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The continuous improvement of construction operations requires a systematic 

approach of monitoring and making appropriate control actions. However, the lack of 

real-time information hinders this workflow and eventually compromises timely and 

effective decision-making. Project managers spend a great deal of time and effort to 

solve problems emerging from lack of timely information, poor coordination, and 

inaccurate out-of-date data. Emerging technologies like advanced data analytics, the 

internet of things, and superior computational power can aid in obtaining real-time 

information and actionable insight from the construction site. This is reflected in the 

growing use of emerging technologies to automatically monitor construction 

activities to improve the efficiency of construction management.  

The overarching research goal of this dissertation is to advance the body of 

knowledge and practice by integrating emerging technologies with project monitoring 

for data-driven decision-making. Specifically, this research develops a systematic 

framework to automatically identify activities performed by construction resources 

and then uses this real-time information to optimize the operations for data-driven 

decision-making. The methods developed in this study are applied to two different 

types of construction operations: heavy civil construction, and prefabricated 

construction. For both types of operations, first consumer-grade sensors, such as 



 

 

inertial measurement units (IMUs), microphones, RFID sensors were used to 

automatically identify, and track activities performed in the construction site utilizing 

machine learning and deep learning algorithms. Then the output from the activity 

identification framework was used as inputs to simulation models for dynamic 

productivity estimation and optimization of the operation to enable data-driven 

decision-making. This study contributes to the body of knowledge by providing a 

means for automated monitoring of construction operations using emerging 

technologies and assessing the use of simulation modeling for data-driven decision-

making. 
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1. CHAPTER 1: INTRODUCTION 

The construction industry is one of the largest in the world worldwide and accounts 

for about $10 trillion spent on goods and services every year (Barbosa et al. 2017). 

Despite its strategic importance, construction labor-productivity growth averaged 

only 1 percent in the construction sector globally, compared to 2.8 percent for the 

total world economy and 3.6 percent for manufacturing during in last two decades. 

The reasons behind the productivity stagnation in construction sectors can be broadly 

categorized into external forces (e.g., increasing project and site complexities, 

external regulations, uniqueness of product prohibiting mass production, etc.), 

industry dynamics (e.g., highly fragmented construction, misaligned contractual 

structures, and incentives, absenteeism at the worksite, etc.), and operational factors 

(e.g., poor construction methods, inadequate supervision, lack of site control system, 

insufficiently skilled labor at the supervisory level, lack of communication, non-

availability of information, etc.) (Barbosa et al. 2017; Hamza et al. 2019; Shehata and 

El-Gohary 2011; Teicholz 2013).  

Of the above forces, this dissertation focuses on operational factors such as lack of 

communication between site and supervisor, non-availability of as-built information, 

lack of site control system. These factors directly impact the ability of project 

manager/site managers to monitor performance indicators, which reduces their ability 

to detect and manage the variability and uncertainty of the project activities, thus 

obstructing timely decision making (Koskela and Howell 2001).  

Construction operations require a systematic approach to gaining value and 

knowledge for continuous improvement. This systematic approach can be described 
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with Deming’s cycle, or PDSA (Plan-Do-Study-Act) cycle (Sokovic et al. 2010). An 

adapted version of Deming’s cycle for construction operation is shown in Figure 1.1. 

 

Figure 1.1. Adapted Deming's cycle for construction operation 

As seen from Figure 1.1, the cycle for construction operations starts with planning the 

activities, identifying goals, and defining the performance metrics. This is followed 

by the execution of the plans on the actual site.  Then starts the monitoring of the 

activities, followed by evaluation by comparing the actual and planned performance. 

Any deviation observed in the monitored operation from the planned operation can 

prompt the construction manager to take corrective measures and mitigate adverse 

impacts on project performance. The lean construction management approach also 

views this as continuous improvement of project workflow (Koskela and Howell 

2001).  
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However, the lack of real-time information hinders this workflow and eventually 

compromises timely and effective decision-making. Project managers spend a great 

deal of time and effort to solve problems emerging from lack of timely information, 

poor coordination, and inaccurate outdated data. Sophisticated management 

information systems (MIS) or enterprise resource planning (ERP) systems are also 

limited by the availability of information while assisting the project manager. To get 

real-time information and actionable insight from the construction site efficiently and 

reliably, the implementation of emerging technologies such as advanced data 

analytics, distributed sensor systems, and superior computational power can 

poetically be helpful. Unfortunately, the construction industry has traditionally been 

viewed as slow to adopt technological advancement (Goodrum et al. 2011). However, 

research has shown opportunities as well as evidence of productivity improvement 

within sectors and processes of the construction industry as a result of utilizing new 

information technology (Goodrum et al. 2011; Zhai et al. 2009). Thus, it is reflected 

in the growing use of emerging technologies to automatically monitor construction 

activities to improve the efficiency of construction management.  

1.1. Background 

The background for this research will be described in two major categories that 

encompass the main topics of this study: (1) Automated monitoring of construction 

operations, and (2) Planning and optimization of construction operations. The first 

topic focuses on automated data collection methods for real-time information 

extraction using sensing technologies, such as cameras, location tracking devices 

(e.g., GPS), radio frequency identification (RFID), inertial measurement units (IMU), 
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etc. and advanced data analytics (e.g., machine learning, deep learning) for progress 

monitoring. The second category of research deals with simulation (e.g., discrete 

event simulation) and optimization of construction operations for planning. State-of-

the-arts in the abovementioned two categories are briefly discussed below.    

1.1.1. Automated monitoring of construction operations 

Construction site monitoring and operational analysis is an important contributor to 

overall project success but has traditionally been a labor-intensive manual process. 

These manual approaches have been noted to adversely affect the quality of the 

analysis (Carbonari et al. 2011), minimize opportunities for continuous long-term 

monitoring (Cheng and Teizer 2013), and result in subjective reports that together 

hinder proactive and informed decision making. Due to these disadvantages, several 

research efforts have focused on developing techniques to automatically monitoring 

activity on the construction site. Researchers in the construction engineering and 

management domain (CEM) have explored various approaches to recognize, track, 

and identify activities performed by construction resources. As shown in Figure 1.2, 

these studies in CEM can be broadly separated into two categories: activity 

recognition of workers, and activity recognition of equipment.  
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Figure 1.2. Construction resource activity recognition and scope of this study 

Based on the primary type of sensor used, these research efforts are broadly 

categorized into vision-based and sensor-based activity identification. In the latter 

category, researchers have explored both RTLS (e.g., GPS, UWB) and/or motion 

sensors (e.g., IMUs) for data collection. After the raw data are obtained, they are 

processed and analyzed using a variety of analytical methods (e.g., linear classifiers, 

support vector machines, decision trees, random forests, neural networks, nearest 

neighbors, etc.) to obtain the desired performance. Table 1.1 provides a summary of 

representative research efforts towards automatic activity recognition of construction 

equipment along with the analytical method used.  
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Table 1.1. Summary of equipment activity recognition research 

Techniques Reference Objective Analytical Method 

Used 

Vision-

Based 

Approaches 

 

Kim et al. 

(2018b) 

Interaction analysis 

between equipment 

Spatiotemporal 

reasoning and image 

differencing 

Bao et al. 

(2016) 

Operational efficiency 

analysis 

Decision tree 

Golparvar-

Fard et al. 

(2013) 

Analysis of construction 

operations 

Support vector 

machine 

Heydarian et 

al. (2012) 

Analysis of construction 

operations 

Support vector 

machine 

Rezazadeh 

Azar and 

McCabe 

(2012) 

Real-time activity 

control 

Bayesian belief 

network 

Hidden Markov 

Model 

Gong et al. 

(2011) 

Operation analysis and 

ergonomic studies 

Bayesian learning 

method 

Zou and Kim 

(2007) 

Idle time analysis Hue, Saturation and 

Clue Color Space 

Analysis 

RTLS 

and/or 

IMU-Based 

Approaches 

Vahdatikhaki 

and Hammad 

(2014) 

Near real-time 

simulation 

Rule-based approach 

Song and 

Eldin (2012a) 

Look-ahead scheduling Adaptive modeling 

Akhavian and 

Behzadan 

(2015) 

Input for simulation 

modeling 

Artificial Neural 

Network 

Decision Tree 

K-nearest neighbor 

Linear Regression 

Support Vector 

machine 

Ahn et al. 

(2015) 

Monitoring operational 

efficiency 

Naïve Bayes, Inquire 

based learning 

(IBL), J48, 

Multilayer 

perception 
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Mathur et al. 

(2015) 

Cycle time measurement Multi-layer 

perception 

Decision Tree 

Sequential minimal 

Random Forest 

Logistic regression 

Bayes Net 

Support vector 

machine 

 

It can be observed from Table 1.1 that previous efforts explored applications of 

equipment activity recognition for operational efficiency analysis, cycle time 

measurement, real-time activity control, and modeling dynamic simulation input. 

Also, various analytical methods such as statistical methods (i.e., Bayesian learning), 

distance algorithms (i.e., K-nearest neighbor), decision tree, neural networks (i.e., 

artificial neural network), and rule-based algorithms (i.e., Markov model) have been 

applied to process collected data. A more detailed examination of these activity 

recognition efforts is now provided to set the context for this research.  

1.1.1.1.Vision-based activity identification of equipment 

Many previous efforts have adopted vision-based techniques to identify the activities 

of construction equipment. Zou and Kim (2007) used image processing to quantify 

the idle times of hydraulic excavators by identifying only two states of the excavator: 

idle and busy. Azar and McCabe (2012) proposed an activity identification 

framework using rational events to recognize the dirt-loading activities of an 

excavator. Bao et al. (2016) investigated the use of long-sequence videos to 

automatically detect, track, and identify activities of an excavator and a dump truck. 

In a similar effort, excavators and dump trucks were also used to measure the 
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performance of earthmoving operations utilizing image frame sequences (Kim et al. 

2018b). The concept of the bag-of-video-feature-words model was extended using 

unsupervised classifiers into the construction domain to learn and classify labor and 

equipment activities (Gong et al. 2011).  

Vision-based techniques have shown promising results in tracking construction 

resources and identifying their operations. However, these techniques provide very 

limited information based on the field of view of the cameras used. It is challenging 

to maintain a direct line of sight to targeted resources due to a high level of noise 

(e.g., entity overlap, moving backgrounds, varying light conditions, etc.) on dynamic 

construction sites. These challenges can be overcome by adopting motion sensors that 

are not thus constrained.  

1.1.1.2.Sensor-based activity identification of equipment 

As opposed to vision-based methods, sensor-based approaches for activity 

identification uses different sensors (e.g., GPS, inertial measurement unit, etc.) to 

capture the location and motion of the equipment and then extract activity 

information from them.  

