transfer function: 
Hdig.tf = tf(Hdig.n , Hdig.d , 1/Fs); 
  
%% STEP 3: verify that specs are matched using this TF: 
% make 3 freq vector, gral, passband and stopband: 
f = linspace(0 , Fs/2 , 1e3+1);    
f = f(1:end-1);   % because at Fs/2 it goes to -Inf 
f_pass = linspace(0 , fpass , 100e3);    
f_pass2 = linspace(0 , fpass*1.2 , 100e3);   % Actually for the 
passband freq vector I consider 20% more to have the peak well 
inside the range 
f_stop = linspace(fstop, 240e3 , 1e3);  % I use 240kHz because it is 
on the specs! 
  
[Hdig.mag , Hdig.ph] = bode(Hdig.tf, 2*pi*f)     ;  Hdig.mag = 
squeeze(Hdig.mag);Hdig.ph = squeeze(Hdig.ph); 
[Hdig.mag_pass , ~]  = bode(Hdig.tf, 2*pi*f_pass);  Hdig.mag_pass = 
squeeze( Hdig.mag_pass ); 
[Hdig.mag_stop , ~]  = bode(Hdig.tf, 2*pi*f_stop);  Hdig.mag_stop = 
squeeze( Hdig.mag_stop ); 
  
if ( max(20*log10(abs(Hdig.mag_pass)))-
min(20*log10(abs(Hdig.mag_pass)))  > ripple_passband ) 
    error("The passband ripple of the realized filter is larger than 
the specified!"); 
end 
%if ( max(20*log10(abs(Hdig.mag_stop)))-
min(20*log10(abs(Hdig.mag_stop)))  < gain_stopband ) 
 %   error("The stopband ripple of the realized filter is larger 
than the specs!"); 
%end 
  
%% STEP 4: split in second order sections: 
  
% generates a matrix with 6 columns and the rows are 2nd order (or 
1st 
% order if the input TF is odd-order), and a gain. 
% Each row has the format [num,den]=[n1 n2 n3]/[1 d2 d3 ] 
%  
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% use 'down', to order the sections so the first row of sos contains 
the poles 
% closest to the unit circle  (highest Q first, lowest Q last). 
% (according to the book there are other advantages/disadvatanges  
% resulting from combining poles and zeros in other ways, but I 
% experimented with them them, and this one seemed easier). 
  
[ SecondOrdSections , gain_sos ] = tf2sos( Hdig.n , Hdig.d , 'down' 
); 
  
% separate the sections 
% assign the gain_sos to the linear section arbitrarily,because 
filters 
% will be scaled later on. 
  
[HiQ.n , HiQ.d] = sos2tf(SecondOrdSections(1,:))         ; 
[LoQ.n , LoQ.d] = sos2tf(SecondOrdSections(2,:))         ; 
[Lin.n , Lin.d] = sos2tf(SecondOrdSections(3,:),gain_sos);       
  
% for the linear section drop the zero coefficients 
Lin.n = Lin.n(1:end-1); Lin.d = Lin.d(1:end-1); 
  
% generate the TF for each section 
  
HiQ.tf = tf( HiQ.n , HiQ.d , 1/Fs ); 
LoQ.tf = tf( LoQ.n , LoQ.d , 1/Fs ); 
Lin.tf = tf( Lin.n , Lin.d , 1/Fs ); 
  
[HiQ.mag , HiQ.ph] = bode( HiQ.tf , 2*pi*f ) ; HiQ.mag = 
squeeze(HiQ.mag) ; HiQ.ph = squeeze(HiQ.ph); 
[LoQ.mag , LoQ.ph] = bode( LoQ.tf , 2*pi*f ) ; LoQ.mag = 
squeeze(LoQ.mag) ; LoQ.ph = squeeze(LoQ.ph); 
[Lin.mag , Lin.ph] = bode( Lin.tf , 2*pi*f ) ; Lin.mag = 
squeeze(Lin.mag) ; Lin.ph = squeeze(Lin.ph); 
  
  
%% STEP 5: Plot filter bode and zero-pole diagram: 
plot_step_5 = 1; 
  
if plot_step_5     
     
    %plot bode mag 
    figure(); 
    subplot(221); 
    semilogx(f,dbv(Hdig.mag)); hold on 
    semilogx(f,dbv(HiQ.mag),'r'); 
    semilogx(f,dbv(LoQ.mag),'g'); 
    semilogx(f,dbv(Lin.mag),'m'); 
     
    grid on; 
    ylabel('Magnitude [dB]'); 
    xlabel('Freq [Hz]') 
    title("Bode Plot") 
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    %plot bode phase 
    subplot(223); 
    semilogx(f,Hdig.ph); hold on; 
    semilogx(f,HiQ.ph,'r'); 
    semilogx(f,LoQ.ph,'g'); 
    semilogx(f,Lin.ph,'m'); 
     
    grid on; 
    ylabel('Phase [^o]'); 
    xlabel('Freq [Hz]') 
     
