
AN ABSTRACT OF THE THESIS OF

Roli Khanna for the degree of Master of Science in Computer Science presented

on June 11, 2021.

Title: Assessing and Finding Faults in AI: Two Empirical Studies

Abstract approved:

Minsuk Kahng

With the advent of Artificial Intelligence (AI) in every sphere of life in today’s day

and age, it has become increasingly important for non-AI experts to be able to

comprehend the underlying logic of how AI systems work, assess them and find

faults in these systems, particularly when they are used in high risk scenarios such

as in military strategies and medical applications. Recent developments to address

the need to open the black boxes of these AI-powered systems have led to the emer-

gence of AI explanations. There now exist myriad successful explanation methods

and tools that attempt to explore and explain how AI systems work. However, a

key problem with such work is the lack of a process that users can follow to navi-

gate AI systems along with their explanation. This problem becomes increasingly

evident with non-AI experts, due to their lack of context and depth of knowledge

of the subject. To address this challenging problem, my colleagues and I propose a

new process called AAR/AI or After-Action Review for Artificial Intelligence that

aims to bridge this gap between AI systems and non-AI experts. AAR/AI, inspired

by the US Defense debriefing strategy called AAR, is a process for understanding,

analyzing and navigating sequential decision making environments. This thesis de-

tails two human-subjects studies my colleagues and I conducted, one qualitatively

and the other quantitatively, to evaluate the effectiveness of AAR/AI in assessing

an AI system and in identifying and localizing faults in it. The studies recommend

that not only does AAR/AI assist non-AI experts to effectively navigate an AI

system and keep their thoughts organized and logical, it also helps them identify

and localize faults in it. Participants that used AAR/AI to localize faults did so

with far more precision and recall than those that did not. I believe that this is a

crucial step towards building democratic and explainable AI systems, and making

them accessible to a larger audience that is not familiar with them.

©Copyright by Roli Khanna
June 11, 2021

All Rights Reserved

Assessing and Finding Faults in AI: Two Empirical Studies

by

Roli Khanna

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 11, 2021
Commencement June 2021

Master of Science thesis of Roli Khanna presented on June 11, 2021.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Roli Khanna, Author

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Minsuk Kahng for guiding me through

every step of my journey in graduate school. I will forever will be grateful for your

support and knowledge. Next, I would like to thank the faculty members in the

XAI research group, particularly Dr. Margaret Burnett, Dr. Weng Keen Wong

and Dr. Alan Fern. I am grateful for the pearls of wisdom and the brainstorming

sessions that helped me evolve as a researcher. A massive thank you is in order

for my family, my friends and my support circle, thank you mother and father,

for looking out for me and showering me with words of love and motivation from

miles away, thank you Damanpreet Kaur and Gayathri Garimella for being the

best roommates I could ever ask for, and thank you Amreeta Chatterjee for the

constant support and encouragement, thank you Jonathan Dodge for being kind

and helpful. Lastly, and most importantly, thank you Achint, my husband, for

being my pillar and my cheerleader; I love you.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Goal and Main ideas . 1

1.2 Thesis Overview . 4
1.2.1 Qualitative study: Is AAR/AI helpful in the assessment pro-

cess? . 4
1.2.2 Quantitative study: Is AAR/AI helpful in localizing an AI

agent’s faults? . 7

1.3 Research Contributions . 11

1.4 Prior Publications . 13

2 Keeping It “Organized and Logical”: After-Action Review for AI (AAR/AI) 14

2.1 Introduction . 14

2.2 Background & Related Work . 16
2.2.1 People Analyzing AI . 17
2.2.2 People Explaining AI . 18
2.2.3 After-Action Review . 21

2.3 The AAR/AI Process . 22
2.3.1 AAR/AI: Defining Rules & Objectives 23
2.3.2 AAR/AI’s Inner-Loop: What, Why, How 23
2.3.3 AAR/AI: Explanation Component 24
2.3.4 AAR/AI’s Artifacts . 27

2.4 Empirical Study: Methodology . 27
2.4.1 The Domain . 29
2.4.2 The Agent Implementation 31
2.4.3 Analysis Methods . 33

2.5 Results . 34
2.5.1 Results: The AAR/AI Process 34
2.5.2 Results: Explanation Content and Presentation 37
2.5.3 Results: Combined Explanation Strategy 41

2.6 Discussion . 45
2.6.1 Future AAR/AI implementations 45
2.6.2 Prediction as Explanation 46
2.6.3 The agent’s explanations as theory 48

2.7 Threats to Validity . 48

TABLE OF CONTENTS (Continued)

Page

2.8 Conclusion . 49

2.9 Acknowledgements . 51

3 Finding AI’s Faults with AAR/AI: An Empirical Study 52

3.1 Introduction . 53
3.1.1 The Domain . 54
3.1.2 An AI RTS player’s failures and faults 56
3.1.3 How well can human users assess an AI RTS player’s failures

and faults with AAR/AI? 57

3.2 Background & Related Work . 59

3.3 Methodology . 64
3.3.1 Participants and Procedure 64
3.3.2 Explanations . 69
3.3.3 The Reinforcement Learning Agent 71
3.3.4 The Bugs . 72

3.4 Results . 74
3.4.1 RQ1 Results: Does AAR/AI help localize faults? 74
3.4.2 RQ2 Results: Does the type of fault matter? 77
3.4.3 RQ3 Results: Labeling and Abstractions 79

3.5 Discussion . 86
3.5.1 Cognitive Costs Imposed by AAR/AI 86
3.5.2 Limitations of the Study . 87

3.6 Conclusion . 90

4 Conclusion . 92

4.1 Future work . 93

Bibliography . 95

Appendices . 107

A Analysis Math . 108

B Study Design Details . 114

C Model-Based Agent Architecture . 122

LIST OF FIGURES

Figure Page

2.1 Search tree explanation for decision point 22. Blue background
boxes show: (1) game state at decision point 22, (2) top 4 most
rewarding actions, as estimated by the AI, (3) top 4 most rewarding
actions for the enemy in response to its “best” action, as estimated
by the AI, and (4) predicted game state at decision point 23. Our
agent searches to depth 2, so the explanation includes another turn
of search from the predicted state (box 4). Note that all states be-
low the root (box 1) are predicted by the agent. Green highlighted
numbers indicate parts of the principal variation. 25

2.2 Left: An example of State node presentation. Each bar shows a
number of unit production facilities for each lane and type. Here,
the Friendly AI has 6 marines and 5 banelings in the top lane—with
3 marines and 16 banelings bottom. Right: An example of Action
node presentation. Similar to the state, bars are split by lane and
by unit. Each node is given with the agent’s estimate of the win
probability associated with that action (number at the bottom.) . 26

2.3 Game screen at decision point 22. Note the text boxes offering
state information (current units, nexus health, etc) as well as action
information (adding units). 30

3.1 The participants’ replay view of the game just past Decision Point 4
(fourth diamond; see callout at bottom). The game board has two
lanes where action takes place: a top lane and a bottom lane. The
(blue) friendly AI agent’s “home” is the left side, and the (orange)
enemy is the right side. Each lane’s troop inventories are shown in
a side panel for that lane; e.g., the callout at right blows up the
side panel for the enemy’s top lane. Both players’ side panels also
summarize resources; e.g., the blue callout (middle left) shows the
friendly AI’s resources. On the game board, a group of friendly AI
marines in the top lane are currently moving toward the enemy’s
Nexus (top left callout). 55

LIST OF FIGURES (Continued)

Figure Page

3.2 How a (hypothetical) participant could mark up the Explanation UI
for the AAR/AI Treatment. (a) Participant selects what they think
is a problem on the diagram. (b) Participant describes the problem
by including a label, location, level of certainty, and responses to
the What, Why, and What changes questions. 66

3.3 Summary of study procedure. 67

3.4 A. The game interface that participants used to watch the game in
action; B. This interface visually explains Friendly AI’s explanation
for its actions. The screenshot shows top 2 next actions. The top
row represents the best next action among multiple actions: B-1.
Current state is graphically represented; B-2. AI’s predicted action
pair (Friendly in blue and Enemy in orange). Also, its child state,
the AI’s next predicted action pair, and grandchild state are shown.
B-3. At the right, the outcome bars are shown to represent how
the probability is calculated. 70

3.5 Problem report count per participant. The AAR/AI participants
submitted significantly more problem reports than their Non-AAR/AI
counterparts. 76

3.6 Participants’ recall (left) and precision (right) (all bugs). AAR/AI
participants performed significantly better than than Non-AAR/AI
participants with both measures. 76

3.7 Example of Leaf Evaluation Function (LEF) bug (Bug ID #1),
present at DP 8. The game outcome for row 1C is suspicious. Since
the Friendly AI’s action (i.e., 2 marines) is similar to that for 1A
and 1B (especially 1B: 1 marine), we can expect that the Friendly
AI would win (>99% chance of winning) by destroying the top en-
emy nexus (as in row 1B), however, the agent predicts that Friendly
AI will lose (0.1% chance of winning), which implies that the win
probabilities for row 1C have likely been flipped (i.e., LEF bug). . 77

3.8 Example of Transition Function (TF) bug (Bug ID #10), present
at DP 8. The bug (in the highlighted box), is that the agent pre-
dicts there will be 2 immortals in the bottom lane (solid arrows),
even though there is only one immortal production building (dashed
arrow). 78

LIST OF FIGURES (Continued)

Figure Page

3.9 AAR/AI participants’ vs. non-AAR/AI participants’ (left to right):
recall for leaf-evaluation function (LEF) bugs only, recall for transi-
tion function bugs (TF) only, precision for leaf-evaluation function
(LEF) bugs only and precision for transition function (TF) bugs
only. 79

3.10 Percentage of participants who found each bug. For all 10 bugs, the
AAR/AI participants outperformed their Non-AAR/AI counterparts. 79

3.11 Frequencies of AAR/AI participants’ ways of labeling faults into
these categories. (Non-AAR/AI participants did not have a labeling
feature.) Domain Concepts and AI/XAI Concepts were the most
common. 82

3.12 Correlation between the scores in each categorization scheme and
the participant’s total score. 82

3.13 P119’s search path leading to a problem report they labeled “bad
decisions”. To report this problem, P119 walked down to the second
level, then perused each node at the second level, drilling down
further if the node seemed potentially problematic (e.g., node 8),
then returned to their progression through the second level until
the need arose to drill down again (e.g., node 12). 84

LIST OF TABLES

Table Page

2.1 Steps of the US Army AAR process [92]. 19

2.2 How AAR/AI (right two columns) adapts the original After-Action
Review steps (left column). The “Empirical Context” column ex-
plains how we realized it in our empirical study. Note that steps 3-6
form an “inner loop” that we repeated every three decisions. The
parts outside the inner loop are documented in our Supplemental
Materials (tutorials, questionnaires, etc), so we describe them only
briefly here. 20

2.3 Helpful/Problematic code set for the explanations. Frequencies are
from three post task questions centered on the explanation and its
contents. 32

2.4 Bloom’s taxonomy levels participants achieved in learning the agent’s
behavior. 35

2.5 Lim Dey coding of participant responses, sliced by question asked
during the AAR/AI. 42

2.6 Applying Sjøberg et al.’s Evaluation Criteria for Theories [85] to the
agent’s model-based explanation . 43

3.1 Participants demographics as per their questionnaire responses to
their gender identification (including a free-form response), student/non-
student status, and age. Median age was 24 (minimum: 17; maxi-
mum: 48), with about half below and half above. (One 17-year-old
claimed to meet the ¿=18 inclusion criterion before the study, then
gave their actual age on the questionnaire.) AAR/AI vs. non-
AAR/AI participant demographics were similar for all categories. . 65

3.2 The coding rules we used to code participants’ problem reports.
(For Location, if a participant’s location markings were combined
in a way that introduced ambiguity, we disambiguated by looking
for location information in their free-form descriptions.) 75

3.3 Code set used to categorize AAR/AI participants’ labels on the
faults they localized. 81

LIST OF APPENDIX FIGURES

Figure Page

B.1 Participants watch the game unfold until round 8, at which point the
game pauses and the prediction questions pop up. The participant
has to predict what they think the Friendly AI will do in round 9. . 118

B.2 Having predicted what the agent would do (Figure B.1), participants
then see what it really did. Here, AAR/AI participants watch the
game until round 9, at which point the game pauses again and the
description questions pop up. The participant first describes what
happened in round 9 (top), and then why (bottom). 119

B.3 Having predicted what the agent would do (Figure B.1), participants
then see what it really did. Here, Non-AAR/AI participants watch
the game until round 9, at which point the game paused again and
the description questions pop up. The participant has to describe
what happened in round 9. 120

B.4 AAR/AI participants answered the AAR/AI questions of ”What-
Why-What changes” for each problem they found, in addition to
giving their problem descriptions labels. 120

B.5 Non-AAR/AI participants answered a simple ”Describe the prob-
lem” question for each problem they found. 121

C.1 The model-based agent consists of three parts. (1, left) The decom-
posed reward DQN (drDQN) model, which takes a state-action pair
(s, a) as input and outputs a decomposed Q-value vector. (2, right)
The transition model, which outputs the estimated next game state
by taking the after-state S ′ as input. (3, middle) The tree struc-
ture that utilize (1) and (2) together. Here, the Minimax algorithm
assigns the Q-value vectors computed at the leaf all the way to the
root. 122

LIST OF APPENDIX TABLES

Table Page

A.1 Mockup of data post-labeling, presented per problem report. In our
labelling, each bug could be selected and/or described properly, so
2 points available per bug. Notably, as illustrated here, participants
often found the same issues repeatedly, so we devised Equations A.5
and A.6 to handle not awarding additional credit for these repeat
finds. In the example provided, we used binary indicator variables
for simplicity of presentation, though our formulation naturally han-
dles partial credit with no modification. 110

A.2 Mockup of data post labeling, per participant (i.e. after taking the
max across reports from that person). To compute recall/precision,
one can take the sum across rows of this table, normalize by 2 (be-
cause there are 2 points per bug), then divide by the number of bugs
or problem reports, respectively. 111

B.1 The 10 bugs; 5 in DP 8 (above the line), and 5 in DP 15 (below the
line). LEF=in Leaf Evaluation Function outputs; TF=in Transition
Function outputs (Section 3.3.3). More information about the bugs
and their locations can be found in the Supplemental docs. All bugs
occurred naturally, but we exaggerated some as marked. 117

Chapter 1: Introduction

1.1 Goal and Main ideas

Imagine “Jake”, a pilot in a big aviation company. There has recently been a

plane crash, and Jake is a part of the debriefing committee that has to find out

what led to the plane crash. A part of the plane’s control systems was powered

by Artificial Intelligence or AI, and Jake is delegated the job to find out if the

AI had a part in the decisions leading up to the crash. Jake is an expert and

knows all about aeroplanes, but knows nothing about AI systems. This creates a

peculiar problem where domain experts are expected to work with AI systems and

reasonably understand them even though they have little to no context of how such

systems work. This is one of the central problems that Explainable AI attempts

to solve: how might we explain a complex AI system to domain experts that are

non-AI experts, so that they may work with such systems?

Another primary premise that “XAI” or Explainable AI finds itself on is the

need for accountability. An individual will likely “trust” or find an AI system ac-

countable for its actions if they understand how it works, specifically in identifying

where the system is usually right and where it usually makes mistakes.

For a domain expert like Jake, assessing an AI agent and finding faults in it is

likely a complex task. In sequential decision making environments such as the one

2

in Jake’s case, specific tasks such as finding faults are multi-faceted and difficult

to baseline. It is also hard for Jake to know if the fault he found is due to his lack

of AI expertise or is genuinely the AI’s fault. There is a lack of a proper process

to guide such domain experts through an assessment task in sequential decision

making environments such as the one Jake finds himself in.

Hence, my colleagues and I propose AAR/AI, or After Action Review for AI [60,

22]. AAR/AI is largely inspired by a debriefing method called AAR, or After-

Action Review (AAR), formulated by the U.S. Army [63]. The military has been

using AAR for decades to evaluate soldier performances and defense strategies.

AAR was a success in many branches of military, and has also been adapted for

other domains such as fire-fighting [39], medical treatments [80], and transportation

services [58].

The traditional AAR debriefing process involves seven steps:

1. Define the rules;

2. Explain the objectives;

3. What was supposed to happen?;

4. What happened?;

5. Why did it happen?;

6. Formalize learning: How did it happen, or what changes could we make to

fix it?;

3

7. Summarize.

Owing to the adaptable nature of AAR, and its support for sequential and complex

decision making domains, we adapted AAR’s seven-fold process into an AI assess-

ment strategy. The adapted AAR for AI or AAR/AI process consists of seven

steps:

1. Introduce the rules of the AI’s environment;

2. Explain the AI’s objective;

3. What did the evaluator think the AI would do?;

4. What did the AI do?;

5. Why did it do it?;

6. What changes would the evaluator recommend to fix it?;

7. Summarize.

My colleagues and I conducted two experiments to find if the AAR/AI process

is indeed useful; the first is a qualitative think-aloud interview study that involves

a reinforcement learning agent, an RTS (Real Time Strategy) game for the AI’s

environment, and paper prototypes for the AI’s explanation. This experiment then

informed a large scale quantitative study which delved deeper into the assessment

task, and enquired if the AAR/AI process helped domain experts that are also

non-AI experts localize an AI agent’s faults.

4

This thesis outlines these two experiments in an attempt to understand the

effectiveness of AAR/AI, and if it is the right assessment strategy for AI agents.

1.2 Thesis Overview

1.2.1 Qualitative study: Is AAR/AI helpful in the assessment pro-

cess?

My colleagues and I designed a qualitative study that involved think-aloud inter-

views with paper prototypes and feedback forms to assess if AAR/AI was helpful

for our domain experts that are also non-AI experts. It makes sense to dive into

the motivations, intentions and information processing styles of people like Jake

to understand the nuances behind assessing an AI agent for non-experts/domain

experts.

Specifically, the research questions that we were looking to answer through this

experiment were:

1. RQ1: What are the strengths and weaknesses of guiding Human assessment

with AAR/AI?

2. RQ1a: When using AAR/AI for assessment, what do people need to make

good assessment decisions?

For the purpose of this study, we chose a Real time strategy or RTS game

called StarCraft II as the domain. RTS games are one of the most difficult to

5

navigate AI domains owing to the complex and sequential decision making space,

and are gaining popularity as an evaluative playground for AI agents. The target

audience consisted of users that were not experts in Artificial Intelligence or Ma-

chine Learning (had not taken any course in AI/ML), and had expertise in RTS

games. We recruited 11 such participants, and a facilitator conducted independent

think-aloud interview sessions with each participant. In each session, the facilita-

tor introduced the participant to the rules of the game (AAR/AI step 1-2), and

made them watch a StarCraft II game where two AIs competed against each other.

As part of the assessment task, we asked each participant the AAR/AI questions

throughout the game (AAR/AI steps 3-6): 1. What did the AI just do? 2. Why

do they think the AI did what it did? 3. What changes would they make in the

decisions taken by the AI? We also asked the participant if they would allow the

AI to make those decisions on their behalf, if they were playing the game. We

showed the participants the AI’s explanation for its actions in the form of paper

prototypes, and gauged if the explanation component assisted the participant in

successfully understanding and assessing the AI’s actions.

The procedure of the study has been detailed below:

1. Explain the study and game rules (AAR: Step 1)

2. Have participant get used to user interface for video replay

3. Think-aloud tutorial

4. Explain the participant’s objective (AAR Step 2)

6

5. Start the replay.

6. Think-aloud during the video (AAR: Steps 3, 4, 5): this will happen during

the decision points in the video, not through-out the video.

7. Tutorializer will take notes on participants throughout. Tutorializer will say

that “You can replay the game as much as you want to answer this question.”

at some point.

8. Post task questionnaire at the end of the study (Step 6)

We found that participants responded positively to the AAR/AI process, and

self reported to finding it useful and helping them keep their thoughts “organized

and logical”. We also found that AAR/AI in conjunction with the AI’s expla-

nations was found to be particularly useful by the participants. These results

recommend that AAR/AI is indeed an effective AI assessment strategy that can

be incorporated into AI systems with explanations.

According to Bloom’s taxonomy, which is a framework used by educators to

categorize different levels of learning, there exist 6 levels of learning, with level 1

corresponding to basic understanding of a concept, and level 6 corresponding to

a fairly advanced understanding. The results from the qualitative study recom-

mended that participants reached up level 5 of Bloom’s taxonomy in assessing the

AI, and sometimes even level 6. The results (detailed below) were encouraging,

and formed the basis for the forthcoming large scale quantitative study:

• The AAR/AI process helped participants in building their mental models

7

about the AI, and contributed in keeping their thinking organized, structured

and logical.

• Participants self reported to find the specific combination of the AAR/AI pro-

cess, the explanations and the encouragement of active participation helpful

in understanding the AI.

• The AAR/AI process encouraged participants to reason with the AI, and

reasonably falsify its predictions.

1.2.2 Quantitative study: Is AAR/AI helpful in localizing an AI

agent’s faults?

In the qualitative study, we concluded that AAR/AI helped domain experts in

assessing an AI agent. However, assessment can mean a lot of things: it can mean

analyzing the accuracy of the agent, it can also mean its behavioral analysis, it

can also mean finding all the instances where it went wrong.

We conducted formative small scale quantitative and qualitative experiments

to inform the forthcoming large scale study to answer questions pertaining to the

right assessment task and the right evaluation strategy. These included walking

participants through our interface, giving them tasks that ranged from predicting

the AI’s actions to describing them, multiple post-hoc analysis of their feedback,

and an entire overhaul of the experiment setup from in-person to an online process.

All of these design changes and insights lead to the study design of the quantitative

8

study, some of these major changes included:

1. Fine tuning the Research question (and corresponding major task) to identify

and localize faults of the AI.

