
AN ABSTRACT OF THE DISSERTATION OF 

Yvonne Chang for the degree of Doctor of Philosophy in Toxicology presented 

on June 11, 2020. 

Title: Toxicogenomic Biomarkers Associated with PAH Carcinogenic Potential in 

a 3D in Vitro Bronchial Epithelial Model  

Abstract approved: 

______________________________________________________ 

Susan C. Tilton 

The environmental health science community recognizes polycyclic 

aromatic hydrocarbons (PAHs) as a re-emerging class of environmental pollutants 

due to their persistence and prominence in mixtures of concern. Due to their 

widespread distribution in the environment, exposure to PAHs often occur as 

complex chemical mixtures. Exposures are linked to numerous adverse health 

outcomes in humans, with cancer as the greatest concern. Current assessment of 

cancer risk for PAHs involves testing individual compounds in a two-year rodent 

bioassay. These studies are time and resource-intensive, and often lack 

reproducibility or concordance. Furthermore, they require extrapolation of effects 

to humans, leading to further uncertainties regarding species-specific biology and 

chemical mode of action (MOA). The primary method for estimating cancer risk 

of PAH mixtures is the relative potency factor (RPF) approach in which mixtures 

are evaluated based on a subset of individual component PAHs compared to 

benzo[a]pyrene (BAP) as a surrogate or reference.  However, we and others have 

found this approach has proved to be inadequate for predicting carcinogenicity of 

PAH mixtures and certain individual PAHs, particularly those that function 

through alternate pathways or exhibit greater promotional capacity compared to 

BAP. Furthermore, the specific mechanisms by which environmental exposures to 



 

 

 

PAHs may cause cardio-respiratory diseases and increase cancer risk remains 

poorly understood.   

In this dissertation, we employed a 3D, organotypic human in vitro 

bronchial epithelial culture (HBEC) model to address these gaps in knowledge. 

First, a comparative transcriptomic evaluation was conducted to assess potential 

differences in mechanism of toxicity for two PAHs, benzo[a]pyrene (BAP) and 

dibenzo[def,p]chrysene (DBC), compared to a complex PAH mixture based on 

short-term biosignatures identified from global gene expression profiling. 

Comparison of BAP and DBC gene signatures showed that a majority of genes 

(~60%) were uniquely regulated by treatment, including those enriched for cell 

cycle, hypoxia, oxidative stress, and inflammation. Gene networks involved in 

NRF2-mediated oxidative stress detoxification were upregulated by BAP, while 

DBC downregulated these same targets, suggesting a chemical-specific pattern in 

transcriptional regulation involved in antioxidant response, potentially 

contributing to differences in PAH potency. These findings support research 

scrutinizing the applicability of the RPF, where assumptions of similar MOA are 

necessary for quantitative PAH cancer risk assessment.  

  Next, we developed and refined an approach to utilize chemical-specific 

transcriptional patterns towards accurate classification of carcinogenic potency of 

PAHs and PAH mixtures. Systems biology information was collected from a 

human in vitro airway epithelial model exposed to a range of non-carcinogenic 

and carcinogenic PAHs and PAH mixtures. These transcriptional changes were 

evaluated for differentially enriched biological functions. Individual pathway-

based gene sets were tested for optimal classification performance. Posterior 

probabilities of best performing gene sets were selected and integrated via 

Bayesian integration resulting in a 91% accurate classifier with four gene sets, 

including aryl hydrocarbon receptor signaling, regulation of epithelial 

mesenchymal transition, regulation of angiogenesis, and cell cycle G2-M. In 

addition, transcriptional benchmark dose modeling of (BAP) showed that the 

most sensitive gene sets were largely dissimilar from those that best classified 



 

 

 

PAH carcinogenicity challenging current assumptions that BAP carcinogenicity 

(and subsequent mode of action) is reflective of overall PAH carcinogenicity.  

 Lastly, we evaluated molecular mechanisms related to PAH cancer risk 

through a two-tiered weighted gene co-expression network analysis (WGCNA) 

two-tiered approach, first to identify gene sets co-modulated to RPF cancer risk 

and then to link genes to a more comprehensive list of regulatory values, 

including inhalation-specific risk values. Over 3,000 genes associated with 

processes of cell cycle regulation, inflammation, DNA damage, and cell adhesion 

processes were found to be co-modulated with increasing RPF with pathways for 

cell cycle S phase and cytoskeleton actin identified as the most significantly 

enriched biological networks correlated to RPF. These gene sets represent 

potential biomarkers that can be used to evaluate cancer risk associated with PAH 

mixtures. In this study, the results illustrated the utility of systems toxicology 

approaches in analyzing global gene expression towards chemical hazard 

assessment, and information obtained from these analyses could be used towards 

future predictive model development. This work expanded current understanding 

of early mechanisms involved in PAH toxicity and provided novel applications 

utilizing toxicogenomics and organotypic cell culture models for classification, 

modelling, and biomarker identification. Together, these advances support further 

development of alternative approaches for use in predictive and mechanistic 

toxicology towards chemical hazard assessment. 
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Chapter 1 – INTRODUCTION 

Polycyclic aromatic hydrocarbons as global contaminants  

Globally, the environmental health science research community continues 

to recognize polycyclic aromatic hydrocarbons (PAHs) as a class of 

environmental contaminants of concern, due to their persistence and 

environmental pervasiveness. PAHs are a diverse class of chemicals generated 

through incomplete combustion that may pose environmental, ecological, and 

human health threats due to their ubiquitous environmental presence and 

associated carcinogenic activity [1, 2]. Characterized by two to seven fused 

aromatic rings [3, 4], these chemicals can have numerous substitutions including 

alkylations and halogenations, leading to a diversity in physical-chemical 

properties and resulting environmental fate in air, soil, and water [5-7]. Several of 

these compounds are established carcinogens, and account for 3 of the top 10 

pollutants of concern at priority pollutant sites [8-10]. Therefore, ongoing 

research efforts to better understand PAH environmental levels and biological 

effects are crucial to protecting environmental and public health.  

 

 

Air Quality and Human Health  

PAHs are widespread in the environment due to their generation and 

emission from a variety of natural and anthropogenic sources, which include 

industrial manufacturing processes and combustion of all organic materials, such 

as fossil fuels. Anthropogenic activity is a major source of PAH emissions in the 

environment, and this is reflected in the elevated concentrations of PAHs near 

areas with high industrial and urban development [1, 2, 5, 11-13]. Airborne PAHs 

can also move across long distances via long-range atmospheric transport, thus 

their emissions can impact air quality in remote regions far from original sources 

[14-16]. Poor air quality remains a public health issue in many industrializing 

countries, particularly in the Western Pacific and South East Asian regions. In 
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indoor environments, particulate matter (PM2.5) and PAH levels have been 

reported to exceed international outdoor ambient air guidelines  [17]. The World 

Health Organization (WHO) has also estimated in 2016 that nearly seven million 

premature deaths are caused each year from the combined effects of household 

and ambient air pollution, indicating a large global health burden from excessive 

air pollution [18].  

 

Health effects of PAHs  

Inhalation exposure of PAHs is associated with increased risk of acute 

lower respiratory infections, chronic obstructive pulmonary disease, and lung 

cancer [19, 20]. However, the mechanisms by which environmental exposures to 

PAHs may cause or exacerbate cardio-respiratory diseases in children and adults 

and increase susceptibility to later develop cancer remains poorly understood 

[17]. The U.S. Agency for Toxic Substances and Disease Registry (ATSDR) has 

designated 17 PAHs as priority pollutants due to their environmental prevalence 

and potential toxicity in humans. 16 of these are also designated high priority 

pollutants by the U.S. EPA. The World Health Organization’s International 

Agency for Research on Cancer (IARC) has designated several PAHs and PAH-

containing mixtures, such as diesel exhaust, air pollution, coal and coke mixtures, 

as either Class 1 known or Class 2A/B probable/possible carcinogens to humans 

[9, 21-23]. Despite the fact that PAHs were the first class of chemicals identified 

as chemical carcinogens, little is known about the carcinogenic potential of many 

of the over 1500 polycyclic aromatic compounds or their potential mechanisms of 

carcinogenic action.  

 

Challenges to cancer risk assessment of PAHs 

One of the most difficult challenges for cancer risk assessment is 

evaluation of health hazards for chemicals that predominately co-occur in 
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mixtures like polycyclic aromatic hydrocarbons. Current risk assessment for PAH 

cancer risk involves testing compounds in a 2-year rodent cancer bioassay. 

Historically, PAHs have been evaluated as individual chemicals in these assays, 

primarily through intraperitoneal or dermal routes of administration [24]. 

However, PAH exposures occur as complex environmental mixtures through 

inhalation, oral, and dermal routes. These in vivo rodent cancer studies are also 

time and resource-intensive, and inconsistently predictive of responses in humans. 

Furthermore, they require extrapolation of effects to humans, leading to further 

uncertainties regarding species-specific biology and chemical mode of action 

(MOA) [25].  

 Currently, the accepted method for estimating cancer risk of PAH 

mixtures is the relative potency factor (RPF) approach, in which mixtures are 

evaluated based on a subset of individual component PAHs and compared to 

benzo[a]pyrene (BAP) as a surrogate or reference [24]. Because BAP is the index 

carcinogen to which the potency of other PAHs is compared and estimated to be 

greater or less than, the first assumption of similar toxicological mode-of-action 

(MOA) must be true for this approach to accurately estimate cancer risk. While 

some evidence indicates that the mutagenic and tumor-initiating MOA of BAP 

(involving aryl hydrocarbon receptor-modulated gene expression and metabolic 

activation to reactive intermediates) is shared by other PAHs, the structural 

diversity of PAHs provokes concern for assuming similarities in MOA. The 

second assumption of this approach is that the sum cancer risk of a mixture can be 

adequately evaluated based on the sum RPF estimates of individual component 

PAHs compared to BAP. However, we and others have found this RPF approach 

inadequate for predicting carcinogenicity of mixtures and also for certain 

individual PAHs, particularly those that function through alternate pathways or 

exhibit greater carcinogenic and promotional capacity compared to BAP [26-29].  

 Chemically induced carcinogenesis is a complex process that involves 

numerous biological processes and molecular targets during initiation, promotion, 

and progression. Recent studies using in vitro assays and organotypic human in 
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vitro models have identified numerous contributing mechanisms of action in 

carcinogenic PAHs. Certain PAHs have genotoxic modes of action and induce 

DNA damage through adduct formation [30-32]. Other carcinogenic PAHs were 

found to have non-genotoxic modes of action that include 

estrogenic/antiestrogenic activity [33, 34], inhibition of gap-junctional 

intercellular communication [26, 35, 36], generation of reactive oxygen species 

(ROS) and oxidative stress [37-40], and promotional activity via dysregulation of 

cell proliferation [41, 42].Thus, the complexity in mechanisms of carcinogenicity 

contributes to difficulty identifying singular endpoints or in vitro assays to predict 

carcinogenic hazard of chemicals [26, 29, 43-45]. Therefore, it is critical to 

consider alternative approaches in improving carcinogenic assessment accuracy, 

speed, and relevance to human health. 

 

Alternative Approaches to Cancer Hazard Assessment of PAHs  

Toxicogenomics usage in carcinogenic hazard assessment has progressed 

considerably in the past two decades; numerous methods have been developed to 

successfully identify genes linked to specific carcinogenic mechanisms. 

Applications of transcriptional profiling include correlational analyses and 

hierarchical clustering to identify genes to describe mechanisms of chemical 

toxicity [46]. Recent studies have utilized transcriptomics and in vitro human cell 

models to identify gene patterns to discriminate between genotoxic and non-

genotoxic carcinogens [47-50] and identify specific pathways that respond 

differently between genotoxic and non-genotoxic chemicals [51, 52]. The wide 

range of MOAs identified supports the need for development of a battery of in 

vitro assay endpoints and systems toxicology approaches to evaluate mechanisms 

and targets involved in chemical carcinogenicity. Therefore, predictive toxicology 

methods, such as utilizing organotypic models for toxicogenomic profiling and 

modelling, may reduce the time and resource needed for carcinogenic 

assessments.  
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Organotypic 3D human bronchial epithelial cells 

Organotypic 3D culture of human bronchial epithelial cells (HBEC) offer 

a physiologically relevant, sensitive model to evaluating biological perturbations 

associated with chemical exposure. The human airway epithelium and epithelial 

lining fluid is the first line of defense against inhaled gaseous and particulate 

pollutants in the ambient air, and thus a major target zone of toxicity for air 

pollutants [53]. When differentiated at the air-liquid interface (ALI), primary 3D 

HBECs develop into a polarized, pseudo-stratified epithelial tissue with tight 

junctions, basal cells, mucus-secreting goblet cells, and ciliated cells [26, 54, 55]. 

Transcriptional profiling of a primary in vitro airway epithelium also 

demonstrates a high degree of similarity to healthy human airway epithelia in vivo 

[56]. These findings, in conjunction with the HBEC morphology and 

differentiated cell types, suggest that primary culture of HBEC can recapitulate 

the biological responses of the human airway epithelium. Furthermore, the 

expression of CYP450 metabolizing enzymes in HBECs further increase their 

utility for evaluating PAH toxicity in vitro.  

 

Thesis Objectives 

The goal of this dissertation is to advance our understanding of the 

biological targets and mechanisms of action affected by short-term exposure to 

carcinogenic PAHs, and to develop a classification model predictive of 

carcinogenic potency. To achieve this, we performed two studies identifying 

mechanisms of action through transcriptomic profiling of HBECs (chapters 2 and 

4), then tested and developed a classification approach to accurately predict 

carcinogenic potency of PAHs using gene signatures (chapter 3). Finally, we 

adapted a coexpression network analysis approach to link gene networks with 

cancer risk estimates and identify gene networks correlated to increasing cancer 

risk (chapter 4).   
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The studies presented in this dissertation demonstrate the utility of 

employing toxicogenomic approaches in organotypic airway epithelial models to 

assess the effects of carcinogenic air pollutants and mixtures. A comparative 

analysis of two carcinogenic PAHs identified dissimilar mechanisms that may 

mediate enhanced carcinogenicity (chapter 2). For the first time, a classification 

model to predict carcinogenic potency in human bronchial epithelium was 

developed, with a 91% integrated accuracy for cancer potency classification 

(chapter 3). A co-expression network analysis was adapted in a novel approach, 

and identified over 3,000 co-modulated genes associated to cancer risk and 

toxicity values (chapter 4). This work expanded current understanding of early 

mechanisms involved in PAH toxicity, and provided novel applications 

integrating toxicogenomics and organotypic cell culture models. Together, these 

advances support further development of alternative approaches for use in 

predictive and mechanistic toxicology towards chemical hazard assessment.  
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Abstract 

Current assumption for assessing carcinogenic risk of polycyclic aromatic 

hydrocarbons (PAHs) is that they function through a common mechanism of 

action; however, recent studies demonstrate that PAHs can act through unique 

mechanisms potentially contributing to cancer outcomes in a non-additive 

manner.  Using a primary human 3D bronchial epithelial culture (HBEC) model, 

we assessed potential differences in mechanism of toxicity for two PAHs, 

benzo[a]pyrene (BAP) and dibenzo[def,p]chrysene (DBC), compared to a 

complex PAH mixture based on short-term biosignatures identified from 

transcriptional profiling. Differentiated bronchial epithelial cells were treated with 

BAP (100-500 µg/mL), DBC (10 µg/mL), and coal tar extract (CTE 500-1500 

µg/mL, SRM1597a) for 48 hrs and gene expression was measured by RNA 

sequencing or quantitative PCR. Comparison of BAP and DBC gene signatures 

showed that the majority of genes (~60%) were uniquely regulated by treatment, 

including signaling pathways for inflammation and DNA damage by DBC and 

processes for cell cycle, hypoxia and oxidative stress by BAP. Specifically, BAP 

upregulated targets of AhR, NRF2, and KLF4, while DBC downregulated these 

same targets, suggesting a chemical-specific pattern in transcriptional regulation 

involved in antioxidant response, potentially contributing to differences in PAH 

potency. Other processes were regulated in common by all PAH treatments, BAP, 

DBC and CTE, including downregulation of genes involved in cell adhesion and 

reduced functional measurements of barrier integrity.  This work supports prior in 

vivo studies and demonstrates the utility of profiling short-term biosignatures in 

an organotypic 3D model to identify mechanisms linked to carcinogenic risk of 

PAHs in humans.  

 

Keywords: Benzo[a]pyrene; Polycyclic Aromatic Hydrocarbons; 

Toxicogenomics; Mixtures; Bronchial Epithelial Cells; Organotypic Culture 
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1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are a chemically diverse class 

of environmental pollutants found in air, water, and soil, emitted by incomplete 

combustion of natural and anthropogenic sources, with over 1500 species of 

substituted and unsubstituted PAHs in the environment. Anthropogenic sources of 

PAHs include fossil fuel burning, vehicle exhaust, wood burning, and coal-tar 

pitch and asphalt production [1]. As such, inhalation is a primary route of 

exposure to PAHs in ambient air, indoor air, and cigarette and tobacco smoke. 

Humans are primarily exposed to PAHs as complex mixtures, which are 

dependent on the amount and type of combustion.  Higher molecular weight 

PAHs (containing 4 or more fused benzene rings) tend to have lower aqueous 

solubility and greater lipophilicity [2]. These can be found in the particle phase in 

ambient air. A number of high MW PAHs are linked to carcinogenic and 

mutagenic effects in humans, including benzo[a]pyrene (BAP; classified by 

International Agency for Research on Cancer (IARC) as a Class 1 known human 

carcinogen.) [3-6] Additionally, dibenzo[def,p]chrysene (DBC), formerly known 

as dibenzo[a,l]pyrene, is classified as a class 2A probable human carcinogen [4]. 

Both BAP and DBC are environmental carcinogens linked with multiple cancer 

types, particularly lung and skin [7].  

The U.S. Environmental Protection Agency Integrated Risk Information 

System’s (IRIS) 2010 release of a relative potency factor (RPF) approach for 

cancer risk assessment of PAH mixtures provided recommendations for 

quantitative cancer risk assessment by scaling doses and potency relative to 

benzo[a]pyrene (BAP), the index carcinogen [8]. Because BAP is the index 

carcinogen to which potency is estimated to be greater or less than, the first 

assumption of similar toxicological mode-of-action (MOA) must be true for this 

approach to accurately estimate cancer risk. While some evidence indicates that 

the mutagenic and tumor-initiating MOA of BAP (involving aryl hydrocarbon 

receptor-modulated gene expression and metabolic activation to reactive 
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intermediates) is shared by other PAHs, the structural diversity of PAHs provokes 

concern for assuming similarities in MOA [9].  

