

AN ABSTRACT OF THE THESIS OF

Enna Sachdeva for the degree of Master of Science in Robotics presented on

December 4, 2020.

Title: Multiagent Learning via Dynamic Skill Selection

Abstract approved:

Kagan Tumer

Multiagent coordination has many real-world applications such as self-driving cars,

inventory management, search and rescue, package delivery, traffic management,

warehouse management, and transportation. These tasks are generally character-

ized by a global team objective that is often temporally sparse - realized only upon

completing an episode. The sparsity of the shared team objective often makes it

an inadequate learning signal to learn effective strategies. Moreover, this reward

signal does not capture the marginal contribution of each agent towards the global

objective. This leads to the problem of structural credit assignment in multia-

gent systems. Furthermore, due to a lack of accurate understanding of desired

task behaviors, it is often challenging to manually design agent-specific rewards to

improved coordination.

While learning these undefined local objectives is very critical for a successful

coordination, it is extremely challenging due to these two core challenges. Firstly,

due to interaction among agents in an environment, the complexity of the problem

may rise exponentially with the number of agents, and their behavioral sophisti-

cation. An agent perceives the environment as non-stationary, due to all learn-

ing concurrently. This leads to an agent perceiving the coordination objective as

extremely noisy. Secondly, the goal information required to learn coordination

behavior is distributed among agents. This makes it difficult for agents to learn

undefined desired behaviors that optimizes a team objective.

The key contribution of this work is to address the credit assignment problem

in multiagent coordination using several semantically meaningful local rewards.

We argue that real-world multiagent coordination tasks can be decomposed into

several meaningful skills. Further, we introduce MADyS, a framework that can

optimize a global reward by learning to dynamically select the most optimal skill

from semantically meaningful skills, characterized by their local rewards, without

requiring any form of reward shaping. Here, each local reward describes a basic

skill and is designed based on domain knowledge. MADyS combines gradient-

based optimization to maximize dense local rewards and gradient-free optimization

to maximize the sparse team-based reward. Each local reward is used to train a

local policy learner using policy gradient (PG) - and an evolutionary algorithm

(EA) that searches in a population of policies to maximize the global objective by

picking the most optimal local reward at each time step of an episode. While these

two processes occur concurrently, the experiences collected by the EA population

are stored in a replay buffer and utilized by the PG based local rewards optimizer

for better sample efficiency.

Our experimental results show that MADyS outperforms several baselines. We

also visualize the complex coordination behaviors by studying the temporal distri-

bution shifts of the selected local rewards. By visualizing these shifts throughout

an episode, we gain insight into how agents learn to (i) decompose a complex task

into various sub-tasks, (ii) dynamically configure sub-teams, and (iii) assign the

selected sub-tasks to the sub-teams to optimize as a team on the global objective.

c©Copyright by Enna Sachdeva
December 4, 2020

All Rights Reserved

Multiagent Learning via Dynamic Skill Selection

by

Enna Sachdeva

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 4, 2020
Commencement June 2021

Master of Science thesis of Enna Sachdeva presented on December 4, 2020.

APPROVED:

Major Professor, representing Robotics

Associate Dean for Graduate Programs, College of Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Enna Sachdeva, Author

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my academic advisor Pro-

fessor Kagan Tumer for his guidance, support and encouragement throughout my

Masters journey. His incredible mentorship have made this learning process cheer-

ful and enthralling.

I would like to thank Dr. Somdeb Majumdar and Dr. Shauharda Khadka

at Intel AI lab for collaborating, brainstorming ideas, and providing insightful

feedback throughout my research journey at Oregon State University.

Working at Autonomous Agents and Distributed Intelligence Laboratory (AADI)

at OSU has given me a unique opportunity to grow as an engineer as well as a

researcher. I would like to thank my labmates, especially Gaurav Dixit, Connor

Yates and Golden Rockefeller for their support and discussions.

I also thank my friends Satish Solanki, Ashwin Vinoo, Manish Saroya, Kartik

Gupta, Sridhar Thiagarajan, Anurag Koul and late Sumedh Mannar, as well as

my roommates Pallavi Sapale, Vishnupriya and Meghamala Sinha for providing a

great experience at Oregon State University. I’m deeply indebted to Akash Singh

for always encouraging me in stressful times and cherishing cheerful times. I’m

also grateful to Josyula GopalaKrishna for guiding me during conflicting times.

Finally, a special gesture of thanks to my family: my parents and my brother,

for providing a moral support and constant encouragement throughout these years.

This accomplishment would not have been possible without their firm belief in my

capabilities.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Motivation and Challenges . 1

1.2 Research Questions: . 4

1.3 Contribution . 5

1.4 Organization of this Thesis . 6

2 Background and Related Work . 7

2.1 Background . 7
2.1.1 Markov Decision Process . 7
2.1.2 Partially Observable Markov Decision Process 8
2.1.3 Reinforcement learning . 9
2.1.4 Multiagent Reinforcement learning 10
2.1.5 Reward Shaping . 10
2.1.6 Deep Deterministic Policy Gradient (DDPG) 13
2.1.7 Twin Delayed Deep Deterministic Policy Gradient 14
2.1.8 Evolutionary Algorithm . 16
2.1.9 Cooperative Coevolutionary Algorithm (CCEA) 17
2.1.10 Evolutionary Reinforcement Learning 19

2.2 Related Work . 20
2.2.1 Learning Individual Intrinsic Reward (LIIR) 20
2.2.2 Multiagent Deep Deterministic Policy Gradient (MADDPG) 20
2.2.3 Counterfactual Multi-Agent Policy Gradients (COMA) . . . 21
2.2.4 Multiagent Evolutionary Reinforcement Learning (MERL) . 22
2.2.5 Multi-fitness Learning (MFL) 22

3 MADyS: Multiagent Learning with Dynamic Skill Selection 24

3.1 Motivating Example . 25

3.2 Methodology . 26
3.2.1 Policy Networks: . 26
3.2.2 Global Reward Optimization: 27
3.2.3 Local Reward Optimization: 28
3.2.4 EA → RL via Replay Buffer 29
3.2.5 Skill Selection . 30

TABLE OF CONTENTS (Continued)

Page

4 Experiments and Results . 33

4.1 Rover Domain . 33

4.2 Compared Baselines . 36

4.3 Reported Metrics . 37

4.4 Results . 37
4.4.1 Varying Temporal and Spatial Coupling 37
4.4.2 Temporal Coupling of 2 . 38
4.4.3 Temporal Coupling of 3 . 43

4.5 Learned Team Behaviors . 44

5 Conclusion and Future work . 46

Bibliography . 48

LIST OF FIGURES

Figure Page

2.1 Agent-environment interaction in reinforcement learning [46] 9

3.1 (a) Consider a team of 6 agents required to visit red, green and blue
POIs in a team of 3, in the following order POI-red→ POI-green→
POI-blue. Based on user’s understanding of the domain, the most
basic skills can be defined as go to closest POI-red, go to closest
POI-blue, go to closest POI-green, and go to closest agent. With
these set of local rewards, the optimal joint action for agents would
be to pick go to red for 3 agents, go to green for the other 3 agents,
and later any 3 agents must form a separate team and pick go to
blue to complete the task in the specified order. (b) Highlighted
paths demonstrate how MADyS dynamically selects skills from a
set of semantically meaningful local rewards at each time step. An
agent selects red, blue and green sequentially in 3 consecutive time
steps of the episode. 26

4.1 The rover domain setup: multiple rovers and different types of
Points of Interests (POIs) characterized by different color. A rover
observes the world in 4 quadrant around it. In each quadrant, it ob-
serves the number of other rovers, as well as the number of POIs of
each type. The observation space of each rover consists of the den-
sity of rover and POIs of each type in each quadrant, concatenated
across all 4 quadrants. 38

4.2 Training curves (left) and histograms (right) showing the distribu-
tional shift of local rewards, for various spatial coupling factors with
a temporal coupling of 2 where the agents need to go from POI A
→ B in a team of x characterized by spatial coupling. The episode
length is 50 time steps. The vertical dotted blue line denotes the
time steps required to pre-train the skills for the MFL baseline. Y-
axis denotes the performance as the average global/team across 5
statistically independent runs. Performance degrades gracefully as
the spatial coupling factor increases. 40

LIST OF FIGURES (Continued)

Figure Page

4.3 Training curves (left) and histograms (right) showing distributional
shift of local rewards for various spatial coupling factors with a
temporal coupling of 3 where the agents need to go from POI A
→ B → C in a team of k characterized by spatial coupling. The
episode length is 70 time steps. The vertical dotted blue line denotes
the time steps required to pre-train the skills for the MFL baseline.
Y-axis denotes the performance as the average global/team across 5
statistically independent runs. Performance degrades gracefully as
the spatial coupling factor increases. 42

LIST OF ALGORITHMS

Algorithm Page

1 Multiagent Learning with Dynamic Skill Selection 31

2 Function Rollout . 32

Chapter 1: Introduction

Reinforcement learning(RL) provides a general framework for tasks involving se-

quential decision making. With continual interactions with the environment, agent

learns optimal behavior from the actions they execute, based on their local obser-

vations, and rewards they receive from the environment. Reinforcement learn-

ing algorithms have been shown to tackle complex real-world control problems in

robotics control, power controls, business inventory management.