2. Testing the online setup, making it quantitative study ready

3. Embedding the AAR/AI process deeper in the explanations, and using a

“guided search” mechanism to tackle the challenges we faced in the November

study.

4. Including labelling faults.

Specifically, in one of formative experiments mentioned above, we found that

participants largely categorized assessment into three categories: inferring the AI’s

actions, agreeing or disagreeing with the AI’s actions, and finding flaws with the

AI’s actions. While directly interpreting and judging the AI’s actions were common

trends that we observed in recurring experiments, it was interesting to observe

participants actively attempting to find faults in the AI and believing that there

must be something fundamentally wrong with the AI’s decision making process.

Finding faults in an AI is an important, and often overlooked, component of

assessing an AI. Domain experts such as Jake actively look for places where the

AI may have made the wrong decision, such as in the case of the plane crash. It

then becomes essential to find a process that works specifically for finding faults

in an AI. Hence, we fine-tuned the research question the forthcoming large scale

9

quantitative experiment would address in order to solve a specific problem case

and be able to reasonably quantify it:

RQ: How can we facilitate users to localize faults?

The quantitative study was designed such that all the participants had access

to the same explanation interface, the same AI agents, and the same game. The

study was conducted in a similar fashion as the previous qualitative experiment

in that the target audience were domain experts that are non-AI experts, and

the domain was StarCraft II. The study was designed by creating two randomly

assigned groups, where the only difference (or the independent variables) was the

presence or absence of the AAR/AI artefacts. The design was then mapped into

a between-subjects and within-subjects experiment such that:

1. RQ1: Treatment 1: (Half the participants) use AAR/AI, with the same ex-

planations. Treatment 2: (Half the participants) use Ad-hoc or non AAR/AI

(control group), with the same explanations.

2. RQ2: Treatment 1: (All the participants) find Fault x, with the same ex-

planations. Treatment 2: (All the participants) find Fault Y, with the same

explanations.

The study was conducted entirely online over Zoom calls and a website, with

one facilitator and 1-5 participants per session. The study contained pop-up ques-

tions (differing according to being in the AAR/AI or the control group), a game

and explanation interface that participants could use to answer questions about

10

the AI, and mark and describe the AI’s faults in the explanation. The facilitator

kept track of the actions taken by the participants through a virtual Dashboard.

The purpose of the experiment was to determine if AAR/AI helped participants

in identifying and consequently localizing faults. Specifically, the experiment seeks

to find how helpful AAR/AI is and what kind of faults (if any) does it help in

finding. The procedure of the experiment is detailed below:

1. Pre-task-questionnaire for cognitive diversity.

2. Game and explanation tutorial.

3. Do a Practice Task, where the participants look for potential problems.

4. Start the main task (Loop over “x” DPs:)

• Step 1 (Prediction): The participant completes the “Prediction sheet”

to predict the AI’s actions in the next 1 round.

• Step 2: Watch the replay (1 round).

• Step 3 (Describe): The participant completes the “Description sheet”

(AAR/AI: “What/Why/How”, Ad-hoc: “Summarise the Friendly AI’s

actions”) to summarize what the AI actually did.

• Step 4: The participant now has access to the AI’s explanation, and

begins finding faults as follows:

(a) Problem Localization: Localize the “problem” in the AI’s explanaiton

that possibly caused the failure. The participant circles problem in

the Explanation, and uses arrows for the cause of the problem.

11

(b) Problem Description: The participant then completes a “summaris-

ing” questionnaire (AAR/AI: “What-Why-How”, Ad-hoc: “Sum-

marise the problems in the AI’s reasoning”) to explain the problem.

5. Post task questionnaires

The results from the experiment recommended that not only did the AAR/AI

participants find more faults, they also did so more precisely. A summary of the

results:

• AAR/AI participants had a higher recall of the bugs that they found than

the control group.

• AAR/AI participants significantly outperformed the control group in all the

types of bugs in the AI’s explanation.

• AAR/AI participants also self reported more bugs, and did so with far more

precision than the control group.

• AAR/AI helped participants abstract concepts about the AI.

1.3 Research Contributions

The contributions of this thesis, while specific to the Explainable AI community,

can also be applied to similar decision making spaces. The experiments conducted

recommend that AAR/AI is a powerful and useful assessment process that helped

12

non-AI experts (that are domain experts) in finding and localizing faults in an AI

agent. Contributions of these studies are multifold:

• A new AI assessment process for non-AI experts: AAR/AI is a debriefing

process adapted to suit the needs of domain experts assessing AI systems, and

it has proven to be useful in assessing and finding faults in such systems. The

variety of advantages that AAR/AI offers in identifying and localizing faults

can be attributed to its flexibility, simplicity and alignment with human

information processing strategies. Additionally, AAR/AI is a democratic

process that can be used to find faults in diverse AI explanation interfaces

successfully.

• System for integrating facilitation processes with explanation interfaces: This

thesis details the combination of AAR/AI embedded with consistent search

and explanations for assessment and fault finding tasks in AI systems. Par-

ticipants consistently fared better in assessment tasks with AAR/AI across

different explanation interfaces, and self reported that AAR/AI helped them

align their thoughts and think more logically.

• Fault finding paradigm: AAR/AI, coupled with consistent search and la-

belling was found to be particularly useful for finding faults, and can be used

in the future to suit similar debugging needs in various AI explanation mod-

els. Notably, participants that used AAR/AI were 6 times more likely to find

faults in an AI’s explanation than those that didn’t, and even did so more

accurately.

13

• Empirical experiment design demonstrating the effectiveness of a Human De-

briefing process such as AAR/AI: The between subjects experiment with

and without AAR/AI supports recommended that participants that used

AAR/AI found significantly more faults and did so more accurately. More-

over, empirical evidence of the within subjects experiment with different

types of faults also recommended that participants with AAR/AI supports

fared significantly better on all the types of faults. Such experiment de-

signs offer methods and in-depth techniques to evaluate human debriefing

processes such as AAR/AI.

1.4 Prior Publications

I note that this research is a result of multiple collaborations detailed in two pub-

lications. The qualitative experiment detailed in Chapter 2 is adapted from Mai

et al [60].1 I co-authored this paper with 12 other students and faculty. I was

listed as a second author. For the quantitative experiment detailed in Chapter

3, it is adapted from a co-authored journal paper that is under review as of May

2021 [43].2 I am the first author of this manuscript and collaborated with 11 other

students and faculty.

1[60]: Theresa Mai, Roli Khanna, Jonathan Dodge, Jed Irvine, Kin-Ho Lam, Zhengxian Lin,
Nicholas Kiddle, Evan Newman, Sai Raja, Caleb Matthews, Christopher Perdriau, Margaret
Burnett, and Alan Fern. Keeping It “Organized and Logical”: After-Action Review for AI
(AAR/AI). Proceedings of the 25th International Conference on Intelligent User Interfaces (IUI).
ACM, 2020.

2[43]: Roli Khanna, Jonathan Dodge, Andrew Anderson, Rupika Dikkala, Jed Irvine, Zeyad
Shureih, Kin-Ho Lam, Caleb R. Matthews, Minsuk Kahng, Alan Fern, and Margaret Burnett.
Finding AI’s Faults with AAR/AI: An Empirical Study. 2021. (Under Review)

14

Chapter 2: Keeping It “Organized and Logical”: After-Action

Review for AI (AAR/AI)

Explainable AI (XAI) is growing in importance as AI pervades modern society,

but few have studied how XAI can directly support people trying to assess an

AI agent. Without a rigorous process, people may approach assessment in ad

hoc ways—leading to the possibility of wide variations in assessment of the same

agent due only to variations in their processes. AAR, or After-Action Review, is a

method some military organizations use to assess human agents, and it has been

validated in many domains. Drawing upon this strategy, we derived an AAR for AI,

to organize ways people assess reinforcement learning (RL) agents in a sequential

decision-making environment. The results of our qualitative study revealed several

strengths and weaknesses of the AAR/AI process and the explanations embedded

within it.

2.1 Introduction

Consider people tasked with assessing AI systems—specifically those responsible

for asserting that the technology is safe and regulation-compliant. An example

of such a technology is a self-driving car, where the importance of evaluating its

safety is paramount, especially since failures have such grave consequence that they

15

are likely to wind up in court [17]. Assessing accidents caused by self driving cars

increasingly tread into legal grey areas. Who is held liable? The driver for failing

to react in time, or the company for delivering defective code? [65].

When considering the question of how to do assessment, we note that an in-

telligent agent interacts with the world in ways analogous to those of a human

agent. Thus, perhaps we could adapt established techniques for evaluating the

quality of human agents for use on AI. The technique we specifically refer to is the

After-Action Review (AAR), devised by the U.S. Army in the mid-70’s [63]. The

AAR was a success in various branches of military, and has also been adapted for

other domains including medical treatments [80], transportation services [58], and

fire-fighting [39].

We term our adaptation AAR/AI (“AAR for AI”). AAR/AI is a process for

domain experts to use in assessing whether and under what circumstances to rely

upon an AI agent. We envision AAR/AI to be suitable for sequential domains,

such as real-time strategy (RTS) games. It contains a series of steps the human

takes to evaluate an AI agent and the explanations it provides of its behaviors.

To investigate AAR/AI, we created a custom game in StarCraft II (Section 2.4.1).

Then, we created a reinforcement learning (RL) agent that yielded high-quality ac-

tions in the domain (Section 2.4.2). For this agent, we also devised an explanation

for the model-based agent to show its search tree (Section 2.3.3). To evaluate

the AAI/AR process in the context of this domain, explanation, and agent, we

conducted a qualitative study designed to investigate these RQs:

RQ1 When using AAR/AI for assessment, what do people need to make good

16

assessment decisions?

RQ2 What are the strengths and weaknesses of guiding human assessment in this

way?

RQ3 What are strengths and weaknesses of search tree explanations, as we have

designed them?

2.2 Background & Related Work

There are many papers describing the challenges of evaluating AI systems’ quality

(e.g. [12, 29]), including specific attacks (e.g. [24]). Rising to meet these chal-

lenges, approaches like DeepTest [90] attempt to utilize concepts from software

engineering to improve testing of deep neural networks. In particular, they seek to

measure and improve “neuron coverage” (proposed by Pei et al. [69], similar to code

coverage). To accomplish this, they apply a series of transformations to the input,

a form of data augmentation conceptually similar to fuzzing. Other approaches

have transported software engineering concepts, such as test selection [30, 38] and

formal verification [73]. However, these approaches are system-oriented in terms

of exposing problems, not human-oriented by giving an assessor the tools to de-

termine appropriate use for the AI.

17

2.2.1 People Analyzing AI

Human-oriented evaluation of AI is an active area of research, though much of it

is at a different granularity than we needed. For example, Lim et al. researched

how their participants’ sought information in context-aware systems powered by

decision trees. The result of their research was a code set of several “intelligi-

bility types” describing the information. They discovered that their participants

demanded Why and Why Not information, especially when the system behaved

unexpectedly [54]. Using Lim’s code set, Penney et al. studied how experienced

RTS players looked for information when understanding and evaluating an “AI,”

but they found that participants preferred What information over Why information

and that the large action space of StarCraft II led to high navigation costs, which

meant missing important game events [71]. Dodge et al. analyzed how shout-

casters (human expert explainers, like sports commentators) assessed competitive

StarCraft II players. They showed the ways that shoutcasters present information

that they thought their human audiences needed [21]. Kim et al. gathered 20

experienced StarCraft II players to play against competition bots and rank them

based on performance criteria. They noted how human evaluations of the AI bots

differ from the evaluations used for AI competitions and that the human player’s

ability plays a huge role in their evaluations of the AI’s overall performance and

human-likeness [44]. These studies found how people evaluate an AI, but they did

not present a structured process for assessment.

There are several models which consider system assessment in a human-oriented

18

way; however, these works do not provide an assessment process for AI, but rather

on whether humans will adopt systems or not. One such framework is Technology

Acceptance Modeling (TAM) [20]. TAM can predict how well a system will be

accepted by a user group and explain differences between individuals or subgroups.

More recently, the UTAUT (Unified Theory of Acceptance and Use of Technology)

model was proposed as an acceptance evaluation model [33]. These approaches

could be used to examine the quality of AI systems, but they do not offer a concrete

process for human assessors to enact.

2.2.2 People Explaining AI

Our process has an explanation explicitly embedded within it, so we briefly survey

explanation strategies for AI. The primary purpose of explanations is in their

ability to improve the mental models of the AI systems’ users. Mental models are

“internal representations that people build based on their experiences in the real

world” that assist users to predict system behavior [64].

Explanations are also a powerful tool for shaping the attitudes and skills of

users. One such example is Kulesza et al.’s proposed principles for explaining (in

a “white box” way) machine learning based systems, wherein the system made its

predictions more transparent to the user [48], which in turn improved the quality of

their participants’ mental models. Another study by Anderson et al. [4] provided

insights on the varying changes in the mental models of participants with different

explanation strategies of an AI agent.

19

US Army AAR Process

Introduction and rules.
Review of training objectives.
Commander’s mission and intent (what was supposed to happen).
Opposing force commander’s mission and intent (when appropriate).
Relevant doctrine and tactics, techniques, and procedures (TTPs).
Summary of recent events (what happened).
Discussion of key issues (why it happened and how to improve).
Discussion of optional issues.
Discussion of force protection issues (discussed throughout).
Closing comments (summary).

Table 2.1: Steps of the US Army AAR process [92].

Another direct consequence of altering the mental models of users is the im-

provement in their ability to command the system. According to a study by

Kulesza et al. [50], participants with the most improved mental models were able

to customize the system’s recommendations the best, accommodating for the ex-

planations that the researchers provided.

Explanations in the domain of AI agents in RTS games have been gaining

traction over the years. In a study by Metoyer et al. [61], they present a format

where experienced players played while providing explanations to non-RTS players.

The strategy that expert players used while demonstrating how to play the game

was found to be key to the explanation process. The study by Kim et al. [45] had

experienced players play against AI bots in order to assess the bot’s skill levels

and overall performance. However, despite the existing research mentioned above,

there is a dearth in literature concerning what humans really need in order to

understand and assess such systems [68].

20

AAR De-
brief Steps

AAR/AI Questions
Answered

AAR/AI Empirical Context

1. Define
the rules

How are we going to do
this evaluation? What
are the details regarding
the situation?

We established the rules of evaluation
and the domain (see Supplemental Ma-
terials).

2. Explain
the agent’s
objectives

What is the AI’s objec-
tive or objectives for this
situation?

We explained the AI’s objectives for
the situation (see Supplemental Mate-
rials).

A
A

R
/
A

I
In

n
e
r

L
o
o
p

3. Review
what was
supposed
to happen

What did the evaluator
intend to happen?

We asked, “What do you think should
happen in the next three rounds?”.

4. Identify
what hap-
pened

What actually happened? The participant watched three rounds.
Then, we asked, “Could you briefly ex-
plain what actually happened in these
past three rounds?”.

5. Exam-
ine why it
happened

Why did things happen
the way they did?

We asked, “Why do you think the
rounds happened the way they did?”.
Next, the participant summarized any-
thing good, bad, or interesting on an
index card. Last, we provided the
participant the agent’s explanation for
that decision (Figure 2.1), and re-
quested they, “Think aloud about why
the Friendly AI did the things it did.”.

6. Formal-
ize learning
(end inner
loop)

Would the evaluator al-
low the AI to make these
decisions on their behalf?
What changes would they
make in the decisions
made by the AI to im-
prove it?

We asked three questions: “Would you
allow the AI to make these decisions on
your behalf?”, “What changes would
you make in the decisions made by the
AI to improve it?”, “Would you allow
the Friendly AI to make this category
of decisions on your behalf?”.

7. Formal-
ize learning

What went well, what did
not go well, and what
could be done differently
next time?

The participant completed a post-task
questionnaire (see Supplemental Mate-
rials).

Table 2.2: How AAR/AI (right two columns) adapts the original After-Action
Review steps (left column). The “Empirical Context” column explains how we
realized it in our empirical study. Note that steps 3-6 form an “inner loop” that
we repeated every three decisions. The parts outside the inner loop are documented
in our Supplemental Materials (tutorials, questionnaires, etc), so we describe them
only briefly here.

21

2.2.3 After-Action Review

To structure our assessment method, we turned to processes that have been used

for humans to assess other humans, including Post-control, Post-Project Appraisal

and After-Action Review (AAR) [82]. Our criteria for the process to use as our

basis included: (1) have a structured and logical flow, (2) be well established, and

(3) be suitable for evaluation during a task, not just useful at the end of a task.

We selected the AAR method as the one that best fulfilled these criteria.

AAR is a debriefing method created by the United States Army, and it has

been used by military and civilian organizations for decades [79], to encourage

objectivity [58]. The purpose is to understand what happened in a situation and

give feedback, so people can meet or exceed their performance standards by going

through a structured series of steps shown in Table 2.1.

The AAR process was primarily used as a method to provide performance

feedback after soldier training sessions. Before starting an evaluation session, the

leader (a designated individual across all sessions) performs groundwork to collect

and aggregate data from the session for further analysis. The leader enters the

session with a pre-planned mechanism to collect data and begins the session by

reiterating the objectives of the analyzed exercise. From there, the leader asks a se-

ries of open-ended and leading questions about what happened during the training

session, making sure to encourage a diverse range of perspectives. These responses

are then filtered into a recapitulation that the group collectively agrees on, and

the discussion is shifted to scrutinizing any shortcomings in performance. This is

22

followed by brainstorming solutions to avoid or improve responses to problematic

outcomes. The session concludes by delineating an action plan to adhere to for

future training [92].

AAR showed effectiveness for combat training centers [79], and the military still

uses it, with a recent investigation of current methodologies for simulation-based

training [31]. Outside military applications, AAR has been used in other domains,

from medical treatment [74, 80], emergency preparedness [19], and response [39,

53]. The closest research to ours discusses how AAR will be different for manned-

unmanned teams, but focused on the technologies needed to support the AAR

process, not the process itself [10].

2.3 The AAR/AI Process

Our After-Action Review for AI (AAR/AI) is an assessment method for a human

assessor to judge an AI. We base the steps of our method from Sawyer et al’s

DEBRIEF adaptation from the Army’s AAR [80]. In their adaptation, they Define

rules, Explain objectives, Benchmark performance, Review what was supposed to

happen, Identify what happened, Examine why, and Formalize learning. Table 2.2

outlines our AAR/AI adaptation.

The original AAR method is a facilitated, team-based approach, but our AAR/AI

method is for an individual reviewing, learning the AI’s behavior, and assessing

its suitability [82]. The outcomes are different for the approaches: AAR aims for

transfer of knowledge within a team, and AAR/AI aims for individual acquisition

23

of knowledge and assessment of an AI. These two primary differences between AAR

and AAR/AI are what generated the specific ways AAR/AI (Table 2.2’s columns 2

and 3) carries out the original method’s steps (Table 2.2’s column 1).

2.3.1 AAR/AI: Defining Rules & Objectives

A facilitator starts each session with a tutorial on the user interface, domain,

explanations, and the objectives of the assessment (Steps 1-2, Table 2.2). This

contextualizes the discussion in terms of what the assessor is supposed to do and

the agent that they are assessing. After that, the facilitator begins the AAR/AI

“inner loop” (discussed next), and after every loop is done, the assessor completes

a questionnaire.

2.3.2 AAR/AI’s Inner-Loop: What, Why, How

During each iteration of the inner loop, the facilitator asks the assessor, “What was

supposed to happen?”, “What happened?”, “Why did it happen?”, “How can it be

improved?” (Steps 3-6, Table 2.2). The assessor also summarizes what happened

in the past three rounds and writes down anything they observed that was good,

bad, or interesting on an index card. At Step 5, we provided the assessor with

the AI’s explanation for the most recent round, and asked to explain why the AI

did the things it did, according to the process in Table 2.2. Following this, to

formalize learning about this particular decision, the facilitator asks the assessor

24

the questions listed in Table 2.2 step 6, (e.g. whether they would allow the AI

to make these decisions on their behalf). Thus ends the inner loop, which would

repeat until the end of that analysis session.

2.3.3 AAR/AI: Explanation Component

AAR/AI evaluators, like the AAR equivalent, require information on what hap-

pened, so our process requires an Explanations Component, since the evaluators

not only must they know what happened, but the agent must be able to explain

why it performed an action. In our evaluation study, we used a model-based agent,

so we prototyped a model-based explanation.

A model-based agent (and its explanation) offers the benefit of explicitly rep-

resenting the future states the agent is trying to reach or avoid. Our model-based

explanation captures the agent’s search tree, shown in Figure 2.1. We described

the search tree to participants as, “...a diagram of decisions, where the Friendly AI

decides what actions or decisions it must take to complete a round in the game.”

The explanation lays out the agent’s “explanatory theory” [85] of how the game

could play out in different situations. In essence, the theory’s “constructs” of that

theory are: game states, roles (e.g. friends or enemies), actions available to various

roles, and (estimated) values of different states and actions.

In Figure 2.1, the root node (region 1) shows the current game state and its

estimated value. One layer down (region 2) shows the 4 best actions available to

the friendly AI in the current game state–and their values, as estimated by the

25

4ees
4

3

Pylons Marines Banelings Immortals

1

FRIENDLY ENEMY
.16235

2.11215.07858.07977.16235

.53093.49552 .16235.64604

FRIENDLY ENEMY
.16235

FRIENDLY ENEMY
.16235

.08270.14564.14564.16235

.16235.49959 .38964.35497

Figure 2.1: Search tree explanation for decision point 22. Blue background boxes
show: (1) game state at decision point 22, (2) top 4 most rewarding actions, as
estimated by the AI, (3) top 4 most rewarding actions for the enemy in response to
its “best” action, as estimated by the AI, and (4) predicted game state at decision
point 23. Our agent searches to depth 2, so the explanation includes another turn
of search from the predicted state (box 4). Note that all states below the root (box
1) are predicted by the agent. Green highlighted numbers indicate parts of the
principal variation.