The aryl hydrocarbon receptor (AhR) is well established as a key 

modulator in genotoxic PAH toxicity [10, 11]. The MOA involves binding and 

activating the AhR, translocation from the cytosol to the nucleus, and subsequent 

binding to xenobiotic response elements. This activates the transcription of many 

genes, some of which metabolize xenobiotics. For PAHs containing a “bay” 

and/or a “fjord” region (as is the case for both BAP and DBC), cytochrome P450 

(CYP450)-dependent metabolism into diol epoxides is necessary for the 

genotoxic and mutagenic effects of PAHs. As diol epoxide metabolites, the PAHs 

are then able to bind DNA and other cellular constituents, which can lead to DNA 

strand breakage, protein damage, redox cycling, and/or oxidative stress. While the 

method of PAH toxicity through DNA damage is shared by genotoxic PAHs, the 

pathways can be markedly different and complex for potentially non-genotoxic 

carcinogenic PAHs, or complex PAH mixtures. DBC is the most potent 

carcinogenic PAH studied (in vivo rodent skin tumor assay), with an RPF 

estimated 30-100 (30-100 times the potency of BAP, RPF of 1) [12]. While RPF 

correlates well with DNA adduct formation, it does not correlate well with tumor 

incidence for DBC, indicating non-genotoxic mechanisms may contribute to 

carcinogenesis [13]. There is substantial transcriptomics evidence that BAP and 

DBC can act through unique mechanisms leading to tumor development in mouse 

skin in vivo [13]. Previous work in an in vivo rodent model determined that key 

mechanisms and pathways able to discriminate between low, medium, and high 

tumorigenicity in rodent in vivo utilized genes belonging to inflammation 

signaling, oxidative stress, and cell adhesion and barrier integrity processes.  

Toxicity testing in animal models is often resource-intensive, time-

consuming, and inconsistently predictive of human responses. While humans and 

rodents share common cytochrome P450 enzymes for detoxification and 

elimination of toxicants, the rates of phase I reactions and preferred pathways of 

phase II reactions vary significantly [14]. There is evidence that the CYP450 
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activities of model organisms used for toxicity (mouse, rat, rabbit, dog, micropig, 

monkey) do not resemble human CYP450 activity profiles well [15, 16]. Focusing 

research efforts towards advancing human cell cultures allows evaluation of 

human-specific xenobiotic metabolism and responses, and the capacity for high 

throughput screening and bioassays. Increasingly, 3D cell cultures and organoid 

culture models are used for toxicological and pharmacological studies for their 

ability to better recapitulate in vivo-like cellular heterogeneity and physiological 

response. Their multicellularity, cell-cell interactions and cell-matrix interactions 

support establishment and maintenance of a cellular microenvironment 

homeostasis, which may be why cells cultured in 3D tend to exhibit greater 

resistance to cytotoxic injury [17]. Cells cultured in 3D with multiple cell types 

are found to better withstand oxidative stress rather than monoculture, and the 

cell-cell interactions and crosstalk allow further toxicological evaluation of 

processes such as disruptions in cellular adherence, cell migration, differentiation, 

and healing [18, 19].   

Organotypic culture of human bronchial epithelial cells (HBEC) offer a 

physiologically relevant, sensitive model to study the effects of air pollutant 

chemicals and mixtures in vitro. The human airway epithelium is a major target 

zone of toxicity for inhaled air pollutants, and the expression of CYP 

metabolizing enzymes in HBECs make them ideal for studying PAH toxicity in 

vitro.  In the present study, we employed the EpiAirway™ bronchial epithelium 

model, in which cells are differentiated at the air-liquid interface (ALI), to assess 

toxicity profiles of BAP and DBC, two potent carcinogens commonly found in air 

pollutant mixtures, in comparison to a PAH mixture. The 3D culture of primary 

bronchial epithelial cells was shown to be more toxicologically resistant than the 

3D culture of immortalized bronchial epithelial cells in tobacco smoke toxicity 

evaluations [17]. In response to environmental toxicants, HBEC differentiated at 

the ALI exhibit degradation of tight junctions, decreased cell viability, and 

compensatory or protective responses at sub-toxic concentrations, including 

increased mucus secretion, and goblet cell hyperplasia and hypertrophy similar to 
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clinically documented changes in the bronchial epithelium of smokers [20, 21].  

Transcriptional signatures were profiled short-term after treatment with BAP and 

DBC using a systems biology approach in a differentiated primary 3D HBEC 

model. Functional epithelial barrier integrity and cytotoxicity were also evaluated 

and compared to transcriptional data. Next-generation sequencing techniques 

provided a rapid, effective method to uniformly detect thousands of changes in 

the HBEC model after short-term PAH treatment.  

 

 

2. Materials and Methods 

 

2.1 Chemicals and Reagents   

 

Cell culture media and phosphate buffered saline (PBS) were provided by 

MatTek Corporation (Ashland, MA). Benzo[a]pyrene (BAP; CAS# 50-32-8) and 

dibenzo[def,p]chrysene (DBC; CAS# 189-64-0) were purchased from MRIGlobal 

(Kansas City, MO). Coal Tar Extract,SRM 1597a,(CTE) was purchased form the 

National Institute of Standards & Technology (Gaithersburg, MD.) DNase I, 

TRIzol® reagent, Superscript® III First Strand Synthesis System, qPCR primers, 

and Pierce™ LDH Cytotoxicity Assay Kit were from Thermo Fisher Scientific 

(Waltham, MA). 2X SsoAdvanced™ Universal SYBER®Green Supermix was 

purchased from BioRad Laboratories, Inc.  (Hercules, CA.) 

 

2.2. Tissue Culture and Treatments 

 

Primary HBEC differentiated on transwell inserts at the ALI 

(EpiAirway™ 100, MatTek, Ashland, MA) were transferred to 6-well plates each 

well containing 1 ml of assay medium and equilibrated for 24 hours at 37°C, 5% 

CO2 followed by a change of fresh medium before treatment. Inserts were washed 

with phosphate buffered saline (PBS, pH 7.4) and then treated with PAHs in 
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acetone vehicle (n=4 per treatment) on apical surface for up to 48 hrs, BAP (1-

500 µg/ml), DBC (1-50 µg/ml) and CTE (250 -1500 µg/ml).  Dosing was chosen 

based on relative potency in BAP equivalents (BAPeq) for DBC (~50 BAPeq) and 

CTE (0.4 BAPeq) as previously reported [12, 22]. At the end of each exposure 

regimen, the matrix and tissue from each well insert was carefully peeled away 

with forceps, placed in cryovials containing 0.5 ml TRIzol® reagent and snap 

frozen in liquid nitrogen. Frozen tissues were stored at -80°C until further 

analysis. Basal media was transferred to clean, sterile tubes and stored at -80°C 

for evaluation of cytotoxicity. 

 

2.3 Histology 

 

HBEC cultures were washed briefly with phosphate-buffered saline (PBS, 

pH 7.4) and fixed in 10% neutral buffered formalin for 48 h. The membranes 

were excised from the culture inserts with a surgical blade, fixed in 10% formalin, 

processed and embedded in paraffin. For staining and immunohistochemistry, 4 to 

5-μm-thick sections were cut, mounted on slides, and deparaffinized by 

processing through a series of xylene and ethanol solutions. Sections were stained 

with hematoxylin and eosin (H&E) and analyzed by light microscopy using a 

Nikon Eclipse E400. Deparaffinized sections of cell culture membranes also were 

stained for tumor protein  63 (p63), proliferation marker protein Ki-67 (Ki67), and 

mucus-producing goblet cells identified by periodic acid Schiff’s (PAS) staining. 

For Ki67 staining, paraffin sections were high-temperature antigen retrieved with 

BDTM Retrieval A solution (Dako). For Ki67 and p63 staining, endogenous 

peroxidase activity was blocked by immersing slides in methanol containing 3% 

hydrogen peroxide for 10 minutes. The following primary anti-human antibodies 

were applied for 30 minutes at room temperature: rabbit polyclonal antiserum 

against human p63 (1:100; PA5-36069; ThermoFisher, Rockford, IL) and Ki-67 

(1:20; PA5-16785; ThermoFisher, Rockford, IL). MaxPoly-One Polymer HRP 

Rabbit Detection solution (MaxVision Biosciences, Bothell, WA) was applied for 
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7 minutes at room temperature and Nova Red (SK-4800; Vector Labs, 

Burlingame, CA) as chromagen was used with Dako hematoxylin (S3302) as 

counterstain. Serial sections of formalin-fixed paraffin-embedded cell culture 

membranes incubated with Dako Universal negative serum served as negative 

controls. Mucus-producing goblet cells were identified by periodic acid Schiff’s 

(PAS) staining. Slides were mounted and examined by light microscopy.  For 

immunofluorescence, membranes were fixed in ice-cold MeOH + acetone and 

incubated with primary antibody (monoclonal anti-human gastric Mucin-5B 

(MUC5B), sigma M5293, 1:250; monoclonal anti- β- tubulin, Sigma T7941, 

1:500) overnight at 40 C, following with second antibody (1:200; anti-mouse IgG 

(H+L), F(ab')2 fragment (Alexa Fluor® 647 Conjugate, Cell Signaling 

Technology). The inserts were removed and mounted on slides using a Prolong 

Gold Antifade Reagent® (Thermos Fisher) for imaging with a Zeiss LSM 780 

confocal microscope. 

 

2.4. Transepithelial Electrical Resistance (TEER) 

 

Transepithelial electrical resistance (TEER) measurements were made 

using an epithelial volt-ohmmeter (EVOM2, World Precision Instruments, 

Sarasota, FL). The EVOM2 was calibrated using a test electrode prior to the 

measurements. At time zero and 48 hrs (n=4) after treatment with BAP (1-500 

µg/ml), DBC (1-50 µg/ml), CTE (250-1500 µg/ml), PBS, pH 7.4, was added to 

both apical and basal chambers and resistance was measured (ohms) for each 

insert. An empty culture insert was used to correct for the background resistance. 

Four cultures were used for each treatment concentration and time point. Percent 

TEER of control were calculated by subtracting background from TEER, then 

calculating the difference between 48 hr TEER minus background and 0 hr TEER 

minus background. Treatment effects on TEER were evaluated for significance 

(p<0.05) by one-way ANOVA with Dunnett’s multiple testing correction. 
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2.5. Cell Viability 

 

Lactate dehydrogenase (LDH) leakage was measured in media after 

treatment with PAHs (n=4) for 48 hrs using Pierce LDH Cytotoxicity Assay Kit 

(Thermo Scientific) following manufacturer instructions. The 48 hr timepoint was 

the longest PAH exposure period tested in HBEC, during which media is not 

changed. Briefly, basal medium samples (40 µl) were aliquoted into the wells of a 

96-well plate. LDH reaction reagent (40 µl) was added to each sample and 

incubated at room temperature for 30 minutes while protected from light. Finally, 

40µl of stop solution was added to each well and mixed. LDH activity was 

determined by subtracting absorbance at 680nm (background) from absorbance at 

490nm (Synergy HTX plate reader, BioTek, Winooski, VT). A negative control 

of fresh cell culture medium, a positive control of medium from lysed cells, and 

vehicle only controls were included.  Cytotoxicity was evaluated by one-way 

ANOVA with Dunnett’s multiple testing correction (p<0.05). 

 

2.6. RNA Isolation and Quality Control 

 

Total RNA was isolated from HBEC (n=4) using TRizol® reagent and 

was quantified on a Synergy HTX plate reader equipped with a Take3 module 

(BioTek).  RNA quality was evaluated based on 260/280 ratio (acceptable range 

2.0-2.1) and by examining 18S and 28S peaks (Bioanalyzer 2100, Agilent, Santa 

Clara, CA). Acceptable RNA quality was based on RIN ≥ 8.5. 

 

2.7. mRNA-Sequencing and Analysis 

 

Total RNA from HBEC treated with BAP (500 µg/ml; 19.8 nmol), DBC 

(10 µg/ml, 0.35 nmol) and vehicle control (n=4 per treatment) for 48 hr were sent 

to the Oregon State University Center for Genome Research and Biocomputing 

Core facilities for library preparation and sequencing. mRNA was poly-A 
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selected, and libraries were prepared with the PrepXTM mRNA and Illumina 

sequencing workflow (Wafergen Biosystems, Fremont, CA).  Paired-end 

sequencing (150 bp) was conducted with an Illumina HiSeq 3000 sequencer, 

which yielded ~30 million reads per sample. Sequenced reads were first put 

through Cutadapt (version 1.8.1) to trim adapter sequences from the paired-end 

reads. The human genome assembly GRCh38.84 was indexed using bowtie2-

build (version 2.2.3) while the transcriptome was indexed using TopHat (version 

2.1.1.) [23]. TopHat was used again to align the trimmed reads to indexed 

transcriptome and genome [24]. Differential expression was determined in 

CuffDiff (version 2.2.1) compared to vehicle control [25]. The differentially 

expressed gene lists (q<0.05) for oppositely regulated, commonly regulated, and 

uniquely regulated genes between BAP and DBC were used for pathway 

enrichment analysis in MetaCore (Clarivate Analytics, Philadelphia, PA). 

Statistical significance of over-connected interactions was calculated using a 

hypergeometric distribution, where the p value represents the probability of a 

particular mapping arising by chance for experimental data compared to the 

background [26].  Heatmaps were generated in MultiExperiment Viewer TM4 

[27]. Network visualizations were generated in Cytoscape (v3.5.1) [28]. 

 

2.8. Quantitative PCR (qPCR) 

 

cDNA was synthesized using a Superscript® III First Strand Synthesis 

Supermix kit per manufacturer’s instructions. Reactions were diluted 1:5 with 

nuclease –free water and stored at -80°C until used for qPCR. A BioRad 

Laboratories, Inc. (Hercules, CA.) CFX96 Touch™ Real-Time PCR Detection 

System was used for running 20 µl qPCR reactions to survey key gene targets. 

Each reaction contained 2 µl cDNA template (10 ng RNA), 150 nM of each 

primer, 10 µl 2X SsoAdvanced™ Universal SYBER®Green Supermix, and 

nuclease–free water. A list of primer sequences is reported in Supplemental Table 

1.  The thermocycler was programmed for 1 cycle 95°C for 1 minute initial 
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denaturing, 40 cycles 95°C for 15 sec denaturing, 60°C for 30 sec 

annealing/elongation, and a melt curve 65-95°C/0.5° per 5 sec for validating 

single product amplification. The relative expression differences among 

treatments were calculated using the ΔΔCt comparative method and normalized to 

housekeeping genes beta-actin (ACTB) and peptidylprolyl isomerase A (PPIA). 

Genes significantly regulated by PAH treatment (p<0.05), including BAP (100-

500 µg/ml), DBC (5-10 µg/ml) and CTE (500-1500 µg/ml) for 6-48 hr (48 hr only 

for CTE), were identified by one-way ANOVA with Tukey’s multiple testing 

correction. 

 

3. Results 

 

3.1. Evaluation of differentiated HBEC cultured at ALI 

 

The morphology of differentiated HBEC cultures was evaluated by 

histological methods prior to treatments. H&E staining of tissue sections indicated 

that cultures were fully differentiated into a pseudostratified mucociliary 

epithelium showing goblet cells and ciliated cells along the apical side (Fig. 1A). 

Epithelial cells were distinguished by cell-specific markers. 

Immunohistochemistry was used to visualize Ki67, which is a marker of actively 

proliferating cells identified exclusively on the basal side, (Fig 1B) and p63, 

which is a marker of basal epithelial cells (Fig 1C).  Mucus producing goblet cells 

were visualized on the apical side with PAS stain (Fig. 1D).  MUC5B (marker of 

glandular mucous cells) and B-tubulin (ciliated respiratory cells) were visualized 

by immunofluorescence (Fig. 1E). Cells treated with BAP, DBC and CTE at 

concentrations ranging 1-1500 µg/ml applied to the apical surface for 48 hours 

resulted in no increase in toxicity as measured by release of LDH into media (Fig. 

2).   

 

3.2. Global gene expression analysis 
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 We investigated the effects of BAP and DBC treatment on 3D HBEC on 

the molecular level by analyzing global gene expression patterns using RNAseq. 

Raw and normalized sequencing files are available online at NCBI Gene 

Expression Omnibus (GSE128471). Of the more than 60,000 transcripts mapped, 

there were 3486 statistically significant (q<0.05). A heatmap of 3486 

differentially expressed genes (DEG) was generated using an unsupervised 

hierarchical clustering analysis (Fig. 3A).  BAP treatment resulted in 2244 DEG 

and DBC treatment resulted in 2126 DEG compared to vehicle control. The 

dendrogram shows that biological replicates for each treatment cluster together 

indicating the variance between treatments is greater than the variance measured 

within replicates for each treatment. Among the total DEG, about three-quarters 

of genes were unique to each treatment, and not differentially regulated by the 

other treatment (1360 DEG were unique to BAP, and 1242 DEG were unique to 

DBC). About a quarter of the DEG (884) were common between BAP and DBC 

as shown by the Venn diagram in Fig. 3B.  Gene expression analysis supports the 

hypothesis that while BAP and DBC function through a subset of commonly 

regulated genes and pathways, each also have chemical-specific profiles that 

contribute to toxicity in human bronchial epithelial cells.   

 

3.3. Barrier function toxicity as a common mechanism of toxicity in HBEC by 

BAP and DBC  

 

 To further analyze the treatment responses between BAP and DBC for 

mechanistic similarities and differences, the DEG were analyzed for significantly 

enriched pathways. Genes regulated in common by BAP and DBC, which means 

they were significantly different from control (q<0.05) for both treatments, were 

split into upregulated and downregulated subsets for analysis (Fig. 3C).  Overall, 

pathways associated with cell cycle and nuclear receptor signaling were 

significantly enriched for genes increased by both BAP and DBC, while many 

pathways related to cell adhesion and barrier function were significantly enriched 



25 

 

 

for decreased gene sets.  In fact, pathways related to barrier integrity were some 

of the most significantly enriched pathways affected by BAP and DBC treatment 

compared to control and broadly include pathways associated with cell adhesion, 

epithelial-to-mesenchymal transition, TGF-beta signaling and cytoskeleton.  

Genes specifically associated with three cell adhesion pathways (Cell 

adhesion_Cell junctions, Cell adhesion_Cadherins, and Cell adhesion_Integrin-

mediated cell-matrix adhesion) were compiled into a gene list related to barrier 

function and visualized in a heatmap (Fig. 4A). Most genes associated with these 

pathways were significantly decreased (q<0.05) in common by BAP and DBC 

treatment compared to control and support functional measurements of barrier 

integrity in HBEC (Fig. 4B).  One pathway (nuclear receptor transcriptional 

regulation) was significant for both the increased and decreased gene sets 

(compared to control) indicating this pathway, which broadly includes a number 

of nuclear signaling pathways, was significantly enriched by both datasets. 