Location-based activity identification: Vahdatikhaki and Hammad (2014) proposed a 

multi-step data processing framework combining location and motion data to improve 

the accuracy of the localization to enhance the performance of equipment state-

identification. Song and Eldin (2012) developed an adaptive real-time tracking of 

equipment operation based on their location to improve the accuracy of project look-

ahead scheduling. Su and Liu (2007) presented a framework that used dynamic 

geometric data of resources and extracted construction operational data from them. In 
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another effort, Wang et al. (2012) proposed an automated methodology for tracking 

earthmoving operations in near real-time by attaching low-cost RFID tags to hauling 

units (trucks) and attaching fixed RFID readers to designated gates of projects’ dump 

areas. Remote tracking technology was also used to develop 3D animation of the 

equipment, and extracting equipment operations from the animation (Akhavian and 

Behzadan 2012a). Teizer et al. (2018) explored the feasibility of ultra-wideband 

(UWB) technology for real-time tracking and monitoring of resources. 

IMU-based activity identification: Although location-based operation tracking can 

identify the state and operation of construction equipment at a coarse level (e.g.: idle 

and busy states), it is incapable of classifying the activities performed by equipment 

when it is stationary. Such limitations of location-based operation tracking inspired 

researchers to explore the feasibility of both independent (Ahn et al. 2015) and 

smartphone embedded (Akhavian and Behzadan 2015; Mathur et al. 2015) inertial 

measurement units (IMUs) for automated equipment activity identification. Ahn et al. 

(2015) used a low-cost accelerometer mounted inside the cabin of an excavator to 

collect operational data of an earthmoving worksite. Several classifiers were tested to 

classify three different states (i.e. engine-off, idle, and busy) of an excavator. Mathur 

et al. (2015) utilized a smartphone-embedded accelerometer by mounting it inside an 

excavator cabin to measure various activity modes (e.g. wheel-base motion, cabin 

rotation, and arm movement) as well as duty cycles. Akhavian and Behzadan (2015) 

adopted a similar approach by attaching a smartphone to the cabin of a front-end 

loader to collect accelerometer and gyroscope data during an earthmoving operation, 

upon which several machine learning algorithms (i.e., ANN, DT, KNN, LR, SVM) 
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were tested. Their study also investigated the impact of different technical parameters 

such as level of details, and selection of features on the performance of different 

classification algorithms. The same approach and technical parameters were further 

extended for construction workers (Akhavian et al. 2015).  

1.1.2. Planning and Optimization of Construction Operations 

In the context of this research, simulation modeling is the process of creating and 

analyzing a virtual model of a real-world process to predict and forecast its 

performance. Simulation modeling has been widely explored for on-site and off-site 

construction processes in several previous studies (Afifi et al. 2017; Akhavian and 

Behzadan 2013; AlDurgham and Barghash 2008; Altaf et al. 2015b, 2018; Hammad 

et al. 2002; Jeong et al. 2011; Louis et al. 2014; Louis and Dunston 2016a; Zhang 

2004). A detailed review of the studies aiming to optimize construction operations is 

provided below. 

1.1.2.1. Simulation modeling in on-site construction 

There has been a significant body of work on the application of different simulation 

techniques (e.g., discrete-event simulation, agent-based simulation, etc.) to improve 

the efficiency of on-site construction operations. Louis and Dunston (2016) This 

study provides a framework for real-time monitoring of earthmoving operations using 

sensor data and finite-state machines. The authors also demonstrate the utility of 

discrete-event simulation modeling in both the planning and construction phase by 

advancing the model with construction resources. Akhavian and Behzadan (2013) 

developed a methodology to generate operational knowledge from multimodal data 

collected from various sensors (e.g., load cell, ultra-wideband, etc.) attached to 
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earthmoving equipment. The generated knowledge was further utilized to develop an 

accurate and realistic simulation model. The methodology was validated using 

laboratory-scale experiments. Lu and Olofsson (2014) proposed a framework 

consisting of building information modeling (BIM) and DES to enable the integration 

of DES in the planning and follow-up of construction activities. Vahdatikhaki et al. 

(2013) proposed a framework integrating tracking technologies used in Automated 

Machine Guidance (AMG) with simulation-driven 4D modeling to use the simulation 

tool as a proactive monitoring and planning tool in earthmoving projects. A 

laboratory-scale experiment was conducted to validate the proposed framework. 

Shitole et al. (2019) integrated a discrete-event simulation model with reinforcement 

learning and neural network to optimize earthmoving operations. The near-optimum 

policies generated from the proposed framework require minimum human guidance 

and outperformed human-design heuristics. Kim and Kim (2010) aimed to develop a 

multi-agent-based simulation model to analyze the traffic flow of construction 

equipment on construction sites. DES modeling cannot simulate the continuous 

dynamic behavior of the construction equipment, and thus this study intends to 

address this limitation by describing the behavioral characteristics of construction 

equipment using a multi-agent-based simulation system.  

The application of simulation tools in planning and managing underground 

infrastructure constructions was investigated (Ruwanpura and Ariaratnam 2007). This 

study shows the usefulness of simulation and analytical tools in capturing the risks 

and uncertainties of underground infrastructure construction projects and assisting in 

decision-making. González and Echaveguren (2012) proposed a dynamic modeling 
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framework based on DES by integrating traffic models and sustainable goals in road 

construction operations. A hypothetical project was studied to validate the framework 

and the results demonstrated that the proposed framework could optimize the number 

of trucks and front-end loaders to minimize the emission level. Chen et al. (2012) 

presented an intelligent scheduling system based on simulation modeling and 

integrating the major construction factors such as schedule, cost, space, manpower, 

equipment, and material simultaneously in a unified environment. Moreover, the 

evolutionary algorithm was utilized to achieve near-optimum distribution of 

manpower, equipment, material, and space according to project objectives and 

constraints. The case studies demonstrated higher effectiveness of the proposed 

framework compared to traditionally used scheduling tools such as Primavera and 

MS Projects. 

Zhang et al. (2014) proposed a DES model to estimate the emissions and noise 

generated from construction equipment from earthmoving projects. The case study 

demonstrated that the proposed framework is more convenient and accurate in 

accounting uncertainties, randomness, and dynamics in quantifying the emissions and 

noise compared to field measurement. Chan and Lu (2008) presented a DES 

modeling approach to improve the effectiveness of the material handling system in a 

precast viaduct construction project. The knowledge generated from the simulation 

model was added to the experience of the site manager and project director to assist 

them in designing the material handling system.  

Another study used DES modeling for productivity estimation of a sanitary trunk 

tunnel project (Chung et al. 2006). The Bayesian updating method was used to update 
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the simulation model with the most recent field data, and the result demonstrated 

improvement to the planning predictions compared to the initial estimates. In another 

effort, research presented a BIM-integrated simulation framework incorporating 

critical factors affecting productivity at the operation level to predict productivity 

dynamics at the construction planning phase (Jeong et al. 2016). The integration of 

BIM with the construction operation simulation enabled the adoption of construction 

plans according to the project changes. The findings demonstrated that the framework 

was reliable in predicting productivity dynamics. Mao and Zhang (2008) developed a 

framework for construction process reengineering by integrating lean principles and 

computer simulation techniques. Instead of labeling the activities as value-adding and 

non-value-adding, this study classifies them into main and supportive activities which 

is more effective in modeling the construction workflow. The results showed the 

effectiveness of the developed framework in assessing the efficiency of the re-

engineered construction process.  

1.1.2.2. Simulation modeling in off-site construction 

Significant research has been conducted in optimizing the construction process in off-

site constructions. Altaf et al. (2018) proposed an integrated production planning and 

control system for panelized home building using DES and radio frequency 

identification (RFID)- based tracking. A discrete and continuous simulation approach 

was also explored to optimize the production of off-site construction elements (Afifi 

et al. 2017). AlDurgham and Barghash (2008) proposed a simulation-based approach 

to facilitate decision-making for planning layout, material handling, scheduling, and 

manufacturing processes and resources for off-site house building. Ng et al. (2009) 
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used an activity-based construction simulation tool to quantify the productivity of 

resources for a residential prefabricated construction project. The results showed that 

the developed tool could successfully establish the most suitable strategy to improve 

the logistics of material handling.  Wang and Abourizk (2009) developed a special 

modeling system to build large-scale simulation models for industrial constructions. 

The proposed system can simulate activities, product flows as well as information 

flows. Several simulation experiments were conducted to test the effectiveness of the 

proposed system.  

Liu et al. (2015) investigated the potential of an automated planning tool to improve 

productivity and balance the production line in a panelized construction factory by 

integrating BIM and DES. A case study was conducted of a production line for light 

gauge steel panels and the results showed that the simulation modeling was useful for 

planning and improved production performance.  Goh and Goh (2019) conducted a 

simulation study for prefabricated volumetric unit construction by utilizing lean 

concepts to evaluate the application of simulation to improve modular construction 

efficiency. The baseline simulation model was developed and key lean principles, 

such as total quality control management, E-Kanban based Just-In-Time deliveries. 

The results demonstrated that the application of simulation and lean principles 

reduced cycle time and process time and increased process efficiency and labor 

productivity. Cheng et al. (2020) developed a system dynamics model to simulate the 

impacts of governments incentive strategies on the prefabricated construction 

industry by using an evolutionary game process between the government and the 

contractor. Du et al. (2019) investigated the potential of a multi-agent-based model to 
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simulate the coordination mechanism of the management strategies for design 

changes in prefabricated construction. The proposed simulation was able to test 

different design changes and their effectiveness in the managerial decision-making 

process.  

Murray et al. (2003) developed a virtual environment that can be used to interactively 

design prefabricated buildings and view a real-time simulation of the construction 

process. This aims to present the dynamics of the future-home construction site by 

enhancing the traditional drawing and Gantt charts. Altaf et al. (2015) proposed a 

simulation-based monitoring platform for the prefabricated construction process by 

integrating DES and an RFID system. The RFID was used to capture real-time 

production states and those were fed into the simulation model for real-time 

simulation results. Neill et al. (2020) proposed a virtual model-based simulation 

system to automatically model prefabricated building components using data 

available in BIM models. This system improves the efficiency of the on-site assembly 

analysis by optimizing the process for contractors.   

1.2. Research Gaps and Point of Departure 

Even though previous research has explored the possibilities of real-time, automated 

data collection, remote monitoring, simulation, and optimization of construction 

operations there is a lack of in-depth work in synthesizing different techniques and 

demonstrate the feasibility of such system to be applied in real-world construction 

projects. Moreover, the 4th industrial revolution requires an amalgamation of modern 

sensing technologies, advanced data analytics, engineering visualization, simulation, 

and optimization to run ever-so-complicated construction projects effectively and 
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successfully (Alaloul et al. 2020). Based on the review of literature conducted, the 

following gaps in the body of knowledge are identified:  

I. There is a lack of knowledge on the applicability of consumer-grade sensors 

in monitoring construction activities in real-time. 