26

Ç√

Ç√

Ç√

FRIENDLY ENEMY
.16235

.16235

FRIENDLY ENEMY
.16235

.16235

Ç√

Ç√

Ç√

FRIENDLY ENEMY
.16235

.16235

FRIENDLY ENEMY
.16235

.16235

Pylons Marines Banelings Immortals

Figure 2.2: Left: An example of State node presentation. Each bar shows a number
of unit production facilities for each lane and type. Here, the Friendly AI has 6
marines and 5 banelings in the top lane—with 3 marines and 16 banelings bottom.
Right: An example of Action node presentation. Similar to the state, bars are
split by lane and by unit. Each node is given with the agent’s estimate of the win
probability associated with that action (number at the bottom.)

agent based on the tree expansion. The third level of the tree (region 3) shows

actions available to the opponent—again, the 4 best actions and their values as

estimated by the agent. The fourth level of the tree (region 4) shows the predicted

state that the agent thinks will ensue based on the current state, taken together

with the simultaneous actions from itself and the opponent. From that level, the

agent performs another round of search in the same way, resulting in an agent

that looks ahead 2 rounds. Each node is shown with the state or action that node

depicts, alongside the estimated value of that state/action, shown with more detail

in Figure 2.2. If that value is part of the principal variation (colloquially, the most

likely trajectory given “optimal” play from both sides), its value is shown in green

instead of blue.

27

2.3.4 AAR/AI’s Artifacts

Part of AAR/AI involves creating materials to help keep everyone on task during

the assessment. The US Army AAR uses cards in order to log observations [92],

though the information collected is largely focused on personnel and their position-

ing. Since the AI performs within the RTS domain, we turned to how professional

shoutcasters analyze AI, like AlphaStar [86]. They used formatted text for ac-

tions that they found “good,” “bad,” or “interesting,” which we replicated in the

AAR/AI’s index cards. This prevents assessors, regardless of the AI’s use, from

relying on memorizing when a decision is good or not. By using such written ar-

tifacts, the AAR/AI process has the benefit of gaining retrospective feedback on

process or explanations. Further, artifacts like these can assist in comparing the

assessment results from multiple different individuals.

2.4 Empirical Study: Methodology

To inform our design of AAR/AI, we ran an in-lab think-aloud qualitative study.

One goal was to investigate what participants needed when doing AI assessment,

alongside strengths and weaknesses of our process. Additionally, since the AAR/AI

process embeds an explanation, our other goal was to obtain feedback about the

model-based explanation strategy we described in Section 2.3.3.

We recruited 11 students at Oregon State University who had not taken classes

in AI or ML. Since our game is based on StarCraft II, we recruited those familiar

with real-time strategy games, to ensure that participants could understand the

28

game sufficiently to assess the AI.

A researcher facilitated for the participant (assessor) during the AAR/AI pro-

cess, starting with a tutorial about the interface, domain, and task (Steps 1/2).

Since each session was limited to 2 hours, we wanted to ensure that each partici-

pant reached the end of the replay and had time for our post-task questionnaire.

Thus, we decided to have them analyze every third decision point out of the 22

available, including the last one (e.g. 3,6,...,21,22). This allowed up to 5-7 minutes

for each iteration of the AAR/AI inner loop—though it was rarely necessary to

enforce limits during the study.

At each iteration, the researcher asked the assessor a structured series of open-

ended questions to elicit their thoughts as they performed their assessment of

the AI’s actions (Steps 3-6). Additionally, the participant wrote on index cards

(Section 2.3.4) to help them formalize thoughts and offer the option to refer back

to previous ones.

Upon completion of the task (Step 7), we asked: “Did the process of the ques-

tions I asked you help you understand and assess the AI better?”, “Do you think the

AI’s diagrams have enough detail?”, “Would you prefer the width of the diagram

to be narrower or wider? Or do you like the way it is?”, “What kind of actions

would you have liked to see on the diagram?”, and “In the main task, did you find

these cards useful?”. Finally, we compensated participants $20.

Each session spent ˜30 minutes for the briefing/tutorial (pre-task), ˜50 minutes

on the inner-loop (the main-task), and ˜25 minutes on the post-task questionnaire.

This timing was consistent with Sawyer et al.’s recommendations (25/50/25%,

29

respectively) [80].

2.4.1 The Domain

StarCraft II is a popular Real-Time Strategy (RTS) game that offers hooks for AI

development ([93, 94]) and a flexible engine for map creation1. The game used

for this study is a tug-of-war like customized game based on StarCraft II, shown2

in Figure 2.3. The objective of the game was to destroy either of the opponent’s

Nexus in the top lane or bottom lane . If no Nexus is destroyed after 40 rounds,

the player whose Nexus has the lowest health will lose.

At every round of the game:

• Each player receives income (100 minerals, +75 per pylon)

• The player chooses to build any combination of unit production facilities

(i.e. barracks) which will exist for the next round, subject to the following

constraints:

1. Total cost cannot exceed current mineral count

2. Players are only allowed to build in one lane at a time

3. Players do not know the opponent’s action until both actions are final-

ized

1Many map creation resources are available at places such as [89].
2Materials to replicate this state are freely available in our Supplementary Materials.

30

Figure 2.3: Game screen at decision point 22. Note the text boxes offering state
information (current units, nexus health, etc) as well as action information (adding
units).

• Players spawn units equal to the total number of unit production facilities

currently held (i.e., 5 barracks implies 5 marines)

Each round, both players choose which lane to build in and the number of unit-

producing buildings to spend resources on for each of 3 unit types, who share a

rock-paper-scissors relationship. Marines (50 minerals) are low health units that

attack in small quick shots. They are effective against immortals. Banelings (75

minerals) are medium health units that attack by exploding on contact. Banelings

are effective against marines. Lastly, Immortals (200 minerals) are high health

units that attack in large slow shots. Immortals can inflict significant damage on

a Nexus. Players may also choose to build a pylon to increase their income per

31

round. The maximum number of pylons they can build is 3, and the cost of a

pylon increases each time one is purchased. Note that an action in this context is

essentially an integer vector, meaning the branching factor is combinatorial with

respect to minerals possessed.

Once a unit spawns, the players can no longer control it; they will move toward

the enemy Nexus and attack any enemies along the way. Also, units always spawn

at the same location each wave.

2.4.2 The Agent Implementation

The agent is model-based, so it has access to a transition function that maps a

state-action tuple to the successive state. Applying the transition function allows

the agent to expand a move tree, and perform minimax search3 on it. The system

uses three learned components (all represented by neural networks): the transition

model, the heuristic evaluation performed at leaf nodes, and the action ranking at

the top level.

The heuristic evaluation function estimates the value, or quality, of non-terminal

leaf nodes in the search tree. This function is necessary to address the depth of

the full game tree, since the search will rarely be able to expand the tree until

all leaf nodes are terminals. The action ranking function provides a fast estimate

of the value associated with taking each action in a state. This function is nec-

essary to address the large action-branching factor by only performing the more

3For more information on game tree search, see Russell and Norvig, Chapter 5 [78].

32

Code: Description Example #

Explanation Overall Quality: Participant
found the explanation useless or helpful in a
general sense (very vague), or in determining
reasons for actions in the decision process (clar-
ity, or lack thereof).

P2: “I think it’s pretty easy to under-
stand, like, after looking at for a little
while.”

8

Diagram Color Coding: Participant com-
ments on the manner in which an explanation
object is colored.

P17: “The color coding is okay. Um,
it’s pretty distinctive. Um, I don’t
know if the background is gray or-
and even the marines are gray... it
was confusing because if it was dif-
ferent color”

4

Changing Diagram Data Contents: Par-
ticipant talks about changing data in the di-
agram (such as changing the node defini-
tions, changing the key, etc). This is NOT
about showing an action/state node that is not
present.

P18: “How much minerals it has,
something like that. I would like that
to be represented on the diagram.”

7

Diagram Node Contents: Participant
wants the diagram to contain more/fewer
nodes, (e.g. wishes to interactively expand a
node, request a specific action be examined,
or have a “wider/narrower” tree) OR thinks it
contains the right amount.

P11: “I would just have more options
available, you know. ... So some-
times, there are missing... missing
options which should be taken.”

16

Diagram Glyph Presentation: Participant
comments on the glyphs for the action or state
nodes, referring to the way the state informa-
tion is presented in the glyph

P10: “As the number of units goes
on increasing, the line goes on in-
creasing. And that is why it’s short.
That’s clear, but vertical lines are...
if it would have been 1, it would have
been great. Just 1 line.”

6

Table 2.3: Helpful/Problematic code set for the explanations. Frequencies are from
three post task questions centered on the explanation and its contents.

33

expensive tree expansion under some number of top-ranked actions to improve es-

timates (similar to AlphaGo and AlphaZero [83, 84]). A big difference, however,

is that our system uses a learned transition model, due to the stochastic and com-

plex nature of the transitions between states, whereas Silver et al.’s used a perfect

move-transition model (e.g., Chess’s deterministic rules).

2.4.3 Analysis Methods

To answer RQ2 and RQ3, two researchers applied content analysis [37] to the

coded statements from the post-task questions about helpful or problematic ele-

ments of the process or explanations, resulting in the code set in Table 2.3. The

two researchers coded 21% of the data corpus separately, achieving inter-rater re-

liability (IRR) of 82.4%, computed via Jaccard Index [40]. Given this level of

reliability, they then split up the remaining coding.

To answer RQ1, we drew from a code set that Dodge et al. used in their

StarCraft II study, who had adapted from Lim et al.’s work [55, 21]. Dodge et

al. also added in a “judgment” code, which the AAR/AI needed because of the

nature of assessment. Individually, the two researchers coded 20% of the data

corpus, achieving an inter-rater reliability (IRR) of 76.4%. Given this level of

reliability, they then split up the remaining coding.

34

2.5 Results

Our explanation strategy consists of three components: the AAR/AI process it-

self, the specific explanation content and presentation, and a “keep the user active”

tactic to facilitate their learning of the agent’s behaviors. Accordingly, this section

has three parts: 1) how the AAR/AI process affected participants’ understanding,

2) how the Explanation (tree diagram) content and presentation affected partic-

ipants’ understanding, and 3) how the integration of all three elements of our

strategy affected participants’ understanding.

2.5.1 Results: The AAR/AI Process

The goal of our project’s explanation strategy is to enable participants to under-

stand how the AI agent is “thinking” well enough to evaluate how suitable the

AI agent is for different situations that arise. In essence, our explanation strategy

aims to help people build mental models. In this subsection, we consider what the

AAR/AI process itself brought to our participants’ mental-model building.

Many of the participants commented on how AAR/AI’s “structuredness” helped

their understanding by keeping their thinking organized, structured, and/or log-

ical. (Only one participant said it was not helpful, but this was because they

believed that with their experience in RTS games, they already understood the

AI’s behavior without the need of any assistance.) For example:

P8, PTQ 2: Uh, yes, I would say AAR/AI was helpfu. It definitely directed me

towards what I should be paying attention to.

35

Level: [9]’s De-
scription

How it applies to under-
standing the AI

Examples from our participants

1. Remember-
ing: Have students
acquired the ability
to correctly recall
information?

Participants recall domain
information, such as game
rule(s), what an agent can
do with particular game
units, etc. (Supported by
AAR/AI’s questions about
the game.)

+P20: “It’d probably buy another baneling... to
counter the marines...”

2. Understand-
ing: Can students
understand infor-
mation they have
learned to recall?

Participants understand
the domain information
provided. (Supported by
AAR/AI’s “What” and first
“Why” question.)

+P8: “...you (the AI) don’t necessarily know
which lane they’re coming through... it’s not
much of an informed decision until the first
round happens.”

3. Applying: Can
students apply
their newly learned
knowledge?

Participants apply the ex-
planation of the AI to the
game. (Supported by second
“Why” question.)

+P2: “I ...like it how (the explanation diagram)
is, because like I could try to draw my own con-
clusions from it rather than just like ‘oh this is
just what happened’.”

4. Analyzing:
Can students see
patterns and make
inferences about a
problem?

Participants analyze the AI’s
problems in the game, and
reason about solving them.
(Supported by the prediction
task and the “What changes
would you make” question.)

+P2: “So the bottom one did pretty well like
overpowering the enemy AI and even attacking
nexus, lowering its health while the top one, the
enemy AI did a better job sending more marines
and the friendly AI sent banelings which got
overpowered by the marines.”
+P19: “So we have almost same health on top
and bottom. So, to defeat us, they have to focus
on either one. So I guess they will focus bottom,
because they have to save them at the time. I
guess we have to use minerals to buy immortal
here, so that we can save ourselves and at the
same time, kill the enemy.”

5. Evaluating:
Can students take
a stand or
decision, and
justify it?

Participants evaluate the AI
agent, and judge if they
would allow the agent to
make decisions on their
behalf in this or similar
situations. (Supported by
the “Would you allow...”
question series.)

+P5: “Producing these banelings (in both) lanes
allowed nexus damage bottom lane, and then
having the one or two marines do consistent
damage on the nexus really took down the nexus
health, so that was actually a really good deci-
sion.”
+P20: “This is gonna be sad. Yep. It’s all down-
hill from here. (after watching the replay) Uh,
the friendly AI lost, uh, due to their misinvest-
ment in the top row, and only increasing their
baneling count, which only works at melee range
which is ineffective to marines if there’s already
a baneling wall in front of them.”

6. Creating: Can
students create a
new point of view?

Participants create new
points of view by
generalizing upon,
abstracting above, or
recommending differences in
the AI’s behaviors.

+P14: “Well, the enemies will invest in banel-
ings, and I feel that the friendly’s will invest in
marines, especially more in the top row, since it
is more damage...”
+P21: “I would consistently save a small quan-
tity of minerals each round, rather than trying to
save them all in a single round.”

Table 2.4: Bloom’s taxonomy levels participants achieved in learning the agent’s
behavior.

36

P18: I could think what it should improve on and why the previous round happened

the way it did. So, when those questions were broken down... Really helped in fol-

lowing the game.

P14, PTQ 2: ...it categorized the flow of logic that we should’ve had in an-

alyzing the prediction and what actually happened, so it kept it more organized,

and therefore, more logical.

P17, PTQ 2: I know it was too much information ... it helped me understand

it better. ...it just helps me ... to understand it better, and makes it more logical.

To understand the level of our participants’ mastery of understanding the agent,

we applied Bloom’s Taxonomy [9], which is a framework used by educators to cat-

egorize the different levels of learning. The taxonomy has six levels [6], ranging

from basic understanding of a concept (level 1), through a fairly advanced under-

standing (level 6). Each level requires learners to engage with a higher level of

abstraction than the last. The application of Bloom’s taxonomy to our context is

detailed in Table 2.4.

As Table 2.4 shows, subsets of participants showed mastery of every Bloom’s

level. In fact, all participants achieved Bloom’s Level 5 at least once during the

study. Further, all except one of the participants achieved Bloom’s Level 6 at some

point.

Bloom’s Level 5 is of particular interest to our project: it is the level of under-

standing that allows evaluation. Evaluation is a form of problem-solving—working

out whether the AI agent is “capable enough” for a particular situation—and

problem-solving greatly benefits from diversity of thought [28]. Although most

37

research into diversity of thought is in the context of team problem-solving, at an

abstract level it amounts to bringing diverse perspectives to a problem (e.g. [28]).

To consider whether the AAR/AI process was able to elicit diverse perspectives

from our participants, we turned to the Lim-Dey intelligibility types, which we

used as a codeset for our qualitative coding (Table 2.5). As the results show, each

of AAR/AI steps guided participants’ thinking (according to their self-reports)

toward different Lim/Dey perspectives [54]. For example, the first question guided

most participants to focus on “What Could Happen,” the second on “Input” and

“Output” types of information, and the last on “How To” information. Since

other research has shown each intelligibility types has its own advantages and

disadvantages, we see the diversity of perspectives that AAR/AI seemed to elicit

as a particular strength of AAR/AI [6].

2.5.2 Results: Explanation Content and Presentation

The tree diagrams provided participants with a more global view of the agent’s

decision process, supplementing the local-only “right now” view provided by the

game state. As two participants put it aptly:

P2, PTQ 7: I kinda of like it how it (explanation diagram) is, because like I

could try to draw my own conclusions from it rather than just like ‘oh this is just

what happened’.

P14, Artifact PTQ: (In the game state)... difficult to grasp the whole sit-

uation, so having the graph gave me a chance to get my footing on overall trends

38

and options.

This way of using the explanation was a theme which was in a post-task re-

sponse from another participant:

P17, Artifact PTQ: The diagrams used to make it easier also helped to

understand the predictions. To look at one thing from many angles and make

appropriate predictions.

However, a pitfall some participants fell into was extrapolating too much in-

formation from the tree diagrams. Several participants seemed certain about the

agent’s long-term plan, which was troubling because the explanation did not make

such a plan explicit—if the agent even had one.

P21, DP18 Why 1: At this point, I feel certain that the friendly’s trying to

destroy the bottom nexus of the enemy.

P10, DP21 Why 2: I think it’s because it was a whole game plan from the

beginning. ... like from the beginning of the bottom lane, the friendly AI started

increasing the troop numbers.

However, the explanation could not possibly have shown a many-step game

plan, because the agent was only looking head two states.

Another participant also expressed difficulty in seeing long term strategies,

but for a different reason—granularity mismatches between moves, tactics, and

strategies:

P20, Artifact PTQ: There are subtasks and decisions that go into making

a strategy and not being able to see this had me make less informed assumptions

about the future decisions.

39

Part of P20’s complaint above also was a desire for more information, and this

issue arose in multiple ways. One participant wanted the explanation to show an

estimation of the resources available to both the friendly AI and its opponent:

P20, PTQ 3: I would enjoy to see ... the AI’s, calculation of their minerals.

...further extrapolation of getting this many more minerals allows you to buy these

units. ...Because in RTS games you think about is the enemy’s resources as well

and how to manage those as well as your own.

2.5.2.1 How Much More/Less/Different to Show?

Addressing the previously described requests for more or different information

is not straightforward. With the agent considering combinatorial action spaces,

showing the full search tree all at once would have been too large for humans

to process. Thus, we needed to choose a smaller set of noteworthy actions to

show—but which ones and how many?

To situate the “which” question, the explanations participants saw showed only

four actions (recall Figure 2.1). Some participants thought there should be more

and/or different ones. For example:

P5, PTQ 3: ... since there are only four options ... if it was a possibility for

more options ’cause there was definitely more possibilities.

However, these four options were only “top” as per the agent’s estimations,

which may not have been the right four:

P5, PTQ 3: I would think the AI would have the best four, which it didn’t

40

have the best four.

One participant proposed also showing the worst possible choice:

P20: I’d like to see ... what the friendly AI thinks is the ... choice that would

give them the least chance of winning as well as their greatest chance of winning...

As to how many actions to show, seven of the participants indicated that they

liked the tree—but one wanted a smaller one, and three wanted a larger tree.

P8: I liked the way it is. It’s easy to read.

P21, DP18 Why 1: I do not have any problem with narrow diagram...

P11: I would just have more options available...

Finally, one wanted everything—which is of course an infeasibly large amount

of information to present statically, but might be possible to at least navigate via

dynamic mechanisms:

P5: All the possible actions and all possible outcomes.

2.5.2.2 Explanations as Axioms and Theorems

In the explanation trees, leaf nodes used a neural network to evaluate the quality

of states. These estimates were, in essence, axiomatic and the minimax search that

proceeds atop those values are akin to theorems. Thus, if the axioms hold true,

then the theorems were true. Some participants were open to “grant the axioms.”

P14, DP21 Why 2: I mean because, those are the ones with greater scores.

So I guess that is why it chose those decisions.

Others did not grant them and found themselves not understanding or possibly

41

disbelieving parts of the diagram.

P10, PTQ 3: I think diagram needs improvement, because those are not that

clear at some times. ...It does have enough details, but the decisions were, not

made... according to the diagram.

In fact, one participant identified the issue quite well: that the win probabilities

have no clear provenance.

P8, PTQ 7: ... If there’s any easy way to say why it came up with these

numbers... there were several steps that I just didn’t know why it was taking that

action...

We found that RTS experience seemed to be a potential driver for rejecting the

heuristic evaluation function, with P5 and P20 being particularly critical of the

agent’s decisions:

P5: Wow, rewards went down... A baneling is better than a marine by rewards

points, but there’s clearly a better answer.

Those with less RTS experience seemed less critical of the agent’s explanation,

but they still compared the agent’s actions to the tree:

P14, Artifact PTQ: Information didn’t always line up with what occurred.

Therefore, it gives a false belief on what/how the AI is doing.

2.5.3 Results: Combined Explanation Strategy

Some results seemed directly tied to the integration of all three aspects of our

explanation strategy: the AAR/AI process to provide structure, the tree diagrams

42

W
ha

t
W

ha
t

C
ou

ld

H
ow

 T
o

Ju
dg

m
en

t

W
hy

 D
id

W
hy

 D
id

n'
t

In
pu

ts

M
od

el

O
ut

pu
ts

sum
"What do you think should
happen in the next 3 rounds?"
(Before watching them) 2 71 16 1 0 0 24 6 2 122
"Could you briefly explain about
what actually happened in these
past three rounds?" (After
watching them) 13 6 2 6 18 2 53 12 74 186
"Why do you think the the rounds
happened the way they did?" 2 6 3 1 32 2 24 31 30 131
"Why do you think the Friendly AI
did what it did?" (After seeing the
explanation) 2 8 8 0 55 1 60 27 36 197
"What changes would you make
in the decisions made by the
Friendly AI to improve it?" 3 8 56 2 2 0 38 3 2 114

Sum 22 99 85 10 107 5 199 79 144 750

Table 2.5: Lim Dey coding of participant responses, sliced by question asked during
the AAR/AI.

to provide content, and the tactic of keeping the user active along the way to

encourage engagement.