TEER in HBEC was measured as a functional indicator of barrier integrity 

48 hours after chemical treatment and results are normalized to vehicle control 

(Fig. 4B).  A significant decrease in TEER (p<0.05) was observed at the highest 

concentrations tested for BAP and DBC (500 µg/ml and 50 µg/ml, respectively) 

indicating a loss of cell barrier integrity. The effects of BAP and DBC on barrier 

integrity were compared to CTE as a mixture of PAHs that includes both BAP 

and DBC [12].  The dose-response range for BAP, DBC and CTE were broadly 

overlapping based on reported relative potency with DBC ranging 30-100 BAPeq 

and CTE 0.4 BAPeq [12, 22].  HBEC were more sensitive to barrier function 

toxicity by CTE, which resulted in significant decreases in TEER (66-73%) at 

concentrations as low as 500 µg/ml. While the reduction in TEER from BAP and 

DBC treatment correlate with a decrease in gene expression for barrier function as 

measured by RNASeq, specific gene expression biomarkers of tight junction and 

gap junction integrity were significantly decreased at concentrations lower than 

those that significantly reduced TEER suggesting that gene expression may be a 

more sensitive endpoint or there may be a threshold associated with gene level 
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changes that contribute to functional integrity measures.  (Figs. 4C and 4D).  

Specifically, tight junction protein 2 (TJP2) and gap junction 1 (GJA1) were 

decreased following 48 hour exposure to BAP and DBC at concentrations lower 

than those required for functional impairment of barrier integrity as measured by 

TEER (Fig. 4C).  Coal tar extract treatments also significantly (p<0.05) 

downregulated a number of barrier genes by qPCR, including TJP2, tight junction 

protein 1 (TJP1), GJA1, and claudin 1 (CLDN1). These genes were chosen based 

on relevance to tight junction and gap junction structures and BAP/DBC RNASeq 

results.  Overall, these data show that the BAP, DBC and CTE all inhibit barrier 

integrity mediated by down regulation of gap junction and tight junction 

processes. 

 

3.4. BAP and DBC uniquely regulate transcriptional targets of AHR and NRF2 in 

HBEC 

 

Significantly enriched pathways (p<0.05) were also analyzed for DEG 

uniquely up and down regulated by BAP and DBC (Fig. 5).  These data highlight 

a number of important biological processes that are regulated in a chemical-

specific manner in HBEC.  For example, BAP uniquely upregulates pathways 

related to cell cycle, hypoxia and oxidative stress while processes upregulated by 

DBC were related to inflammation and DNA damage signaling.  DBC uniquely 

down-regulated genes from mitochondrial apoptosis pathways and the initiation 

and elongation processes of translation. BAP uniquely downregulated several 

pathways that DBC did not, notably the inflammation, IL-10, IL-2 signaling 

pathways and cell cycle G1-S regulation.  BAP also downregulated several 

pathways related to barrier integrity that were observed to also be important for 

DBC (Fig. 3C).   

Given the importance of oxidative stress as a mechanism of PAH toxicity, 

we focused on this pathway, which was only enriched in BAP, for confirmation 

by qPCR.  Further, we noticed a subset of genes significantly regulated in 
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opposite directions by BAP and DBC that were associated with oxidative stress 

and antioxidant signaling processes.  In general, these genes were upregulated by 

BAP and down regulated by DBC and included phase I and II metabolizing 

enzymes and known transcriptional targets of the arylhydrocarbon receptor 

(AHR) and nuclear factor erythroid 2–related factor 2 (NRF2).  Dose-dependent 

CYP1A1 and CYP1B1 induction were observed in HBEC after treatment by BAP 

and CTE for time points ranging 6-48 hr (Fig. 6A). However, during the same 

time range, DBC significantly decreased CYP1A1 and CYP1B1 in a dose-

dependent manner (Fig. 6A).  This unique pattern of response for CYP1A1 AND 

CYP1B1 by BAP and DBC, which is consistent with that previously published in 

mouse epithelium [12], was confirmed using overlapping concentrations for BAP 

and DBC in a subsequent experiment (Supplemental Figure 1).  Similar results 

were observed for NAD(P)H quinone dehydrogenase (NQO1), aldehyde 

dehydrogenase 3 family member A1 (ALDH3A1), and glutathione S-transferase 

alpha (GSTA) in which dose-dependent increases were measured 48 hr after BAP 

and CTE treatment (by RNAseq and qPCR), while genes were either 

downregulated or not significantly changed (by qPCR or RNAseq) after treatment 

with DBC (Fig. 6B).  One notable exception is the downregulation of GSTA by 

CTE, while BAP increased expression of this gene supporting that PAHs and 

PAH mixtures result in exposure-specific gene expression profiles in lung cells.   

The extent of the differences in AHR and NRF2 signaling by BAP and 

DBC in HBEC is represented in the transcription factor signaling network in Fig. 

6C.  The 3486 DEG were filtered for genes significantly regulated in opposite 

directions by BAP and DBC. These genes were uploaded into Metacore for 

network building, and we found that NRF2 and AHR are major hubs connecting 

genes that are oppositely regulated by BAP and DBC treatment. Using 

MetaCore’s Interactome tool, an Interactions by Protein function analysis returned 

the following results for overconnected objects in the active dataset:  the top 5 

overconnected genes for BAP unique DEG list (up/down) were CAMP responsive 

element binding protein 1 (CREB1), androgen receptor (AR), MYC proto-
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oncogene (MYC), RELA proto-oncogene (RELA), and estrogen receptor 1 (ESR1). 

The top 5 overconnected genes for the DBC unique DEG list (up/down) were 

MYC, CREB1, YY1 transcription factor (YY1), tumor protein 53 (TP53), ESR1. 

While they differ slightly in top interconnected genes, it is evident that many of 

the uniquely regulated genes are interconnected with common hub genes, or 

transcription factors (MYC, CREB1, RELA.) After filtering the DEG list to include 

only genes significantly regulated (q<0.05) by either BAP or DBC opposite to the 

other treatment, the Interactome Interactions by Protein analysis was rerun and 

returned the following top 5 overconnected genes: NRF2, kruppel like factor 4 

(KLF4), RELA, cystatin B (CSTB), TP53. These genes, along with AHR, were 

added to build a network (Fig 6C) of oppositely regulated genes. Based on the top 

5 overconnected gene networks, the opposite regulation suggests that NRF2 and 

KLF4 may play a role in modulating BAP and DBC response in a way that is 

unique between the two PAH treatments.   

 

4. Discussion 

 

This study employed a toxicogenomics approach for comparison of 

transcriptional differences between BAP and DBC in a 3D HBEC model to 

evaluate chemical biosignatures after exposure and inform known differences in 

toxicity to human airway epithelium. We have previously identified PAH-specific 

biosignatures in mouse skin epithelium in vivo linked to carcinogenic risk for 

PAHs and mixtures [13]. The EpiAirwayTM bronchial epithelial model was chosen 

for its ability to recapitulate in vivo phenotypes of tissue structures, cellular 

responses, signaling, and functional barriers. The complexity of this model makes 

it an ideal tool to study perturbations in the complex and dynamic processes 

involved in the mechanisms of PAH toxicity. Global gene signatures for BAP and 

DBC were further compared to transcriptional biomarkers in HBEC cells after 

treatment with CTE, a complex mixture of PAHs, and biological and functional 

changes in cells.  BAP and DBC treatment in the bronchial epithelium resulted in 
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over three thousand genes significantly altered between these two treatments. 

While a quarter of the genes were regulated in common between these two PAHs, 

the majority of genes are uniquely regulated by one PAH and not the other. A key 

strength of this study design is the ability to compare the response of thousands of 

genes in the human bronchial epithelial model to identify chemical-specific 

mechanisms and pathways.  

 

4.1 PAH-related barrier integrity alteration 

 

While transcriptional profiling highlighted major differences in regulated 

pathways and processes between BAP and DBC, the results also supported a 

degree of similarities between the PAHs. A quarter of the genes significantly 

regulated were regulated in common between BAP and DBC, and these genes 

were present in translation, inflammation, cell adhesion, and regulation of cell 

proliferation processes (Fig 3C). These shared pathways have been reported in 

studies assessing PAH transcriptional profiles in other models including the 

zebrafish and Mutamouse, notably processes pertaining to cell adhesion, 

inflammation, and translation [29, 30]. These commonly enriched pathways by 

different single PAHs across models and tissues supports the hypothesis that 

PAHs can share subsets of commonly regulated genes and pathways, yet 

ultimately function through chemical-specific bioactivity signatures that can 

contribute to their different toxicities in the target tissues.  

In the present study, functional and gene expression assays were used in 

order to evaluate barrier function integrity after exposing HBECs to various PAH 

treatments. In pathway enrichment analysis, the pathways related to barrier 

integrity were some of the most significantly enriched pathways affected by BAP 

and DBC treatment compared to control. The majority of genes in the barrier 

integrity gene heatmap were downregulated by BAP and DBC treatment, 

supporting barrier integrity dysregulation as a shared mechanism of action 

between BAP and DBC, including epithelial to mesenchymal transition and cell 
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adhesion. Key genes involved in cell adhesion and epithelial mesenchymal 

transition have also been reported in PAH-treated HepG2 cells as well, indicating 

that short-term PAH treatment can result in hundreds of different genes expressed, 

between PAHs also of varying potencies, yet can share the traits of dysregulating 

cell junctions and promoting cellular migration [31]. 

PAHs have been found to decrease barrier function integrity, which in turn 

can lead to dysregulated inflammation and oxidative stress [32, 33]. Regulation of 

tight junction and gap junction proteins is essential in maintaining homeostasis in 

the lungs. Tight junction structures comprised of transmembrane proteins and 

plaques maintain tissue permeability and intercellular adhesion [33, 34]. Some of 

these structural proteins, particularly the occludins, have been found to be redox-

sensitive in their assembly and breakdown [35]. Elevated oxidative stress and pro-

inflammatory cytokines can also disrupt tight junction function, leading to 

increased airway inflammation [36]. Because dysregulation of tight junctions are 

associated with asthma and lung cancer, barrier integrity is evaluated as a target of 

PAH treatment and potential predictor of toxicity [34]. Tight junction 

downregulation tends to be correlated with TEER reductions, as well as 

reductions in cingulin, claudins, and other barrier proteins [34]. 

Trans-epithelial electrical resistance (TEER) measurements were taken to 

indirectly measure tight junction functional integrity and assess epithelial layer 

disruption. We found significantly reduced TEER measurements (p<0.05) by 

treatments of BAP, DBC, and CTE. The tight junction and gap junction markers 

TJP2 and GJA1 were also found to be downregulated by treatment to BAP and 

DBC, and correlated with reductions in TEER at those doses. Similarly, CTE 

treatment resulted in the significant downregulation of TJP1, TJP2, GJA1, and 

CLN1. The resulting epithelial barrier dysfunction from BAP, DBC, and CTE 

exposure, measured through TEER and qPCR, further support this as a 

mechanism of action likely to be shared by PAHs.  
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4.2 Uniquely regulated hub genes and pathways between BAP and DBC 

treatment may be the key to understanding DBC’s heightened carcinogenic 

potential 

 

Through global gene expression analysis, a total of 2602 transcripts/genes 

were identified to be uniquely regulated between BAP and DBC. Approximately 

half of these genes were uniquely regulated by BAP, while the other half was 

uniquely regulated only by DBC.  Because BAP and DBC exhibit such large 

differences in their tumorigenic potency in vivo [12] and RPF estimate [4], we 

further investigated the specific roles of the uniquely regulated genes to gain 

insight on potential contributors to DBC’s mechanism of action.  

Through the pathway enrichment analysis, we found that BAP and DBC 

each uniquely regulated subsets of pathways, further indicating that these 

chemicals may act through dissimilar mechanisms of action. There is mounting 

evidence that PAHs can have individual chemical signatures that can be used to 

discriminate chemicals by their properties, including genotoxicity and bioactivity 

[13, 30, 37]. To date, there are a small but valuable number of studies analyzing 

the transcriptional profiles of PAH exposures on a number of models. These 

studies have found that across the developing zebrafish, mouse lung, mouse 

spleen, mouse skin, and currently the human airway epithelium, PAHs continue to 

exhibit unique transcriptional profiles with subsets of common, but often unique, 

enriched pathways and transcription factors [13, 30, 38, 39]. In the present study 

using a human bronchial epithelial model, we found that while BAP uniquely 

upregulates pathways related to hypoxia and oxidative stress, and DBC uniquely 

upregulated pathways related to inflammation and DNA damage signaling (Fig. 

3C). These enriched pathways are a result of the over 1200 genes that are 

uniquely regulated by one PAH treatment, but not the other.  

Through hub gene network building, we found shared and unique top 

over-connected genes (hub genes) for the BAP and DBC unique and oppositely 

regulated gene lists (Fig6C, 6D). The shared hub genes were CREB1, RELA, and 
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MYC, while BAP notably had AR as a unique hub gene and DBC had TP53 as a 

unique hub gene. After filtering for significance, the top over-connected genes 

included NRF2, KLF4, and TP53. The network visualizations built relate two key 

points: BAP and DBC are regulated by a number of similar transcription factors 

that are known regulators of cell cycle, proliferation, and oxidative stress 

responses. All these processes related to cancer; however they are not regulated 

the same way. The genes are oppositely regulated by the same transcription 

factors, indicating chemical-specific processes occurring at the transcriptional 

level that are unable to be explained by what is currently known about classic 

PAH mechanisms of action. These data are consistent with unique differences for 

BAP and DBC reported in mouse skin epithelium in vivo and include processes 

previously identified as predictive of PAH carcinogenic risk suggesting that PAH-

specific gene regulation linked to cancer outcome are maintained in human 

bronchial epithelial cells in vitro [12, 13, 40].   

 

4.3 DBC dysregulates NRF2-mediated oxidative stress detoxification 

mechanisms 

 

 The mechanisms of action of BAP have been researched extensively, 

resulting in a wealth of knowledge on its effects in in vitro and in vivo systems 

[41-43]. BAP toxicity requires a series of CYP-dependent metabolic activation 

steps to become toxic metabolites, which then damage cellular constituents, 

including proteins and DNA through adduct formation and redox cycling [6, 42].  

The findings of this study support the hypothesis that DBC may act through 

dysregulation of oxidative stress detoxification mechanisms, particularly by 

downregulating NRF2 targets.  The nuclear factor-erythroid 2-related factor-2 

(NRF2) is a transcription factor plays major roles in cellular antioxidant defense 

by regulating Phase II detoxification genes and activating protective antioxidant 

responses in the cell. Targets of NRF2 include NQO1, heme oxygenase 

(HMOX1), superoxide dismutase (SOD1), sulfiredoxin (SRX1), thioredoxin 
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(TXN), and glutathione peroxidases (GPXs), all of which are enzymes crucial for 

protective detoxification of oxidative burden. These genes were all downregulated 

in the DBC-treated HBEC, yet up-regulated in the BAP-treated HBEC. 

Particularly, the DBC-downregulated enzymes involved in redox reactions 

(oxidoreductases and redoxins, including multiple glutaredoxins, peroxiredoxins, 

thioredoxin, sulfiredoxin) typically catalyze reductions of intracellular 

biomolecules and reactive oxygen species to confer oxidative stress resistance. A 

loss in antioxidant activity is likely to increase cellular damage, since a key 

compensatory mechanism for chemical insult is hindered.  

NRF2-deficient zebrafish morphants were found to have greater levels of 

cadmium-related oxidative injury, and NRF2 deficient mice are also more 

sensitive to chemical-induced toxicity, inflammatory stressors, and 

carcinogenesis, particularly in the lung [44]. Therefore, it is unsurprising that 

BAP and cigarette smoke exposures have been reported to cause more toxicity in 

NRF2 deficient mice [45]. Finally, NRF2 is thought to be protective against 

airway disorders as it is associated with loss of function mutations in patient 

cohorts with acute respiratory distress syndromes or lung cancers [46]. Overall, 

NRF2 is an important transcription factor in regulating a protective antioxidant 

response, and the observed downregulation of NRF2-regulated antioxidant genes 

by DBC but not by BAP suggests that suppressing this antioxidant gene network 

may be a potential major difference in mechanism of toxicity between BAP and 

DBC. It is possible that the inhibition of protective cellular mechanisms acts as a 

contributor to DBC’s heightened carcinogenic potential, likely by compounding 

DBC toxicity from reactive metabolites.  

We also found and confirmed, through qPCR, that a number of genes 

encoding enzymes involved in AHR-mediated PAH metabolism were oppositely 

regulated by BAP and DBC. Phase I enzymes CYP1A1, CYP1B1, ALDH3A1, and 

NQO1 were dissimilarly regulated by BAP and DBC treatment. While BAP and 

CTE treatment significantly increased CYP1A1 and ALDH3A1, DBC treatment 

significantly downregulated CYP1A1 and CYP1B1 expression. Because these 



34 

 

 

genes are inducible by AhR activation in response to environmental contaminant 

exposure, the effects of these genes in response to PAH treatment may be a 

contributing difference in how different environmental carcinogens exert their 

toxicity. It is very likely that parent PAHs and their various metabolites induce 

unique expression patterns of Phase I and Phase II enzymes that regulate further 

metabolism into either reactive, toxic compounds, or less toxic metabolites.  This 

pattern of response is consistent with that previously reported in mouse skin 

epithelium in a limited dosing study [12, 40] and was confirmed in airway 

epithelium in vitro across dose and time.  Further, studies investigating the role of 

inflammation on BAP pulmonary toxicity found that co-exposure of mice with 

BAP and lipopolysaccharide led to elevation of inflammatory pathways, 

inhibition of Phase I and II enzymes and decreased cell adhesion that correlated 

with increased genotoxicity compared to BAP treatment alone.  [47-49].  These 

studies highlight the importance of inflammation on PAH-mediated lung disease 

and suggest that unique processes regulated by DBC related to inflammation, 

metabolism and cell-cell communication may mediate the enhanced 

carcinogenicity of DBC compared to BAP.   

 

4.4 Advantages of profiling short-term bioactivity signatures of chemicals in 

3D human airway epithelium 

 

The results from this study support the use of systems approaches in 

broadly assessing and comparing mechanisms of chemical toxicity. This approach 

is particularly useful in comparing mechanisms of PAH exposure in a human in 

vitro model, both between chemicals and across model species. The RPF 

approach uses mouse in vivo data to derive cancer risk values to assess human 

cancer risk, effectively if mouse skin in vivo studies are representative of human 

PAH toxicity. While there is evidence of similar, short-term transcriptional 

responses observed across human airway epithelium and mouse skin, more 
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research is necessary to investigate the mechanisms of PAHs in humans, and 

whether these mechanisms are reflected in the mouse models used to derive RPFs.  

The wealth of data generated from assessing short-term gene signatures 

can also be useful for comparing between specific chemical treatments and 

longer-term patient-derived gene signatures. From our study, the short-term gene 

signatures observed in BAP-treated human bronchial epithelium are consistent 

with specific transcriptional changes observed in the bronchial epithelium of 

smokers. Transcriptomic profiles in the lung epithelium of cigarette smokers 

share similarities with the BAP-treated human bronchial epithelium, particularly 

with similarly regulated Phase I and Phase II genes [50-53]. 