    %plot pole-zero map 
    subplot(2,2,[2 4]); 
    pzmap(Hdig.tf); hold on 
    pzmap(HiQ.tf,'r'); 
    pzmap(LoQ.tf,'g'); 
    pzmap(Lin.tf,'m'); 
    [p,z] = pzmap(Hdig.tf);% grid on; 
     
    legend('Overall','High Q','Low Q','Linear'); 
end 
  
%% STEP 6: Order of the sections and cap values 
  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % %  
% Order of the sections: 
%   IN ---> [Linear]---> [HiQ]---> [LoQ]---> OUT 
  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % %  
% Normalized & un-scaled Cap values: 
% 
% I use a function that gets caps values from coefficients. 
% These are unscaled. 
% (The number of the caps follows that in John-Martins) 
Lin.c = coef2caps(Lin.tf , "Linear"); 
HiQ.c = coef2caps(HiQ.tf , "HighQ"); 
LoQ.c = coef2caps(LoQ.tf , "LowQ"); 
  
  
%% Comments about dynamic range scaling from 626 notes: 
%{ 
    in 626 notes  (Lec: advanced SC circ design techniques)an 
argument is given 
    to support why scaling a stage is convenient. 
    Briefly a constant k is included in a stage, which increases the 
output 
    swing of the amplifier, but reduces the output current (e.g. 
input branches 
    capacitance is increased, and utput branches are reduced) that 
goes to 
    the next stage. 
    From the current signal perspective nothing changes. 
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    However from the current noise perspective, increasing k reduces 
the 
    output noise current, until an asymptote is reached at k=inf. 
  
    There is a limit to this, because more output swing will 
saturate the 
    amplifier eventually. Degrading the SNDR. 
    Therefore the optimal value for the constant k will make the 
amplifier 
    swing large enough (optimize SNR) but right before hitting 
    distortion (optimize SNDR). 
    That is why it is called "Optimal DR scaling".  
     
  
    That means that more k reduces the current noise that will be 
injected 
    into the next stage. 
    Note that this effect is due to the opamp noise (and assumes 
infinite 
    gain). 
    Also in the notes he mentions that SNR is improved, but then 
adds that 
    output noise depends on other factors as well (doesnt say which 
ones) 
    and the current might be only one of them (so stating that SNR 
improves 
    might be not be totally right??) 
  
    It would be interesting to see: 
    - the contribution of this noise when input referred 
    - this noise compared to other noise sources to see its 
relevance. 
    - see if this can be tested, in terms of SNR vs k. 
    Note that: 
    - This has nothing to do with kT/C noise. 
    - This is related with amplifier noise, since a noisy-er amp 
will inject 
    more noise. 
    - Note that the observtion is done on an infinite gain amp. 
  
  
--------------------------------------------------------------------
------ 
    In slides 39 to 46, a specific scaling for SC is described. 
    The assumptions seem to be that (slide 39): 
    - all amplifiers have equal input noise, 
    - all have same maximum linear range. 
    It would be interesting to see what happens if that is not true. 
     
    I think that slide 41 has an error, because if both h and g are 
    multiplied by k the opamp output voltage doesnt change. 
  
    - The area scaling consists in using the smallest coefficient as 
the 
    unit capacitance value for the design. 
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    -There is no mention on how the rounding affects. 
  
    Mentions that the coefficients to mulyiply are 
k=Vin,max/Vout.max. 
    That all opamps should saturate with the same input. 
    - The sampling caps are increased by k, this pushes more charge 
into the 
    integrating cap. But if the integrating cap is also increased 
less 
    - The integrating cap is reduced by the same factor 
  
%} 
%% STEP 7: Dynamic range scaling 
  
%{ 
  For the scaling I need to see the internal realization of the 
filters. 
  Using the cap values obtained in STEP 6, and the flow diagrams in 
  John-Martins it is possible to get them in simulink. 
  
  Also in simulink it is possible to use an app called "Linear 
Analysis 
  Tool" (see help). This allows to extracts transfer functions form 
a block diagram. 
  
  By doing that I can extract the transfer functions at the output 
of 
  each integrator and scale them, before moving to cadence. 
  
 This was done in simulink using the Linear Analysis tool. The 
simulink 
 model is 
open("filter_626_simu.slx"); 
 And the Linear Analysis tool with the pre and post freq response 
can be 
 found in: 
load("prescaling_freq_repsonses.mat"); 
%} 
  
  
% It can also be done more automatic... 
  