2.5.3.1 Encouraging Metacognition

Researchers in the field of education have long pointed to the benefits of metacog-

nition, in which learners evaluate the success of their own learning/understanding

processes [26]. Metacognitive activity is well-established as an important influence

on learning and understanding [97].

Our participants showed several instances of metacognition that seemed to

come from the integration of AAR/AI, the tree explanation, and the “active user”.

For example:

43

“The degree to
which...” [85]

Applicable to... Evidence to date for or against

Testability ...empirical refu-
tation is possible:
constructs and

< predictions >

are understand-
able, internally
consistent, free of
ambiguity

...this explanation
of the agent’s
model of the world.

Empirical : The agent’s explanations were
found to be understandable by several par-
ticipants, as described in Section 2.5. The
diagrams were clear and explicit in their in-
formation, from most, but not all, partici-
pants’ reports.

Falsifiability
/Empirical
Support

...is supported by
empirical studies
that confirm its
validity

...this explanation
of the agent’s
model of the world.

Empirical : Our explanations explicitly rep-
resented the agent’s predictions about likely
future states and their values, which partic-
ipants could falsify.

...this style of
model-based expla-
nation.

Empirical : AAR/AI evaluators (one in-
stance: our participants).

Explanatory
Power

...accounts for and
predicts all known
observations
within its scope

...this explanation
of the agent’s
model of the world.

Empirical : One measure is whether the
agent’s theory and explanation correctly
predicted everything, in our study, the
agent did not achieve this. Criteria-based :
Whether its constructs are sufficient to
express every possible action and state, i.e.
completeness. In this study, the constructs
have full explanatory power—but our
explanation limited the number, so the
actual explanation was not complete.

...this style of
model-based expla-
nation.
...all model-based
explanations.

Parsimony ...<has> a mini-
mum of concepts
and propositions

...this explanation
of the agent’s
model of the world.

Criteria-based : This explanation had 4 con-
structs/concepts that do not overlap, so
cannot be reduced further.

Generality
...breadth of
scope... and
independent of
specific settings

...this explanation
of the agent’s
model of the world.

Criteria-based : This explanation’s scope is
limited to explaining this particular do-
main.

...this style of
model-based expla-
nation.

Criteria-based : The style of explanation is
not restricted to games, and should be us-
able for any sequential setting of model-
based AI.

...all model-based
explanations.

Model-based explanations are restricted to
model-based agents.

Utility
...supports the
relevant areas

...this explanation
of the agent’s
model of the world.

Empirical : Most, but not all, participants
reported the agent’s explanations to be use-
ful to understanding its actions.

...this style of
model-based expla-
nation.

Empirical : AAR/AI evaluators (one in-
stance: our participants).

Table 2.6: Applying Sjøberg et al.’s Evaluation Criteria for Theories [85] to the
agent’s model-based explanation

44

P5, PTQ 2: It made me think of it like how the AI is thinking. Is it thinking long term?

Is it thinking short term? Thinking about the two different lanes each time? what

the best decision would be or what I would make as the decision, so you asking that

question made me think was my own decision better.

P8, PTQ 1: ...it was good to kind of evaluate myself where I was at when

thinking about what decisions the AI was doing, so I can better evaluate the next

stage.

One form of metacognition is self-explanation, and our approach encouraged

some participants to generate their own explanations:

P10: I think the aim of the AI is to increase the number of minerals, and

then go to the last one that is immortals, so that they can make a great damage to

the nexus.

Finally, while our process promoted thinking about the future, the cards also

supported participants’ ability to reflect on the past :

P19, PTQ 1: These cards? It’s good to write good points and bad points for

every three rounds, so that we can go back and see what mistakes we did from the

bad.

2.5.3.2 Falsifying the Agent’s Predictions

One of the strengths of the model-based explanations was that it made part of

the search tree explicit and that the agent made concrete predictions about the

future. However, we observed that this allowed participants to falsify [72] those

45

predictions:

P14, DP3 Why 2: So the friendly had ... two banelings, so one baneling and

some marines. Yes, that seems right. ... it predicted that the enemy would buy

two more marines, and it ended up being so. Yep, it was right ... it was predicted

that they would buy a baneling, and they did ... so far, it’s going as predicted.

We explicitly crafted parts of the process to allow the human to reflect on

their past thoughts, but this participant focused on the accuracy of the agent’s

predictions about the future. Notably, this type of assessment was made possible

by the model-based agent, and our explanations revealed relevant information to

be able compare different time slices.

2.6 Discussion

2.6.1 Future AAR/AI implementations

AAR/AI is highly adaptable, and this provides leeway to iteratively improve it.

Two areas for improvement that we observed were that participants thought they

could remember what happened in the past, and that participants found ques-

tions/artifacts repetitive and burdensome at times. For example:

P20, PTQ 1: ... I am fairly confident in my ability to remember what

occurred.

P5, PTQ 1: Some of this stuff kind of repeats...

An alternative might be to instead enable people to decide where to pause,

46

in an approach similar to the empirical mechanism used by Penney et al. [71].

In that study, participants watched a replay until they came to a decision that

seemed important, at which point they could pause, consider our questions, and

write down their thoughts. In essence, blending this device with our inner loop

would give more control to the evaluators as to how often and exactly where the

evaluation questions need to be answered.

2.6.2 Prediction as Explanation

2.6.2.1 Trend 1: People used explanations as prediction tools.

Reed et al. suggested that explaining a solution to a problem helps people to

solve similar problems [75]. Our strategy followed a similar approach, where par-

ticipants predicted the agent’s action (i.e., the problem), saw the action (i.e., the

solution), and then provided an explanation to the action (i.e., explanation of the

solution). Some participants even began using the explanations as the basis for

their prediction:

P8, Artifact PTQ: Understanding the diagram gave some insight into how

the AI thought, which made predicting its next move easier.

Participants engaging with the model-based explanation reported attitudes con-

sistent with a series of studies Kelleher and Hnin observed, “suggest that learners

who attempt to understand the steps of a problem solution may have higher ger-

mane load but improved ability to apply these elements in novel situations.” [42].

47

2.6.2.2 Trend 2: The process of predicting the actions, and then

showing the actions, was powerful.

Another trend we observed is that predicting the AI agent’s decisions prior to

observing the AI agent’s actual actions turned out to be part of our explanation

strategy. One of the pillars of learning effectively is self-explaining [15]. “Good”

students learn with understanding the material and forming self-explanations on

their own, while “poor” students rely heavily on examples to learn and struggle

to generate explanations on their own. Positioning the prediction task before the

observation task effectively caused participants to create self-explanations for the

AI agent’s actions. Participants used the process and the explanation, to generate

their own explanation for predicting the agent’s actions:

P10, Why DP6: I think the aim of the AI is to increase the number of

minerals, and then go to the last one that is immortals, so that they can make a

great damage to the nexus.

Participants who answered AAR/AI questions perform a “rationale genera-

tion” [23] task, which appears to offer some benefits as an AI evaluation strategy.

Renkl et al. found that acquisition of transferable knowledge can be supported

by eliciting self-explanations [76]. Learners with low levels of prior topic knowledge

profit from such an elicitation procedure. We observed this effect in our study,

as participants with little experience in RTS comfortably navigated through the

process of assessing the AI’s actions—even forming their own explanations.

48

2.6.3 The agent’s explanations as theory

Recall from Section 2.3.3 that the agent’s explanations are its explanatory theory

of the game. Since it is a theory, we draw upon criteria that can be used to evaluate

theories [85]. In Table 2.6, we consider how to apply these criteria to evaluate this

agent’s model-based explanation, this style of model-based explanations, and in

some ways, even all model-based explanations.

2.7 Threats to Validity

Any study has threats to validity, which can skew results towards particular con-

clusions [98].

One such threat was the participants’ amount of domain expertise. Evaluators

of an AI system need domain knowledge to evaluate the AI’s performance in the

domain, and some of the participants may not have had enough RTS experience.

46% of participants had at least 10 hours of RTS gaming experience. It is possible

that these participants’ experience levels may have impacted their ability to eval-

uate an AI in that domain. Also, it was not clear how to interpret large decreases

in the number of clarifications a participant requested early vs. late in the process.

It could have meant that the participants understood the explanations over time,

or alternatively that they simply gave up. The question wording could also have

influenced participants’ responses. Many were written and uniformly worded in a

balanced set of positive, negative, and neutral wording, but the verbal post-task

interview wording was informal, so more subject to individual variation.

49

The reliability of qualitative coding rests upon inter-rater reliability (IRR) mea-

sures. We used Jaccard [40], and 80% is considered good agreement, but for one

code set we achieved only 76%. Other hindrances to the generalizability of our

findings include the small size of our study and circumscribed design.

Also, qualitative studies are intended to reveal phenomena on approaches that

have not been investigated before, and are not suitable for generalization. That

said, we think our study helps inform model-based explanations for domains where

the branching factor is small (or can be made small via pruning, as we have done).

2.8 Conclusion

In this paper, we have presented AAR/AI (After-Action Review for AI), a new

assessment method to bring accountability to both AI agents and to the humans

who must assess them. To inform the design of AAR/AI, we present results from

a qualitative in-lab study to learn what people need when assessing an AI agent,

as well as pros/cons of both the AAR/AI process and the explanations embedded

in the process. Among the phenomena we found were:

• “Organized,” “Logical,” and...“Repetitive”: Some participants remarked that

AAR/AI process helped them think logically and stay organized. Some ap-

preciated its support for reflection on past thoughts. Notably, the process

helped participants generate rationale for events with long time lags. How-

ever, some bemoaned the repetitiveness of the AAR/AI questions.

• Explanation complexity: Our search tree explanations for a model-based

50

agent were approximately the right complexity for some of the participants to

understand. They reported being able to “draw their own conclusions” from

them, and appeared to be using them to align the agent’s prediction with

the actual future. Other participants did not fully understand the diagram.

This mix of attitudes toward the same explanation corroborates other re-

search reporting that explanations are not “one size fits all people” (e.g. [4]),

and suggests allowing people to access different actions and/or explanation

types on demand.

• Diversity of perspectives: As we observed and participants reported, AAR/AI’s

questions encouraged participants to consider their observations from mul-

tiple, different perspectives, which research suggests may produce problem-

solving benefits [28].

• How many and which: To answer some of the AAR/AI questions, partici-

pants needed to compare items in the explanation from a very large set of

options, the sheer quantity of which made them hard to co-locate. We pro-

vided the AI’s four most promising options, but some participants wanted to

see options the AI considered bad as well. Accommodating different people’s

comparison needs to answer the AAR/AI questions is an unresolved issue—

so methods to support scalable comparisons of items in large datasets (e.g.

[66]) is an active area of Info Viz research.

• From whence: Some participants needed to know the provenance of axiomatic

values (value estimations at the leaf nodes). That said, if people are to be

51

held accountable for relying on an AI agent, then the ability to “audit”

its decision making by allowing the ability to trace provenance may be a

requirement.

While AAR/AI was useful in guiding participants to think logically, adding

explanations assisted participants in the overall assessment process. Notably, de-

veloping useful explanations and rigorously measuring their quality remains quite

difficult. We hope that, by appealing to educational frameworks (e.g. Bloom’s

Taxonomy), we can help people like P14 see “the flow of logic that we should’ve

had”, a benefit we hope our process will be able to extend to others tasked with

assessing AI systems that impact us daily.

2.9 Acknowledgements

This work was supported by DARPA #N66001-17-2-4030. Any opinions, findings,

conclusions, or recommendations expressed are the authors’ and do not necessarily

reflect the views of the DARPA, Army Research Office, or US government.

52

Chapter 3: Finding AI’s Faults with AAR/AI: An Empirical Study

Would you allow this AI agent to make decisions on your behalf? If the answer

is “not always”, the next question becomes “in what circumstances”? Answering

this question requires human users to be able to assess an AI agent—and not

just with overall pass/fail assessments or statistics. Here users need to be able to

localize an agent’s bugs, so that they can determine when they are willing to rely

on the agent and when they are not. AAR/AI, an emerging AI assessment process

for integration with Explainable AI systems, aims to support human users in this

endeavor, and in this paper, we empirically investigate AAR/AI’s effectiveness with

domain-knowledgeable users. Our results show that AAR/AI participants not only

located significantly more bugs than non-AAR/AI participants did (i.e., showed

greater recall), they also located them more precisely (i.e., with greater precision).

Further, these results were not dependent on advantages with any particular bug

or type of bug; AAR/AI participants outperformed non-AAR/AI participants on

every bug. Finally, evidence suggests that incorporating labeling into the AAR/AI

process may encourage domain-knowledgeable users to abstract above individual

instances of bugs; we hypothesize that doing so may have contributed further to

AAR/AI participants’ effectiveness.

53

3.1 Introduction

Explainable AI (XAI) has recently begun to expand its scope. Besides simply

explaining AI to its users, some XAI researchers are focusing on explanation-based

systems to help users assess an AI system’s decisions (e.g., [62, 30, 48, 14, 87, 45,

81, 102]).

Imagine “Pat,” a user knowledgeable in some domain who is trying to make

an educated decision about whether or when to rely upon a particular intelligent

agent in a particular situation important to them. In the medical domain, Pat

might be a doctor, assessing whether to believe an AI system’s diagnosis of their

patient’s illness. In the judicial domain, Pat might be a judge, assessing whether

to follow an AI system’s recommendation for how long to sentence a defendant

just convicted in their court. These particular situations matter to Pat and to the

person Pat affects. No matter how thoroughly trained an AI system is, for Pat

the dilemma is not about the AI system’s overall correctness statistics—it is about

their responsibility for making the most appropriate decision for this particular

case. The European Commission’s European Group on Ethics in Science and New

Technologies put it this way: “[autonomous systems] must not impair [the] freedom

of human beings to set their own standards and norms and be able to live according

to them” [67, 25].

In assessing domains like the above, no objective “ground truth” is available—

only Pat knows this patient’s or defendant’s current situation. Even if Pat’s next

decision (to follow or ignore the AI system’s recommendation) helps the patient

54

to eventually recover or the defendant to eventually reform, Pat can never really

know whether their own decision was correct1.

Another domain in which this is the case is Real-Time Strategy (RTS) games,

a popular domain for AI research. In RTS games, players attempt to strategically

maneuver through many possible choices to hopefully win the game. Sometimes

in AI research, the RTS player is an AI agent maneuvering on behalf of a human2,

and that is the case in this paper. Using the RTS context, we present an em-

pirical study to investigate domain-knowledgeable users’ effectiveness when using

AAR/AI (described in Section 3.1.3), an XAI-based process to help human users

assess an AI agent [60].

3.1.1 The Domain

For our study, we used a model-based reinforcement learning (RL) agent that

played an RTS game. The game was the StarCraft 2 “Tug-of-War” custom game

that was used in the first AAR/AI publication [60]. Tug-of-War games entail two

evenly matched players, a Friendly AI and Enemy AI pursuing the same goal. In

our game, tugs of war occur in the top and bottom “lanes” of a game (Figure 3.1),

over the course of a maximum of 40 Decision Points (DPs) or rounds. Players

perform actions in either lane at each DP, depending on affordability (e.g., how

much they spent and earned prior to the current decision point). Actions include

1Groce et al. also pointed out [30] that no objective ground truth exists in many human/AI
decision domains—there is only “good enough for my purposes”.

2e.g., as a proxy for dangerous strategy-centered situations such as military operations.

55

purchasing troop production buildings and/or purchasing Pylons to increase in-

come. Figure 3.1 shows a screenshot of the game replay as it appeared to our

study’s participants.

In this game, troop types have a rock-paper-scissors relationship: Marines

are effective against Immortals; Immortals against Banelings; Banelings against

Marines. Different troops cost different amounts, depending on these capabilities.

Figure 3.1: The participants’ replay view of the game just past Decision Point 4
(fourth diamond; see callout at bottom). The game board has two lanes where
action takes place: a top lane and a bottom lane. The (blue) friendly AI agent’s
“home” is the left side, and the (orange) enemy is the right side. Each lane’s
troop inventories are shown in a side panel for that lane; e.g., the callout at right
blows up the side panel for the enemy’s top lane. Both players’ side panels also
summarize resources; e.g., the blue callout (middle left) shows the friendly AI’s
resources. On the game board, a group of friendly AI marines in the top lane are
currently moving toward the enemy’s Nexus (top left callout).

56

Troops spawn behind the Nexus (the player’s base, represented as gold star-shaped

objects on the gameboard in Figure 3.1). Once spawned, they march down the

lane and attack enemies in pre-programmed fashion, as with the marines shown in

Figure 3.1. Players can win in 2 ways: (1) destroy one of its opponent’s Nexuses,

or (2) if all the Nexuses remain after 40 DPs, the player whose Nexus has the

lowest health loses.

3.1.2 An AI RTS player’s failures and faults

What if an AI agent, such as the one playing this game, makes a flawed decision?

An AI agent’s flawed decisions are analogous to the software engineering concept

of “failures”. Ammann and Offutt define a “failure” as “...external, incorrect be-

havior with respect to the requirements...” [3]. In the RTS domain, our analogous

requirement is the AI agent deciding upon good “enough” actions (according to

a human knowledgeable in the domain), so we define failures as user-visible deci-

sions the AI agent makes that are not adequate3 according to that particular user’s

standards.

Still, a failure is only a symptom of something going wrong under the hood.

Ideally, an interactive XAI system could not only help Pat spot such symptoms,

but also locate the root causes of those symptoms. Only in this way can Pat know

which decisions the AI is making for acceptable reasons, so as to avoid “lucky

3As with Ammann/Offutt’s definition, an AI agent’s failure is not always a “show-stopper”.
That is, a bad decision is a failure even if the AI agent later makes good enough decisions to
overcome the initial bad decision.

57

guesses”, ward off ethical concerns, or defend against potential legal challenges

(e.g., a malpractice suit) [47, 25].

In medicine, the causes of symptoms are diseases; in software engineering lit-

erature, the causes of symptoms (failures) are termed “faults”. Avizienis et al. [7]

define a fault to be the underlying cause or condition that may lead to a failure;

and “fault localization” to be the act of identifying the locations of faults. Build-

ing upon these definitions, in an RTS game with XAI support, we define a fault

to be erroneous reasoning by the AI agent—ideally revealed to the users in the

explanations—and fault localization to be finding the component of the explana-

tion that reveals the erroneous reasoning4. In this paper, we also use the term

“bug” synonymously with “fault”.

3.1.3 How well can human users assess an AI RTS player’s failures

and faults with AAR/AI?

In this paper, we empirically evaluate a process known as After-Action Review for

AI (AAR/AI) [60], by which XAI users can localize such faults (bugs) in an AI

agent. We derived AAR/AI from After-Action Reviews (AAR), originally devised

by the U.S. Army [92] for assessing human decisions. AAR has been used for

decades to assess human decisions in the military (e.g. [31]), and has also been

adapted to manned-unmanned teams [10]. Civilians have also used AAR processes

4In medicine, identifying the disease is a necessary step toward a cure, but still may not be
sufficient to produce an effective cure. Similarly in software engineering, localizing a fault is
necessary but still may not be sufficient to produce a fix.

58

in transportation [59], medical treatment [74, 80] and emergency response [19, 39,

53]. Further, deploying AAR in a wide variety of domains has proved beneficial,

with a recent meta-analysis by Keiser et al. [41] finding that, AAR yielded medium-

sized practical effects, on average across 61 studies. AAR/AI is the first use of AAR

in AI.

The original AAR/AI publication [60] describes AAR/AI in 7 steps. These

steps are conducted with a Facilitator and one or more Assessors as follows: (1) The

Facilitator defines the domain. (2) The Facilitator explains the agent’s objective.

Next begins an “inner loop” for each decision to be assessed: (3) The Facilitator

reviews what was supposed to happen. (4) An Assessor identifies what happened.

(5) An Assessor describes why it happened. (6) An Assessor formalizes learning

from this decision. (7) Finally, an Assessor formalizes learning holistically from

every decision they analyzed. The AAR/AI process allows flexibility in the details

within each step, to allow customization to the assessors’ purpose in their domain.

Although there is some qualitative evidence revealing some of AAR/AI’s strengths [60],

AAR/AI has not been empirically compared with not using AAR/AI. Only a com-

parison of with-AAR/AI vs. without-AAR/AI can measure causality—whether

using AAR/AI leads human users to significantly greater effectiveness at assessing

an AI system than they would achieve without AAR/AI. To address this need,

we prototyped an AAR/AI-supported XAI system (which will be illustrated in

Section 3.3.2), and used it to conduct a controlled lab experiment comparing the

effectiveness of domain-knowledgeable users localizing faults (bugs) using AAR/AI

versus without AAR/AI. In both treatments, participants could use information

59

in the game itself and a full explanation of the AI system’s reasoning.

Our study investigated the following research questions:

RQ1 Does the AAR/AI process help domain-knowledgeable users to localize faults

in an XAI-based system?

RQ2 Does the type of fault interact with RQ1?

RQ3 When supported by AAR/AI, do users somehow abstract beyond individual

instances of faults? If so, how?

3.2 Background & Related Work

A substantial body of research has investigated human users understanding, finding

(e.g., through testing), and/or debugging/improving AI systems, all of which relate

to humans localizing an AI agent’s faults.

Fault localization in an AI agent requires the human doing the localizing to

have at least a partial understanding of how the AI agent reasons. Explainable

AI (XAI) aims at exactly this goal. One of its aims is to improve people’s mental

models [4, 5, 48, 51]—representations people construct in their heads about how

something works from whatever they have experienced with it [64]. However, af-

fecting someone’s mental model is not always straightforward. Although people

have mental models about most things, their mental models are not always accu-

rate and sometimes are not be very malleable. For example, Tullio et al. found

explanations helped clarify some misconceptions, but overall mental model struc-

60

ture went largely unchanged [91]. This exposes a central challenge XAI faces when

trying to help people understand an AI system, which Yang et al. describe as

“[humans] uncertainty surrounding AI’s capabilities... [and]... AI’s output com-

plexity” [101].