 

5. Conclusion 

 

This work supported the utility of transcriptomic approaches in evaluating 

chemical-specific profiles of PAHs. Despite treatment for only 48 hours, the 

chemical signatures were markedly unique between BAP and DBC, and were 

consistent with differences between the chemicals across species ( in vivo rodent). 

This work supports and demonstrates that efforts using short-term, systems 

biology data to inform mechanism of action profiling can be applied towards in-

depth mechanistic assessments of PAH mixtures. 

 While prior research has focused on the liver and skin response to PAHs, 

we demonstrated that the human in vitro pulmonary epithelium cultured at the air-

liquid interface is a toxicologically sensitive model to PAH transcriptional 

perturbation. The knowledge gained from studying additional mechanisms of 

toxicity, such as inflammation, oxidative stress response, and barrier integrity 

dysregulation, are valuable contributors to the growing field of predictive 

toxicology, as researchers can utilize knowledge of unique mechanisms to 

evaluate mechanistic contributors to cancer risk.  In the current study, short-term 

transcriptional responses of PAH treatment provided evidence supporting barrier 

integrity dysregulation as a shared mechanism of action by PAHs, and AHR and 
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NRF2-related gene networks as potentially responsible for differences in Phase I, 

Phase II, and antioxidant responses to PAHs. These findings support research 

scrutinizing the applicability of the RPF, where the assumption of similar mode of 

action is necessary for quantitative PAH cancer risk assessment. 
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Figure 2- 1.   

 

 
 
Figure 2- 1.  Morphological characterization of primary 3D human bronchial 

epithelial cells (HBEC) in culture (MaTtek).  HBEC cultures were fixed in 10% 

formalin 5 weeks after seeding onto membrane support.  Tissue sections were 

stained with H&E (A) to observe ciliated cells, Ki67 (B) for actively proliferating 

cells, p63 (C) for basal cells, PAS (D) for goblet cells, and (E) MUC5B and β-

tubulin (red with DAPI counterstain in blue) as markers of glandular mucous cells 

and ciliated respiratory cells, respectively.  Examples of positively stained cells 

are indicated by arrows. 
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Figure 2-2. 

 
 
 
 
 

 

 

 

 

 

Figure 2-2.  Cell viability measured by lactate dehydrogenase (LDH) leakage 

in cell media 48 hrs after exposure to PAHs. Values are presented as LDH 

leakage in media for treated cells compared to acetone vehicle control (% vehicle 

control ± standard error).  LDH leakage from HBEC treated with benzo[a]pyrene 

(BAP), dibenzo[def,p]chrysene (DBC) and coal tar extract (CTE) were not 

significantly different (p>0.05) from vehicle control at any concentration 

(ANOVA).  
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Figure 2-3. 

 
 
Figure 2-3.  HBEC transcriptional response to BAP and DBC. Global gene 

expression was measured in HBEC 48 hrs after treatment with 500 ug/ml (19.8 

nmol) benzo[a]pyrene (BAP) and 10 µg/ml (0.35 nmol) dibenzo[def,p]chrysene 

(DBC) by RNA sequencing.  (A) Bidirectional hierarchical clustering by 
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Euclidean distance of genes differentially expressed (q<0.05) by BAP and DBC 

compared to vehicle control.  Values are log2 fold change for all treatments 

compared with control; red, green, and black represent up-regulated, down-

regulated and unchanged genes, respectively.  (B) Venn diagram showing overlap 

of significantly regulated (q <0.05) genes by BAP and DBC in HBEC.  (C) 

Functional enrichment of gene processes in HBEC using MetaCore network 

processes (GeneGo) for genes commonly regulated by BAP and DBC (q<0.05).  

Black bars represent functions for genes up-regulated and gray bars represent 

functions for genes down-regulated in common by BAP and DBC (q<0.05).  The 

dashed line indicates the threshold for significance (p<0.05).   
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Figure 2-4. 

 
Figure 2-4.  Decrease in barrier integrity of HBEC after treatment with BAP 

and DBC.  (A) Bidirectional hierarchical clustering by Euclidean distance of 

differentially expressed genes associated with gap junction and tight junction 

signaling (q<0.05) after 48 hr treatment with benzo[a]pyrene (BAP) and 

dibenzo[def,p]chrysene (DBC) compared to vehicle control.  Values are log2 fold 

change for all treatments compared with control; red, green, and black represent 

up-regulated, down-regulated and unchanged genes, respectively. (B) 

Transepithelial electrical resistance (TEER) measured in HBEC 48 hr after 

treatment with BAP, DBC and coal tar extract (CTE).  Values are TEER (Ω-cm2) 

normalized to vehicle control (scaled to 100%). *Indicates significant reduction in 

TEER (p<0.05; ANOVA with Tukey’s pairwise comparison).  Expression of 

genes associated with barrier integrity were measured by quantitative PCR in 

HBEC after 48 hr treatment with BAP and DBC (C) and CTE (D), respectively.  

Values are expressed as fold change (Log2; mean ± SE) compared to vehicle 

control.  Asterisks indicate significance compared to vehicle control (*p<0.05; 

**p<0.001; ANOVA with Tukey’s pairwise comparison).    
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Figure 2-5.  

 
 

 
Figure 2-5. Genes uniquely regulated by BAP and DBC in HBEC.  Global 

gene expression was measured in HBEC 48 hrs after treatment with 500 µg/ml 

(19.8 nmol) benzo[a]pyrene (BAP) and 10 µg/ml (0.35 nmol) 

dibenzo[def,p]chrysene (DBC) by RNA sequencing.  Venn diagram shows genes 

uniquely regulated (q <0.05) by BAP and DBC in HBEC.  Statistical enrichment 

of biological network processes (MetaCore) is shown for genes uniquely up-

regulated (left-panel) and down-regulated (right-panel) by BAP (light gray bars) 

and DBC (dark gray bars).  The dashed line indicates the threshold for 

significance (p<0.05). 
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Figure 2-6. 

 

Figure 2-6.  Unique regulation of AHR- and NRF2-mediated genes by BAP 

and DBC in HBEC.  (A) Expression of CYP1A1 and CYP1B1 was measured by 

quantitative PCR in HBEC 6-48 hrs after treatment with BAP, DBC and CTE (48 

hr only).  (B) Expression of NQO1, ALDH3A1 and GSTA was measured by 

quantitative PCR in HBEC 48 hrs after treatment with BAP, DBC and CTE.  (C) 

Transcription factor signaling networks for AHR and NRF2 in HBEC after 

treatment with 500 µg/ml (19.8 nmol) BAP (left, red) and (D) 10 µg/ml (0.35 

nmol) DBC(right, green).  Target nodes are up-regulated by BAP (red) and down-

regulated by DBC (green).  For panesl A and B, values are expressed as fold 

change (Log2; mean ± SE) compared to vehicle control.  Asterisks indicate 

significance compared to vehicle control (*p<0.05; **p<0.001; ANOVA with 

Tukey’s pairwise comparison). For panel C, as indicated in the legends, the size 

of nodes is associated with significance (larger is more significant) and the color 
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intensity represents magnitude of response (darker is larger response) for BAP 

and DBC compared to vehicle control. 
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Abstract 

 

One of the most difficult challenges for risk assessment is evaluation of 

chemicals that predominately co-occur in mixtures like polycyclic aromatic 

hydrocarbons (PAHs).  We previously developed a classification model in which 

systems biology data collected from mice shortly after chemical exposure 

accurately predict tumor outcome. The present study demonstrates translation of 

this approach into a human in vitro model in which chemical-specific bioactivity 

profiles from 3D human bronchial epithelial cells (HBEC) classify PAHs by 

carcinogenic potency.  Gene expression profiles were analyzed from HBEC 

exposed to carcinogenic and non-carcinogenic PAHs and classification accuracies 

were identified for individual pathway-based gene sets.  Posterior probabilities of 

best performing gene sets were combined via Bayesian integration resulting in a 

classifier with four gene sets, including aryl hydrocarbon receptor signaling, 

regulation of epithelial mesenchymal transition, regulation of angiogenesis, and 

cell cycle G2-M. In addition, transcriptional benchmark dose modeling of 

benzo[a]pyrene (BAP) showed that the most sensitive gene sets to BAP regulation 

were largely dissimilar from those that best classified PAH carcinogenicity 

challenging current assumptions that BAP carcinogenicity (and subsequent mode 

of action) is reflective of overall PAH carcinogenicity. These results illustrate 

utility of using systems toxicology approaches to analyze global gene expression 

towards carcinogenic hazard assessment. 
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1.0. Introduction 

 

The environmental health science community recognizes PAHs as a re-

emerging class of environmental pollutants due to their persistence and 

prominence in mixtures of concern [1-5]. PAHs are ubiquitous contaminants in 

the environment commonly generated by petrogenic and pyrogenic processes, 

including aluminum and coal-tar pitch production, and incomplete combustion of 

tobacco, wood, , and fossil fuels [6]. They account for 3 of the top 10 chemicals 

of concern at priority pollutant sites and are considered among the most important 

carcinogens in air pollution [5, 7]. The World Health Organization’s International 

Agency for Research on Cancer (IARC) has designated several PAHs and 

mixtures, such as diesel exhaust, air pollution, coal and coke mixtures, as either 

Class 1 known or Class 2A/B probable/possible carcinogens to humans [2, 8-10]. 

Despite the fact that PAHs were the first class of chemicals identified as chemical 

carcinogens, little is known about the carcinogenic potential of many of the over 

1500 polycyclic aromatic compounds or about potential mechanisms of 

carcinogenic action for this diverse class.  

Current assessment of cancer risk for PAHs involves testing compounds in 

the 2-year rodent bioassay. These studies are time and resource-intensive, and 

often lack reproducibility or concordance. Furthermore, they require extrapolation 

of effects to humans, leading to further uncertainties regarding species-specific 

biology and chemical mode of action (MOA) [11]. Carcinogenic potential of 

PAHs has been historically evaluated for individual chemicals through 

intraperitoneal or dermal routes. However, PAH exposures occur as complex 

environmental mixtures through inhalation, oral, and dermal routes, which are 

difficult and cost-prohibitive to assess using traditional carcinogenicity assays. 

The primary method for estimating cancer risk of PAH mixtures is the relative 

potency factor (RPF) approach in which mixtures are evaluated based on a subset 

of individual component PAHs compared to benzo[a]pyrene (BAP) as a surrogate 

or reference [12].  However, we and others have found this approach inadequate 
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for predicting carcinogenicity of mixtures and also for certain individual PAHs, 

particularly those that function through alternate pathways or exhibit greater 

promotional capacity compared to BaP [13-16]. 

Previously we reported an approach for predicting potency of PAH 

chemicals and environmental PAH mixtures based on bioactivity profiles derived 

from global transcriptional analysis short-term post-exposure in a mouse skin 

cancer model [15].  This classification approach overcomes limitations of using 

RPFs for complex mixtures since it does not require knowledge about individual 

components of mixtures nor does it assume a common mechanism of action for 

all PAHs.  Instead, we found that chemical-specific signaling after exposure 

provides a unique signature or bioactivity profile for each PAH/mixture that is 

reflective of its MOA and can be used to discriminate carcinogenic potency.  

Similar genomic-based models have successfully been applied to individual 

chemicals after short-term exposure to identify modes of action for distinguishing 

carcinogens from non-carcinogens in rodent in vivo and human in vitro [17, 18].  

Other studies that have modeled non-additive effects of polycyclic aromatic 

compounds in mixtures on hepatotoxicity with gene expression data report the 

strong correlation of gene response with other toxicity endpoints in vivo, 

including histopathology and gross physiology, showing the benefits of using 

gene expression to evaluate quantitative differences in toxicity [19, 20].   

In this study, we evaluated whether systems biology data collected from a 

human in vitro airway epithelial model can be used for accurate classification of 

carcinogenic potency of PAHs and PAH mixtures.  Advanced cell culture and 

tissue engineering are increasingly recognized for their potential in mechanistic 

studies because the three-dimensional structure, metabolic and mitotic activity, 

multi-cellular communication and cell signaling better recapitulate in vivo 

response compared to cells grown in monolayer culture [21-23]  Human bronchial 

epithelial cells cultured at the air-liquid interface were previously found to 

produce chemical-specific gene signatures after treatment with two carcinogenic 

PAHs, BAP and dibenzo[def,p]chrysene (DBC), that were consistent with gene 
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changes observed in mouse and showed chemical-specific signaling related to 

oxidative stress and inflammation may drive different MOAs for these PAHs [16]. 

These differences in gene signaling and regulation may thus contribute to 

subsequent differences in carcinogenic potency observed in vivo [15]. For this 

study, employing organotypic in vitro models allows for rapid generation of 

transcriptional biosignatures for analysis and comparison of PAH MOAs linked to 

adverse health outcomes.  

 

2.0. Methods 

 

2.1. Chemicals and reagents 

 

Cell culture media and phosphate buffered saline (PBS) were provided by 

MatTek Corporation (Ashland, MA). Benzo[a]pyrene (BAP) CAS# 50-32-8 and 

dibenzo[def,p]chrysene (DBC) CAS# 189-64-0 were purchased from MRIGlobal 

(Kansas City, MO). Benz[a]anthracene (BAN) CAS# 56-55-3, phenanthrene 

(PHE) CAS# 85-01-8, and pyrene (PYR) CAS# 19-00-0 were acquired from 

Sigma-Aldrich dba. Millipore Sigma (St. Louis, MO.).  Coal Tar Extract (CTE) 

(SRM 1597a) was purchased form the National Institute of Standards & 

Technology (Gaithersburg, MD.) DNase I, TRIzol® reagent, Superscript® III 

First Strand Synthesis System, qPCR primers, and Pierce™ LDH Cytotoxicity 

Assay Kit were from Thermo Fisher Scientific (Waltham, MA). 2X 

SsoAdvanced™ Universal SYBER®Green Supermix was purchased from 

BioRad Laboratories, Inc. (Hercules, CA.). 

 

2.2. Tissue Culture and Chemical Exposures 

 

For the 2D cell culture experiments, primary normal HBEC at passage 5 

from Lonza Group (Basel, Switzerland) were expanded in PneumaCultTM-Ex Plus 

Medium from Stemcell Technologies (Vancouver, Canada) and further 
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subcultured onto black-walled, clear-bottom 96-well plates until confluent, then 

exposed to chemical treatments for 24 hours using 2% dimethyl sulfoxide 

(DMSO) in Dulbecco’s phosphate-buffered saline (DPBS) from Thermo Fisher 

Scientific (Waltham, MA).  

For the differentiated 3D cell culture experiments, primary HBEC cultured 

on transwell inserts (EpiAirway™ 100, Mattek, Ashland, MA) were shipped 

overnight and received chilled on ice packs. Tissues were immediately transferred 

to 6-well plates each well containing 1 ml of assay medium and equilibrated for 

24 hours at 37°C, 5% CO 2 followed by a change of fresh medium before any 

treatment regimens commenced. Tissues were prepared for treatment as follows. 

PBS (0.50 ml) was pipetted onto the apical surface of the inserts and the PBS was 

carefully removed along with mucus from the surface of the tissues to wash the 

cells prior to chemical exposure. The medium was replaced with 1 ml of fresh 

medium in the plate wells (basal side of the membrane). Single PAHs and coal tar 

were solubilized in acetone and applied (0.01 ml/insert) to the apical surface of 

tissues (n=4 per treatment) for up to 48 hrs, BAP (1-500 µg/ml), DBC (1-50 

µg/ml), BAN (10-500 µg/ml), PYR (10-250 µg/ml), PHE (10-250 µg/ml) and 

CTE (250 -1500 µg/ml).  Dosing was chosen based on relative potency in BAP 

equivalents as previously reported [13, 16, 24].  Basal media was transferred to 

clean, sterile tubes and stored at -80°C. At the end of each exposure regimen, lysis 

buffer was added to each insert, collected, and stored at -80°C until extraction 

using RNeasy extraction kit.  

 

2.3. RNA Isolation and mRNA-Seq 

 

Total RNA was isolated from HBEC (n=4) using RNeasy Mini Kit 

(Qiagen, Venlo, Netherlands) and was quantitated on a SYNERGY/HTX plate 

reader equipped with a Take3 module, then evaluated for quality with a 

Bioanalyzer 2100, Agilent (Santa Clara, CA). PAH dosing for sequencing was 

chosen based on BAP equivalents at concentrations similar to those used in prior 
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animal studies (applied to mouse skin) [13, 16, 24].  Acceptable RNA quality was 

based on RIN ≥ 8.5. Isolated mRNA were sequenced on Illumina HiSeq 3000, 

which yielded >350 million reads per lane. Sequenced reads were first put 

through Cutadapt (version 1.8.1) to trim adapter sequences from the paired-end 

reads. The human genome assembly GRCh38.84 was indexed using Bowtie2-

build (version 2.2.3) while the transcriptome was indexed using TopHat (version 

2.1.1) [25-27]. TopHat was used again to align the trimmed reads to indexed 

transcriptome and genome [27]. Featurecounts (from the Rsubread package 

v1.22.2) was used to summarize reads into count tables [28]. Differential 

expression was determined in DESeq2 (version 1.26.0) compared to vehicle 

control [29].  The differentially expressed gene lists (q<0.05) for each treatment 

were used for pathway enrichment analysis in MetaCore (GeneGO, Thomson 

Reuters). Statistical significance of over-connected interactions was calculated 

using a hypergeometric distribution, where the p value represents the probability 

of a particular mapping arising by chance for experimental data compared to the 

background [30].  Heatmaps were generated in MultiExperiment Viewer TM4 

[31].  

 

2.4. Posterior Probability Integration for Chemical Classification 

 

Once significantly enriched pathways (p<0.05) were identified, they were 

further prioritized by differential significance across chemical exposure groups by 

calculating the standard deviations of the negative logarithm of the p values. The 

top 30 pathways with the greatest standard deviations were selected for chemical 

classification testing.  PAH treatments were grouped based on RPF and BAP 

equivalence into four chemical classes (non-carcinogenic, low, moderate, and 

high). Non-carcinogenic PAHs were binned into Class 1, containing PYR and 

PHE. Lower potency carcinogenic treatments were assigned to Class 2, and the 

exposure groups were BAP10, BAP100, CTE, and BAN. Moderate-level 

carcinogenic potency was assigned to Class 3, with the highest dose of BAP 



56 

 

 

(BAP500). High-level carcinogenic potency was assigned to Class 4, for DBC-

exposed samples, which has been demonstrated in vivo to have up to 100-fold 

greater carcinogenic potency than BAP [13].  Individual pathway gene sets were 

tested for classification performance in Visual Integration for Bayesian 

Evaluation (VIBE) v2.0 [32, 33], where probability matrices for significantly 

enriched pathways were calculated using Naïve Bayes statistical learning 

algorithm with 4-fold cross validation. Pathway gene sets with high-performing 

classification accuracies (0.70 and above) were prioritized for further testing in a 

Bayesian integration framework as described previously [15].  