% define simulink the model name 
model = 'filter_626_simu'; 
  
% open the simulink model 
% open_system(model) 
  
% set the scaling vector to 1 initially 
scale = ones(1,5); 
  
  
% define inputs and outputs to linearize, based on the output blocks 
% defined in simulink 
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input     = linio('filter_626_simu/IN',1,'input'); 
output(1) = linio('filter_626_simu/S1_Linear/Int',1,'output'); 
output(2) = linio('filter_626_simu/S2_HighQ/Int1',1,'output'); 
output(3) = linio('filter_626_simu/S2_HighQ/Int2',1,'output'); 
output(4) = linio('filter_626_simu/S3_LowQ/Int1' ,1,'output'); 
output(5) = linio('filter_626_simu/S3_LowQ/Int2' ,1,'output'); 
  
for m =1 :length(scale)    
     
    % runs the simulink model and extracts the TF in the indicated 
    % input/output: 
    linsys = linearize(model , [input output(m)]); 
    % get the num and den 
    [num , den ]  = ss2tf(linsys.A , linsys.B , linsys.C , linsys.D 
); 
     
    % get the mag response in the pass band 
    tf_int = tf( num , den ,1/Fs); 
    [mag , ~] = bode( tf_int , 2*pi*f_pass2 ) ; mag = squeeze(mag) ; 
     
    % get the max magnitude 
    [max_mag_db , max_index] = max(20*log10(abs(mag))); 
     
    scale(m) =  10.^( max_mag_db-20*log10(abs(scale(m)))); 
%     fprintf("pause here -- for debugging\n"); 
     
end 
  
  
% Get the values of the scaled coefficients and the resulting 
transfer 
% functions by inspection of the simulink model: 
  
Lin.cs_dr = [Lin.c(1) Lin.c(2) Lin.c(3)*scale(1)]; 
Lin.cf_dr = [scale(1)]; 
[ax1,ax2] = caps2coef(Lin.cs_dr./Lin.cf_dr , "Linear"); 
Lin.c_dr_tf = tf(ax1,ax2,1/Fs); 
  
HiQ.cs_dr = [HiQ.c(1)*scale(1) HiQ.c(2)*scale(1) HiQ.c(3)*scale(1) 
... 
             HiQ.c(4)*scale(3) HiQ.c(5)*scale(2) HiQ.c(6)*scale(3)]; 
HiQ.cf_dr = [scale(2) scale(3)]; 
         
[ax1,ax2] = caps2coef([HiQ.cs_dr(1)/HiQ.cf_dr(1) 
HiQ.cs_dr(2)/HiQ.cf_dr(1) ... 
                       HiQ.cs_dr(3)/HiQ.cf_dr(2) 
HiQ.cs_dr(4)/HiQ.cf_dr(1) ... 
                       HiQ.cs_dr(5)/HiQ.cf_dr(2) 
HiQ.cs_dr(6)/HiQ.cf_dr(1) ] ,"HighQ"); 
HiQ.c_dr_tf = tf(ax1,ax2,1/Fs); 
         
LoQ.cs_dr = [LoQ.c(1)*scale(3) LoQ.c(2)*scale(3) LoQ.c(3)*scale(3) 
... 
            LoQ.c(4)*scale(5) LoQ.c(5)*scale(4) LoQ.c(6)*scale(5) ]; 
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LoQ.cf_dr = [scale(4) scale(5)];         
  
[ax1,ax2] = caps2coef([LoQ.cs_dr(1)/LoQ.cf_dr(1) 
LoQ.cs_dr(2)/LoQ.cf_dr(2) ... 
                       LoQ.cs_dr(3)/LoQ.cf_dr(2) 
LoQ.cs_dr(4)/LoQ.cf_dr(1) ... 
                       LoQ.cs_dr(5)/LoQ.cf_dr(2) 
LoQ.cs_dr(6)/LoQ.cf_dr(2) ] ,"LowQ"); 
LoQ.c_dr_tf = tf(ax1,ax2,1/Fs); 
         
         
  
% merge coefficients into one matrix with 3 columns and 6 rows (each 
% columns is one section of the filter and each row is each cap 
value 
Cap_s_dr = [[Lin.cs_dr zeros(1,3)]' HiQ.cs_dr' LoQ.cs_dr']; 
  
% replace small coefficients smaller than 1e-10 with 0 
Cap_s_dr( abs(Cap_s_dr) <= 1e-10 )= 0; 
  
Cap_f_dr = [Lin.cf_dr HiQ.cf_dr LoQ.cf_dr]; 
  
% display scaled coefficients as columns from cap1 to cap6 
disp(' After dynamic range is completed...') 
disp('             S1:Linear     S2:High Q         S3:Low Q') 
disp([ ["c_s1";"c_s2";"c_s3";"c_s4";"c_s5";"c_s6"]  Cap_s_dr]) 
disp([ ["c_f1";"c_f2";"c_f3";"c_f4";"c_f5"]  Cap_f_dr']); 
  
  
  
%% STEP 8: Area scaling 
% assume some minimum capacitor size (should be AKM's!) 
% this assumes a minum capacitor of value 1...or that all caps are 
% normalized to a unit cap of value 1. 
C_min = 1; 
  