To address this problem, some XAI researchers have drawn from social science

the strategy of helping humans generate “self-explanations,” a process which has

been shown to support knowledge acquisition [76]. A user might generate self-

explanations as a result of being prompted to do so, or might do so on their own

accord [34].

As an example of XAI work involving self-explanations, Chi et al. showed

that learners relying more heavily on examples had worse outcomes [15], which

they credited to inability to engage in self-explanation. Another example occurred

in our early qualitative AAR/AI results [60], in which participants’ uses of self-

explanation, in combination with other factors, produced high levels in Bloom’s

learning taxonomy [9]. Still another example of encouraging self-explanations is the

use of counterfactuals; Byrne offers evidence that counterfactuals enable people to

explain how events relate to one another such as identifying cause-effect or reason-

action relationships [11].

XAI consumers correspond to human learners, in that the humans consum-

ing XAI are doing so to learn how the AI reasoning went. This correspondence

opens the possibility of drawing from Cognitive Load Theory (CLT) for insights.

CLT models tasks as having three kinds of load: intrinsic (“nature of the mate-

rial”), extraneous (“manner in which the material is presented”), and germane load

61

(“reflects the effort that contributes to the construction of schemas.”) [88]. The

recommendation of much of CLT work is to increase germane load and decrease

extraneous load where possible.

Where can XAI researchers and developers turn to find concrete XAI-pertinent

guidance to fulfill recommendations like these? For non-AI systems, when faced

with the challenge of helping people form more accurate mental models, UI de-

signers can draw upon substantial work distilling research results into usability

fundamentals and practical guidelines. Unfortunately, however, few such works

yet exist for XAI. Although Hoffman et al. [35] recently conducted a large-scale

literature survey on guidance for empiricists measuring XAI’s effects, explanation

design was not covered. In a very large-scale literature survey by Abdul et al. on

XAI with an HCI (human-computer interaction) perspective, none of the usability

papers reported were tailored for XAI [1]. Soon after Abdul et al.’s paper, Amershi

et al. [2] created 18 usability-centric guidelines for human-AI interaction. A few of

these guidelines are applicable to XAI, but as one of the first works in the direction

of usability guidelines in AI, the guidelines mainly contribute a set of design goals

to achieve for usable AI, not how to achieve them. For example, Guideline 11 is

“Make clear why the system did what it did,” which is an important design goal,

but is not guidance on how to do so. Complementing Amershi’s work, Wang et al.

presented a theory-centric framework connecting social science fundamentals on

human reasoning and human biases to XAI techniques [95]. This work produced

six XAI lessons learned from the social science research. These six, like Amershi’s

18, are at the design goal level (e.g., “support hypothesis generation”), but unlike

62

Amershi’s 18, these six also drill down one more level of theory. For example,

one recommendation is to support hypothesis generation via contrastive reason-

ing, hypothetico-deductive reasoning, and abductive reasoning. However, for XAI

researchers not adept with social science concepts on how these kinds of reasoning

work in humans, more concrete operationalizations may still be needed.

Given the paucity of XAI-specific usability fundamentals, many researchers

have turned to advancing community knowledge through empirical studies. Tax-

onomies and related sets of principles are ways to build upon these researchers’

individual empirical results—they abstract above individual experiments, thus pro-

viding intellectual tools for understanding the dimensions of XAI that researchers

have been investigating.

For example, Kulesza et al. [49, 48], taxonomize XAI research via on two

proposed principles—soundness and completeness—illustrated in the phrase, “the

whole truth (completeness) and nothing but the truth (soundness)”. Understand-

ing explanations’ attributes according to these principles have implications for

XAI’s consumers. For example, when completeness is too low, explanation con-

sumers may perceive it as “sneaking,” a UI dark pattern adapted to XAI [16].

However, if completeness is too high, users’ searches for “the right” information

can so become onerous that finding failures or localizing faults in an explanation

may be reminiscent of finding the proverbial needle in a haystack.

In their “intelligibility types” taxonomy, Lim and Dey categorized explanations

according to the kinds of questions they answer (e.g. What, Why, etc) and its

relationship to the system (e.g. Inputs, Model, Outputs) [56, 57]. The relative

63

importance of each intelligibility types can vary by domain. For example, Lim and

Dey found that users wanted Why Not information when they perceived flaws,

whereas other researchers found a heavy emphasis on What information in domains

like smart homes and Real-Time Strategy (RTS) games [13, 70]. Research has

reported that supporting the “right” intelligibility types for a particular situation

or domain improved users’ confidence in the system [18].

Although most current XAI research focuses on helping people interpret mod-

els’ inner workings (e.g. [36, 96]), some tools in the closely related area of inter-

active ML are intended for failure detection and/or fault localization. Examples

include using scalable query-based approaches for NLP [100], clustering around

user-selected example-based “anchors” [14], or “covering” different input/output

combinations [30]. Others support fault localization (“visual debugging” [87]) by

revealing system internals—in this case, latent vectors for sequence-to-sequence

models for translation. The explanations in our study also include revealing sys-

tem internals, but in a model-based agent’s search tree.

For this paper, the domain is a complex, sequential decision-making environ-

ment based on Real-Time Strategy (RTS) games. Ontañón et al. has pointed to

the gap in research about human needs for understanding AI for RTS [68], and

researchers have been working to fill this gap. As a few examples, Metoyer et al.

contributed formative work via human explanations of RTS games used within

expert-novice pairs [61], Dodge and Penney investigated how expert broadcasters

explain RTS [21, 70], Kim et al. investigated human responses to Human vs. AI

battles [45, 44], and Penney et al. investigated pairs of AI players making sense

64

of “simulated AI” behavior [71, 70]. Although some of these RTS investigations

included participants noticing AI failures (symptoms of faults), none except the

AAR/AI work [60] offer insights into humans attempting to localize AI faults in

this domain. To help fill this gap, in this paper we present the first quantitative

evaluation of humans’ effectiveness with the AAR/AI process.

3.3 Methodology

To investigate the effectiveness of the AAR/AI process for localizing AI’s faults/bugs,

we conducted an empirical study with domain-knowledgeable users using AAR/AI

vs. without AAR/AI. Due to COVID-19, we conducted sessions over teleconfer-

ence (Zoom) and a browser-based custom combination of the platform (game and

explanation system, including AAR/AI features for the AAR/AI treatment) and

questionnaires. The participants were experienced with RTS games but had no AI

or machine learning (ML) background.

3.3.1 Participants and Procedure

We required participants to be at least 18 years of age, and to have 10+ hours

of prior experience with real-time strategy (RTS) games to ensure they would

understand our domain. In addition, we excluded respondents who had taken

any AI or ML class before. (We later disqualified one participant who became

65

persistently inattentive during the study session.) Of the final 65 participants, 49

self-identified as men, 15 as women, and 1 as transgender (Table 3.1). Participants

were randomly assigned by flipping a coin to one of two treatments: AAR/AI and

non-AAR/AI. Each zoom session had one to seven participants. Upon completing

the study, they received a $20 Amazon gift card as compensation.

All participants observed an AI agent playing the web-based RTS game de-

scribed in Section 3.1.1. Participants’ task was to localize the AI agent’s bugs.

Participants in both the treatments saw the same explanation (which we de-

scribe in Section 3.3.2)—the only difference between the treatments was the pres-

ence/absence of the AAR/AI supports. Data collected were participants’ responses

to a pre-task demographic questionnaire; their in-task answers to the AI agent’s

reasoning, and where in the explanation they saw these problems (Figure 3.2); a

AAR/AI Non-AAR/AI Total

Man 25 24 49
Woman 7 8 15

Transgender 1 0 1

Undergrad 13 14 27
Grad 10 7 17

Non-student 10 11 21

Total 33 32 65

Table 3.1: Participants demographics as per their questionnaire responses to their
gender identification (including a free-form response), student/non-student status,
and age. Median age was 24 (minimum: 17; maximum: 48), with about half below
and half above. (One 17-year-old claimed to meet the ¿=18 inclusion criterion
before the study, then gave their actual age on the questionnaire.) AAR/AI vs.
non-AAR/AI participant demographics were similar for all categories.

66

click log of their interactions; and their responses to a post-task NASA/TLX ques-

tionnaire [32]. All questionnaires are included in the Supplemental Documents

accompanying this paper.

The study proceeded as follows. The participants agreed to an informed consent

form, then filled out the pre-task demographic questionnaire, then performed Steps

1-3 below (also illustrated in Figure 3.3), and finally filled out the NASA/TLX

questionnaire and were compensated.

Step 1: Tutorial: The researcher began the tutorial by informing participants

that 1) they would observe a game between Friendly and Enemy AI players, 2)

the Friendly AI would lose, and 3) their main task was to find “problems” in the

Friendly AI’s actions. (“Problems” was the vocabulary we used with participants

to encourage them to find any/all of the Friendly AI agent’s failures and faults/bugs

a) Participant clicked to

indicate a problem

(turned to green with stripe)

b) Participant describes the problem

with AAR/AI questions.

Figure 3.2: How a (hypothetical) participant could mark up the Explanation UI for
the AAR/AI Treatment. (a) Participant selects what they think is a problem on
the diagram. (b) Participant describes the problem by including a label, location,
level of certainty, and responses to the What, Why, and What changes questions.

67

as defined in Section 3.1.)

The researcher guided the participants through working with the interface to

familiarize them with the game interface and explanations for 30-40 minutes. The

tutorial included example problems, such as “violation of game rules for buying

troops in both the top and bottom lanes”, but ultimately they were told that, “If

you think it’s a problem, it’s a problem.”. This set-up and tutorial handled the

first two steps of AAR/AI: (1) defining the rules and (2) explaining the agent’s

objective.

Step 2: Entering the game interface: After the hands-on tutorial, the partici-

pants got access to the main task’s interface (Figure 3.4A), and they began watch-

ing a sped-up replay of a game.

From here onward, the researcher had real-time access to the actions taken by

all the participants through a Dashboard. This ensured that the researcher could

track signs of inattention or inappropriate actions taken by the participants, and

Participant begins watching a sped-up replay of a game.

Game pauses at DP k, and participant completes prediction questionnaire.

Participant clicks “play” to watch what the AI actually did.

Game pauses at DP k+1, and

AAR/AI description questionnaire pops up

Game pauses at DP k+1, and

non-AAR/AI description questionnaire pops up

Participant completes questionnaire and gets access to the visual explanation interface.

Participant searches for problems

using AAR/AI questionnaire and rules.
Participant searches for problems

on their own (ad-hoc).

Participant clicks “Done” to complete the task for DP k. and resume watching the replay.

AAR/AI treatment Non-AAR/AI treatment
Tutorial

Study wrap-up

Step 1

Step 2

Step 3

Predict & Describe

with Replay

Locate & Describe

with Explanation

Figure 3.3: Summary of study procedure.

68

deal directly with the participant about them. (One participant’s inattention could

not be resolved, and we ultimately discarded their data; this is in addition to the

65 participants reported in this paper.)

Step 3: Main task loop: (Predict and Describe with Replay; Locate and De-

scribe with Explanation).

Predict and Describe with Replay: The game automatically paused at a De-

cision Point (DP) before the one they would analyze, and participants provided

written answers to what they thought the Friendly AI would do by the next DP.

Specifically, participants said which lane it would build in, and whether it would

make any marines, any banelings, any immortals, and/or a pylon. The purpose of

these questions was to get the participant active in trying to figure out the AI’s

reasoning.

The participants then watched the AI’s decision and answered a set of questions.

The participants in the non-AAR/AI group answered a question asking what the

Friendly AI had just done; and the AAR/AI participants answered three questions

as part of the AAR/AI process: what had the Friendly AI just done; why they

thought it made those decisions; and what changes they would make in the Friendly

AI’s decisions.

Locate and Describe with Explanation: After they had answered the initial ques-

tions, participants were able to see the explanations (Figure 3.4B). Participants

were then told to locate problems in the AI’s reasoning using the explanations.

In our formative investigations and pilot participants, AAR/AI seemed to bene-

fit from “consistent search” practices [8], so we enforced a form of it in the AAR/AI

69

treatment as follows. AAR/AI participants could start at any row they wanted,

but once they had started a row, they had to finish locating bugs in that row and

describing them via the AAR/AI questions as in Figure 3.2. Once they said they

were finished with the row (by clicking on “Done with this row”), they moved

on to whatever next row they wanted. (They could later go back to review any

previous row, but they could not change it after they had said they had finished

it.) In contrast, non-AAR/AI participants could move freely among rows, tackling

the task of locating and describing them however they pleased.

Once participants completed finding and describing problems in one DP, they

then could click on the “Done” button to indicate the completion of the task. They

then could resume watching the game. The game would pause again at another

DP, and participants repeated the same process as above in this new DP. The two

decisions points participants worked with were DP 8 and DP 15, selected for the

bugs they exhibited. Participants could spend a minimum of 10 minutes and a

maximum of 40 minutes per DP.

3.3.2 Explanations

Figure 3.4B shows a visual explanation of the agent for a given decision point (DP).

It visualizes the internal search tree the agent made to find the best actions. The

leftmost node (also shown in Figure 3.4B-1) graphically represents a current state

of the game (i.e., root of the search tree). Note that the state in Figure 3.4B-1 is

an approximate thumbnail of the gameboard (Figure 3.4A). The tree expansion to

70

the right of the current state shows different combinations of actions and states the

agent predicts could happen next. Figure 3.4B-2 shows the Friendly AI’s action in

the blue box and the Enemy’s action in orange. Next is the predicted “next state”

A. Game Replay Interface

See below for larger ver

B-1. State summary
B-2. Actions

B-3. Outcome bars

B. Explanation Interface

Figure 3.4: A. The game interface that participants used to watch the game in
action; B. This interface visually explains Friendly AI’s explanation for its actions.
The screenshot shows top 2 next actions. The top row represents the best next
action among multiple actions: B-1. Current state is graphically represented; B-
2. AI’s predicted action pair (Friendly in blue and Enemy in orange). Also, its
child state, the AI’s next predicted action pair, and grandchild state are shown.
B-3. At the right, the outcome bars are shown to represent how the probability
is calculated.

71

(child), followed by another pair of actions, and the predicted grandchild state.

The explanation interface shows 5 of the 20 searched actions: the top 2, median,

and bottom 2 (Figure 3.4B).

Outcome predictions, shown in Figure 3.4B-3, appear in two ways: a sentence

describing the win probability associated with that action and a visualization de-

composing that win probability into 4 stacked bars, one for each nexus. Each bar

shows two probabilities: one for the nexus being destroyed (shown in red) and the

other for that nexus having the lowest health at the end of a game (shown in pink).

The sum of all 8 probabilities is 100% (the game has to end in one of 8 ways);

thus, a single player’s win probability is that sum minus the 4 probabilities that

they lose (encoded by the total size of the red and pink bars on the right side),

shown by the large bold number.

3.3.3 The Reinforcement Learning Agent

In our study, the Friendly AI “player” is powered by a model-based reinforcement

learning agent5, which determines the Friendly AI’s next action by predicting fu-

ture states using the following neural-network driven functions:

1. Action-Ranking Function (ARF) with type signature (State, Action) →

float: answers “How good is taking this Action in this State?”

2. Transition Function (TF) with type signature (State, Action1, Action2)

→ State: answers “What State will arise if I (Friendly AI) take Action1 and

5This agent was also used in Mai et al [60].

72

the opponent (Enemy AI) takes Action2?”

3. Leaf Evaluation Function (LEF) with type signature (State) →

(outcome-probabilities): answers “How good is this state?”

Using these components, the agent internally builds a search tree to select the

best action for the Friendly AI player. It first enumerates all actions available

in the current state, applying the Action Ranking Function (ARF) to each, and

pruning all but the top 20 actions (shown in blue at Figure 3.4B). It then applies

the ARF again from the opponent’s perspective, pruning all but the top 10 actions

(the top one shown in orange next to the blue one at Figure 3.4B). Then for each

combination of promising moves, the agent applies the Transition Function (TF),

predicting the resultant child state. By this point one level of the game tree has

been built. It then builds one more level in the same fashion, starting from the

child state, with smaller numbers of actions. While we can repeat this process in-

definitely, we stop the prediction here, because in many domains searching enough

to reach a terminal state would be intractable. Thus, after the agent applies the

Leaf Evaluation Function (LEF) to each grandchild state, it propagates resulting

values back up the tree via minimax search.6

3.3.4 The Bugs

The task for the participants was to identify the AI agent’s bugs. We used naturally

occurring bugs produced from the agent and additionally created new bugs based

6See Chapter 5 in [78] for more on minimax and game tree search.

73

on them. For instance, one of the bugs we found was that the AI predicted that a

health value of the nexus increases over time, which cannot occur in a real game.

We wrote scripts to find similar cases that were objectively wrong (such as ones

that violate game rules, like the nexus health example above), and then hand-

validated the results, to harvest a set of bugs researchers agreed could be used as

ground truth, and selected DPs that contained those bugs.

After rigorous analysis of the naturally occurring bugs [52] as well as trying

them in our preliminary pilots, we harvested 10 of these bug instances, some of

which we then exaggerated as shown in Table B.1. Five bug instances were in

each of two decision points (DP). The bugs were of two types, based on which

components of the reinforcement learning agent they were in: half were Transition

Function (TF) bugs and half were Leaf Evaluation Function (LEF) bugs.

An example of a Leaf Evaluation Function (LEF) bug is Bug ID #1 at DP 8;

this bug is shown in detail later in Figure 3.7. In row 1C, the agent predicts that the

Friendly AI will lose with its bottom nexus being destroyed, while it consistently

predicts that the Friendly AI will win by destroying the enemy AI’s top lane nexus

in other rows. It is suspicious that although the actions in 1B and 1C are very

similar, their outcomes are radically different, which is not possible. This is a bug

with the win probabilities flipped for both the Friendly and Enemy AI’s top and

bottom lanes.

An example of a Transition Function (TF) bug is Bug ID #4 at DP 8, which

is shown later in Figure 3.8. The agent predicts that the enemy AI will have two

immortals in the next state; however, it is not possible because there exists only

74

one building for producing immortals and each building can produce only one in

a single round.

3.4 Results

3.4.1 RQ1 Results: Does AAR/AI help localize faults?

RQ1 asks whether the AAR/AI process helps domain-knowledgeable users local-

ize faults. To answer this question, we measured participants’ ability to find and

describe the 10 bugs enumerated in Section 3.3.4. To code their efforts, two re-

searchers independently coded 20% of the data corpus, and achieved an inter-rater

reliability (IRR) of 80.6% (Jaccard index [40]). Given this level of agreement,

they then split up the remaining coding. The code set followed a scoring system.

Participants could earn up to 2 points for each bug they reported: if they correctly

located a bug, they could earn up to 1 point, and if they correctly described the

bug, they could earn another point. Table 3.2 details the coding rules for no credit,

partial, or full credit for locating and describing bugs.

First, we compare sheer volume of AAR/AI vs. non-AAR/AI participants’

problem reports. Figure 3.5 shows the distributions of how many problems partic-

ipants reported. AAR/AI participants reported significantly more problems than

Non-AAR/AI participants (t-test, t(63) = 5.7829, p < .0001)7. In fact, even the

AAR/AI participant with the fewest problem reports (9) still submitted more than

7Levene’s test for equal variance determined when to use a standard t-test vs. Welch’s t-test;
we point out Welch’s whenever we use it.

75

75% of the participants in the Non-AAR/AI treatment did (Q3 = 8.25).

To evaluate the correctness of their problem reports, we use the term “bug” to

refer to the bugs in Table B.1, and the term “problem” to denote whatever par-

ticipants reported as problematic. We use these concepts to compute two metrics

commonly used in machine learning – recall and precision8. Recall measures the

proportion of the system’s 10 bugs the participants reported, and precision mea-

sures the proportion of participants’ problem reports that were actually bugs. An

“ideal” participant whose problem reports would show perfect recall and precision

would include all of the bugs in Table B.1 (perfect recall) and nothing else (perfect

precision).

Using these measures, the AAR/AI participants had both significantly greater

8See Eqs. (A.5) and (A.6) in Appendix A for details of how we computed recall and precision
for each participant. Because this data labeling would be considered multi-class and multi-label,
we could not use the basic formulae. Further, while Zhang et al. [?] offer Eqs. (A.3) and (A.4)
for such labellings, they do not incorporate other issues present in our data corpus. For example,
few negative examples are present in the corpus because most participants only reported bugs
they thought to be present.

No credit Partial credit Full credit
(0) (+0.5) (+1)

Location: Participant... Not (A) N/A (A)
(A)... marked location correctly

Description: Participant... Neither (A)
(A)... completely described bug correctly nor (B) (B) (A)
(B)... partially described bug correctly

Table 3.2: The coding rules we used to code participants’ problem reports. (For
Location, if a participant’s location markings were combined in a way that intro-
duced ambiguity, we disambiguated by looking for location information in their
free-form descriptions.)

76

average recall (Welch’s t-test, t(55.666) = 4.5479, p < .0001) and precision (t-

test, t(63) = 2.0358, p = .04598) than the Non-AAR/AI participants (Figure 3.6).

Cohen’s d showed a large effect size (d = 1.121) for the recall difference, and a

medium effect size (d = .505) for the precision difference9.

Together, these three results suggest that the AAR/AI process not only en-

couraged participants to report significantly more problems (Figure 3.5), it also

encouraged them to report problems that were indeed bugs, as measured by their

significantly higher recall and precision (Figure 3.6). These results are especially

encouraging given that none of the participants had backgrounds in AI/ML.