 

2.5. Transcriptional Benchmark Dose Modeling and Functional Classification 

 

BMDExpress 2.0 (version 2.3) was used to perform benchmark dose 

(BMD) modeling analysis on transcriptomic data from 3D HBEC exposed to 10, 

100, and 500 µg/uL BAP for 48 hours [34, 35]. The imported RNAseq data set 

was analyzed using the EPA BMDS Models (parametric), and multiple models 

were used to fit gene expression dose-response data, including hill, power, linear, 

and polynomial. For each gene, the best fitting model was selected based on best 

fit and nested Chi-square test (cutoff of 0.05), as previously described [35, 36]. A 

benchmark response (BMR) factor of 1.021 was selected to model a 5% response 

over background. Only genes with BMD values lower than the highest dose were 

included for the downstream Functional Classification Analysis using pre-defined 

biological process networks (Metacore).  The median BMD of the selected 

process networks was used as the primary metric to evaluate overall pathway and 

process sensitivity to determine the most BAP-dose responsive and sensitive 

process networks. 

 

2.6. Quantitative PCR 
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cDNA was synthesized using a Superscript® III First Strand Synthesis 

Supermix kit per manufacturer’s instructions. Reactions were diluted 1:5 with 

nuclease–free water and stored at -80°C until used for qPCR. A BioRad 

Laboratories, Inc. (Hercules, CA.) CFX96 Touch™ Real-Time PCR Detection 

System was used for running 20 µl qPCR reactions to survey key gene targets. 

Each reaction contained 2 µl cDNA template (10 ng RNA), 150 nM of each 

primer, 10 µl 2X SsoAdvanced™ Universal SYBER®Green Supermix, and 

nuclease–free water. Primer sequences are as described in Chang et al. (2019) 

[16].  The thermocycler was programmed for 1 cycle 95°C for 1 minute initial 

denaturing, 40 cycles 95°C for 15 sec denaturing, 60°C for 30 sec 

annealing/elongation, and a melt curve 65-95°C/0.5° per 5 sec for validating 

single product amplification. The relative expression differences among 

treatments were calculated using the ΔΔCt comparative method and normalized to 

the housekeeping gene peptidylprolyl isomerase A (PPIA). Genes significantly 

regulated by PAH treatment (p<0.05) were identified by one-way ANOVA with 

Tukey’s multiple testing correction. 

 

2.7. Cell Viability 

 

Lactate dehydrogenase (LDH) leakage was measured in media after 

treatment with PAHs (n = 4) for 48 hrs using Pierce LDH Cytotoxicity Assay Kit 

(Thermo Scientific) following manufacturer instructions as previously described 

[16]. Briefly, basal medium samples (40 µl) were aliquoted into the wells of a 96-

well plate. LDH reaction reagent (40 µl) was added to each sample and incubated 

at room temperature for 30 minutes while protected from light. Finally, 40 µl of 

stop solution was added to each well and mixed. LDH activity was determined by 

subtracting absorbance at 680nm (background) from absorbance at 490nm 

(Synergy HTX plate reader, BioTek, Winooski, VT). A negative control of fresh 

cell culture medium, a positive control of medium from lysed cells, and vehicle 
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only controls were included.  Cytotoxicity was evaluated by one-way ANOVA 

with Dunnett’s multiple testing correction (p<0.05). 

 

2.7. Oxidative Stress 

 

For the reactive oxygen species detection assays, a 2',7'–dichlorofluorescin 

diacetate (DCFDA) solution (from Sigma-Aldrich, St. Louis, MO) was prepared 

at 2% DMSO in HBSS, and pipetted onto the cells. Immediately, the plate was 

read by a SYNERGY/HTX plate reader (BioTek Instruments Inc., Winooski, VT) 

at 485/20 and 528/20 nm excitation and emission. A positive control of 

menadione and vehicle only controls were included.  Chemical-induced 

fluorescence was expressed as relative fluorescence (RFU) normalized to vehicle 

control (RFU/vehicle), and the data were fit to a nonlinear regression with 

variable slope to model dose-response curves and calculate EC50s. 

 

3.0 Results 

 

3.1. Global gene expression analysis  

 

In this study, PAH gene signatures were measured in 3D HBEC after 48 

hour treatment using RNAseq. Raw and normalized sequencing files are available 

at NCBI Gene Expression Omnibus (GSE128471). Of over 60,000 transcripts 

mapped and evaluated, there were 9,538 statistically significant transcripts (q < 

0.05) identified as differentially regulated compared to vehicle control across all 

treatments. PAH treatment concentrations chosen for sequencing, which included 

a BAP dose-response and additional PAHs based on calculated BAP equivalents, 

did not result in any observed cytotoxicity (Supplemental File 1).  Overall, BAP 

10 µg/mL, 100 µg/mL, and 500 µg/mL exposure resulted in 1222, 41, 6309 

differentially regulated genes (DEGs), respectively, (q < 0.05); BAN 500 µg/mL 

exposure resulted in 898 DEGs; CTE 1.5 mg/mL exposure resulted in 1505 
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DEGs; DBC 10 µg/mL exposure resulted in 3122 DEGs. Finally, the non-

carcinogenic PAHs, PHE 100 µg/mL and PYR 500 µg/mL resulted in 1530 and 3 

DEGs, respectively. There were no shared DEGs between all 8 treatment groups. 

PAH treatments resulted in chemical-specific gene signatures as visualized 

by principal component analysis (PCA) (Fig 1A). Approximately 50% of the gene 

and sample variance across x and y axes are described in the first two 

components. Principal components 1 and 2 are shown in a 2D plot, with 

component 1 visualized across the x-axis (37.99% variance) and component 2 

visualized across the y-axis (10.81%). In general, we observe marked separation 

between different PAH treatments, with the most separation observed in BAP 500 

µg/mL and DBC. There is slight overlap between BAN and CTE, and between 

BAP 100 µg/mL and PHE. Overall, treatment-specific response is observed, with 

PAH exposure groups clustering more closely with samples of the same chemical 

and dose, suggesting chemical-specific and dose-specific gene signatures.  

To compare PAH bioactivity at the gene level, subsets of genes associated 

with xenobiotic metabolism, aryl hydrocarbon receptor signaling, oxidative stress, 

and cell cycle regulation were highlighted in a heatmap (Fig 1B).  Unsupervised 

hierarchical clustering was performed by Euclidean distance with average linkage 

clustering to generate gene and sample-level dendrograms. The heatmap 

illustrates unique patterns of expression across PAHs for some xenobiotic 

metabolism genes. CYP1A1 and CYP1B1 were upregulated by the two higher 

doses of BAP (100 µg/mL and 500 µg/mL), CTE, and BAN. However, DBC and 

PYR exposure resulted in decreased levels of these gene transcripts 

(Supplemental File 2). A similar pattern was observed for NQO1, SOD1, TXN, 

PRDX1, ALDH3A1, AKR1B1, and UGT1A1. For this subset of genes, DBC and 

the lowest sequenced dose of BAP (10 µg/mL) clustered more closely with non-

carcinogenic PAHs than the low and moderate potency carcinogens (BAN, CTE, 

BAP 100 µg/mL, BAP 500 µg/mL) suggesting that PAHs function through 

unique mechanisms and that typical PAH biomarkers (e.g. CYP1A1) are not 

predictive of carcinogenic potency.  
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3.2. PAH-related Reactive Oxygen Species Generation  

 

Due to PAH-associated transcriptional differences in redox genes, the chemicals 

were further investigated for PAH-induced ROS generation using a high 

throughput DCFDA fluorescence assay. PAH-induced ROS were detected by 

fluorescent DCFDA signal in 2D cultured HBEC, and chemical-induced ROS 

were expressed as relative fluorescence units (RFUs) normalized to vehicle 

control (Fig. 1C). Based off of maximal responses, BAN exposure was the most 

effective at inducing intracellular ROS, followed by CTE, DBC, and BAP. PHE 

and PYR did not elicit ROS generation in 2D HBEC. The median effective 

concentration (EC50) values of these concentration-response curves were 2.04 

µg/mL (9µM) for benz[a]anthracene, 8.70µg/mL (29 µM) for DBC, 13.18 µg/mL 

(78 µM) for CTE, and 50.69 µg/mL (225 µM) for BAP. When comparing EC50s 

between PAHs, the EC50 of BAP is notably higher than the EC50s of BAN and 

CTE, indicating that BAP may be a less potent intracellular ROS generator than 

BAN and CTE. In this assay, we observe that all chemical treatments with known 

carcinogenic activity (BAP, BAN, CTE, DBC) had some level of ROS 

generation, while the non-carcinogenic PAHs (PYR, PHE) did not have any 

detectable ROS-generating activity.  However, ROS generation potential in the 

2D HBEC did not reflect chemical carcinogenic potency or RPF. For example, 

BAN is estimated to be five times less carcinogenic as BAP with an RPF of 0.2, 

yet demonstrates much greater potency in producing intracellular ROS, resulting 

in a much lower EC50 of 2.04 µg/mL (9 µM). BAN surpassed all other PAHs 

tested in its ability to generate ROS, including the high molecular weight 

carcinogen DBC, which has a RPF estimate of 30-100. 

 
3.3. Pathway-based classification of PAHs in 3D HBEC 

 

Pathway selection for classification accuracy testing in Bayesian 

framework.  A primary goal of this study was to develop a predictive model using 

chemical-gene signatures following short-term exposure of a human organotypic 
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culture model to non-carcinogenic and carcinogenic PAHs. With a limited dataset, 

we utilized an expert knowledge-driven approach to 1. Designate chemical classes 

based on carcinogenic potency informed by calculated RPFs and prior mouse in 

vivo studies [13, 24], and 2. Develop a classification approach using in vitro data 

by testing and integrating prioritized pathway gene sets with high ability to 

correctly assign a sample into its designated class.  

A pathway enrichment analysis was conducted to identify biological 

function associated with the 9,555 genes significantly regulated (q < 0.05) by the 

PAH exposure groups. Overall, the PAH exposure groups’ individual DEGs 

significantly enriched a total of 125 pathways. Overall, 92 pathways were 

significantly enriched by at least 2 treatments, indicating a wide range of 

biological coverage associated with PAH exposure. Pyrene did not significantly 

enrich any pathways.  A key goal of this study is to identify pathways better 

suited for chemical carcinogenicity predictive classification, so statistical filtering 

was used to prioritize pathway gene sets to be tested for classification 

performance. Significantly enriched pathways were prioritized for classification 

testing based on differential significance (standard deviation of negative log p-

value) to identify pathways that were most dissimilar among PAH exposure 

groups. The top 30 most differentially significant pathways were selected for 

further testing and visualized in a heatmap showing significance in yellow and 

white, and lack of significance in blue (Fig. 2). In addition, aryl hydrocarbon 

receptor signaling was included since it had previously been identified to be 

differentially regulated by PAHs (Fig. 1B, Supplemental File 2). 

 Each gene set was tested individually for classification ability and 

quantified by a classification accuracy (CA). The resulting CAs for tested gene 

sets ranged 0.50 – 0.88. An example of a perfect classifier is shown in Fig. 3A1 in 

which the predicted (X-axis) and true class (y-axis) are identical resulting in 

100% classification accuracy. Representative well-performing, poor performing 

and randomly generated gene sets are provided for comparison (Figs. 3A2-4).  To 

generate the random gene set, 138 genes, which represents the average size of 
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annotated gene sets, were randomly selected from the overall 9,555 DEG in the 

study. While a perfect classifier  returns a 1.00 or 100% CA, a random classifier 

returns a 0.50, or 50% CA.  

Some processes, for example the translation elongation-termination gene set, did 

not classify chemicals any better than genes identified at random (Fig. 3A3).  

Gene sets for other pathways  yielded higher classification scores, showing they 

were able to successfully discriminate samples into relevant chemical classes  

(Fig. 3A2). 

Integration of multiple pathways for improved classification accuracy. 

Based on prior data showing that integration across multiple pathways results in 

improved classification accuracy, candidate gene sets were identified and selected 

for Bayesian integration to identify a combination that improved CA performance 

[15]. This integration approach was driven by knowledge that individual 

carcinogenic PAHs can act through multiple modes of action within cells and   

PAHs have diverse modes of actions. As with in vitro assay endpoints, there is 

unlikely to be one single pathway gene set that is predictive of different PAHs due 

to their  many genotoxic and nongenotoxic MOAs.  By testing combinations of 

pathway gene sets having 70% CA and higher, a four pathway set was discovered 

to produce  an improved CA (Fig. 3B). The combination of four gene sets (aryl 

hydrocarbon receptor signaling, regulation of epithelial mesenchymal transition, 

regulation of angiogenesis, and cell cycle G2-M) resulted in the best CA score of 

0.91, or 91% CA. Here, the CA performance of the integrated gene sets exceeded 

the CA performance of any of the individual gene sets (0.78-0.88). Overall, these 

results demonstrate that chemical biosignatures from in vitro studies can be used 

to inform classification based on in vivo outcomes and that integration across 

pathway-derived gene sets can improve overall accuracy.  

 

3.4. Transcriptomic Dose-Response Modeling of BAP in 3D HBEC  

 

To understand which genes and pathways are most sensitive to dose after 

treatment with BAP, transcriptomic dose-response modeling was performed with 
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a three-point dose response of BAP-exposed HBEC.  BMD analyses determines a 

chemical exposure concentration (µg/mL) at which a defined level of response 

occurs (5% standard deviation). The primary goal of conducting this analysis was 

to identify the biological functions most sensitive to BAP dose-response in the 

airway epithelium.  In addition, we were interested in whether the gene sets that 

provided the highest CA across a group of PAHs overlapped with those that were 

highly sensitive to dose-response treatment by BAP.  Pathway level BMD 

modeling was applied to the prioritized gene sets (Section 3.3) and the most 

sensitive gene set to BAP dose-response regulation in 3D HBEC was Protein 

folding in the endoplasmic reticulum (ER) and cytoplasm, which modelled 27 

genes with the lowest BMD median (Fig. 4A). The top ten most sensitive 

pathways with lowest BMD medians are highlighted (Fig. 4B) and include 

processes associated with cell cycle (mitosis, S phase, and G1-S growth factor 

regulation); cytoskeleton (cytoplasmic microtubules and actin filaments), 

ubiquitin related proteolysis, and DNA damage double-strand repair. Notably, the 

top ten most sensitive gene sets to BAP dose-response regulation did not overlap 

with the pathways that performed best for PAH classification of carcinogenic 

potential.  Overall, these data show that the bioactivity profiles most associated 

with PAH carcinogenesis are not consistent with those that are most sensitive to 

BAP suggesting that PAHs, as a class, can function through unique mechanisms 

when compared to BAP alone.   

Due to the lack of overlap between the methods, the pathway-level BMD 

modeling for BAP was expanded to include all process network categories as 

described in Metacore (Thomson Reuters) beyond just those prioritized for 

classification.  This grouping of process networks into broad biological categories 

allows for BMD to be calculated for each biological category ranking them in 

order of sensitivity to BAP dose-response.  The top 3 most significantly enriched 

(lowest minimum p-value out of all 8 exposure groups) pathways per process 

network category were selected for custom upload into the BMD analysis and the 

resulting BMD medians were averaged (Supplemental File 3). Overall, the 
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biological categories most sensitive to BAP dose-response gene regulation in 

HBEC were protein folding (avg BMD median = 4.74 µg/mL), DNA damage 

(avg BMD median = 6.58 µg/mL), cytoskeleton (8.92 µg/mL), cell adhesion 

(10.74 µg/mL), and cell cycle (11.06 µg/mL). Comparatively, the least sensitive 

pathway categories to BAP gene regulation were proliferation (121.78 µg/mL) 

and autophagy (134.75 µg/mL).  

 

4.0. Discussion  

 

Previously, we developed an approach to use gene signatures generated 

from mouse skin short-term after chemical treatment to accurately predict cancer 

outcome [15]. The present study demonstrates the successful translation of this 

approach into a human in vitro tissue model. We observed that gene biosignatures 

collected from 3D human bronchial epithelium exposed to a range of carcinogenic 

and non-carcinogenic PAHs can be used to accurately classify chemicals by 

potency. Gene expression profiles were analyzed to identify chemical-gene 

signatures at the pathway level. Gene sets related to several biological pathways 

were integrated and evaluated for classification performance to differentiate 

PAHs by carcinogenic class. Individual endpoints and biomarkers, such as 

intracellular ROS generation and CYP450 gene regulation, were insufficient 

predictors of carcinogenicity in this study. Benchmark dose modeling of BAP 

showed that the most sensitive pathway gene sets to BAP regulation were largely 

dissimilar from the pathways that best classified PAH carcinogenicity. These 

results illustrate the utility of using systems toxicology approaches to analyze 

global gene expression information towards carcinogenic hazard/risk assessment 

of PAHs. In addition to identification of gene sets, we also find evidence to 

challenge current assumptions that BAP carcinogenicity (and subsequent MOA) 

is reflective of overall PAH carcinogenicity. 

 

4.1. Predicting carcinogenicity with individual biomarkers 
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Chemical carcinogenesis is a complex process that involves numerous 

biological processes and molecular targets during initiation, promotion, and 

progression. Thus, the complexity in mechanisms of carcinogenicity contributes 

to difficulty identifying singular endpoints or in vitro assays to predict 

carcinogenic hazard of chemicals [15, 16, 37]. While many carcinogenic PAHs 

have genotoxic modes of action and induce DNA damage through adduct 

formation [38-40], some carcinogenic PAHs also exhibit non-genotoxic modes of 

action that include estrogenic/antiestrogenic activity[41, 42], dysregulation of cell 

proliferation [43, 44], inhibition of gap-junctional intercellular communication 

[45, 46], and generation of ROS and oxidative stress [47-50].   

  Overall, we found that specific gene targets and endpoints in HBEC, such 

as CYP1A1 induction and ROS generation, were limited in their ability to predict 

degree of carcinogenic hazard. The diversity in MOAs for PAH toxicity may 

contribute to the difficulty in identifying single biomarkers and in vitro endpoints 

to evaluate carcinogenic hazard of chemicals with complex mechanisms. Other 

commonly reported biomarkers for carcinogenicity, such as DNA adduct 

formation, have also been observed to lack correlation with carcinogenesis [15]. 

While specific biomarkers and endpoints may not adequately assess carcinogenic 

hazard, a growing body of research suggests utility in toxicogenomic biomarkers 

and gene sets in evaluating carcinogenic hazard and carcinogenic MOA. mRNA 

and miRNA gene expression profiles have been used successfully to discriminate 

among carcinogens in various experimental model systems [17, 18].  In this study, 

we did not observe a clear pattern of carcinogenicity driving the clustering and 

grouping of samples in PCA and hierarchical clustering from global gene 

expression data. For this reason, we focused our study towards identifying subsets 

of genes that are high-performing classifiers to degree of carcinogenic hazard.  

