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There is growing commercial interest in the use of multiagent systems in real

world applications. Some examples include inventory management in warehouses,

smart homes, planetary exploration, search and rescue, air-traffic management and

autonomous transportation systems. However, multiagent coordination is an ex-

tremely challenging problem. First, information relevant for coordination is often

distributed across the team members, and fragmented amongst each agent’s ob-

servation histories (past states). Second, the coordination objective is often sparse

and noisy from the perspective of an agent. Designing general mechanisms of gen-

erating agent-specific reward functions that incentivizes an agent to collaborate

towards the shared global objective is extremely difficult. From a learning per-

spective, both difficulties can be linked to the difficulty of credit assignment - the

process of accurately associating rewards with actions.



The primary contribution of this dissertation is to tackle credit assignment in

multiagent systems in order to enable better multiagent coordination. First we

leverage memory as a tool in enabling better credit assignment by facilitating as-

sociations between rewards and actions separated across time. We achieve this by

introducing Modular Memory Units (MMU), a memory-augmented neural archi-

tecture that can reliably retain and propagate information over an extended period

of time. We then use MMU to augment individual agents’ policies in solving dy-

namic tasks that require adaptive behavior from a distributed multiagent team.

We also introduce Distributed MMU (DMMU) which uses memory as a shared

knowledge base across a team of distributed agents to enable distributed one-shot

decision making.

Switching our attention from the agent to the learning algorithm, we then in-

troduce Evolutionary Reinforcement Learning (ERL), a multilevel optimization

framework that blends the strength of policy gradients and evolutionary algo-

rithms to improve learning. We further extend the ERL framework to introduce

Collaborative ERL (CERL) which employs a collection of policy gradient learners

(portfolio), each optimizing over varying resolution of the same underlying task.

This leads to a diverse set of policies that are able to reach diverse regions within

the solution space. Results in a range of continuous control benchmarks demon-

strate that ERL and CERL significantly outperform their composite learners while

remaining overall more sample-efficient.

Finally, we introduce Multiagent ERL (MERL), a hybrid algorithm that lever-

ages the multilevel optimization framework of ERL to enable improved multiagent



coordination without requiring explicit alignment between local and global reward

functions. MERL uses fast, policy-gradient based learning for each agent by utiliz-

ing their dense local rewards. Concurrently, evolution is used to recruit agents into

a team by directly optimizing the sparser global objective. Experiments in multia-

gent coordination benchmarks demonstrate that MERL’s integrated approach sig-

nificantly outperforms the state-of-the-art multiagent policy-gradient algorithms.
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Chapter 1: Introduction

Reinforcement Learning (RL) offers powerful tools for addressing sequential de-

cision making problems and holds great promise in tackling complex real world

problems. Recently, its integration with powerful non-linear function approxima-

tors like deep neural networks have enabled many successful applications. Some

examples of this include industrial data center cooling applications [52], control of

humanoid robots [239], quadrupeds [93] and drug discovery [172].

However, most of these applications involve a single agent. This is in stark

contrast to most real world applications that involve multiple agents interacting

with each other. Learning in these systems brings out unique challenges different

from its single agent counterparts. This stems from the fact that an individual

agent action in these systems can have complex and unintended consequences to

the emergent behavior of the multiagent team. For instance, air traffic control

involves coordination across thousands of flights that operate within a shared US

airspace every day. A small delay or deviation of plan by one flight can propagate

rapidly and affect the entire system as a whole. This can lead to wide-spread

delays costing billions of dollars every year for the taxpayer [33, 221, 241].

Multiagent teams are also inherently more suited for exploration. Consider the

grand challenge of exploring Mars. A team of autonomous robots working together

can significant improve performance over single robot missions. The multi-robot
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team can cover more ground, is more flexible, and offers more reliability. It is

also more robust enabling graceful degradation in performance with failures. This

is crucial in extreme environments like space [218, 240] or underwater settings

[101, 109, 209] where the likelihood of failure in communication, sensors, actuators,

or associated electronics is very high. Search and rescue operations in disaster

scenarios also share this property. Rescue operations following the Fukushima

nuclear plant disaster was a harrowing example [160]. Multiagent approaches hold

promise in providing a possible solution and have been widely explored in recent

literature [21, 86, 125].

Autonomous driving is another example of a multiagent system with signifi-

cant potential for impact in the world [54]. The past decade has seen tremen-

dous progress in enabling technologies associated with autonomous vehicles such

as sensors, control algorithms, perception, and actuators [31, 130, 182]. However,

integrating these vehicles in our roadways still faces significant challenges [54].

Most of these difficulties stem from the uncertainty and unpredictability of inter-

action between multiple autonomous agents. To fully realize the potential impact

of autonomous driving technologies, it is crucial to address these multiagent chal-

lenges. Efforts towards this end have been widely explored in recent literature

[18, 190, 238].

However, multiagent coordination is an extremely challenging problem. First,

information relevant for effective coordination is often distributed across the mem-

bers of the team (different agents holding part of the key information). Addi-

tionally, in most real world settings this information is also fragmented over each
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agent’s observation history (past states of the agent). Retrieving information by

integrating across both time and across other agents is necessary for effective mul-

tiagent coordination.

For instance, real time traffic updates through an autonomous car network

requires both inference on the sequence of sensor data from each car, and consol-

idation between multiple data streams acquired concurrently from numerous cars

distributed in space. If an autonomous car observes an unanticipated blockage in

a specific location, this observation has to be quickly identified among a plethora

of normative information. It has to be processed, and dynamically retained for a

period of time, so that the network can quickly adapt navigation routes for other

cars approaching this location.

Second, the coordination objective is often vague, sparse, and extremely noisy

from the perspective of an agent in the team. Consider the game of soccer where

a team of agents coordinate to achieve a global objective of winning. Directly

optimizing this objective to train individual agents is sub-optimal due to two rea-

sons. First, it fails to encapsulate the contributions of individual agents to the final

result. Second, it is usually very sparse - a single scalar capturing performance

of an entire team operating across an extended period of time. This makes it a

weak metric to learn on. In practice, domain knowledge is often used by an expert

to design agent-specific rewards [43, 237]. A simple example would be to reward

the defenders for keeping clean sheets while the strikers get rewarded for scoring.

However, this type of agent-specific proxy rewards are not very generalizable. For

example, a team that is winning may benefit from protecting its lead by temporar-
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ily being more defensive. This objective now becomes misaligned with the local

objectives of the strikers that prioritize scoring. This leads to sub-optimal coordi-

nation overall. Further, these kind of shaped rewards can change the underlying

problem itself [162].

From a reinforcement learning perspective, both of these problems can be linked

to a common root cause - the difficulty of credit assignment, defined as the ability

to accurately associate rewards with actions. Addressing this problem has been

a long-time research focus in reinforcement learning [42, 187, 186] and has led to

its most successful innovations. An example of this is temporal difference (TD)

learning [211], which is the principal component behind model-free reinforcement

learning. While temporal credit assignment in single-agent applications still re-

mains the key area of focus for reinforcement learning research [7, 42, 187, 186],

credit assignment for multiagent systems has also received a lot of attention in

recent times [91, 146]. This is driven by the rapid progress in the development of

deep reinforcement learning and the expansion of these techniques to real world ap-

plications which are often inherently multiagent. Continued progress will require

addressing the joint complexities in settings where credit needs to be assigned

across temporal separations and amongst multiple agents.

1.1 Contributions

The primary contribution of this dissertation is to improve learning in multiagent

systems by tackling credit assignment: establishing relationships between action
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and reward across time and among a team of agents. First we develop novel

memory-augmented neural network architectures and leverage it to improve learn-

ing in distributed multiagent teams. Then we formulate a multilevel optimization

framework, that can integrate reward functions across multiple hierarchies to im-

prove multiagent coordination. Collectively, these developments enable effective

learning in scenarios where the reward is conditioned on a series of joint-action

taken by a team of distributed agents operating through time. The four research

contribution of this dissertation are to:

1. Introduce Modular Memory Unit (MMU), a novel memory-augmented neural

network topology that enables reliable retention and propagation of informa-

tion over an extended period of noisy operation enabling improved temporal

credit assignment. [113, 115].

2. Introduce Distributed MMU (DMMU), where an external shared memory is

collectively read and written to by a team of agents to enable distributed

one-shot decision making [114, 119, 120, 121].

3. Introduce Evolutionary Reinforcement Learning (ERL), a hybrid framework

that combines the strengths of an Evolutionary Algorithm (EA) with fast

gradient-based algorithms for effective deep reinforcement learning [118].

Further, we extend ERL to introduce Collaborative ERL (CERL), which

employs a collection of policy gradient learners (portfolio), each optimizing

over varying resolution of the same underlying task for improved exploration

of the search space [116].



6

4. Introduce Multiagent ERL (MERL), which leverages the multilevel optimiza-

tion framework of ERL to tackle sparse multiagent coordination problems by

leveraging dense local reward even when there is no guarantee of alignment

between the two [117].

1.2 Research Outline

Each of the contributions and their associated chapters are outlined below:

Contribution 1: Modular Memory Unit (MMU) The first thread of re-

search tackles temporal credit assignment by using memory to identify and as-

sociate reward with its associated actions. This is crucial for settings where the

action and its associated reward is separated by a long period of time. Most real

world applications fall under this category. For instance, the action of packing

your umbrella in the morning might only result in a reward when it rains in the

evening. To properly associate the reward with its associated action, the agent

needs to remember the action taken in the morning, shield it from other decisions

(actions) taken during the day, and associate it with its related reward that occurs

only in the evening. Humans inherently excel at using memory to make these

associations.

Chapter 3 introduces MMU, a new neural network topology designed to effec-

tively retain and propagate information over an extended period of time. MMU’s

independent read and write gates serve to decouple memory from the central feed-
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forward operation of the network, administering the ability to choose when to

read from memory, update it, or simply ignore it. This capacity to act in detach-

ment enables MMU to shield the memory from noise and other distractions, while

simultaneously remembering connections between reward and associated action

dispersed across time. Results on two deep memory benchmarks demonstrate that

MMU performs significantly faster and more accurately than traditional memory-

based methods, and is robust to dramatic increases in the length of time between

reward and its associated action [113, 115].

Contribution 2: Distributed Modular Memory Unit (DMMU) The sec-

ond thread of research builds on the MMU topology and applies it towards im-

proving multiagent coordination in settings that require rapid adaptation. This is

crucial in most real world settings where a multiagent team has to change its joint

behavior based on a singular observation by one of its agents. For instance, if an

autonomous car observes an unanticipated blockage in a specific location, this ob-

servation has to be quickly identified among a plethora of normative information.

It has to be processed, and dynamically retained for a period of time, so that the

autonomous fleet can quickly adapt navigation routes for other cars approaching

this location.

Chapter 4 details two such applications. The first application uses memory

to augment individual agent policies in solving dynamic tasks that require adap-

tive behavior. Results on a T-Maze benchmark demonstrate that the memory-

augmented agents are able to leverage their memory to integrate information across
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time to learn adaptive behaviors while reactive agents fail entirely to solve the task

[114]. The second application introduces DMMU where an external memory is used

as a shared knowledge base across a team of agents for distributed one-shot decision

making. Each agent can selectively and asynchronously access the shared memory

to accept and/or disseminate pertinent information as they are observed. This

allows for rapid consolidation of salient information enabling distributed one-shot

decision making [119, 120, 121].

Contribution 3: Evolutionary Reinforcement Learning (ERL) Chapter 5

introduces ERL, a multilevel optimization algorithm that integrates reward signals

across multiple hierarchies to improve credit assignment in reinforcement learning.

This is particularly crucial for settings where the learning goal is conditioned on

a series of actions (long chain of sequential decisions) with sparse reward signals.

This is a defining feature of most real world applications and is a fundamental

difficulty within reinforcement learning.

ERL hybridizes the strengths of two distinct learning techniques: namely Evo-

lutionary Algorithms (EAs) and policy gradients to achieve the best of both ap-

proaches. Specifically, ERL inherits EAs capability for temporal credit assignment

with sparse rewards, effective exploration with a diverse set of policies, and sta-

bility of a population-based approach and complements it with policy gradients

ability to leverage gradients for higher sample efficiency and faster learning. Ex-

periments in a range of challenging continuous control benchmarks demonstrate

that ERL significantly outperforms prior DRL and EA methods [118].
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Chapter 6 extend the ERL framework to introduce Collaborative ERL (CERL)

[116] which employs a collection of policy gradient learners (portfolio), each opti-

mizing over varying resolution of the same underlying task. This leads to a diverse

set of policies that are able to reach diverse regions within the solution space. A

shared replay buffer pairs this improved exploration with collective exploitation for

improved learning. Results in a range of continuous control benchmarks demon-

strate that CERL significantly outperforms its composite learner while remaining

overall more sample-efficient.

Contribution 4: Multiagent Evolutionary Reinforcement Learning (MERL)

The final thread of research builds on the ERL framework and applies it towards

improving multiagent coordination where the team’s learning goal is sparse and

noisy. This is a common occurrence is most real world multiagent systems. Some

examples include soccer, extraterrestrial exploration, or search and rescue. The

team goal (global reward) in all these scenarios is too sparse and noisy to learn

effectively from.

Chapter 7 introduces MERL [117] which splits multiagent problems into two

sub-parts: learning to manipulate the environment using high-fidelity and dense

local rewards, while concurrently leveraging the skills learned towards tackling the

global reward. MERL achieves this using two classes of optimizers that operate

over varying levels of purview. The local optimizer (policy gradient) leverages

local rewards to learn with high-fidelity information. Concurrently, an evolution-

ary algorithm is used to recruit agents into a team by directly optimizing the
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sparser global reward. Results in a multiagent coordination task demonstrate that

MERLs integrated approach significantly outperforms the state-of-the-art multia-

gent policy-gradient algorithms.
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Chapter 2: Background

This dissertation tackles credit assignment in multiagent reinforcement learning

through two distinct threads of research. The first thread leverages memory-

augmented neural networks to augment the agent’s capability in identifying and

storing action-reward associations through an extended period of time. A com-

prehensive survey on memory-based techniques is presented in Section 2.1. The

second thread leverages hybrid reinforcement learning techniques that combine

the strengths of multiple optimizer operating at varying levels of purview to en-

able effective credit assignment. A comprehensive survey on relevant reinforcement

learning techniques is described in Section 2.2.

2.1 Memory

Memory provides the capacity to recognize and recall similar past experiences

in order to improve current decision making. Increasingly, adaptive systems are

required to operate in dynamic environments where critical events occur stochas-

tically and affect the system only after a period of time. In these settings, memory

allows an agent to bridge information across time enabling associations to be made

between reward and its causal action. In a learning setting, the most widely used

avenue to impart memory faculty to an agent is through the use memory aug-
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mented neural networks.

Artificial Neural Networks (ANN) are universal functional approximators [102]

that were originally conceived to mimic the functionality of the human brain. It

has since been established that these systems are extremely simplistic, in relation

to the human brain, and resemble more of a highly flexible statistical device that

can be mathematically configured to approximate functions. ANNs have since

become widely popular and have been successfully applied in a broad range of

disciplines and real world tasks [155, 78, 13, 219].

Feedforward neural networks (FNNs) are perhaps the most popular variant of

ANNs. FNNs, however, are limited to processing stationary input-output patterns,

and assume that their inputs are static and independent of each other. This is

an unrealistic assumption in most real world applications, as past events often

influence future events. The key to predicting or acting optimally in the present

often is conditioned on events that led up to the current point. One simple way

of integrating past events to make prediction in the present is to concatenate past

states to compute the current input (project temporal data in a spatial dimension).

However, the choice of depth in time to concatenate is a free parameter that needs

to be set manually. Additionally, the size of the neural connections also scales

poorly with increasing window of time to look through.

Time-delay networks [228, 227, 132] attempted to solve this problem by us-

ing 1-D convolution across the concatenated temporal sequence. The convolution

kernels, similar to the one used in the hugely successful Convolutional Neural Net-

works (CNNs) [111, 128, 134] today, allow for sharing of parameters for input
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variables spread across time. However, the convolution operation is shallow and

only considers a set of neighboring variables while computing an output. Recur-

rent Neural Networks (RNNs) are a class of ANNs that provides a more natural

approach to sharing parameters across multiple temporal scales. The same update

rule is applied for the input variables across all temporal scales but the output for

each subsequent temporal processing loop is conditioned on the previous output.

This feeding back of past output is often referred to as recurrency, and this ap-

proach leads to a more efficient exploitation of regularity between input variables

separated by time [73].

The recurrent input is the key to a RNN’s ability to capture temporal depen-

dencies and process sequences effectively. In a way, this recurrent input can be

viewed as a type of memory that condenses salient observations from the past

and allows for the current processing loop to condition its output based on these

observations. It is necessary to precisely define what memory refers to. All ANNs

can be represented as computational graphs and store its input-output mapping

as dense vectors in its weights that parameterize this computational graph. The

dense vector representation of how an ANN computes output, given a certain in-

put, can in itself be thought of as memory. In order to disambiguate, we will not

refer to these weights as memory in this paper, but reserve the term for structures

like recurrent hidden activations, cell states or memory banks that explicitly serve

across multiple temporal scales and propagate information between them.

RNNs have grown to be extremely popular in the last decade and are part of

the state of the art in many sequence processing tasks [207, 78, 73, 185]. This
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ubiquity has led to development of numerous variants to RNNs. In this article,

we classify and review these developments through the perspective of the memory

structure employed and highlight three major types. Section 2.1.1 discusses vanilla

recurrent neural networks which are the most simplest form of RNNs. Section 2.1.2

highlights RNNs that employ gates to filter infromation flow and use cell states

to propagate recurrent information. Section 2.1.3 discusses RNNs which introduce

memory banks external to the controller itself and utilize attentional processes to

interact with it. The developments of these structures are coextending but their

first introduction roughly follow the chronological order of their presentation.

2.1.1 Vanilla Recurrent Neural Networks

In this article, vanilla recurrent neural networks (VRNN) refers to the original and

simplest formulation of RNNS that use a fixed size recurrent vector to propagate

information between multiple temporal layers of input. This can be represented as

a deep computational graph that unfolds to form a multiple layer FNN. Each layer

of this FNN would deal with input data corresponding to that temporal location

within the sequence and the recurrent connection from the preceding FNN. Figure

1 (extracted from [73]) depicts the unfolding of a VRNN into a series of FNNs. The

recurrent connection depicted as solid black square serves to propagate information

from earlier parts of the temporal sequence. The sequence input is represented by

x, while h represents a fixed hidden state vector which captures the recurrence.

Each FNN unfolded maps a temporal slice of input and the current values of h
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into the next value of h. The output, not shown is a layer that sits on top of h

that maps it to an output of the network.

Figure 2.1: Illustration of unfolding a vanilla recurrent neural network. Output is
not shown. Graphic extracted from [73]

The recurrence employed by VRNNs make them a form of deep neural net-

work that in principle is Turing complete [193, 194]. This property means that

a VRNN, in theory, is able to approximate any program and is a type of general

computer. Turing completeness makes VRNN an universally applicable structure,

but in practice, this same universality means that the space of programs that it

can describe is virtually infinite. This makes searching for a set of network pa-

rameters which describe a specific desired program very difficult. Finding these

parameters, commonly referred to as training the network, is a limiting factor on

its applicability, and has thus been a principal component of VRNN research.

Training a VRNN: One of the primary reasons for the renaissance seen in ANN

research was integration of efficient backpropagation (BP) in training them around

the 1980’s. Minimization of errors through gradient descent for a complex nonlin-

ear and differentiable parameters space had existed for a long time [25, 112, 46, 26].

Explicit configuration of gradient descent to perform efficient error BP exploiting
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sparse connections in ANN-like structures was described however, in [142, 143].

This was tasked for ANN-specific applications in [230, 136] and popularized espe-

cially by demonstration of internal representations within hidden layers by Rumel-

hart [180]. The same work also formulated BP for sequential computation graphs

like VRNNs which formed the basis for backpropagation through time (BPTT)

[231]. Slight variations of gradient based algorithms for VRNNs like real-time re-

current learning (RTRL) [236] and recurrent backpropagation algorithm [170] were

devised [234] and improved iteratively [168, 183, 235].

While BPTT in theory is capable of propagating error gradients backwards up

to arbitrary depths of network layers, in practice, it was able to do so effectively for

only a couple of layers backwards. For FNNs this was not a principal problem as a

FNN with a single layer of enough hidden units is shown to be able to approximate

any continuous functions with arbitrary precision [127, 97]. VRNNs, however, are

compactly represented architectures which unfold into a multiple layer FNN with

number of layers equaling the temporal depth of the input sequence as shown in

Figure 1.

Vanishing/Exploding Gradients: This difficulty faced by BPTT in training

deep VRNN architectures was highlighted in the seminal dissertation by Hochre-

iter [99] (in German) as summarized in [73]. The phenomenon commonly referred

to as the problem of vanishing or exploding gradient today, refers to the rapid

shrinking or explosion of backpropagated error signals as they traverse across mul-

tiple layers of nonlinear activation functions. Goodfellow [73] expressed this in
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terms of credit assignment path lengths which describe the length of the path a

backpropagated error signal has had to traverse before reaching its target weight.

The credit assignment path length was measured in the number of layers which

strongly correlated to number of activations, and caused an exponential decay or

explosion in the quality of the error signal. A large volume of subsequent research

ranging from unsupervised pre-training [184], Kalman filtering [174], simulated an-

nealing and pseudo-Newton optimization [20] focused on addressing this problem

with intermittent success.

A major breakthrough in addressing the problem of exploding/decaying back-

propagated errors in deep credit assignment paths came through the introduction

of Long Short Term Memory (LSTM) [100]. The principal idea of LSTMs is the

introduction of Constant Error Carousel Units (making up a memory cell) with an

identity activation function and a self-referential connection with a weight value of

1. This leads to a constant derivative of 1 that serves to shield the errors propa-

gated by the constant error carousel units from decaying/exploding exponentially

[100, 73]. This property allows LSTMs to effectively backpropagate errors through

long credit assignment paths spanning across hundreds of layers, and by extension,

memorize and learn long term temporal dependencies between events. In addition

to the constant error carousel units, LSTM uses gates that are essential in learn-

ing nonlinear behavior when used in conjunction with linear identity activations.

The next section will focus on the role of gates in protecting and propagating

information across long timescales.
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2.1.2 RNNs with Gating Units

Gating units were introduced in LSTM [100] to protect the memory cell from

unintended perturbations while being able to interact with other nonlinear multi-

plicative components within the architecture. An input gate protects the memory

cell’s content from irrelevant or noisy inputs while an output gate protects other

components of the LSTM from irrelevant or outdated memory content. Gating

units are multiplicative and often use sigmoid activation function which output in

the interval [0-1]. In a way, gates can be thought of as a mask that filters informa-

tion passing through it. In an LSTM unit, the gates effectively modulate access

to the constant error flow through the memory cells. This allows for LSTM to

learn important features and remember it across long time lags, effectively creat-

ing shortcut paths that bypass multiple time steps [34].

A forget gate was added into the LSTM block in [70] which allowed the LSTM

to reset its internal cell state adaptively. This was critical in allowing LSTMs to

learn to generalize to continuous input streams instead of being limited to solving

a priori decomposed subsequences. Weighted connections from the memory cell

to the gates, termed peepholes were added in [69]. These peephole connections

allowed the memory cell content to directly contribute in controlling the gates that

shielded them, allowing for more precise control and timings. A final major key

modification was done in [80] which implemented a full Backpropagation Through

Time (BPTT) algorithm to train the LSTM instead of a combination of Real-time

Recurrent Learning (RTRL) and truncated BPTT used by the previous iterations



19

[85].

Bidirectional LSTM: Many variations on the LSTMs has since been intro-

duced with alterations to the topology, training algorithms and even direction of

information flow. The same paper that implemented the full BPTT in LSTMs

[80] also introduced Bidirectional LSTM (BLSTM) building on the earlier ideas of

Bidirectional Recurrent Neural Networks (BRNNS) [16, 189]. The central idea be-

hind bidirectionality is to use two separate networks to process the input sequence

forward and backwards and then combine them to compute the final output. This

means that at each point in the input sequence, a bidirectional architecture has

complete information about all inputs that precede and succeed it. While this

dependence on the entire sequence which includes events that are in the future

seems to violate causality for an online task, many real world tasks often require

an output following an input segment with defined start and endpoints[80]. Pro-

tein structure modeling is one such domain where BLSTM has seen major success

[226, 94, 214]. Natural language processing (NLP) is another domain where know-

ing the words or speech later in the sequence is often useful in providing context

for interpreting the inputs earlier. Many variations of BLSTMs have been widely

used in various NLP tasks like machine translation [207], spoken language under-

standing [153, 152], voice conversion [206] and recognition [164, 55].

Training a RNN with gates: Full BPTT applied in conjunction with the Con-

stant Error Carousel unit has been the key ingredient to effective information prop-

agation through a LSTM architecture, both forward and backwards. This synergy
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between gradient descent and architecture engineered for effective propagation of

gradients is a principal component behind the successful training of LSTMs. Many

variations, alternatives, and enhancements have however been proposed on train-

ing methods to increase convergence speed and quality. Second order methods

like Hessian free optimization [151] were shown to demonstrate promising results.

These however came at a cost of computational complexity, especially as the size of

the network grew. Connectionist Temporal Classification (CTC) [77] was proposed

to train an LSTM to produce labels directly from noisy unsegmented sequences.

This obviated the need for pre-segmentation of sequences and post processing to

collate the LSTM outputs for sequence labeling [76].

Stochastic Gradient Descent (SGD) [68, 23, 243] is an iterative version of gra-

dient descent which updates the network parameters after computing the gradient

from a small sample size of training data, often referred to as mini-batches. This

obviates the need for computing gradients from the entire training set before up-

dating the network parameters, and is critical when dealing with training data

that may include millions of examples. Many heuristics that adaptively tune the

learning rate for SGD such as AdaGrad [49], Adam [122] and RMSprop [216] were

introduced to speed up convergence. Matrix based optimization methods and par-

allelization using Graphics Processing Units (GPUs) [210, 28] have been popular

in training of deep LSTM units, leading to up to 50 times the speedup compared

to traditional CPU based methods.

Apart from gradient based methods, direct search approaches have also been

extensively explored. These approaches evaluate the set of parameters (network
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weights) directly on the given problem without trying to establish explicit causal-

ities or correlations between parameters and error. This is equivalent to searching

directly in the weight space without heeding to the credit assignment paths that

traditional gradient based methods exploit and depend upon. Evolutionary Algo-

rithms (EAs) [61, 10] are a prime example, with a successful track record. EAs are

a class of stochastic search methods inspired by biological evolution, and employ

primary operators like mutation, crossover and selection iteratively on a popula-

tion of individuals. Each individual is a complete solution to a problem and is

often encoded into a real valued representation called genome. The sets of weights

parameterizing RNNs and its topology can be encoded into a genome, and EAs

can then be used to evolve them. This is often referred to as neuroevolution. Some

notable neuroevolutionary methods include NeuroEvolution of Augmented Topolo-

gies (NEAT) [201] and Cooperative Synapse NeuroEvolution (CoSyNE) [72]. Since

RNNs are shown to be general computers, neuroevolution of RNNs can be con-

sidered a type of Genetic Programming (GP), which is a close cousin of EAs that

evolves programs. The added advantage of RNNs however is that unlike traditional

GP which is often limited evolving sequential programs, RNN neuroevolution can

find synergies between its distributed representation and sequential information

flow leading to efficient parallel information processing [185].