1.1 Motivation and Challenges

While reinforcement learning has been successfully applied to single-agent settings

that involve an otherwise static task, most real-world applications include multiple

interacting agents. Some of the examples include inventory management [32, 9],

space exploration [12], search and rescue operations [37, 2], air-traffic management

[10, 17], self-driving cars [6], garbage collection [42], etc. In such settings, several

distributed agents are required to make independent decisions based on their local

observations, in order to optimize the team objective. For instance, autonomous

cars’ actions should be aligned with safety and, efficiency, while considering the

uncertainty and unknown intentions of other cars. Learning in such settings can

be very complex and critical, as it requires effective coordination between several

2

cars, with partial observability. A small delay in any of the processes can have a

catastrophic effect on the entire road safety, thereby losing lives and costing billions

of dollars [5]. Learning effective coordination behaviors in multiagent tasks poses

significant challenges as following-

• Non-stationarity: In multiagent setting, all agents are concurrently learn-

ing in an environment towards optimizing a team reward. However, concur-

rent learning of all agents affects the environment dynamics, which in turn

changes the goals of other agents. Since the transition function and rewards

depend on actions of all agents, whose decision policies keep changing in the

learning process, each agent can enter an end-less cycle of adapting to other

agents. This non-stationarity stems from breaking the Markov assumption

that governs most single-agent RL algorithms [36]. In order to address this,

each agent needs to have a belief or model of other agents dynamics, so that

agent can an actions depending on how other agents might behave based

on their model of these agents. In multiagent reinforcement learning, non-

stationarity is usually addressed using a Centralized critic, where critic has

access to observations as well as actions of all agents during training [31], [19],

[8]. With this, agents do not experience unexpected changes in the dynamics

of the environment which results in stabilization of behavior. Other methods

to address non-stationarity involve self-play [45], [3] and well as Opponent

Modelling [41].

3

• Credit assignment: In multiagent settings, team reward is dependent on

the joint actions of all agents, which may not be decomposed among agents.

The team rewards make it difficult for agents to deduce their individual con-

tribution to the team’s success or failure [36]. For instance, in search and

rescue operations, all agents in a team are penalized equally for not attending

a victim. There has been several work in reward shaping, which acts as step-

ping stone rewards for each agent, and help in deducing agents’ contribution

towards the team success [33]. However, these rewards need to possess cer-

tain mathematical properties, such as alignment and learnability, to deduce

noise-free stepping stone reward for each agent. One such formulation is dif-

ference rewards [16] that compares the team reward to the reward received

when that agent’s action is replaced with the default action. While difference

reward is a powerful tool to address multiagent credit assignment problem,

it requires domain knowledge and access to the simulator, and is unclear how

to choose the default action. This becomes even more challenging when the

rewards are sparse and the number of agents increases.

• Curse of dimensionality: In multiagent coordination, as the number of

agents increases, the state space increases exponentially and the learning

speed reduces dramatically. If sj denotes the state of agent j, which can be

sensed by agent i, and N denotes the number of agents, then the state space

is constructed with all agents as part of the environment, the environment

state Sk that is used by agent k for learning consists of the set of the states

of all agents s1, ..., sN . Therefore, the size |Sk| of state space is |s|N , and

4

w is the number of agents increases, |Sk| increases exponentially [52]. This

leads to increase in the state space in reinforcement learning which causes

the learning speed to decrease suddenly or causes an enormous amount of

memory to be required [34].

• Global exploration: Solving tasks with sparse rewards is one of the chal-

lenges in reinforcement learning. This requires an agent to explore large

number of state space, to stumble upon the goal state [38]. In single agent

settings, this is usually addressed with intrinsic rewards that encourages

agents to improve exploration by visiting un-visited states [7]. In multia-

gent settings, agents maximizing their exploration independently using in-

trinsic rewards could result in redundant exploration. The exploration in

cooperation multiagent settings could be accelerated and improved if agents

coordinate with respect to the regions of the state space they explore. For

instance, in search and rescue operations, it would be inefficient if a robot

visits the same state space that has been previously explored by other robot.

Instead, it would be more sensible to divide and conquer to avoid redundant

exploration, and maximize the coverage of area in coordination [23].

1.2 Research Questions:

In this thesis, we investigate the following research questions-

• Can sparse team reward in a multiagent coordination task be decomposed

into several semantically meaningful rewards?

5

• Can agents learn to dynamically select and optimize the most aligned se-

mantically meaningful reward, to maximize a sparse team reward?

• How can we stitch together these textit highly learnable semantically with

local rewards to solve coordination task in sparse team reward?

1.3 Contribution

The key contribution of this work is an architecture that can optimize a global

reward by learning to dynamically select the most optimal skill from semantically

meaningful skills, characterized by their local rewards, without requiring any form

of reward shaping. We first argue that many of the multiagent coordination tasks

with temporal and spatial coupling requirements, can be decomposed into several

semantically meaningful skills, characterized by local rewards. Further, we design

those semantically meaningful distance based local rewards with limited domain

knowledge. We demonstrate that the complex coordination behaviors required

to solve a task can be achieved by learning which reward matters when, using

temporal distribution shifts of the selected local rewards. By visualizing these shifts

throughout an episode, we gain insight into how agents learn to (i) decompose a

complex task into various sub-tasks, (ii) dynamically configure sub-teams and (iii)

assign the selected sub-tasks to the sub-teams to optimize as a team on the global

objective.

6

1.4 Organization of this Thesis

This thesis is organized as follows.

In chapter 2, we provide necessary preliminaries in reinforcement learning, deep

reinforcement learning, reward shaping, evolutionary strategies and evolutionary

reinforcement learning. We also provide the a brief introduction to related work.

In chapter 3, we present our proposed framework on Multiagent Learning with

Dynamic Skill Selection (MADyS) to learn joint actions, in a fully decentralized

fashion.

In chapter 4, we discuss the experiments and demonstrate results with varying

spatial and temporal coupling requirements.

In chapter 5, we conclude this thesis, and discuss possible future extensions of

this work.

7

Chapter 2: Background and Related Work

In this chapter, we introduce the necessary background required to gain insights

into our work on Multiagent Learning via Dynamic Skill Selection. Later, we

introduce the related work in the literature and their limitations towards addressing

the problem of structural credit assignment problem in multiagent coordination

with temporal and spatial coupling requirements.

2.1 Background

2.1.1 Markov Decision Process

A reinforcement learning can be formally defined as a Markov Decision Process

(MDP). MDP is defined by the 4-tuple < S,A,R, T >. S is a finite set of ob-

servable states by the agents, A is a finite state of actions available to the agent

to perform, R(s, a) defines the reward obtained in state s after performing the

action a. T (s, a, s′) is a probability transition function. It defines the probability

to transit from state s to state s′ after executing action a. In a MDP, the R(s, a)

and T (s, a, s′) function only depend on the current state and actions [47]. The

probability distribution for a MDP is defined as-

Prst + 1 = s′, rt + 1 = r|st, at

The Markov property is very useful as it lets us predict the next state and

8

the expected reward with current state and action. Since agents have limited

sensing capabilities to sense every piece of environment information or they simply

cannot have access to specific information. In these cases, we have hidden state

information and they may not fully satisfy the Markov property; nevertheless it is

a useful and convenient to consider them as Markov. These cases are referred as

Partially Observable Markov Decision Process (POMDP) [21].

2.1.2 Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP) [24]is a generalization

of a Markov decision process (MDP) to model system dynamics with a hidden

Markov model that connects unobservant systems states to observations. The

agent cannot directly observe the underlying state. Instead, the agent maintains a

probability distribution over the set of possible states, based on a set of observations

and observation probabilities, and the underlying MDP. Therefore, the agent must

make decisions under uncertainty of the true environment state. POMDPs are

hugely intractable to solve optimally, and the exact solution to a POMDP yields

the optimal action for each possible belief over the world states. The optimal

action maximizes the expected reward of the agent over a possibly infinite horizon.