 
4.2. Utilization of in vitro biosignatures to classify chemicals based on health 

outcomes 

  



66 

 

 

Toxicogenomics usage in carcinogenic hazard assessment has progressed 

considerably in the past two decades; numerous methods have been developed to 

successfully identify genes linked to specific carcinogenic mechanisms and to 

develop approaches to predict and classify chemicals. In earlier toxicogenomic 

studies, correlational analyses and hierarchical clustering were commonly 

employed methods to identify subsets of genes to describe mechanisms of 

chemical toxicity [51]. Similar approaches have been applied to identify patterns 

of gene expression that discriminate between genotoxic and non-genotoxic 

carcinogens [52-55] or identify specific pathways that respond differently 

between genotoxic and non-genotoxic chemicals [56, 57]. Over the years, studies 

have advanced towards modeling approaches in which gene expression profiling 

can robustly discriminate carcinogens based on clearly different MOAs [54, 58, 

59] 

 In our present study, we noted that PAH-specific signatures from global 

gene expression did not correlate with carcinogenic potency nor could be used to 

easily discriminate carcinogenic from non-carcinogenic PAHs.  However, we 

hypothesized that global gene expression data could be organized into pathways 

or gene sets that may accurately classify treatments by potency.  To address this 

challenge, we utilized a Bayesian posterior integration approach to assess 

classification accuracies for an integrated set of biological functions. These 

approaches have previously been applied to identify predictive biomarkers for 

chronic obstructive pulmonary disorder (COPD) [60] and type I diabetes through 

integration of disparate data streams, including proteins, metabolites, and lipids 

[32]. We have also previously described application of a pathway-based 

classification model for predicting carcinogenic risk of PAHs in mouse skin in 

vivo in which integration across multiple gene sets improved overall accuracy 

compared to each gene set independently [15].  A goal of the current study is to 

apply this approach to an organotypic human airway epithelial model to analyze, 

prioritize, and identify gene sets as classifiers and demonstrate feasibility of the 

classification framework in vitro.  The resulting integrated CA of 91% indicates 
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that when the gene sets for AhR signaling, regulation of epithelial-mesenchymal 

transition, regulation of angiogenesis, and cell cycle G2-M are combined in an 

integrated classification, the overall accuracy performance can improve (Fig. 3). 

Further, the best classifiers identified from human airway epithelium in vitro, 

while overlapping, are distinct from those previously identified in mouse skin 

epithelium in vivo, which may be due to the expanded number of gene sets or 

PAHs tested or due to model-specific responses.  Similar genomic-based models 

have been applied to individual chemicals after short-term exposure in rats to 

identify modes of action for distinguishing carcinogens from non-carcinogens in 

multiple tissues showing that the prediction of carcinogenicity was tissue-

dependent and was most effective with tissue-specific gene classifier 

identification [17].   

 These studies demonstrate the importance of diversifying toxicogenomics 

analysis approaches beyond traditional methods of global gene expression 

analyses and adopting specialized analysis approaches to appropriately filter and 

query data.  As toxicogenomics continues to be adopted in predictive toxicology, 

the opportunities for novel analyses and data integration continue to expand. We 

and others have found success using prediction models and classification 

approaches towards transcriptomic approaches to discriminate chemicals by 

carcinogenic hazards [15, 52, 60]. Beyond carcinogenic hazard assessment, these 

approaches have potential in further applications including disease prediction, 

biomarker development, drug safety, and mechanistic studies.  

 
4.3. Dose-response modeling of BAP in human airway epithelium 

  

Dose-response modeling of toxicogenomic data allows for quantitative 

assessment to estimate point of departure or threshold response for application to 

human health risk assessments [61-64].  In addition, it provides a better 

understanding of chemical MOA in different model systems.  Through dose-

response assessment of BAP in 3D HBEC, we observed that the most sensitive 

processes impacted by BAP in human airway epithelium included cell adhesion, 
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cytoskeleton, DNA damage and protein folding/stress response.  These data 

support prior studies that have reported these DNA damage and repair 

mechanisms and cytoskeleton processes as targets for PAH toxicity to the lung 

and airway epithelium in vivo [13, 14, 65-67].  In particular, processes associated 

with barrier integrity were disrupted by exposure to BAP and PAHs in vitro in 

HepG2 and bronchial epithelium [16, 68-70]. PAH-induced disruption of the 

epithelial barrier and cell adhesion processes can lead to dysregulated 

inflammation and oxidative stress [71, 72]. Elevated oxidative stress and pro-

inflammatory cytokines, in turn, disrupt tight junction function leading to 

increased airway inflammation [73]. Our BMD modelling results support in vitro 

and in vivo assay findings that cell adhesion, cytoskeleton, DNA damage, and 

stress response genes likely contributing modes of BAP toxicity and are among 

the most sensitive gene pathways to BAP-induced gene expression changes.   

  In addition, transcriptomic dose-response modeling allows for the direct 

comparison of gene sets most sensitive to BAP regulation to those identified as 

most predictive of PAH carcinogenicity in HBEC.  Current EPA guidelines for 

PAH mixture carcinogenic risk assessment rely on comparing PAHs to BAP as a 

reference. A key assumption of this approach is that mechanisms of BAP 

carcinogenesis are representative of other carcinogenic PAHs However, there 

exist a wide range of known and proposed MOAs for PAHs suggesting that not all 

PAHs function through common mechanisms compared to BAP [15, 16, 74, 75]. 

Our BMD modeling data support the hypothesis that PAHs can function through 

different mechanisms than BAP to contribute to carcinogenicity.  In this study, the 

pathway gene sets most sensitive to BAP dose-response regulation were overall 

dissimilar to the high-performing gene set classifiers for PAH carcinogenicity. 

While the cell cycle category commonly found between the high-performing 

gene-set classifiers (cell cycle G2-M), and BAP (cell cycle S phase and G1-S 

regulation), the exact gene sets that performed best in classification did not rank 

among the top ten BAP-sensitive gene sets. In addition, BMD analysis identified 

stress response (protein folding and ubiquitin proteolysis) and DNA damage 
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among the most sensitive pathways for BAP regulation. The transcriptional BMD 

median threshold values are well within range of in vivo derived points of 

departure for inhalation-specific cancer development [76]. While the goal of this 

study was not to derive points of departure for BAP, these results serve as an 

example of how toxicogenomics data can be modeled to support human health 

risk assessment.  

 

5.0. Conclusion 

 

 Accurate carcinogenic assessment of PAHs and PAH mixtures has 

remained a challenge in toxicology and risk assessment. These studies show that 

chemical-gene biosignatures can be utilized to classify PAHs by carcinogenic 

hazard using in vitro models and inform potential mechanisms of action for PAHs 

in human bronchial epithelium. In addition, transcriptional BMD analysis show 

that processes most sensitive to BAP dose-response regulation are not necessarily 

the same as those that are most predictive of carcinogenic potential. These studies 

support the use of systems biology data collected from in vitro models for human 

health risk assessment.  These studies support the use of systems biology data for 

use in human health risk assessments and to improve understanding of 

mechanisms associated with chemical toxicity and adverse health outcomes.  

Although the utilization of toxicogenomics in chemical carcinogenic hazard 

evaluation has developed significantly in the past decade, there have remained 

gaps in our understanding of PAH chemical and mixture effects in human 

systems. Overall, our findings support usage of organotypic human tissue 

cultures, implementation of toxicogenomics in cancer hazard evaluation, and a 

need for further studies to compare the applicability of BAP as a reference 

carcinogen for PAH mixture cancer risk assessment. 
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Figure 3-1. 

 

Figure 3-1. Differential effects of PAHs in human bronchial epithelial cells. (A) Principal components analysis (PCA) of global 

gene expression of HBEC exposed to PAHs. The horizontal axis represents PC 1 and the vertical axis represents PC 2. The captured 

variance of these first 2 components account for 47.22% of the total variance, and variance-correlation of gene expression resulted in 

variable clustering of PAHs. (B) Transcriptional regulation of genes by PAHs. Comparison of gene expression using RNASeq. 

Subsets of genes associated with xenobiotic metabolism, AhR signaling, oxidative stress, and cell cycle regulation were highl ighted in 

a heatmap. Values are log2-fold change for all treatments compared with experimental control; red, green, and black represent 

upregulated, downregulated, and unchanged genes, respectively. (C) Intracellular ROS generation as measured by DCFDA. Chemical-

induced fluorescence was expressed as relative fluorescence (RFU) normalized to vehicle control (RFU/vehicle), and the data were fit 

to a nonlinear regression with variable slope to model dose-response curves and calculate EC50s.  



78 

 

 

Figure 3-2. 

 

 

 

Figure 3-2. Pathway enrichment analysis of differentially regulated genes by 

PAH and PAH mixture exposure . Functional enrichment analysis was 

performed in MetaCore (GeneGO, Thomson Reuters) based on mapping of the 

significant (p<0.05) genes in each treatment group onto built-in functional 

network processes. Heatmap visualizing the top 30 most differentially significant 

process networks (greatest std(-logpval) regulated by 7 PAH treatments (p<0.01 

for at least one PAH group). Values are pval that have been transformed (-

logpvalue) for pathway enrichment of treatments, where blue, white, and yellow 

represent -logpvalue = 0, 1.3 (p<0.05), and 2.0 (p<0.01), respectively.  
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Figure 3-3. 

 

Figure 3-3. Classification of PAHs based gene sets. Classification accuracy (CA) heatmaps of gene-based classification 

performance, where classes 1-4 indicate carcinogenic potency (non-carcinogenic, low, moderate, high). Colors indicate proportion of 

samples classified into specific classes, where red represents most or all samples, and white represents zero samples. Therefore, a 

theoretical perfect classifier results in a diagonal line of red squares. (A) Probability matrices for gene sets were calculated using 

Naïve Bayes statistical learning algorithm with 4-fold cross validation. Here, the CA heatmaps demonstrate the possible range of 

classification performance, from theoretically perfect classifiers (1.00) to randomly generated gene sets that do not classify better than 

random (0.50). (B) Bayesian integration of top-performing pathway gene sets. Integrated CA (0.91) is indicated on the right, and 

exceeds the individual CA performance of individual pathway gene sets.    

  



80 

 

 

Figure 3-4. 

 
Figure 3-4. Benchmark dose (BMD) analysis of transcriptomic data from 3D HBEC exposed to Benzo[a]pyrene (BAP) . BMD 

values represent estimated median doses causing a 5% shift over the background rate of response associated with each gene set. (A) 

Distributions of modelled BMD estimates of BAP through a category analysis of the top 30 differentially significant pathway gene 

sets. The vertical axis represents the relative rank of the pathway gene sets, sorted by BMD median (ascending), while BMD median 

values are depicted across the horizontal axis. (B) Table of top ten most sensitive pathway gene sets to BAP gene regulation with 

number of genes modelled and BMD median. Genes from these pathways have the lowest BMD median values modelled, of the top 

30 pathways.  
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ABSTRACT 

Exposure to polycyclic aromatic hydrocarbons (PAHs) often occur as 

complex chemical mixtures, which are linked to numerous adverse health outcomes 

in humans, with cancer as the greatest concern. The cancer risk associated with 

PAH exposures is commonly evaluated using the relative potency factor (RPF) 

approach, which estimates PAH mixture carcinogenic potential based on the sum 

of relative potency estimates of individual PAHs, compared to benzo[a]pyrene 

(BAP), a reference carcinogen. The present study evaluates molecular mechanisms 

related to PAH cancer risk through integration of transcriptomic and bioinformatic 

approaches in a 3D human bronchial epithelial cell (HBEC) model. Significantly 

regulated genes from human bronchial epithelium exposed to 7 PAHs and PAH 

mixtures were analyzed using a weighted gene coexpression network analysis 

(WGCNA) two-tiered approach, first to identify gene sets co-modulated to RPF, 

and then to link genes to a more comprehensive list of regulatory values, including 

inhalation-specific risk values. Over 3,000 genes associated with processes of cell 

cycle regulation, inflammation, DNA damage, and cell adhesion processes were 

found to be co-modulated with increasing RPF with pathways for cell cycle S phase 

and cytoskeleton actin identified as the most significantly enriched biological 

networks correlated to RPF.  In addition, co-modulated genes were linked to 

additional cancer-relevant risk values, including inhalation unit risks, oral cancer 

slope factors, and cancer hazard classifications from the World Health 

Organization’s International Agency for Research on Cancer. These gene sets 

represent potential biomarkers that could be used to evaluate cancer risk associated 

with PAH mixtures. Among the risk values and categorizations, RPF and IARC 

shared the most similar responses in positively and negatively correlated gene 

modules. Here, we demonstrated a novel manner of integrating gene sets with 

chemical toxicity equivalence estimates through WGCNA to understand potential 

mechanisms. Similar studies could further inform cancer risk evaluations and 

hazard assessments by incorporating organotypic human in vitro models with 

additional endpoints and risk values associated with chemical exposures. 
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INTRODUCTION 

 

PAHs as global contaminants 

Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous class of 

environmental contaminants that are found in ambient air, indoor air, water, and 

soil. Of hundreds of identified and studied PAHs, currently 16 PAHs are listed on 

the US Environmental Protection Agency (EPA) high priority pollutant list [1]. 16 

priority PAHs were identified based on relative abundance in the environment and 

toxicity, but there are PAHs beyond the list of 16 that have higher toxicity in 

complex environmental mixtures [2]. Atmospheric PAHs can also participate in 

long range transport, and settle in soil and water leading to many possible routes of 

exposure, including ingestion, inhalation, and dermal contact [3-8]. The hazards 

and risks of PAH exposure may also depend on the mixture composition and 

exposure route. 

Routes of exposure to PAHs in occupational and non-occupational settings 

include ingestion, inhalation, and dermal contact [8]. Adverse human health 

outcomes linked to exposure include skin irritation, immunosuppression, and skin, 

lung, and prostate cancer. With cancer as the health effect of greatest concern, 

numerous regulatory agencies including the US EPA and the European Chemicals 

Agency (ECHA) have developed restrictions to limit the exposure and sale of 

petroleum products containing at least eight of these PAHs. However, accurate 

human health risk assessment for PAHs remains a challenge.  

 

Cancer risk assessment of PAHs 

The current EPA framework for PAH regulation involves estimating cancer 

risk using a component-based relative potency factor (RPF) approach in which risk 

for PAH mixtures are estimated based on sum relative potency for component 

PAHs present in the mixture. In this approach, benzo[a]pyrene (BAP) is used as a 

reference carcinogen and cancer risk is reported in terms of BAP equivalents 

(BAPeq). At present, RPF estimates exist for only 27 PAHs. A major limitation of 
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this approach includes its heavy reliance on dose-response assessments of 

traditional, two-year in vivo rodent carcinogenicity bioassays that are lengthy and 

resource-intensive. Further, they often facilitate PAH exposure using 

intraperitoneal injection or dermal exposure. These may not adequately represent 

PAH routes of exposure in humans and could fail to capture the true risk of 

individuals PAHs, particularly with relation to tumorigenicity in lung tissue. There 

is an urgent need to develop alternative approaches for chemical hazard assessment 

and regulation.  

 Other regulatory values that incorporate additional routes of exposure 

include inhalation unit risk, cancer slope factor, reference concentration, reference 

dose, and cancer hazard categorizations through the International Agency for 

Research on Cancer (IARC) and assessments from the US EPA Integrated Risk 

Information System (IRIS). To adequately evaluate lung-specific PAH cancer 

hazards, additional risk and regulatory values such as inhalation unit risk, and 

reference concentrations (RfC) should be considered. In the present study, oral 

slope factor (OSF) and reference dose (RfD) were also included for the sake of 

completeness and to cover more chemical space than the limited number of 

chemicals for which there are RPF estimates for. Currently, there are limited 

investigations examining possible links between biological mechanisms and such 

increased cancer risks and toxicity values across different chemicals within a 

chemical class.  

 

Utility of Transcriptional Signatures in Chemical Hazard Assessment 

Transcriptomics has emerged as a mechanistically informative method for  

evaluating biological functions and pathways targeted by xenobiotics. 

Transcriptional profiling of gene signatures has been especially informative in 

identifying adverse drug reaction mechanisms [9] and hepatocarcinogen modes of 

action [10, 11]. There are a growing number of studies employing transcriptomics 

approaches to evaluate individual chemicals in an effort to predict mixture 

interactions such as concentration addition or independent action models [12, 13]. 
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Transcriptomic data can also be used to provide critical MOA data to improve risk 

estimates. An example of such application is the transcriptomic profiling of 

benzo[a]pyrene, where multiple transcriptional analyses approaches have 

contributed to risk assessment. Gene expression profiling in multiple tissues in 

animal studies have contributed to MOA evaluations of BAP-sensitive genes and 

pathways affected in different organs of an animal study [14]. Transcriptomic 

information can also be modelled to derive benchmark dose values (BMD) for use 

as a point of departure value (PoD) for quantitative risk assessment [14, 15]. 

Additionally, transcriptional profiling in furan-exposed mouse liver tissue showed 

that benchmark dose values (BMD) derived from toxicogenomics data were 

consistent across multiple genomics platforms (RNAseq, microarray, and qPCR) 

and predictive of the two-year cancer bioassay-based PoD [16]. In cases of 

unknown, understudied, or complex toxicant mechanisms of action, there is a 

significant amount of opportunity present in employing bioinformatics applications 

to detect early effects from exposure and to discern responses from different 

chemical exposures at the transcriptomic-level [17].  

Standard methods for global gene expression analyses, which typically filter 

by differential expression criteria for pathway enrichment, can restrict the number 

of possible toxicogenomic biomarkers identified. We previously analyzed 

transcriptional gene signatures from an in vitro bronchial epithelium exposed to a 

range of carcinogenic PAHs, and identified pathway gene sets towards the 

successful development of a classification model to accurately predict chemical 

carcinogenic potency (unpublished, Chang 2020). However, a limitation of this 

gene classifier identification was the reliance on pathway annotation. Novel 

bioinformatics approaches may help overcome these limitations. One such method, 

known as the weighted gene co-expression network analysis (WGCNA), provides 

a systems biology approach to explore genes regulated together [18, 19].  

Researchers have noted the benefit of a co-expression approach where gene 

signature identification would not be independent of pathway annotations [20]. A 

co-expression network analysis approach simultaneously allows the identification 
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of genes associated with a specific parameter, rather than chemical-specific gene 

regulation. Groups of genes are identified as modules through an initial correlation 

analysis; then gene modules are related to traits or parameters, which can span dose, 

time, chemical traits, and biological phenotypes [18, 21]. This co-expression 

approach has been applied successfully in the field of toxicology to identify novel 

transcription factors associated with bisphenol A exposure [22] and genes and 

proteins linked to adverse health effects associated with increased inorganic arsenic 

exposure [23].  