% this describes which caps belong to each opamp in the filter (from 
1 to 5) 
ota_array = [ [1 1 1 0 0 0]' [2 2 3 2 3 2]' [4 5 5 4 5 5]' ]; 
  
  
% duplicate the coefficients matrix and replace the 0 for Inf so 
they dont 
% show up in the min search 
Cap_s_dr_area = Cap_s_dr; 
Cap_s_dr_area( Cap_s_dr == 0 )= NaN; 
  
% do this for each opamp 
for m = 1:5 
    %finds the smallest absolute value of the caps connected to a 
certain 
    %opamp: 
    min_cap = min(abs(Cap_s_dr_area( ota_array== m ))); 
    %then divides a 
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    Cap_s_dr_area = Cap_s_dr_area .* (ota_array== m )*C_min/min_cap  
+ Cap_s_dr_area.* (ota_array~= m ); 
    Cap_f_dr_area(m) = Cap_f_dr(m) * C_min/min_cap; 
  
end 
Cap_s_dr_area( Cap_s_dr == 0)= 0; 
  
% display scaled coefficients as columns from cap1 to cap6 
fprintf(' After area scaling is completed - Assuming Cunit = %f 
F\n',C_min) 
disp('             S1:Linear     S2:High Q         S3:Low Q') 
disp([ ["c_s1";"c_s2";"c_s3";"c_s4";"c_s5";"c_s6"]  
Cap_s_dr_area(:,1) Cap_s_dr_area(:,2) Cap_s_dr_area(:,3)]) 
disp([ ["c_f1";"c_f2";"c_f3";"c_f4";"c_f5"]  Cap_f_dr_area']); 
  
  
%% STEP 9: Getting layout-realizable caps 
% After all the scaled cap values are not integers. 
% We want to see the resulting filter frequency response if we round 
them. 
% It uses 92 unit caps (considering a fully diff implementation). 
% Seems that the rounded version doesn't match well against the 
ideal 
% filter. The poles 
  
  
  
% without any rounding : 
[ id.all , id.s1 , id.s2 , id.s3 ] = cap_to_tf(Cap_s_dr_area , 
Cap_f_dr_area , ota_array , Fs); 
verify_filter_specs(id.all , f_pass,f_stop, ripple_passband, 
gain_stopband); 
  
% with rounding: 
[ rn.all , rn.s1 , rn.s2 , rn.s3 ] = cap_to_tf(round(Cap_s_dr_area) 
, round(Cap_f_dr_area) , ota_array , Fs); 
total_cap_round = (sum(abs(round(Cap_s_dr_area)),'all') + 
sum(abs(round(Cap_f_dr_area)),'all'))*2; 
  
  
within_spec = verify_filter_specs(rn.all , f_pass,f_stop, 
ripple_passband, gain_stopband); 
if within_spec 
    disp("The rounded version is within specs."); 
else 
    disp("The rounded version is NOT within specs. Something needs 
to be done!"); 
end 
  
plot_step_9 = 0; 
  
if plot_step_9   
    % to get an idea of where the problem is coming from we plot 
bode and 
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    % also poles and zeros 
    figure();bode(Hdig.tf,'--gsq',  id.all ,'mo--',rn.all,'c'); 
    title(sprintf('Bode Diagram - %2.f C_{unit} required', 
total_cap_round  )) 
    legend('initial ideal','scaled ideal','round'); 
     
    hold on; 
    bode(id.s1,'ro--', rn.s1,'b',id.s2,'ro--', rn.s2,'b',id.s3,'ro--
', rn.s3,'b'); 
     
     
    figure(); 
    subplot(221); 
    pzmap(id.s1,'b'); hold on 
    pzmap(rn.s1,'r'); 
    title('Linear'); 
     
    subplot(222) 
    pzmap(id.s2,'b'); hold on 
    pzmap(rn.s2,'r'); 
    title('High Q'); 
     
    subplot(223) 
    pzmap(id.s3,'b'); hold on 
    pzmap(rn.s3,'r'); 
    title('Low Q'); 
     
    subplot(224) 
    pzmap(id.all,'b'); hold on 
    pzmap(rn.all,'r'); 
    title('All'); 
    legend('Ideal','Rounded');     
    
     
end 
%{ 
%% STEP 9b: rounding the caps yields a filter that is off-
specs...need to solve this 
% If within_spec is 0 then the rounded filter does not match the 
specs, so 
% something needs to be done in order to get a filter within specs. 
  
  
% One option would be to look where poles and zeros are located in 
the 
% rounded version the ideal one. Also this can be done for each 
section 
% separately. 
  