The sequence of optimal actions is known as the optimal policy of the agent for

interacting with its environment.

9

Figure 2.1: Agent-environment interaction in reinforcement learning [46]

2.1.3 Reinforcement learning

In reinforcement learning (RL) [46], an agent learns a policy by sequentially inter-

acting with the environment, to maximize the cumulative reward. The environ-

ment is characterized by P (st+1|st, at), i.e the probability of next state depends

only on previous state, and action, and RL is framed as a Markov Decision Pro-

cess (MDP). Agents sense the environment in discrete time steps and map those

inputs to local state information, and observed reward from the environment, after

executing an action, as shown in Fig. 2.1.

At each time step t, the agent receives a state st and produces an action at using

its policy π. The agent receives a scalar reward rt and transitions to the next state

st+1. This process continues until the agent reaches a terminal state marking the

end of an episode. The return Rt =
∑∞

n=1 γ
krt+k is the total accumulated return

from time step t with discount factor γ ∈ (0, 1]. The goal of the agent is to learn

a policy πt, where πt(a|s) denotes the probability that action At = a if St = s,

10

by maximizing the expected return. The state-value function Qπ(s, a) describes

the expected return from state s after taking action a and subsequently following

policy π, and is estimated using Bellman equation.

Q(s, a) = R(s, a) + γQ(s′, a′)

This equation is the basis of many RL algorithms such as SARSA, TD, along

with Q learning.

2.1.4 Multiagent Reinforcement learning

Multiagent reinforcement learning extends traditional reinforcement learning method

based on Markov decision process to stochastic games [22]. The markov game is

defined for N agents, each identified by i ∈ {1, ..., N}, where agents coordinate

or compete. The environment has a true state s ∈ S. At each time step, each

agent simultaneously chooses an action ui ∈ U , forming a joint action un ∈ Un.

All agents share the same global reward function r(s, u) : SXU → R. As a result,

the value function Vi of each agent becomes a function of joint policy π.

2.1.5 Reward Shaping

Multiagent coordination have several applications in real world. However, the

problem of structural credit assignment is a limiting factor when deploying such a

solution in the real-world. It is very difficult to identify the contribution of each

agent from a sparse team based reward, when multiple agents are concurrently

11

acting as well as learning in the same environment. The idea of reward shaping

is to provide more informative reward to each agent to simplify learning [15]. A

popular method of reward shaping are is based on difference evaluations, such as

Difference rewards [16], and D++ [40].

2.1.5.1 Difference Rewards:

The difference reward (Di) is a shaped reward signal that helps an agent learn the

consequences of its actions on the system objective by removing a large amount of

noise created by actions of other agents, learning concurrently in the system. The

difference evaluation function is a shaped reward that makes use of counterfactuals

to query the direct effect of an individual’s contribution to the team’s performance

[16].

Di(z) = G(z)−G(zi ∪ ci)

where z is the joint state, G(z) is the global system performance, z−i are all

the state-actions on which agent i has no effect on ci is the counterfactual term (a

fixed vector used to replace the effects pf agent i). Any action taken by agent i to

increase Di simultaneously increases G. This property is called alignment, and is a

key property of any shaped reward. Further, 2nd term removes the, resulting in an

improves signal to noise ratio. This term is called sensitivity. The alignment and

sensitivity properties of the difference evaluation function results in agent-specific

feedback, which leads to superior learning performance.

The two key advantages of difference rewards as : first it removes the noise due

12

to other agents, by removing the impact of other agents in the systems. It provides

an agent with a cleaner signal than G. Second, because the second term does not

depend on actions of other agent,s, any action by agent j which improves D also

improves G. Estimating difference rewards or calculating them directly has proven

to be an effective technique for credit assignment in many applications, including

rover coordination, urban road traffic management, data routing, etc.

2.1.5.2 D++:

In multiagent coordination tasks, the task cannot be accomplished unless tight co-

ordination among more than one agents is established and maintained. This poses

additional challenges to learning as the probability of agents to simulatenously ex-

ecute the right action is very low. Thus agents receive no feedback on their actions

unless other agents execute right action at specific time. In the absence of system

feedback they are not capable of evaluating any potential improvement in their

policies.

To faciilitate learning in such tasks, D++ [40] extends difference rewards for

tighly coupled tasks, to generate stepping stone rewards for actions that are poten-

tially useful towards team objective, but are not rewarded because other agents in

the team have not yet found their proper actions. While difference reward [16] does

not provide any feedback unless tight coordination among agents is established and

maintained D + + [40] computes the effect of introducing multiple hypothetical

identical agents (counterfactuals) to the system to deduce agent’s contribution to

13

the team objective.

Dn
++(i) =

G(z+(∪i=1,....,n)i)−G(z)

n

The division of D++ reward by n is for the purpose of normalization with

respect to the number of counterfactual agents.

2.1.6 Deep Deterministic Policy Gradient (DDPG)

DDPG [30] is an off-policy reinforcement learning algorithm which concurrently

learns an approximator to Q∗(s, a) and learning an approximator to a∗(S), for en-

vironments with continuous action spaces. It uses an actor-critic architecture [29].

The actor and critic are parametrized by deep neural networks with parameters

θπ and θQ, respectively. Additionally, target actor and target critic networks are

kept as θπ ′ and θQ′. The target networks are time delayed copies of original net-

works that slowly track the learned networks, and improve stability in learning.

During training, a noisy version of the policy is used to generate experiences in the

environment, and the corresponding experiences are stored in the replay buffer R.

The Q (critic) network is updated by minimizing the following mean-squared

Bellman error (MSBE) function.

Loss =
1

N

∑
i

(yi −Qi(si, ai|θQ))2

where,

yi = ri + γQ′(si+1, π
′(si+1|θπ ′)|θQ′)

14

Further, the actor is trained using sampled policy gradient:

∇θπ ∼
1

T

∑
i

∇aQ(s, a|θQ)|s=si,a=ai∇θππ(s|θπ)|s=si

2.1.7 Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed DDPG (TD3) [20] is an off-policy Reinforcement learning algorithm

which is an extended version of Deep Deterministic Policy Gradient [30]. While

DDPG can achieve great performance, a commonly failure mode of DDPG is that

the learned Q-function begins to dramatically overestimate Q-values, and this leads

to the policy breaking, as it exploits the errors in the Q-function. Twin Delayed

DDPG (TD3) addresses this problem by maintaining a deterministic policy π :

S → A, and two Q functions instead of one, and uses the smaller of the two

Q-values to form the targets in the Bellman error loss functions. TD3 updates

the policy (and target networks) less frequently than the Q-function. Further, it

adds a noise to the target action which makes it harder for the policy to exploit

Q-function errors by smoothing out Q along changes in action.

TD3 concurrently learns two Q-functions, Qphi1 and Qphi2 by mean square

Bellman error minimization, in almost the same way that DDPG learns its single

Q-function. The actions which are used to form the Q-learning target are based

on the target policy, µθtarg, but with clipped noise added on each dimension of the

action. After adding the clipped noise, the target action is then clipped to lie in

the valid action range. The target actions are thus:

15

a′(s′) = clip(µthetatarg(s
′) + clip(ε,−c, c), aLow, aHigh, ε ∼ N (0, σ)

Target policy smoothing essentially serves as a regularizer for the algorithm.

It addresses a particular failure mode that can happen in DDPG. If Q-function

approximator develops an incorrect sharp peak for some actions, the policy will

quickly exploit that peak and then have brittle or incorrect behavior. This can be

averted by smoothing out the Q-function over similar actions, which target policy

smoothing is designed to do.

Both Q-functions use a single target, calculated using whichever of the two

Q-functions gives a small target value.

y(r, s′, d) = r + γ(1− d)min
1=1,2

Qφ1,targ(s
′, a′(s′))

and then both are learned by regressing the target:

L(φ1, D) = E
(s,a,r,s′,d)∼D

[(Qφ(s, a)− y(r, s′, d))2]

L(φ2, D) = E
(s,a,r,s′,d)∼D

[(Qφ2(s, a)− y(r, s′, d))2]

By using the smaller Q-value for the target, and regressing towards that, helps

fend off overestimation in the Q-value.

Lastly, the policy is learned just by maximizing Qφ1.

16

max
θ

E
s∼D

[(Qφ2(s, µθ(s)]

which is pretty much unchanged from DDPG. However in TD3, the policy is

updated less frequently than the Q-functions are. This helps damp the volatility

that normally arises in DDPG because of how a policy update changes the target.

TD3 trains a deterministic policy in an off-policy way. If the agent were to

explore on-policy, in the beginning it would probably not try a wide enough variety.

To facilitate getting higher quality training data, you may reduce the scale of noise

over the course of training.