 

Study overview and goal 

While the cancer-related health effects of PAHs and PAH mixtures have 

been evaluated in numerous cell-based and animal studies, there remains a lack of 

understanding of the genes and pathways affected by different carcinogenic PAHs 

in an inhalation-relevant model. There also exist data gaps in understanding genes 

and signaling events implicated in chemical carcinogenesis. WGCNA can be used 

to correlate transcriptional changes with increasing cancer risk (RPF), thereby 

allowing comparisons across chemicals and mixtures with different relative 

potencies. Therefore, co-expression analysis serves as a novel approach to 

investigate PAH-induced system-wide biological changes in an organotypic tissue 

model and may contribute MOA information to future cancer hazard and risk 

assessment.  The goal of the present study was to identify gene sets co-modulated 

in relation to estimated human cancer risk and regulatory values and to better 

understand biological signaling important for chemically-induced disease.  

Network analysis of these co-modulated molecules was carried out to understand 

the biological functions and signaling networks of genes most significantly co-

modulated in relation to cancer risk.  

 

METHODS 

 
Chemicals and Reagents 
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Cell culture media and phosphate buffered saline (PBS) were provided by 

MatTek Corporation (Ashland, MA). Benzo[a]pyrene (BAP) CAS# 50-32-8 and 

dibenzo[def,p]chrysene (DBC) CAS# 189-64-0 were purchased from MRIGlobal 

(Kansas City, MO). Benz[a]anthracene (BAN) CAS# 56-55-3, phenanthrene (PHE) 

CAS# 85-01-8, and pyrene (PYR) CAS# 19-00-0 were acquired from Sigma-

Aldrich Chemical (St. Louis, MO.).  PAHs used in the simulated air mixture  

(AM) were purchased from Sigma-Aldrich Chemical (St.Louis, MO.) Coal Tar 

Extract (CTE) standard reference material (SRM 1597a) was purchased from the 

National Institute of Standards & Technology (Gaithersburg, MD.) DNase I, 

TRIzol® reagent, Superscript® III First Strand Synthesis System, qPCR primers, 

and Pierce™ LDH Cytotoxicity Assay Kit were from Thermo Fisher Scientific 

(Waltham, MA). 2X SsoAdvanced™ Universal SYBER®Green Supermix was 

purchased from BioRad Laboratories, Inc.  (Hercules, CA.) A simulated AM 

designed from published results of air samples collected in Beijing, China and 

analyzed for parent, nitrated, and oxygenated PAHs was produced as follows. Five 

parent PAHs were selected based on their abundance and biological relevance. 

Three additional methylated PAHs were selected for addition of non-carcinogenic 

components. Benzo[b]fluoranthene CAS# 205-99-2, benz[e]pyrene CAS# 192-97-

2, benzo[g,h,i]perylene CAS# 191-24-2, benzo[a]pyrene, dibenzo[def,p]chrysene, 

2-methylnaphthalene CAS# 91-57-6, 1-methylnaphthalene CAS# 90-12-0, and 1,3-

dimethylnaphthalene CAS# 575-41-7 were added in the reported proportions 

relative to the sum of the eight chosen PAHs. The simulated mixture was 

solubilized in acetone vehicle. 

 

Tissue Culture and Chemical Exposures 

Tissue culture and chemical exposures were described previously (Chapter 

3). Briefly, primary HBEC differentiated on transwell inserts (EpiAirway™ 100, 

Mattek, Ashland, MA) equilibrated for 24 hours at 37°C, 5% CO2 followed by a 

change of fresh medium. Single PAHs and mixtures were solubilized in acetone 

and applied (0.01 ml/insert) to the apical surface of tissues (n=4 per treatment) for 
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up to 48 hrs, BAP (1-500 µg/ml), DBC (1-50 µg/ml), BAN (10-500 µg/ml), PYR 

(10-250 µg/ml), PHE (10-250 µg/ml), AM (125-2000 µg/ml) and CTE (250 -1500 

µg/ml).   Forty eight hours post treatment, PBS (0.20ml) was added to the apical 

surface of each insert and 48 hr TEER recorded. Apical washes and basal media 

were transferred to clean, sterile tubes and stored at -80°C. At the end of each 

exposure regimen, lysis buffer was added to each insert, collected, and stored at -

80°C until extraction using RNeasy extraction kit.  

 

Transcriptomic Analyses 

Total RNA samples were isolated and sequenced by Illumina HiSeq3000 

through the Oregon State University’s Center for Genome Research and 

Biocomputing Core facilities as described previously (Chang et al., submitted).  

Sequenced reads were processed with Cutadapt (version 1.8.1) to trim adapter 

sequences from the paired-end reads. The human genome assembly GRCh38.84 

was indexed using botwie2-build (version 2.2.3) while the transcriptome was 

indexed using Tophat (version 2.1.1.) [24]. TopHat was used to align the trimmed 

reads to indexed transcriptome and genome [25]. FeatureCounts, from the Subread 

package (version 1.6.0) was used to generate count tables. 

 

Statistical Evaluation of Transcriptional Changes Associated with PAHs 

Sequence count data were used to identify genes with expression levels 

associated with each PAH exposure. A comparative analysis of RNAseq data was 

determined in DESeq2 (version 1.26.0) [26]. The non-normalized count table 

output from FeatureCounts was input into DESeq2 to estimate differential gene 

expression as logarithmic fold change (log2FC) compared to vehicle control. Genes 

included for further analysis in WGCNA met the statistical criteria of q<0.05 for at 

least one chemical exposure group with no undetected values in the remaining 

exposure groups.  

 

Organizing Cancer Risk Values across Databases 
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To relate human cancer risk to our PAH treatments, we first used relative 

potency factors (RPFs) from the U.S. Environmental Protection Agency Integrated 

Risk Information System’s (IRIS) 2010 recommendation of an RPF approach for 

the carcinogenic risk assessment of PAH mixtures. The RPF approach assigns a 

numerical value to each chemical based on experimentally-derived carcinogenic 

potency, scaled as greater or less than BAP (RPF of 1). The dose-specific cancer 

risk of PAH mixtures were calculated by multiplying available RPFs to the 

proportions (mg/kg) of the individual PAH present in the mixtures. All treatments, 

including individual PAHs, had BAPeq calculated by multiplying dose with RPF.  

Additional cancer-relevant regulatory values, such as oral slope factor 

(OSF) and inhalation unit risk (IUR) were downloaded from databases, prioritized 

in order of availability from EPA IRIS, then CTV. Other cancer-relevant risk and 

classification values, such as reference dose (RfD), reference concentration (RfC), 

IRIS, and IARC cancer hazard classifications were included for completeness. 

While many of these health risk values were predicted with variable confidence, 

the authors felt that it was important to consider inhalation risk values, to serve as 

comparisons against RPF and OSF, which are derived through oral and dermal 

routes of exposure. IRIS and IARC categories also were converted to a numerical 

scale, with 0 representing least and 4 representing greatest hazard, or group 1.  

 

Identifying Genes with Co-Modulated Expression Patterns through WGCNA 

To identify co-modulated gene sets within the transcriptomic dataset of 

PAH and PAH mixtures treated HBEC, weighted gene co-expression analysis 

(WGCNA) was employed to calculate integrated measures from co-modulated 

genes. WGCNA is a quantitative, systems biology approach that describes 

correlation patterns between groups of genes [18].  All genes that were identified 

as significantly regulated across at least one treatment (13644 genes in total) were 

analyzed collectively using the WGCNA R package [19]. WGCNA was used to 

identify clusters (modules) of highly interconnected genes across both 

experimentally and database-derived traits and regulatory values, all correlated 
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with each other, and thus considered co-modulated. The steps have been previously 

summarized [18-20, 22, 27]. Overall network and module statistics were performed 

following methods described by Langfelder et al. [18]. First, Pearson correlation 

coefficients were calculated for all pairwise comparisons of genes. The resulting 

Pearson correlation matrix was transformed into an adjacency matrix resulting in a 

weighted network describing connection strengths between genes. To allow genes 

with both negative and positive correlations to be grouped together, an unsigned 

network was used. A power of 16 and minimum gene module size of 50 was used 

to construct co-expression gene networks that were weighted to prioritize genes 

with high correlations. Modules were then identified as groups of interconnected 

genes in the weighted network analysis with high topological overlap, measured 

based on an average linkage hierarchical clustering. The resulting modules 

represent clusters of highly interconnected genes with high positive or negative 

correlations. With these defined modules, the first principal component of the 

modules were calculated and referred to as eigenmodules, then correlated with 

toxicity values where statistical significance was evaluated [18]. 

 

Network Analysis of Co-Modulated Genes associated with Cancer Risk Values 

Network analysis was carried out to understand systems-level responses 

that occur within a co-modulated set of mRNAs identified through WGCNA. For 

the first tier of the analysis, RPF-associated genes from prioritized module 

eigengene were further analyzed for pathway enrichment analysis in Metacore 

(Clarivate Analytics, Philadelphia, PA). Statistical significance of over-connected 

interactions was calculated using a hypergeometric distribution, where the p value 

represents the probability of a particular mapping arising by chance for 

experimental data compared to the background [28]. Average FDRs for network 

categories were calculated for further analysis. Network visualizations were 

prepared in Cytoscape (v3.5.1) [29]. 
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RESULTS 

 

Identifying Regulatory Values Relevant to PAH Cancer Risk 

This study evaluated the biological effects of HBEC exposure to PAHs 

and PAH mixtures as an effort to link cellular responses to cancer-relevant 

regulatory and hazard classification values. For tier one analysis, experiment-

specific risk values were calculated. Cancer potency factors (BAPeq) were 

calculated using the RPF approach, for PAHs with RPF estimates available. 

Limitations of this approach included missing RPF estimates for as many as 57 

RPFs out of the 73 PAHs in Coal tar extract mixture (78%), and 4 missing from 

the total of 8 PAHs in the air mixture sample (50%). Calculations by mass 

determined that 75% of the components in CTE were unaccounted for by RPF 

and BAPeq, while 58% of the PAHs by mass in AM were unaccounted for. 

Conditional Toxicity Value (CTV) was used to fill most missing values [30], and 

while this resulted in an experimentally calculated, weight of evidence derived 

(EPA IRIS) value or predicted (CTV) value, the applicability domain was high for 

almost all chemicals for CTV, indicating low confidence in those predictions. 

However for the sake of completeness, those values were included in the analysis 

to provide inhalation-relevant risk values to compare across.  

 

Transcriptomic analysis   

 The effects of PAH and PAH mixture exposure in 3D HBEC were investigated 

using a transcriptomic profiling approach through RNAseq analysis. Raw and 

normalized sequencing files are available online at NCBI Gene Expression 

Omnibus (GSE128471). Over 60,000 mRNA transcripts were mapped and 

evaluated, and 13,644 genes were identified as statistically significant (q <0.05), 

with at least one gene significantly regulated by a chemical exposure group. The 

number of genes that showed significant differential expression varied according 

to each exposure condition, with numbers ranging from 3 (pyrene) to over 9000 

(air mixture). Because the number of significantly regulated genes varied so 
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highly between exposure groups, it was advantageous to employ an approach that 

evaluated co-modulated expression profiles regardless of significant differential 

expression.  

 

Identifying Co-Modulated Genes associated with Cancer RPF 

This first tier of the analysis identified and prioritized module eigengenes, 

or gene modules, linked to experimental-specific traits to the gene dataset. Twenty-

three gene modules were identified through WGCNA (Fig. 1A), representing 

groups of genes that are co-modulated across PAH and PAH mixtures treatments. 

Of the experimental-specific sample traits, BAPeq-related module eigengenes were 

prioritized for further analysis as potential gene hubs of relevance to increased 

calculated cancer risk (Table 1). Six module eigengenes were significantly 

correlated to BAPeq, or RPF cancer risk.We prioritized the top most significant 

positively and negatively correlated modules associated with BAPeq for further 

analysis to identify which genes and cellular networks and processes were most co-

modulated and involved in the processes of cellular response to carcinogenic PAH 

treatment. One module eigengene (“MEturquoise”) was identified as the most 

significantly positively correlated with BAPeq (p=0.01), while another module 

eigengene (“MEred”) was identified as the most significantly negatively correlated 

with BAPeq (p=0.0007). Because BAPeq is calculated directly from RPF, 

significant gene clusters to this trait represents genes comodulated across BAPeq 

and therefore the RPF approach of cancer risk evaluation. The co-modulation of 

2078 transcripts or genes were identified in the MEturquoise module eigengene of 

interest. Interestingly, the 9 PAH treatments were moderately well represented in 

this gene list, where PAH exposure groups with a lower number of significantly 

regulated genes (p<0.05) still had a majority of their genes present in MEturquoise. 

The MEturquoise module identified 2078 total co-modulated transcripts, and 

included 7 transcripts identified as miRNAs and 303 transcripts identified as 

lncRNAs. This module contained co-modulated genes such as BRCA1, BRCA2, 
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NR2F2, TP53AIP1, JUNB, and HMOX1, and many additional genes related to cell 

cycle and inflammation (Fig. 1B).   

In the MERed gene module, 1021 transcripts were found to be significantly 

negatively co-modulated. These transcripts included 2 miRNAs and 15 lncRNAs. 

Many of these genes are downregulated in response to BAPeq. However, within 

MEred module eigengene there are also genes negatively correlated to the overall 

trend of MEred (Fig. 1C). These include genes important for cell motility junction 

organization, including FMN1, DYNC2LI1, DNAL1, and CLDN8.  

 

Network Analysis of Co-modulated Genes in Prioritized Module Eigengenes 

To assess biological relevance of the genes identified in each prioritized 

module eigengene, a pathway enrichment analysis of MEturquoise and MEred was 

conducted (Fig 2). Network analysis of genes identified process networks that were 

significantly enriched (FDR<0.05) by both prioritized modules, as well as process 

networks unique enriched by one but not the other. These process networks were 

organized into “network categories”, grouped by their broader biological categories 

(ex. Cell Cycle S Phase was grouped into the Cell Cycle network category). The 

positively correlated MEturquoise significantly enriched process networks related 

to cell cycle regulation, DNA damage, signal transduction, and cardiac 

development (Fig 2). These process network categories were uniquely enriched by 

the MEturquoise module, and MEred did not share any significant process network 

enrichment in these network categories. In contrast, MEred significantly enriched 

processes related to cell adhesion, cytoskeleton, protein folding, transcription, and 

translation, while MEturquoise did not. Both modules enriched heavily enriched 

process networks related to inflammation (9 specific process networks enriched by 

MEturquoise, and 15 specific process networks enriched by MEred).  

To further study network regulation of the genes in each prioritized 

pathways, process networks were further profiled through a network analysis 

visualization comparing module membership of network genes. The Cell Cycle S 

phase process network was the most significantly enriched network (FDR=1.16E-
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09) unique to METurquoise (Fig 3A), while the Cytoskeleton-Actin filaments 

network was the most significantly enriched network (FDR=4.24E-06) unique to 

MERed (Fig 3B). The networks were analyzed as undirected networks through 

Cytoscape (v3.8.0), and the size of the nodes in the network were mapped to 

calculated betweenness centrality for each gene, and edges mapped to annotated 

interactions (undirected) from Metacore. The betweenness centrality parameter 

represents the extent to which a vertex in the shortest paths between other vertices, 

and helps identify genes with maximum number of shortest paths crossing between 

other nodes, with the largest number of edges passing through. In the Cell Cycle S 

phase gene network, the top gene nodes with the highest centrality measures from 

MEturquoise were CDK1, MCM2, and PCNA. In the Cytoskeleton-Actin filaments 

network, the gene nodes with the highest centrality measures from MERed included 

ACTG1, c-SRC, ACTB, and Cortactin.  

 

Identifying Co-Modulated Genes associated with Additional Cancer 

Regulatory Values 

To evaluate relationships between co-modulated genes and regulatory 

values and hazard classifications, we included additional database-derived values, 

particularly inhalation-relevant values, such as IUR, RfC, OSF, RfD, and IRIS and 

IARC cancer hazard classifications (Fig. 4). For this analysis, RPF was also 

included, and because these values are not related to specific chemical doses, the 

highest concentration of BAP was selected. The gene modules that correlated the 

most significantly with RPF were MEtwo, at p = 0.02 (positive correlation) and 

MEfourteen, at p = 0.02 (negative correlation) (Figure 4 and Table 2). Certain 

regulatory and hazard classifications’ correlations were found to be more similar to  

RPF’s module correlations than other regulatory values. Specifically, RPF and RfD 

did not share any significantly correlated module eigengenes; however RPF shared 

two significantly correlated modules with oral slope factor (OSF). When the 

regulatory value groups’ overall correlations were evaluated through unsupervised 

hierarchical clustering, we found that RPF’s correlations to the module eigengenes 

were the most similar to IARC hazard classifications, followed by IRIS, then OSF, 
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IUR, RfD, and RfC (Fig. 4). Through this analysis, we observed that select module 

eigengenes were significantly correlated by RPF, yet different module eigengenes 

were significantly correlated by different risk value types. MEthirteen was highly 

significantly correlated (p=3E-4) by oral slope factor. Inhalation unit risk (IUR) 

was significantly linked to MEten. These uniquely correlated modules suggest that 

a combined approach of multiple regulatory values can be used to identify potential 

biomarkers that may have greater applications in chemical safety and hazard 

assessment.  

 

DISCUSSION 

As the toxicology community shifts towards in vitro testing and 

computational biology, novel approaches in transcriptional data analyses must be 

developed and refined to fill unmet needs in chemical hazard assessment [31]. 

The ultimate goal of toxicity testing is to generate and understand data to protect 

the public and environment from harmful chemicals. However, traditional in vivo 

toxicity testing is limited in its throughput and capacity to provide mechanistic 

information linking apical endpoints to the underlying processes involved in 

chemical toxicity [32]. Current “-omics” level approaches evaluating PAH 

carcinogenicity have focused on identifying chemical-specific mechanisms and 

been largely successful contributing towards development of predictive 

approaches of chemical MOA [33-37]. However, past studies have not focused on 

identifying broader patterns in affected biomolecules across different parameters 

of PAHs, such as cancer risk. Here, we evaluated the transcriptional signatures of 

a range of carcinogenic PAHs tested in a 3D in vitro airway epithelium, and 

utilized a WGCNA approach to identify gene modules significantly correlated to 

increasing cancer risk calculated through RPF. After exposing a 3D human 

bronchial epithelium to 9 PAH exposure groups including mixtures, early 

transcriptional changes associated with increasing cancer risk were identified and 

prioritized for further study.  
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Overall, we identified groups of genes with similar expression patterns 

that were significantly correlated in relation to PAH cancer RPF estimates. We 

also compiled additional risk values both specific and non-specific to inhalation. 

Through our co-expression analysis, we identified two significantly co-modulated 

gene clusters to prioritize for further study. Genes identified from these modules 

significantly enriched distinct subsets of process network categories, including 

processes from cell cycle regulation and cytoskeleton. Finally, our expanded co-

expression analysis identified two shared gene modules between RPF, IARC 

classes, and cancer slope factor.   