[id.s1_p , id.s1_z] = pzmap(id.s1); 
[id.s2_p , id.s2_z] = pzmap(id.s2); 
[id.s3_p , id.s3_z] = pzmap(id.s3); 
  
[rn.s1_p , rn.s1_z] = pzmap(rn.s1); 



60 
 

 

[rn.s2_p , rn.s2_z] = pzmap(rn.s2); 
[rn.s3_p , rn.s3_z] = pzmap(rn.s3); 
  
d.s1_p = abs(rn.s1_p   -id.s1_p   ); 
d.s1_z = abs(rn.s1_z   -id.s1_z   ); 
d.s2_p = abs(rn.s2_p(1)-id.s2_p(1)); 
d.s2_z = abs(rn.s2_z(1)-id.s2_z(1)); 
d.s3_p = abs(rn.s3_p(1)-id.s3_p(1)); 
d.s3_z = abs(rn.s3_z(1)-id.s3_z(1)); 
  
  
% I want to see how the poles and zeros move when I choose an 
integer value 
% for the feedback cap and round the corresponding sampling cap. 
% Intuitively if the feedback cap is larger (and integer) the 
rounded 
% sampling cap is larger too, and they ratio matches the ideal 
coefficient 
% better. 
  
% These will hold the final result 
Cap_s_round = Cap_s_dr_area; 
Cap_f_round = Cap_f_dr_area; 
  
cap_norm = Cap_s_dr_area.* (ota_array== 1 )./Cap_f_dr_area(1) + ... 
           Cap_s_dr_area.* (ota_array== 2 )./Cap_f_dr_area(2) + ... 
           Cap_s_dr_area.* (ota_array== 3 )./Cap_f_dr_area(3) + ... 
           Cap_s_dr_area.* (ota_array== 4 )./Cap_f_dr_area(4) + ... 
           Cap_s_dr_area.* (ota_array== 5 )./Cap_f_dr_area(5); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%||||||||||||||||||||||||||||||||SECTION 
2||||||||||||||||||||||||||||||||% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Sweep the integrating caps in section 2 (both int2 and int 3) to 
see how the poles and zeros 
% distance to ideal location is affected : 
% The sweeping range is given by the following variables: 
  
  
% The search is done in this commented section: 
%%{ 
target_distance_s2 = .003; 
Cf2_vector = 1:30; 
Cf3_vector = 1:30; 
for m = 1 :length(Cf2_vector) 
    % this is the x-variable  (columns) 
    % round the feedback cap and then increase it 
    Cap_f_round(2) = Cf2_vector(m); 
     
    for n = 1:length(Cf3_vector) 
        % this is the y-variable (rows) 
        Cap_f_round(3) = Cf3_vector(n); 
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        % calculate the sampling cap associated with those 
integrators and 
        % round the caps. All other caps remain unchanged 
        Cap_s_round = round(cap_norm*Cap_f_round(2))  .* 
(ota_array== 2 ) +... % calculates and round the caps realted to 2nd 
integrator only 
                      round(cap_norm*Cap_f_round(3))  .* 
(ota_array== 3 ) +... % calculates and round the caps realted to 3rd 
integrator only 
                      Cap_s_dr_area .* ~((ota_array== 2) | 
(ota_array== 3));   % the remaining caps remain unchanged 
         
        % round all caps(the recently modified ones shouldn't 
change) and calcute the transfer function 
        [ ~, ~, sta2 , ~] = cap_to_tf(round(Cap_s_round) , 
round(Cap_f_round) , ota_array , Fs); 
         
        % calculate the total number of unit caps used: 
        total_caps(n,m) = 
(sum(abs(round(Cap_s_round)),'all')+sum(abs(round(Cap_f_round)),'all
'))*2; 
         
        % calculate the pole and zero for this section: 
        [poles , zeros] = pzmap(sta2); 
         
        % there should be only 2 complex poles/zeros, and we want to 
keep the ones 
        % located in the first quadrant (because we are using that 
one to 
        % compare) 
        if ( (~isempty(poles) && ~isempty(zeros)) && 
(length(poles)==2) && (length(zeros)==2) && ~isreal(poles) && 
~isreal(zeros)) 
            if imag(poles(1))>0 
                %calc distance for pole 
                d_pole(n,m) = abs(poles(1)-id.s2_p(1)); 
            else 
%                 error("The chosen pole wasn't in the 1st 
quadrant.") 
                d_pole(n,m) = abs(poles(2)-id.s2_p(2)); 
            end 
            if imag(zeros(1))>0 
                %calc distance for pole 
                d_zero(n,m) = abs(zeros(1)-id.s2_z(1)); 
            else 
%                 error("The chosen zero wasn't in the 1st 
quadrant.") 
                d_zero(n,m) = abs(zeros(2)-id.s2_z(2)); 
            end 
             
        else 
            d_pole(n,m) = NaN; 
            d_zero(n,m) = NaN; 
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        end 
         
    end 
end 
  
plot_step_9b_s2 = 0;  % plots the 3d plots 
  
if plot_step_9b_s2 
    figure(); 
    surf( Cf2_vector , Cf3_vector , d_pole );colorbar;view(2) 
    xlabel("OTA 2");ylabel("OTA 3");title("Distance to ideal pole") 
%     zlim([0 d.s2_p/10])     
    zlim([0 target_distance_s2]) 
  
     
    figure(); 
    surf( Cf2_vector , Cf3_vector , d_zero );colorbar;view(2) 
    xlabel("OTA 2");ylabel("OTA 3");title("Distance to ideal zero") 
%     zlim([0 d.s2_z/10]) 
    zlim([0 target_distance_s2]) 
end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% I will choose those points that for both pole and zero are 1/10 
smaller 
% than in the original rounded  solution. 
  