2.1.8 Evolutionary Algorithm

Evolutionary algorithms are heuristic based approaches to obtain optimal solutions

to problems that cannot be solved easily in polynomial time, such as NP hard prob-

lems. Evolutionary computation methods include genetic algorithms(GA) [48]and

evolution strategies(ES) [1], both of which are usually applied to the search of mul-

tidimensional parameter spaces; and genetic programming(GP) [4], which concerns

itself with evolving actual computer programs [14]. In contrast to most classical

optimization methods which maintains a single best solution found so far, evo-

lutionary algorithm maintains a population of candidate solutions. One of these

solutions is the best, while others are in the search region nearby. This helps evo-

lutionary algorithm avoid becoming trapped at a local optimum, where an even

better optimum may be found outside the vicinity of the current solution.

17

The Evolution algorithm begins with an initial population of randomly-generated

individuals [14]. The population based approach makes it a non-deterministic

method, which may yield somewhat different solutions on different runs. Each

member of this population is then evaluated and assigned a fitness (a quality as-

sessment). This makes the most fit members of the population survive, and the

least fit members are eliminated. This selection process is the step that guides the

evolutionary algorithm towards even-better solution. The EA used the selected

individuals to cross-over, and mutate, in order to produce children which are then

added to the population, replacing older individuals. In crossover, evolutionay

algorithm combines the elements of existing solutions in order to create a new so-

lution, with some of the features of each parent. In order to introduce new genes

into the children, mutation introduces random changes in one or more members

of the current population, yielding a new candidate solution (which may be worse

or better than the existing population members. One evaluation, selection, and

mutation cycle is known as generation. Mutation typically occurs probabilistically,

by changing a small portion of the children such that htye no longer perfectly mir-

rors subsets of the parents’ genes. Successive generations continue to refine the

population until a sufficiently fit individual is discovered.

2.1.9 Cooperative Coevolutionary Algorithm (CCEA)

Cooperative Co-evolutionary algorithm is an approach to a apply evolutionary

algorithms to evolve individuals for different roles in a common task [49], [13].

18

Cooperative Co-evolutionary algorithm decomposes the problem representation

into sub-components, then and concurrently search for solutions to sub-problems.

This enables agents to co-adapt to one another rather than trying to optimize their

performance with rational ideal collaborating agents.

CCEAs have the tendency to create agents which are capable of performing

adequately with a wide range of collaborators, rather than specializing to per-

form well with the best set of collaborators. CCEAs often produce stable, rather

than optimal solutions. However, there have been certain approaches which intro-

duce biases in the co-evolutionary search, to find an optimal solution. Two such

approaches are Leniency and Hall of fame.

2.1.9.1 Hall of fame:

Hall of fame was introduced by Rosin and Belew [44] for competitive co-evolution,

in which top individuals are saved in order to test against in future generations.

By saving top individuals, it lets CCEA to propagate genetic information from

best individuals to later generation. New individuals in future generations might

be tested against the hall of fame members.

2.1.9.2 Leniency

The concept of Leniency was introduced by Panait, Liviu [35] in coevolutionary

algorithms, where agents are paired with mutiple set of collaborators, and taking

19

the highest team fitness achieved from all runs. By taking the maximum of several

fitness evaluation samples, it encourages lowering the likelihood that a learning

agent will receive poor feedback simply because it was paired with suboptimal

teammates.

2.1.10 Evolutionary Reinforcement Learning

Evolutionary Reinforcement Learning (ERL) [28] is a hybrid algorithm that lever-

ages the population of an EA to provide diversified data to train an RL agent,

and reinserts the RL agent into the EA population periodically to inject gradient

information into the EA. It combines EA with PG [39]. Unlike traditional EA,

which discards the data after population of agents perform the rollouts, ERL stores

this data generated in a central replay buffer and leverages the replay buffer to

learn from them repeatedly, allowing maximal information extraction from each

experience leading to improved sample efficiency. PG, which learns using this

state distribution, inherits this implicit bias towards long-term optimization. Con-

currently, the PG learner is inserted into the EA population allowing the EA to

benefit from the fast gradient-based learning. This was further extended with

Collaborative Evolutionary Reinforcement learning (CERL) [26] to enable diverse

exploration and greater sample efficiency. CERL comprises a portfolio of policcies

that simultaneously explore and exploit diverse regions of the solution space . A

collection of learners optimize over varying time horizons leading to diverse port-

folio. Neuroevolution binds all the learners to generate a single emergent learner

20

that exceeds the capabilities of any individual learner. Both ERL and CERL were

investigated for single agent systems.

2.2 Related Work

2.2.1 Learning Individual Intrinsic Reward (LIIR)

LIIR [18] learns an individual parameterized intrinsic reward function for each

agent, to model the marginal contribution of each agent towards the team ob-

jective. With a bi-level optimization framework, each agent maximizes a linear

combination of real team reward from the environment and the learned intrinsic

rewards. The individual policy of each agent is updated under the direction of

proxy critic. The problem of solving individual proxy objectives is nested within

the outer optimization task, and the parameters of the policy and the intrinsic

reward functions are treated as parameters of the inner and outer optimization

problems. With the intrinsic reward for each of the agent, a proxy critic is defined

for each agent to direct their policy learning via actor-critic algorithms. However,

the intrinsic reward networks are updated based on a gradient computed on the

global reward - and thus cannot scale to problem with sparse global rewards.

2.2.2 Multiagent Deep Deterministic Policy Gradient (MADDPG)

Multiagent DDPG [31] addresses the non-stationarity problem of multiagent coor-

dination by leveraging a centralized critic, which has full access to the joint state

21

and action during training. The centralized critic is augmented with policy infor-

mation of other agents, while the actor only has access to local information. The

centralized critic is used only during training, while only decentralized actors are

needed during execution. This framework is also applicable to competitive as well

as mixed cooperative-competitive interactions. For more robust multiagent poli-

cies in competitive scenarios, a training regimen utilizing an ensemble of policies

for each agent, is introduced.

2.2.3 Counterfactual Multi-Agent Policy Gradients (COMA)

COMA [19] addresses credit assignment problem by using a counterfactual baseline

to learn an agent specific advantage function. It is based on 3 main ideas: first,

it uses a centralized critic, which is used only during training while only actor is

needed during execution, similar to MADDPG [31]; second, it uses a Counterfac-

tual baseline, inspired by difference rewards. Here the centralised critic computes

an agent-specific advantage function that compares the estimated return for the

current joint action to a counterfactual baseline that marginalises out a single

agent’s action, while keeping the other agents’ actions fixed. Third, COMA effi-

ciently computes the counterfactual baseline for all different actions of all other

agents, in a single forward pass.

All the above approaches rely on dense team rewards, and does not scale well

to multiagent coordination domains with sparse rewards, with additional temporal

and spatial coupling requirements.

22

2.2.4 Multiagent Evolutionary Reinforcement Learning (MERL)

A recent work on Multiagent Evolutionary Reinforcement Learning [27] addresses

the credit assignment problem in multiagent coordination tasks with sparse rewards

by integrating a gradient based optimizer to maximize a dense proxy reward and

a gradient free optimizer to maximize the team objective. The gradient-free op-

timizer is an evolutionary algorithm that maximizes the team objective through

neuroevolution. The gradient based optimizer is a policy gradient algorithm that

maximizes each agent’s dense, local rewards. These gradient-based policies are pe-

riodically copied into the evolutionary population, while the two processes operate

concurrently and share information through a shared replay buffer. MERL op-

timizes the team objective directly while simultaneously leveraging agent-specific

rewards to learn basic skills. It outperformans state of the art methods, such as

MADDPG, in multiagent coordination tasks with spatial (tight) coupling require-

ments. However, it does not address any temporal coupling requirements in the

tasks tested.

2.2.5 Multi-fitness Learning (MFL)

A closely related work to out method is Multi-fitness Learning (MFL) [50], where

the tasks involve both temporal and spatial coupling. Here, agents are pre-trained

on well defined sub-tasks, and the learned policies are then used to maximize the

sparse global rewards by learning the mapping from state space to local rewards.

In MFL, EA searches over actions that are generated by agents that have been

23

pre-trained on local skills only, without access to the team objective - thus EA

simply learns to pick an optimal pre-trained skill. Further, it uses EA to also learn

local skills beforehand. However, MFL involves a two step process - pre-training

skills, and then maximizing global rewards.

In contrast, MADyS optimizes its local rewards and global rewards in its end-to-

end learning process, enabling better sample efficiency. This is facilitated through

a shared replay buffer between evolutionary populations and the gradient based

learners. This enables MADyS to learn from experiences gathered towards maxi-

mizing the global reward. Further, we perform qualitative analysis by visualizing

the dynamic skill selection at each time step of the episode. This is crucial for

understanding how the agent behavior changes dynamically during an episode.