Variations in network architecture Many variations on the LSTM architec-

ture have also been proposed for varying applications. An extensive analysis and

study on different LSTM variants ablating various of its components was con-
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ducted in [85]. Gated Recurrent Unit (GRU)[32] is perhaps the most popularly

used variant which differs from an LSTM primarily in its level of memory exposure.

Unlike an LSTM which has a memory gate modulating the exposure of the mem-

ory content, a GRU exposes its entire memory to the network for each feedforward

operation.

The reset gate r and update gate z are computed by

r = σ
(
Wrx + Urh

〈t−1〉) , (2.1)

z = σ
(
Wzx + Uzh

〈t−1〉) , (2.2)

where σ is the logistic sigmoid function, W and U are the learned weight matrices,

and x and h〈t−1〉 are the input and the previous hidden state, respectively. The

activation of an individual hidden unit hj is then computed by

h
〈t〉
j = zjh

〈t−1〉
j + (1− zj) h̃〈t〉j , (2.3)

where

h̃
〈t〉
j = tanh

(
[Wx]j +

[
U
(
r� h〈t−1〉

)]
j

)
. (2.4)

The function of the reset gate is to allow the hidden unit to flush information that

is no longer relevant, while the update gate controls the amount of information

that will carry over from the previous hidden state.

GRU employs one fewer gate in comparison to an LSTM, and also boasts a
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lighter architecture, often leading to easier and faster training. Extensive empir-

ical evaluations between a GRU and LSTM was conducted in [34] which failed

to conclusively establish one’s superiority over the other. These two architectures

were found to be clearly superior to VRNNs without gating units, but were com-

parable in relation to each other.

LSTMs and its variants, by virtue of their effective error handling and efficient

training methods, have virtually become the standard in most modern learning

based sequence processing tasks. Their method of formulating memory through

the cell state that is able to propagate information through extended periods of

activation has set many benchmarks in recent times. A stumbling block in its even

broader applicability however, is its coupling of memory with computation. The

sets of weights that parameterize the LSTM/GRU architecture scale severely with

increasing size of the cell state (memory). The number of parameters are thus a

direct function of the size of memory. This is highly limiting and problematic in

tasks that may require huge amounts of memory. For example, a general NLP

machine could benefit from having the entire dictionary in its memory. An AI

think tank could benefit from having the entire set of Wikipedia entries in its

memory. This integration of large banks of information however, is not possible

if the network parameters scale directly as a function of the memory size. Some

exciting developments in alleviating this issue has been made in recent times. The

following section will discuss some of these in detail.
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2.1.3 RNNs with External Memory Bank

One way of alleviating the harsh scaling of network parameters with size of memory

is to decouple memory from computation. These category of architectures are often

referred to as Memory Augmented Neural Networks (MANNs). Neural Turing

Machines (NTM) [81] is perhaps the first architecture in achieving this distinction.

A NTM augments a traditional ANN with an external memory it can interact with

attentional processes. It is inspired by theories in cognitive sciences which suggest

that humans have a central executive that interacts with a memory buffer [11].

Figure 2.2: High level Overview of a NTM architecture. Extracted from [81]

Neural Turing Machines: An NTM consists of two main parts: a neural net-

work controller and a memory bank. The controller can be any type of ANN

including VRNNs, FNNs and LSTMs. In addition to processing input to output

activations like most ANNs, NTM also interacts with an external memory bank

using read and write operations. These are termed as read/write heads in analogy

with a traditional Turing Machine. The memory bank is comprised of a large two
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dimensional matrix and is detached from the details of the controller. The inter-

action between controller and memory is entirely facilitated by the read and write

heads.

In general, the process starts with the controller emitting a value and a read/write

key. This value and key, alongside the state information of the network, is then

mapped onto a distribution of weightings projected onto all the locations available

in the memory by an addressing mechanism. This process takes into account the

last location of memory that was addressed (location based addressing), and the

similarity of the value emitted by the controller and the entries in the memory

bank (content-based addressing) to produce a weighting that spans the length of

the memory. A distributed weighting is often referred to as soft attention which

indicates a distributed attention model over multiple memory locations. A weight-

ing can also be made to focus entirely on one slot of memory, often referred to

as hard attention. The read/write heads use this weightings to then read from

memory or write to memory respectively.

In an analogy with Von Neumann architecture, the controller can be thought

of as a Central Processing Unit (CPU) and the memory bank as Random Access

Memory (RAM). The main addition however is the adaptability of a NTM which

can be trained end to end with input-output examples. Each part of the controller,

memory bank and the heads that modulate their interaction is fully differentiable

and thus can be trained using gradient descent. The authors in [81] demonstrated

the ability of an NTM using five tasks including copy, sort and associative recall

whose solutions required chains of operations akin to an algorithm. NTM was
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shown to significantly outperform LSTMs in solving these algorithmic tasks and

also demonstrated generalization beyond the size of task that it was trained for.

This is a promising result which demonstrates signs of inductive reasoning that

were facilitated by leveraging a large memory bank detached from the controller.

Differential Neural Computers: Subsequent work has introduced many vari-

ants of MANNs. Differential Neural Computers (DNCs) [84] expand the addressing

mechanism of a NTM using dynamic memory allocation that tracks the usage of

each memory location. The usage metric can be incremented and decremented for

each write and read operation adaptively. This ensures that the allocated mem-

ory does not overlap and interfere with each other and also allows for freeing of

memory that is no longer needed. An important feature here is that the tracking

and allocation mechanism is independent of the size of memory, thus the DNC

can be trained to solve a task on one size of memory and then later be upgraded

to a larger size memory without the need for retraining. Additionally, a temporal

link matrix tracks the locations in memory that were written preserving the or-

der of writing. This is akin to ‘pointers’ and provides DNC with a natural way of

recovering sequence in the order they were written in. The DNC was tested on syn-

thetic question answering task meant to mimic reasoning and inference problems

in natural language, and shown to solve them exhibiting these qualities. Addition-

ally, DNC was also shown to successfully perform inference on randomly generated

graphs, figuring out missing links on paths given starting and end positions. Re-

sults also demonstrated its ability to find shortest routes between multiple graph
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nodes. These results demonstrated DNC’s ability to leverage memory to store

a representation of the graph, interpret it, and conduct effective inference and

reasoning using this knowledge.

Both NTMs and DNCs offer a parametric way to interact with an external

memory component formulated to retain differentiability. This allows for gradient

descent algorithms to train them end to end using input-output examples. The

decoupled memory and controller structure also allows for reinforcement learning

algorithms to be applied directly to train these structures [84, 242]. Direct search

methods like EAs have also been explored to augment training. NEAT was modi-

fied to evolve NTMs in [87] with some success. Other variants in training procedure

and architecture are explored in [205, 129, 232] for various question answering tasks

using large memory sizes.

2.2 Reinforcement Learning

Markov Decision Process: A standard reinforcement learning setting is for-

malized as a Markov Decision Process (MDP) and consists of an agent interacting

with an environment E over a number of discrete time steps. At each time step t,

the agent receives a state st and maps it to an action at using its policy π. The

agent receives a scalar reward rt and moves to the next state st+1. The process

continues until the agent reaches a terminal state marking the end of an episode.

The return Rt =
∑∞

k=0 γ
krt+k is the total accumulated return from time step t

with discount factor γ ∈ (0, 1]. The goal of the agent is to maximize the expected
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return. The state-value function Qπ(s, a) describes the expected return from state

s after taking action a and subsequently following policy π.

Markov Games: A standard reinforcement learning (RL) setting is often for-

malized as a Markov Decision Process (MDP) and consists of an agent interacting

with an environment over a finite number of discrete time steps. This formulation

can be extended to multiagent systems in the form of partially observable Markov

games littman1994markov, lowe2017multi. An n-agent Markov game is defined

by a full state S describing the global state of the world, a set of observations

O1,O2..,On for each agent and their corresponding actions A1,A2..,An, respec-

tively. At each time step t, each agent observes its corresponding observation Ot
i

and maps it to an action Ati using its policy πi.

2.2.1 Deep Deterministic Policy Gradient (DDPG)

Policy gradient methods frame the goal of maximizing return as the minimization

of a loss function L(θ) where θ parameterizes the agent. A widely used policy

gradient method is Deep Deterministic Policy Gradient (DDPG) [141], a model-

free RL algorithm developed for working with continuous high dimensional actions

spaces. DDPG uses an actor-critic architecture [211] maintaining a deterministic

policy (actor) π : S → A, and an action-value function approximation (critic)

Q : S × A → R. The critic’s job is to approximate the actor’s action-value

function Qπ. Both the actor and the critic are parameterized by (deep) neural

networks with θπ and θQ, respectively. A separate copy of the actor π′ and critic
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Q′ networks are kept as target networks for stability. These networks are updated

periodically using the actor π and critic networks Q modulated by a weighting

parameter τ .

A behavioral policy is used to explore during training. The behavioral policy is

simply a noisy version of the policy: πb(s) = π(s) +N (0, 1) where N is temporally

correlated noise generated using the Ornstein-Uhlenbeck process [223]. The behav-

ior policy is used to generate experience in the environment. After each action, the

tuple (st, at, rt, st+1) containing the current state, actor’s action, observed reward

and the next state, respectively is saved into a cyclic replay buffer R. The actor

and critic networks are updated by randomly sampling mini-batches from R. The

critic is trained by minimizing the loss function:

L = 1
T

∑
i(yi −Q(si, ai|θQ))2

where yi = ri + γQ′(si+1, π
′(si+1|θπ

′
)|θQ′

)

The actor is trained using the sampled policy gradient:

∇θπJ ∼ 1
T

∑
∇aQ(s, a|θQ)|s=si,a=ai∇θππ(s|θπ)|s=si

The sampled policy gradient with respect to the actor’s parameters θπ is com-

puted by backpropagation through the combined actor and critic network.

2.2.2 Twin Delayed Deep Deterministic Policy Gradients

Policy gradient methods re-frame the goal of maximizing the expected return as the

minimization of a loss function L(θ) where θ encapsulates the agent parameters. A
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widely used policy gradient method is Deep Deterministic Policy Gradient (DDPG)

[141], a model-free RL algorithm developed for working with continuous, high

dimensional actions spaces. Recently, Fujimoto et al. extended DDPG to Twin

Delayed DDPG (TD3), [64] addressing the well-known overestimation problem

of the former. TD3 was shown to significantly improve upon DDPG and is the

state-of-the-art, off-policy algorithm for model-free deep reinforcement learning in

continuous action spaces. TD3 uses an actor-critic architecture [211] maintaining

a deterministic policy (actor) π : S → A, and two distinct action-value function

approximations (critics) Q : S ×A → Ri.

Each critic independently approximates the actor’s action-value function Qπ.

The actor and the critics are parameterized by (deep) neural networks with θπ, θQa ,

and θQb respectively. A separate copy of the actor π′ and critics: Q′a andQ′b are kept

as target networks for stability. These networks are updated periodically using the

actor π and critic networks: Qa and Qb regulated by a weighting parameter τ and

a delayed policy update frequency d.

A behavioral policy is used to explore the environment during training. The

behavioral policy is simply a noisy version of the policy: πb(s) = π(s) + N (0, 1)

where N is white Gaussian noise. After each action, the tuple (st, at, rt, st+1)

containing the current state, actor’s action, observed reward and the next state,

respectively, is saved into a replay buffer R. The actor and critic networks are

updated by randomly sampling mini-batches from R. The critic is trained by

minimizing the loss function:

Li = 1
T

∑
i(yi −Qi(si, ai|θQ))2
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where yi = ri + γ min
j=1,2
Q′j(si+1,

∼
a |θQ

′
j)

where ∼a is the noisy action computed by adding Gaussian noise clipped to

between −c and c. ∼a = π′(si+1|θπ
′
) + ε, clip

(
ε ∼ N (µ, σ2) − c, c

)
This noisy action used for the Bellman update smoothens the value estimate

by bootstrapping from similar state-action value estimates. It serves to make the

policy smooth and addresses overfitting of the deterministic policy. The actor is

trained using the sampled policy gradient:

∇θπJ ∼ 1
T

∑
∇aQ(s, a|θQa )|s=si,a=ai∇θππ(s|θπ)|s=si

The sampled policy gradient with respect to the actor’s parameters θπ is com-

puted by backpropagation through the combined actor and critic network.

2.2.3 Evolutionary Algorithm

Evolutionary algorithms (EAs) are a class of search algorithms with three primary

operators: new solution generation, solution alteration, and selection [62, 198].

These operations are applied on a population of candidate solutions to continu-

ally generate novel solutions while probabilistically retaining promising ones. The

selection operation is generally probabilistic, where solutions with higher fitness

values have a higher probability of being selected. Assuming higher fitness val-

ues are representative of good solution quality, the overall quality of solutions will

improve with each passing generation. In this work, each individual in the evo-

lutionary algorithm defines a deep neural network. Mutation represents random
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perturbations to the weights (genes) of these neural networks. The evolutionary

framework used here is closely related to evolving neural networks, and is often

referred to as neuroevolution [59, 148, 179, 202].

Algorithm 1 A simple Evolutionary Algorithm (EA)

1: Initialize k random solutions
2: for Each generation do
3: for Each solution do
4: Probabilistically perturb solution through mutation and/or crossover
5: Assign fitness score based on performance
6: Probabilistically select for survival commensurate with its fitness score

2.2.4 Cooperative Coevolutionary Algorithm

Cooperative Coevolutionary Algorithms (CCEAs) are an extension of Evolutionary

Algorithms (EA) [198, 62] that deal with multiple evolving sub-populations, and

have been shown to perform well in cooperative multi-robot domains [58]. Multiple

populations evolve in parallel, with each population developing a policy for one of

the robots in the team. Policies from each population are drawn to form a team

of robots, and the overall performance of this team is evaluated using a fitness

function F (z), where z is the joint state of all robots in the team. This fitness is

then assigned to each policy in the team.

The key difference between a CCEA and an EA is the assignment of fitness

to each evolving robot’s policy. In a traditional EA, the fitness of a policy is

simply the system performance attained by that policy. However, in a CCEA,

all the robots in the team affect the overall system performance; this means that
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the fitness of a robot’s policy is based on its interactions with its teammates. In

practice, teams are constructed by randomly sampling across populations resulting

in context-dependent and subjective fitness assignment [37].
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Chapter 3: Modular Memory Units

The first thread of research uses memory to better identify and associate reward

with its corresponding actions that was taken in the past. Remembering key

features from past observations, and using it towards future decision making is a

crucial part of most living organisms that exhibit intelligent adaptive behaviors.

Agents that can use memory to identify and retain variable-scale temporal patterns

dynamically, and retrieve them in the future have a distinct advantage in most

real world scenarios where observations in the past affect future decision making

[12, 75]. The neuroscience literature has increasingly emphasized the importance

of explicit working memory as a pillar for learning intelligent behavior [95, 220].

The most prominent method of incorporating memory into a neural network

is through Recurrent Neural Networks (RNNs), a class of neural networks that

store information from the past within hidden states of the network. GRUs and

LSTMs, variations of RNNs with gated activations have been widely applied to a

range of domains and represent the state-of-the-art in many sequence processing

tasks [79, 208]. Please see Chapter 2.1 for a comprehensive description of these

neural architectures.

However, a common structure across all existing RNN methods is the inter-

twining of the central feedforward computation of the network and its memory

content. This is because the memory is stored directly within the hidden states
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(GRU) or the cell state (LSTM). Since the output is a direct function of these

hidden states/cell state, the memory content is tied to be updated alongside its

output. An alternative approach is to record information in an external memory

block, which is the basic idea behind Neural Turing Machines (NTMs) [82] and Dif-

ferentiable Neural Computers (DNCs) [83]. Although they have been successfully

applied to solve some complex structured tasks [89], these networks are typically

quite complex and unwieldy to train [107]. NTMs and DNCs use “attention mech-

anisms” to handle the auxiliary tasks associated with memory management, and

these mechanisms introduce their own set of parameters further exacerbating this

difficulty.

To address this issue, we introduce a new memory-augmented network archi-

tecture called Modular Memory Unit (MMU), which unravels the memory and

central computation operations but does not require the costly memory manage-

ment mechanisms of NTMs and DNCs. MMU borrows closely from the GRU,

LSTM and NTM architectures, inheriting the relative simplicity of a GRU/LSTM

structure while integrating a memory block which is selectively read from and writ-

ten to in a fashion similar to an NTM. MMU adds a write gate that filters the

interactions between the network’s hidden state and the updates to its memory

content. The effect of this is to decouple the memory content from the central

feedforward operation within the network. The write gate enables refined control

over the contents of the memory, since reading and writing are now handled by

two independent operations, while avoiding the computational overhead incurred

by the more complex memory management mechanisms of an NTM.
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3.1 Methodology

MMU uses input, read and write gates, each of which contribute to filtering and

directing information flow within the network. The read and write gates control the

flow of information into and out of the memory block, and effectively modulate

its interaction with the hidden state of the central feedforward operation. This

feature allows the network to have finer control over the contents of the memory

block, reading and writing via two independent operations. Figure 3.1 details the

bottom-up construction of the MMU neural architecture.

Each of the gates in the MMU neural architecture uses a sigmoid activation

whose output ranges between 0 and 1. This can roughly be thought of as a filter

that modulates the part of the information that can pass through. Given the

current input xt, memory cell’s content mt−1 and last output yt−1, the input gate

it and intermediate block input pt is computed as

it = σ
(
Kix

t +Riy
t−1 +Nim

t−1 + bi
)

Input gate

pt = φ
(
Kpx

t +Npm
t−1 + bp

)
Block input

(3.1)

Here, K, R, N , Z represent trainable weight matrices while b represents the

trainable bias weights. σ represents the sigmoidal activation function while φ and

θ represents any non-linear activation function. Next, the read gate rt and decoded
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Illustration of a bottom up construction of a MMU: (a) We start with
a simple feedforward neural network, whose hidden activations are marked as h.
(b) We add a disconnected memory block, which now contributes information to
the hidden activation. (c) We close the loop, and allow the hidden activation to
modulate the memory block. (d) We add the input gate, which acts as a filter
on information flow into the network. (e) We add a read gate, which filters the
amount of information read from memory at each step. (f) Finally, we introduce a
write gate, which controls the information flow that modulates the content within
the memory block.
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memory dt is computed as:

rt = σ
(
Krx

t +Rry
t−1 +Nrm

t−1 + br
)

Read gate

dt = θ
(
Ndm

t−1 + bd
)

Memory decoder

(3.2)

The hidden activation is then computed by combing the information from the

environment filtered by the input gate and information stored in memory filtered

by the read gate.

ht = rt � dt + pt � it Hidden activation

(3.3)

The hidden activation is then encoded to the dimensionality of the memory

cell using the memory encoder f t, filtered using the write gate wt and is then used

to update the memory cell content mt. α is a hyperparameter that controls the

nature of the memory update: ranging from a strictly cumulative update (α = 0)

to an interpolative update (α = 1). wt is used to interpolate between the last

memory content and the new candidate content given by f t.

wt = σ
(
Kwx

t +Rwy
t−1 +Nwm

t−1 + bw
)

Write gate

f t = θ
(
Zfh

t + bf
)

Memory encoder

mt = (1− α)
(
mt−1 + wt � f t

)
+ α

(
wt � f t +

(
1− wt

)
�mt−1) Memory update

(3.4)
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The new output yt is then computed as

yt = φ
(
Zyh

t + by
)

New output

(3.5)

Equations (3.1)-(3.5) specify the computational framework that constitute the

MMU neural architecture. Qualitatively, a MMU can be thought of as a standard

feedforward neural network with five major additions.

1. Input Gate: The input gate filters the flow of information from the envi-

ronment to the network. This serves to shield the network from the noisy

portions of each incoming observation and allows it to focus its attention on

relevant features within its observation set.

2. Memory Decoder: The memory decoder serves to decode the contents of

memory to be interpreted by the network’s central computation. Specifically,

the decoder transcribes the memory’s contents to a projection amenable to

incorporation with the network’s hidden activations. This decouples the size

of the network’s hidden activations to the size of the external memory.

3. Selective Memory Read: The network’s input is augmented with con-

tent that the network selectively reads from the decoded external memory.

The network has an independent read gate which filters the content decoded

from external memory. This serves to shape the contents of memory as per

the needs of the network, protecting it from being overwhelmed with noisy

information which might not be relevant for the timestep.
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4. Memory Encoder: The memory encoder serves to encode the contents

of the network’s central computation so that it can be used to update the

external memory. Specifically, the encoder transcribes the network’s hidden

activations to a projection amenable to updating the external memory.

5. Selective Memory Write: The network engages a write gate to selectively

update the contents of the external memory. This gate allows the network to

report salient features from its observations to the external memory at any

given time step. The write gate that filters this channel of information flow

serves to shield the external memory from being overwhelmed by updates

from the network.

A crucial feature of the MMU neural architecture is its separation of the mem-

ory content from the central feedforward operation (Fig. 3.1). This allows for reg-

imented memory access and update, which serves to stabilize the memory block’s

content over long network activations. The network has the ability to effec-

tively choose when to read from memory, update it, or simply ignore

it. This ability to act in detachment allows the network to shield the

memory from distractions, noise or faulty inputs; while interacting with

it when required, to remember and process useful signals. This decou-

pling of the memory block from the feedforward operation fosters reliable long

term information retention and retrieval.

The memory encoder and decoder collectively serve to decouple the information

representations held within the external memory, and the representations within

the hidden activations of the MMU network. This allows separation between the
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volume of computation required for reactive decision making (processing the cur-

rent input) and the volume of information that needs to be retained in memory

for future use.

For example, consider a recurrent convolutional network processing video input

to count the number of frames where a dog appeared. For each frame (element

in sequence), a vast number of features have to be extracted and processed to

classify whether a dog appeared or not. This requires a large number of hidden

activations, often in the scale of thousands. However, the volume of information

that has to be retained in memory for future use in this task is simply the current

running count of the number of frames where the dog appeared. This is significantly

smaller when compared to the volume of information that has to be fed forward

through the network’s hidden activations for instance classification. Additionally,

the representation of information between computing image features, and keeping

a running count can be very different. Constraining the size and representation of

these two modes of information is undesirable. The memory encoder and decoder

collectively address this issue by decoupling the size and representation between

memory and hidden activations.

In this work, we test the MMU’s efficacy in retaining useful information across

long temporal activations, while simultaneously shielding it from noise. Our focus

here is to test the MMU’s capability in dealing with the difficulties defined by

the depth of the temporal sequence (number of timesteps the information has to

selectively retained for), rather than the volume of the information that has to be

propagated in memory. The tasks we use to test our MMU network is designed



42

Input

Last Output

       Memory

Input Last Output

Memory Block

Sigm

Sigm

Input
Last Output

       Memory Input
Last Output

       Memory

Sigm Output

tanh

Input Gate

Read Gate Write Gate

Sigm

tanh

Unweighted Connection

Weighted Connection

Matrix Addition

Matrix Multiplication

Sigmoid activation

Hyperblic tangent activation

LEGEND

Sigm

Sigm

Figure 3.2: MMU neural architecture detailing the weighted connections and acti-
vations used in this paper. Last Output represents the recurrent connection from
the previous network output. Memory represents the peephole connection from
the memory block.

to challenge this axis of difficulty. The MMU network is designed to be a highly

reconfigurable and modular framework for memory-based learning. We exploit this

reconfigurability and set a prior for our network to expedite training. We set α to 0

while setting the memory encoder (f t) and memory decoder (dt) from Equation 3.2

and Equation 3.4 as identity matrices, and freeze their weights from training. This

virtually eliminates the decoding and encoding operation from our MMU network

which we deem surplus to requirements for the depth-centered experimentation in

this paper. Figure 3.2 shows the detailed schematic of the MMU instance.

Training We use neuroevolution to train our MMU network. However, memory-

augmented architectures like the MMU, can be a challenge to evolve, particularly
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Algorithm 2 Neuroevolutionary algorithm used to evolve the MMU network

1: Initialize a population of k neural networks
2: Define a random number generator r() with output ∈ [0, 1)
3: for Generation do
4: for Network do
5: Compute fitness

6: Rank the population based on fitness scores
7: Select the first e networks as elites where e = int(ψ*k)
8: Select (k − e) networks from population, to form Set S using tournament

selection
9: for Network N ∈ Set S do
10: for weight matrix W ∈ N do
11: if r() < mutprob then
12: Randomly sample and perturb weights in W with 10% Gaussian

noise

due to the highly non-linear and correlated operations parameterized by its weights.

To address this problem, we decompose the MMU architecture into its component

weight matrices and implement mutational operations in batches within them.

Algorithm 5 details the neurovolutionary algorithm used to evolve our MMU ar-

chitecture. The size the population k was set to 100, and the fraction of elites ψ

to 0.1.

3.2 Experiment 1: Sequence Classification

Our first experiment tests the MMU architecture in a Sequence Classification task,

which has been used as a benchmark task in previous works [176]. Sequence

Classification is a deep memory classification experiment where the network needs

to track a classification target among a long sequence of signals interleaved with



44

Figure 3.3: Sequence Classification: The network receives a sequence of input
signals interleaved with noise (0’s) of variable length. At each introduction of a
signal (1/-1), the network must determine whether it has received more 1’s or
-1’s. MMU receives an input sequence and outputs a value between [0,1], which is
translated as -1 if the value is between [0,0.5) and 1 if between [0.5,1].

noise. The network is given a sequence of 1/-1 signals, interleaved with a variant

number of 0’s in between. After each introduction of a signal, the network needs

to decide whether it has received more 1’s or -1’s. The number of signals (1/-1s)

in the input sequence is termed the depth of the task. A key difficulty here are

distractors (0’s) that the network has to learn to ignore while making its prediction.

This is a difficult task for a traditional neural network to achieve, particularly as

the length of the sequence (depth) gets longer.

Note that this is a sequence to sequence classification task with a strict success

criteria. In order to successfully classify a sequence, the network has to output

the correct classification at each depth of the sequence. For instance, to correctly

classify a 10-deep sequence, the network has to make the right classification at

each of the intermediary depths: 1,2,..,9 and finally 10. If any of the intermediary

classification are incorrect, the entire sequence classification is considered incorrect.