II. A complete methodological framework optimizing physical (e.g., sensor 

placements, number of sensors, etc.) and analytical parameters (e.g., type of 

algorithms, resolution of activities, etc.) to monitor construction activities is 

missing from the literature.  

III. There is a lack of knowledge on how to use real-time activity information to 

facilitate the planning and optimization of construction operations. 

Towards this end, research is required to provide better means of monitoring the 

activities for data-driven decision-making. 

1.3. Research Goal and Objectives 

To fulfill the abovementioned knowledge gap, the overarching goal of this 

dissertation is to integrate emerging technologies with project monitoring for 

data-driven decision-making for construction operations. Two major objectives 

are identified to achieve this goal:  

Obj 1. Automatically identify states (i.e., location and activity) of the resources in 

the construction site.   

Obj 2. Develop dynamic simulation tools to analyze and optimize the operations. 

The specific research questions that this study aims to answer are: 
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Q1. What type of consumer-grade sensors can be used on construction sites to 

ensure a safe and reliable source of data collection? 

Q2. What type of data analytics techniques is appropriate to automatically identify 

activities from the resources? 

Q3. What are the key considerations that ensure optimum performance of the 

activity identification framework? 

Q4. Can simulation tools be used to provide dynamic predictions using the 

outcomes of the activity identification framework? 

Q5. What type of feedback can be provided from the monitoring and simulation 

for timely and effective decision-making? 

1.4. Scope of the Dissertation 

The scope of this study entails two different types of construction operations, and 

they are heavy civil construction and prefabrication construction. 

1.4.1. Heavy civil construction  

One of the main activities associated with heavy civil construction is earthmoving 

which encompasses the moving, removing, and/or adding soil or rock as a part of 

engineering work. Some of the most common projects that require earthmoving are 

the construction of roads, railway beds, dams, canals as well as commercial and 

residential buildings. These types of operation are primarily equipment-driven and 

major heavy equipment used in the earthmoving operation are excavators, backhoe 

loaders, front-end loaders, bulldozers, graders, scrapers, compactors, and dump 

trucks. Earthmoving operations are mostly cyclical, and a major part of the activity 
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involves digging loading soil to dump trucks using excavators, and loaders, 

transporting the soil, and dumping in the dump zone. To successfully manage 

earthmoving operations, it is essential to monitor the activities of the heavy 

equipment. Moreover, the information for the cyclical operation can be collected, 

analyzed, and used to plan before construction begins and to optimize during the 

construction enabling data-driven decision making. 

1.4.2. Prefabricated construction 

Prefabricated or off-site construction is the process of building various components 

and/or modular units of the structure at a manufacturing site and transporting those to 

the job site and assembling them. Prefabricated construction is becoming popular due 

to its documented advantages over traditional stick-built methods in terms of reduced 

waste and construction time, more control over resources and environment, and easier 

implementation of novel techniques and technologies in controlled practical settings.  

The highest level of modularization is the volumetric construction where modular 

units in the form of a three-dimensional unit for building are constructed off-site and 

minimal work is left to assemble it on site. A wide variety of built products are 

constructed in modular construction factories ranging from single-family homes to 

multi-family and office buildings. The construction operation inside a modular 

construction factory is cyclical where the modular units move from one workstation 

to another and various panelized components of the buildings (e.g., walls, ceiling, 

etc.) are added and assembled. Thus, to efficiently manage the operation inside a 

modular construction factory, it is important to monitor the activities that are 
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happening in different workstations. These activities can be tracked and analyzed for 

better planning and decision-making during the construction process.  

1.5. Outline of Dissertation 

To achieve the goal and answer the questions, this research study is designed to 

follow the research flow shown in  

Figure 1.3. This dissertation consists of six (6) chapters. 

1. Chapter 1 provides an overview and introduction of the study. This chapter 

provides insights regarding the background of the study, the motivation behind the 

research, and an outline of the dissertation.   Chapter 1 also includes a brief 

literature review covering the application of emerging technology for automated 

data collection from the construction site. 

2. Chapter 2 titled “Automated Activity Identification of Heavy Civil Equipment” 

presents a framework to automatically identify activities of construction equipment 

from heavy civil construction sites. This portion of the study focuses on 

developing a model with the application of consumer-grade sensors and machine 

learning and deep learning techniques to identify and track activities performed by 

equipment in the earthmoving site. In doing so, important physical and technical 

parameters were investigated to ensure the optimum performance of the model. 

Two papers describing this topic have been published in the Elsevier Journal of 

Advanced Engineering Informatics, and Frontiers in Built Environment (Rashid 

and Louis 2019b, 2020a). Chapter 2 is adopted from Manuscript #1 and 

Manuscript #2. 
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3. Chapter 3 titled “Dynamic Prediction of Earthmoving Operation” presents a case 

study showing how simulation modeling can be used to provide dynamic 

predictions for earthmoving operations. A real-world earthmoving site was used 

for the case study. The main inputs for the simulation modeling were obtained 

from the output of Chapter 2. A paper describing the content of this chapter will be 

submitted to a conference. This chapter represents Manuscript #3. 

4. Chapter 4 titled “Automated Activity Identification in Modular Construction 

Factories” presents a developed framework to automatically identify different 

activities inside a modular construction factory using multiple sources of data. A 

manuscript describing the content of this chapter has been published in the 

Elsevier Automation in Construction journal (Rashid and Louis 2020b) and 

another one has been accepted in the IEEE Winter Simulation Conference 2021. 

Chapter 4 is a modified version of Manuscript #4 and Manuscript #5. 

5. Chapter 5 titled “Optimizing Labor Allocation in Modular Construction Factory” 

presents a case study using simulation modeling and evolutionary algorithm to 

optimize the allocation of labor working at different workstations inside a modular 

construction factory. The content of this chapter has been published in the 

proceedings of Winter Simulation Conference, 2020 (Rashid and Louis 2020c).  

6. Chapter 6 comprises the conclusions section of this study. This chapter includes a 

summary of how the research objectives were met, major findings, key 

contributions to the body of knowledge and practice, as well as study limitations 

and potential future research directions.   
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Figure 1.3 Research flow

Goal: 
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2. CHAPTER 2: AUTOMATED ACTIVITY IDENTIFICATION 

OF HEAVY CIVIL EQUIPMENT 

The content of Chapter 2 is an adapted version of the following manuscripts: 

1. Rashid, K., Louis, J., (2019). “Times-series data augmentation and deep learning 

for construction equipment activity recognition.” Advanced Engineering 

Informatics, 42, 100944. DOI: https://doi.org/10.1016/j.aei.2019.100944  

 

2. Rashid, K., Louis, J., (2020), “Automated activity identification for construction 

equipment using motion data from articulated members.” Frontiers in Built 

Environment. 5. DOI: https://doi.org/10.3389/fbuil.2019.00144 

 

2.1. Introduction 

Real-time monitoring and assessment of construction resources in a heavy civil 

project have always been a challenge due to the unique, dynamic, and complex nature 

of each construction site and operation. The ability to automatically classify activities 

performed by various equipment in real time can aid in making timely tactical 

operational decisions that can lead to increased fleet productivity, reduced operation 

time and cost, and minimized idle times. Such endeavors that require the 

identification of individual sequential tasks of equipment (e.g., excavator loading, 

swinging full, truck dumping) have traditionally been performed manually through 

human observation, making it extremely labor and time intensive. Meanwhile, the 

development of low-cost micro-electro-mechanical systems (MEMS) with rapidly 

evolving computing, networking, and storage capabilities present new opportunities 

in the real-time equipment activity recognition domain. These sensors, especially 

inertial measurement units (IMU) are already commercially available on modern 

https://doi.org/10.1016/j.aei.2019.100944
https://doi.org/10.3389/fbuil.2019.00144
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heavy equipment and are used presently on the field to determine the position of the 

cutting edge for automated machine guidance and control but have yet to be utilized 

for measuring activity cycle-times and equipment productivity.  

Previous efforts have explored the use of IMU and machine learning algorithms to 

identify activities of heavy equipment. However, no methodological framework is 

present in the literature demonstrating the appropriate use of IMU sensors for activity 

identification. Moreover, previous studies used different classification algorithms that 

use time-series sensor data from accelerometers and gyroscopes. These studies 

utilized pattern recognition approaches such as statistical models (e.g., hidden-

Markov models); shallow neural networks (e.g., Artificial Neural Networks); and 

distance algorithms (e.g., K-nearest neighbor) to model and analyzes the time-series 

data collected from sensors mounted on equipment. These methods necessitate the 

segmentation of continuous operational data with fixed or dynamic windows to 

extract statistical features. This heuristic and manual feature extraction process is 

limited by human domain knowledge and only can learn using human-specified 

shallow features.  However, recent developments in deep neural networks, 

specifically recurrent neural networks (RNN), presents new opportunities to model 

sequential time-series data with recurrent lateral connections. RNN can automatically 

learn high-level representative features through the network, instead of being 

manually designed, making it more suitable for complex activity recognition. 

However, the application of RNN requires a large training dataset which poses a 

practical challenge to obtain from construction equipment in the real world.  
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This study presents a data-augmentation framework for generating synthetic time-

series training data for an RNN-based deep learning network to identify equipment 

activities accurately and reliably. Three different equipment in heavy civil, excavator, 

loader and dump truck were used to validate the framework. Data were collected from 

three actual earthmoving projects. The deep learning activity identification 

framework presented in this study outperforms the traditionally used machine 

learning classification algorithms for activity recognition regarding model accuracy 

and generalization. Moreover, this study demonstrates the optimum number and 

placement of the sensors to achieve maximum performance of the model. 

2.2. Background 

The construction industry is recognized to have lower productivity when compared to 

other industries that produce engineered products like manufacturing (Cheng et al. 

2017). One major contributing factor is the temporary and transient nature of most 

operations, which make it difficult to implement systems that collect and analyze data 

to provide insights into that operation. Thus, one of the steps towards productivity 

improvement is to improve the techniques of assessing and monitoring the 

performance of key resources. Owning and maintaining heavy construction 

equipment contributes to a large portion of the total project costs, especially in the 

case of heavy civil projects. Therefore, identifying and tracking their activities plays 

an important role in measuring their performance, which itself is the primary 

prerequisite to enable improving performance. Automated, real-time, and reliable 

activity recognition of heavy construction equipment is thus a necessary step that 

enables several other practical applications such as automated cycle-time analysis 
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(Kim et al. 2018a; Mathur et al. 2015; Vahdatikhaki and Hammad 2014), productivity 

monitoring (Gong and Caldas 2009; Ok and Sinha 2006; Zou and Kim 2007), safety 

applications (Cheng and Teizer 2013; Rashid et al. 2017; Rashid and Behzadan 2018; 

Seo et al. 2015), an environmental assessment (Ahn et al. 2015; Martín-Garín et al. 