24

Chapter 3: MADyS: Multiagent Learning with Dynamic Skill

Selection

In this chapter, we introduce MADyS, a bi-level optimization framework, that

leverages a portfolio of semantically meaningful local rewards to address the struc-

tural credit assignment problem in multiagent domains. Here, each local reward

describes a basic skill and is designed based on domain knowledge. MADyS com-

bines gradient-based optimization to maximize dense local rewards, and gradient-

free optimization to maximize the sparse team-based reward. Each local reward

is used to train a local policy learner using policy gradient (PG) - and an evolu-

tionary algorithm (EA) that searches in a population of policies to maximize the

global objective by picking the most optimal local reward at each time step of an

episode. While these two process occur concurrently, the experiences collected by

the EA population are stored in a replay buffer and utilized by the PG based local

rewards optimizer for better sample efficiency. This enforces the local optimizers

to learn skills from experiences aligned towards optimizing the global objective.

Fig. 3.1 concisely explains the working of MADyS.

We test MADyS in a multiagent coordination environment - rover domain

[51, 50] - with temporal and spatial coupling. Results demonstrate that MADyS

outperforms several baselines. We also visualize the complex coordination behav-

iors by studying the temporal distribution shifts of the selected local rewards. By

25

visualizing these shifts throughout an episode, we gain insight into how agents learn

to (i) decompose a complex task into various sub-tasks, (ii) dynamically configure

sub-teams and (iii) assign the selected sub-tasks to the sub-teams to optimize as

a team on the global objective.

3.1 Motivating Example

Real-world multiagent tasks often require participating agents to collaborate with

varying spatial and temporal coupling requirements. While spatial coupling re-

quires the simultaneous presence of multiple agents at a given location, temporal

coupling requires agents to perform multiple sub-tasks sequentially. For example,

in search and rescue operations, a minimum number of agents might be needed

to lift and carry heavy objects (spatial coupling) and one may need to first ex-

ecute a ”search” policy in a team before executing a ”rescue” policy in another

team (temporal coupling). Thus, an individual agent relies on performant team-

members to complete the task, and receive a reinforcing reward. For tasks with

high spatial or temporal coupling, this significantly increases the sparsity of the

reward received - rendering it infeasible to learn a useful policy by relying only on

the binary global reward. MADyS leverages several semantically meaningful local

rewards to address this, as shown in Fig. 3.1.

26

(a) (b)

Figure 3.1: (a) Consider a team of 6 agents required to visit red, green and blue
POIs in a team of 3, in the following order POI-red → POI-green → POI-blue.
Based on user’s understanding of the domain, the most basic skills can be defined
as go to closest POI-red, go to closest POI-blue, go to closest POI-green, and go to
closest agent. With these set of local rewards, the optimal joint action for agents
would be to pick go to red for 3 agents, go to green for the other 3 agents, and later
any 3 agents must form a separate team and pick go to blue to complete the task in
the specified order. (b) Highlighted paths demonstrate how MADyS dynamically
selects skills from a set of semantically meaningful local rewards at each time step.
An agent selects red, blue and green sequentially in 3 consecutive time steps of the
episode.

3.2 Methodology

3.2.1 Policy Networks:

The multiagent team (of N agents) policies are represented using multiple neural

networks πn, where n represents the agent, n ∈ 1, 2, .., N . With local observation

for agent n, the output of πn is considered as agent n’s response. All agents

act according to their local observations. The policy Πk corresponding to kth

27

skill, is being shared among all agents, where k represents the local reward for

corresponding kth skill, k ∈ 1, 2, .., K. The output of Πk is the primitive action

which the agent executes in the environment to maximize the corresponding local

reward rk, to learn kth skill.

3.2.2 Global Reward Optimization:

A population of multiagent teams (of N agents), is initialized with random weights.

Once a team is evaluated, each agent in the team is rewarded by the fitness score

characterized by the global reward (team reward), which the team gets at the end

of the episode. The selection process selects a portion of a population for survival

with probability proportionate to their fitness score. The weights of the teams

in the population are probabilistically perturbed through mutation and crossover

operators to create the next generation of teams. Further, a portion of the teams

with the highest relative fitness is preserved as elites, and the team with the highest

fitness, denoted as champion, represents the best solution for the task. At each

time step of a rollout, EA picks a local reward k for each agent. The agent then

utilizes the deterministic policy Πk corresponding to skill k to execute primitive

actions in the environment. So, for every primitive action which an agent takes

in an environment, it gets a vector of local reward as r = [r1, r2, ...rK], which

captures how good or bad an agent performs in all K skills. The experiences

gathered during the EA rollouts are stored in a shared replay buffer R, as tuples

< s, a, s′, r, g > with r as vector of local rewards, and g is the global/ team reward.

28

As a result of EA, each agent learns to select the most aligned reward at each time

step, towards maximizing the team reward.

3.2.3 Local Reward Optimization:

The policy corresponding to each skill Πk is concurrently trained using gradient

based optimizer, to maximize rk. Each skill is initialized with an actor network

(Π) and a critic network (Q), and skill is learned using TD3 [20]. The experiences

generated from the rollout of all agents are stored in a shared replay buffer. The

actor and critic corresponding to kth skill samples a random mini-batch from the

replay buffer to update their parameters using gradient descent. To encourage skills

to become agents agnostic, we use a shared replay buffer across all agents. Upon

sampling the mini-batch of T transitions (si, ai, s
′
i, ri) from replay buffer R. Here,

ri = [ri1, ri2, ...riK] is the vector of local rewards. The action network is trained

using sampled policy gradient, and the critic network is updated by minimizing

the mean square Bellman error (MSBE) function.

yi = rik + γ min
j=1,2
Q′jk(si, a∼|θ

Q′jk) (3.1)

where a∼ = Π′k(si|θΠk) (action sampled from kth network Π′k) +ε, and rik is the

kth local reward from ith sample.

L =
1

T

∑
i

(yi −Qk(si, ai|θQk)2 (3.2)

29

∇θΠkJ ∼
1

T

∑
∇aQk(s, a|θQk)|s=si,a=ai∇θΠkΠk(s|θΠk)|s=si (3.3)

The actor and critic networks for kth skill are updated as follows-

θΠ′k ⇐ τθΠk + (1− τ)θΠ′k , θQ
′
k ⇐ τθQk + (1− τ)θQ

′
k (3.4)

Unlike EA, where teams directly optimizes a low fidelity sparse global reward,

Πk maximizes the dense local reward rk corresponding to each skill. To prevent

overtraining of Πk during concurrent skills learning with EA, we stop the training of

local skills when the total accumulated return (of local reward Rk =
∑T

n=t γ
krk(t+

l)) does not improve further.

3.2.4 EA → RL via Replay Buffer

The collective replay buffer R is the principal mechanism that enables sharing of

information across the evolutionary population among the skill learners. Regard-

less of whether the local rewards are aligned with the global reward, evolution

ensures that the skills are being trained using experiences gathered from rollouts

towards optimizing the global objective. The shared replay buffer allows for in-

creased information extraction from each individual agent, which facilitates ex-

ploration maximization and sample efficiency. These skills are concurrently used

by evolution to maximize the global objective, and consequently, the number of

experiences aligned with maximizing a particular skill is automatically adjusted

30

during the process of learning.