9We consider Cohen’s d ∈ [0, 0.2) to be no effect, d ∈ [0.2, 0.5) to be small, d ∈ [0.5, 0.8) to be
medium, and d ∈ [0.8, 1.4) to be large, by convention [?].

Figure 3.5: Problem report count per participant. The AAR/AI participants sub-
mitted significantly more problem reports than their Non-AAR/AI counterparts.

Figure 3.6: Participants’ recall (left) and precision (right) (all bugs). AAR/AI
participants performed significantly better than than Non-AAR/AI participants
with both measures.

77

3.4.2 RQ2 Results: Does the type of fault matter?

RQ2 raises the question of whether AAR/AI vs. non-AAR/AI participants’ success

differences depended on which particular bugs or types of bugs they were pursuing.

We begin by considering the types of bugs: Leaf Evaluation Function bugs vs.

Transition Function bugs.

Leaf Evaluation Function (LEF) bugs occur when the neural network provides

an inaccurate game outcome for an input state, such as in Figure 3.7. Transition

Function (TF) bugs occur when the neural network predicts an inaccurate future

state, given a current state and actions, such as in Figure 3.8. The experiment’s 10

bugs were evenly split between 5 LEF and 5 TF bugs. RQ2 asks whether AAR/AI

vs. non-AAR/AI played out differently for these two bug types.

To answer this question, we analyzed recall and precision separately for LEF

Row 1B

Row 1C

Figure 3.7: Example of Leaf Evaluation Function (LEF) bug (Bug ID #1), present
at DP 8. The game outcome for row 1C is suspicious. Since the Friendly AI’s action
(i.e., 2 marines) is similar to that for 1A and 1B (especially 1B: 1 marine), we can
expect that the Friendly AI would win (>99% chance of winning) by destroying
the top enemy nexus (as in row 1B), however, the agent predicts that Friendly AI
will lose (0.1% chance of winning), which implies that the win probabilities for row
1C have likely been flipped (i.e., LEF bug).

78

bugs and TF bugs. (Note that the number of target bugs is now split into two

for analysis, which affects the distributions.) Figure 3.9 shows the results, with

recall in the left two pairs (LEF and TF bugs, respectively), and precision in

the right two pairs. The AAR/AI vs. non-AAR/AI recall differences for both

bug types were significant. Specifically, AAR/AI participants found significantly

greater proportions of both LEF bugs (t-test, t(63) = 3.0358, p = .0035) and TF

bugs (Welch’s t-test, t(51.341) = 4.7479, p < .001). Average precision differences

in AAR/AI participants vs. non-AAR/AI participants were suggestive, but did

not reach significance for either LEF bugs (t-test, t(63) = 1.1891, p = .2389) or

TF bugs (t-test, t(63) = 1.5878, p = .1173).

As these LEF vs. TF recall and precision results show, bug type did not deter-

mine when AAR/AI participants were more effective than non-AAR/AI participants—

AAR/AI participants performed at least as well as non-AAR/AI participants on

both bug types. In fact, as Figure 3.10 shows, AAR/AI participants outperformed

non-AAR/AI participants on every bug.

Figure 3.8: Example of Transition Function (TF) bug (Bug ID #10), present at
DP 8. The bug (in the highlighted box), is that the agent predicts there will
be 2 immortals in the bottom lane (solid arrows), even though there is only one
immortal production building (dashed arrow).

79

Figure 3.9: AAR/AI participants’ vs. non-AAR/AI participants’ (left to right):
recall for leaf-evaluation function (LEF) bugs only, recall for transition function
bugs (TF) only, precision for leaf-evaluation function (LEF) bugs only and preci-
sion for transition function (TF) bugs only.

Figure 3.10: Percentage of participants who found each bug. For all 10 bugs, the
AAR/AI participants outperformed their Non-AAR/AI counterparts.

3.4.3 RQ3 Results: Labeling and Abstractions

This study’s third research question explored whether adding labeling to the AAR/AI

process would facilitate participants’ ability to spot patterns of bugs and poten-

tially develop abstractions capturing these patterns. Toward that end, our interface

enabled AAR/AI participants to label the bugs they localized as they went along.

They had free rein to label any way they chose, or not to label at all. We then

analyzed the kinds of labels participants used and whether their use of different

80

kinds of labels related to their successes at localizing bugs.

3.4.3.1 What kinds of labels did they devise?

Participants used a wide variety of labels to characterize the bugs they found.

Some seemed to use labels simply as a way to group similar instances (e.g., “1”,

“problem2”); some used location information in their labeling schemes (e.g., “first

row”); and some used labels for lighter purposes (e.g., “bored”). However, some

participants’ labels abstracted above individual instances into concepts, either from

a “naive-AI” perspective (e.g., “badprediction”) or from a domain perspective (e.g.,

“marines to be made”).

We coded the labels into categories. Two researchers generated the code set

using a process similar to Hsieh & Shannon’s summative content analysis [37],

where keywords are identified before and during data analysis to form the code set.

This generated the categories of labels shown in Table 3.3. When a participant’s

label was applicable to more than one category, we coded it in all the applicable

categories. For example, “battlefield counting issues” was coded as an instance

of both Domain Concepts and Counting/Math. The researchers independently

coded 20% of the data with 85% agreement (Jaccard index [40]), coding the

labels directly or in the context of the participants’ reports when necessary to

disambiguate labels. Given this high level of agreement, one researcher completed

the rest of the coding.

81

As Figure 3.11 shows, participants’ use of labels most frequently tended towards

abstractions relating to concepts of the game (Domain Concepts) or concepts of

AI and/or AI Explanations (AI/XAI Concepts), with more than 120 instances of

each. The next most frequent was using labels as simply grouping mechanisms

(Identified Groups) (e.g., “ai3”, “problem2”); there were more than 80 instances

Code: Description Examples of participants’ labels

AI/XAI Concepts: Con-
cepts/terminology related to XAI/AI

health prediction, incorrect decision, suc-
cess outcome change, overestimation of
ability...

Bug location: Location on the Expla-
nation UI

next state 17, outcome 2, second action,
error row 5a, 2b not possible...

Count/Math: Related to counting,
math, or calculation

battlefield counting issues, nexus health
calculation, too many enemies...

Domain Concepts: Con-
cepts/terminology related to the
game domain (troops, lanes, nexus)

lane 1 nexus, unit disappear, nexus ran-
domly dies, suddenly immortals, banel-
ings in the bottom lane...

Identified Groups: Evidence of an
“ID” of some kind used repeatedly to
group similar instances

ai, ai2,...
1ssue, 2 issue,...
problem, problem2,...

No Time: Did not have time to com-
plete search for problems

no time, out of time

Not a problem after all: Location
was marked as a (potential) problem,
but added a label indicating no problem
after all

no problem, n/a, no, ignore this, no is-
sues...

“Un-category”: Did not attempt to
categorize; labels ranged from gibberish
to messages to the researcher

error, bored, alex, cant understand, abc...

Table 3.3: Code set used to categorize AAR/AI participants’ labels on the faults
they localized.

82

AI/XAI Concepts
Count/Math

Domain Concepts
No Time

Bug location
Not a problem after all

Identified Groups
"Un-Category"

0 25 50 75 100 125

Figure 3.11: Frequencies of AAR/AI
participants’ ways of labeling faults into
these categories. (Non-AAR/AI partic-
ipants did not have a labeling feature.)
Domain Concepts and AI/XAI Concepts
were the most common.

AI/XAI Concepts
Count/Math

Domain Concepts
No Time

Bug location
Not a problem after all

Identified Groups
"Un-Category"

-0.25 0.00 0.25 0.50

Figure 3.12: Correlation between the
scores in each categorization scheme and
the participant’s total score.

of these. Participants also sometimes used “Not a Problem After All” labels as

a way to document “all clear” diagnoses after perusing the Explanation UI; there

were 70 instances of this category. The Bug Location category (e.g., “first row”)

and “Un-category” category (labels not even attempting to categorize; e.g., “abc”,

“can’t understand”) were also somewhat common, with more than 30 instances of

each. Lowest in frequency was the No Time category, in which participants used

labels to document where they ran out of time, with 6 instances.

3.4.3.2 Which of their labels correlated with success?

Of these categories, the three codes showing positive correlations with participants’

success (scores) were AI/XAI concepts, Counting/Math, and Domain Concepts

83

(Figure 3.12). Each of these had a correlation coefficient r between [0.45, 0.54],

which is generally considered to be a moderate correlation [27]. In contrast, the

remaining categories had small negative correlations with participants’ success.

AI/XAI Concept labels had the highest correlation with the participants’ suc-

cess scores (r = 0.535). Among the participants’ labels hinting at AI/XAI-concept

abstractions were “bad prediction” (P158, score 7; P116, score 5), “winning per-

centage” (P130, score 14), and “overconfidence top lane” (P106, score 5.5). Par-

ticipants’ label usage in this category, when matched up with their click histories,

suggested that they may have located bugs by walking through the explanation

tree showing the AI’s reasoning, in a “reasoning walkthrough” somewhat analo-

gous to a code walkthrough. Figure 3.13 illustrates one such walkthrough. Another

example excerpted from a participant’s report is:

120 (Labeled “Action-prediction incompatibility”), report 163, “What”:

AI adds a friendly baneling to the top row while assuming the opponent will save

money. Despite this addition to units, the prediction for success does not increase

from 98%. I would think it would increase.

Counting/Math labels also correlated with participants’ successful outcomes

(r = .504). Participants’ labels in the Counting/Math category pointed out where

some number (in the game UI) or calculation (made by the AI player and shown

in the explanation tree) was incorrect. Some of these referred to only to math

(P102, score 3: “number off”), but some also brought in AI/XAI concepts (P123,

score 11: “chances probabilities are wrong”), or Domain Concepts (P111, score

12: “battlefield counting issues”). Participants’ reports with Counting/Math la-

84

 2
1

 3
4 5 9

13

14

6

8
10

11

12
7

Figure 3.13: P119’s search path leading to a problem report they labeled “bad
decisions”. To report this problem, P119 walked down to the second level, then
perused each node at the second level, drilling down further if the node seemed
potentially problematic (e.g., node 8), then returned to their progression through
the second level until the need arose to drill down again (e.g., node 12).

bels seemed to suggest that participants were localizing bugs by “auditing” the

counting/math via the explanation tree:

128 (Labeled “number”), report 206: the numbers are inconsistent. the

total marines are 9 but it only shows 6 in the game area.

104 (Labelled “troop calculation”), report 25: during action, friendly

will have 4 marines, 1 each of immortal and baneling on map, enemy has 5 marines,

1 baneling. 3 friendly marines and 1 baneling was destroyed while only 1 enemy

baneling was destroyed. does not seem to add up if it was a fair game.

Domain Concept labels also were correlated with participants’ successful out-

comes (r = .455). Participants’ use of Domain Concept labels often showed that

they were localizing bugs by mapping what they saw in the explanations to game

85

concepts, then using them to spot portions of the explanation running counter to

the logic of the game. For example, P111 and P137 spotted bugs via game-logic

contradictions, which they both labeled using Domain Concepts:

111 (Labeled “evaluated battlefield error”), report 65, Label: eval-

uated battlefield error: “What”: there are 3 more marines that are alive the

next time than the previous. Though the situations have not changed, so neither

should the speculated battlefield.

“Why”: I’m not actually sure why, other than a misprediction.

“What changes”: Change the 10 state bottom lane to have 3 enemy marines to

match the previous prediction.

137 (Labeled “Nexus health”): “What”: The health bar for Enemy bottom

Nexus isn’t consistent. It’s low in the first state and then becomes full.

Although some examples in the Domain Concept category, like the above, were

solely Domain Concept labels, about half the instances in this category also related

to the AI/XAI category and/or the Counting/Math category. For example, the

“evaluated battlefield error” entry above by P111 (score 12) was also in the AI/XAI

Concept category. Another example was P120’s “improper unit count”, which was

in both the Domain Concept category and the Counting/Math category (P120,

score 5). These co-occurrences mark instances in which participants may have

been reasoning about a single bug in multiple ways.

Taken together, the correlations between success and the AI/XAI Concepts,

Counting/Math audits, and Domain Concepts suggest that adding labeling to the

AAR/AI process may be a potentially powerful aid. Perhaps the participants’

86

labeling effort facilitated forms of self-explanation, in which participants were able

to make sense of the individual instances of bugs by (self-)explaining them via

other patterns of reasoning, such as concepts of math, RTS gameplay, or how they

assumed AI agents work.

3.5 Discussion

3.5.1 Cognitive Costs Imposed by AAR/AI

Did using AAR/AI impose an extra cognitive load on the AAR/AI participants

beyond the load experienced by non-AAR/AI participants? We expected it to,

because in our past XAI research [5], participants paid a statistically significant

cognitive load cost for their successes with the most efficacious explanations. Thus,

we analyzed participants’ perceptions of cognitive load via the NASA Task-Load

indeX (TLX), to see if adding the AAR/AI process on top of the explanations

imposed a cognitive load “tax”.

For each of the 5 NASA TLX dimensions gathered10, there was insufficient

evidence to suggest differences in the averages between the AAR/AI and Non-

AAR/AI participants (all p-values fell between [.133, .878]). Thus, the question

remains open as to whether adding AAR/AI to XAI adds cognitive load to domain-

knowledgeable users’ efforts to assess their AI agent’s strengths and weaknesses.

10The “physical” dimension was not gathered because the study was online rather than in the
lab. 14 participants (21.6%) did not complete the questionnaire: 8/33 AAR/AI participants and
6/32 of the non-AAR/AI participants.

87

3.5.2 Limitations of the Study

Every empirical study has limitations and threats to validity [99, 46]. One chal-

lenge with controlled experiments involving human participants in XAI is con-

trolling which portions of the explanations that participants see. If participants

are allowed to explore freely through a huge virtual explanation space, no two

participants see the same explanations. In a quantitative experiment, such uncon-

trolled variations in participants’ experiences would introduce too much experi-

mental noise for inferential statistics to be useful. For example, in a qualitative

study in the RTS domain, Penney et al. [71, 70] showed that different participants

focused on different things.

To ensure that participants in both treatments could start the experiment see-

ing exactly the same subset of the virtual explanation space, we pruned the XAI

explanation tree they could view11. Constraining their view had the benefit of

keeping their attention in parts of the explanation space where we had previ-

ously confirmed bugs. Participants could then pan/zoom/collapse the amount of

information on the screen, but could not expand beyond the original subset. We

selected the explanation subset such that it included information pertinent to every

bug. This involved pruning away large portions of the virtual explanation space,

which raises an ecological validity threat. This is an example of a classic trade-off

for most controlled experiments, in which some ecological validity must be traded

11Some of the virtual explanation space was not available even to us, because like many AI
agents, the AI system proactively pruned away unpromising portions of its potential solution
space—and, as a side effect, the explanation space—to reduce calculation time.

88

off to achieve the controls necessary to isolate an independent variable [46] (in

our study, to remove other factors so as to isolate the AAR/AI vs. non-AAR/AI

independent variable).

Another threat to ecological validity is the bugs participants needed to locate.

Our bugs were naturally occurring bugs—they turned up without our help in the

AI-learned model. As Ko et al. point out, naturally occurring bugs increase

ecological validity [46]. However, our pilot participants revealed that some of these

natural bugs were so subtle, participants rarely could locate them. This could have

led to “floor effects”, in which the task is so difficult, no participant can complete

them in the allotted time no matter which tool they use [77], and no effects can be

revealed by statistics. To address this issue, we exaggerated the size12 of some of

these naturally occurring bugs, as enumerated in Table B.1. These exaggerations

likely affected participants’ success rates; however, this threat was equally present

in both treatments.

Another potential threat is in how we calculated the measures of participants’

success rates with recall and precision. Calculating recall and precision with bug

identification is normally straightforward, because a single area of code either is

or is not faulty, and a single bug report usually describes a single issue. However,

in our experiment, a single problem report could (and sometimes did) point at

multiple bugs. Also, when two of the bugs were co-located in a single node of

12As an additional safeguard, we included multiple exaggerations amounts for the same bug
type in our experiment (e.g., some bugs being a small, medium, or large exaggeration of another
bug type, as detailed in Table B.1). Participants’ results did not reveal any patterns as to whether
the size of the exaggeration mattered.

89

the explanation (Bug ID 1 and 2), attribution of participants’ bug reports to

one of those two bugs was even more difficult. These complexities break the 1-

to-1 correspondence between report and bug, yielding a multi-class, multi-label

problem. Thus, we had to derive our own calculations for recall and precision, as

detailed in Appendix A. The uniqueness of our recall and precision calculations

affect the ability to precisely compare them against simpler precision and recall

calculations used in other fault localization literature.

Another threat to participants’ ability to localize the bugs is that we avoided

defining what a fault/bug/problem is, because we did not want to influence par-

ticipants’ assessment efforts. Even when participants asked if the problem they

found was really a problem, the researcher did not answer, for ecological validity

reasons—in software debugging, there is no “oracle” monitoring someone’s debug-

ging efforts to tell them whether or not a line of code they are puzzling over is

problematic. However, this design choice introduced a threat: how could partic-

ipants find a bug without knowing what constitutes one? We attempted to head

off this threat by telling them that if they thought a problem was a problem, they

should report it. We also provided “definitely”, “maybe”, and “never mind” bug

reporting options (Figure 3.2), to encourage participants to report everything they

thought was even potentially problematic. If we had defined to participants what

did and did not count as a bug, participants’ success rates would probably have

been different.

Threats like these can be addressed only by additional studies across a spec-

trum of empirical methods, to isolate different independent variables of study and

90

to establish generality of findings over different explanation styles, different bugs,

different measures, different AI algorithms, different domains, and different popu-

lations attempting to find an AI agent’s problematic behaviors.

3.6 Conclusion

In this paper, we presented the results of an empirical study comparing domain-

knowledgeable users’ attempts to find an AI agent’s bugs using AAR/AI (After-

Action Review for AI) vs. not using AAR/AI. The results showed that:

• AAR/AI participants’ recall rate on the bugs they reported was significantly

higher than non-AAR/AI participants’, with a large effect size. This indi-

cates that AAR/AI participants found more of the actual bugs, one of the

key goals of assessment in XAI domains.

• AAR/AI participants also reported a significantly larger number of problems.

This result would be worrying if it showed that they achieved high recall

simply by reporting that everything was wrong. However, the results showed

that this was not the case because...

• ...AAR/AI participants also showed significantly higher precision than non-

AAR/AI participants, with a medium effect size. Typically, there is a tradeoff

in precision vs. recall, so increasing both is a very strong improvement.

• When considering the bugs one by one, we saw no evidence of AAR/AI’s ad-

vantages being particular to specific bugs or types of bugs—rather, AAR/AI

91

participants outperformed non-AAR/AI participants on every bug.

• The AAR/AI participants’ labeling behaviors suggest that incorporating la-

beling into the AAR/AI process may bring important benefits. In this study,

some AAR/AI participants used labels to abstract above individual instances

of bugs, using concepts from the domain or from (X)AI. Others used labels

in ways suggestive of auditing. Use of these types of labels correlated with

higher recall rates in finding the bugs.

Finally, recall that the only difference in treatments was AAR/AI vs. no

AAR/AI—all participants consumed the same explanations. These results sug-

gest the importance of integrating explanations with an assessment process such

as AAR/AI, to enable domain-knowledgeable users to make informed decisions

about when to follow an AI agent’s recommendations and when not to.

Acknowledgements

We thank Zhengxian Lin for his work on the agent powering the game and Thomas

G. Dietterich for words of wisdom during the research that produced this paper.

This work was supported by DARPA #N66001-17-2-4030. Any opinions, find-

ings and conclusions or recommendations expressed are the authors’ and do not

necessarily reflect the views of DARPA, the Army Research Office, or the US

government.

92

Chapter 4: Conclusion

In this thesis, I and my colleagues have presented a process called AAR/AI to

make AI systems accessible and comprehensible to non-experts. AAR/AI aims to

provide a workflow to navigate and assess such systems with ease and accuracy.

To this end, we designed and conducted two human-subjects experiments. Each

experiment was an inquiry into the effectiveness of the AAR/AI process in assess-

ing and identifying and localizing faults in AI systems. We found that AAR/AI,

coupled with explanation interfaces, is an efficient and noteworthy assessment pro-

cess. Below, I summarize the four strengths of AAR/AI, and what makes this a

great and useful process for XAI:

• Helps in rationale and mental model building : AAR/AI helped users form

rationale for long time lags. Participants mentioned finding AAR/AI helpful

in keeping their thoughts organized and logical. This effect is also observed

in the accuracy and structure of bug reports submitted by AAR/AI users,

where they followed an information processing pattern and developed ab-

stractions of concepts denoting each bug on their own. AAR/AI also helped

participants develop diverse perspectives to problem solve.

• Navigating complex decision spaces : AAR/AI helped participants navigate

a real time strategy game such as StarCraft II as well as the AI’s tree based

93

explanation in a complex decision space with ease and accuracy. The results

from the quantitative study recommend that participants that used AAR/AI

not only identified more faults, but they were also more precise in their

assessment.

• Explanation agnostic: Participants fared well in the assessment process using

AAR/AI, irrespective of the explanation interface. I found that participants

found success with AAR/AI in all the studies conducted thus far: the qualita-

tive study used a simplistic tree based explanation, a few preliminary studies

employed model based and model free explanations with varying detail, and

the quantitative study contained a complex tree based explanation that en-

compassed a wide variety of details not seen in the previous experiments.

• Identifying and localizing faults accurately : Participants particularly found

AAR/AI in identifying and localizing faults. Results from the quantitative

study recommend that participants that used AAR/AI had higher recall and

precision of finding bugs. Moreover, labelling bugs may have further helped

AAR/AI participants in finding bugs by abstracting higher level concepts

into unique individual theories.