2018), near real-time simulation inputs (Akhavian and Behzadan 2015; Louis and 

Dunston 2016b; Vahdatikhaki and Hammad 2014), and applications in AR/VR 

visualization (Behzadan and Kamat 2012; Dong and Kamat 2013; Louis and Dunston 

2016a). To develop an effective activity recognition framework for construction 

equipment, several previous studies have explored the feasibility of using location 

data and/or time-series vibration data from inertial measurement units (IMU) (Ahn et 

al. 2015; Akhavian and Behzadan 2015; Mathur et al. 2015).  

2.2.1. RTLS and IMU-based construction equipment activity recognition1 

2.2.2. Deep learning for sensor-based activity recognition   

Extensive research studies have been conducted that implement deep learning 

algorithms to develop activity recognition frameworks, especially in human activity 

recognition (HAR). Some of the most common types of deep learning models used in 

activity recognition tasks are deep neural network (DNN), convolutional neural 

network (CNN), recurrent neural network (RNN), deep belief network (DBN), and 

stacked autoencoder (SAE). Vepakomma et al. (Vepakomma et al. 2015) used a DNN 

model to identify indoor activities of elderly people. In doing so, hand-engineered 

features were extracted from the wrist-worn sensors, and then those features were fed 

into a DNN. In another similar effort, Walse and Dhakaskar (Walse and Dharaskar 

 
1 Please refer to Section 1.4.1 for the literature review of this part. 
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2016) performed principal component analysis (PCA) before feeding the features to 

the DNN model. In these efforts, authors only used DNN as a classification model 

after hand-crafted feature extraction, which may not generalize the model optimally, 

and may cause a shallow network. To improve the performance of DNN, researchers 

used a higher number of hidden layers to automatically extract features and generalize 

the deep network (Hammerla et al. 2016). Improved performance of automated 

feature extraction using more hidden layers indicates that when HAR data are multi-

dimensional and activities are more complex, more hidden layers can help train the 

deep network by strengthening their representation capability (Bengio 2013). 

Convolutional neural network (CNN) is another deep learning model which is 

capable of automatic extraction of features from signals and it has achieved promising 

results in the HAR domain. In earlier work, each dimension of the sensor was treated 

as one channel (like RGB in an image), and then the convolution and pooling were 

performed separately (Zeng et al. 2014). In another study, a CNN framework was 

proposed to automate feature learning from the raw input to unify and share weights 

in multi-sensor data using 1D convolution (Yang et al. 2015). This approach allowed 

higher-level abstract representation of low-level time-series signals. In another similar 

work, passive RFID data were directly fed into deep CNN for activity recognition 

instead of selecting features and using a cascade structure that first detects objects 

from RFID data followed by predicting the activity.  

These de-facto standard approaches of activity recognition treat individual 

dimensions of the sensor data statistically independently. Thus, each dimension of the 

data is converted into feature vectors without due consideration of their broader 
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temporal context. To address this, recurrent neural network (RNN) incorporates 

temporal dependencies of sensor data streams, which is more appropriate for activity 

recognition than considering the data stream independently. Long-short term memory 

(LSTM) cells are often incorporated with RNN, serving as the memory units through 

the gradient descent steps of the RNN. Inoue et al. (Inoue et al. 2016) proposed a 

deep RNN-based activity recognition framework from raw accelerometer data and 

investigated various architectures of the model to find the best parameter values. 

Ordóñez and Roggen (Ordóñez and Roggen 2016) developed LSTM based RNN for 

multimodal wearable activity recognition which can perform sensor fusion naturally, 

does not require expert knowledge in designing features, and explicitly models the 

temporal dynamics of the feature vectors. This framework outperformed the previous 

results by up to 9%. Hammerla et al. (Hammerla et al. 2016) explored the RNN 

approach for wearable activity recognition by introducing a novel regularization 

approach and illustrated that the developed model outperformed the state-of-the-art 

non-recurrent approaches on a large benchmark dataset.    

RNN, specifically LSTM networks, have the capability of modeling sequential time-

series data by automatically extracting high-level representative features, and 

considering the temporal relationship among each time step of the sensor data. This 

holds a lot of promise for its application in construction equipment activity 

recognition. However, training an LSTM network requires a large training dataset 

which is a practical challenge to obtain from the construction equipment in the real 

world. This limitation is addressed by generating a large volume of synthetic training 
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data from a smaller amount of collected data using data augmentation techniques that 

will be reviewed in the next section. 

2.2.3. Data augmentation in shallow/deep learning 

Data augmentation is a technique that enhances a limited amount of data by 

transforming the existing samples to create new data (Um et al. 2017). This technique 

has been implemented to generate synthetic training data in the computer vision 

(Charalambous and Bharath 2016; D’Innocente et al. 2017; He et al. 2016; Liang and 

Hu 2015; Radford et al. 2015), speech recognition (Jaitly and Hinton 2013; Naoyuki 

Kanda 2013; Schlüter and Grill 2013), and time-series classification (Forestier et al. 

2017; Le Guennec et al. 2016a; Um et al. 2017) domains. Charalambous and Bharath 

(Charalambous and Bharath 2016) introduced a simulation-based methodology that 

can be used for generating synthetic video data and sequence for machine/deep 

learning gait recognition algorithms. D’Innocente et al. (D’Innocente et al. 2017) 

proposed an image data augmentation technique that zooms on the object of interest 

in an image and simulates the object detection outcome of a robot vision system to 

bridge the gap between computer and robot vision.  

Most advanced object recognition algorithms utilize various image augmentation 

techniques, such as flipping, rotating, scaling, cropping, translating, and adding 

Gaussian noise to generate synthetic data for training and testing machine/deep 

learning algorithms (Ding et al. 2016; Liang and Hu 2015; Radford et al. 2015).  In 

the speech recognition domain, studies have investigated vocal tract length 

normalization (Jaitly and Hinton 2013; Naoyuki Kanda 2013), speech rate, and 

frequency-axis random distortion (Naoyuki Kanda 2013), label-preserving audio 
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transformation (Schlüter and Grill 2013) and evaluated those methods improve 

learning algorithms.  

Despite the frequent implementation of data augmentation techniques in the computer 

vision and speech recognition domain, data augmentation in time series classification 

has not been deeply investigated yet (Um et al. 2017). Guennec et al. (Le Guennec et 

al. 2016b) proposed two-time series data augmentation techniques; window slicing, 

and time-warping to train a convolutional neural network (CNN). Forestier et al. 

(Forestier et al. 2017) introduced dynamic time warping (DTW) for time series 

classification to reduce the variance of a classifier. Um et al. (Um et al. 2017) 

proposed the most comprehensive set of time series data augmentation techniques to 

monitor the Parkinson patient using wearable sensors. This research will add to the 

body of knowledge on time-series data augmentation by applying more 

transformations and by using it to enable activity recognition for construction 

equipment.  

2.3. Research gaps and point of departure 

The following research gaps were identified from the review of current work from the 

domains of construction equipment activity identification, deep learning application, 

and time-series data augmentation.  

(1) Lack of features with long-term temporal dependency in equipment activity 

identification: Existing methods that apply pattern recognition approaches 

towards identifying equipment activity from time-series sensor data require 

manual extraction of statistical features, which is a time-consuming process, 

and limited by the need for domain-specific knowledge. Moreover, these 
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approaches do not consider the long-term temporal dependency between time 

steps of the time-series data. These limitations could be eliminated by 

automatically extracting highly representative features, containing the 

temporal dynamics of the sensor data using deep learning models.  

(2) Lack of application of deep learning in construction: Deep learning techniques 

have hitherto not been used in the construction domain due to the practical 

challenges posed by the requirement for a large amount of training data. This 

research will address this limitation by synthesizing data using augmentation 

techniques. 

(3) Lack of large amount of reliable field data: Application of deep learning 

techniques requires large amount of training data. Time-series data 

augmentation techniques are a relatively new area of research that can 

potentially reduce the manual field data collection effort significantly. This 

chapter will add to the literature in this domain by utilizing more 

transformations and by providing a practical application of its techniques.  

By considering the above specific gaps in the literature, the overall goal for this 

chapter is framed as enabling activity identification for construction equipment using 

an LSTM network trained with synthetic data. This research goal is accomplished in 

this chapter through the pursuit of these specific research objectives: 

(1) Develop a deep learning activity recognition framework for construction 

equipment using motion data of articulated elements (e.g., bucket, boom, arm, 

etc.) of the equipment. 
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(2) Develop time-series data augmentation techniques to generate synthetic 

training datasets to train the LSTM network with a large volume of training 

for better performance. 

(3) Evaluate the performance of the LSTM network by comparing it with 

traditional shallow networks (e.g., artificial neural network (ANN)) and 

determine the impact of data augmentation techniques on the performance of 

the training models.  

(4) Determine the optimum location on equipment for sensor placement. 

2.4. Methodology 

Figure 2.1 illustrates the overall methodology used in this study to achieve the 

overarching research goal.  

 

Figure 2.1 Overall methodological architecture of this study  

The data acquisition process consists of capturing two different types of sensor data: 

IMU sensor data for analysis, and video data for validating the methodology. In the 

data processing phase, the IMU data were first preprocessed by filtering out hardware 

noise and then eliminating other inconsistencies in collected data. The video was used 

as a reference for labeling the time-stamped data, while the sensor data were used for 

data augmentation to generate synthetic data. Four different data augmentation 
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techniques (e.g., Jittering, Scaling, Rotation, and Time-warping) are implemented to 

generate synthetic training data. The augmented training data are used to train the 

RNN (LSTM network). Finally, the model is evaluated using precision, recall, F-1 

score, as well as a confusion matrix. Each of the steps shown in Figure 2.1 is 

explained in the following subsections. 

2.4.1. Data acquisition 

This study uses multiple inertial measurement units (IMU) mounted with a 3-axis 

accelerometer and a 3-axis gyroscope. The primary reason for using multiple IMUs is 

to explore the feasibility of utilizing the motion of various articulated implements of 

the equipment to identify its activities. Moreover, equipment manufacturers and third-

party companies have started using motion sensors in their equipment to locate the 

cutting edge for automated machine guidance (AMG). The use of multiple IMUs in 

articulated implements in this chapter mimics the placement of those sensors so that 

the developed framework can be extended towards activity recognition.  

The IMUs used in this research are equipped with a microSD card for logging data 

and require a 3.7-volt 1000 mAmp battery as shown in Figure 2.2.  