3.2.5 Skill Selection

Regardless the alignment of the local rewards with the global objective, EA learns

to optimize the selection of the local skills. This dynamical skill selection allows

agents to learn a complex non-linear combinations of basic skills to learn complex

coordination behaviors. Therefore, even when a skill learner Πk is ill-suited for

solving a task by itself, it can serve to be a key behavioral policy that explored

critical parts of the search space, and generates experiences which could be crucial

for optimizing the team reward. For a jth agent, at each time step, evolutionary

algorithm selects the most aligned rewardtype, and then action is predicted by the

policy corresponding to that rewardtype to be executed in the environment.

rewardtype = π(sjt)

ait = Πrewardtype(s
j
t)

(3.5)

31

Algorithm 1 Multiagent Learning with Dynamic Skill Selection

1: Initialize a population of M teams popπ, each with weights θπ initialized ran-
domly

2: Initialize K shared actors A with weights θΠk , and shared critics Qk with
weights θQk one for each reward type k

3: Initialize an empty cyclic shared replay buffer R
4: Define a white Gaussian noise generator Wg random number generator r() ∈

[0, 1)
5: for generation = 1, ∞ do
6: for team π ∈ popπ do
7: g, R = Rollout (π, Π, R, numenvs)
8: Assign g as π’s fitness
9: end for

10: Rank the population popπ based on fitness scores
11: Select the first e teams π ∈ popπ as elites
12: Select the remaining (k − e) teams π from popπ, to form set S using

tournament selection with replacement
13: while |S| < (k − e) do
14: Single-point crossover between a randomly sampled π ∈ e and π ∈ S and

append to S
15: end while
16: for reward type k=1, K do
17: Randomly sample an ith mini-batch of T transitions (si, ai, ri, s

′
i) from R

18: Compute yi = rik + γ min
j=1,2
Q′jk(si, a∼|θ

Q′jk) where a∼ = Π′k(si|θΠk) [action

sampled from kth network Π′k] +ε
19: Update Qk by minimizing the loss: L = 1

T

∑
i(yi −Qk(si, ai|θQk)2

20: Update Πk using the sampled policy gradient, as ∇θΠkJ ∼
1
T

∑
∇aQk(s, a|θQk)|s=si,a=ai∇θΠkΠk(s|θΠk)|s=si

21: Soft update target networks: θΠ′k ⇐ τθΠk + (1− τ)θΠ′k and θQ
′
k ⇐ τθQk +

(1− τ)θQ
′
k }

22: end for
23: end for

32

Algorithm 2 Function Rollout

procedure Rollout(π,Π,R, nums)
fitness = 0
for env i = 1 : nums do

Reset environment and get initial state s0

while env is not done do
for agent j = 1 : N do

reward type = π(sjt)
ait = Πrewardtype(s

j
t)

end for
s
′
t, rt, gt = envstep(at)

Append transition (st, at, s
′
t, rt, gt) to R

fitness⇐ fitness+ gt
st ⇐ s′t

end while
end for
Return fitness

nums
,R

end procedure

33

Chapter 4: Experiments and Results

In this chapter, we discuss the experiments we conducted to test MADyS in a

multiagent coordination environment- Rover Domain. Further, we demonstrate

results with varying spatial and temporal coupling requirements for completion of

task.

4.1 Rover Domain

In this work, we use a variant of rover domain used primarily in [51, 50]. Here,

a team of robots explore to observe several Points of Interests (POIs) scattered

across the environment. The robots and the POIs start at random locations in the

environment. The environment consists of homogeneous agents, and several types

of POIs, denoted by alphabetical letter as A,B, The task is to observe each

type of POI in a specific order, characterised by the temporal and spatial coupling,

explained as follows.

Observation Space: Each rover has its own observation space consisting

of separate channels q dedicated to each POI type and agents. Each channel

receives intensity information over 90◦ resolution spanning the 360◦ around the

robot’s position, as shown in Fig. 4.1. Within each 90◦, it returns the closest

reflector, occlusions make the problem partially-observable. Each robot outputs

34

two continuous actions: δh and δd, which represent change in heading ad drive

respectively. The maximum change in heading is capped at 180◦ per step while

the maximum drive is capped at 1m/s [25].

In each channel q, the observation vector encodes the relational information

between the rover and the POIs density [43]. The rover sensing function srover ,q is:

srover ,q =
∑
j∈Jq

1

δ2
i,j,t

(4.1)

δi,j,t is the distance between the sensing rover i and some other rover j in

quadrant q at time step t; Jq is the set of all rovers in q.

The POI sensing function is spoi ,q:

spoi ,q =
∑
k∈Kq

Vk
δ2
i,k,t

(4.2)

where δi,k,tis the current bounded distance between the sensing rover i and some

POI k; Kq is the set of all POIs in q; and Vk is the value of the POI k.

Coupling: The tasks requires two types of coupling: spatial and temporal.

Spatial coupling is defined as the number of agents required to simultaneously

observe a POI. For instance, 3 agents are simultaneously required to observe 3

walls of a triangular Point of interest, or 4 walls of a square Point of Interest. Even

if one agent is missing, the POI is considered to be unobserved. All agents should be

within an activation distance from each POI at the same time, in order to observe

it. Temporal coupling is the sequence of different types of POIs required to be

observed by the rovers,while satisfying the spatial coupling. This is characterised

35

by the parent POI of each type. For instance, if task is to observe POIs of type A

followed by type B, followed by type C, then the parent POI for type B is POI-A,

and parent POI for type C is POI-B. Therefore, to observe a POI, it should fulfil

both these conditions: a) its Parent POI should be observed before it, b) spatial

coupling of the the current POI should be satisfied. For instance, if there are 2

agents with spatial coupling requirement of 2, and temporal coupling is 3, this

implies that agents must coordinate in a team of 2 to observe POI-A, then POI-B,

then POI-C in this order (POI-A → POI-B → POI-C). Overall, this is a complex

exploration task with different axes of complexity characterised as spatial coupling

and temporal coupling.

Rewards: The team’s global reward is binary. This is computed and given to

each agent at each time step. The team gets a reward of 1, when a POI of all types

are observed, i.e when the temporal as well as spatial coupling are fulfilled; and 0

otherwise. This is an extremely sparse, low-fidelity, and noisy learning signal. At

each time step, each agent also receives a vector of local rewards (corresponding

to different skills), computed as the inverse of the distance to the closest POI of

each type, and to the closest agent. This local reward is dense as agent receives

this at each time step corresponding to its distance from each type of closest POI

and closest agent. However, these local rewards are not necessarily aligned with

the global objective. The local rewards are just a mechanism to inject domain

knowledge into the problem.

36

4.2 Compared Baselines

We compare the performance of MADyS with a standard evolutionary algorithm

(EA) [11] operating directly on the low-level actions. We also compare with Multi-

fitness Learning (MFL) [50]. In MFL, EA searches over actions that are generated

by agents that have been pre-trained on local skills only, without access to the

team objective - thus EA simply learns to pick an optimal pre-trained skill. We

adapt MFL in our domain by pre-training for local skills in the same environment

as MADyS - e.g., an agent can observe other agents and all POI types, while pre-

training on a skill. The original MFL paper adopted EA to also learn local skills

separately, we allow our MFL agents to be pre-trained using PG and a shared replay

buffer. These modifications to MFL agents ensure that they are more sample-

efficient than the original implementation. This also equalizes the skill learning

modules in MFL and MADyS and ensures that any sample efficiency gains we

observe come purely from the joint optimization of local and global objectives in

MADyS and not from implementation differences of the common components. In

the rest of this paper, we refer to this modified implementation as MFL.

In both MADyS and MFL, we determine local skills with domain knowledge

of the environment, and the local reward corresponding to each local skill is deter-

mined as distance based proxy rewards.

Both MFL and MADyS utilize EA to select skills, rather than low level ac-

tions. However, in MADyS, local skills are learnt concurrently with the global

optimization, which makes the overall process more sample efficient. The con-

37

current learning of low level skills and agent policies to optimize team objective

allows agents to learn skills from experiences driven towards optimizing the global

reward. We use TD3 [20] as the PG method to optimize local rewards for both

MADyS and for pre-training skills for our baseline MFL.

4.3 Reported Metrics

For all the experiments, the team with the highest fitness in the EA population is

selected as the champion policy. We conduct 5 statistically independent runs with

random seed from 2000, 2004 and report the average performance with error bars

showing 95% confidence interval. All scores reported are compared against the

number of environment steps. The scores correspond to the average global/ team

reward 5 statistically independent runs. For the baseline MFL, the environment

steps are calculated as sum of environment steps required to pre-train the skills and

environment steps required by EA to optimize the team objective using pre-trained

skills.

4.4 Results

4.4.1 Varying Temporal and Spatial Coupling

We conduct several experiments on the rover domain with varying temporal and

spatial coupling. Particularly, we consider environments with temporal coupling

of 2 and 3, with spatial coupling of 1, 2 and 3.

38

Figure 4.1: The rover domain setup: multiple rovers and different types of Points
of Interests (POIs) characterized by different color. A rover observes the world in
4 quadrant around it. In each quadrant, it observes the number of other rovers, as
well as the number of POIs of each type. The observation space of each rover con-
sists of the density of rover and POIs of each type in each quadrant, concatenated
across all 4 quadrants.

4.4.2 Temporal Coupling of 2

Here, the environment consists of 2 POIs, one of each type denoted as POI-A and

POI-B. The semantically meaningful skills are defined by the designer and includes

got to POI-A, go away from POI-A, go to POI-B, and go away from POI-B. If the

environment has more than 1 agent, the additional skills include go to agent, and

go away from agent. At each time step, an agent receives a vector of local rewards

corresponding to each of these skill, in addition to sparse team based reward. For

39

(a) Configuration: 1 agent with spatial coupling of 1. The agent learns to select the skill
”go to POI-A” for the first half of the episode, followed by ”go to POI-B” in the second
half.