Further, the number of distractors (0’s) is determined randomly following each
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Figure 3.4: (a) Success rate for the Sequence Classification task of varying depth
using MMU. (b) Comparison of MMU with NEAT-RNN and NEAT-LSTM (ex-
tracted from [176]). NEAT-RNN and NEAT-LSTM results are based on 15,000
generations with a population size of 100 and are only available for task depth up
to 6. MMU results are based on 1,000 generations with the same population size
and tested for task depths of up to 21.

signal, and ranges between 10 and 20. This variability adds complexity to the

task, as the network cannot simply memorize when to pay attention and when to

ignore the incoming signals. The ability to filter out distractions and concentrate

on the useful signal, however, is a key capability required of an intelligent decision-

making system. Mastering this property is a necessity in expanding the integration

of memory-augmented agents in myriad decision-making applications. Figure 3.3

describes the Sequence Classification task and the input-output setup to our MMU

network.
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3.2.1 Results

During each training generation, the network with the highest fitness was selected

as the champion network. This network was then tested on a separate test set

of 50 experiments, generated randomly for each generation. The percentage of

the test set that the champion network solved completely was then logged as the

success percentage and reported for that generation. Ten independent statistical

runs were conducted, and the average with error bars reporting the standard error

in the mean are shown.

Figure 3.4a shows the success rate for the MMU neural architecture for varying

depth experiments. MMU is able to solve the Sequence Classification task with

high accuracy and fast convergence. The network was able to achieve accuracies

greater than 80% within 500 training generations. The performance also scales

gracefully with the depth of the task. The 21-deep task that we introduced in

this paper has an input series length ranging between {221, 441}, depending on

the number of distractors (0’s). MMU is able to solve this task with an accuracy

of 87.6% ± 6.85%. This demonstrates MMU’s ability to capture long term time

dependencies and systematically handle information over long time intervals.

To situate the results obtained using the MMU architecture, we compare them

against the results from [176] for NEAT-LSTM and NEAT-RNN (Fig. 3.4b). These

results for NEAT-LSTM and NEAT-RNN represent the success percentage after

15,000 generations while the MMU results represent the success percentage after

1,000 generations. MMU demonstrates significantly improved success percentages
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across all task depths, and converges in 1/15th of the generations.

3.2.2 Generalization Performance

Section 3.2.1 tested the networks for the ability to generalize to new data using

test sets. In this section, we take this notion a step further and test the network’s

ability to generalize, not only to new input sequences, but to tasks with longer

depths or noise sequences than what they were trained for.

3.2.2.1 Generalization to Noise

Figure 3.5(a) shows the success rate achieved by the networks from the preceding

section when tested for a varying range of noise sequences (number of distrac-

tors), extending up to a length of 101. All the networks tested were trained for

distractor sequence length between 10 and 20. This experiment seeks to test the

generalizability of the strategy that the MMU network has learned to deal with

noise. Overall, the networks demonstrate a decent ability for generalization to-

wards varying length of noise sequences. The network trained for a task depth of

21, was able to achieve 43.2%± 13.2% success when tested with interleaving noise

sequences of length 101. This length of noise sequence results in the total input

sequence length of 2041, which is an extremely long sequence to process. The peak

performance across all the task depths is seen between noise sequences of length

between 10 and 20. This is expected as this is the length of noise sequences that
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(a) (b)

Figure 3.5: (a) MMU network’s generalization to an arbitrary number of distrac-
tors (length of interleaving noise sequences) within the task. All MMUs shown
were trained for tasks of their respective depths with variable length of distractors
(noise) randomly sampled between 10 and 20. These were then tested for inter-
leaving noise sequences ranging from 0 to 101. (b) MMU network’s generalization
to arbitrary depths of the task. We tested MMU networks across a range of task
depths that they were not originally trained for. The legend indicates the task
depth actually used during training.

the networks were trained for. The performance degrades as we vary the length

of the noise sequence away from the 10 − 20 range. However, this degradation

in performance is graceful and settles to an equilibrium whereafter increases in

noise sequence length do not affect performance. This equilibrium performance

reflects the core generalizability of the MMU’s strategy to deal with noise.

Interestingly, decreasing the length of the noise sequence leads to virtually the

same rate of degradation as increasing it. This suggests that the loss of performance

suffered by MMU when tested with noise sequence lengths beyond its training, is

caused more by the MMU’s specialization to the expected 10-20 range, rather

than its inability to process variable length noise sequences. In other words, the
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MMU is exploiting the consistency of the noise sequence lengths being between

10-20. Additionally, the equilibrium performance that the MMU network settles

on, also seem to be higher for tasks with lower depths. The severity in loss of

generalization to lengths of noise sequences grows with the depth of the task. This

can be attributed to the sheer volume of additional noise added. For example, a

4-deep task consists 4 signals interleaved with 3 noise sequences while a 21-deep

task consists of 21 signals interleaved with 20 noise sequences. An increase in the

length of each of the noise sequences thus introduces significantly more noise to

the 21-deep case when compared with the 4-deep case.

3.2.2.2 Generalization to Depth

Figure 3.5(b) shows the success rate achieved by the networks from the preceding

section when tested for a varying range of task depths, extending up to a depth

of 101. Overall, the networks demonstrate a strong ability for generalization. The

network trained for a task depth of 21, was able to achieve 50.4%±9.30% success in

a 101 deep task. This is a task with an extremely long input sequence ranging from

{1111, 2121}. This shows that MMU is not simply learning a mapping from an

input sequence to an output classification target sequence, but a specific method

to solve the task at hand.

Interestingly, training MMU on longer depth tasks seem to disproportionately

improve its generalization to even larger task depths. For example the network

trained on a 5-deep task achieved 36.7%± 4.32% success in a 16-deep task which
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is approximately thrice as deep. A network trained trained on the 21-deep task,

however achieved 56.4% ± 10.93% success in its corresponding 66-deep task (ap-

proximately thrice as deep). This shows that, as the depth of the task grows, the

problem becomes increasingly complex for the network to solve using just the map-

ping stored within its weights. Even after ignoring the noise elements, a task depth

of 5 means discerning among 25 possible permutations of signal, whereas a depth

of 21 means discerning among 221 permutations. Therefore, training a network on

deeper tasks forces it to learn an algorithmic representation, akin to a ‘method’,

in order to successfully solve the task. This lends itself to better generalization to

increasing task depths.

3.2.3 Case Study

The selective interaction between memory and the central feedforward operation

of the network is the core component of the MMU architecture. To investigate the

exact role played by the external memory, we performed a case study to probe the

memory contents as well as the protocols for reading and writing.

We analyzed evolved MMU networks and identified one particular network

within the stack trained on the 21 deep task. This specific individual network

exhibited perfect generalization (100% success) to all but the 96-deep and 101-

deep task sets, in which it achieved 98.0% and 96.0% respectively. Additionally,

this network also achieved perfect generalizability to increasing the length of noise

sequences, achieving 100% success for all noise sequence lengths. We will refer to
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this specific network as 21-champ and use this network to perform case studies at

multiple levels of abstraction. First, we perform a case study for a specific depth

of task, highlighting all of its possible configurations (sequence of signals) and the

corresponding final memory contents achieved while solving them. Secondly, we

perform a finer study where we use a trained MMU network to solve a singular

instance of a task, and investigate the magnitude of read-write interactions at

every time step. Finally, we will test the memory representations that the network

uses to encode its intermediate variables, operations that use them, and decode

the pseudo algorithm that the network has seemingly learned.

3.2.3.1 Task Level Study

For every depth of the sequence classification task, there are a large but finite

number of unique permutations for the input sequence. A primary contributor

to this large possible set of input sequences is the variable number of distractors

interleaved between signals. If we ignore the variable number of distractors (noise),

the number of permutations of inputs for each task is simply 2d where d is the

depth of the task (1 or −1 for each signal). For example, in a 2-deep task we can

have either of {[1,−1], [1, 1], [−1,−1], [−1, 1]} as our input sequence, ignoring the

distractors (0’s) in between. We will refer to each of these unique input sequences

as a permutation.

The task-level case study seeks to identify the distinctions within the memory

content in response to different permutations of input sequences spanning a specific
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task depth. Since the number of unique permutations even after ignoring the

variable number of distractors scales exponentially, we use a smaller task depth

of 3 to conduct our analysis. This leads to 8 unique permutations of the input

sequence. We set the number of distractors to a constant of 15 while testing to

allow for a fair comparison.

The 21-champ network is able to solve all the permutations successfully. The

21-champ network has 5 units of memory, 3 of which it holds constant. How-

ever, this is deceiving. We tested the marginal value of each memory unit to the

network’s operation by masking each memory unit. We found that although the

network held 3 units constant and only updated 2, it needed 3 memory units to

be able to classify all 8 permutations successfully. Out of the 3 memory units that

the network held constant, a specific one was necessary to maintain the network’s

100% success performance. Overall, the network required the second, third and

fifth units (M2, M3, M5) to solve all 8 permutations. The network modified the

values of M3 and M5 as it observed signals while M2 was held constant. The

network is seemingly using M2 unit as a bias while the other two units encode the

current state of the cumulative sum.

Table 3.1 shows the results for running our 21-champ network across all 8 per-

mutation of 3-deep sequence classification task (setting the number of distractors

to a constant value of 15). The sum refers to the cumulative sum of real signals

(input sequences). While comparing the final memory states explicitly against each
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# Permutation Sum Final Memory State [M2, M3, M5] Signature

1 [-1,-1,-1] -3 [-0.33,-1.51, 2.72, 0.84, -0.80] [-1.51, 2.72, -0.80] [0,2,1]
2 [-1,-1,1] -1 [-0.33,-1.51, 1.73, 0.84, -1.46] [-1.51, 1.73, -1.46] [0,2,1]
3 [-1,1,-1] -1 [-0.33,-1.51, 1.73, 0.84, -1.46] [-1.51, 1.73, -1.46] [0,2,1]
4 [1,-1,-1] -1 [-0.33,-1.51, 1.73, 0.84, -1.46] [-1.51, 1.73, -1.46] [0,2,1]
5 [-1,1,1] +1 [-0.33,-1.51, 0.78, 0.84, -2.36] [-1.51, 0.78, -2.36] [2,0,1]
6 [1,-1,1] +1 [-0.33,-1.51, 0.78, 0.84, -2.36] [-1.51, 0.78, -2.36] [2,0,1]
7 [1,1,-1] +1 [-0.33,-1.51, 0.78, 0.84, -2.36] [-1.51, 0.78, -2.36] [2,0,1]
8 [1,1,1] +3 [-0.33,-1.51, 0.01, 0.84, -3.34] [-1.51, 0.01, -3.34] [2,0,1]

Table 3.1: Final memory states for a fully trained MMU network across all unique
permutations of the 3-deep Sequence classification task (number of distractors set
to a constant value of 15).

other is extremely difficult, we observed some interesting patterns. The final mem-

ory state was entirely predictive of the cumulative sum of the corresponding input

permutation. In other words, permutations with the same sum ended up with the

same final relevant memory state regardless of the ordering of the signals in the

input sequence. The final memory state is a coarse record of the cumulative cen-

tral feedforward-memory interactions within that run. The unique mapping from

cumulative sum to final memory state indicates that this coarse representation is

predictive of the interactions that are necessary for representing that cumulative

sum.

The two memory units that vary across different permutations (M3 and M5)

also demonstrated a monotonic decrease in the magnitude of final activation value

as the cumulative sum increased. Additionally, we sorted the three relevant final

memory states (M2, M3 and M5) in ascending order and recorded the sorted index

as its signature. The correct classification at any depth of this task depends on the



54

cumulative sum. In other words, the permutations with the negative cumulative

sum should be classified as −1 while the ones with a positive cumulative sum

as 1. The memory signature observed at this depth is entirely predictive of this

binary classification. The network seems to be interpreting the memory signature

(relative values of the unit’s activations) directly to make a classification.

Collectively, the network is using the specific magnitude of memory states to

encode the magnitude of the cumulative sum, while using the memory state’s

relative relationship (signature) to make classification decisions. This is akin to

tracking the cumulative sum and using its sign (whether positive or negative), to

make classification decisions for each depth. This is an optimal policy to solve the

Sequence classification task, and is representative of what a human solver might

perhaps do. The MMU seems to be executing this very policy using a distributed

representation of the cumulative sum.

3.2.3.2 Role of Selective Memory Access

We investigate the role of selective memory access facilitated by the read/write

gates. Figure 3.6 illustrates the write interaction between memory and central

feedforward part of the MMU network during the course of one experiment where

the input sequence contains the signals [-1,1,-1] interleaved with variable-length

distractors. A clear pattern emerges from the heatmap of the write activations.

Memory Units M3 and M5 are the only units written to during the entire run. M3

and M5 are written to when a −1 and +1 is encountered, respectively. When a
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Figure 3.6: Illustration of the write interaction between memory and the central
feedforward network in a 3-deep #3 permutation task from Table 3.1. The input
sequence contains three signals [-1,1,-1] with 0s interleaved between them (x-axis
of the heatmap). The color scheme corresponds to a scale of memory update
magnitudes. Write activations in response to each individual input is shown for
each of the five memory units.

distractor is encountered, the memory is shut off and nothing is written to it. This

is demonstrative of the MMU’s mechanism to shield memory from noisy

activations, while selectively updating it when a signal is encountered.

The selective shielding of memory content from noise was consistent across all

other depths (not shown here). This behavior seems to have evolved as a general

protocol for dealing with the variable length distractors.

Figure 3.7 illustrates the write activations during the course of a 21-deep task

instance. The input sequence in this task contain 21 signals in the format [-1,1,-

1,1,-1....]. The pattern is that the signal starts with −1 and each subsequent signal

flips the sign from its predecessor. The signals are interleaved with variable number

of 0s ranging between 10 and 20 as usual. The write activation for the part of the

sequence with 0s (distractors) were consistently zero (similar to Figure 3.6) and

were thus omitted from the plot. Memory Unit (M3) is written to when a −1 is

encountered while M5 is written to when a +1 is encountered. This pattern is
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Figure 3.7: Illustration of the write interaction between memory and the central
feedforward network in a 21-deep task with input sequence that followed the format
[-1,1,-1,1,-1...] (flipping subsequent signal) interleaved with a variable number of
0s. The activations for the noise inputs (0s) are not shown but were all constantly
0s.

consistent across the entire sequence. This is indicative of the network’s protocol

for memory consolidation, tracking and retaining the number of times −1 and

+1 is encountered, separately and independently.

3.2.3.3 Memory Representation

The memory consolidation protocol demonstrates that the 21-champ network sys-

tematically updates specific memory units in response to specific inputs. M3 and

M5 track the number of -1s and +1s observed, respectively. However, to success-

fully solve the sequence classification task, it is necessary to reliably represent the

cumulative sum of the signals at any time. For example, in a 21-deep task, con-

sider an extreme input sequence which has 10 counts of 1s followed by 11 counts of

-1s (disregarding interleaving distractors). For this task, the correct classification
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sequence would be 1 for the first 20 depths and -1 for the 21st depth. This is

because the cumulative sum in this task instance is always positive, except for the

final depth. The cumulative sum is at its maximum value of +10 at depth 10, 0

at depth 20, and finally -1 at depth 21. To solve this task instance, it is necessary

for the network to precisely represent the cumulative sum at any given timestep,

discriminating between their magnitudes reliably.

#-1s #1s Memory State M3 M5

1 0 [-0.33, -1.51, 0.78, 0.84, -0.80] 0.78 -0.80
2 0 [-0.33, -1.51, 1.72, 0.84, -0.80] 1.72 -0.80
5 0 [-0.33, -1.51, 4.72, 0.84, -0.80] 4.72 -0.80
100 0 [-0.33, -1.51, 99.72, 0.84, -0.80] 99.72 -0.80
1000 0 [-0.33, -1.51, 999.72, 0.84, -0.80] 999.72 -0.80
10000 0 [-0.33, -1.51, 1244.72, 0.84, -0.80] 1244.72 -0.80
100000 0 [-0.33, -1.51, 1244.72, 0.84, -0.80] 1244.72 -0.80
100000 1 [-0.33, -1.51, 1244.72, 0.84, -1.46] 1244.72 -1.46
100000 2 [-0.33, -1.51, 1244.72, 0.84, -2.36] 1244.72 -2.36
100000 5 [-0.33, -1.51, 1244.72, 0.84, -5.34] 1244.72 -5.34
100000 100 [-0.33, -1.51, 1244.72, 0.84, -100.34] 1244.72 -100.34
100000 1000 [-0.33, -1.51, 1244.72, 0.84, -1000.34] 1244.72 -1000.34
100000 10000 [-0.33, -1.51, 1244.72, 0.84, -10000.34] 1244.72 -10000.34
100000 1000000 [-0.33, -1.51, 1244.72, 0.84, -1000000.34] 1244.72 -1000000.34

Table 3.2: Memory states at varying counts of -1 and 1s fed within the input
sequence

The 21-champ network represents the cumulative sum using M3 and M5, track-

ing the number of -1s and 1s observed, respectively. We tested the memory repre-

sentation that was used to encode these respective counts. Interestingly, we found

that the encoding M3 and M5 use is simply a slightly perturbed negation of the

actual count. Table 2 shows the memory representation when the input sequence
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contains up to 100,000 counts of -1s, followed by 1,000,000 1s interleaved with

variable number of 0s.

As shown in Table 2, M3 and M5 directly encode the number of -1 and 1 en-

countered, respectively. The reliability of this representation is remarkably robust.

M3 was able to successfully count the number of -1s encountered upto 1,244 intro-

ductions, after which it saturated. M5 on the other hand demonstrated virtually

indefinite generalizability, and was able to successfully count 1,000,000 introduc-

tions of 1s reliably. The length of the temporal sequence at this stage was approxi-

mately 20,000,000 (including the interleaving 0s). This ability to represent count is

particularly remarkable when we consider that the 21-champ network was trained

exclusively on 21-deep tasks, whose input sequences can only generate cumulative

sums between −21 and 21. The 21-champ network is instead able to represent

counts ranging from -1244 to 1,000,000 (at least, but likely more). Additionally,

representing counts of -1 and 1 encountered is not a specific objective the 21-champ

was explicitly trained on. Instead, these abilities were developed by the 21-champ

in order to solve the Sequence Classification task.

3.2.3.4 Pseudo Algorithm

The finer grain investigation into the 21-champ MMU network has provided insight

into its organization and operations that allows it to robustly and generally solve

the Sequence Classification Task. We put all these insights together and derive an

approximate pseudo-algorithm (shown in Algorithm 3) that the MMU network
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uses. M2 is used as a constant bias while M3 and M5 are used to count the -1 and

1s encountered. The classification decision at any time step is given by a function

f that maps the values of M2, M3, and M5 to a binary output.

Three core components lie at the heart of 21-champ’s successful operation.

Firstly, the read and write gates serve to selectively access memory, blocking noisy

activations (distractors) while allowing real signals to be registered. Secondly,

selective memory access facilitates reliable representations within memory that

are able to encode the count of each input encountered separately in two different

memory units. Finally, the feedforward operation of the network is able to predict

the correct binary classification at each time step by learning the function to infer

from the memory states. These components, acting independently from each other

collectively define a general strategy to solve the Sequence Classification Task.

Algorithm 3 Approximate pseudo-algorithm derived from the operations of the
21-champ MMU network

for Input Sequence do
for Item i in input do

if i == -1 then
M3 = M3 + 1̃

else if i == 1 then
M5 = M5 - 1̃

else
Block any update to memory

Compute Classification C = f(M2, M3, M5)
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Figure 3.8: Sequence Recall task: An agent listens to a series of instructional
stimuli (directions) at the start of the trial, then travels along multiple corridors
and junctions. The agent needs to select a turn at each junction based on the set
of directions it received at the beginning of the trial.

3.3 Experiment 2: Sequence Recall

For our second experiment, we tested our MMU architecture in a Sequence Recall

task (Fig. 3.8), which is also sometimes referred to as a T-Maze navigation task.

This is a popular benchmark task used extensively to test agents with memory

[14, 30, 176]. In a simple Sequence Recall task, an agent starts off at the bottom

of a T-maze and encounters an instruction stimulus (e.g sound). The agent then

moves along a corridor and reaches a junction where the path splits into two.

Here, the agent has to pick a direction and turn left or right, depending on the

instruction stimulus it received at the start. In order to solve the task, the agent

has to accurately memorize the instruction stimulus received at the beginning of

the trial, insulate that information during its traversal through the corridor, and

retrieve it as it encounters a junction.

The simple Sequence Recall task can be extended to formulate a more complex



61

deep Sequence Recall task [176], which consist of a sequence of independent junc-

tions (Fig. 3.8). Here, at the start of the maze, the agent encounters a series of

instruction stimuli (e.g. a series of sounds akin to someone giving directions). The

agent then moves along the corridor and uses the instruction stimuli (directions)

in correct order at each junction it encounters to reach the goal at the end. The

length of the corridors following each junction is determined randomly and ranges

between 10 and 20 for our experiments. This ensures that the agent cannot simply

memorize when to retrieve, use and update its stored memory, but has to react to

arriving at a junction.

The agent receives two inputs: distance to the next junction, and the sequence

of instructional stimuli (directions) received at the start of the trial. The second

input is set to 0 after all directions have been received at the start of the trial. The

agent’s action controls whether it moves right or left at each junction. In order to

successfully solve the deep Sequence Recall task, the agent has to accurately mem-

orize the instruction stimuli in its correct order and insulate it through multiple

corridors of varying lengths. Achieving this would require a memory management

protocol that can associate a specific ordered item within the instruction stimuli

to the corresponding junction that it serves to direct. A possible protocol that the

agent could use is to store the instruction stimuli it received in a first in first out

memory buffer, and at each junction, dequeue the last bit of memory and use it to

make the decision. This is perhaps what one would do, if faced with this task in a

real world scenario. This level of memory management and regimented update is

non-trivial to a neural network, particularly when mixed with a variable number
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Figure 3.9: (a) Success rate for the Sequence Recall task of varying depth. (b)
Comparison of MMU with NEAT-RNN and NEAT-LSTM (extracted from [176]).
NEAT-RNN and NEAT-LSTM results are based on 15,000 generations with a
population size of 100 and are only available for task depth up to 5. MMU results
are based on 10,000 generations with the same population size and are tested for
extended task depths of up to 6.

of noisy inputs.

3.3.1 Results

Figure 3.9a shows the success rate for the MMU neural architecture for varying

depth experiments. MMU is able to find good solutions to the Sequence Recall

task, achieving greater that 45% accuracy on all choices of task depths within

10,000 training generations. Figure 3.9b shows a comparison of MMU success

percentages after 10,000 generations of evolution with the results obtained using

NEAT-RNN, NEAT-LSTM and NEAT-LSTM-Info-max from [176] after 15,000

generations of evolution. The NEAT-LSTM-Info-max is a hybrid method that

first uses an unsupervised pre-training phase where independent memory modules
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Figure 3.10: MMU network’s generalization to arbitrary corridor lengths in the
Sequence Recall task. All MMUs shown were trained with corridor lengths ran-
domly sampled between 10 and 20. These were then tested for corridor lengths
ranging from 0 to 101.

are evolved using an info-max objective that seeks to capture and store highly

informative sets of features. After completion of this phase, the network is then

trained to solve the task.

As shown by Fig. 3.9b, MMU achieves significantly higher success percentages

for all task depths, with fewer generations of training except for the 1-deep case.

The difference is increasingly apparent as the depth of the task is increased. MMU’s

performance scales gracefully with increasing maze depth while other methods

struggle to achieve the task. MMU was able to achieve a 46.3% ± 0.9% success

rate after 10,000 generations on a 6-deep Recall Task that we introduced here.

An interesting point to note here is that neither MMU’s architecture, nor its

training method, have any explicit mechanism to select and optimize for maximally

informative features like NEAT-LSTM-Info-max. The influence of the unsuper-

vised pre-training phase was shown in [176] to significantly improve performance

over networks that do not undergo pre-training (also shown in Fig. 3.9b). MMU’s
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architecture is designed to reliably and efficiently manage information (including

features) over long periods of time, shielding it from noise and disturbances from

the environment. The method used to discover these features, or optimize their

information quality and density, is orthogonal to MMU’s operation. Combining

an unsupervised pre-training phase using the Info-max objective with a MMU can

serve to expand its capabilities even further, and is a promising area for future

research.

3.3.2 Generalization To Noise

Figure 3.10 shows the success rate achieved when tested for a varying range of cor-

ridor lengths, extending up to a length of 101. All the networks tested were trained

for corridor length between 10 and 20. This experiment tested the generalizability

of the strategy that the MMU network learns to deal with noisy corridors.

Overall, the networks demonstrate a modest ability for generalization towards

varying corridor lengths. The peak performance across all the task depths is seen

between noise sequences of length between 10 and 20. This is expected as this is

the length of noise sequences that the networks were trained for. The performance

degrades as we vary the length of noisy sequence (corridors) away from the 10-20

range. However, this degradation settles to an equilibrium whereafter increase in

noise sequence length does not affect performance. The degradation observed here

is more severe than the ones observed for the sequence classification task detailed

in Section 3.2.2.1. This is reflective of the added complexity of the Sequence Recall
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task relative to the Sequence Classification task.

Similar to Section 3.2.2.1, decreasing the length of the noise sequence leads

to virtually the same rate of degradation as increasing it. This suggests that the

loss of performance suffered by MMU when tested with noise sequence lengths

beyond its training, is caused more by the MMU’s specialization to the expected

10− 20 range, rather than its inability to process variable length noise sequences.

Further, the severity in loss of generalization to lengths of noise sequences grows

with the depth of the task. Similar to the Sequence Classification case, this can

be attributed to the growth in the sheer volume of the noise added as the depth

of the task is increased.

3.4 Differentiability

Experiments in Sections 3.2 and 3.3 demonstrated the MMU architecture’s compar-

ative advantage in retaining information over extended periods of noisy temporal

activations when compared to other RNN architectures. However, the training ap-

proach utilized was limited to neuroevolution. Gradient descent is a staple training

tool in machine learning and thus it is critical to demonstrate MMU’s applicability

within this context. In this section we implement a differentiable version of the

MMU and use gradient descent to train it. We then compare and contrast its per-

formance with neuroevolution within the context of the experiments from Section

3.2 and 3.3.

PyTorch [165], a Python based open source library for symbolic differentiation
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Figure 3.11: (a) Success rate for the Sequence Classification task of varying depth
for a MMU trained using gradient descent. 1000 reinforcement instances are ap-
proximately equivalent to a generation. (b) Comparison of gradient descent (GD)
and neuroevolution (NE) in training a MMU. (c/d) MMU network’s generalization
to distractor lengths (number of interleaving noise sequences)(c), and task depths
(d) within the Sequence Classification task. All MMUs shown were trained for
tasks of their respective depths with distractor lengths randomly sampled between
10 and 20. These were then tested for distractor lengths (c) and task depths (d)
ranging from 0 and 101.

was used to implement the differentiable version of the MMU network. Adam [123]

optimizer with a learning rate of 0.01 and L2 regularization 0.1 was used. Smooth

L1 loss was used to compute the loss function while a batch size of 1000 was used
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to compute the gradients. GPU acceleration using CUDA was used to expedite the

matrix operations responsible for gradient descent. The weights were initialized

using the Kaiming normal protocol [96]. Since the sequence lengths for both of our

tasks vary dynamically, we pad the sequence with zeros to make the final length

equal before using GPU acceleration. The operation protocol for each training

sample and hardware resources required for gradient descent and neuroevolution

vary widely. This poses a difficulty in defining a common experimentation frame-

work to rigorously compare these two approaches. For example, a generation in

neuroevolution is not readily comparable to a gradient descent epoch. The former

involves evaluating multiple solutions within the context of some training exam-

ples, and selecting the best performing one, while the latter involves one solution

learning marginally from all available training examples.