   

IMU with battery and 

microSD card 

IMU system placed on a 

magnetic box 

Magnetic box with number 

and axes tag 

Figure 2.2. Setup of the IMU and the protective box  
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The IMUs are placed in a robust plastic box stuffed with Styrofoam material to 

prevent movement and to withstand vibration and any impact from the debris. A 

powerful magnet at the bottom of each box made sure the reliable placement of the 

IMUs on the metallic surface of the equipment. Figure 2.3 shows the different 

locations of the equipment where IMUs are attached. Three IMUs are used for 

excavator and front-end loader, and one for dump truck.  

 

Figure 2.3. Location of IMUs on equipment 

For the excavator, IMUs are attached to the bucket, stick, and boom. For the front-end 

loader, IMUs are attached to the bucket, boom, and cabin. For the dump truck, the 

one IMU is mounted on the dump body. All IMUs logged the accelerometer and 

gyroscope data in the microSD cards. The operations are videotaped for the duration 

of data collection using a camera from a static position. After collecting the data from 

IMUs, the raw data is processed for further analysis.  

2.4.2. Data processing 

After collecting the raw data from sensors, several data processing techniques are 

applied to prepare the raw data to train the LSTM network. Major steps in data 

processing are noise filtering, interpolating missing data, and data segmentation. 
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2.4.2.1.Noise Filtering 

A noise reduction filter named Median filter is applied to reduce the mechanical noise 

of the IMUs. Median filtering is often applied to smooth this type of noise (Gather 

and Fried 2002). Figure 2.4 shows a sample raw accelerometer with dashed blue lines 

and smoothed filtered data (obtained after filtering) with solid orange lines.  

 

Figure 2.4. Raw and filtered IMU data 

For purposes of illustrating the need for data processing, the last section in this figure 

represents the data corresponding to the idle state (engine off) of the excavator. In this 

section, the accelerometer data is expected to be a flat line, as there is no vibration on 

the equipment while the engine is off. Nevertheless, we see spikes in the data, which 

is essentially due to mechanical noise in the IMU. The solid line in Figure 2.4 shows 

filtered data as expected.  

2.4.2.2.Interpolating missing data 

The next phase of data processing eliminates any inconsistencies in the collected data. 

The IMU used in this study is capable of recording 80 data points per second which 

implies a sampling frequency of 80 Hz. However, the IMU can fail to record motion 

data at such a uniform time interval due to occasional freezing for a short time. To 

compensate for this missing data, the sensor records data at a higher than 80 Hz 

sampling frequency (Akhavian et al. 2015). In this research, the collected data with 
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missing data points are processed into continuous uniform time series by removing 

redundant data and linearly interpolating the missing values. Figure 2.5 illustrates 

how the missing data are added using the linear interpolation method, after which it is 

segmented using the data segmentation technique.  

 

Figure 2.5. Linear interpolation of raw sensor data 

2.4.2.3.Data segmentation 

In this study, sliding window segmentation techniques are implemented. A fixed-

sized window with 50% overlapping is considered since overlapping is useful when 

there is a transition between activities (Su et al. 2014). Figure 2.6 shows the sliding 

windows Wm-1, Wm, and Wm+1 with 50% overlap between each of them on a one-

dimensional data set. Several window sizes (1 second to 5 seconds) are selected to 

investigate the effect of window sizes on the classifier’s performance.   
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Figure 2.6. Data segmentation using a sliding window 

2.4.3. Time-series data augmentation 

This section describes data augmentation techniques that can be used to synthetically 

generate time-series data for deep learning. For image recognition applications, 

mirroring, scaling, cropping, rotating, etc. are legitimate augmentation techniques as 

minor changes due to these techniques do not alter the label of the image as they may 

happen in real-world observation. However, these label-preserving transformations 

are not intuitively recognizable for time-series IMU data. Factors that can introduce 

variability without altering the labels of the time-series data are random noise, sensor 

placements, and temporal characteristics of activities. To account for those factors 

Jittering, Scaling, Rotation, and Time-warping are implemented as shown in Figure 2 

(Um et al. 2017). Figure 2(a) shows the raw data of one channel of the sensor.  

2.4.3.1.Jittering 

Jittering is implemented to simulate additive sensor noise. Each sensor has a different 

type of mechanical noise. Simulating random sensor noise increases the robustness of 

the training data against various types of sensors and their multiplicative and additive 

noises. White Gaussian noise is used in this study to add the jittering to raw training 

data. The effect of jittering on the test dataset is illustrated in Figure 2.7. 
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Figure 2.7. Data augmentation using jittering 

2.4.3.2.Scaling 

Scaling is another technique adopted in data augmentation which changes the 

magnitude of the raw data but preserves the labels. This variation is observed in 

situations wherein the dimensions of the implement to which the sensor is attached 

change, such as a change in length of excavator boom, etc. Scaling is implemented by 

multiplying the raw training data by a random scalar. Figure 2.8 shows an augmented 

dataset after applying scaling to the test data. 

 

Figure 2.8. Data augmentation using scaling 

2.4.3.3.Rotation  

Rotation can be accounted for by introducing label-invariant variability of IMU 

sensor data when sensors are placed in the equipment with different orientations. For 

example, an upside-down placement of the sensor can invert the sign of the IMU 

readings without changing the labels as shown in Figure 2.9. Moreover, applying 
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arbitrary rotation to the raw data can account for any minor changes in the sensor 

orientation because of vibration during data collection. 

 

Figure 2.9. Data augmentation using rotation 

2.4.3.4.Time-warping 

Time-warping is a technique to generate synthetic training data for different temporal 

characteristics of equipment for a specific task. For example, a loading activity can be 

performed by an excavator with various operating speeds. Each activity was warped 

(i.e., stretched or shortened) with different warping ratios to account for this 

variability. A sample of warped data can be seen in Figure 2(e).  

 

Figure 2.10. Data augmentation using time-warping 

Each augmentation technique generated a 4-fold increase in augmented training data, 

resulting in a 16-fold increase in the number of the training data points. Four different 

signal-to-noise ratios were used for Jittering to generate 4-fold simulated data with 

different noise levels. For Scaling, scaler multiplication values of 0.8, 0.9, 1.1, and 

1.2 were selected to generate 4-fold augmented data with slightly different 



39 

 

 

magnitudes of the reading. Similarly, four different rotation factors were selected to 

change the sign of the IMU reading, which resulted in a further 4-fold increase of the 

training data. Finally, four warping ratios were selected to generate 4-fold synthetic 

data with various temporal lengths, preserving their labels.  

2.4.4. Model training 

An LSTM network is a type of recurrent neural network (RNN) that learns the long-

term temporal dependencies between time steps of sequence data. The main 

components of an LSTM network for time-series classification are a sequence input 

layer, an LSTM layer, a fully connected layer, a softmax layer, and a classification 

output layer as shown in Figure 2.11 (Graves et al. 2013).  

 

Figure 2.11. Main components of an LSTM network 

Time-series data are used in the sequence input layer which inputs the sequences into 

the network. The LSTM layer learns long-term temporal dependencies between time 

steps of sequence data in terms of weight matrix and bias vector. The fully connected 

layer then multiplies the inputs by the weight matrix and adds the bias vector. Next, 

the softmax layer applies the neural transfer function to the input. Finally, the 

classification output layer computes the cross-entropy loss for multi-class 

classification problems with mutually exclusive classes. The LSTM layer is composed 

of LSTM units and a common architecture of LSTM units consists of a cell (i.e. c), 

input gate (i.e. i), output gate (i.e. o), and forget gate (i.e. f) as shown in Figure 4 

(Graves et al. 2013).  
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Figure 2.12. The architecture of a long-short term memory (LSTM) unit (Graves et al. 

2013) 

Each of these gates computes an activation, using an activation function of weighted 

sum. In the figure, it, ot, and ft represents the activations of input, output, and forget 

gate respectively at time step t, where xt and ht are the input and output vector of the 

LSTM unit. The three exit arrows from the memory cell c to 3 gates i, o, f denote the 

contributions of the activation of the memory cell c at time step t-1 (i.e. the 

contribution of ct-1). In other words, the gates i, o, and f calculate their activations at 

time step t considering the activation of the memory cell c at time step t-1. The circle 

containing an X symbol in Figure 4 represents element-wise multiplication between 

its inputs. Also, the circle containing an S-like curve represents the application of an 

activation function (e.g. sigmoid function) to a weighted sum (Greff et al. 2015). In 

this study, the input vector x contains the time-series sensor readings of the IMUs. 

Unlike the traditional machine learning approach, where raw data are processes, 

segmented, and statistical features are extracted, the LSTM network can 

automatically learn high-level representative features containing the long-range 
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temporal relationship between time steps. Thus, the augmented training data are used 

as input vectors in the LSTM to train the deep network. After the training phase, test 

data are used to evaluate the trained model.  

2.4.5. Model evaluation 

In this study, four common performance measures; accuracy, precision, recall, and F1 

score are used to measure the performance of the LSTM network, as well as to 

compare the LSTM network with ANN. The accuracy of the classification model can 

be calculated by dividing the number of correctly classified classes by the total 

number of classes as shown in Equation (2.1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 ×  100% 

(2.1)  

Precision and recall of the model are calculated to account for the cost associated with 

misclassification. Precision is the fraction of predicted positive instances (i.e., true 

positive + false positive) that are truly positive (i.e. true positive), while recall refers 

to the fraction of true instances (i.e. true positive + false negative) that are correctly 

predicted as positive (i.e. true positive) as shown in Equation (2.2) and (2.3).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 ×  100% 

(2.2)  

     

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 ×  100% 

(2.3)  
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While it is desirable to achieve high precision and recall value, it is often challenging 

to maximize both measures for a single classification model. Thus, F1 score is 

calculated which is the harmonic mean of precision and recall, as shown in Equation 

(2.4).  

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

(2.4) 

       

Confusion matrix is also used to analyze the inter-class predictive performance of the 

trained model. Each row of the matrix represents the instances in an actual class 

where each column represents the instances in a predicted class.  

2.5. Case study 

To evaluate the proposed activity identification framework, three sets of time-series 

data were collected from an excavator, a front-end loader, and a dump truck. The 

collected sensor data were then separated into training and test datasets, where 

training dataset were used to generate more synthetic training data (i.e., data 

augmentation), and test data were used to validate the trained model. Several 

performance matrices were used to evaluate the performance of the LSTM network. 

Moreover, a comparative analysis was conducted to see the improvement resulted 

from the developed deep network compared to a traditional shallow network (i.e., 

ANN).    

2.5.1. Data collection 

Three case studies were performed by collecting three sets of IMU data from the 

construction site: from an excavator (Komatsu PC 300 LC), and a front-end loader 
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(Caterpillar 980G), and a dump truck (Bell Orion B60 E). Three IMU sensors were 

attached to the excavator (bucket, stick, and boom) and front-end loader (bucket, 

boom, cabin), while one IMU was attached to the dump body of the dump truck as 

shown in Figure 2.13.  