% valid_sol_crit1 = (d_pole <= d.s2_p/10) & (d_zero <= d.s2_z/10); 
valid_sol_crit1 = (d_pole <= target_distance_s2) & (d_zero <= 
target_distance_s2); 
  
% and from those the one with smallest total number of caps 
total_caps_reduced = total_caps; 
total_caps_reduced(~valid_sol_crit1)= Inf;  % if is not valid then 
assign infinite area 
  
% express the solution space only considering the total area 
for k=1:length(Cf2_vector)*length(Cf3_vector) 
    total_caps_reduced_lin(k) = total_caps_reduced(k);     
end 
figure(); 
plot(total_caps_reduced_lin,'ok','Linewidth',3);hold on;grid on 
xlabel('index'); 
ylabel('Total area [C_U]'); 
title('Section 2: Area for solution space'); 
[min_area , index] = min(total_caps_reduced_lin); 
[cf_3,cf_2] = ind2sub(size(total_caps_reduced) ,index); 
  
% sanity check to see if the obtained points make sense: 
[d_pole(cf_3,cf_2) , d.s2_p ; d_zero(cf_3,cf_2) d.s2_z ; 
total_caps_reduced(cf_3,cf_2) total_cap_round] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
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% Get the matrix with the chosen value: 
Cap_f_round(2) = cf_2; 
Cap_f_round(3) = cf_3; 
  
  
% These are the chosen caps 
% Cap_f_round(2) = 11; 
% Cap_f_round(3) = 7; 
  
  
Cap_s_round_temp = round(cap_norm*Cap_f_round(2))  .* (ota_array== 2 
) +... % calculates and round the caps realted to 2nd integrator 
only 
              round(cap_norm*Cap_f_round(3))  .* (ota_array== 3 ) 
+... % calculates and round the caps realted to 3rd integrator only 
              Cap_s_dr_area .* ~((ota_array== 2) | (ota_array== 3));   
% the remaining caps remain unchanged 
           
Cap_f_round_temp = Cap_f_round; 
  
% round all caps(the recently modified ones shouldn't change) and 
calcute the transfer function 
[ ~, ~, sta2 , ~] = cap_to_tf(round(Cap_s_round_temp) , 
round(Cap_f_round_temp) , ota_array , Fs); 
  
figure();pzmap(sta2 , 'r', rn.s2 ,'k' ,id.s2,'b'); 
legend('new','round','ideal') 
title('Section 2'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%||||||||||||||||||||||||||||||||SECTION 
3||||||||||||||||||||||||||||||||% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Sweep the integrating caps in section 3 (both int4 and int 5) to 
see how  
% the poles and zerosdistance to ideal location is affected : 
% The sweeping range is given by the following variables: 
  
% The search is done in this commented section: 
%%{ 
  
target_distance_s3 = .003; 
Cf4_vector = 1:60; 
Cf5_vector = 1:60; 
for m = 1 :length(Cf4_vector) 
     
    % x-axis/columns 
    Cap_f_round(4) = Cf4_vector(m); 
     
    for n = 1:length(Cf5_vector) 
        % y-axis/rows 
        Cap_f_round(5) = Cf5_vector(n); 
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        % calculate the sampling cap associated with those 
integrators and 
        % round the caps. All other caps remain unchanged 
        Cap_s_round = round(cap_norm*Cap_f_round(4))  .* 
(ota_array== 4 ) +... % calculates and round the caps realted to 4nd 
integrator only 
                      round(cap_norm*Cap_f_round(5))  .* 
(ota_array== 5 ) +... % calculates and round the caps realted to 5rd 
integrator only 
                      Cap_s_round_temp .* ~((ota_array== 4) | 
(ota_array== 5));   % the remaining caps (after stage 2 remain 
unchanged 
         
        % round all caps(the recently modified ones shouldn't 
change) and calcute the transfer function 
        [ ~, ~, ~ , sta3] = cap_to_tf(round(Cap_s_round) , 
round(Cap_f_round) , ota_array , Fs); 
         
        % calculate the total number of unit caps used: 
        total_caps(n,m) = 
(sum(abs(round(Cap_s_round)),'all')+sum(abs(round(Cap_f_round)),'all
'))*2; 
         
        % calculate the pole and zero for this section: 
        [poles , zeros] = pzmap(sta3); 
         