In this experiment, we perform these comparisons by controlling the number of

Reinforcement Instances for each training algorithm. We define reinforcement

instances as the number of times the method uses a training example to obtain

reinforcement about its attempted solution. For neuroevolution, a reinforcement

instance is defined as an individual network being evaluated in one training example

and getting a fitness score. For gradient descent, a reinforcement instance is defined

as one feedforward and backpropagation loop through a training example. In

essence, we are comparing the two training approaches by controlling the number

of training samples that each method uses to optimize its solution. Note that the

training samples are not guaranteed nor required to be unique.
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3.4.1 Sequence Classifier

Figure 3.11 show the success rate for the MMU neural architecture trained using

gradient descent for varying depth experiments, and its comparative performance

with neuroevolution. MMU is able to solve the Sequence Classification task with

good accuracy. However, the rate of convergence and the final success rates af-

ter 1000 reinforcement instances (comparable to a generation) is significantly lower

than the MMU trained with neuroevolution (Figure 3.4a in Section 3.2). In partic-

ular, the performance of gradient descent scales poorly with the depth of the task.

This is not surprising, as the length of the input sequence increases rapidly with in-

creasing task depth. Propagating error gradients backwards becomes increasingly

difficult as the length of the input sequence grows. The MMU trained through

neuroevolution (Figure 3.4a) sidesteps this problem by not relying on propagating

gradients backwards through the network’s activations. Additionally, the final suc-

cess achieved by the MMU trained using gradient descent has higher variance than

the one trained with neuroevolution. This can be attributed to gradient descent’s

sensitivity to varying weight initialization. The gradient descent method converges

to different local minima depending on varying weight initializations. Neuroevolu-

tion on the other hand is more robust to weight initializations, and leads to more

repeatable solutions.

Furthermore, compared to the MMU trained with neuroevolution (Section 3.2),

generalizability to larger numbers of interleaving noise, and depths is significantly

reduced (shown in Figure 3.11c and 3.11d). A network trained using gradient
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descent in the 21-deep task achieved 14.5% ± 2.30% on a 101-deep task while a

similar experiment for a network trained with neuroevolution yielded 50.4%±9.30%

(Section 3.2.2.2). The networks trained with gradient descent tend to specialize

more to the range of distractors, and depth they were trained for. When either of

these variables changed, the network’s performance degraded quickly.

3.4.2 Sequence Recall

(a) (b)

Figure 3.12: (a) Success rate for the Sequence Recall task of varying depth for a
MMU trained using gradient descent. A reinforcement instance is approximately
equivalent to a generation.(b) Comparison of MMU trained with gradient descent
(GD) with one trained using neuroevolution (NE) from Section 3.3.

Figure 3.13 shows the success rate achieved by the MMU trained using gradient

descent, when tested for a varying range of corridor lengths, ranging up to 101.

The capability for generalization to larger corridor lengths is comparable to the

MMU trained with neuroevolution (Section 3.3 Figure 3.10).
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Figure 3.13: MMU network’s generalization to arbitrary corridor lengths in the
Sequence Recall task. All MMUs shown were trained for tasks of their respective
depths with corridor lengths randomly sampled between 10 and 20.

Figure 3.12 shows the success rate for the MMU neural architecture trained

using gradient descent for varying depth experiments, and its comparative perfor-

mance with neuroevolution. MMU is able to solve the Sequence Recall task with a

very high level of accuracy. Interestingly, the rate of convergence and the final suc-

cess rates after 1000 reinforcement instances (comparable to a generation) is better

than the MMU trained with neuroevolution (Figure 3.9a in Section 3.3). Unlike

the Sequence Classification task in the previous section, the range of the depths

tested for Sequence Recall is relatively low. The primary limitation to applying

gradient descent is the difficulty of propagating errors backwards across long tem-

poral activations. An input to the 6-deep task can have a sequence length between

{72, 132}. While this is a long sequence, it is much shorter than the {221, 441}

range of the 21-deep task. In the depth ranges tested, gradient descent is thus able

to propagate errors backwards and successfully solve the Sequence Recall task.
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3.5 Conclusion and Future Work

Credit assignment is extremely difficult when the associated reward for an action

is only observed following after a period of time. Memory enables and agent to

make these associations, and is an integral component of learning . The ability to

store relevant information in memory and identify when to retrieve that data is

critical for effective decision-making in complex time-dependent domains. More-

over, knowing when information becomes irrelevant, and being able to discard it

from memory when such circumstances arise, is equally important for tractable

memory management and computation.

MMU, by virtue of its decoupled topology provides the network with the ability

to choose when to read from memory, update it, or simply ignore it. This capac-

ity to act in detachment from the memory block allows the network to shield the

memory content from noise and other distractions, while simultaneously using it

to read, store and process useful signals over an extended time scale of activation.

Results in two benchmark deep memory tasks demonstrate that MMU significantly

outperforms traditional memory-based methods. Further, MMU also exhibit ro-

bust generalization properties and can be trained readily using neuroevolution and

gradient-based techniques.

The experiments conducted in this paper tested reliable retention, propagation

and processing of information over an extended period of time. However, the size

and complexity of the information that needed to be retained was small and rela-

tively simple. Future experiments will develop and test MMU in tasks that require
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retention and manipulation of larger volumes of information. The size of the in-

formation being propagated (memory size) also approximately matched the size of

features necessary to be extracted (hidden nodes size). This excluded the memory

encoder and decoder aspects of the MMU from being used and tested. Future work

will include experiments where there is a mismatch between these two aspects of

network operation, to test the memory encoder and decoder functionalities of the

MMU architecture.
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Chapter 4: Memory-Based Distributed Multiagent Coordination

In the previous chapter, we demonstrated how memory could be used to improve

temporal credit assignment - making better associations between reward and ac-

tions taken in the past. However, it is unclear whether these augmented capabilities

can be leveraged in multiagent settings where tight coordination between a number

of agents is required. This chapter explores two distinct research applications ded-

icated to tackling this goal. Section 4.1 details the first application where memory

is used to augment each agent policies in order to solve dynamic tasks that re-

quire adaptive behavior. Section 4.2 details another application where an external

memory is used as a shared knowledge base among a team of agents for distributed

one-shot decision making.

4.1 Multiagent Coordination with Memory-Augmented Teams

Autonomous multi-robot teams can accomplish complex tasks in highly dynamic

and stochastic environments improving on both speed and effectiveness over single

robot approaches. However, multi-robot coordination is a complex control problem

especially when the task requires adaptive behaviors from the group of coordinating

robots.

The requirement for adaptive behavior imposed by the task definition institutes
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an added layer of complexity in learning. This complexity is orthogonal to the

one imposed by the need for adaptation to each other, inherent in a team of

robots acting concurrently. It is important to disambiguate these two requirements

for adaptive behavior, and consider each independently. The first statement of

adaptation is imposed by the environment itself. In well-defined, static and stable

environments, fixed and reactive robot behavior is generally sufficient. However,

when the environment is ever changing, highly dynamic, or is responsive to the

robot’s own policies, adaptive behaviors provide a huge selective advantage.

An example would be a mobile robot operating in a factory, that is tasked with

moving a package from Point A to Point B every hour. The robot takes route Z

which is the most efficient way to travel from A to B. However, sometimes this

path is obstructed due to construction or unforeseen disturbances. An adaptive

robot here would take path Z and observe the obstruction a couple of times, but

then would alter its policy to take another path Y for the next couple of deliveries

as it adapts to the obstruction.

Extending these adaptive tasks to a multi-robot system adds another layer of

complexity imposed by the concurrent actions of multiple robots operating within

the same environment. The individual robots could be learning or executing static

policies, and can differ in capability or objective. The robots may even differ by

versions, where a new iteration of robots are added to the team for the same task.

For example, a new and more capable generation of package delivery robots

may be introduced to the factory in our previous example. Instead of entirely

decommissioning or reprogramming the previous team, it is cheaper and much more
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effective to build the new team of robots to work alongside the team that is already

operational in the factory. Adapting to the previous team would allow the new

team of robots to augment its capability, and leverage the resources already present

in the factory towards a more effective strategy for package delivery. As robots

are increasingly deployed in the real world, such adaptive behaviors will become

increasingly important. This is particularly true in commercial applications like

cleaning robots, mowing robots or factory robots where heterogeneity within the

same task can be frequently borne out of iterations through the years, and adaptive

behavior will be crucial for effective reconciliation.

Features relevant to adaptive decision making are often distributed over a

robot’s current as well as its past states. Remembering past events can allow a

robot to more effectively adjust its behavior and adapt to local changes in the en-

vironment [50, 39]. Memory can also allow robots to better model other robots’ ca-

pabilities, limitations and policies, empowering them to form better joint strategies

and more complex coordination protocols. Adaptive behaviors for single robot sys-

tems have been explored in the past largely with the tools of memory [15, 17, 200].

However, the addition of further complexity in the form of other robots acting

concurrently is not widely explored for this class of adaptive tasks.

A body of work has leveraged memory to train adaptive behaviors in single

agent systems. Grabowski et al.[74] looked at the evolution of memory usage

in environments where information about past experience is required for optimal

decision making. Bakker used reinforcement learning in conjunction with a Long

Short Term Memory (LSTM) to solve a single T-Maze task [15]. Bayer et al.
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evolved varying LSTM cell structures [17] while Greve et al. recently evolved

Neural Turing Machines [88] to solve a more complicated version of the T-Maze.

However, all of these work deal with single agent systems that learn adaptive

behavior as exacted by the environment. The addition of further complexity in

the form of other agents acting concurrently is not widely explored for this class

of adaptive tasks.

Extending single agent approaches to multiagent settings presents challenges

in ensuring each agent learns to act in a way that benefits the entire team. A

viable decomposition of the team goal is rarely available or easily computable,

which necessitates for agents that learn to adapt to each other. Stone et al. [203]

highlights this need for collaboration of autonomous agents without preordained

protocols for coordination. Distributed policy learning is well suited to these kinds

of problems and has received much attention in the field of multiagent coordination.

Colby et al. [38] utilized a cooperative coevolutionary algorithm to train multi-

robot teams exploring an unknown space environment with humans in the loop.

Knudson and Tumer [126] co-evolved multi-robot teams to solve a tightly coupled

task requiring multiple robot observations and extended it to heterogeneous multi-

robot teams with varying capabilities. Hsieh et al. [104] developed a framework

for deployment of an adaptive heterogeneous team consisting of aerial and ground

robots, for an urban surveillance task.

We leverage the developments towards adaptive behavior facilitated through

the integration of memory, and extend it to tasks that require, or benefit from,

a team of robots learning to adapt and coordinate with each other. However, to
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benchmark out approach, we first introduce an extended T-Maze domain which

serves to marry the difficulties of a multi-robot system with the complication of

adaptive behavior prescribed by the task itself.

4.1.1 Extended T-Maze Domain

The T-Maze is a popular benchmark domain used to test for memory based adap-

tive behaviors in single robot applications [15][88]. We extend the T-Maze domain

to a multi-robot paradigm where multiple robots traverse the maze in search for

the reward. The location of the reward is changed periodically, and multiple robots

are required to coordinate tightly in exploring and observing the reward. The cor-

ridors of the maze are identical and indistinguishable which prevents the robots

from learning explicit value functions for the states. The robots are instead forced

to coordinate tightly with their teammates and learn joint strategies that adapt

to the changing reward location.

Figure 4.1 illustrates a 2-deep extended T-Maze domain with 2 robots. The

number of junctions that a robot has to navigate past to reach the endpoint is

termed the depth of the T-Maze. The 2-deep T-Maze with two binary decision

points (junctions) consists of four separate endpoints marked A, B, C and D. Each

robot starts off as shown, and navigates to one of the endpoints. This process is

termed a trial. During each trial, the reward is present at one of the endpoints,

and this location changes 2 times over the course of one evaluation. One full

evaluation consists of n trials where n is the number of unique endpoints multiplied
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Figure 4.1: Illustration of a 2-deep Extended T-Maze with 2 robots. Each robot
travels through the corridor and goes left or right at each junction, ending up in
one of the endpoints A, B, C or D. The number of robots can be scaled arbitrarily
by adding orthogonal planes sharing the endpoints.
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by 3. For example, a 2-deep T-Maze has 4 unique endpoints leading to 12 trials

per evaluation.

The robot records three values as its input. The first input measures the dis-

tance to the next junction. The second and third inputs are binary measurements

that specify whether other robots were present and whether reward was observed,

respectively, in the robot’s last trial. The goal of the robot is to maximize the

number of trials in which it observes the reward in coordination with the other

robots. In a single robot T-Maze case, a policy would be to explore the endpoints

in some defined sequence until the reward is observed. The robot then revisits the

endpoint where the reward was observed until the location of the reward changes.

At this point, the robot then resumes exploration of the endpoints to find the new

location. This policy is optimal in the single robot case, and will be termed the

static policy.

The extended T-Maze domain marries two distinct requirements for adaptive

behaviors in one general framework. The first requirement for adaptation is im-

posed by the task itself where the robot needs to alter its strategy in response to

the change of reward location. We will refer to this as task adaptation. The

difficulty level of task adaptation can be altered by modulating the depth of the

task. The second requirement of adaptive behavior is imposed by concurrent ac-

tions of multiple robots acting within the same environment and will be referred

to as multi-robot adaptation. Figure 4.1 illustrates two robots acting together,

but the number of robots can be scaled arbitrarily. The nature of multi-robot

adaptation can be specified by the objective function that maps the joint action of
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the multi-robot team to a system performance value. In this work, we specify two

such distinct objective function definitions:

Converge This objective function definition requires the reward and all the

robots to be at the same endpoint for the reward to be considered observed in

that trial. This is a tightly coupled objective definition which represents tasks like

picking up heavy objects that might not be solvable by one robot, and explicitly

require the co-presence of multiple robots.

Spread This is a loosely coupled objective function definition which requires the

reward and a minimum of one robot to be at the same endpoint for the reward to

be considered observed in that trial. This objective function represents tasks like

exploring or information collection which can be completed by one robot, but is

able to benefit from larger team sizes.

4.1.2 Multi-Robot Policy Training with Memory

We use a MMU network as our robot control policy leveraging its unique architec-

ture that decouples memory from its feedforward computation. This detachment

is crucial as our robots must be able to effectively filter noise and capture the

relevant information over the course of a traversal of the Extended T-Maze. For

example, a successful robot control policy should be able to ignore the noisy in-

puts as it travels the corridors of the T-Maze. Simultaneously however, in order

to effectively localize itself, the robot should be able to remember the number of
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junctions it has passed, as each corridor of the Extended T-Maze looks virtually

identical. Additionally, the robot also has to memorize relevant information about

its last exploration endpoint so that it can explore a new one for its next trial.

We use CCEA modified for neuroevolution [71][59] to train our neural network

control policies. However, memory-augmented architectures like the MMU, can be

a challenge to evolve, particularly due to the large number of weights that param-

eterize highly non-linear and correlated operations. To alleviate this problem, we

use independent mutational operators for each weight structure within our neural

architectures, and use probabilistic extinction to retain diversity in the population.

Algorithm 5 details the CCEA used to evolve our multi-robot teams. The

population k was set to 100, and the number of elites to 4% of k. M represents the

size of the team and varies between 2− 4 for varying experiments. The number of

randomly initialized simulations conducted to compute an evaluation, z was set to

7. The number of different teams an individual robot was drafted to, in order to

compute its fitness, φ was set to 5. The mutation probability mutprob, extinction

probability extinctprob and extinction magnitude extinctmag were set to 0.9, 0.004,

and 0.5 respectively.

4.1.3 Experimentation

We design a variety of experimental setups to evaluate out neural network con-

trollers in the Extended T-Maze domain. The axes of variations that characterize

our experiments are summarized below:
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Algorithm 4 CCEA used to evolve our multi-robot teams

1: Initialize M populations of k neural network policies
2: Define a random number generator r() ∈ [0, 1)
3: for each Generation do
4: for i = 1 : k × φ do
5: Select a network from each population randomly
6: Add networks to team Ti
7: Run z independent simulations for team Ti
8: Assign reward to each members of Ti

9: for each Population do
10: Rank networks based on fitness scores
11: Select the first e networks as elites
12: Probabilistically select (k − e) networks from the entire pool based on

fitness, to form Set S
13: for iteration (k − e) do
14: Randomly extract network Ni from Set S
15: for each weight matrix W ∈ Ni do
16: if r() < mutprob then
17: Randomly sample individual weights in W and mutate them

by adding 10% Gaussian noise

18: if r() < extinctprob then
19: for each Network Ni not in elites do
20: if r() < extinctmag then
21: Reinitialize Ni’s weights



83

(a) (b)

Figure 4.2: MMU and FF control policies are compared for a 2-deep (a) and 3-deep
(b) tightly coupled Extended T-Maze, where both the static and learning robot
have to be at the same endpoint alongside the reward to observe it.

Control Policy Architecture We test two distinct types of neural architectures

as control policies that learn. The first kind is a MMU network that has memory,

while the second type is a standard feedforward neural network (FF) without

any memory. The same training approach described in Section 4.1.2 was used to

evolve the FF control policies. This axis of variation evaluates the role of memory.

Robot Type We have two categories of robots working together in a team. The

first type of robots are learning robots that use either a MMU or feedforward

neural network as their policy, and are trained. The secondary category of robots

are static robots that use the static policy as described in Section 4.1.1. The

robot under the static policy explores the endpoints in a specific order, returns to

an endpoint if it finds a reward there, and resumes exploring as the reward location

is switched. This strategy is the optimal strategy for the T-Maze in a single robot

case, and represents a hard-coded optimal policy that is already operational on site
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in a real world setting. The learning robot’s goal is to augment the static robot

by adapting to work alongside it.

Static Robot Type We test two types of static robots based on their exploration

policy. The first type termed fixed static policy (FSP) will be a static robot

that has a fixed endpoint it starts with and a fixed routine of exploration. The

second type termed the randomly exploring static policy (RESP) will vary

the endpoint it starts with, and the pattern in which it explores. The RESP

represents an added challenge to the learning robots as they have to additionally

infer the type of static robot they are teamed with, by observing them during the

first couple of trials.

The protocol for computing the results were kept consistent across all the ex-

perimental variations. During each generation of training, the individual robot

with the highest fitness from its population was selected to be part of a champion

team. The champion team was then tested on a separate test set of 15 experi-

ments, generated randomly for each generation. The average reward achieved by

the champion team normalized by the number of trials, on this test set was then

logged and reported as the Test System Performance for that generation. This

protocol of a test set was implemented to shield the reported metrics from any bias

of the distribution of random reward locations, depth of the task, or the size of

the population. Ten independent statistical runs were conducted, and the average

with error bars reporting the standard error in the mean were logged.
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4.1.4 Experiment 1: Converge

This set of experiments test the multi-robot teams consisting of one static robot

and one learning robot, under the converge objective function as explained in

Section 4.1.1. This is a tightly coupled task definition where all the robots are

required to be alongside the reward to observe it.

Figure 4.2(a) shows the results for a 2-deep Extended T-Maze domain tested

against robots with both fixed (FSP) and randomly exploring static policies (RESP).

The brown dashed line represents the expected system performance for an optimal

joint policy between the learning robot and the FSP robot. The expected value for

optimal joint policy alongside the RESP is not easily computable, but is provably

lower than the FSP case. This is apparent as FSP is simply a special case of RESP

where the type of robot exploration routine is fixed. The robot using the MMU

network significantly outperforms the robot using the feedforward network as its

policy across both types of static robot types. The MMU control policy achieves

a system performance of 41.3± 2.4% and 33.7± 1.4% while the FF control policy

achieves a system performance of 15.0 ± 0.1% and 16.5 ± 0.2% for the FSP and

RESP variations respectively.

Figure 4.2(b) shows the results for a 3-deep Extended T-Maze domain tested

against robots with both fixed (FSP) and randomly exploring static policies (RESP).

The brown dotted line represents the expected system performance for an optimal

joint policy between the learning robot and the FSP. The robot using the MMU

network significantly outperforms the robot using the feedforward network as its
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control policy across both types of static robot types. The MMU control policy

achieves a system performance of 29.8±2.7% and 28.0±1.5% while the FF control

policy achieves a system performance of 7.1±0.2% and 8.0±0.1% for the FSP and

RESP variations respectively. The MMU robots’ performance alongside the FSP

static robot variation has also not fully converged and seems to be approaching

the expected optimal joint policy value of 33%.

The results in Figure 4.2 demonstrate that the robot using the MMU network

is able to learn effective policies that let it adapt to the varying types of static

robots. The robot using the FF network however fails to learn any intelligent joint

policy at all. The critical factor behind this disparity is memory, which is the

primary point of variation between the MMU and FF network architecture. The

FF robots do not have enough input information to form an effective strategy that

can learn to exploit the reward when its location is known, and explore when it

is unknown. Additionally, the FF robots also do not have enough information to

model their teammates’ policies and built a strategy around it. An immediate

mapping between their current input measurements and an effective exploration

strategy or joint action policy is not existent. The MMU robots on the other

hand have access to the same information (input) as the FF robots, but have the

additional capability of memory. This ability to memorize past events and process

temporal dependencies in their input channels forms a type of information bridge

that can be leveraged to form effective exploration strategies that can adapt to the

change in reward location. Additionally, the availability of memory also allows the

MMU robot to model its teammates’ policy and adapt alongside it to maximize



87

(a) (b)

Figure 4.3: MMU and FF control policies are compared for a 2-deep (a) and 3-deep
(b) Extended T-Maze domain, using the Spread objective where any one robot is
sufficient in observing the reward.

system performance. This is especially apparent in the RESP case where in order

to succeed, the MMU robot is required to first samples its colleague static robots’

actions, identify its exploration strategy and adapts its behavior to best supplement

that strategy. This behavior highlights the crucial role memory plays in learning

adaptive behaviors that facilitate tight multi-robot coordination.

4.1.5 Experiment 2: Spread

This set of experiments test the multi-robot teams under the spread objective

function as explained in Section 4.1.1. This is a loosely coupled task definition

where a minimum of one robot is required to be alongside the reward to observe

it.

Figure 4.3(a) shows the results for a 2-deep Extended T-Maze tested against

both FSP and RESP robots. The expectation for the lower bound of performance
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(not plotted) is 48% and represents the worst possible system performance achiev-

able by the learning robot. This is the expected system performance achieved

simply by the hard coded policy of the static robot. The robot using MMU net-

work outperforms the robot using the feedforward network as its policy across

both types of static robot types. The MMU control policy achieves a system per-

formance of 77.0 ± 0.7% and 75.1 ± 0.6% while the FF control policy achieves

a system performance of 69.3 ± 2.0% and 69.4 ± 1.2% for the FSP and RESP

variations respectively.

Figure 4.3(b) shows the results for a 3-deep Extended T-Maze domain tested

against both FSP and RESP robots. The expectation for the lower bound of

performance (not plotted) is 33%. The robot using the MMU network outperforms

the robot using the feedforward network as its policy across both types of static

robot policies. The MMU control policy achieves a system performance of 67.5±

0.4% and 63.7± 0.3% while the FF control policy achieves a system performance

of 60.0± 1.0% and 60.0± 0.8% for the FSP and RESP variations respectively.

Similar to the results in Section 4.1.4, the results in Figure 4.3 demonstrate the

MMU robot learning to form effective joint policies alongside both types of static

robots. The FF robots however fail to learn and simply picks an endpoint to stick

to. It fails to adapt to the task where the reward location changes periodically, and

to the nature of the static robot’s exploration strategy. The MMU robot however is

able to leverage its memory and adapt to both the task, and the varying exploration

strategies of its teammates, effectively augmenting the static robots in the task.
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4.1.6 Multiple Learning Robots

To further probe our approach on the axis of multi-robot adaptation, we ab-

late the robot with static policy from our multi-robot team, and experiment with

learning robots of varying team sizes.

Figure 4.4: MMU and FF control policies are compared for a 2-deep and 3-deep
Extended T-Maze, with Spread objective tested for varying number of learning
robots.

Figure 4.4 shows the results for a 2-deep and 3-deep Extended T-Maze tested for

varying number of learning robots. The robots using MMU network significantly

outperform the robots using the feedforward network as its control policy across

all values for team size and task depth. The system performance for the MMU

robots improves with increasing number of robots for both variations of depth.

This demonstrates that the MMU team is able to leverage memory and form

coordinated exploration strategies that explore different sections of the Extended

T-Maze, benefiting from larger team sizes. The FF team however fails to form

effective joint exploration strategies and thus fails to fully benefit from increasing

team sizes. This result highlights the critical role memory plays in facilitating
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the learning of effective coordination policies in adaptive tasks like the Extended

T-Maze.

4.1.7 Conclusion and Future Work

We designed a diverse set of experiments across multiple axes of difficulty in the

flexible Extended T-Maze domain. Our results demonstrated that the multi-robot

teams trained with the MMU network perform significantly better in all tasks as

compared with multi-robot teams trained with a traditional feedforward neural

network. This is particularly significant considering that they both act with the

same set of information. These results highlight the critical role memory plays in

developing effective multi-robot coordination strategies that can adapt to changing

environmental factors and teammates’ policies.

The Extended T-Maze domain formulated in the paper is designed to be a

general framework for testing adaptive tasks alongside the difficulties of a multi-

robot approach. The framework is also devised to be modular and flexible such

that each axis of difficulty can be regulated somewhat independently of the other.

Future work will look to retain these properties while transcribing the domain

into a ROS environment. This is prescribed with the objective of integrating

the noise and constraints of a robot hardware within the domain, and facilitating

benchmarks for performance with real robots. We will start with the MMU based

controllers developed in this paper.

Additionally, in this work we used the system performance obtained for each



91

multi-robot team as an evaluation for each of its member. Future work will look to

integrate reward shaping techniques like the difference reward [2] that can better

compute each robot’s marginal utility and provide a cleaner signal to learn on.

4.2 Distributed One-Shot Decision Making

In the previous section, we used memory to augment each agent policies for im-

proved performance in dynamic tasks that required adaptive behavior from a mul-

tiagent team. The memory was internal to each agent and the enhanced multiagent

coordination observed largely stemmed from the increased capability of each agent

to integrate information across time on their own series of observations. The ’ex-

panded state’ that each agent was able to perceive based on its memory enabled it

to learn coordination strategies required to solve the task. An alternate pathway

not addressed in this approach was whether memory could be used to share in-

formation across agents for adaptive multiagent coordination. This is particularly

relevant in adversarial multiagent settings where a distributed team of agents have

to rapidly adapt their behavior based on information observed by a single agent.