 

Figure 2.13. IMU placements on the equipment during data collection 

Each of the IMUs used in this study can record 3-axis accelerometer, and 3-axis 

gyroscope data (i.e., total 6 sensor readings per IMU). The three IMU sensors used 

for the excavator and the loader collected 18 channels of time-series data (i.e. three 

IMU multiplied by six channels) for each piece of equipment. Data were collected for 

approximately two hours for each piece of equipment. Given an average data capture 

frequency of 80 Hz, approximately 576000 data samples were collected for each 

channel of the sensor (e.g., accelerometer X) for each equipment. Furthermore, the 

operations of the equipment were videotaped for the entire duration of data collection 

to aid with data labeling and validation.  

2.5.2. Data Labeling  

Temporal labeling of data into different activities is vital in training the learning 

algorithm (Spriggs et al. 2009). The level of details (LoD) or the resolution for data 

labeling depends on the specific application. For example, for an environmental 
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impact study of equipment, where the researcher may want to perform emission 

analysis during the idle phase of equipment, breaking down the activities into three 

classes (i.e., engine off, idle, and busy) can be proven sufficient. Considering this, this 

study investigates different LoDs and their impact on the classifier’s performance. 

Although a higher level of LoD is more desired, the ML classifiers may not perform 

well given the relatively large number of classes. Moreover, as mentioned by 

Akhavian and Behzadan (2015), a higher level of LoD poses some inherent 

challenges. One such challenge is that the more are the levels, the less will be the 

number of training data points in some classes.  

In this study, various LoDs were considered and investigated to see how this affects 

the performance of the trained algorithm. As an example, Figure 2.14 depicts the 

hierarchy of activities that are performed by the excavator. 

 

Figure 2.14. LoD in activity breakdown of the excavator 

In the coarsest breakdown (LoD2), 2 classes are defined: Engine Off and Engine On. 

In the next level, Engine On activity is further divided into 2 more activities: Idle and 
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Busy. This process is continued, and the finest breakdown (LoD9) contains 9 classes: 

Engine Off, Idle, Moving Forward, Moving Backward, Scooping, Dumping, Leveling, 

Swinging Full, and Swinging Empty. Table 2.1 shows the lists of distinguishable 

activities for the excavator, front-end loader, and dump truck selected in this study. 

Table 2.1. Selected activities for the equipment 

Equipment type Name of the activities 

Excavator Engine Off, Idle, Scoop, Dump, Swing Loaded, Swing Empty, 

Move Forward, Move Backward, and Level Ground  

Front-end 

Loader 

Engine Off, Idle, Scoop, Raise, Dump, Lower, Move Forward 

Loaded, Move Backward Loaded, Move Forward Empty, Move 

Backward Empty 

Dump truck Dump, Idle, Travel 

 

If an excavator is loading, then the corresponding dump truck is also assumed to be 

loading. Moreover, the logical inference was used to extract haul and return activity 

for the dump truck. For example, if the truck is loading then after that it should be 

hauling, and if the truck is dumping, after that it should be returning. The reason for 

choosing a higher number of classes for excavator and front-end loader (compared to 

previous similar studies such as, (Ahn et al. 2015; Akhavian and Behzadan 2015; 

Mathur et al. 2015)) in this study was to test the robustness of the deep network even 

when the signal patterns of the IMU of different classes become more similar due to 

higher resolution. The next subsection discusses the implementation of the LSTM 

network.   
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2.6. Result and Discussion 

From a model evaluation perspective, this study focuses on the following three 

questions: 

1. Does deep learning outperform shallow learning? 

2. Do data augmentation techniques improve the performance of the deep 

learning model? 

3. Does data augmentation help to reduce the inter-class confusion of the LSTM 

network? 

4. What is the best location of the equipment to attach the motion sensor? 

This section is organized by first, summarizing all the performance measures in 

tabular forms. Then comparative performance analysis of ANN and LSTM network is 

conducted. The impacts of data augmentation techniques on the performance 

measures of both ANN and LSTM are investigated. Finally, a closer look at the 

confusion matrices of the LSTM network with and without data augmentation 

explores the inter-class confusion of the model. 

2.6.1. Overall performance of the prediction model 

As discussed in section 2.4.3, each of the augmentation techniques (e.g., jittering, 

scaling, rotation, and time-warping) were implemented using four different technical 

parameters. The volume of augmented training data is highest when each of the 

techniques was implemented four times, and lowest when each of the techniques was 

implemented just one time. In section 2.4.3, while each of the augmentation 

techniques was applied four times, it was mentioned to have 16- fold augmentation. 

However, for an easy understanding, the following sections in this chapter mention 4-
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fold augmentation when each of the techniques was implemented 4 times (i.e. total 

16-fold data increase). Similarly, if each of the techniques was applied 2 times, it is 

mentioned to have 2-fold augmentation (i.t. total 8-fold data increase). 5 different 

volumes of the training dataset (i.e., no augmentation, 1-fold, 2-fold, 3-fold, and 4-

fold augmentation) were generated and the LSTM network was trained with each of 

them to evaluate the impact of data augmentation on the performance of the model. 

Figure 2.15 shows the overall performance of the trained LSTM model for three 

equipment using 4-fold data augmentation.  

 

Figure 2.15. Overall performance of the LSTM model for all three equipment 

The following activities were considered for the equipment for this analysis: 

Excavator: Handling, Loading, Idle, Traveling 

Front-end loader: Engine Off, Loading, Idle, Moving 

Dump truck: Idle, Traveling, Dumping 

The result shows that all the performance measures (i.e., accuracy, precision, recall, 

and F-1 score) are about 90%. However, precision for the dump truck is 88.3%. The 

0%

20%

40%

60%

80%

100%

Accuracy Precision Recall F-1 Score

Excavator Loader Truck



48 

 

 

idle and loading activity of the dump truck has a lot of overlap in terms of sensor 

data, and this could be a potential reason for comparative low precision value.  

2.6.2. Performance of LSTM using data augmentation 

At this stage of the analysis, the excavator and front-end loader was selected for 

further investigation due to their higher LoDs (i.e., more distinguishable activities as 

shown in Table 2.1). Testing the prediction algorithm with a higher number of 

activities will test the robustness of the model. In addition to training an LSTM 

network, an artificial neural network (ANN) was also trained for each of the training 

datasets to compare it with the LSTM network. This should be noted that the test data 

were separated before the data augmentation and used to evaluate the LSTM network 

and the ANN. This helps to compare the models and to evaluate the impact of data 

augmentation. Table 2.2 and Table 2.3 summarizes all the performance measures for 

both ANN and LSTM networks trained with the data from the excavator and the 

loader.  

Table 2.2. Performance measures of ANN and LSTM for the excavator 

 Accuracy  Precision  Recall  F-1 Score 

 ANN LSTM  ANN LSTM  ANN LSTM  ANN LSTM 

No Aug. 62.2% 63.3%  50.5% 55.1%  54.0% 54.1%  51.3% 54.1% 

1-fold 74.9% 94.0%  63.9% 91.3%  71.8% 92.7%  65.8% 91.9% 

2-fold 78.1% 97.1%  69.9% 92.9%  73.3% 93.9%  70.9% 93.3% 

3-fold 78.7% 97.9%  70.3% 95.9%  73.5% 97.8%  71.3% 96.7% 

4-fold 79.9% 97.9%  70.7% 96.2%  74.8% 99.0%  71.3% 97.6% 

 

Table 2.3. Performance measures of ANN and LSTM for the loader 

 Accuracy  Precision  Recall  F-1 Score 

 ANN LSTM  ANN LSTM  ANN LSTM  ANN LSTM 
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No Aug. 48.8% 59.7%  36.6% 52.6%  47.1% 54.7%  35.4% 52.4% 

1-fold 62. 6% 78.7%  51.1% 75.8%  61.9% 77.9%  51.8% 76.6% 

2-fold 63.8% 94.1%  52.7% 93.3%  61.6% 93.1%  53.7% 93.2% 

3-fold 64.1% 95.4%  54.2% 93.7%  63.1% 95.1%  55.5% 94.4% 

4-fold 66.1% 96.7%  56.1% 96.3%  64.7% 96.4%  57.1% 96.3% 

 

The left-most column of both the tables shows the amount of data augmentation. No 

Aug. represents only the raw training data (i.e., no augmentation), and 4-fold 

represents augmenting raw training data 4 times with each of the augmentation 

techniques. Each of the performance measures is listed side-by-side in the tables for 

an easy comparison of ANN and LSTM. These two tables demonstrate two major 

findings: 

1. The deep learning network (i.e., LSTM) improves the performance of the 

prediction model compared to shallow networks (i.e., ANN). 

2. Data augmentation improves the performance of the LSTM network. 

These two tables are deconstructed with different types of data visualization (e.g., bar 

chart, line graph, etc.) for more detailed analysis. 

2.6.3.   Amount of augmentation and prediction performance 

This step of the analysis explores how different amounts of augmentation impacts the 

performance of the prediction model.  

Figure 2.16 and Figure 2.17 plot the F-1 score for both ANN and LSTM network for 

the excavator, and the loader respectively. The x-axis shows the amount of 

augmented training data.  
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Figure 2.16. F-1 score with different amounts of augmented training data for the 

excavator 

 

Figure 2.17. F-1 score with different amounts of augmented training data for the 

loader 

The LSTM performance increases with an increase in training data at a higher rate 

than ANN. For example, the F-1 score of LSTM and ANN is 54.1% and 51.3% (i.e., 

a difference of 2.8%) respectively for the excavator when trained with only raw 

training data (i.e., no augmentation). However, when the amount of training data is 

increased to 1-fold, the difference in F-1 score is 26.1% (i.e., 91.9% for LSTM and 

65.8% for ANN). A similar characteristic is seen in Figure 2.17 as well. This 
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exponential increase in performance supports the argument that deep networks 

outperform shallow networks with larger training datasets (Schindler et al. 2016).    

The performance measures for both ANN and LSTM are visualized in Figure 2.18 

(excavator) and Figure 2.19 (loader). 

       

Figure 2.18. Performance measures of ANN and LSTM for the excavator 

       

Figure 2.19. Performance measures of ANN and LSTM for the loader 

From both the figures, a positive impact of data augmentation on the each of 

performance measures can be observed. Accuracy, precision, recall, and F-1 score 

increase with each phase (e.g., 1-fold, 2-fold, etc.) of data augmentation. Specifically, 
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significant improvement is noticed from No Aug. to 1-fold augmentation. For 

example, precisions of the LSTM network for the excavator are 55.1%, 91.3%, 

92.9%, 95.9%, and 96.2% for No Aug. 1-fold, 2-fold, 3-fold, and 4-fold augmentation. 