4.1 Future work

As a part of potential future work, an alternate human centered process may be

developed, and consequently compared with AAR/AI. It would be interesting to

94

evaluate the specific advantages and disadvantages of diverse AI intensive pro-

cesses that align with different types of human information processing capabilities.

Such questions encourage understanding and evaluating combinations of workflows

and explanation interfaces that are suited to a certain intelligibility types or de-

mographics. More research is required to find the types of assessment tasks that

can be carried out to effectively evaluate such systems, and if success in a specific

assessment task is equivalent of a well formed mental model of the AI system.

95

Bibliography

[1] Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y Lim, and Mohan
Kankanhalli. Trends and trajectories for explainable, accountable and in-
telligible systems: An hci research agenda. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, CHI ’18. ACM, 2018.

[2] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori
Inkpen, Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. Guidelines for
human-ai interaction. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19. ACM, 2019.

[3] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[4] Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis,
Evan Newman, Jed Irvine, Souti Chattopadhyay, Alan Fern, and Margaret
Burnett. Explaining reinforcement learning to mere mortals: An empirical
study. In International Joint Conference on Artificial Intelligence, Macau,
China, 10–18 August 2019. IJCAI.

[5] Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis,
Evan Newman, Jed Irvine, Souti Chattopadhyay, Matthew Olson, Alan Fern,
and Margaret Burnett. Mental models of mere mortals with explanations of
reinforcement learning. ACM Transactions on Interactive Intelligent Sys-
tems, 10(2), May 2020.

[6] Lorin W. Anderson, David R. Krathwohl, Peter W. Airasian, Kathleen A.
Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C.
Wittrock. A Taxonomy for Learning, Teaching, and Assessing: A revision
of Bloom’s Taxonomy of Educational Objectives. Pearson, New York, NY,
USA, 2001.

[7] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Trans-
actions on Dependable and Secure Computing, 1(1):11–33, 2004.

96

[8] Adam T. Biggs and Stephen R. Mitroff. Improving the efficacy of security
screening tasks: A review of visual search challenges and ways to mitigate
their adverse effects. Applied Cognitive Psychology, 29(1):142–148, 2015.

[9] Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walker H. Hill,
and David R. Krathwohl. Taxonomy of Educational Objectives. Longmans,
Green and Co LTD, London, England, 1956.

[10] Ralph Brewer, Anthony Walker, E. Ray Pursel, Eduardo Cerame, Anthony
Baker, and Kristin Schaefer. Assessment of manned-unmanned team per-
formance: Comprehensive after-action review technology development. In
2019 International Conference on Human Factors in Robots and Unmanned
Systems, AHFE ’19, pages 119–130, Cham, CHE, 2019. Springer Nature
Switzerland AG.

[11] Ruth M. J. Byrne. Counterfactuals in explainable artificial intelligence (xai):
Evidence from human reasoning. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, IJCAI’19, pages 6276–
6282. International Joint Conferences on Artificial Intelligence Organization,
2019.

[12] Nicholas Carlini and David Wagner. Towards evaluating the robustness of
neural networks, 2016.

[13] Nico Castelli, Corinna Ogonowski, Timo Jakobi, Martin Stein, Gunnar
Stevens, and Volker Wulf. What happened in my home? an end-user devel-
opment approach for smart home data visualization. In ACM Conference on
Human Factors in Computing Systems, pages 853–866. ACM, 2017.

[14] Nan-Chen Chen, Jina Suh, Johan Verwey, Gonzalo Ramos, Steven Drucker,
and Patrice Simard. Anchorviz: Facilitating classifier error discovery through
interactive semantic data exploration. In Proceedings of the 23th Interna-
tional Conference on Intelligent User Interfaces, IUI ’18, pages 269–280.
ACM, 2018.

[15] Michelene T.H. Chi, Miriam Bassok, Matthew W. Lewis, Peter Reimann,
and Robert Glaser. Self-explanations: How students study and use examples
in learning to solve problems. Cognitive Science, 13(2):145–182, 4 1989.

97

[16] Michael Chromik, Malin Eiband, Sarah Theres Völkel, and Daniel Buschek.
Dark patterns of explainability, transparency, and user control for intelligent
systems. In IUI Workshops, 2019.

[17] CNN. Who’s responsible when an autonomous car crashes?, 2016.

[18] Kelley Cotter, Janghee Cho, and Emilee Rader. Explaining the news feed
algorithm: An analysis of the “news feed fyi” blog. In ACM CHI Conference
Extended Abstracts on Human Factors in Computing Systems, pages 1553–
1560. ACM, 2017.

[19] Robert Davies, Elly Vaughan, Graham Fraser, Robert Cook, Massimo Ciotti,
and Jonathan E. Suk. Enhancing reporting of after action reviews of pub-
lic health emergencies to strengthen preparedness: A literature review and
methodology appraisal. Disaster Medicine and Public Health Preparedness,
13(3):618–625, june 2019.

[20] Fred D. Davis. Perceived usefulness, perceived ease of use, and user accep-
tance of information technology. MIS Quarterly, 13:319–340, 1989.

[21] Jonathan Dodge, Sean Penney, Claudia Hilderbrand, Andrew Anderson, and
Margaret Burnett. How the experts do it: Assessing and explaining agent
behaviors in real-time strategy games. In 2018 CHI Conference on Human
Factors in Computing Systems, CHI ’18, pages 562:1–562:12, New York, NY,
USA, 2018. ACM.

[22] Jonathan Dodge Dodge, Roli Khanna, Jed Irvine, Kin-Ho Lam, Theresa
Mai, Zhengxian Lin, Nicholas Kiddle, Evan Newman, Andrew Anderson, Sai
Raja, Caleb Matthews, Christopher Perdriau, Margaret Burnett, and Alan
Fern. After-action review for ai (AAR/AI). ACM Transactions on Interactive
Intelligent Systems (to appear), 2021.

[23] Upol Ehsan, Pradyumna Tambwekar, Larry Chan, Brent Harrison, and
Mark O. Riedl. Automated rationale generation: A technique for explainable
ai and its effects on human perceptions. In Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces, IUI ’19, pages 263–274,
New York, NY, USA, 2019. ACM.

[24] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Xiaodong Song.

98

Robust physical-world attacks on deep learning visual classification. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1625–1634, 2018.

[25] Luciano Floridi, Josh Cowls, Monica Beltrametti, Raja Chatila, Patrice
Chazerand, Virginia Dignum, Christoph Luetge, Robert Madelin, Ugo Pa-
gallo, Francesca Rossi, et al. Ai4people—an ethical framework for a good ai
society: opportunities, risks, principles, and recommendations. Minds and
Machines, 28(4):689–707, 2018.

[26] Donna-Lynn Forrest-Pressley and GE MacKinnon. Metacognition, Cogni-
tion, and Human Performance: Theoretical Perspectives, volume 1. Aca-
demic Pr, 1985.

[27] David Freedman, Robert Pisani, and Roger Purves. Statistics (international
student edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New
York, 2007.

[28] Hershey H Friedman, Linda W Friedman, and Chaya Leverton. Increase
diversity to boost creativity and enhance problem solving. Psychosociological
Issues in Human Resource Management, 4(2):7, 2016.

[29] Ian Goodfellow and Nicolas Papernot. The challenge of verification and
testing of machine learning, 2017.

[30] A. Groce, T. Kulesza, C. Zhang, S. Shamasunder, M. Burnett, W. Wong,
S. Stumpf, S. Das, A. Shinsel, F. Bice, and K. McIntosh. You are the only
possible oracle: Effective test selection for end users of interactive machine
learning systems. IEEE Transactions on Software Engineering, 40(03):307–
323, mar 2014.

[31] Samer Hanoun and Saeid Nahavandi. Current and future methodologies
of after action review in simulation-based training. In 2018 Annual IEEE
International Systems Conference (SysCon), SysCon ’18, pages 1–6, New
York, NY, USA, 2018. IEEE.

[32] Sandra G. Hart and Lowell E. Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. In Peter A. Hancock
and Najmedin Meshkati, editors, Human Mental Workload, volume 52 of
Advances in Psychology, pages 139 – 183. North-Holland, 1988.

99

[33] Marcel Heerink, Ben Kröse, Vanessa Evers, and Bob Wielinga. Assessing
acceptance of assistive social agent technology by older adults: the almere
model. International Journal of Social Robotics, 2(4):361–375, Dec 2010.

[34] Robert Hoffman, Gary Klein, and Shane Mueller. Explaining explanation for
“explainable ai”. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 62:197–201, 09 2018.

[35] Robert R. Hoffman, Shane T. Mueller, Gary Klein, and Jordan Litman.
Metrics for explainable AI: challenges and prospects. CoRR, abs/1812.04608,
2018.

[36] Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. Visual
analytics in deep learning: An interrogative survey for the next frontiers.
IEEE Transactions on Visualization and Computer Graphics, 25(8):2674–
2693, 2019.

[37] Hsiu-Fang Hsieh and Sarah E Shannon. Three approaches to qualitative
content analysis. Qualitative health research, 15(9):1277–1288, 2005.

[38] Sandy H. Huang, Kush Bhatia, Pieter Abbeel, and Anca D. Dragan. Es-
tablishing appropriate trust via critical states. 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3929–
3936, 2018.

[39] Andrew Ishak and Elizabeth Williams. Slides in the tray: How fire crews
enable members to borrow experiences. Small Group Research, 48(3):336–
364, March 2017.

[40] Paul Jaccard. Nouvelles recherches sur la distribution florale. Bull. Soc.
Vaud. Sci. Nat., 44:223–270, 1908.

[41] Nathanael Keiser and Winfred Arthur, Jr. A meta-analysis of the effec-
tiveness of the after-action review (or debrief) and factors that influence its
effectiveness. Journal of Applied Psychology, 08 2020.

[42] Caitlin Kelleher and Wint Hnin. Predicting cognitive load in future code
puzzles. In 2019 CHI Conference on Human Factors in Computing Systems,
CHI ’19, pages 257:1–257:12, New York, NY, USA, 2019. ACM.

100

[43] Roli Khanna, Jonathan Dodge, Andrew Anderson, Rupika Dikkala, Jed
Irvine, Zeyad Shureih, Kin-Ho Lam, Caleb R. Matthews, Minsuk Kahng,
Alan Fern, and Margaret Burnett. Finding AI’s faults with AAR/AI: An
empirical study. (Under Review), 2021.

[44] Man-Je Kim, Kyung-Joong Kim, SeungJun Kim, and Anind Dey. Evaluation
of starcraft artificial intelligence competition bots by experienced human
players. In 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’16, pages 1915–1921, New York, NY, USA,
2016. ACM.

[45] Man-Je Kim, Kyung-Joong Kim, SeungJun Kim, and Anind K Dey. Evalu-
ation of starcraft artificial intelligence competition bots by experienced hu-
man players. In ACM CHI Conference Extended Abstracts, pages 1915–1921.
ACM, 2016.

[46] A J Ko, T D Latoza, and M M Burnett. A practical guide to controlled
experiments of software engineering tools with human participants. Empirical
Software Engineering, 20(1):110–141, 2015.

[47] Cliff Kuang. Can ai be taught to explain itself? 2017. Retrieved De-
cember 26, 2017 from https://www.nytimes.com/2017/11/21/magazine/

can-ai-be-taught-to-explain-itself.html.

[48] T. Kulesza, M. Burnett, W. Wong, and S. Stumpf. Principles of explanatory
debugging to personalize interactive machine learning. In ACM International
Conference on Intelligent User Interfaces, pages 126–137. ACM, 2015.

[49] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W. K. Wong. Too
much, too little, or just right? ways explanations impact end users’ mental
models. In 2013 IEEE Symposium on Visual Languages and Human Centric
Computing (VL/HCC), pages 3–10, Sept 2013.

[50] Todd Kulesza, Simone Stumpf, Margaret Burnett, and Irwin Kwan. Tell me
more? the effects of mental model soundness on personalizing an intelligent
agent. In ACM Conference on Human Factors in Computing Systems, pages
1–10. ACM, 2012.

[51] Todd Kulesza, Simone Stumpf, Margaret Burnett, Weng-Keen Wong, Yann
Riche, Travis Moore, Ian Oberst, Amber Shinsel, and Kevin McIntosh. Ex-
planatory debugging: Supporting end-user debugging of machine-learned

https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html
https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html

101

programs. In 2010 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 41–48. IEEE, 2010.

[52] Kin-Ho Lam, Zhengxian Lin, Jed Irvine, Jonathan Dodge, Zeyad T Shureih,
Roli Khanna, Minsuk Kahng, and Alan Fern. Identifying reasoning flaws in
planning-based rl using tree explanations. In IJCAI-PRICAI 2020 Workshop
on XAI, 2020.

[53] Adam Lareau and Brice Long. The art of the after-action review. Fire
Engineering, 171(5):61–64, May 2018.

[54] Brian Lim, Anind Dey, and Daniel Avrahami. Why and Why Not expla-
nations improve the intelligibility of context-aware intelligent systems. In
2009 SIGCHI Conference on Human Factors in Computing Systems, CHI
’09, pages 2119–2128, New York, NY, USA, 2009. ACM.

[55] Brian Y Lim. Improving understanding and trust with intelligibility in
context-aware applications. PhD thesis, figshare, 2012.

[56] Brian Y. Lim. Improving understanding and trust with intelligibility in
context-aware applications. PhD thesis, Carnegie Mellon University, 2012.

[57] Brian Y. Lim and Anind K. Dey. Assessing demand for intelligibility in
context-aware applications. In ACM International Conference on Ubiquitous
Computing, pages 195–204. ACM, 2009.

[58] Sandra Deacon Lloyd Baird, Phil Holland. Learning from action: Imbedding
more learning into the performance fast enough to make a difference. 27:19–
32, 1999.

[59] Sandra Deacon Lloyd Baird, Phil Holland. Learning from action: Imbedding
more learning into the performance fast enough to make a difference. 27:19–
32, 1999.

[60] Theresa Mai, Roli Khanna, Jonathan Dodge, Jed Irvine, Kin-Ho Lam,
Zhengxian Lin, Nicholas Kiddle, Evan Newman, Sai Raja, Caleb Matthews,
Christopher Perdriau, Margaret Burnett, and Alan Fern. Keeping it “orga-
nized and logical”: After-action review for ai (AAR/AI). In 25th Interna-
tional Conference on Intelligent User Interfaces, IUI ’20. ACM, 2020.

102

[61] Ronald Metoyer, Simone Stumpf, Christoph Neumann, Jonathan Dodge, Jill
Cao, and Aaron Schnabel. Explaining how to play real-time strategy games.
Knowledge-Based Systems, 23(4):295–301, 2010.

[62] Nicole Mirnig, Gerald Stollnberger, Markus Miksch, Susanne Stadler, Manuel
Giuliani, and Manfred Tscheligi. To err is robot: How humans assess and act
toward an erroneous social robot. Frontiers in Robotics and AI, 4:21, 2017.

[63] John E. Morrison and Larry L. Meliza. Foundations of the After Action
Review Process. Technical report, Institute for Defense Analyses, 1999.

[64] Donald A Norman. Some observations on mental models. Mental Models,
7(112):7–14, 1983.

[65] N.Y. Times. Tesla’s self-driving system cleared in deadly crash, 2017.

[66] Oluwakemi Ola and Kamran Sedig. Beyond simple charts: Design of visual-
izations for big health data. Online journal of public health informatics, 8,
12 2016.

[67] European Group on Ethics in Science and New Technologies. Statement on
artificial intelligence, robotics and ‘autonomous’ systems. 2018.

[68] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss. A survey of real-time strategy game ai research and competi-
tion in starcraft. IEEE Transactions on Computational Intelligence and AI
in Games, 5(4):293–311, Dec 2013.

[69] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore. Pro-
ceedings of the 26th Symposium on Operating Systems Principles - SOSP
’17, 2017.

[70] Sean Penney, Jonathan Dodge, Andrew Anderson, Claudia Hilderbrand, Lo-
gan Simpson, and Margaret Burnett. The shoutcasters, the game enthusiasts,
and the ai: Foraging for explanations of real-time strategy players. 0(ja). (To
Appear).

[71] Sean Penney, Jonathan Dodge, Claudia Hilderbrand, Andrew Anderson, Lo-
gan Simpson, and Margaret Burnett. Toward foraging for understanding of
starcraft agents: An empirical study. In 23rd International Conference on
Intelligent User Interfaces, IUI ’18, pages 225–237, New York, NY, USA,
2018. ACM.

103

[72] Karl R Popper. Science as falsification. Conjectures and refutations, 1:33–39,
1963.

[73] Luca Pulina and Armando Tacchella. An abstraction-refinement approach to
verification of artificial neural networks. In Proceedings of the 22Nd Interna-
tional Conference on Computer Aided Verification, CAV’10, pages 243–257,
Berlin, Heidelberg, 2010. Springer-Verlag.

[74] John Quarles, Samsun Lampotang, Ira Fischler, Paul Fishwick, and Ben-
jamin Lok. Experiences in mixed reality-based collocated after action review.
Virtual Reality, 17(3):239–252, September 2013.

[75] Stephen Reed, Alexandra Dempster, and Michael Ettinger. Usefulness of
analogous solutions for solving algebra word problems. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 11(1):106–125, Jan-
uary 1985.

[76] Alexander Renkl, Robin Stark, Hans Gruber, and Heinz Mandl. Learning
from worked-out examples: The effects of example variability and elicited
self-explanations. Contemporary Educational Psychology, 23(1):90–108, Jan-
uary 1998.

[77] Robert Rosenthal and Donald B Rubin. Interpersonal expectancy effects:
The first 345 studies. Behavioral and Brain Sciences, 1(3):377–386, 1978.

[78] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,, 2016.

[79] Margaret Salter and Gerald Klein. After action reviews: Current observa-
tions and recommendations. Technical report, U.S. Army Research Institute
for the Behavioral and Social Sciences, 2007.

[80] Taylor Lee Sawyer and Shad Deering. Adaptation of the us army’s after-
action review for simulation debriefing in healthcare. Simulation in Health-
care, 8(6):388–397, December 2013.

[81] James Schaffer, John O’Donovan, James Michaelis, Adrienne Raglin, and
Tobias Höllerer. I can do better than your ai: Expertise and explanations.
In Proceedings of the 24th International Conference on Intelligent User In-
terfaces, IUI ’19, pages 240–251, New York, NY, USA, 2019. ACM.

104

[82] Martin Schindler and Martin J Eppler. Harvesting project knowledge: a
review of project learning methods and success factors. International Journal
of Project Management, 21(3):219 – 228, 2003.

[83] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484, 2016.

[84] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Has-
sabis. A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362(6419):1140–1144, 2018.

[85] Dag IK Sjøberg, Tore Dyb̊a, Bente CD Anda, and Jo E Hannay. Building
theories in software engineering. In Guide to advanced empirical software
engineering, pages 312–336. Springer, 2008.

[86] Dan “Artosis” Stemkoski. AlphaStar - Analysis by Artosis. https://www.

youtube.com/watch?v=_YWmU-E2WFc, 2019.

[87] Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer,
Hanspeter Pfister, and Alexander Rush. Seq2seq-vis: A visual debugging
tool for sequence-to-sequence models. IEEE Transactions on Visualization
and Computer Graphics, 25:353–363, 2019.

[88] John Sweller, Jeroen J. G. Van Merrienboer, and Fred Paas. Cognitive ar-
chitecture and instructional design. Educational Psychology Review, 10:251–,
09 1998.

[89] The StarCraft II Community. Tutorials - Sc2MapsterWiki. https://

sc2mapster.gamepedia.com/Tutorials, 2019.

[90] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Auto-
mated testing of deep-neural-network-driven autonomous cars, 2017.

[91] J. Tullio, A. Dey, J. Chalecki, and J. Fogarty. How it works: A field study
of non-technical users interacting with an intelligent system. In ACM Con-
ference on Human Factors in Computing Systems, pages 31–40. ACM, 2007.

https://www.youtube.com/watch?v=_YWmU-E2WFc
https://www.youtube.com/watch?v=_YWmU-E2WFc
https://sc2mapster.gamepedia.com/Tutorials
https://sc2mapster.gamepedia.com/Tutorials

105

[92] U.S. Army. Training circular 25-20: A leader’s guide to after-action reviews.
Technical report, Department of the Army, Washington D.C., USA, 1993.

[93] Oriol Vinyals. Deepmind and blizzard open starcraft ii as an ai research
environment, 2017.

[94] Oriol Vinyals, David Silver, et al. AlphaStar: Mastering the Real-
Time Strategy Game StarCraft II. https://deepmind.com/blog/article/
alphastar-mastering-real-time-strategy-game-starcraft-ii, 2019.

[95] Danding Wang, Qian Yang, Ashraf Abdul, and Brian Y Lim. Designing
theory-driven user-centric explainable ai. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’19, 2019.

[96] J. Wang, L. Gou, H. Shen, and H. Yang. Dqnviz: A visual analytics approach
to understand deep q-networks. IEEE Transactions on Visualization and
Computer Graphics, 25(1):288–298, 2019.

[97] Franz Emanuel Weinert and Rainer H Kluwe. Metacognition, motivation,
and understanding. 1987.

[98] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in Software Engineering: An Intro-
duction. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[99] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in software engineering. Springer
Science & Business Media, 2012.

[100] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. Er-
rudite: Scalable, reproducible, and testable error analysis. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics,
ACL ’19, pages 747–763, 2019.

[101] Qian Yang, Aaron Steinfeld, Carolyn Rosé, and John Zimmerman. Re-
examining whether, why, and how human-ai interaction is uniquely difficult
to design. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI ’20. ACM, 2020.

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

106

[102] Qian Yang, Aaron Steinfeld, and John Zimmerman. Unremarkable ai: Fit-
ting intelligent decision support into critical, clinical decision-making pro-
cesses. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, 2019.