An agent that is dynamically able to adapt its policy based on a singular

observation is an open challenge in Artificial Intelligence. This ability for rapid

adaptation is a hallmark of human cognition, and is most closely related to one

shot learning. While much progress has been recently made in realizing one shot

learning [224], these have been limited to single agent systems. This is in contrast

to most real world tasks where decision making is often distributed among multiple
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agents interacting across time and space. One shot learning on such systems is

particularly challenging as local changes in agent policies can have unpredictable

consequences in emergent system behavior.

In essence, distributed approaches parallelize the mechanism of processing in-

formation across a set of agents. These agents can be distributed in space, cyb-

serspace, or simply have varying abilities for perception and action. In most real

world problems, adaptive decision making based on features distributed across

both space and time is required. For instance, real time traffic updates through

an autonomous car network requires both inference on the sequence of sensor data

from each car, and consolidation between multiple data streams acquired concur-

rently from numerous cars distributed in space. If an autonomous car observes an

unanticipated blockage in a specific location, this observation has to be quickly

identified among a plethora of normative information. It has to be processed, and

dynamically retained for a period of time, so that the network can quickly adapt

navigation routes for other cars approaching this location.

Distributed one shot learning amplifies the inherent difficulties of single agent

one shot learning. A defining difficulty of one shot learning is the need for rapid

characterization and association of incoming stimuli. For example, in the single

agent season task [149], a variety of food items - some poisonous while others

nutritious are presented to the agent during its lifetime. The goal of the agent is

to consume the nutritious ones while avoiding the poisonous ones. The difficulty is

that the designation of whether a food item is poisonous or nutritious is randomly

assigned at every instance of the task. Simply learning to pick good actions (food
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item choice) is thus not an option. Instead the agent has to sample all the food

items, identify whether they are poisonous, and adapt its behavior instantaneously

to selectively consume the nutritious ones.

One approach to facilitate one shot learning is the incorporation of explicit

memory which can be used to remember salient observations and recall them dur-

ing future decision making [200]. For example, in the season task the agent can

incorporate a working memory to remember whether a food is poisonous/nutritious

after sampling it once. The agent can then consider these alongside its input to

make decisions [149]. Adaptive one shot decision making for single agent systems

have been explored in the past largely with the tools of memory [15, 17]. How-

ever, the increased complexity from multiple agents acting concurrently is widely

unexplored for this class of tasks.

We introduce Distributed Modular Memory Unit (DMMU), a distributed learn-

ing framework that uses an external shared memory to rapidly consolidate informa-

tion across multiple actors, acting asynchronously and in parallel. We exploit the

of the MMU architecture introduced in 3 to enable selective interactions between

the shared external memory and a variable number of agents. DMMU combines

the ability of distributed learning in exploiting the spatial distribution of multiple

agents in solving a task, with memory-based learning’s ability to stitch together

information across time. This enables DMMU to rapidly assimilate useful features

from a group of agents acting in parallel, consolidate these into a reconfigurable

external memory and use it for distributed one shot learning.
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Figure 4.5: High level schematic of the DMMU framework. Each agent is comprised
of a neural network with connections to the world (input/output) and memory
(read/write) connections. Agents A, B, and C highlight the modularity of the
framework. At this time, agent A ignores memory, and acts reactively based on
its input. Agent B ignores its input and acts exclusively from memory. Agent C
leverages all available information, combining the contents within memory and its
immediate input in making decisions. Agent C also updates memory based on its
decision. An agent can choose to perform any subset of these actions at any time.

4.2.1 Distributed Modular Memory Unit

Figure 4.5 depicts the organization of the DMMU framework. DMMU is designed

to process streams of sequential observations from multiple agents concurrently.

The principal feature behind the DMMU framework is its flexibility in processing

sequential information across a variable number of agents while using an external

memory block to capture and consolidate dynamic features across them.

Each information stream originates from an actor with individual agency. Each

actor can be considered as an agent with its own unique policy, observing the

environment and acting within it independently. Each of these agents is defined
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by a standard feedforward neural network with three major learnable components.

• Input Gate: The input gate filters the flow of information that comes from

the environment to the agent. This serves to shield the agent from the noisy

portions of each incoming observation and allows it to focus its attention on

relevant features within its observation set.

• Curated Memory Feed: The agent’s input is augmented with content

that the agent selectively reads from an external memory. The agent has an

independently learnable read gate which filters the content read from external

memory. This serves to shape the contents of memory as per the needs of the

agent, protecting it from being overwhelmed with extraneous information it

might not need at a particular time.

• Selective Memory Update: The agent is augmented with a learnable

write gate that allows it to selectively update the contents of the external

memory. This gate allows the agent to report salient features from its obser-

vations to the external memory at any given time step. The write gate that

filters this channel of information flow serves to shield the external memory

from being overwhelmed by updates from the agent.

The principal component of the DMMU framework is its modular and flexi-

ble integration between the external memory and the agents that interact with it.

DMMU is an open system where an agent can join or leave dynamically during

execution. This allows for a high degree of reconfigurability such that a vari-

able number of agents (possibly heterogeneous), acting on their own unique set
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of observations asynchronously, can interact with the shared external memory in

parallel. Each individual memory-agent interaction is modulated by the agent’s

read and write gates which serve to filter out noisy or extraneous content, refining

information flow within the channel. This setup allows for the external memory to

find stable representations for retaining dynamic features across multiple agents,

yet be highly amenable to rapid updates. This enables effective consolidation of

information and provides a framework for distributed one shot learning.

Training We use neuroevolution to train the DMMU framework using a weak

learning signal. Each individual in our population defines a full DMMU network

alongside all its agents. Distributed neural architectures like the DMMU, can

be a challenge to evolve, particularly due to the highly non-linear and correlated

operations parameterized by its weights. To address this problem, we use inde-

pendent mutational operators for each weight sub-structure (matrix) within the

DMMU framework. Additionally, we extend crossover operation to function at two

levels of abstraction. The first crossover operation implemented with probability

crossoverprob operates by switching vector rows between matrices of weights pa-

rameterizing our individuals. Given two corresponding weight matrices from two

individuals, an index is randomly chosen, and the vector of weights at that index

is swapped. This is akin to exchanging a randomly sampled neuron. The second

crossover operation implemented with probability agentcrossoverprob operates by

swapping agents across two individuals. Given two individuals, an agent is chosen

randomly from each individual and swapped. Lastly, we use probabilistic extinc-
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Algorithm 5 Neuroevolutionary algorithm used to evolve the DMMU

1: Initialize a population of k DMMU networks
2: Define a random number generator r() ∈ [0, 1)
3: for Generation do
4: for Individual do
5: Compute average fitness based on φ runs

6: Rank the population based on fitness scores
7: Select the first e candidates as elites
8: Probabilistically select (k − e) candidates based on fitness, to form Set S
9: for iteration (k − e) do
10: Randomly select individual Ni from Set S
11: for Agent A ∈ Ni do
12: for weight matrix W ∈ A do
13: if r() < mutprob then
14: Probabilistically perturb weights in W with 10% Gaussian

noise
15: Randomly select individual Nj and Nk from S
16: for Agent Aj ∈ Nj and Ak ∈ Nk do
17: for weight matrix W ∈ Aj and Ak do
18: if r() < crossoverprob then
19: Perform one point crossover

20: Randomly select individual Nl and Nmfrom S
21: for Agent Al ∈ Nl and Am ∈ Nm do
22: if r() < agentcrossoverprob then
23: Set Al = Am

[1]
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tion (wiping off a randomly chosen portion of the population) to retain diversity

within our population.

Algorithm 5 details the neuroevolutionary algorithm used to evolve the DMMU

network. The size of the population k was set to 100, and the number of elites to

4% of k. The number of randomly initialized simulations conducted to compute

a fitness evaluation for each individual, φ was set to 10. The mutation proba-

bility mutprob, crossover probability crossoverprob and agent crossover probability

agentcrossoverprob were set to 0.9, 0.05 and 0.05, respectively. The probability for

an extinction event extinctionprob and magnitude of extinction extinctionmag were

set to 0.004 and 0.5 respectively.

4.2.2 Cybersecurity Task

We introduce the cybersecurity task (depicted in Figure 4.6) where multiple agents

are required to instantaneously adapt their behaviors based on their joint inter-

actions within the environment. This task is based on real world cybersecurity

considerations on effective responses to distributed denial of service (DDoS) at-

tacks. A website provider often uses many resources (proxy servers) which can

respond to user requests without exposing the enterprise firewall to incoming re-

quests directly. In a DDoS attack, many fake requests are sent to the target

website [154]. However, many of these attacks are executed with a botnet com-

posed of conscripted devices without explicit intent or knowledge from the user

owning the device. These devices may send genuine user requests at one moment,



99

Figure 4.6: Simulated Cyber-Security Task: A server fleet handles requests from
multiple devices, some of which may be conscripted by a botnet at a given time, and
are carrying out a DDoS attack. For any episode, the server fleet has to figure out
whether each type of device is nefarious or genuine based on a single interaction,
and adapt its behavior to selectively serve requests from the genuine ones. In this
example, many phones have been compromised by a newly found exploit, and have
been conscripted into a botnet. The fleet of servers has identified this, and now
ignores the phones’ requests. The desktop computers are currently known to be
genuine, and are thus served by the server fleet. The laptop devices have not been
evaluated yet, and thus unknown.
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yet could be unwilling participants of an attacking botnet the next. Permanently

blocking a device based on some malicious activity that once originated there is

not a viable strategy as it indiscriminately penalizes all users, a majority of whom

might be genuine customers of the website. It is more desirable to temporarily

block requests from a device once malicious activity is detected, allowing time for

the user to remedy their infection.

In our formulation of the cybersecurity task, the website server has a collection

of proxy servers (agents) spread across the world that serve requests from multiple

devices. For simplicity, we will refer to the entire system of our website and its

proxy servers as the server fleet henceforth. For each episode of the simulation,

our server fleet will receive a number of requests from multiple devices. A portion

of these devices are nefarious, while others would be genuine. This distribution of

nefarious/genuine devices will be reset at each episode of the task so our server fleet

cannot simply remember which devices are nefarious and which are genuine (akin

to the permanent blocking scenario described above). This prevents our server

fleet from simply remembering action-value functions and forces it to dynamically

determine the nefarious/genuine classification of each device for each new instance

of the task.

In order to successfully withstand the attack, our server fleet must sample its

incoming requests in parallel, and determine which type of devices are genuine and

which are nefarious based on a singular interaction with them. The goal of the

fleet will then be to selectively serve requests from genuine devices while avoiding

interaction with the nefarious ones for that episode. Each fulfillment of a request
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may also take varying amount of time. For instance, when a proxy server decides to

serve a request, it will take a variable number of time steps to complete that action

during which the proxy server will remain static. This is termed the busy period

and adds an extra layer of difficulty originating from asynchronicity between the

proxy servers’ operation.

Each nefarious request served leads to a negative reward of −1 while each gen-

uine request served leads to a positive reward of +1. As an input, each proxy

server in our server fleet records the number of requests pending for each device,

and the reward associated with the last request served by itself (+1 and −1 for

nefarious and genuine, respectively). Each proxy server (agent) will map its state

to an output vector spanning the total number of devices that it can serve. The

output vector represents the probability distribution over an agent’s possible ac-

tions (devices the agent can choose between to serve a request from). The agent’s

action is then the index with the highest activation.

The ratio of nefarious/genuine devices is dynamically set at the start of each

task instance. A random portion of the devices are nefarious while the rest are

genuine. This adds an extra layer of stochasticity to the task. For each episode the

environment can dynamically vary from being favorable (having mostly genuine

users), to being adverse (having mostly nefarious users). The fitness of each fleet

of servers is computed as the net number of genuine requests served. Since the

designation of nefarious/genuine is randomly and uniformly distributed, the fleet

of servers have to initially sample the requests to identify their category.
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(a) (b)

Figure 4.7: Performance of DMMU alongside other baselines in the cybersecurity
task. The server fleet consists of 10 proxy servers handling a request volume of
100 from 20 distinct devices. A random number of devices between {7,13} out
of 20 chosen at the start of each task instance are nefarious while the rest are
genuine. (a) A synchronous setup with a constant busy period of 1 timestep (b)
Asynchronous memory access by agents with the busy period following each action
randomly set between {0,2} timesteps.

4.2.3 Results

We compared DMMU in the cybersecurity task with four baselines spread across

the centralized/decentralized and memoried/reactive axes. Feedforward Neural

Ensemble (FFNE) and LSTM Neural Ensemble (LSTMNE) represents each

proxy server as a feedforward neural network and a Long Short Term Memory

(LSTM), respectively. Centralized Neural Framework (CNF) represents the en-

tire server fleet as a single feedforward neural network that has direct centralized

access to all the information and makes all decisions. LSTM with Shared memory

(LSTMSM) represents the server fleet as a group of LSTM network with access

to an external shared memory similar to the DMMU setup. However, since the

output of a LSTM is strictly a function of its memory (cell) the LSTMSM setup
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is constrained to be centralized unlike the DMMU network.

The protocol for computing results was kept consistent across all the experi-

mental variations. During each training generation, the individual network with

the highest net genuine requests served was selected as the champion. The cham-

pion was then tested on a separate test set of 10 experiment instances, generated

randomly for each generation. The average net genuine requests served by the

champion on this test set was reported as the score for that generation. The

protocol was implemented to shield the reported metrics from any bias in the

distribution of nefarious users, nefarious/genuine ratios, or the population size.

Ten independent statistical runs were conducted, and the average with error bars

reporting the standard error in the mean were logged.

Figure 4.7 shows the comparative performance of DMMU with other baselines

in controlling the server fleets where 10 proxy servers handle a request volume of

100 from 20 distinct devices. DMMU significantly outperforms all other baselines

achieving a net of 11.93 ± 0.63 and 8.25 ± 0.39 genuine requests served for syn-

chronous and asynchronous task variants, respectively. Both approaches without

memory (CNF and FFNE) fail to learn in either of the tasks, and converge to an

equilibrium state with the net genuine request served centered at 0. This is unsur-

prising as these methods lack memory and cannot associate actions with rewards

over time. Even with centralized access to information and actions (CNF), the

lack of memory is a principal limitation.

Surprisingly, LSTMSM fails to learn in both variants of the task despite sharing

an external memory similar to DMMU. However, unlike DMMU where agents can
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selectively use memory’s contents, LSTMSM’s agents are constricted to condition

their actions as a strict function of the shared external memory. This greatly limits

their flexibility and leads them to fail in the task. This highlights the importance

of DMMU’s modularity which allows agents to read from, add to, or ignore the

external memory at will. This enables DMMU to employ multiple agents with

diverse policies working together in sampling devices concurrently, and encoding

associations onto the shared external memory.

LSTMNE is able to learn positively and achieve a net genuine requests served

of 5.8± 0.73 in the synchronous task (Figure 4.7a), but fails to learn in the asyn-

chronous variant (Figure 4.7b) altogether. Unlike DMMU, LSTMNE has no ex-

ternal shared memory and lacks the ability to directly consolidate observations

between agents. When the agent actions are synchronized, this limitation seems

to curtail LSTMNE’s performance. However, when the gurantees of synchroniza-

tion is broken down, the limitation inhibits LSTMNE’s ability to learn entirely.

DMMU, by virtue of its flexibility and modularity is able to learn positively,

significantly outperforming all other baselines on both variants of the task (Figure

4.7). DMMU’s learnable read and write gates provide a flexible framework for

selective agent-memory interaction. This enables DMMU to discover protocols for

retrieving and updating the contents of memory such that the shared memory is

rapidly amenable, yet interpretable across all the agents. The external memory can

be thought of as a “collective knowledge base”. Training jointly with learned gat-

ing mechanisms introduce an inductive bias that favors representations amenable

to sporadic agent access of this knowledge base. Collectively, DMMU’s modular
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framework enables multiple agents to concurrently update this shared knowledge

base based on one observation, while simultaneously allowing individual agents to

independently incorporate it in rapidly adapting their behaviors.

4.2.4 Insight into Shared Memory Access

Figure 4.8: Illustration of the write interaction between a 3 cell long external
memory and each agent (A1 and A2). In this task configuration, action 1 and 2
corresponding to serving the two genuine devices is desirable. The color scheme
corresponds to a logarithmic scale of memory update magnitudes (what’s written
by each agent to the external memory). After each action taken, a busy period
lasting the next timestep is observed where the agents are unable to act (even
timesteps).

The shared external memory plays a crucial role in DMMU’s success in learning

distributed ones shot decision making. To establish the role played by the shared

external memory, we perform a case study and probe the content and protocols for

reading/writing between agents and the external memory. Since these interactions

are distributed, interpreting them is very difficult. To allow easy interpretation

and analysis, we use a smaller task size where 2 proxy servers handle a request

volume of 12 from 4 distinct devices (each device sends 3 requests). We also

set the busy period to a constant value of 1. This removes asynchronocity from
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this task and makes the agent-external memory interaction deterministic given the

same initialization of nefarious/genuine device distribution. We train a DMMU

framework until convergence, and probe its operation as detailed below.

Figure 4.8 illustrates the write interaction between memory and agents for

the course of an experiment. This experiment started with the following ordered

distribution of nefarious/genuine devices: first device is nefarious, second and third

are genuine, and the fourth is nefarious. The action for each agent here is to pick

a device (index of the list ranging from [0,3]) to serve a request from. The optimal

joint action for the task configuration shown is action 1 and 2 which serves the

two genuine devices.

In the first timestep, our agents take action 1 and 0 which serves a genuine

and nefarious device, respectively. Note that nothing is written to memory by

either of the agents during this time step (color intensities of the memory update).

This makes sense as agents have simply taken their first action without getting a

reinforcement at this stage. The write activations are generally lower across all

timesteps where an action is taken following a busy period with no reinforcement

(odd time steps). This shows that the agents primarily write information to the

external memory when they receive a reinforcement (that they can associate with

their earlier action). After observing the first reinforcement in timestep t = 2,

the agents demonstrate instantaneous learning, adapting their behavior to change

their joint action in service of Device 1 and 2. In this task configuration this joint

action is desirable as it represents serving the genuine devices. The agents encode

this positive reinforcement in their next timestep and then continue serving them.
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Additionally, the first agent (A) primarily writes to the memory cell M2 while the

second agent (B) writes to memory cells M1 and M3, leaving cell M2 virtually

untouched. This seems to be a protocol for information consolidation across mul-

tiple agents writing to the same external memory block, without interfering with

the information already encoded there.

# Configuration Reward Final Memory State Signature

1 [G,G,N,N ] 6.0 [0.72, 0.91, 0.78] [0, 2, 1]
2 [N,N,G,G] 4.0 [2.09, 6.7e−3, 2.1e−4] [2, 1, 0]
3 [N,G,G,N ] 5.0 [1.58, 0.05, 0.38] [1, 2, 0]
4 [G,N,N,G] 4.0 [1.77, 2.76, 5.98] [0, 1, 2]
5 [G,N,G,N ] 5.0 [1.77, 3.85, 9.8e−5] [2, 0, 1]
6 [N,G,N,G] 4.0 [2.47, 0.81, 6.16] [1, 0, 2]

Table 4.1: Final memory states for running a fully trained DMMU fleet across all
unique configurations of the case study task.

Table 4.1 shows the results for running our fully trained fleet servers across all 6

possible configurations of the task (each row is a different task instance with varying

initialization configuration). The maximum possible reward in this task is 6 while

the minimum possible is −6 corresponding to serving all the genuine and nefarious

devices, respectively. For the first time step, our agents haven’t had any interaction

with the environment, and thus start with a fixed action for all task configurations.

Agent A and B serve requests from devices 1 and 0, respectively (also depicted in

Figure 4.8). In configuration #1 (first row of Table 4.1) where the two genuine

device ordering match our agent’s initial action, our agents are able to get the

maximum possible reward of 6 for the task instance. Conversely, for configuration
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#2 (second row) both of our agents’ initial action serve nefarious requests leading

to a −1 reward each within the first time step. However, our agents are able to use

the external memory to instantaneously associate this negative reward with their

actions. They use this information to then rapidly adapt their behavior, switching

their action choices in the next timestep. Subsequently, this leads them to only

serve genuine requests leading to a score of 4. All other configurations involve one

of the agents starting out serving a genuine device and sticking with it, while the

other agent starts out serving the nefarious device and then switches its action

until it can find a genuine one to serve.

Additionally, Table 4.1 also shows the final memory state recorded for each

configuration after our server fleet had run for 8 timesteps. While comparing these

final memory states explicitly against each other is extremely difficult, we observed

an interesting pattern. We sorted each final memory state in ascending order and

recorded the sorted index as its signature. For each unique configuration of ne-

farious/genuine initialization, we get a unique memory signature. The memory

signature is a coarse record of the cumulative agent-memory interactions within

that run. The unique mapping from task configuration to final memory signature

suggests that this coarse representation is predictive of the interactions that are

necessary for solving a specific task configuration. The agents seem to be inter-

preting memory as a ternary digit (signature) that encodes the type of adaptive

behavior necessary to solve a specific configuration.
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4.2.5 Conclusion and Future Work

Distributed one shot learning in a multiagent system where agents can dynam-

ically change their behavior based on an observation by one of the agents is a

complex problem. However, as most real world systems increasingly move towards

decentralization and become more distributed [161, 212, 221], it is an important

challenge to tackle.

We build on the MMU topology described in Chapter 3 and introduced the

DMMU framework that creates an external shared memory to effectively handle

distributed one shot learning in a multiagent setting. DMMU is an open framework

where a variable number of agents processing sequential observations concurrently

and asynchronously, can interact with an external memory to consolidate dynamic

features across them. This facilitates rapid assimilation of information within the

external memory, and enables adaptive decision making based on singular observa-

tions. Results in the cybersecurity task demonstrated DMMU’s efficacy in learning

adaptive behaviors based on a singular observation, significantly outperforming

other baselines operating with access to the same set of information.

In this work, the information observed by each agent was deterministic. The

only noise within the system was introduced by the concurrent action of multiple

agents. Future work will integrate environmental noise in each agent’s observations

and test the DMMU framework’s robustness in dealing with this additional source

of noise. Additionally, the volume of information required to be consolidated and

retained by the shared external memory was relatively small (nefarious/genuine
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categorization). Future work will expand the complexity and volume of information

that needs to be consolidated and retained by the shared external memory.
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Chapter 5: Evolutionary Reinforcement Learning

In the previous chapter, we introduced new architectures that leveraged memory’s

capacity for temporal credit assignment to improve multiagent coordination. Mem-

ory facilitated our agents to expand their perception, enabling them to integrate

information across time. Agents could then leverage this expanded capability to

associate reward with actions even if they were taken in the distant past. However,

as agents expand their perceptive capabilities, training them effectively becomes

increasingly more challenging.

To elucidate this point, consider Agent R, a memory-less agent whose policy

reactively map its observations to actions. Meanwhile, Agent M is an agent with

memory whose policy maps a series of observations (history) to an action. Both

agents operate in the environment observing the same information and mapping it

to actions for k timesteps. If we analyze this scenario in isolation, the total number

of observations here is k. Since our agents are parameterized by their policies - a

function that maps observation to action, the space of observations is the domain

of their function. Given a domain of k observations, the range spanned by Agent

R is also k. However, for Agent M, the range spanned for the same k observation is

k!. This is because the action mapped to by the agent with memory is sensitive to

the permutation of the observations while the reactive agent R is not. This means

that given the same set of observations, Agent M can access a much richer range of



112

possible actions relative to the reactive agent R. However, this same expressivity

also means that finding a desired mapping (training for a certain behavior) is more

difficult as the search space of possible behaviors (mapping) is considerably larger.

In order to reap the benefits of the expanded capability we facilitated onto our

memory-augmented agents, we need augmentations in our learning algorithms that

can train these agents effectively. Towards this goal, this chapter introduces Evolu-

tionary Reinforcement Learning (ERL) [118], a multilevel optimization framework

that enables improved credit assignment for training agents to solve reinforcement

learning problems. The core idea behind ERL is the hybridization of two distinct

optimizers to achieve an emergent learner that inherits the best of both worlds.

Each optimizer operates over varying purview, improving the policy to maximize

returns over different time horizons. ERL leverages this dual-pronged optimiza-

tion approach to enable better temporal credit assignment for the emergent learner.

Further, by virtue of its joint optimization, ERL also addresses some core limita-

tions within deep reinforcement learning such as the lack of effective exploration

that lead to diverse behaviors and brittle convergence properties.

5.1 Motivation

Reinforcement learning (RL) algorithms have been successfully applied in a number

of challenging domains, ranging from arcade games [157, 156], board games [195] to

robotic control tasks [5, 141]. A primary driving force behind the explosion of RL

in these domains is its integration with powerful non-linear function approximators
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like deep neural networks. This partnership with deep learning, often referred to

as Deep Reinforcement Learning (DRL) has enabled RL to successfully extend

to tasks with high-dimensional input and action spaces. However, widespread

adoption of these techniques to real-world problems is still limited by three major

challenges: temporal credit assignment with long time horizons and sparse rewards,

lack of diverse exploration, and brittle convergence properties.

First, temporal credit assignment in reinforcement learning is challenging par-

ticularly when the reward is sparse (only observed after a series of actions). Tempo-

ral Difference methods [211] in RL use bootstrapping to address this issue but often

struggle when the time horizons are long and the reward is sparse. Multi-step re-

turns address this issue but are mostly effective in on-policy scenarios [42, 186, 187].

Off-policy multi-step learning [150, 192] have been demonstrated to be stable in

recent works but require complementary correction mechanisms like importance

sampling, Retrace [159, 229] and V-trace [51] which can be computationally ex-

pensive and limiting.

Secondly, RL relies on exploration to find good policies and avoid converging

prematurely to local optima. Effective exploration remains a key challenge for

DRL operating on high dimensional action and state spaces [171]. Many meth-

ods have been proposed to address this issue ranging from count-based explo-

ration [163, 213], intrinsic motivation [19], curiosity [167] and variational informa-

tion maximization [103]. A separate class of techniques emphasize exploration by

adding noise directly to the parameter space of agents [63, 171]. However, each

of these techniques either rely on complex supplementary structures or introduce
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sensitive parameters that are task-specific. A general strategy for exploration that

is applicable across domains and learning algorithms is an active area of research.

Finally, DRL methods are notoriously sensitive to the choice of their hyper-

parameters [98, 105] and often have brittle convergence properties [92]. This is

particularly true for off-policy DRL that utilize a replay buffer to store and reuse

past experiences [22]. The replay buffer is a vital component in enabling sample-

efficient learning but pairing it with a deep non-linear function approximator leads

to extremely brittle convergence properties [48, 92].

One approach well suited to address these challenges in theory is evolutionary

algorithms (EA) [62, 198]. The use of a fitness metric that consolidates returns

across an entire episode makes EAs indifferent to the sparsity of reward distribu-

tion and robust to long time horizons [181, 204]. EA’s population-based approach

also has the advantage of enabling diverse exploration, particularly when com-

bined with explicit diversity maintenance techniques [41, 138]. Additionally, the

redundancy inherent in a population also promotes robustness and stable conver-

gence properties particularly when combined with elitism [4]. A number of recent

work have used EA as an alternative to DRL with some success [40, 67, 181, 204].