(b) Configuration: 2 agents with spatial coupling of 2. Agent-1 selects ”go to POI-A”
followed by ”go to POI-B”, whereas Agent-2 learns to stay close to Agent-1 by picking
”go to agent” for all time steps.

40

(c) Configuration: 6 agents with spatial coupling of 3. Agent-1, Agent-2 and Agent-5
form a team of 3 and pick ”go to POI-A”, and Agent-3, Agent-4 and Agent-6 form
another team of 3 and pick ”go to POI-B”.

Figure 4.2: Training curves (left) and histograms (right) showing the distributional
shift of local rewards, for various spatial coupling factors with a temporal coupling
of 2 where the agents need to go from POI A → B in a team of x characterized
by spatial coupling. The episode length is 50 time steps. The vertical dotted blue
line denotes the time steps required to pre-train the skills for the MFL baseline.
Y-axis denotes the performance as the average global/team across 5 statistically
independent runs. Performance degrades gracefully as the spatial coupling factor
increases.

41

(a) Configuration: 1 agent with spatial coupling of 1. The agent learns to select the
skills ”go to POI-A”, ”go to POI-B” and ”go to POI-C” in that sequence.

(b) Configuration: 4 agents with spatial coupling of 2. Agent-1 and Agent-2 form a
team of 2 and select ”go to POI-A”, whereas Agent-3 and Agent-4 switch between ”go
to POI-B” and ”go to POI-C” and visit POI-B followed by POI-C.

42

(c) Configuration: 6 agents with spatial coupling of 3. Due to increasing temporal and
spatial coupling, the task is extremely challenging, and therefore the agent behaviors
learned by MADyS are not entirely optimal as well as intuitive. Agent-2, Agent-3 and
Agent-4 form a team of 3 and select ”go to POI-A”, whereas Agent-1 and Agent-5 and
Agent-6 switch between ”go to POI-B” and ”go to POI-C” which is not optimal for the
completion of the task.

Figure 4.3: Training curves (left) and histograms (right) showing distributional
shift of local rewards for various spatial coupling factors with a temporal coupling
of 3 where the agents need to go from POI A→ B→ C in a team of k characterized
by spatial coupling. The episode length is 70 time steps. The vertical dotted blue
line denotes the time steps required to pre-train the skills for the MFL baseline.
Y-axis denotes the performance as the average global/team across 5 statistically
independent runs. Performance degrades gracefully as the spatial coupling factor
increases.

43

a spatial coupling of x, the team objective is to visit POI-A followed by POI-B in

a team of x. The agents receive a global reward of 1 only upon completion of the

task, otherwise it is 0. This sparsity of the global reward is the primary difficulty

in this task. The results corresponding to temporal coupling of 2, are shown in

Fig. 4.2.

4.4.3 Temporal Coupling of 3

Here, environment consists of 3 POIs, one of each type denoted as POI-A, POI-

B and POI-C. Based on domain knowledge , the semantically meaningful skills

defined by the designer comprises of got to POI-A, go away from POI-A, go to POI-

B, go away from POI-B, got to POI-C, and go away from POI-C. For multiagent

environments, additional skills include go to agent, and go away from agent. At

each time step, an agent receives a vector of local rewards corresponding to each

of these skill, in addition to sparse team based reward. The team objective is to

visit POI-A followed by POI-B, followed by POI-C, in a team of x characterized

by spatial coupling. The agents get a global reward of 1.0 only upon completion

of the task, otherwise it is 0.0. The results corresponding to temporal coupling of

3, are shown in Fig. 4.3

The plots for various configurations shown in Fig. 4.2, and Fig. 4.3 shows that

MADyS outperforms EA, as well as MFL, across all coupling requirements. With

the increasing temporal and spatial coupling requirement, learning optimal joint

policy becomes increasingly challenging due to difficulty in joint-space exploration

44

as well as coordinated complex agent-specific behaviors. The behavior of EA relies

on agents’ stumbling upon the desired goal state, and the likelihood of this behav-

ior becomes extremely challenging for high temporal and spatial coupling. Both

MADyS and MFL degrade gracefully with increasing coupling requirements - how-

ever, MADyS is overall more sample-efficient than the latter on all configurations

tested.

4.5 Learned Team Behaviors

The team behavior learned using MADyS is demonstrated using episodic local

reward distribution in Fig. 4.2 and 4.3.

For a temporal coupling of 2, with spatial coupling of 1, Fig. 4.2a shows the

shift in local reward distribution from go to POI-A to go to POI-B across the

episode. For a configuration of 2 agents, with a spatial coupling of 2, Fig 4.2b

demonstrates the shift in distribution of local reward from Agent − 1 from go to

POI-A to go to POI-B in the episode. On the other hand, the distribution of

Agent − 2 is centered around go to agent for the entire episode. This enables

Agent − 2 to always remain close to Agent − 1 in order to complete the task in

a team of 2. Further, for a configuration with 6 agents, and spatial coupling of 3,

agents distribute themselves in 2 teams of 3 agents each, shown in distribution of

local rewards of Fig. 4.2c. Distribution of Agent−1, 2 and 5 is centered around go

to POI-A, while distribution of Agent−3, 4 and 6 is centered around go to POI-B,

to observe POI − A followed by POI −B in a sequence.

45

For a temporal coupling of 3, with spatial coupling of 1, Fig. 4.3a shows the

shift in local reward distribution from go to POI-A to go to POI-B to go to POI-

C across the episode in order to observe POI − A → POI − B → POI − C.

For a configuration with 4 agents and spatial coupling as 2, Fig 4.3b shows that

Agent− 1 and 2 distribution is centered around go to POI-A, while for Agent− 3

and 4, the most dominant skills picked up are go to POI-B and go to POI-C.

Therefore, Agent − 1 and 2 first observe POI − A, and Agent − 3 and 4 observe

POI − B in a team of 2, followed by Agent − 3 and 4 observing POI − C in a

team of 2.

46

Chapter 5: Conclusion and Future work

In this paper, we introduced MADyS - a framework that allows a team of agents

to coordinate and solve complex tasks involving spatial and temporal coupling.

MADyS targets a class of multiagent coordination problems where agents need

to learn to decompose a long-horizon task into several sub-tasks each of which

require different sub-strategies. MADyS solves this by allowing multiagent teams

to dynamically select from local policies that are trained on different dense local

objectives in order to optimize on a sparse global objective. It outperforms all

baselines tested on a set of complex coordination problems with several spatial

and temporal coupling requirements.

MADyS paves the way for multiagent systems to scale beyond traditional ap-

proaches that rely on a single loss function to capture long term objectives. Its

ability to exploit several sub-objectives simultaneously expands the flexibility of

design for long-horizon problems for both single- and multi-agent settings.

An interesting future direction for this work is to incorporate learnable local

skills along with user-defined ones in order to allow better diversity of local strate-

gies. Although prior works have studied the discovery of local objectives, they have

not been shown to scale to the types of spatially and temporally coupled problems

characterized by sparse rewards that we study in this paper. MADyS’s use of

gradient-free and gradient-based optimization to handle such sparse objectives can

47

potentially address the shortcomings of these works that rely solely on gradient

based learning.

48

Bibliography

[1] Thomas Back, Frank Hoffmeister, and Hans-Paul Schwefel. A survey of evo-
lution strategies. In Proceedings of the fourth international conference on
genetic algorithms, volume 2. Morgan Kaufmann Publishers San Mateo, CA,
1991.

[2] Chris AB Baker, Sarvapali Ramchurn, WT Teacy, and Nicholas R Jennings.
Planning search and rescue missions for uav teams. In Proceedings of the
Twenty-second European Conference on Artificial Intelligence, pages 1777–
1778. IOS Press, 2016.

[3] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mor-
datch. Emergent complexity via multi-agent competition. arXiv preprint
arXiv:1710.03748, 2017.

[4] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone.
Genetic programming. Springer, 1998.

[5] Anouer Bennajeh, Slim Bechikh, Lamjed Ben Said, and Samir Aknine. Multi-
agent cooperation for an active perception based on driving behavior: Appli-
cation in a car-following behavior. Applied Artificial Intelligence, pages 1–20,
2020.

[6] Sushrut Bhalla, Sriram Ganapathi Subramanian, and Mark Crowley. Deep
multi agent reinforcement learning for autonomous driving. In Canadian Con-
ference on Artificial Intelligence, pages 67–78. Springer, 2020.

[7] Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically mo-
tivated reinforcement learning. Advances in neural information processing
systems, 17:1281–1288, 2004.