107

APPENDICES

108

Appendix A: Analysis Math

Because our participants could select multiple nodes in the diagram, our analysis

was faced with a multi-class, multi-label problem. In classification problems with

two classes, recall and precision can be computed via familiar expressions like the

following:

RecallBasic(TP, FP, TN, FN) =
TP

TP + FN
(A.1)

PrecisionBasic(TP, FP, TN, FN) =
TP

TP + FP
(A.2)

To find a multi-class, multi-label analog, we consulted a review by Zhang et

al. [?], which describes two flavors of multi-label analysis. One equally weights each

data instance, and another equally weights each label. Either one is well-defined

for us, so we picked the former approach, using the recall/precision equations from

their Section 2.2.2, as Equations (A.3) and (A.4) provided verbatim here, barring

a single notational change, where:

• h(·) is the classification function, which returns labels given the ith data

point as a feature vector ~xi;

• d is the number of data instances (Zhang et al. used p, but we will use that

later. This notation swap is the only change from their equation.);

• and Yi is the set of ground truth labels associated with the ith data point.

109

RecallZhang(h) =
1

d

d∑
i=1

|Yi ∩ h(~xi)|
|Yi|

(A.3)

PrecisionZhang(h) =
1

d

d∑
i=1

|Yi ∩ h(~xi)|
|h(~xi)|

(A.4)

We started from these expressions, and cast the summands into our situation

via the following steps: First, |Yi| is just the number of bugs present (in this case

10). Second, since our bugs were all known to be present, the ~Y for a particular

DP is a 1-vector, so the intersection becomes a sum of the bugs a participant

found in all their reports. Third, since |h(~xi)| is intended to model the “number

of shots fired at targets”, we use the number of problem reports that participant

submitted as the denominator in precision (while one could consider 0 reports to be

0 precision because bugs were known to be present, participants provided 2 reports

at minimum). Importantly, in this framing the denominator has no dependence

on the summation, and so it can be pulled outside the summation.

Next, we need to manipulate the summation part to handle reports not being

independent. In our case we do not get negative data instances1 because we did

not request any certifications that (regions of) the explanation were free of bugs,

though a few participants saw fit to submit such reports. This means we need

to interpret silence on a bug as a FN , but we can ONLY know if the participant

was silent on a bug after they have finished with that subtask. Further, we will

1If confused by this terminology, consult the confusion matrix at (https:
//developers.google.com/machine-learning/crash-course/classification/

true-false-positive-negative).

https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative

110

Bug A Bug B Bug C
ReportID PID Describe Select Describe Select Describe Select

1 Alice 0 0 1 1 0 1
2 Alice 0 0 0 0 1 1
3 Alice 0 0 0 0 0 0

4 Bob 0 0 0 0 0 0
5 Bob 1 0 0 0 0 0

6 Cindy 0 0 0 1 0 0
7 Cindy 0 1 1 1 0 0
8 Cindy 0 0 1 1 0 0
9 Cindy 0 0 0 1 0 0

Table A.1: Mockup of data post-labeling, presented per problem report. In our
labelling, each bug could be selected and/or described properly, so 2 points avail-
able per bug. Notably, as illustrated here, participants often found the same issues
repeatedly, so we devised Equations A.5 and A.6 to handle not awarding additional
credit for these repeat finds. In the example provided, we used binary indicator
variables for simplicity of presentation, though our formulation naturally handles
partial credit with no modification.

never get a TN because bugs were known to be present. The other kind of non-

independence we need to handle is best illustrated by Table A.1: many participants

reported the same problem multiple times. To handle this without awarding excess

credit, we create Table A.2 so that it is sliced per participant by aggregating each

participant’s part of columns of Table A.1 by taking a max over the reports from

each participant.

Putting the pieces together yields Equations (A.5) and (A.6), for participant

p’s recall/precision where:

• B is the set of bugs (in our case, there are 10);

111

Bug A Bug B Bug C
PID #Reports Describe Select Describe Select Describe Select

Alice 3 0 0 1 1 1 1
Bob 2 1 0 0 0 0 0

Cindy 4 0 1 1 1 0 0

Table A.2: Mockup of data post labeling, per participant (i.e. after taking the
max across reports from that person). To compute recall/precision, one can take
the sum across rows of this table, normalize by 2 (because there are 2 points per
bug), then divide by the number of bugs or problem reports, respectively.

• M is the maximum score available per bug (in our case, 2);

• j indexes particular labels (of which there are BM in each report, because

each bug could be described and/or labelled correctly);

• and R(·) is the report function, which returns the set of problem reports from

a given participant.

RecallParticipant(p) =
1

|B|M

|B|M∑
j

max
r∈R(p)

rj (A.5)

PrecisionParticipant(p) =
1

|R(p)|M

|B|M∑
j

max
r∈R(p)

rj (A.6)

Calculating recall per bug is very similar, with the summation going down

columns instead of across rows, but precision becomes a bit more complicated.

Because some reports could be attributed to bugs while others could not, deter-

mining the correct number of reports to divide by requires checking to see if a

report was attributed to a different bug. Mathematically, we use Equations (A.7)

112

and (A.8) to compute the recall of a label b (e.g. “Bug A Select”), where:

• P is the total number of participants;

• p indexes participants;

• and R(·, ·) is an overloaded function returning the set of problem reports for

a participant that could possibly be attributed to a particular bug (either by

actually being attributed to that bug OR by being unable to be attributed

to any bug).

RecallLabel(b) =
1

P

P∑
p

max
r∈R(p)

rb (A.7)

PrecisionLabel(b) =
1∑P

p |R(p, b)|

P∑
p

max
r∈R(p)

rb (A.8)

Using these as the basis, we can analyze a bug (or kind of bug, e.g. Leaf Evalua-

tion Function bugs) by running this on multiple columns and normalizing results

appropriately.

To illustrate usage of Equations (A.5) and (A.6), one can compute the recall

of a participant using Table A.2; we can sum across the row and divide by the

number of bugs (the max was already incorporated moving from Table A.1 to

Table A.2). Similarly, for precision, we use the same sum across the row, but

divide by the number of problem reports the participant provided. In the concrete

example, |B| = 3 and M = 2, so Alice’s recall is a whopping 4
6
≈ 67% with the

same precision (Alice submitted 3 bug reports). Meanwhile, Bob’s recall was only

1
6
≈ 17% with precision a bit higher at 1

2∗M = 25% because he did not provide

113

many reports. Cindy, on the other hand, had recall at 3
6

= 50%, but with lower

precision (3
4∗M ≈ 38%) because of the higher report volume.

Next, to illustrate usage of Equation (A.7), 1 of the 3 participants (Bob) found

“Bug A Describe”, so the recall for that bug would be 33%. Similarly, 1 of the 3

participants Selected Bug A, leading to a 33% recall overall for Bug A.

Finally, to illustrate usage of Equation (A.8), we compute the precision for

“Bug B Describe”. Alice went 1-for-2 (report 1 hit, report 2 was attributable to

bug C, and report 3 was unable to be attributed and so possibly intended for that

target). Meanwhile, Bob went 0-for-1 (report 4 was possibly intended for that

target, while report 5 was attributable to Bug A). And last, Cindy went 1-for-4

(report 6 missed but was intended for Bug B, report 7 hit, report 8 hit but was

duplicate, report 9 missed but was intended for Bug B). Combining these results

yields 2
7
≈ 29%.

114

Appendix B: Study Design Details

B.0.1 Details of the StarCraft II game

In our StarCraft II setup, both players were RL powered agents. We call them the

“Friendly AI” (referring back to Figure 3.1’s left) and the “Enemy AI” (right).

Participants were shown the game from the Friendly AI’s perspective.

As Figure 3.1 shows, the game has a top and a bottom lane, each of which is

a separate battlefield between the AI players. Each AI player has two Nexuses,

which is the AI’s base in this game. A Nexus is represented by the golden/yellow

star structure at the corner of each lane. Next to each Nexus is a health bar with

that Nexus’s corresponding health points.

The two ways an AI player can win are by: (1) destroying one of the opposing

Nexuses before 40 rounds, by bringing the Nexus health to 0, or (2) having the

lowest Nexus health if all Nexuses are standing at the end of 40 rounds. Thus, in

trying to win, throughout the game the AIs generate troops behind their respective

Nexus to cause damage to the opposing Nexus in their lane.

The bar with diamonds at the bottom of the screen in Figure 3.1 is the game

timeline. StarCraft II is played in rounds: each new round starts at one of the

black diamonds (marked as D1, D2, etc). These are called “decision points”, each

marking a point where the AI decides on an action before the next round begins.

115

At a decision point, the AI decides: (1) what troops to buy, if any, and (2) which

lane to place them in (top or bottom).

To engage in battle, the AIs need minerals, because minerals are akin to money:

the AI can use them to buy troops or invest in Pylons. At the start of the game,

each AI is given 150 minerals, and then receives 100 minerals in every subsequent

round. A Pylon generates an additional 75 minerals per round, and each AI can

buy up to 3 pylons in the game. The Pylons for the Friendly and Enemy AIs are

represented by the three diamonds in the center of the column on each side. The

AIs spend their minerals to buy troop production buildings, which produce troops.

Once an AI buys a troop production building, one unit of that type is generated

in each subsequent round. After being generated, these troops will run towards

the opposing nexus, and fight any units in their way. The AI cannot control what

units attack the other, or troop formations; it can only buy the troop production

buildings to generate troops.

The three types of troop production buildings in this game are: Marines, Banel-

ings, and Immortals, all of which are shown in Figure 3.1. Marines are small, low

cost units. They have the lowest health of the three troops, and attack with small,

quick shots. Banelings are explosive bug units with a moderate cost. They have

medium health, and they explode upon contact with an enemy unit. Immortals

are large and are also the most expensive unit. They have the highest health, since

they have a shield. They attack with slow shots that are effective against Nexuses.

There is a rock-papers-scissors relationship between the Marines, Banelings and

Immortals. Marines are effective against Immortals, Immortals against Banelings,

116

and Banelings against Marines.

B.0.2 Experiment session walkthrough

Participants were given a tutorial detailing the game rules (specified above). Next,

they were given access to the web interface with a unique ID and password. After

entering their credentials, they were prompted by the facilitator to click on “Play”

and start watching the game.

Participants in both treatments saw identical AI agents, game replays and

explanations. Their agents also exhibited identical bugs, which are detailed in

Table B.1.

The game automatically paused at DP 8, and participants in both treatments

were shown identical “prediction” questions (Figure B.1). After answering these

questions, participants watched the game round. After the game round ended,

participants answered a “description” questions, where they described the Friendly

AI’s actions in the round they had just watched. The AAR/AI group was given a

guided process (Figure B.2), whereas the Non-AAR/AI group was given observa-

tional questions (Figure B.3).

After answering the prediction and description questions, participants in both

treatments then saw the Friendly AI’s explanation for its actions. Figure B.5

shows the AAR/AI interface, and Figure ?? shows the Non-AAR/AI interface.

All participants saw the same explanations, but as these figures show, the different

treatments asked different questions about the bugs participants found. Also,

117

ID-Type Description (and how we engineered them)

1-LEF Why a bug: because the actions preceding state at DP 10 (i.e., predicted future states from DP 8)
differ by 1 marine from its sibling actions, yet the expected outcome is radically different (flipped)
than all other sibling actions. A correct state would have similar outcome expectations to the sibling
states. Exaggerated by changing: Friendly AI’s win by destroying top enemy nexus to friendly AI’s
loss by enemy AI destroying friendly AI’s bottom nexus.

2-TF Why a bug: because the Friendly agent has 4 marine-producing buildings in the top lane, but there
are 21 total Friendly marines expected to be in the top lane, State at DP 10, row 1C. A correct state
would have 4 or fewer marines in the top lane. Exaggerated by changing: Friendly marines top grid
#1 to 19. Friendly marines top grid #2 to 2.

3-TF Why a bug: because base (Nexus) health cannot heal. In expected state DP 9 row 2A, the enemy
bottom base is expected to incur a significant amount of damage as shown by the red bar. However in
predicted child state DP 10 row 2C, that damage is not reflected as the base’s health in DP 10 row 2C
is greater than its health in DP 9 row 2A. A correct state would not have greater friendly Base HP in
DP 10 row 2C. Exaggerated by changing: Friendly Base HP D9 row 2A to 20; Friendly Base HP D10
row 2B to 100.

4-TF Why a bug: because the enemy has built 1 immortal-producing building in the preceding action,
and can therefore have at most 1 immortal troop on the field. This state depicts 2 immortal troops
in adjacent game grid. A correct state would be 1 or fewer enemy Immortals in the bottom lane.
Exaggerated by changing: Enemy immortal bottom grid #4 to 1; Enemy immortal grid #3 to 1.

5-LEF Why a bug: because the Friendly base is expected to have 0 HP meaning it has been destroyed; therefore
per game rules, the friendly agent has lost the game at DP 10. However the expected outcome shows
that the friendly agent expects to destroy the enemy’s top and bottom base. A correct state would
have been for the enemy win 100% by destroying a friendly bottom base. Exaggerated by changing:
Friendly bottom base HP to 0.

6-TF Why a bug: recall the game rule that the top and bottom lanes are independent; troops built in one
lane will not affect the outcome of what happens in the other. From DP 16 row 1A to all child actions
and states, the enemy builds 3 marine-producing buildings in the top lane and the friendly does not
build anything in the top lane for all 3 actions from DP 16 to DP 17 (Row 1A, 1B, and 1C). Since
the action for the top lane is the same for all 3 sibling predictions, the expected state in the top lane
in DP 17 in all 3 sibling states should all be the same. However state DP 17, row 1C differs from its
siblings, 1 fewer marine is expected in DP 17, row 1C. No exaggeration needed.

7-LEF Why a bug: because all sibling child states reflect a likely win in the top lane with a less likely win
by purchasing troops in the bottom lane, but the bars in row 2B depict a high expectation to win in
the bottom lane with no purchases in the bottom lane. Exaggerated by changing: Friendly win by
destroying enemy bottom to 76%, Friendly win by destroying enemy top to 20%

8-LEF Why a bug: because the enemy agent has 0 immortal-producing buildings in state DP 17, yet it is
expected to have 1 immortal troop in the bottom lane. Exaggerated by changing: Enemy immortals
bottom grid #2 to 1.

9-LEF Why a bug: because in this predicted state the game is guaranteed to end with the enemy top base
getting destroyed, but outcome bars show the friendly expecting to lose. Exaggerated by changing:
Enemy top base HP to 0 in row 3C.

10-TF Why a bug: because the game is guaranteed to end with the friendly bottom base getting destroyed
sibling states in row 5B and 5C both have the correct outcome expectations (0% win, loose by friendly
bottom base destory) however in row 5A the friendly expects to win by destroying enemy top. Exag-
gerated by changing: Friendly win by destroying enemy top to 23%. State D10, Row 5A, 5B, 5C set
Friendly bottom base HP to 0.

Table B.1: The 10 bugs; 5 in DP 8 (above the line), and 5 in DP 15 (below the line).
LEF=in Leaf Evaluation Function outputs; TF=in Transition Function outputs
(Section 3.3.3). More information about the bugs and their locations can be found
in the Supplemental docs. All bugs occurred naturally, but we exaggerated some
as marked.

118

Figure B.1: Participants watch the game unfold until round 8, at which point the
game pauses and the prediction questions pop up. The participant has to predict
what they think the Friendly AI will do in round 9.

AAR/AI participants had to finish the row they had selected to work on before

moving onto another row as part of the AAR/AI process, whereas Non-AAR/AI

participants were allowed to navigate freely among rows.

119

Figure B.2: Having predicted what the agent would do (Figure B.1), participants
then see what it really did. Here, AAR/AI participants watch the game until
round 9, at which point the game pauses again and the description questions pop
up. The participant first describes what happened in round 9 (top), and then why
(bottom).

120

Figure B.3: Having predicted what the agent would do (Figure B.1), participants
then see what it really did. Here, Non-AAR/AI participants watch the game until
round 9, at which point the game paused again and the description questions pop
up. The participant has to describe what happened in round 9.

Figure B.4: AAR/AI participants answered the AAR/AI questions of ”What-Why-
What changes” for each problem they found, in addition to giving their problem
descriptions labels.

121

Figure B.5: Non-AAR/AI participants answered a simple ”Describe the problem”
question for each problem they found.

122

Appendix C: Model-Based Agent Architecture

This section describes details about the model-based agent we used for the studies.

Figure C.1 illustrates the overall architecture of the agent. We constructed a Min-

imax search tree by combining a decomposed reward deep Q-network (drDQN [?]),

used for action ranking and leaf evaluation, and a transition model [52]. We de-

scribe the details of both in the next two subsections.

Model training details. Both the drDQN and transition models are neural

networks that were pre-trained. They were trained separately and frozen while the

agent plays. The training process continued until the agent achieves a high win

Figure C.1: The model-based agent consists of three parts. (1, left) The decom-
posed reward DQN (drDQN) model, which takes a state-action pair (s, a) as input
and outputs a decomposed Q-value vector. (2, right) The transition model, which
outputs the estimated next game state by taking the after-state S ′ as input. (3,
middle) The tree structure that utilize (1) and (2) together. Here, the Minimax
algorithm assigns the Q-value vectors computed at the leaf all the way to the root.

123

percentage against a pool of agents or until resources were expended. This took

around three days on a consumer desktop machine. In other words, the model-

based agent in its entirety does not have a training process. Both networks have

three fully connected layers and each hidden layer uses ReLU as its activation

function. They have different numbers of neurons and output sizes, as indicated

at the bottom of each layer in Figure C.1. We used mean squared errors as the

loss functions for both models. The learning rates of the drDQN and transition

model were 10−4 and 5−4, respectively.

C.0.1 Decomposed Reward Deep Q-Network (for Action Ranking

and Leaf Evaluation)

The purpose of using decomposed reward deep Q-network (drDQN) agent instead

of a standard deep Q-network (DQN) agent is that rather than only a single Q-

value, it provides a more explanatory vector at the leaf nodes. In our case, we

decomposed the Q-value (which is a scalar win probability) into an 8-element vector

composed of the probability of each Nexus being destroyed and the probability of

each Nexus having the lowest Health Points (HP) if the game reaches the tie-

breaker. Therefore, we can compute the win probability for a single player by

taking the sum of winning by destroying each opponent Nexus (2 elements) and by

tiebreaking each opponent Nexus (2 elements). Further, the sum of all 8 elements

should be 1.0, since it represents a probability distribution.

The drDQN model was pre-trained via pool-based self-play learning to achieve a

124

reasonable high win-probability, which provides a meaningful decomposed Q-value

vector for the leaf nodes of the Minimax tree. Because the size of the Minimax

tree grows exponentially in its depth, we cannot expand it to the end of the game.

To cope with this, we use the drDQN to prune the tree, declining to expand

actions that do not look promising (this is the Action Ranking Function referred

to in Section 3.3.3). Therefore, evaluating leaf nodes with a neural network is

important because it predicts the value of the future based on the leaf states—

without expanding the tree further (this is the Leaf Evaluation Function referred

to in Section 3.3.3). The decomposed Q-value function provides a discounted

accumulation value vector predicting the future based on a state-action pair. The

leaf node value vector v = maxa∈AQ(s, a) is back-propagated back to the root

node, where A is the action space and (s, a) is the state-action pair. Thus, we use

the same drDQN twice in same agent, for both ranking actions and evaluating leaf

nodes.

C.0.2 Transition Model

The transition model was also pre-trained by supervised learning based on the

dataset from running the drDQN agent playing against an opponent pool which

includes several types of agent. It takes an after-state S ′ as input which combines:

the current state S, Player 1 (Friendly AI)’s action ap1, and Player 2 (Enemy AI)’s

action ap2. Since actions in Tug-of-War correspond to an integer vector corre-

sponding to the buildings the player is going to create, the action is deterministic

125

and can be simply added up with the current state to produce an after-state cor-

responding to a tuple (s, ap1, ap2). It outputs an estimated state that describes the

game at the next decision point. The estimated state has exactly elements as the

input state has, which includes: mineral resources, number of buildings, number

of troops in different regions for both lanes, Nexus HP, and the wave number.

	Introduction
	Goal and Main ideas
	Thesis Overview
	Qualitative study: Is AAR/AI helpful in the assessment process?
	Quantitative study: Is AAR/AI helpful in localizing an AI agent's faults?

	Research Contributions
	Prior Publications

	Keeping It ``Organized and Logical'': After-Action Review for AI (AAR/AI)
	Introduction
	Background & Related Work
	People Analyzing AI
	People Explaining AI
	After-Action Review

	The AAR/AI Process
	AAR/AI: Defining Rules & Objectives
	AAR/AI's Inner-Loop: What, Why, How
	AAR/AI: Explanation Component
	AAR/AI's Artifacts

	Empirical Study: Methodology
	The Domain
	The Agent Implementation
	Analysis Methods

	Results
	Results: The AAR/AI Process
	Results: Explanation Content and Presentation
	Results: Combined Explanation Strategy

	Discussion
	Future AAR/AI implementations
	Prediction as Explanation
	The agent's explanations as theory

	Threats to Validity
	Conclusion
	Acknowledgements

	Finding AI's Faults with AAR/AI: An Empirical Study
	Introduction
	The Domain
	An AI RTS player's failures and faults
	How well can human users assess an AI RTS player's failures and faults with AAR/AI?

	Background & Related Work
	Methodology
	Participants and Procedure
	Explanations
	The Reinforcement Learning Agent
	The Bugs

	Results
	RQ1 Results: Does AAR/AI help localize faults?
	RQ2 Results: Does the type of fault matter?
	RQ3 Results: Labeling and Abstractions

	Discussion
	Cognitive Costs Imposed by AAR/AI
	Limitations of the Study

	Conclusion

	Conclusion
	Future work

	Bibliography
	Appendices
	Analysis Math
	Study Design Details
	Model-Based Agent Architecture