However, EAs typically suffer with high sample complexity and often struggle to

solve high dimensional problems that require optimization of a large number of

parameters. The primary reason behind this is EA’s inability to leverage powerful

gradient descent methods which are at the core of the more sample-efficient DRL

approaches.

To address this issue we introduce ERL, a hybrid algorithm that incorporates



115

Figure 5.1: High level schematic of ERL highlighting the incorporation of EA’s
population-based learning with DRL’s gradient-based optimization.
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EA’s population-based approach to generate diverse experiences to train an RL

agent, and transfers the RL agent into the EA population periodically to inject

gradient information into the EA. The key insight here is that an EA can be used

to address the core challenges within DRL without losing out on the ability to

leverage gradients for higher sample efficiency. ERL inherits EA’s ability to address

temporal credit assignment by its use of a fitness metric that consolidates the return

of an entire episode. ERL’s selection operator which operates based on this fitness

exerts a selection pressure towards regions of the policy space that lead to higher

episode-wide return. This process biases the state distribution towards regions

that have higher long term returns. This is a form of implicit prioritization that

is effective for domains with long time horizons and sparse rewards. Additionally,

ERL inherits EA’s population-based approach leading to redundancies that serve

to stabilize the convergence properties and make the learning process more robust.

ERL also uses the population to combine exploration in the parameter space with

exploration in the action space which lead to diverse policies that explore the

domain effectively.

Figure 5.1 illustrates ERL’s double layered learning approach where the same

set of data (experiences) generated by the evolutionary population is used by the

reinforcement learner. The recycling of the same data enables maximal information

extraction from individual experiences leading to improved sample efficiency.
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Figure 5.2: Comparative performance of DDPG, EA and ERL in a (left) standard
and (right) hard Inverted Double Pendulum Task. DDPG solves the standard task
easily but fails at the hard task. Both tasks are equivalent for the EA. ERL is able
to inherit the best of DDPG and EA, successfully solving both tasks similar to EA
while leveraging gradients for greater sample efficiency similar to DDPG.

5.2 Motivating Example

Consider the standard Inverted Double Pendulum task from OpenAI gym

[24], a classic continuous control benchmark. Here, an inverted double pendulum

starts in a random position, and the goal of the controller is to keep it upright.

The task has a state space S = 11 and action space A = 1 and is a fairly easy

problem to solve for most modern algorithms. Figure 7.1 (left) shows the com-

parative performance of DDPG, EA and our proposed approach: Evolutionary

Reinforcement Learning (ERL), which combines the mechanisms within EA and

DDPG. Unsurprisingly, both ERL and DDPG solve the task under 3000 episodes.

EA solves the task eventually but is much less sample efficient, requiring approxi-

mately 22000 episodes. ERL and DDPG are able to leverage gradients that enable

faster learning while EA without access to gradients is slower.

We introduce the hard Inverted Double Pendulum by modifying the orig-

inal task such that the reward is disbursed to the controller only at the end of the

episode. During an episode which can consist of up to 1000 timesteps, the con-
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troller gets a reward of 0 at each step except for the last one where the cumulative

reward is given to the agent. Since the agent does not get feedback regularly on its

actions but has to wait a long time to get feedback, the task poses an extremely

difficult temporal credit assignment challenge.

Figure 7.1 (right) shows the comparative performance of the three algorithms in

the hard Inverted Double Pendulum Task. Since EA does not use intra-episode in-

teractions and compute fitness only based on the cumulative reward of the episode,

the hard Inverted Double pendulum task is equivalent to its standard instance for

an EA learner. EA retains its performance from the standard task and solves the

task after 22000 episodes. DDPG on the other hand fails to solve the task entirely.

The deceptiveness and sparsity of the reward where the agent has to wait up to

1000 steps to receive useful feedback signal creates a difficult temporal credit as-

signment problem that DDPG is unable to effectively deal with. In contrast, ERL

which inherits the temporal credit assignment benefits of an encompassing fitness

metric from EA is able to successfully solve the task. Even though the reward is

sparse and deceptive, ERL’s selection operator provides a selection pressure for

policies with high episode-wide return (fitness). This biases the distribution of

states stored in the buffer towards states with higher long term payoff enabling

ERL to successfully solve the task. Additionally, ERL is able to leverage gradi-

ents which allows it to solve the task within 10000 episodes, much faster than

the 22000 episodes required by EA. This result highlights the key capability of

ERL: combining mechanisms within EA and DDPG to achieve the best of both

approaches.
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5.3 Methodology

The principal idea behind Evolutionary Reinforcement Learning (ERL) is to in-

corporate EA’s population-based approach to generate a diverse set of experiences

while leveraging powerful gradient-based methods from DRL to learn from them.

In this work, we instantiate ERL by combining a standard EA with DDPG. Al-

ternatively, any off-policy reinforcement learner that utilizes an actor-critic archi-

tecture can be used.

A general flow of the ERL algorithm proceeds as follow: a population of actor

networks is initialized with random weights. In addition to the population, one

additional actor network (referred to as rlactor henceforth) is initialized alongside a

critic network. The population of actors (rlactor excluded) are then evaluated in an

episode of interaction with the environment. The fitness for each actor is computed

as the cumulative sum of the reward that they receive over the timesteps in that

episode. A selection operator then selects a portion of the population for survival

with probability commensurate on their relative fitness scores. The actors in the

population are then probabilistically perturbed through mutation and crossover

operations to create the next generation of actors. A select portion of actors

with the highest relative fitness are preserved as elites and are shielded from the

mutation step.

EA → RL: The procedure up till now is reminiscent of a standard EA. How-

ever, unlike EA which only learns between episodes using a coarse feedback sig-

nal (fitness score), ERL additionally learns from the experiences within episodes.
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ERL stores each actor’s experiences defined by the tuple (current state, action,

next state, reward) in its replay buffer. This is done for every interaction, at every

timestep, for every episode, and for each of its actors. The critic samples a random

minibatch from this replay buffer and uses it to update its parameters using gra-

dient descent. The critic, alongside the minibatch is then used to train the rlactor

using the sampled policy gradient. This is similar to the learning procedure for

DDPG, except that the replay buffer has access to the experiences from the entire

evolutionary population.

Data Reuse: The replay buffer is the central mechanism that enables the flow

of information from the evolutionary population to the RL learner. In contrast to

a standard EA which would extract the fitness metric from these experiences and

disregard them immediately, ERL retains them in the buffer and engages the rlactor

and critic (see Section 2.2.2) to learn from them repeatedly using powerful gradient-

based methods. This mechanism allows for maximal information extraction from

each individual experiences leading to improved sample efficiency.

Temporal Credit Assignment: Since fitness scores capture episode-wide

return of an individual, the selection operator exerts a strong pressure to favor

individuals with higher episode-wide returns. As the buffer is populated by the

experiences collected by these individuals, this process biases the state distribution

towards regions that have higher episode-wide return. This serves as a form of

implicit prioritization that favors experiences leading to higher long term payoffs

and is effective for domains with long time horizons and sparse rewards. A RL

learner that learns from this state distribution (replay buffer) is biased towards
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learning policies that optimizes for higher episode-wide return.

Diverse Exploration: A noisy version of the rlactor using Ornstein-Uhlenbeck

[223] process is used to generate additional experiences for the replay buffer. In

contrast to the population of actors which explore by noise in their parameter space

(neural weights), the rlactor explores through noise in its action space. The two

processes complement each other and collectively lead to an effective exploration

strategy that is able to better explore the policy space.

RL → EA: Periodically, the rlactor network’s weights are copied into the evolv-

ing population of actors, referred to as synchronization. The frequency of synchro-

nization controls the flow of information from the RL learner to the evolutionary

population. This is the core mechanism that enables the evolutionary framework

to directly leverage the information learned through gradient descent. The process

of infusing policy learned by the rlactor into the population also serves to stabilize

learning and make it more robust to deception. If the policy learned by the rlactor

is good, it will be selected to survive and extend its influence to the population

over subsequent generations. However, if the rlactor is bad, it will simply be se-

lected against and discarded. This mechanism ensures that the flow of information

from the rlactor to the evolutionary population is constructive, and not disruptive.

This is particularly relevant for domains with sparse rewards and deceptive local

minima which gradient-based methods can be highly susceptible to.



122

Algorithm 6 Evolutionary Reinforcement Learning

1: Initialize actor πrl and critic Qrl with weights θπ and θQ, respectively
2: Initialize target actor π′rl and critic Q′rl with weights θπ

′
and θQ

′
, respectively

3: Initialize a population of k actors popπ and an empty cyclic replay buffer R
4: Define a a Ornstein-Uhlenbeck noise generator O and a random number gen-

erator r() ∈ [0, 1)
5: for generation = 1, ∞ do
6: for actor π ∈ popπ do
7: fitness, R = Evaluate(π, R, noise=None, ξ)

8: Rank the population based on fitness scores
9: Select the first e actors π ∈ popπ as elites where e = int(ψ*k)
10: Select (k−e) actors π from popπ, to form Set S using tournament selection

with replacement
11: while |S| ¡ (k − e) do
12: Use crossover between a randomly sampled π ∈ e and π ∈ S and append

to S
13: for Actor π ∈ Set S do
14: if r() < mutprob then
15: Mutate(θπ)

16: , R = Evaluate(πrl,R, noise = O, ξ = 1)
17: Sample a random minibatch of T transitions (si, ai, ri, si+1) from R
18: Compute yi = ri + γQ′rl(si+1, π

′
rl(si+1|θπ

′
)|θQ′

)
19: Update Qrl by minimizing the loss: L = 1

T

∑
i(yi −Qrl(si, ai|θQ)2

20: Update πrl using the sampled policy gradient

∇θπJ ∼ 1
T

∑
∇aQrl(s, a|θQ)|s=si,a=ai∇θππ(s|θπ)|s=si

21: Soft update target networks: θπ
′ ⇐ τθπ + (1− τ)θπ

′
and θQ

′ ⇐ τθQ+ (1−
τ)θQ

′

22: if generation mod ω = 0 then
23: Copy the RL actor into the population: for weakest π ∈ popπ : θπ ⇐ θπrl
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Algorithm 7 Function Evaluate

1: procedure Evaluate(π, R, noise, ξ)
2: fitness = 0
3: for i = 1:ξ do
4: Reset environment and get initial state s0
5: while env is not done do
6: Select action at = π(st|θπ) + noiset
7: Execute action at and observe reward rt and new state st+1

8: Append transition (st, at, rt, st+1) to R
9: fitness← fitness+ rt and s = st+1

10: Return fitness
ξ

, R
11: end procedure

Algorithm 8 Function Mutate

1: procedure Mutate(θπ)
2: for Weight Matrix M∈ θπ do
3: for iteration = 1, mutfrac ∗ |M| do
4: Randomly sample indices i and j from M′s first and second axis,

respectively
5: if r() < supermutprob then
6: M[i, j] = M[i, j] * N (0, 100 ∗mutstrength)
7: else if r() < resetprob then
8: M[i, j] = N (0, 1)
9: else
10: M[i, j] = M[i, j] * N (0, mutstrength)

11: end procedure
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5.4 Experimental Details

Algorithm 6, 11 and 12 provide a detailed pseudocode of the ERL algorithm using

DDPG as its policy gradient component. Adam [123] optimizer with gradient

clipping at 10 and a learning rate of 5e−5 and 5e−4 was used for the rlactor and

rlcritic, respectively. The size of the population k was set to 10, while the elite

fraction ψ varied from 0.1 to 0.3 across tasks. The number of trials conducted to

compute a fitness score, ξ ranged from 1 to 5 across tasks. The size of the replay

buffer and batch size were set to 1e6 and 128, respectively. The discount rate γ and

target weight τ were set to 0.99 and 1e−3, respectively. The mutation probability

mutprob was set to 0.9 while the synchronization period ω ranged from 1 to 10

across tasks. The mutation strength mutstrength was set to 0.1 corresponding to a

10% Gaussian noise. Finally, the mutation fraction mutfrac was set to 0.1 while

the probability from super mutation supermutprob and reset resetmutprob were set

to 0.05.

The following paragraphs detail the hyperparameters used for Evolutionary

Reinforcement Learning (ERL) across all benchmarks. The hyperparameters that

were kept consistent across all tasks are listed below.

Population size k = 10 This parameter controls the number of different

individuals (actors) that are present in the evolutionary population at any given

time. This parameter modulates the proportion of exploration carried out through

noise in the actor’s parameter space and its action space. For example, with a

population size of 10, for every generation, 10 actors explore through noise in its
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parameters space (mutation) while 1 actor explores through noise in its action

space (rlactor).

Target weight τ = 1e−3 This parameter controls the magnitude of the soft

update between the rlactor / critic networks and their target counterparts.

Actor Learning Rate = 5e−5 This parameter controls the learning rate of

the actor network.

Critic Learning Rate = 5e−4 This parameter controls the learning rate of

the critic network.

Discount Rate = 0.99 This parameters controls the discount rate used to

compute the TD-error.

Replay Buffer Size = 1e6 This parameter controls the size of the replay

buffer. After the buffer is filled, the oldest experiences are deleted in order to

make room for new ones.

Batch Size = 128 This parameters controls the batch size used to compute

the gradients.

Actor Neural Architecture = [128, 128] The actor network consists of two

hidden layers, each with 128 nodes. Hyperbolic tangent was used as the activation

function. Layer normalization [9] was used before layer.

Critic Neural Architecture = [200 + 200, 300] The critic network consists

of two hidden layers, with 400 and 300 nodes each. However, the first hidden layer

is not fully connected to the entirety of the network input. Unlike the actor, the

critic takes in both state and action as input. The state and action vectors are each

fully connected to a sub-hidden layer of 200 nodes. The two sub-hidden layers are
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Parameter HalfCheetah Swimmer Reacher Ant Hopper Walker2D

ψ 0.1 0.1 0.2 0.3 0.3 0.2
ξ 1 1 5 1 5 3
ω 10 10 10 1 1 10

Table 5.1: Hyperparameters for ERL that were varied across tasks.

then concatenated to form the first hidden layer of 400 nodes. Layer normalization

[9] was used before each layer. Exponential Linear Units (elu) [35] activation was

used as the activation function. Table 5.1 details the hyperparameters that were

varied across tasks.

Elite Fraction ψ The elite fraction controls the fraction of the population that

are categorized as elites. Since an elite individual (actor) is shielded from the

mutation step and preserved as it is, the elite fraction modulates the degree of

exploration/exploitation within the evolutionary population. In general, tasks with

more stochastic dynamics (correlating with more contact points) have a higher

variance in fitness values. A higher elite fraction in these tasks helps in reducing

the probability of losing good actors due to high variance in fitness, promoting

stable learning.

Number of Trials ξ The number of trials (full episodes) conducted in an en-

vironment to compute a fitness score is given by ξ. For example, if ξ is 5, each

individual is tested on 5 full episodes of a task, and its cumulative score is averaged

across the episodes to compute its fitness score. This is a mechanism to reduce
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the variance of the fitness score assigned to each individual (actor). In general,

tasks with higher stochasticity is assigned a higher ξ to reduce variance. Note that

all steps taken during each episode is cumulative when determining the agent’s

total steps (the x-axix of the comparative results shown in the paper) for a fair

comparison.

Synchronization Period ω This parameter controls the frequency of informa-

tion flow from the rlactor to the evolutionary population. A higher ω generally

allows more time for expansive exploration by the evolutionary population while

a lower ω can allow for a more narrower search. The parameter controls how

frequently the exploration in action space (rlactor) shares information with the

exploration in the parameter space (actors in the evolutionary population).

5.5 Experiments

Domain: We evaluated the performance of ERL agents on 6 continuous control

tasks simulated using Mujoco [217]. These are benchmarks used widely in the field

[48, 98, 204, 188] and are hosted through the OpenAI gym [24].

Compared Baselines: We compare the performance of ERL with a standard

neuroevolutionary algorithm (EA), DDPG [141] and Proximal Policy Optimization

(PPO) [188]. DDPG and PPO are state of the art deep reinforcement learning al-

gorithms of the off-policy and and on-policy variety, respectively. PPO builds on

the Trust Region Policy Optimization (TRPO) algorithm [186]. ERL is imple-



128

mented using PyTorch [166] while OpenAI Baselines [45] was used to implement

PPO and DDPG. The hyperparameters for both algorithms were set to match the

original papers except that a larger batch size of 128 was used for DDPG which

was shown to improve performance in [105].

Methodology for Reported Metrics: For DDPG and PPO, the actor net-

work was periodically tested on 5 task instances without any exploratory noise.

The average score was then logged as its performance. For ERL, during each

training generation, the actor network with the highest fitness was selected as the

champion. The champion was then tested on 5 task instances, and the average

score was logged. This protocol was implemented to shield the reported metrics

from any bias of the population size. Note that all scores are compared against

the number of steps in the environment. Each step is defined as an instance where

the agent takes an action and gets a reward back from the environment. To make

the comparisons fair across single agent and population-based algorithms, all steps

taken by all actors in the population are cumulative. For example, one episode of

HalfCheetah consists of 1000 steps. For a population of 10 actors, each generation

consists of evaluating the actors in an episode which would incur 10, 000 steps. We

conduct five independent statistical runs with varying random seeds, and report

the average with error bars logging the standard deviation.

Results:

Figure 6.5 shows the comparative performance of ERL, EA, DDPG and PPO.

The performances of DDPG and PPO were verified to have matched the ones re-

ported in their original papers [141, 188]. ERL significantly outperforms DDPG
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(a) HalfCheetah (b) Swimmer

(c) Reacher (d) Ant

(e) Hopper (f) Walker2D

Figure 5.3: Learning curves on Mujoco-based continous control benchmarks com-
paring ERL (our proposed method) against PPO, DDPG and EA.
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across all the benchmarks. Notably, ERL is able to learn on the 3D quadruped loco-

motion Ant benchmark where DDPG normally fails to make any learning progress

[48, 90, 92]. ERL also consistently outperforms EA across all but the Swimmer

environment, where the two algorithms perform approximately equivalently. Con-

sidering that ERL is built primarily using the sub-components of these two algo-

rithms, this is an important result. Additionally, ERL significantly outperforms

PPO in 4 out of the 6 benchmark environments1.

The two exceptions are Hopper and Walker2D where ERL eventually matches

and exceeds PPO’s performance but is less sample efficient. A common theme

in these two environments is early termination of an episode if the agent falls

over. Both environments also disburse a constant small reward for each step of

survival to encourage the agent to hold balance. Since EA selects for episode-wide

return, this setup of reward creates a strong local minimum for a policy that simply

survives by balancing while staying still. This is the exact behavior EA converges

to for both environments. However, while ERL is initially confined by the local

minima’s strong basin of attraction, it eventually breaks free from it by virtue

of its RL components: temporally correlated exploration in the action space and

policy gradient-based on experience batches sampled randomly from the replay

buffer. This highlights the core aspect of ERL: incorporating the mechanisms

within EA and policy gradient methods to achieve the best of both

approaches.

Ablation Experiments: We use an ablation experiment to test the value

1Videos of learned policies available at https://tinyurl.com/erl-mujoco
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Figure 5.4: Ablation experiments with the selection operator removed. NS indi-
cates ERL without the selection operator.

of the selection operator, which is the core mechanism for experience selection

within ERL. Figure 5.4 shows the comparative results in HalfCheetah and Swim-

mer benchmarks. The performance for each benchmark was normalized by the

best score achieved using the full ERL algorithm (Figure 6.5). Results demon-

strate that the selection operator is a crucial part of ERL. Removing the selection

operation (NS variants) lead to significant degradation in learning performance

(∼80%) across both benchmarks.

Interaction between RL and EA: To tease apart the system further, we ran

some additional experiments logging whether the rlactor synchronized periodically

within the EA population was classified as an elite, just selected, or discarded dur-

ing selection (see Table 5.2). The results vary across tasks with Half-Cheetah’s and

Swimmer standing at either extremes: rlactor being the most and the least perfor-
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Elite Selected Discarded

Half-Cheetah 83.8± 9.3% 14.3± 9.1% 2.3± 2.5%

Swimmer 4.0± 2.8% 20.3± 18.1% 76.0± 20.4%
Reacher 68.3± 9.9% 19.7± 6.9% 9.0± 6.9%

Ant 66.7± 1.7% 15.0± 1.4% 18.0± 0.8%
Hopper 28.7± 8.5% 33.7± 4.1% 37.7± 4.5%

Walker-2d 38.5± 1.5% 39.0± 1.9% 22.5± 0.5%

Table 5.2: Selection rate for synchronized rlactor

mant, respectively. The Swimmer’s selection rate is consistent with the results in

Figure 6.5b where EA matched ERL’s performance while the RL approaches strug-

gled. The overall distribution of selection rates suggest tight integration between

the rlactor and the evolutionary population as the driver for successful learning.

Interestingly, even for HalfCheetah which favors the rlactor most of the time, EA

plays a critical role with ‘critical interventions.’ For instance, during the course

of learning, the cheetah benefits from leaning forward to increase its speed which

gives rise to a strong gradient in this direction. However, if the cheetah leans

too much, it falls over. The gradient-based methods seem to often fall into this

trap and then fail to recover as the gradient information from the new state has

no guarantees of undoing the last gradient update. However, ERL with its pop-

ulation provides built in redundancies which selects against this deceptive trap,

and eventually finds a direction for learning which avoids it. Once this deceptive

trap is avoided, gradient descent can take over again in regions with better reward

landscapes. These critical interventions seem to be crucial for ERL’s robustness

and success in the Half-Cheetah benchmark.
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Note on runtime: On average, ERL took approximately 3% more time than

DDPG to run. The majority of the added computation stem from the mutation

operator, whose cost in comparison to gradient descent was minimal. Additionally,

these comparisons are based on implementation of ERL without any paralleliza-

tion. We anticipate a parallelized implementation of ERL to run significantly faster

as corroborated by previous work in population-based approaches [40, 181, 204].

Using evolutionary algorithms to complement reinforcement learning, and vice-

versa is not a new idea. Stafylopatis and Blekas combined the two using a Learn-

ing Classifier System for autonomous car control [199]. Whiteson and Stone used

NEAT [202], an evolutionary algorithm that evolves both neural topology and

weights to optimize function approximators representing the value function in Q-

learning [233]. More recently, Colas et.al. used an evolutionary method (Goal

Exploration Process) to generate diverse samples followed by a policy gradient

method for fine-tuning the policy parameters [36]. From an evolutionary perspec-

tive, combining RL with EA is closely related to the idea of incorporating learning

with evolution [1, 47, 222]. Fernando et al. leveraged a similar idea to tackle catas-

trophic forgetting in transfer learning [56] and constructing differentiable pattern

producing networks capable of discovering CNN architecture automatically [57].

Recently, there has been a renewed push in the use of evolutionary algorithms

to offer alternatives for (Deep) Reinforcement Learning [179]. Salimans et al. used

a class of EAs called Evolutionary Strategies (ES) to achieve results competitive

with DRL in Atari and robotic control tasks [181]. The authors were able to

achieve significant improvements in clock time by using over a thousand parallel
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workers highlighting the scalability of ES approaches. Similar scalability and com-

petitive results were demonstrated by Such et al. using a genetic algorithm with

novelty search [204]. A companion paper applied novelty search [138] and Quality

Diversity [41, 173] to ES to improve exploration [40]. EAs have also been widely

used to optimize deep neural network architecture and hyperparmeters [106, 144].

Conversely, ideas within RL have also been used to improve EAs. Gangwani and

Peng devised a genetic algorithm using imitation learning and policy gradients as

crossover and mutation operator, respectively [67]. ERL provides a framework for

combining these developments for potential further improved performance. For in-

stance, the crossover and mutation operators from [67] can be readily incorporated

within ERL’s EA module while bias correction techniques such as [65] can be used

to improve policy gradient operations within ERL.

5.6 Conclusion and Future Work

We introduced ERL, a hybrid algorithm that leverages the population of an EA

to generate diverse experiences to train an RL agent, and reinserts the RL agent

into the EA population sporadically to inject gradient information into the EA.

ERL inherits EA’s invariance to sparse rewards with long time horizons, ability

for diverse exploration, and stability of a population-based approach and com-

plements it with DRL’s ability to leverage gradients for lower sample complexity.

Additionally, ERL recycles the date generated by the evolutionary population and

leverages the replay buffer to learn from them repeatedly, allowing maximal in-
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formation extraction from each experience leading to improved sample efficiency.

Results in a range of challenging continuous control benchmarks demonstrate that

ERL outperforms state-of-the-art DRL algorithms including PPO and DDPG.

From a reinforcement learning perspective, ERL can be viewed as a form of

‘population-driven guide’ that biases exploration towards states with higher long-

term returns, promotes diversity of explored policies, and introduces redundancies

for stability. From an evolutionary perspective, ERL can be viewed as a Lamar-

ckian mechanism that enables incorporation of powerful gradient-based methods

to learn at the resolution of an agent’s individual experiences. In general, RL

methods learn from an agent’s life (individual experience tuples collected by the

agent) whereas EA methods learn from an agent’s death (fitness metric accumu-

lated over a full episode). The principal mechanism behind ERL is the capability

to incorporate both modes of learning: learning directly from the high resolution

of individual experiences while being aligned to maximize long term return by

leveraging the low resolution fitness metric. This dual-pronged learning approach

enables improved temporal credit assignment for the emergent learner and leads

to faster learning.

In this paper, we used a standard EA as the evolutionary component of ERL.

Incorporating more complex evolutionary sub-mechanisms is an exciting area of

future work. Some examples include incorporating more informative crossover

and mutation operators [67], adaptive exploration noise [63, 171], and explicit

diversity maintenance techniques [40, 41, 138, 204]. Other areas of future work will

incorporate implicit curriculum based techniques like Hindsight Experience Replay
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[5] and information theoretic techniques [53, 92] to further improve exploration.
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Chapter 6: Collaborative Evolutionary Reinforcement Learning

In the previous chapter, we introduced ERL and showed how it could be used

to improve over policy gradient or EA methods in isolation. One component

within ERL was its integration of population-based exploration in the parame-

ter space to supplement policy-gradient’s exploration in the action space. While

the population-based parameter exploration helped generate diverse experiences,

the policy gradient’s exploration range was still limited by its operating policy.

The is because a policy gradient algorithm employs a noisy version of its operating

policy as its behavioral policy that is used for exploration. This puts the burden

of both exploitation and exploration onto the same set of hyperparameters.

In this chapter, we introduce Collaborative Evolutionary Reinforcement Learn-

ing (CERL) [116], a scalable framework that leverages a portfolio of learners that

learn with different time-horizons to explore different parts of the solution space

while remaining loyal to the task. This process is directed by a resource manager

that dynamically re-distributes computational resources amongst the learners -

favoring the best as a form of online algorithm selection. The diverse set of expe-

riences generated by this adaptive process are stored in a shared replay buffer for

collective exploration enabling better sample efficiency.