        % there should be only 2 poles/zeros, and we want to keep 
the ones 
        % located in the first quadrant (because we are using that 
one to 
        % compare)         
        if ( (~isempty(poles) && ~isempty(zeros)) && 
(length(poles)==2) && (length(zeros)==2) && ~isreal(poles) && 
~isreal(zeros))     
            if imag(poles(1))>0 
                %calc distance for pole 
                d_pole(n,m) = abs(poles(1)-id.s3_p(1)); 
            else 
%                 error("The chosen pole wasn't in the 1st 
quadrant.") 
                d_pole(n,m) = abs(poles(2)-id.s3_p(2)); 
            end 
            if imag(zeros(1))>0 
                %calc distance for pole 
                d_zero(n,m) = abs(zeros(1)-id.s3_z(1)); 
            else 
%                 error("The chosen zero wasn't in the 1st 
quadrant.") 
                d_zero(n,m) = abs(zeros(2)-id.s3_z(2)); 
            end 
             
        else 
            d_pole(n,m) = NaN; 
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            d_zero(n,m) = NaN; 
        end 
         
    end 
end 
  
plot_step_9b_s3 = 0;  % plots the 3d plots 
  
if plot_step_9b_s3 
    figure(); 
    surf( Cf4_vector , Cf5_vector , d_pole );colorbar;view(2) 
    xlabel("OTA 4");ylabel("OTA 5");title("Distance to ideal pole") 
%     zlim([0 d.s3_p/10]) 
    zlim([0 target_distance_s3]) 
     
    figure(); 
    surf( Cf4_vector , Cf5_vector , d_zero );colorbar;view(2) 
    xlabel("OTA 4");ylabel("OTA 5");title("Distance to ideal zero") 
%     zlim([0 d.s3_z/10]) 
    zlim([0 target_distance_s3]) 
end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% I will choose those points that for both pole and zero are 1/10 
smaller 
% than in the original rounded  solution. 
  
% valid_sol_crit1 = (d_pole <= d.s3_p/10) & (d_zero <= d.s3_z/10); 
valid_sol_crit1 = (d_pole <= target_distance_s3) & (d_zero <= 
target_distance_s3); 
  
% and from those the one with smallest total number of caps 
total_caps_reduced = total_caps; 
total_caps_reduced(~valid_sol_crit1)= Inf;  % if is not valid then 
assign infinite area 
  
% express the solution space only considering the total area 
for k=1:length(Cf4_vector)*length(Cf5_vector) 
    total_caps_reduced_lin(k) = total_caps_reduced(k);     
end 
figure(); 
plot(total_caps_reduced_lin,'ok','Linewidth',3);hold on;grid on 
xlabel('index'); 
ylabel('Total area [C_U]'); 
title('Section 3: Area for solution space'); 
  
[min_area , index] = min(total_caps_reduced_lin); 
[cf_5,cf_4] = ind2sub(size(total_caps_reduced) ,index); 
  
% sanity check to see if the obtained points make sense: 
[d_pole(cf_5,cf_4) , d.s3_p ; d_zero(cf_5,cf_4) d.s3_z ; 
total_caps_reduced(cf_5,cf_4) min_area] 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Get the matrix with the chosen value: 
Cap_f_round(4) = cf_4; 
Cap_f_round(5) = cf_5; 
  
  
  
% These are the chosen caps 
% Cap_f_round(4) = 11; 
% Cap_f_round(5) = 24; 
  
  
  
Cap_s_round_final = round(cap_norm*Cap_f_round(4))  .* (ota_array== 
4 ) +... % calculates and round the caps realted to 4nd integrator 
only 
                    round(cap_norm*Cap_f_round(5))  .* (ota_array== 
5 ) +... % calculates and round the caps realted to 5rd integrator 
only 
                    Cap_s_round_temp .* ~((ota_array== 4) | 
(ota_array== 5));   % the remaining caps remain unchanged 
  
Cap_f_round_final = round(Cap_f_round); 
           
% round all caps(the recently modified ones shouldn't change) and 
calcute the transfer function 
[ ~, ~, ~ , sta3] = cap_to_tf( Cap_s_round_final , Cap_f_round_final 
, ota_array , Fs); 
  
figure();pzmap(sta3 , 'r', rn.s3 ,'k' ,id.s3,'b'); 
legend('new','round','ideal') 
title('Section 3'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Compare the overall rounded with the ideal and the rounded 
originally: 
  
[ overall, a, b , c] = cap_to_tf(round(Cap_s_round_final) , 
round(Cap_f_round_final) , ota_array , Fs); 
  
figure(); 
subplot(121); 
bode(overall , 'r', rn.all ,'k' ,id.all,'b'); 
legend('new','round','ideal') 
title('Overall Bode'); grid on; 
  
subplot(122); 
pzmap(overall , 'r', rn.all ,'k' ,id.all,'b'); 
legend('new','round','ideal') 
title('Overall pole zero'); 
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within_spec = verify_filter_specs(overall , f_pass,f_stop, 
ripple_passband, gain_stopband); 
  