 

Carcinogenic PAH exposure is associated with alterations in cell cycle S 

phase gene regulation  

 This study was identifed cell cycle S phase genes as an important and highly 

enriched pathway associated with MEturquoise. METurquoise genes were 

significantly positively correlated with increased RPF estimates. Our results are 

consistent with other findings that PAH exposure is linked to alterations in cell 

cycle processes. Previous research has identified dysregulation of cell proliferation 

as a potential mechanism of BAP and BAN activity [38]. The P53 signaling 

pathway is also activated in response to stress, which includes DNA damage [39]. 

Several genes identified in METurquoise (Fig 1B) (i.e. TP53BP2 and MDM2) are 

involved in p53 signaling [40-42]. Cyclin-dependent kinase (CDK1) was also 

identified as a gene of interest in MEturquoise, and normally functions in cell cycle 

progression via S phase initiation [43]. Dysregulation of these signaling pathways 

may be important in early cellular responses to PAH exposure. A well-understood 

mechanism of BAP carcinogenesis is its genotoxic activity forming diolepoxide 

DNA adducts [44-47]. Our findings support several reports that exposure to BAP 

can cause S phase arrest through DNA damage signaling [38, 48, 49]. 

 Hub genes identified in the network (CDK1, MCM2, PCNA) have roles 

central to controlling cell cycle progression and responding to DNA damage (Fig. 

3A). However, their involvement with environmental carcinogens have not been 

clearly established. Our network analysis identified several highly connected hub 
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genes central to the network, which include the minichromosome maintenance 

protein 2 (MCM2), a regulator of DNA synthesis, and the cyclin dependent kinase 

(CDK1), which controls progression into S phase of the cell cycle and induces 

senescence in response to DNA damage [50-53]. Malfunction or dysregulation of 

these proteins have been linked to the development of cancers in multiple tissues, 

including lung and breast [53-57]. While BAP exposure has previously been linked 

to alterations in CDK1 and MDM2 activity, the findings of this network analysis 

support S phase gene regulation as a major cellular network perturbed by 

carcinogenic PAH exposure [48, 49, 58].  

 

Carcinogenic PAH exposure dysregulates actin cytoskeleton gene networks 

 In our analysis of MEred module genes, we identified the cytoskeleton actin 

filament network as a top negatively correlated gene network to PAH cancer risk. 

Several hub genes (ACTG1, ACTB, c-SRC) were also identified as hub genes with 

high betweenness centrality measures (Fig. 3B). These findings suggest that genes 

integral to actin cytoskeleton structure, maintenance, and regulation, are negatively 

associated with increased PAH cancer risk. Similar mechanistic studies also found 

that short-term exposure to PAHs or PAH-containing mixtures result in the down-

regulation of several cell adhesion, motility, and cytoskeletal-involved processes, 

including epithelial-mesenchymal transition [59-63]. These processes can be 

indicators of cancer promotion and progression, and can co-regulate in complex 

signaling networks during cancer progression. Actin filament reorganization is 

directly responsible for driving cancer cell motility, morphological changes, and 

alterations in extracellular matrix and adhesion [64-66]. Additionally, actin-based 

adhesion protein complexes are integral in linking cells via cell-cell adhesion and 

to the extra extracellular matrices. Taken together, these findings support the role 

of actin cytoskeletal networks as early biomarkers and indicators of cellular 

changes affected by carcinogenic PAH exposure.  

  

Comparisons of regulatory values and associated gene modules 
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PAH cancer risk assessment has traditionally relied on the use of RPF 

estimates available only for a subset of PAHs [67]. However, we adapted WGCNA 

in a novel manner in an effort to identify genes similarly associated to RPF and 

other risk values and hazard classifications. Notably, we identified overlap in 

significant gene module membership between RPF and at least one other risk value 

in two modules. We also found that RPF correlation patterns was the most similar 

to that of IARC cancer classes. These results suggest that the RPF approach 

currently has more similar hazard designations towards chemicals, compared to 

IARC classifications, which classifies chemicals as carcinogens based on weight of 

evidence [68-70]. Inversely, many chemicals, including heterocyclic PAHs, present 

in PAH mixtures evaluated did not have RPF estimates nor IARC classifications; 

yet had OSF and IUR values. These differences in missing values may have 

contributed to dissimilarities in correlation patterns with RPF, and thus prioritize 

the need the evaluate gene clusters where similarities have been identified. While 

direct comparisons between differing regulatory and risk values not feasible, this 

analysis focused on identifying shared gene clusters and exploring correlations 

across risk values.   

 

Advantages of identifying co-modulated gene sets across cancer risk 

 Data generation from chemical transcriptional profiling has yielded a 

wealth of chemical-gene signatures; however researchers lack adequate measures 

to understand broader patterns across chemical groups. The results from this study 

demonstrate a novel and effective method to identify gene associations across 

multiple chemicals and parameters. There were several advantages to using RPF as 

the primary chemical risk value for identification of co-modulated gene 

associations. RPF estimates are derived through a weight of evidence approach, and 

so RPF values are substantiated by in vivo tumorigenic evidence [67]. Typically, 

multiple chronic rodent cancer bioassays are evaluated towards the development of 

an RPF estimate. We identified cellular networks positively and negative associated 

with cancer risk in the 3D HBEC model, and our findings supported several reports 
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in the literature, indicating that short-term gene signatures can be particularly useful 

in identifying genes linked to cancer. A major benefit of a co-expression approach 

is that subtle gene changes and biological interactions may be captured [20], 

allowing identification of similarly regulated gene networks. Previous research 

using WGCNA has found that gene modules identified in drug-induced hepatocyte 

transcriptional changes are correlated to adverse outcomes and toxicity [71]; 

however some of the top ranked gene modules identified had little biological 

annotation, indicating a unique capability of this approach [72]. Investigation of 

these poorly annotated genes and lesser understood signaling networks may prove 

useful in developing novel biomarkers to identify potential drivers of chemical 

toxicity. In this study, we identified 9 miRNAs and over 300 lncRNAs as 

significantly correlated with PAH cancer risk. Thus there is high potential for 

identifying novel or understudied biomarkers related to PAH-specific cancer risk 

through applications of WGCNA.  

 

Study limitations 

 There were several disadvantages to using regulatory values to evaluate 

correlation to co-modulated gene sets in our analysis. Our limited dataset used for 

chemical biosignature profiling (9 chemical doses, with 2 mixtures) included only 

two non-carcinogenic PAHs. It is possible that expansion of this dataset to include 

more non-carcinogenic and extremely carcinogenic PAHs, in greater doses, could 

help strengthen increase specificity of gene associations. In addition, the RPF 

estimates available to calculate BAPeqs were derived from murine and rodent 

models, from studies where animals were exposed orally and through 

intraperitoneal injection, which do not represent typical routes of PAH exposures 

for human. Most importantly, inhalation was not considered in deriving RPF 

estimates. The IURs we included from CTV completed our trait table, however a 

majority of the chemical values sourced for chemical mixtures were predicted 

from CTV, rather than experimentally derived. CTV was a useful tool in 

supplementing data-poor chemicals with predicted health regulatory values. 
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However, this data was frequently low confidence, from CTV’s high percent of 

applicability domain. Additionally, the second tier of our analysis did not allow 

taking chemical dose into consideration; only one dataset per chemical was able 

to be associated to database-derived regulatory and hazard values. Finally, a 

limitation of this toxicogenomics approach was the inability to distinguish 

between chemical-specific differences or cancer risk-related differences. This 

challenge could be partially resolved through addition of different chemicals at 

higher RPF or BAPeq, such that similarly comodulated genes between extreme 

carcinogens could be identified across a greater number of chemicals. As we 

continue to complete our evaluations of PAHs in the 3D HBEC, further gene 

expression information will be collected to expand our understanding of cancer 

risk-related biomarkers. 

 

CONCLUSIONS 

 

This study examined relationships between co-modulated gene sets and 

chemical risk values relevant to human cancer risk, with the goal of identifying key 

pathways, and gene hubs linked to cancer risk of PAH and PAH mixtures. For the 

first time, PAH-responsive genes were linked to relative potency factor via 

calculations of BAPeq through a quantitative systems biology approach. We 

prioritized positively and negatively associated modules for further study, and these 

genes significantly enriched distinct biological functions including cell cycle, 

cytoskeleton, and inflammation. This study also identified module eigengenes 

significantly associated with additional regulatory values and hazard classifications 

including IARC classifications, oral cancer slope factors, and inhalation unit risks. 

Some regulatory values (IARC, IRIS, OSF) shared greater numbers of commonly 

correlated modules with RPF than other regulatory values (IUR, RfC, RfD), 

suggesting potential value in using them when RPF is unavailable. This study 

utilized transcriptional signatures in response to short-term chemical exposures to 

identify potential biomarkers and associations between regulatory values and 

biological activity. Such an approach could be used to relate organotypic, human 
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in vitro-derived toxicogenomics information towards regulatory applications in the 

near future.  
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TABLES 

 

Table 4-1. Tier one: Gene modules significantly (p< .05) associated with RPF. 

 

Module Correlation p-value 

Turquoise 0.79 0.01 

Magenta 0.73 0.03 

Lightgreen -0.65 0.05 

Black -0.68 0.05 

Grey60 -0.69 0.04 

Royalblue -0.72 0.03 

Red -0.82 0.007 
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Table 4-2. Tier two: Gene modules significantly (p< .05) associated with RPF. 

 

Module Correlation 
(max) 

 p-value 
(min) 

Risk value(s) 

Two 0.82 0.02 RPF 

Five 0.85 0.02 OSF, RPF 

Fourteen -0.84 0.02 OSF, RPF, IARC 

Seventeen -0.77 0.05 RPF 
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Figure 4-1. 

Figure 4-1. Module-Trait Relationships and Genes of Interest (A) Module-Trait Relationships matrix. Correlation matrix shows 

that several module eigengenes (MEs) were highly correlated with PAH cancer risk values (RPF). Degree of correlation is color ed, with 

red as positive and blue as negative, and p-values in parentheses. (B) METurquoise Genes of Interest. The most positively correlated 

module eigengene (“MEturquoise”) was prioritized for evaluation; genes of interest that had expression levels correlated to MEturquoise 

are shown. Expression levels are Z-score normalized. (C) MERed Genes of Interest. The most significantly negatively correlated 

module eigengene (“MERed”) was priotized for evaluation; genes of interest shown, ranked by RPF, with expression levels Z-score 

normalized.  
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Figure 4-2.  

 

Figure 4-2. Network Category table of prioritized module eigengenes 

MEturquoise and MEred. Pathway enrichment analysis was conducted, and a 

broader network category-level significant enrichment  score was calculated. 

Numbers indicate number of pathways enriched under each network category, and 

ave FDR (average false discovery rate) shown in parentheses. Distinct biological 

networks were enriched by MEturquoise and MEred, as well as several network 

categories commonly enriched, notably Inflammation.  
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Figure 4-3.  

 

 

Figure 4-3. Networks showing most significantly enriched networks associated with prioritized gene modules. (A) METurquoise  

significant enrichment of the Cell cycle S phase gene network, and (B) MEred significant enrichment of the Cytoskeleton actin 

filament gene network. Node sizes denote betweennenss centrality measures calculated in each network. A larger node, or “hub gene” 

thus represents a gene or biomolecule that stands in between the shortest paths connecting the maximum number of neighboring nodes 

to each other. 
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Figure 4-4. 

 
 

Figure 4-4. Module-Trait Relationship Correlation matrix Linking Module 

Eigengenes with Risk Values. Correlation matrix shows that several module 

eigengenes (MEs) were highly correlated with PAH cancer risk values (RPF), as 

well as correlated in common between RPF, OSF, and IARC classes. 

Unsupervised hierarchical clustering was performed on the correlation values and 

the dendrogram identifies RPF and IARC as having the most similar module 

correlation patterns. Degree of correlation is colored, with red as positive and blue 

as negative, and p-values in parentheses  
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Chapter 5 – Discussion  

Exposure to environmental PAHs are nearly unavoidable, due to their 

prevalence in various forms of environmental media. Inhalation exposure to 

PAHs have been linked to an increased risk of acute lower respiratory infections, 

chronic obstructive pulmonary disease, and lung cancer [1, 2]. The primary 

method for estimating cancer risk of PAH mixtures is the relative potency factor 

(RPF) approach, which estimates mixture cancer risk based on a subset of 

individual component PAHs compared to benzo[a]pyrene (BAP) [3]. However, 

recent studies have found this approach inadequate for predicting carcinogenicity 

of mixtures and also for certain individual PAHs, particularly those that function 

through alternate pathways or exhibit greater promotional capacity compared to 

BAP [4-7]. Additionally, the RPF approach is limited by lack of information on 

PAH MOAs and adequate assessment approaches for mixtures, leading to the 

over or under-estimation of carcinogenic potency [6, 8-10]. A heavy reliance on 

in vivo rodent studies used to estimate RPF for individual PAHs also introduces 

additional uncertainty regarding species-specific biology and chemical mode of 

action (MOA) [11]. 

Through the studies described in this dissertation, we employed an 

organotypic HBEC model to advance our understanding of the early mechanisms 

involved in carcinogenicity and toxicity of PAHs. Through these studies, we 

developed and evaluated a transcriptomic dataset of PAHs along a range of 

carcinogenic potency, and adapted and refined novel transcriptional approaches 

toward biomarker identification and predictive classification. 

In chapter 2, we comparatively evaluated the mechanisms of BAP and 

dibenzo[def,p]chrysene (DBC) in a primary 3D HBEC model to assess potential 

differences in mechanisms of toxicity. Current assumptions for assessing 

carcinogenic risk of PAHs is that they function through a common mechanism of 

action similar to BAP; however recent studies demonstrate that PAHs can act 

through unique mechanisms potentially contributing to cancer outcomes in a non-

additive manner. In this study, we profiled the short-term gene signatures derived 
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from exposure to PAHs for 48 hrs. Specific gene targets were evaluated for BAP, 

DBC, and coal tar extracts (CTE) with quantitative PCR (qPCR), including 

CYP1A1, CYP1B1, and tight junction and gap junction barrier genes. Functional 

measurements of barrier integrity and gene signature profiling identified barrier 

disruption as a common mechanism of toxicity by the PAHs evaluated, and also 

identified over 1200 uniquely regulated genes between BAP and DBC. This work 

also identified novel transcriptional mechanisms of action for DBC, suggesting 

that the unique NRF2-mediated oxidative stress response gene networks regulated 

by DBC may mediate the enhanced carcinogenicity of DBC compared to BAP. 

Overall, these findings supported the utility of transcriptomic approaches in 

evaluating chemical-specific profiles of PAHs. 

After evaluating chemical-specific gene signatures unique to each 

carcinogen, we expanded our transcriptional assessments to evaluate effects of 

exposure to a range of 6 carcinogenic and non-carcinogenic PAHs. In chapter 3, 

we selected dissimilarly affected gene pathways to develop a rapid classification 

approach that accurately predicts carcinogenic potency of PAHs using 

transcriptional gene signatures from HBECs. Previously, we developed an 

approach to use gene signatures generated from mouse skin after short-term 

chemical treatment to accurately predict cancer outcome [6]. Here, we 

demonstrated the successful translation of this approach into a 3D human 

bronchial epithelial model. Gene sets related to several biological pathways were 

evaluated for classification performance to differentiate PAHs by carcinogenic 

class, and integrated for an optimal classification accuracy of 91%. Individual 

endpoints and biomarkers, such as intracellular ROS generation and CYP450 

gene regulation, were insufficient predictors of carcinogenicity in this study. 

Moreover, transcriptional benchmark dose modeling of BAP showed that the 

most sensitive pathway gene sets to BAP regulation were largely dissimilar from 

the pathways that best classified PAH carcinogenicity. Through applications of 

systems toxicology approaches, we analyzed global gene expression in 3D HBEC, 

developed classification approaches towards carcinogenic hazard assessment of 
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PAHs, and found evidence to challenge assumptions that BAP carcinogenicity 

(and subsequent MOAs) are reflective of overall PAH carcinogenicity. 

In chapter 4, we set out to overcome pathway annotation limitations in 

transcriptional analyses by utilizing a weighted gene co-expression network 

analysis to identify co-modulated gene networks grouped by common expression 

patterns across the genes. We adapted the WGCNA approach in a novel manner 

to evaluate molecular mechanisms related to PAH cancer risk, as calculated by 

RPF estimates. Significantly regulated genes from HBEC exposed to 7 PAHs and 

PAH mixtures were analyzed using a two-tiered WGCNA approach. First to 

identify gene sets co-modulated to RPF and then to link the genes to a more 

comprehensive list of regulatory values, including inhalation-specific risk values. 

Over 3,000 genes were identified as significantly correlated and co-modulated to 

increasing cancer risk (RPF). Gene modules significantly correlated in common 

between RPF, oral cancer slope factors, and IARC cancer categorizations were 

also identified. Here, we demonstrated a novel manner of integrating gene sets 

with chemical toxicity equivalence estimates through WGCNA to understand 

potential mechanisms. Our findings support the usage of co-expression network 

analyses to identify links between chemical toxicity and high-dimensional 

transcriptional data in chemical MOA evaluations. 

Taken together, studies demonstrate the utility of employing toxicogenomic 

approaches in organotypic airway epithelial models to assess the effects of 

carcinogenic air pollutants and mixtures. Through this work, we have 

demonstrated that early transcriptional signaling in response to PAH exposure can 

span a diverse range of mechanisms of toxicity. While these MOAs may have 

similarities and differences to BAP’s, these studies have identified broader 

biomarkers linked to PAH cancer risk and utilized these different MOAs as an 

advantage in developing a classification model to predict chemical carcinogenic 

potency. Looking ahead, similar studies using organotypic human in vitro models 

could be used to further inform cancer risk evaluations and hazard assessments by 

combining transcriptional profiling with additional in vitro assay endpoints 

associated with chemical exposures. Gene sets found to be predictive of cancer 

risk (chapter 3) and correlated to increasing PAH cancer risk (chapter 4) could be 

further evaluated for common upstream regulators, including transcription factors, 

miRNA, or associated lncRNA. Additionally, gene modules correlated to cancer 
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risk (chapter 4) include several hundred miRNA and lncRNA that can be further 

evaluated as potential mediators of any mechanisms previously understood as 

linked to PAH carcinogenesis. The 3D HBEC also expresses xenobiotic 

metabolism enzymes capable of generating PAH metabolites. As future work 

continues to identify both chemical-specific mechanisms and broader cancer risk-

associated mechanisms, it is necessary to link these back to various PAH 

metabolites and congeners that may be responsible for toxicity. As the 

environmental health sciences community continues to evaluate PAH toxicity 

within the context of mixtures, transcriptional profiling will be a valuable tool in 

understanding potential mixtures interactions, effects, and MOAs. Therefore, 

these advances in toxicogenomics have the potential to inform biomarker 

development, mechanistic evaluations, chemical hazard assessment, and future 

regulatory applications.  
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