Figure 6.1 illustrates CERL’s multi-layered learning approach where each learner

exploits the data generated by a diversity of “behavioral policies” stemming from
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Figure 6.1: High level schematic of CERL. A portfolio of policy gradient learners
operate in parallel to neuroevolution for collective exploration, while a shared
replay buffer enables collective exploitation. Resource Manager drives this process
by dynamically allocating computational resources amongst the learners.

other learners in the portfolio. An evolutionary population operating in parallel

augments this process by extending exploration to the parameter space of policies

through mutation. Evolution also introduces redundancies in the population to sta-

bilize learning, intermixes sub-components within policies through crossover, and

binds the entire underlying process to generate an emergent learner that exceeds

the sum of its parts. Experiments in a range of continuous control benchmarks

demonstrate that CERL inherits the best of its composite learners while remaining

overall more sample-efficient.
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Figure 6.2: Comparative performance of Neuroevolution, TD3 (γ = 0.0, 1.0) and
CERL (built using them) in the Hopper benchmark.

6.1 Motivating Example

Consider the Hopper task from OpenAI gym [24], a classic continuous control

benchmark used widely in recent DRL literature [48, 105, 98, 186]. Here, the goal

is to make a two-dimensional, one-legged robot hop as fast as possible without

falling. The task has a state space dimension of S = 11 and action space dimension

of A = 3. TD3 has been shown to solve this problem fairly easily [65] (also shown

in Figure 6.5 in Section 6.3). However, TD3 solves this problem with a tuned

discount rate (γ = 0.99). It is interesting how sensitive this performance would

be to varying choices of a discount rate (γ), including ones that are clearly sub-
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optimal.

Figure 7.1 shows the comparative performance of TD3 (γ = 0.0), TD3 (γ =

1.0), neuroevolution and our proposed approach: CERL built using the two TD3

variations as its learners. TD3 (γ = 0.0) represents an extremely greedy learner

whose optimization horizon is limited to its immediate reward. On the contrary,

TD3 (γ = 1.0) represents a long-term learner whose optimization horizon is vir-

tually infinite. However, since it seeks to optimize a return which is a function of

all future action and states in the trajectory, it learns with significant amount of

variance. Both learners represent the extreme ends of the spectrum and would not

be expected to learn well. Figure 7.1 corroborates this expectation: TD3 (γ = 0.0)

fails to entirely learn as the most greedy action with respect to the immediate

reward is rarely aligned with the cumulative episode-wide return. TD3 (γ = 1.0),

on the other hand, has a reward ceiling of 1000 - imposed by the variance of its

computed return. Similarly, neuroevolution on its own also fails to solve the task

within the 5 million steps tested. However, CERL, which is built directly on top

of these learners, is able to continue learning beyond this - reaching a score of

2136± 512.

While each of the learners fails to solve the problem individually, they collab-

oratively succeed in solving it under the CERL framework. A key reason here is

that each learner fails when required to simultaneously exploit well and produce

good behavioral policies that explore the space well. Being able to do both is key

to solving the problem and tuning the discount rate is akin to finding this trade-

off. CERL provides an alternate approach to finding this trade-off - by employing
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both learners to explore the space while dynamically distributing the resources to

the better performer for effective exploitation. Even when a learner is ill-suited for

solving the task by itself, it can serve to be a key ’behavioral policy’ that explores

critical parts of the search space and generates experiences which are key to learn-

ing well on the task. CERL exploits these diversities to define an emergent learner

that surpasses the sum of its parts.

6.2 Methodology

The principal idea behind Collaborative Evolutionary Reinforcement Learning

(CERL) is to incorporate the strengths of multiple learners, each optimizing over

varying time-horizons of the underlying task (MDP). While a specific learner is

unlikely to be an optimal choice for the task throughout the learning process, a di-

verse collection of learners is significantly more likely to be so. This is particularly

true for exploration, where different learners can contribute a diverse set of be-

havioral policies while remaining loyal to the task. A shared replay buffer ensures

that all learners exploit this diverse data generated. A resource manager super-

vises this process by dynamically re-distributing computational resources to favor

the better performing learners. Finally, this entire underlying apparatus is bound

together by evolution which serves to integrate the best policies, explore in the

parameter space and exploit any decomposition in the policy space with crossover

operands. The emergent learner combines the best of its underlying composite

processes, leading to a whole larger than the sum of its parts.
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A general flow of the CERL algorithm proceeds as follows: a population of actor

networks is initialized with random weights. The population is then evaluated in

an episode of interaction with the environment (roll-out). The fitness for each

actor is computed as the cumulative sum of the rewards received in the roll-out. A

selection operator selects a portion of the population for survival with probability

commensurate with their relative fitness scores. The weights of the actors in the

population are then probabilistically perturbed through mutation and crossover

operators to create the next generation of actors. A select portion of actors with

the highest relative fitness are shielded from the mutation step and are preserved

as elites.

Portfolio: The procedure described so far is reminiscent of a standard EA.

However, in addition to the population of actors, CERL initializes a collection of

learners (henceforth referred to as a portfolio). Each learner is initialized with its

own actor, critic and has an associated learning algorithm defined with its own

distinct hyperparameters. In this paper, the variation across learners is realized

through varying discount rates (γ). However, in general, this can be any other

variation in the hyperparameters, including a difference in the learning algorithm

itself. The variation in discount rate used in this work can be interpreted as each

learner optimizing over a distinct time-horizon of the underlying MDP. Learners

with lower discount rates optimize a “greedier” objective than the ones with larger

discount rates (long-term optimizers). The greedier objective has the benefit of

being highly learnable but is not guaranteed to be aligned with the true learning

goal. On the other hand, the long-term objective is more aligned to the true
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learning goal but is not as learnable - suffering from high variance due to its

returns being conditioned on a longer time horizon. Thus, the portfolio represents

a diverse set of learners, each with its own strengths and weaknesses.

Adaptive Resource Allocation: CERL is initialized with a computation

resource budget of b workers dedicated to running roll-outs for its learner portfo-

lio (separate from the resources used to evaluate the evolutionary population of

actors). Allocation A defines the allotment of this resource budget amongst the

learners within the portfolio for each generation of learning. This is initialized

uniformly - each learner gets an equal number of dedicated workers to run roll-

outs using its actor as the behavioral policy. Each learner stores statistics about

the number of cumulative roll-outs it has run y, and a value metric v, defined as

the discounted sum of the cumulative returns received from its own roll-outs. v is

updated after every roll-out as:

v′ ⇐ α ∗ return+ (1− α) ∗ v

After each generation, an upper confidence bound (UCB) [8] score U is com-

puted for each learner based on its node statistics using Equation 6.1. This for-

mulation is commonly used in solving multi-bandit problems [27, 110]. The UCB

score is known to provide good trade-offs between exploitation and exploration and

has been extensively used for reinforcement learning in the form of tree searches

[6, 195] and algorithms selection [133].

Ui = vni + c ∗

√
log(

∑b
i=1 yi)

yi
(6.1)
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where, vn is v normalized to be ∈ (0, 1)

The UCB scores are normalized to form a probability distribution, and alloca-

tion A is re-populated by iterative sampling from this distribution. The allocation

describes the new allotment of resources (roll-out workers) amongst the learners

for the next generation. The process can be seen as a meta-operation that adap-

tively distributes resources across the learners dynamically during the course of

learning. The underlying UCB technique used to control this distribution ensures

a systematic approach to balancing exploitation and exploration when allocating

resources across learners.

Shared Experiences: The collective replay buffer is the principal mechanism

that enables the sharing of information across the evolutionary population and

amongst the learners in the portfolio. In contrast to a standard EA which would

extract the fitness metric from each of its roll-outs and disregard them immedi-

ately, or ensemble methods that treat different learners separately, CERL pools

all experiences defined by the tuple (current state, action, next state, reward) in

its collective replay buffer. This is done for every interaction, at every time-step,

for every episode and for each of its actors (including the evolutionary population

and each roll-out conducted by the portfolio of learners). All learners are then

able to sample experiences from this collective buffer and use it to update its pa-

rameters repeatedly using gradient descent. This mechanism allows for increased

information extraction from each individual experiences leading to improved sam-

ple efficiency.

Diverse Exploration: In contrast to most methods where a learner learns
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based on data that its behavioral policy generates, CERL enables its portfolio of

learners to leverage the data generated by a diverse set of actors. This includes

the actors within the neuroevolutionary population and the actors stemming from

other learners in the portfolio. Since each learner optimizes over varying time-

horizons of the same underlying MDP, the associated actors lead to diverse be-

havioral policies exploring different regions of the solution space while remaining

aligned with the task at hand. Additionally, in contrast to the learners which

explore in their action space, the neuroevolutionary population explores in its pa-

rameter (neural weights) space using the mutation operator. The two processes

complement each other and collectively lead to an effective strategy that is able to

better explore the policy space.

Portfolio → EA: Periodically, each learner network is copied into the evolu-

tionary population of actors, a process referred to as Lamarckian transfer. The fre-

quency of Lamarckian transfer controls the flow of information from the gradient-

based learners in the portfolio to the gradient-free evolutionary population. This is

the core mechanism that enables the evolutionary framework to directly leverage

the information learned through gradient-based optimization. The evolutionary

process also acts as an amplifier in the realization of adaptive resource allocation.

Good learner policies are selected to survive and reproduce - extending their in-

fluence in the population over subsequent generations. These policies and their

descendants contribute increasingly more data experiences into the collective re-

play buffer and influence the learning of the all portfolio learners. Bad learner

policies, on the other hand, are rejected to minimize their influence. Finally,
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crossover serves to exploit any decomposability in the policy space and combines

good “sub-components of the policies” present in the diverse evolutionary popula-

tion.

Algorithm 9 Object Learner

1: procedure Initialize(γ)
2: Set discount rate=γ, count=0 and value v=0
3: Initialize actor π and critic Q with weights θπ and θQ, respectively
4: Initialize target actor π′ and critic Q′ with weights θπ

′
and θQ

′
, respectively

5: end procedure

Algorithm 9, 10, 11 and 12 provide a detailed pseudo-code of the CERL algo-

rithm using a portfolio of TD3 learners. The choice of hyperparameters is explained

in the Appendix. Additionally, our source code 1 is available online.

6.3 Results

Domain: CERL is evaluated on 5 continuous control tasks on Mujoco [217]. These

benchmarks are used widely in the field [118, 204, 188] and are hosted on OpenAI

gym [24].

Compared Baselines: For each benchmark, we compare the performance

of CERL with its composite learners ran in isolation. While not constrained to

this arrangement, CERL here is built using a combination of a neuroevolutionary

algorithm (EA) and 4 policy gradient based learners. We use TD3 [64] as our

policy gradient learner as it is the current state-of-the-art off-policy algorithm for

1https://github.com/intelai/cerlgithub.com/intelai/cerl
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these benchmarks. The 4 TD3 learners are identical with each other apart from

their discount rates which are 0.9, 0.99, 0.997, and 0.9995. These were not tuned

for performance.

We also ran CERL with a single learner - picking the best TD3 learner for each

task. This is equivalent to ERL [?] with the exception of the resource manager.

However, the resource manager does not have any functional effect when there is

only one learner.

Methodology for Reported Metrics: For TD3, the actor network was

periodically tested on 10 task instances without any exploratory noise. The average

score was logged as its performance. During each training generation, the actor

network with the highest fitness was selected as the champion. The champion was

then tested on 10 task instances, and the average score was logged. This protocol

shielded the reported metrics from any bias of the population size. We conduct

5 statistically independent runs with random seeds from {2018, 2022} and report

the average with error bars showing a 95% confidence interval.

The “Steps” Metric: All scores reported are compared against the number

of environment steps. A step is defined as an agent taking an action and receiv-

ing a reward back from the environment. To make the comparisons fair across

single-agent and population-based algorithms, all steps taken by all actors in the

population, and by all learners in the portfolio are counted cumulatively.

Hyperparameter Selection: The hyperparameters used for CERL were not

tuned to generate the results, unless specifically stated. The parameters used for

the TD3 learners were simply inherited from [64], while the evolutionary param-
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Figure 6.3: Comparative Results for CERL tested against its composite learners
in the Humanoid benchmark.

eters were inherited from [118]. The computational budget of b workers was set

to 10 to match the evolutionary population size. The UCB exploration coefficient

was set to 0.9 which numerically makes the relative weight of exploration and

exploitation terms in Equation 6.1 close to equilibrium at the start.

CERL significantly outperforms neuroevolution, as well as all versions of TD3

with varying discount rates. The TD3 learners fail to learn at all, which is con-

sistent with reports in previous literature [92]. On the other hand, neuroevolution

alone was shown to solve Humanoid, but required 62.5 millions roll-outs [137].

CERL is able to achieve a score of 4702.0 ± 356.5 within 1 million environment
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steps (approximately 4000 roll-outs). Considering that CERL only uses a combi-

nation of these learners, this is a significant result. Each learner in isolation fails

to learn on the task entirely, while the same learners when incorporated under

the CERL framework, are able to solve it jointly. This is because none of the

learners are able to succeed when burdened with both exploring the solution space

to generate an expansive set of data, and exploiting it aptly. However, when the

learners collectively explore diverse regions of the solution space, and collectively

exploit these experiences, they succeed. The single-learner ERL also fails to learn

this task. Since the key difference between ERL and CERL is the use of multiple

learners, this demonstrates that the performance gains of CERL come primarily

from this collaboration.

Resource-manager’s Sensitivity to Exploration: Figure 6.4 shows the

comparative performance for CERL tested with varying c (exploration coefficient

in Equation 6.1) for the Humanoid benchmark. CERL with c = 0.9 performs the

best as it provides a good balance of exploration and exploitation for the resource-

manager. However, CERL with c = 0.0 and c = 5.0 both are also able to learn

well the benchmark, but are less sample-efficient. An important point to note is

that c = 0.0 does not lead to the complete lack of exploration. As all learners start

with random weights, the returns are close to random at the beginning of learning

and serves to bootstrap exploration. On the other hand, a c of 10 does lead to

extremely high exploration. As expected, this prolonged exploration leads to even

lower sample efficiency. This highlights the role that the resource-manager plays in

dynamically redistributing resource and finding the balance between exploration
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Figure 6.4: Sensitivity analysis for resource-manager exploration (c) in the Hu-
manoid benchmark

and exploitation.

Additional Mujoco Experiments: Figure 6.5 shows the comparative per-

formance of CERL, alongside its composite learners in 4 additional environments

simulated using Mujoco. Unlike the 3D humanoid benchmark, these domains are

2D, have considerably smaller state and action spaces, and are relatively simpler to

solve. One of the four TD3 learners: TD3 with a discount rate of 0.99 (TD3-0.99)

is able to solve 3 out of the 4 benchmarks, with the exception of Swimmer. CERL

is also able to solve these benchmarks but is less sample-efficient that TD3-0.99.

However, on the Swimmer benchmark, while all of the TD3 learners fail to solve the



151

(a) Hopper (b) Swimmer

(c) HalfCheetah (d) Walker2D

Figure 6.5: Comparative results of CERL with 4 learners (TD3 with discount rates
of 0.9, 0.99, 0.997 and 0.9995) against the learners in isolation, and neuroevolution.

task, CERL successfully solves it similar to neuroevolution. This emphasizes the

key strength of CERL: the ability to inherit the best of its composite approaches.

While TD3-0.99 is more sample-efficient in 3 out of the 4 benchmarks, CERL

is more sample-efficient than all the other TD3-based learners. This suggests that

0.99 is an ideal discount rate for these tasks. Any deviation from this value leads

to considerable loss in performance for TD3. In other words, this is a sensitive
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hyperparameter that has to be rigorously tuned. CERL achieves this functional-

ity online through its resource-manager, which adaptively re-distributes compu-

tational resources across the learners. While this invariably leads to the use of

more samples when compared to an ideal hyperparameter that is known a priori,

CERL is able to identify and exploit the best hyperparameters online via joint ex-

ploration. Additionally, as demonstrated in the cases of Swimmer and Humanoid

(Figure 6.3), this exploration itself is critical to successful learning as there does

not exist one hyperparameter that can solve the task all by itself. Overall, CERL

enables an arguably simpler alternative to network design compared to complex

hyperparameter tuning methodologies.

Allocation: Table 6.1 reports the final cumulative resource-allocation rate

across the four learners for CERL in the five Mujoco benchmarks tested. L1, L2,

L3 and L4 correspond to learners with γ = 0.9, 0.99, 0.997 and 0.9995, respec-

tively. L2 seems to be the learner that is generally preferred across most tasks.

This is not surprising as this value for γ is the hyperparameter used in [64] after

tuning. However, in the Swimmer benchmark, this choice of hyperparameter is

not ideal. Learners with higher γ perform significantly better on the task (Figure

6.5). CERL is able to identify this online and allocates more resources to L3 and

L4 with higher γ. This flexibility for online algorithm selection, in combination

with its evolutionary population, enables CERL to solve the Swimmer benchmark

effectively.

A closely related work to CERL is Population-based Training (PBT) [106],

which employs a population to jointly optimize models and its associated hyper-
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Table 6.1: Average cumulative resource-allocation rate for CERL across bench-
marks. (error intervals omitted as all were < 0.04)

Task L1 L2 L3 L4

Humanoid 0.24 0.35 0.20 0.20

Hopper 0.14 0.27 0.32 0.27

Swimmer 0.17 0.20 0.36 0.27

HalfCheetah 0.29 0.32 0.24 0.15

Walker 0.14 0.28 0.33 0.25

parameters online. However, unlike CERL, PBT does not dynamically redistribute

computational resources amongst its learners; instead, it relies entirely on its evo-

lutionary process for learner selection. Additionally, learners in PBT are isolated

and do not share experiences with each other for collective exploitation - a key

mechanism in CERL for the retention of sample-efficiency. Collective exploitation

of a diverse set of experiences is a popular idea, particularly in recent literature.

Colas et al. used an evolutionary method (Goal Exploration Process) to generate

diverse samples followed by a policy gradient method for fine-tuning the policy

parameters [36] while Khadka and Tumer incorporated the two processes to run

concurrently formulating a Lamarckian framework [118]. From an evolutionary

perspective, this is closely related to the idea of incorporating learning with evo-

lution [1, 47, 222].

Another facet of CERL is algorithm selection [66, 197, 178] - an idea that has

been explored extensively in past literature. Lagoudakis and Littman formulated

algorithm selection as an MDP and used Q-learning to solve classic order statistic

selection and sorting problems [131]. Cauwet et al. addressed noisy optimiza-
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tion using a portfolio of online reinforcement learning algorithms [29]. Conversely,

Laroche and Feraud introduced Epochal Stochastic Bandit Algorithm Selection

(ESBAS), which tackled algorithm selection in reinforcement learning itself, for-

mulating it as a K-armed stochastic bandit problem [133]. The resource-manager in

CERL closely builds on this formulation to inherit its good exploration-exploitation

trade-off properties. However, unlike ESBAS, CERL leads to soft algorithm selec-

tion - carried out through the allocation of computation resources rather than a

hard binary selection.

6.4 Conclusion and Future Work

We presented CERL, a scalable algorithm that allows gradient-based learners to

jointly explore and exploit solutions in a gradient-free evolutionary framework.

Experiments in continuous control demonstrate that CERL’s emergent learner can

outperform its composite learners while remaining overall sample-efficient com-

pared to traditional approaches.

Strengths: CERL is generally insensitive to its hyperparameters and to those

of the individual learners. The Humanoid and Swimmer problems are examples

where state-of-the-art algorithms show high sensitivity to their hyperparameters

while CERL required no hyperparameter tuning. Significantly, the Humanoid

problem demonstrates that CERL is able to find effective solutions using partic-

ipating learners that fail completely on their own. This makes CERL a simpler

design alternative to complex hyperparameter tuning and one that seems to gen-
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eralize well across multiple tasks.

A practical consideration for CERL is the parallel operation of gradient-based

and gradient-free methods. The former, involving backpropagation, is typically

suited for GPUs. The latter, involving forward-propagation, is typically suited

for CPUs and is highly scalable, leading to impressive wall-clock performances

[181, 204]. By leveraging both modes simultaneously, CERL provides a principled

way to parallelize learning and to cater one’s learning algorithm to the available

hardware.

Limitations: CERL can be less sample-efficient for simple tasks where the

ideal hyperparameters are known a priori. This is apparent in the case of Walker2d

(Fig 6.5) and can be attributed to the exploration involved in selecting learners.

However, CERL does eventually match the performance shown by the learner

with the known ideal hyperparameter. This weakness of CERL is contingent on

the ability to derive the ideal parameters for a learner - a process which by itself

generally consumes significant resources that are often not reported in literature.

Here, we explored homogeneous learners optimizing over varying time-horizons

of a task. Future work will extend this to learners that are different algorithms

themselves. Incorporating stochastic actors from SAC [92] with the determinis-

tic TD3 actors is an exciting area. Another promising line of work would be to

incorporate learning within the resource manager to augment the current UCB

formulation.
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Algorithm 10 CERL Algorithm

1: Initialize portfolio P with q learners (Alg 9) - varying γ
2: Start allocation A uniformly, and set # roll-out H = 0
3: Initialize a population of k actors popπ and an empty cyclic replay buffer R
4: Define a Gaussian noise generator O = N (0, σ) and a random number gener-

ator r() ∈ [0, 1)
5: for generation = 1, ∞ do
6: for actor π ∈ popπ do
7: fitness, R = Evaluate(π, R, noise=None)

8: Rank the population based on fitness scores
9: Select the first e actors π ∈ popπ as elites
10: Select (k−e) actors π from popπ, to form Set S using tournament selection

with replacement
11: while |S| < (k − e) do
12: Crossover between a random π ∈ e and π ∈ S and append to S

13: for Actor π ∈ Set S do
14: if r() < mutprob then
15: Mutate(θπ)

16: for Learner L ∈ P do
17: for ii =1,Ai do
18: score, R = Evaluate(Lπ,R, noise = O)
19: Lv = α * score + (1 - α) * Lv
20: Lcount += 1

21: ups = # of environment steps taken this generation
22: for ii = 1, ups do
23: for Learner L ∈ P do
24: Sample a random minibatch of T transitions (si, ai, ri, si+1) from R
25: Update the critic via a Bellman update using the min of LQ′j(si+1

26: Update Lπ using the sampled policy gradient with noisy actions
27: Soft update target networks:
28: Lθπ′ ⇐ τLθπ + (1− τ)Lθπ′ and
29: LθQ′ ⇐ τLθQ + (1− τ)LθQ′

30: Compute the UCB scores U using
31: for Learner L ∈ P do

Ui = Lv + c ∗
√

logeH
Lcount

32: Normalize U to be within [0, 1) and set A = []
33: Sample from U to fill up A
34: if generation mod ω = 0 then
35: for Learner L ∈ P do
36: Copy Lπ into the population: for weakest ∈ popπ : θπ ⇐ Lθπ
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Algorithm 11 Function Evaluate used in CERL

1: procedure Evaluate(π, R, noise)
2: fitness = 0
3: Reset environment and get initial state s0
4: while env is not done do
5: Select action at = π(st|θπ) + noiset
6: Execute action at and observe reward rt and new state st+1

7: Append transition (st, at, rt, st+1) to R
8: fitness← fitness+ rt and s = st+1

9: Return fitness, R
10: end procedure

Algorithm 12 Function Mutate used in CERL

1: procedure Mutate(θπ)
2: for Weight Matrix M∈ θπ do
3: for iteration = 1, mutfrac ∗ |M| do
4: Sample indices i and j from M′s first and second axis, respectively
5: if r() < supermutprob then
6: M[i, j] = M[i, j] * N (0, 100 ∗mutstrength)
7: else if r() < resetprob then
8: M[i, j] = N (0, 1)
9: else
10: M[i, j] = M[i, j] * N (0, mutstrength)

11: end procedure
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Chapter 7: Multiagent Evolutionary Reinforcement Learning

In the last two chapters, we introduced ERL and CERL - both multilevel opti-

mization frameworks that combined two optimizers inheriting the best of both

approaches. ERL leveraged this dual-pronged optimization approach to define an

emergent learner capable of improved temporal credit assignment. However, it is

unclear whether this multilevel optimization framework can be leveraged to ad-

ditionally address structural credit assignment in multiagent settings that require

tight coordination between many agents. This chapter puts forward Multiagent

Evolutionary Reinforcement Learning (MERL), a multilevel optimization frame-

work to address this open research question. MERL builds on ERL with the goal

of addressing structural credit assignment for multiagent coordination.

7.1 Motivation

Deep Reinforcement Learning (DRL) has been successfully applied to a range of

challenging tasks such as Atari games [157], industrial data center cooling appli-

cations [52] and controlling humanoids [239]. Most of these tasks involve single

agents, where the agent’s local objective is identical to the global system objective.

However, many real world applications like air traffic control [221], multi-robot

coordination [191, 240], communication and language [135, 158], and autonomous



159

driving [190] involve multiple agents interacting with each other. Unfortunately,

traditional DRL approaches are ill-suited to tackling multiagent problems due to

a host of challenges including non-stationary environments [60, 147], structural

credit assignment [3, 175], and the explosion of the search space with increasing

number of agents [140].

Consider soccer where a team of agents coordinate to achieve a global objective

of winning. Directly optimizing this objective to train each agent is sub-optimal

due to two reasons. First, it fails to encapsulate the contributions of individual

agents to the final result. Second, it is usually very sparse - a single scalar cap-

turing performance of an entire team operating across an extended period of time.

This makes it a weak metric to learn on. Domain knowledge has been used to

design agent-specific rewards [43, 237]. However, this is not very generalizable.

For example, a team that is winning may benefit from protecting its lead by tem-

porarily being more defensive. This objective now becomes misaligned with the

local objectives of the strikers that prioritize scoring. This leads to sub-optimal

coordination overall.

MERL is a hybrid algorithm that combines gradient-based and gradient-free

learning to address sparse and noisy coordination objectives without the need to

manually design agent-specific rewards to align with a global objective. MERL em-

ploys a two-level approach: a local optimizer (policy gradient) learns using local

rewards computed directly over each agent’s observation set. This has the advan-

tage of being high-fidelity and dense - a perfect signal to learn non-coordination

related aspects of the world such as perception and navigation. A global opti-
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mizer (evolutionary algorithm) learns to directly optimize the global reward which

encodes the true system goal. The two processes operate concurrently and share

information.

Our hypothesis is that the solution to the coordination task often exists on a

smaller manifold than that for the related navigation and perception tasks. For

instance in soccer, assume that each player has mastered their self-oriented skills

such as perceiving the world, passing, dribbling, and running. Given these skills,

the coordination aspect of the game can be roughly reduced to planning who/when

to make passes and what spaces to occupy and when. The search space for learn-

ing the self-oriented skills is significantly larger than that for coordination. MERL

leverages this split within the structure of the task: employing local rewards cou-

pled with fast policy gradient methods to learn the self-oriented skills while em-

ploying the less powerful but more general global optimizer (neuroevolution) to

learn coordination skills.