  
[a_p , a_z] = pzmap(a); 
[b_p , b_z] = pzmap(b); 
[c_p , c_z] = pzmap(c); 
  
u.s1_p = abs(a_p   -id.s1_p   ); 
u.s1_z = abs(a_z   -id.s1_z   ); 
u.s2_p = abs(b_p(1)-id.s2_p(1)); 
u.s2_z = abs(b_z(1)-id.s2_z(1)); 
u.s3_p = abs(c_p(1)-id.s3_p(1)); 
u.s3_z = abs(c_z(1)-id.s3_z(1)); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%% Other APPROACH : that is NOT what is described in the slides and 
might have disadvantages 
  
%{ 
%  express normalized cap as fractions optimizing number of caps and 
absolute 
% relative error sum for bunch of caps depending conencted to an 
ota. 
  
% Idea behind this: 
%{ 
The algorithm is to assign a unit cap value to the integrating caps 
and 
then obtain the number of unit caps for the sampling caps by using 
rounding. 
  
Then calculate the resulting transfer function and calculate the 
error of 
all coefficients in the TF, and add them up (in magnitude). 
Then increase the number of unit caps for the integrating caps. 
  
At the end a map of the number of caps vs total error can be 
generated 
(for the biquads this has 2 dimensions, one for each feedback cap). 
And 
the minimum point can be obtained. 
  
For the linear case I saw that there is correlation between the rms 
error 
of the gain and phase responses and the total error metric described 
above. (haven't checked that for biquads). 
  
NOTE 1: This optimizes area but not neccesarily in terms of noise. 
Maybe some 
other constraint can be added to that. 
NOTE 2: This approach does not uses the suggestion in 626 slides 
regarding 
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multiplying the smallest coefficient by ratio of the min cap value 
divided the smallest coefficient. Not 100% sure how that works, but 
could 
be tested! 
%} 
  
% search range goes from 1 unit cap for the integrating cap up to 
% Cf_unit_max 
Cf_units = 10:10:10000; 
  
% design region generation done in other function for compactness 
(however 
% the optimal point is not found yet) 
[Lin.C.error_metric , Lin.C.total_caps] = explore_cap_ratio(Lin.c_dr 
, "Linear" , Cf_units ); 
[HiQ.C.error_metric , HiQ.C.total_caps] = explore_cap_ratio(HiQ.c_dr 
, "HighQ"  , Cf_units ); 
[LoQ.C.error_metric , LoQ.C.total_caps] = explore_cap_ratio(LoQ.c_dr 
, "LowQ"   , Cf_units ); 
  
% The following plots show a general overview of the error metric vs 
the 
% total number of caps. 
plot_this_2 = 0; 
  
if plot_this_2     
    figure(); 
    plot3(Cf_units, Lin.C.total_caps,Lin.C.error_metric,'--o' );grid 
on 
    xlabel("Int. Cap [C_U]");ylabel("Total caps 
[C_U]");zlabel("error [%]"); 
    title("Linear Section"); 
     
    figure(); 
    surf(Cf_units , Cf_units , HiQ.C.error_metric , HiQ.C.total_caps 
) 
    xlabel("Int.2 Cap [C_U]");ylabel("Int.1 Cap 
[C_U]");zlabel("error [%]"); 
    colorbar; 
    title("High Q Section"); 
     
    figure() 
    surf(Cf_units , Cf_units, LoQ.C.error_metric , LoQ.C.total_caps 
) 
    xlabel("Int.2 Cap [C_U]");ylabel("Int.1 Cap 
[C_U]");zlabel("error [%]"); 
    colorbar; 
    title("Low Q Section"); 
end 
  
% The behavior for the HiQ and LoQ filters seems to be 
% similar in that as the number of unit caps used in int1 increases 
there 
% is a point in which the error goes into a valley, and some more 
increase 
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% makes it leave that valley into a peak. The cap used in int2 
doesn't seem 
% to have that behavior so much. One strategy could be to find the 
valleys 
% (downward concavity) to pick the cap_1 and then  move across cap_2 
and 
% find some reasonable point. 
  
% Some points chosen visually... 
% For Linear: Cint = 8 units; 
% For High Q: Cint_2 = 11 units ; Cint_1 = 13 units; 
% For Low Q : Cint_2 = 5 units  ; Cint_1 = 15 units; 
  
% Minimum value possible for the givens earch range: 
Lin_min_err = min(Lin.C.error_metric,[],'all'); 
HiQ_min_err = min(HiQ.C.error_metric,[],'all'); 
LoQ_min_err = min(LoQ.C.error_metric,[],'all'); 
best_error = max([Lin_min_err HiQ_min_err LoQ_min_err]); 
  
%} 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%} 
 

 
 
 

 
 

 
 

 