This supports the argument that data augmentation techniques can generate synthetic 

training data by infusing variations to the raw data without altering their classes. We 

see an overall improvement of 34.6% in accuracy, 41.1% in precision, 44.9% in 

recall, and 43.5% in F-1 score for the LSTM network after applying the data 

augmentation for the excavator. Similarly, the LSTM network for the loader 

illustrates the significant improvement of the performance measures after introducing 

data augmentation.    

2.6.4.   Inter-class error using the confusion matrix 

Even though accuracy, precision, recall, and F-1 score represent the overall 

performance of the LSTM network, they do not provide any information on how 

instances are misclassified. Thus, confusion matrices are introduced to identify the 

classes that are misclassified and confused with other classes. Figure 2.20 and Figure 

2.21 show the confusion matrices with and without data augmentation for the 

excavator and the loader respectively. Each row represents the actual classes, and 

columns represent predicted classes. The green diagonal cells in these figures 

represent correctly classified classes, where all other cells show the misclassified 

classes.  
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Figure 2.20. Confusion matrix of LSTM network for the excavator 

 

Figure 2.21. Confusion matrix of LSTM network for the loader 

From Figure 2.20, we see that the top two misclassified activities for the excavator 

are Dump and Level Ground before data augmentation. Dump is confused 236 times 

with the Level Ground (highlighted by black border), where Level Ground is 
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confused 140 times with the Scoop (highlighted by a red border). During the Level 

Ground activity, the excavator was picking up a small amount of soil (similar to 

Scoop) and dumping them in close proximity (similar to Dump). Thus, the confusion 

among Level Ground, Dump, and Scoop can be explained by the similar signal 

patterns generated from the IMUs. However, after applying the augmentation these 

confusions are noticed to be reduced 236 to 2 times for the Dump activity and 140 to 

4 times for the Level Ground activity. We see a similar situation in Figure 2.21, where 

252 instances of confusion between Lower and Move For. Empty has reduced 7 

instances, and 290 instances of confusion between Move Bac. Empty and Move For. 

Empty is reduced to 12 instances. A significant reduction of misclassified instances is 

noticeable in the figures after applying data augmentation. This supports the argument 

that introducing slight variations (i.e., data augmentation) to the raw training data to 

generate more data helps better generalization of the deep network.     

2.6.5. Window sizes and prediction performance 

Several sensitivity analyses were performed to check the effect of different window 

sizes on the performance of the prediction model. For this analysis, the excavator was 

chosen as the equipment, and ANN was chosen as the classification model. The 

reason behind choosing ANN, over LSTM for this analysis is that LSTM generally 

takes a long time to train. As this stage requires training models for different window 

sizes, computationally it was advantageous to train the ANN. Moreover, as this is a 

comparative analysis, ANN and LSTM are expected to perform with a similar pattern. 

Figure 2.22 shows the effect of window sizes on the prediction performance. Four 

different levels of details were considered and 20 different window sizes (from 1 
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second to 20 seconds) were used to train the model. Each time, a 50% overlap was 

used with the sliding window technique as described in section 2.4.2.3.  

 

Figure 2.22. Effect of window size on prediction performance for the excavator 

It can be seen from the figure that the accuracies of the model are similar for lower 

LoDs (LoD: 2, LoD: 3, and LoD: 4) with window sizes. However, for higher LoDs 

(i.e., LoD: 7 and LoD: 7), the accuracy shows an upward trend initially when the 

window sizes are increasing, and after a peak, the accuracy tends to decrease with the 

increase of window size.  

2.6.6.  Sensor placement and prediction performance 

For this analysis, the excavator was selected as the equipment, and ANN, K-nearest 

neighbor (KNN), and support vector machine (SVM) were chosen as the 

classification models. Different combinations of the sensor placement and training 

models were used in this step to analyze the placement of the sensors to optimize the 
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performance of the prediction model. While previous efforts have found promising 

results in equipment activity recognition using a single smartphone-embedded sensor 

mounted inside the equipment’s cabin (Ahn et al. 2015; Akhavian and Behzadan 

2015; Mathur et al. 2015), this research utilizes three IMU sensors attached to three 

different implements of an excavator to leverage the motion of each moving part of 

the equipment. As shown in Figure 2.3 three IMUs were attached to the bucket, stick, 

and boom of the excavator. To describe how these sensor placements affect the 

prediction performance they were named IMU #1 (in the bucket), IMU#2 (in the 

stick), and IMU#3 (the boom). The impact of the sensor placement on the equipment 

is summarized in Figure 2.23.  

      

Figure 2.23. Impact of placement and combination of IMUs on classifiers  

Figure 2.23 illustrates that fusing data from all three IMUs results in the highest 

performance for all three classifiers. If data from a single IMU is used for training the 

model, accuracy is highest for IMU#1 (attached to the bucket), and lowest for IMU#3 

(attached to boom). For example, the accuracy of KNN using IMU#1, #2, and #3 are 
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85.1%, 65.3%, and 56.8% respectively while all three IMUs produce an accuracy of 

85.4%. Moreover, when only two IMUs are used, accuracy is comparatively higher 

when IMU#1 is in use. Accuracy using combination of IMU #1&#2, IMU #1&#3, 

and IMU #2&#3 are 79%, 84.1%, and 66.2%, respectively. The performance of the 

prediction model using a single IMU is shown in Figure 2.24.    

 

Figure 2.24. Accuracy of the model using a single IMU sensor 

As IMU#1 is attached to the bucket of the excavator, it can be concluded that motion 

data of the bucket contributes more to understanding the operational activity of the 

excavator, than motion data of the stick or the boom. This section of the results 

indicates that using data from multiple IMUs attached to different implementations of 

the excavator improves the accuracy rather than using any sensor individually. 

Moreover, the bucket, which is the end effector of an excavator, is the best location 

for a single sensor to be attached to identify equipment’s activity. As the bucket has 

the highest degree of freedom in terms of movement, it has the highest level of 

motion data. Vice versa, the boom has the lowest degree of freedom in terms of 
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movement. Thus, it can be concluded that the location of the equipment with the 

highest level of movement is the best place to attach the sensor. 

2.7. Major findings and research contributions  

The proposed framework in this chapter consists of two major components: an LSTM 

deep learning-based activity recognition framework for construction equipment, and 

time-series data augmentation techniques to generate synthetic training data. The 

major findings of this chapter are: 

- The deep learning network outperformed the shallow network in terms of 

accuracy, precision, recall, and F-1 score. As opposed to the traditional 

machine learning classification algorithms, the LSTM network contains long-

term temporal dependency of the training data between consecutive time steps 

- The LSTM network eliminated the necessity of manual feature extraction, 

which is limited to human domain knowledge. Instead, the deep network 

automatically learned high-level representative features from the raw training 

data. 

- Implementation of data augmentation reduced the amount of training data 

from the construction site. This improves the practicality of such classification 

techniques for temporary and transient construction operations. 

- The location with the highest degree of movement is the best place to attach 

the sensor for activity identification purposes.  
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The major contributions of this study to the body of knowledge and practice are: 

- The deep learning-based automated activity identification framework provides 

means for future researchers and practitioners to track heavy equipment 

activities more accurately and reliably compared to traditional (shallow 

network-based) approaches. 

- The proposed framework is implementable irrespective of weather conditions 

and site layouts compared to vision-based approaches. 

- The combination of the learning model (i.e., LSTM network) and the data 

augmentation technique reduces the manual effort both in terms of field data 

collection and manual data processing (i.e., feature extraction). 

- Determination of optimal sensor placement will help future researchers and 

original equipment manufacturers (OEMs) to deploy sensors more efficiently. 

2.8. Conclusions and future work 

An automated, real-time, and reliable activity recognition framework for construction 

equipment provides a foundational platform to monitor and assess productivity, 

safety, and environmental impact on construction sites. Towards this end, this chapter 

provides a deep learning-based activity recognition framework for construction 

equipment using multiple IMUs attached to different articulated elements of the 

equipment and utilizing the capabilities of the LSTM network. Moreover, several 

time-series data augmentation techniques were developed and implemented to 

generate synthetic training data, reducing the necessity of a large volume of data 

collection from the construction site.  



60 

 

 

This chapter showed that the deep learning approach (i.e., LSTM network) 

outperforms the shallow network (i.e., ANN) to identify equipment activities more 

accurately and reliably. The data augmentation techniques developed and 

implemented in this research shows the ability to correctly simulate real-world 

training dataset. This helps rigorous training of deep networks without collecting a 

large amount of training data from the field. Moreover, the implementation of data 

augmentation helps to reduce inter-class confusion of the LSTM network. Analysis of 

sensor placement shows the location with the highest level of movement is the best 

place to attach the sensor. Successful application of the proposed framework has the 

potential to transform the way construction operations are currently being monitored. 

By executing the proposed framework in real construction sites, construction 

operations can be continuously monitored and assessed in real time, relieving 

construction companies from the time-consuming and subjective manual method of 

analyzing construction operations.  

The proposed framework can identify activities of three specific construction 

equipment (e.g., excavator, front-end loader, and dump truck). The designed 

methodology will be broadened to cover other types of equipment to ensure its 

robustness. In the future, the activity level information gathered from this study will 

be used for productivity analysis, safety analysis, and fuel use analysis techniques to 

support better decision-making and control methods. In addition to that, the proposed 

framework will be extended for human workers in construction sites using wearables 

to enable productivity and safety applications.  
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3. CHAPTER 3: DYNAMIC PRODUCTIVITY ESTIMATION 

FOR EARTHMOVING OPERATIONS USING SIMULATION 

AND BAYESIAN UPDATING  

3.1. Introduction 

Once the activities of the equipment can be automatically identified as explained in 

the previous chapter (i.e., Chapter 2), this chapter investigates how the outputs of the 

study can be used in the decision-making process.  One of the suitable and available 

methods to aid decision-making based on productivity estimation for such operations 

is a discrete-event simulation (DES). However, the typical input data and logic for 

DES models are based on a-priori assumptions related to project conditions. Thus, as 

the project progresses, the models lose their validity as they may not reflect the 

updated project site conditions, resulting in unreliable outputs for decision-making.  

One method to overcome this limitation is to update simulation model inputs with the 

latest data collected from the project site – a process known as near real-time 

simulations (NRTS).  

As a repetitive long-term activity, earthmoving operations provide a very suitable 

opportunity to perform NRTS by fine-tuning the activity duration inputs from the real 

world. This chapter provides a framework that integrates automatically collected field 

data from IMUs mounted on heavy equipment and processes them for use as updated 

input for simulation models to estimate dynamic productivity which presents the 

operation realistically. Activities (e.g., loading, hauling, etc.) are identified from the 

collected data and the cycle times are calculated using machine learning methods. 