A key strength of MERL is that it optimizes the true learning goal (global

reward) directly while leveraging local rewards as an auxiliary signal. This is in

stark contrast to reward shaping techniques that construct a proxy reward to in-

centivize the attainment of the global reward [3, 44]. Apart from requiring domain

knowledge and manual tuning, this approach also poses risks of changing the un-

derlying problem itself [162]. MERL on the other hand is not susceptible to this

mode of failure and is guaranteed to optimize the global reward. We test MERL in

a multi-rover domain with increasingly complex coordination objectives. Results

demonstrate that MERL significantly outperforms state-of-the-art multiagent rein-
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forcement learning methods like MADDPG while using the same set of information

and reward functions.

7.2 Motivating Example

(a) Rover domain (b) MERL vs TD3 vs EA

Figure 7.1: (a) Rover domain with a clear misalignment between local and global
reward functions (b) Comparative performance of MERL compared against TD3-
mixed, TD3-global and an Evolutionary Algorithm (EA).

Consider the rover domain [3], a classic multiagent task where a team of rovers

coordinate to explore a region. The global objective is to observe all POIs (Points

of Interest) distributed in the area. Each robot also receives a local reward defined

as the negative distance to the closest POI. In Figure 7.1(a), a team of two rovers

R1 and R2 seek to explore and observe POIs P1 and P2. R1 is closer to P2 and has

enough fuel to reach either of the POIs whereas R2 can only reach P2. There is no

communication between the rovers.
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If R1 optimizes only locally by pursuing the closer POI P2, then the global

objective is not achieved since R2 can only reach P2. The globally optimal solution

for R1 is to spend more fuel and pursue P1 - this is misaligned with its locally

optimal solution. This is related to social sequential dilemmas [139, 169]. Figure

7.1(b) shows the comparative performance of four algorithms - namely TD3-mixed,

TD3-global, EA and MERL on this coordination task.

TD3-mixed and TD3-global optimize a scalarized version of joint objec-

tive or just the global reward, respectively. Since the global reward is extremely

sparse (only disbursed when a POI is observed) TD3-global fails to learn anything

meaningful. In contrast, TD3-mixed, by virtue of its dense local reward compo-

nent, successfully learns to perceive and navigate. However, the mixed reward is a

static scalarization between local and global rewards that are not always aligned

as described in the preceding paragraph. TD3-mixed converges to the greedy local

policy of R1 pursuing P2.

EA relies on randomly stumbling onto a solution - e.g., a navigation sequence

that takes the rovers to the correct POIs. The probability of one of the rovers

stumbling onto the nearest POI is significantly higher. This is also the policy that

EA converges to.

MERL combines the core strengths of TD3 and EA. It exploits the local reward

to first learn perception and navigation skills - treating it as a dense, auxiliary

reward even though it is not aligned with the global objective. The task is then

reduced to its coordination component - picking the right POI to go to. This

is effectively tackled by the EA engine within MERL and enables it to find the
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optimal solution. This ability to leverage reward functions across multiple levels

even when they are misaligned is the core strength of MERL.

7.3 Methodology

Figure 7.2: Multi-headed policy π

Policy Topology: We represent our multi-agent (team) policies using a multi-

headed neural network π as illustrated in Figure 7.2. The head πk represents the

k-th agent in the team. Given an incoming observation for agent k, only the output

of πk is considered as agent k’s response. In essence, all agents act independently

based on their own observations while sharing weights (and by extension, the

features) in the lower layers (trunk). This is commonly used to improve learning

speed [196]. Further, each agent k also has its own replay buffer (Rk) which stores
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its experience defined by the tuple (state, action, next state, local reward) for each

episode of interaction with the environment (rollout) involving that agent.

Global Reward Optimization: Figure 7.3 illustrates the MERL algorithm.

A population of multi-headed teams, each with the same topology, is initialized

with random weights. The replay buffer Rk is shared by the k-th agent across all

teams in this population. The population is then evaluated for each rollout. The

global reward for each team is disbursed at the end of the episode and is considered

as its fitness score. A selection operator selects a portion of the population for

survival with probability proportionate to their fitness scores. The weights of

the teams in the population are probabilistically perturbed through mutation and

crossover operators to create the next generation of teams. A portion of the teams

with the highest relative fitness are preserved as elites.

Policy Gradient The procedure described so far resembles a standard EA

except that each agent k stores each of its experiences in its associated replay

buffer (Rk) instead of just discarding it. However, unlike EA, which only learns

based on the low-fidelity global reward, MERL also learns from the experiences

within episodes of a rollout using policy gradients. To enable this kind of ”local

learning”, MERL initializes one multi-headed policy network πpg and one critic

Q. A noisy version of πpg is then used to conduct its own set of rollouts in the

environment, storing each agent k’s experiences in its corresponding buffer (Rk)

similar to the evolutionary rollouts.

Local Reward Optimization: Crucially, each agent’s replay buffer is kept

separate from that of every other agent to ensure diversity amongst the agents.
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Figure 7.3: High level schematic of MERL highlighting its integrated optimization
framework that leverages reward functions across multiple levels.

The shared critic samples a random mini-batch uniformly from each replay buffer

and uses it to update its parameters using gradient descent. Each agent πkpg then

draws a mini-batch of experiences from its corresponding buffer (Rk) and uses

it to sample a policy gradient from the shared critic. Unlike the teams in the

evolutionary population which directly seek to optimize the global reward, πpg

seeks to maximize the local reward per agent while exploiting the experiences

collected via evolution.
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Local → Global Migration: Periodically, the πpg network is copied into the

evolving population of teams and can propagate its features by participating in

evolution. This is the core mechanism that combines policies learned via local

and global rewards. Regardless of whether the two rewards are aligned, evolution

ensures that only the performant derivatives of the migrated network are retained.

This mechanism guarantees protection against destructive interference commonly

seen when a direct scalarization between two reward functions is attempted. Fur-

ther, the level of information exchange is automatically adjusted during the process

of learning, in contrast to being manually tuned by an expert designer.

Algorithm 13 and 14 provides a detailed pseudo-code of the MERL algorithm.

The choice of hyperparameters is explained in the Appendix. Additionally, our

source code 1 is available online.

7.4 Rover Domain

The domain used in this paper is a variant of the rover domain used in [3, 175].

Here, a team of robots aim to observe Points of Interest (POIs) scattered across the

environment. The robots start out in the center of the field, randomly distributed

within an area 10% of the total field. The POIs are initialized randomly outside

this area with a minimum distance of 2m from any robot. This is inspired by

real-world scenarios of exploration of an unknown environment where the team of

1https://tinyurl.com/y6ercltshttps://tinyurl.com/y6erclts
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Algorithm 13 Multiagent Evolutionary Reinforcement Learning

1: Initialize a population of k multi-head teams popπ, each with weights θπ ini-
tialized randomly

2: Initialize a shared critic Q with weights θQ

3: Initialize an ensemble of N empty cyclic replay buffers Rk, one for each agent
4: Define a white Gaussian noise generator Wg random number generator r() ∈

[0, 1)
5: for generation = 1, ∞ do
6: for team π ∈ popπ do
7: g, R = Rollout (π, R, noise=None, ξ)
8: , R = Rollout (π, R, noise=Wg, ξ = 1)
9: Assign g as π’s fitness

10: Rank the population popπ based on fitness scores
11: Select the first e actors π ∈ popπ as elites
12: Select the remaining (k − e) actors π from popπ, to form Set S using tour-

nament selection with replacement
13: while |S| < (k − e) do
14: Single-point crossover between a randomly sampled π ∈ e and π ∈ S

and append to S

15: for Agent k=1,N do
16: Randomly sample a minibatch of T transitions (si, ai, li, si+1) from Rk

17: Compute yi = li + γ min
j=1,2
Q′j(si+1, a

∼|θQ′
j)

18: where a∼ = π′pg(k, si+1|θπ
′
pg) [action sampled from the kth head of π′pg]

+ε
19: Update Q by minimizing the loss: L = 1

T

∑
i(yi −Q(si, ai|θQ)2

20: Update πkpg using the sampled policy gradient

∇θπpgJ ∼
1
T

∑
∇aQ(s, a|θQ)|s=si,a=ai∇θπpgπ

k
pg(s|θπpg)|s=si

21: Soft update target networks: θπ
′ ⇐ τθπ + (1− τ)θπ

′
and θQ

′ ⇐ τθQ +
(1− τ)θQ

′

22: Migrate the policy gradient actor popj : for weakest π ∈ popjπ : θπ ⇐ θπpg
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Algorithm 14 Function Rollout

1: procedure Rollout(π, R, noise, ξ)
2: fitness = 0
3: for j = 1:ξ do
4: Reset environment and get initial joint state js
5: while env is not done do
6: Initialize an empty list of joint action ja = []
7: for Each agent (actor head) πk ∈ π and sk in js do
8: ja ⇐ ja ∪ πk(sk|θπ

k
) + noiset

9: Execute ja and observe joint local reward jl, global reward g and
joint next state js′

10: for Each Replay Buffer Rk ∈ R and sk, ak, lk, s
′
k in js, ja, jl, js′

do
11: Append transition (sk, ak, lk, s

′
k) to Rk

12: js = js′

13: if env is done: then
14: fitness← g

15: Return fitness
ξ

, R
16: end procedure
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robots are air-dropped towards the center of the field.

Robot Capabilities: Each robot is loosely based on the characteristics of a

Pioneer robot [215]. Its observation space consists of two channels dedicated to de-

tecting POIs and rovers, respectively. Each channel receives intensity information

over 10◦ resolution spanning the 360◦ around the robot’s position. This is similar

to a LIDAR. Since within each 10◦ bracket, it returns the closest reflector, occlu-

sions make the problem partially-observable. Each robot outputs two continuous

actions: δh and δd representing change in heading and drive, respectively. The

maximum change in heading is capped at 180◦ per step while the maximum drive

is capped at 1m/s.

Reward Functions: The team’s global reward is the percentage of POIs

observed at the end of an episode. This is computed and broadcast to each robot at

the end of an episode. It is sparse, low-fidelity, and noisy from each agent’s point of

view as it compiles the entire team’s joint state-action history onto a single scalar

value. However, it is an appropriate metric to evaluate the overall performance of

the team without having to simultaneously account for each agent’s navigation or

perception skills.

Each robot also receives a local reward computed as the negative distance

to the closest POI. In contrast to global reward, the local reward is dense, high-

fidelity, and not noisy as it depends solely on the robot’s own observations and

actions. Critically, this local reward is not necessarily aligned with the global

objective since it does not aim to maximize the total number of POIs observed by

the group. This makes it a good training metric for each agent to learn local skills
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like navigation to a particular POI without having to simultaneously account for

the global objective.

POI Observation Requirements: The coordination objective in the rover

domain is expressed as the coupling requirement [175, 3]. A coupling requirement

of n means that n robots are required to be within an activation distance da of

a POI simultaneously in order to observe it. In the simplest case, a coupling of

n = 1 defines a coordination problem where the robots need to spread out and

explore the area on their own. This is similar to a set cover problem.

In contrast, a coupling of n > 1 defines a coordination problem where the

robots need to form sub-teams of n and explore the area jointly. The presence

of m robots within the activation distance of a POI, where m < n, generates no

reward signal. This defines a tough exploration problem and is based on tasks

like lifting a rock where multiple robots need to coordinate tightly to achieve any

success at all.

7.5 Results

Compared Baselines: We compare the performance of MERL with a standard

neuroevolutionary algorithm (EA) [62], MADDPG [147] and MATD3, a variant

of MADDPG that integrates the improvements described within TD3 [64] over

DDPG. Internally, MERL uses EA and TD3 as its global and local optimizer,

respectively. MADDPG on the other hand was chosen as it is the state-of-the-art

multiagent RL algorithm. We implemented MATD3 ourselves to ensure that the
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differences between MADDPG and MERL do not originate from having the more

stable TD3 over DDPG.

Further, MADDPG and MATD3 were tested with using either only global

rewards or mixed (global + local) reward functions. The local reward function

here is simply defined as the negative of the distance to the closest POI. MERL

inherently leverages both reward functions while EA directly optimizes the global

reward function. These variations for the baselines allow us to evaluate the efficacy

of the differentiating features of MERL as opposed to improvements that might

come from other ways of combining reward functions

Methodology for Reported Metrics: For MATD3 and MADDPG, the ac-

tor network was periodically tested on 10 task instances without any exploratory

noise. The average score was logged as its performance. For population-based

approaches (MERL and EA), we choose the actor network with the highest fitness

as the champion for each generation. The champion was then tested on 10 task

instances, and the average score was logged. This protocol shielded the reported

metrics from any bias of the population size. We conduct 5 statistically indepen-

dent runs with random seeds from {2019, 2023} and report the average with error

bars showing a 95% confidence interval.

The Steps Metric: All scores reported are compared against the number of

environment steps (frames). A step is defined as the multiagent team taking a joint

action and receiving a feedback from the environment. To make the comparisons

fair across single-team and population-based algorithms, all steps taken by all

teams in the population are counted cumulatively.
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(a) Coupling=1 (b) Coupling=2 (c) Coupling=3 (d) Coupling=4

(e) Coupling=5 (f) Coupling=6 (g) Coupling=7 (h) Legend

Figure 7.4: Performance on the Rover Domain with coupling varied from 1 to 7.
MERL significantly outperforms other baselines while being robust to increasing
complexity of the coordination objective.

Rover Domain Setup: For each coupling requirement of n, 2n robots were

initialized accompanied with 4 POIs spread out in the world. The coordination

problem to be tackled was thus two-fold. First, the team of robots had to learn

to form sub-teams of size n. Next, the sub-teams would now need to coordinate

with each other to spread out and cover different POIs to ensure they get all 4

within the time allocated. Both the team formation, and coordinated spreading

out has to be done autonomously and adaptively based on the distribution of the

robots and POIs (varied randomly for each instance of the task). This is the core

difficulty of the task.

Figure 7.4 shows the comparative performance of MERL, MADDPG (global

and mixed), MATD3 (global and mixed), and EA tested in the rover domain with

coupling requirements from 1 to 7. MERL significantly outperforms all baselines
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across all coupling requirements. The tested baselines clearly degrade quickly be-

yond a coupling of 2. The increasing coupling requirement is equivalent to increas-

ing difficulty in joint-space exploration and entanglement in the global coordination

objective. However, it does not increase the size of the state-space, complexity of

perception, or navigation. This indicates that the degradation in performance is

strictly due to the increase in complexity of the coordination objective.

Notably, MERL is able to learn on coupling greater than n = 6 where methods

without explicit reward shaping have been shown to fail entirely [175]. This is

consistent with the performances of the baselines tested here as none of them

use explicit domain-specific reward shaping. MERL successfully completes the

task using the same set of information and coarse, unshaped reward functions as

the other algorithms. The primary mechanism that enables this is MERL’s bi-

level approach whereby it leverages the local reward function to solve navigation

and perception while concurrently using the global reward function to learn team

formation and effective coordination.

Team Behaviors: Figure 7.5 illustrates the trajectories generated for the rover

domain with a coupling of n = 3. The trajectories for partially and fully trained

MERL are shown in Figure 7.5(a) and (b), respectively. During training, when

MERL has not discovered success in the global coordination objective (no POIs

are successfully observed), MERL simply proceeds to optimize the local objective

for each robot. This allows it to reach trajectories such as the ones shown in 7.5(a)

where each robot learns to go towards a POI.

Given this joint behavior, the probability of having 3 robots congregate to the
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(a) MERL (training) (b) MERL (trained) (c) MATD3 (trained)

Figure 7.5: Visualizations illustrating the trajectories generated with a coupling
of 3. Red and black squares represent observed and unobserved POIs respectively

same POI is substantially improved in comparison to random undirected explo-

ration by each robot. Once this scenario is stumbled upon, the global optimizer

(EA) within MERL will explicitly select for agent policies that lead to such team-

forming joint behaviors. Eventually it succeeds as shown in Figure 7.5(b). Here,

team formation and collaborative pursuit of the POIs is immediately apparent.

Two teams of 3 robots each form at the start of the episode. Further, the two

teams also coordinate among each other to pursue different POIs in order to max-

imize the global team reward. While the POI allocation is not perfect, (the one in

the bottom is left unattended) they do succeed in successfully observing 3 out of

the 4 POIs.

In contrast, MATD3-mixed fails to successfully observe any POI. From the

trajectories, it is apparent that the robots have successfully learned to perceive

and navigate to reach POIs. However, they are unable to use this sub-skill towards

fulfilling the coordination objective. Instead each robot is rather split on the
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objective that it is optimizing. Some robots seem to be in sole pursuit of POIs

without any regard for team formation or collaboration while others seem to exhibit

random movements.

The primary reason for this is the mixed reward function that directly combines

the local and global reward function. Since the two reward functions have no

guarantees of alignment across the state-space of the task, they invariably lead to

learning these sub-optimal joint-behaviors that solve a certain form of scalarized

mixed objective. In practice, this problem can be addressed by manually tuning the

scalarization coefficients to achieve the required coordination behavior. However,

without such manual reward shaping, MATD3-mixed fails to solve the task. In

contrast, MERL is able to solve the task without any reward shaping or manual

tuning.

7.6 Conclusion and Future Work

We introduced MERL, a hybrid algorithm that can combine global objectives with

local objectives even when they are not aligned with each other. MERL achieves

this by using a fast policy-gradient local optimizer to exploit dense local rewards

while concurrently leveraging a global optimizer (EA) to tackle the coordination

aspects of the task.

Results demonstrate that MERL significantly outperforms MADDPG, the state-

of-the-art multiagent RL method . We also tested a modification of MADDPG to

integrate TD3 - the state-of-the-art single-agent RL algorithm - as well as vari-
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ations that utilized only global, or global and local rewards. These experiments

demonstrated that the core improvements of MERL come from the combination

of EA and policy gradient algorithm which enable MERL to combine multiple ob-

jectives without relying on alignment between those objectives. This differentiates

MERL from other approaches like reward scalarization and reward shaping that

either require extensive manual tuning or can detrimentally change the MDP [?]

itself.

Here, we limited our focus to cooperative domains. Future work will explore

MERL for adversarial settings such as Pommerman [177], StarCraft [108, 225] and

RoboCup [124, 145]. Further, MERL can be considered a bi-level approach to

combine local and global objectives. Extending MERL to generalized multilevel

rewards is another promising area for future work.
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Chapter 8: Conclusion

Multiagent coordination in the presence of noise, sparse objectives, and across long

temporal periods of operation is a complex problem to solve. However, as most

real world systems increasingly move towards decentralization and become more

distributed [135, 158, 161, 190, 191, 212, 221, 240], it is an important challenge to

tackle.

The core contribution of this dissertation is to tackle credit assignment for

multiagent reinforcement learning: establishing associations between action and

reward when they are separated by time and obfuscated by the inherent noise of

multiple agents acting concurrently. Towards this end, we investigated four distinct

research threads and introduced the following contributions:

1. Modular Memory Unit (MMU), a novel memory-augmented neural network

topology that enables reliable retention and propagation of information over

an extended period of time in the presence of noise [113, 115].

2. Distributed MMU (DMMU), which an external shared memory is collectively

read and written by a team of agents to enable distributed one-shot decision

making [114, 119, 120, 121].

3. Evolutionary Reinforcement Learning (ERL), a hybrid framework that com-

bines the strengths of an Evolutionary Algorithm (EA) with fast gradient-
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based algorithms for effective deep reinforcement learning [118]. Extended

ERL to introduce Collaborative ERL (CERL), which employs a collection of

policy gradient learners (portfolio), each optimizing over varying resolution

of the same underlying task for improved exploration of the search space

[116].

4. Multiagent ERL (MERL), which leverages the multilevel optimization frame-

work of ERL to tackle sparse multiagent coordination problems by leveraging

dense local reward even when there is no guarantee of alignment between the

two [117].

The remainder of this chapter summarizes each of the preceding chapters and

elaborates on their contributions.

Contribution 1: Modular Memory Units (MMUs): Chapter 3 leveraged

memory as a tool in enabling better credit assignment by facilitating associa-

tions across actions and rewards separated in time. We introduced MMU, a novel

memory-augmented neural network topology that leverages independent read and

write gates which serve to decouple the memory from its central feedforward com-

putation. This allows for regimented memory access and update, administering

the ability to choose when to read from memory, update it, or simply ignore it.

This enables the network to shield the memory from noise and other distractions,

while simultaneously using it to effectively retain and propagate information over

an extended period of time. Results on deep memory benchmark tasks demon-

strated that MMU significantly outperforms traditional memory-based methods
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while being robust to dramatic increase in the length of time between reward and

its associated action.

Contribution 2: Distributed Modular Memory Units (DMMUs): Chap-

ter 4 leveraged this capability for improved temporal credit assignment to build

memory-augmented teams that learn adaptive emergent behaviors that require in-

formation aggregation across time and between agents. Further, we introduced

DMMU where an external memory is collectively used by a team of agents as

a shared knowledge base. Each agent can selectively and asynchronously access

the external memory to accept and/or disseminate pertinent information as they

are observed. This allows for rapid consolidation of salient information enabling

distributed one-shot decision making. Results in a T-maze benchmark and a Cy-

bersecurity domain for distributed one-shot decision making demonstrated that

our MMU-based solution significantly outperform reactive agents and traditional

memory-based agents.

Contribution 3: Evolutionary Reinforcement Learning (ERL): Chapter

5 introduced ERL, a multilevel optimization framework that leverages reward func-

tions across multiple hierarchies to improve learning. ERL combines the strengths

of a global optimizer (Evolutionary Algorithm - EAs) with a local optimizer (policy

gradient). It inherits EA’s invariance to the distribution and sparsity of rewards, di-

verse exploration, and stability of a population-based approach and complements it

with policy gradient’s ability to leverage gradients for higher sample efficiency and

faster learning. Experiments in a range of challenging control benchmarks demon-
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strate that ERL significantly outperform prior policy gradient and EA methods.

Chapter 6 extended the ERL framework to introduce Collaborative ERL (CERL)

which employs a collection of policy gradient learners (portfolio), each optimizing

over varying resolution of the same underlying task. This leads to a diverse set of

policies that are able to reach diverse regions within the solution space. A shared

replay buffer pairs this improved exploration with collective exploitation for im-

proved learning. Results in a range of continuous control benchmarks demonstrate

that CERL significantly outperforms its composite learner while remaining overall

more sample-efficient.

Contribution 4: Multiagent Evolutionary Reinforcement Learning (MERL):

Finally, Chapter 7 introduced MERL, a hybrid algorithm that leverages the multi-

level optimization framework of ERL to enable improved multiagent coordination

without requiring an explicit alignment between local and global reward functions.

MERL uses fast, policy-gradient based learning for each agent by utilizing their

dense, local rewards. Concurrently, an evolutionary algorithm is used to recruit

agents into a team by directly optimizing the sparser global objective. We ex-

plore problems that require coupling (a minimum number of agents required to

coordinate for success), where the degree of coupling is not known to the agents.

Results demonstrate that MERL’s integrated approach is more sample-efficient

and retains performance better with increasing coupling orders compared to the

state-of-the-art multiagent policy-gradient algorithms.
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[47] Mădălina M Drugan. Reinforcement learning versus evolutionary computa-
tion: A survey on hybrid algorithms. Swarm and Evolutionary Computation,
2018.

[48] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking deep reinforcement learning for continuous control. In Inter-
national Conference on Machine Learning, pages 1329–1338, 2016.

[49] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[50] Reuven Dukas. Evolutionary biology of insect learning. Annual Review of
Entomology, 2008.

[51] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
et al. Impala: Scalable distributed deep-rl with importance weighted actor-
learner architectures. arXiv preprint arXiv:1802.01561, 2018.



186

[52] Richard Evans and Jim Gao. Deepmind ai reduces google data centre cooling
bill by 40%. DeepMind blog, 20, 2016.

[53] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine.
Diversity is all you need: Learning skills without a reward function. arXiv
preprint arXiv:1802.06070, 2018.

[54] Daniel J Fagnant and Kara Kockelman. Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations. Transporta-
tion Research Part A: Policy and Practice, 77:167–181, 2015.

[55] Raul Fernandez, Asaf Rendel, Bhuvana Ramabhadran, and Ron Hoory.
Prosody contour prediction with long short-term memory, bi-directional,
deep recurrent neural networks. In Interspeech, pages 2268–2272, 2014.

[56] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David
Ha, Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evo-
lution channels gradient descent in super neural networks. arXiv preprint
arXiv:1701.08734, 2017.

[57] Chrisantha Fernando, Dylan Banarse, Malcolm Reynolds, Frederic Besse,
David Pfau, Max Jaderberg, Marc Lanctot, and Daan Wierstra. Convolution
by evolution: Differentiable pattern producing networks. In Proceedings of
the Genetic and Evolutionary Computation Conference 2016, pages 109–116.
ACM, 2016.

[58] Sevan G Ficici, Ofer Melnik, and Jordan B Pollack. A game-theoretic and
dynamical-systems analysis of selection methods in coevolution. Evolutionary
Computation, IEEE Transactions on, 9(6):580–602, 2005.
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Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King,
Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis
Hassabis. Hybrid computing using a neural network with dynamic external
memory. Nature, 538(7626):471–476, 2016.

[84] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka,
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Collective-adaptive lévy flight for underwater multi-robot exploration. In
2013 IEEE International Conference on Mechatronics and Automation,
pages 456–462. IEEE, 2013.

[210] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[211] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge, 1998.

[212] Melanie Swan. Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[213] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen,
Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration:
A study of count-based exploration for deep reinforcement learning. In Ad-
vances in Neural Information Processing Systems, pages 2750–2759, 2017.

[214] Trias Thireou and Martin Reczko. Bidirectional long short-term memory
networks for predicting the subcellular localization of eukaryotic proteins.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
4(3), 2007.



203

[215] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A real-time algorithm
for mobile robot mapping with applications to multi-robot and 3d mapping.
In ICRA, volume 1, pages 321–328, 2000.

[216] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2), 2012.

[217] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 5026–5033. IEEE, 2012.

[218] Walter F Truszkowski, Michael G Hinchey, James L Rash, and Christopher A
Rouff. Autonomous and autonomic systems: A paradigm for future space
exploration missions. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 36(3):279–291, 2006.

[219] Chih-Fong Tsai and Jhen-Wei Wu. Using neural network ensembles for
bankruptcy prediction and credit scoring. Expert systems with applications,
34(4):2639–2649, 2008.

[220] Endel Tulving. Episodic memory: from mind to brain. Annual review of
psychology, 53(1):1–25, 2002.

[221] Kagan Tumer and Adrian Agogino. Distributed agent-based air traffic flow
management. In Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems, page 255. ACM, 2007.

[222] Peter Turney, Darrell Whitley, and Russell W Anderson. Evolution, learning,
and instinct: 100 years of the baldwin effect. Evolutionary Computation,
4(3):iv–viii, 1996.

[223] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian
motion. Physical review, 36(5):823, 1930.

[224] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Match-
ing networks for one shot learning. In Advances in Neural Information Pro-
cessing Systems, pages 3630–3638, 2016.

[225] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexan-
der Sasha Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler,
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