[8] Xiangxiang Chu and Hangjun Ye. Parameter sharing deep deterministic policy
gradient for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:1710.00336, 2017.

49

[9] Jen Chung, Damjan Miklić, Lorenzo Sabattini, Kagan Tumer, and Roland
Siegwart. The impact of agent definitions and interactions on multiagent
learning for coordination. In AAMAS’19 Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1752–1760.
International Foundation for Autonomous Agents and Multiagent Systems,
2019.

[10] Jen Jen Chung, Carrie Rebhuhn, Connor Yates, Geoffrey A Hollinger, and Ka-
gan Tumer. A multiagent framework for learning dynamic traffic management
strategies. Autonomous Robots, 43(6):1375–1391, 2019.

[11] Carlos A Coello, Gary B Lamont, David A Van Veldhuizen, et al. Evolutionary
algorithms for solving multi-objective problems, volume 5. Springer, 2007.

[12] M. Colby, L. Yliniemi, and K. Tumer. Autonomous multiagent space explo-
ration with high level human feedback. Journal of Aerospace Information
Systems, 2016. (to appear).

[13] Mitchell K Colby and Kagan Tumer. Shaping fitness functions for coevolving
cooperative multiagent systems. In AAMAS, volume 1, pages 425–432, 2012.

[14] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms,
volume 16. John Wiley & Sons, 2001.

[15] Sam Devlin and Daniel Kudenko. Theoretical considerations of potential-
based reward shaping for multi-agent systems. In The 10th International
Conference on Autonomous Agents and Multiagent Systems, pages 225–232.
ACM, 2011.

[16] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. Potential-
based difference rewards for multiagent reinforcement learning. In Proceedings
of the 2014 international conference on Autonomous agents and multi-agent
systems, pages 165–172. International Foundation for Autonomous Agents and
Multiagent Systems, 2014.

[17] Kurt Dresner and Peter Stone. Multiagent traffic management: An improved
intersection control mechanism. In Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 471–
477, 2005.

50

[18] Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir:
Learning individual intrinsic reward in multi-agent reinforcement learning. In
Advances in Neural Information Processing Systems, pages 4403–4414, 2019.

[19] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. Counterfactual multi-agent policy gradients. arXiv
preprint arXiv:1705.08926, 2017.

[20] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function ap-
proximation error in actor-critic methods. arXiv preprint arXiv:1802.09477,
2018.

[21] Piotr J Gmytrasiewicz and Prashant Doshi. A framework for sequential plan-
ning in multi-agent settings. Journal of Artificial Intelligence Research, 24:49–
79, 2005.

[22] Junling Hu, Michael P Wellman, et al. Multiagent reinforcement learning:
theoretical framework and an algorithm. In ICML, volume 98, pages 242–250.
Citeseer, 1998.

[23] Shariq Iqbal and Fei Sha. Coordinated exploration via intrinsic rewards for
multi-agent reinforcement learning. arXiv preprint arXiv:1905.12127, 2019.

[24] Tommi Jaakkola, Satinder P Singh, and Michael I Jordan. Reinforcement
learning algorithm for partially observable markov decision problems. In Ad-
vances in neural information processing systems, pages 345–352, 1995.

[25] Shauharda Khadka. Tackling credit assignment using memory and multilevel
optimization for multiagent reinforcement learning. 2019.

[26] Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren
Tumer, Santiago Miret, Yinyin Liu, and Kagan Tumer. Collaborative evolu-
tionary reinforcement learning. arXiv preprint arXiv:1905.00976, 2019.

[27] Shauharda Khadka, Somdeb Majumdar, and Kagan Tumer. Evolutionary
reinforcement learning for sample-efficient multiagent coordination. arXiv
preprint arXiv:1906.07315, 2019.

[28] Shauharda Khadka and Kagan Tumer. Evolution-guided policy gradient in re-
inforcement learning. In Advances in Neural Information Processing Systems,
pages 1188–1200, 2018.

51

[29] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances
in neural information processing systems, pages 1008–1014, 2000.

[30] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[31] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and
Igor Mordatch. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems, pages
6379–6390, 2017.

[32] Marin Lujak, Alberto Fernández, and Eva Onaindia. A decentralized multi-
agent coordination method for dynamic and constrained production planning.
In Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, pages 1913–1915, 2020.

[33] Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Credit assign-
ment for collective multiagent rl with global rewards. In Advances in Neural
Information Processing Systems, pages 8102–8113, 2018.

[34] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforce-
ment learning for multiagent systems: A review of challenges, solutions, and
applications. IEEE transactions on cybernetics, 2020.

[35] Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical advantages of lenient
learners: An evolutionary game theoretic perspective. Journal of Machine
Learning Research, 9(Mar):423–457, 2008.

[36] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V
Albrecht. Dealing with non-stationarity in multi-agent deep reinforcement
learning. arXiv preprint arXiv:1906.04737, 2019.

[37] James Parker, Ernesto Nunes, Julio Godoy, and Maria Gini. Exploiting spatial
locality and heterogeneity of agents for search and rescue teamwork. Journal
of Field Robotics, 33(7):877–900, 2016.

[38] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, pages 16–17, 2017.

52

[39] Jan Peters and J Andrew Bagnell. Policy gradient methods. Encyclopedia of
Machine Learning, pages 774–776, 2010.

[40] Aida Rahmattalabi, Jen Jen Chung, Mitchell Colby, and Kagan Tumer.
D++: Structural credit assignment in tightly coupled multiagent domains.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 4424–4429. IEEE, 2016.

[41] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling
others using oneself in multi-agent reinforcement learning. arXiv preprint
arXiv:1802.09640, 2018.

[42] Miguel Sozinho Ramalho, Rosaldo JF Rossetti, Nélio Cacho, and Arthur
Souza. Smartgc: a software architecture for garbage collection in smart cities.
International Journal of Bio-Inspired Computation, 16(2):79–93, 2020.

[43] Golden Rockefeller, Shauharda Khadka, and Kagan Tumer. Multi-level fitness
critics for cooperative coevolution. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1143–1151,
2020.

[44] Christopher D Rosin and Richard K Belew. New methods for competitive
coevolution. Evolutionary computation, 5(1):1–29, 1997.

[45] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[46] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement
learning, volume 135. MIT press Cambridge, 1998.

[47] Martijn Van Otterlo and Marco Wiering. Reinforcement learning and markov
decision processes. In Reinforcement Learning, pages 3–42. Springer, 2012.

[48] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing,
4(2):65–85, 1994.

[49] R Paul Wiegand. An analysis of cooperative coevolutionary algorithms. PhD
thesis, Citeseer, 2003.

53

[50] C. Yates, R. Christopher, and K. Tumer. Multi-fitness learning for behavior-
driven cooperation. In Proceedings of Genetic and Evolutionary Computation
Conference (GECCO), Cancun, Mexico, July 2020.

[51] Logan Yliniemi and Kagan Tumer. Multi-objective multiagent credit assign-
ment through difference rewards in reinforcement learning. In Asia-Pacific
Conference on Simulated Evolution and Learning, pages 407–418. Springer,
2014.

[52] Zhen Zhang and Dongqing Wang. Eaqr: A multiagent q-learning algorithm
for coordination of multiple agents. Complexity, 2018, 2018.

	Introduction
	Motivation and Challenges
	Research Questions:
	Contribution
	Organization of this Thesis

	Background and Related Work
	Background
	Markov Decision Process
	Partially Observable Markov Decision Process
	Reinforcement learning
	Multiagent Reinforcement learning
	Reward Shaping
	Deep Deterministic Policy Gradient (DDPG)
	Twin Delayed Deep Deterministic Policy Gradient
	Evolutionary Algorithm
	Cooperative Coevolutionary Algorithm (CCEA)
	Evolutionary Reinforcement Learning

	Related Work
	Learning Individual Intrinsic Reward (LIIR)
	Multiagent Deep Deterministic Policy Gradient (MADDPG)
	Counterfactual Multi-Agent Policy Gradients (COMA)
	Multiagent Evolutionary Reinforcement Learning (MERL)
	Multi-fitness Learning (MFL)

	MADyS: Multiagent Learning with Dynamic Skill Selection
	Motivating Example
	Methodology
	Policy Networks:
	Global Reward Optimization:
	Local Reward Optimization:
	EA RL via Replay Buffer
	Skill Selection

	Experiments and Results
	Rover Domain
	Compared Baselines
	Reported Metrics
	Results
	Varying Temporal and Spatial Coupling
	Temporal Coupling of 2
	Temporal Coupling of 3

	Learned Team Behaviors

	Conclusion and Future work
	Bibliography