The cycle time distributions are updated using Bayesian updating and used as inputs 

in the simulation model for more accurate productivity prediction. A real-world 
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earthmoving site is used in the case study to validate the framework. This framework 

will help the decision-making process by realistically reflecting the field condition 

using the most up-to-date information in the simulation model.  

3.2. Background 

One of the major challenges in simulation modeling for productivity estimation is that 

they typically do not adapt to the changing conditions of the real world and the model 

violates the initial assumptions used for estimation. Typically, the inputs for 

simulation modeling are statistical data from past projects and the personal 

experiences and subjective judgment of decision-makers. However, as the project 

progresses, an additional layer of uncertainties in the form of changing site 

conditions, equipment breakdowns, weather delays, etc. are introduced into the 

project which makes the initial models unreliable for continued decision-making. 

This lack of complete information at the start of operations can lead to incorrect fleet 

sizing, resulting in lost productivity and time and cost overruns. One method of 

overcoming this inherent limitation of a-priori estimation is to constantly update the 

simulation model in real time using data that is available from real-world operations. 

Such a method can lead to data-driven decision-making for construction operations 

and is referred to as near real-time simulation (NRTS) (Akhavian and Behzadan 

2012b; Louis et al. 2014; Vahdatikhaki et al. 2013; Vahdatikhaki and Hammad 2014).  

This chapter builds upon the previous chapter (i.e., Chapter 2) as well as previous 

research in NRTS methods and presents an integrated framework for data-driven 

decision-making for construction operations with a focus on heavy civil earthmoving 

operations.  The framework presented in this chapter starts by collecting motion data 
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from earthmoving equipment from a real-world earthmoving site and convert those 

motion data into activities using deep learning techniques. Once activities are 

identified, their durations are fitted to distributions using Chi-square goodness-of-fit 

test. Initial predictions from a base DES model are updated by providing the most 

recent activity data as input to the model using Bayesian updating techniques. The 

updated distribution is then used as input parameters for the simulation model and an 

updated productivity estimation is obtained. By continuing this process, the 

simulation model accurately represents the actual activities on the site as the project 

progresses. A real-world earthmoving site was used as a case study to validate the 

framework. The results obtained show that the actual productivity on-site was 

different than the initial assumption and thus project schedule needed to be updated 

accordingly. This framework shows the feasibility of using dynamic simulation 

modeling to predict project outcomes more accurately and reliably for earthmoving 

operations. 

The two major components of this study are activity identification and simulation 

modeling for heavy civil operations. This section provides an overview of the state of 

art in these two areas to identify the research gaps and define the point of departure, 

research goal, and objectives for this research. 
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3.2.1. Activity identification for heavy civil operations2  

3.2.2. Simulation modeling and analysis for heavy civil operations3  

3.3. Research gaps and point of departure 

Based on the literature review conducted, the following research gaps are identified 

and targeted in this chapter: 

(1) A dynamic estimation framework is missing for the heavy civil operation 

which uses the most recent field data and near real-time simulation modeling. 

(2) Even though there is literature on using machine learning techniques to 

identify equipment activities, there is no significant work that integrates 

activity identification with simulation modeling to aid the decision-making 

process. 

Considering the gaps in knowledge, the goal of this research is to develop a 

framework for dynamic productivity estimation for heavy civil operations by using 

up-to-date field data to facilitate better decision-making. This research goal is 

accomplished in this chapter through the pursuit of these specific research objectives: 

(1) Utilize the activity identification framework developed in Rashid and Louis 

(2019b) 

(2) Develop a DES model for earthmoving operation and update the model by 

refining cycle times acquired from the activity identification using the 

Bayesian updating method.  

 
2 Refer to Section 1.1.1 for the literature review of this part. 
3 Refer to Section 1.1.2 fo the literature review of this part. 
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3.4. Methodology 

The methodology developed in this chapter follows the system architecture shown in 

Figure 3.1.  

 

Figure 3.1. The system architecture of the proposed framework 

Equipment activities are identified using IMU data collected from the field and deep 

learning techniques. The duration of each activity is calculated and fitted to the 

distribution using Chi-square goodness-of-fit. As the project progresses, the prior 

distributions are updated using the Bayesian updating technique and these updated 

distributions are used as a new input to the simulation model. A new prediction is 

generated from the model and the plan is updated based on the new prediction. The 

three major methodological steps; activity identification, Bayesian update, and DES 

model update are expanded in the following subsections.  

3.4.1. Activity identification  

Motion data (e.g., acceleration, orientation, etc.) from different articulated body parts 

of the equipment are captured using IMUs. These data are processed to eliminate 
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noises and inconsistencies. Data augmentation techniques are used to generate 

synthetic data capturing the inter-class dependencies among different activities (e.g., 

loading, hauling, etc.). Then a deep learning technique, long short-term memory 

(LSTM)- based recurrent neural network (RNN) is trained and tested to identify 

activities of the equipment. Details of this activity identification framework are 

presented in (Rashid and Louis 2019b). Four major activities are identified in this 

study, which are essential to developing the DES model, and they are Loading, 

Hauling, Dumping, and Returning. Durations of each of those activities are calculated 

and fitted to distribution using Chi-square goodness-of-fit method. These duration 

distributions are used as inputs to the DES model.  

3.4.2. Bayesian updating technique 

The inputs (i.e., duration of the activities) to the simulation model are assumed to be 

continuous with an underlying probability density function (PDF). The prior 

assumptions are updated using Bayes’ theorem when new duration data are calculated 

from the activity identification model. The Bayesian updating can be expressed with 

Equation (3.1) 

𝑓′′(𝜃) = 𝑘𝐿(𝜃)𝑓′(𝜃) (3.1) 

Here, 𝑓′(𝜃) is the prior distribution, which is revised to the posterior distribution 

𝑓′′(𝜃), 𝜃 is the random variable for the parameter of a distribution, k is the 

normalizing constant 𝑘 =  [∫ 𝐿(𝜃)𝑓′𝑑𝜃
∞

−∞
]

−1
, and 𝐿(𝜃) is the likelihood of observing 

the experimental outcome assuming a given 𝜃. The initial distribution assumption for 

the duration parameter is updated using the more recent observed data. Thus, the 

judgments and observational data are systematically combined as posterior 
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distribution is obtained from both prior distribution and likelihood function. If the 

prior distribution is a conjugate of the distribution of the underlying random variable, 

the posterior distribution can be calculated in the same mathematical form as the prior 

(Ang and Tang 1975). Equation (3.2) and (3.3) show the updating process of 

normally distributed data.  

µ′′ =
𝜎2µ′ +  𝑛𝜎′2

µ

𝑛𝜎′2
+  𝜎2

 
(3.2) 

𝜎′′ = √
𝜎2𝜎′2

𝑛𝜎′2
+  𝜎2

 

(3.3) 

Here, µ′′, µ′, µ are posterior, prior, and sample mean respectively, and 𝜎′′, 𝜎′, 𝜎 are 

posterior, prior, and sample standard deviation, n is the sample size. When more data 

are obtained after the first update, the updating process can be done successfully 

using these two equations. The posterior statistics from the previous stage become the 

prior distribution for the next updating stage. Based on these updating techniques, the 

duration parameter of the DES model is updated using a predefined frequency, thus, 

making the model more accurate and reliable. 

3.4.3. DES modeling of heavy civil operations 

A simulation model of the earthmoving operation is developed. The model is built 

using a discrete event simulation software named jStrobe (Louis and Dunston 2016b). 

This is a construction-oriented discrete event simulation package that allows the user 

to model earthmoving operations as a chronological sequence of events with the help 

of a user-friendly graphical interface. jStrobe allows the user to model a variety of 

different operations using different levels of details. The major two components of 
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the DES model are nodes and links. The nodes used in the DES can be of the 

following types: 

Queues are nodes holding the resources until any activity draws them away. 

Attributes of the queues can be accessed by the modeler such as, the number of 

resources residing in the queue, the total amount of resources that entered the queue, 

and the average waiting time of each resource in the queue. A queue is represented by 

the following symbol in jStrobe:                                                                                                                                                        

Queue

Name

 

Activities are nodes that represent the tasks to be performed in the model using the 

required resources. Each activity has a time duration that follows a distribution, such 

as normal, triangular, gamma, etc. Activities can be of the following two types: 

Combi and Normal. Combis are activities whose startup depends on certain 

conditions being met. On the other hand, Normals are activities that start starts as 

soon as the preceding activity is completed. The following two symbols represent the 

Combi and Normal activity. 

CombiName

                            

The different nodes in the network are connected by links. The resources from one 

node to another is passed through the links by meeting certain conditions. The 

following figure shows a link that will pass one resource from the Queue to Combi 

when the number of resources in the Queue is greater than zero. 

NormalName
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3.5. Case study and results 

To evaluate the proposed methodology a real-world earthmoving site was selected. 

This was a highway extension project located in Oregon. The earthmoving operation 

was mainly carried out using five dump trucks and two excavators. There were two 

loading sites, each having one excavator, and one dumping site. Thus, the trucks need 

to decide upon which excavator to go to after dumping their load. Figure 3.2 shows a 

schematic layout of the site. 

 

Figure 3.2. Schematic layout of the earthmoving site 

3.5.1. Data collection 

IMU sensors were attached to the equipment using a plastic box with a magnetic 

bottom. For excavators, IMU sensors were attached to the bucket as previous studies 

showed bucket is the best place to maximizes the activity identification accuracy 

(Rashid and Louis 2020a). GPS sensors were also attached to the trucks to record 

their movements. The activities were recorded using a video camera. Unfortunately, 
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one sensor fell off a truck, and one sensor malfunctioned. Thus, data from three 

trucks and two excavators were available for further analysis. Figure 3.3 shows the 

sensor attachment to the dump truck and excavator.

 

Figure 3.3. IMU attachment to dump truck and excavator 

Six-channel data (3-axis accelerometer and 3-axis gyroscope data) were collected 

from the IMU sensors to be used in the LSTM network for activity identification. The 

raw data from the accelerometer shows specific and distinguishable patterns for 

different types of activities. Figure 3.4 shows x-axis data of the accelerometer for one 

truck. We can see that the cyclical activities (i.e., load, haul, dump, return) of the 

dump trucks are highly noticeable from this one-channel data.   

 

Figure 3.4. Distinguishable patterns of accelerometer data for dump truck 
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3.5.2. Cycle times estimation using activity identification 

The collected data were used to train an LSTM network to identify the activities 

following the steps described in (Rashid and Louis 2019b). The duration of all the 

activities was calculated once the activities were identified accurately. Figure 3.5 

shows the duration of different activities of the dump trucks. The average duration for 

Loading, Hauling, Dumping, and Returning are 2.81 minutes, 15.03 minutes, 0.83 

minutes, and 15.53 minutes, respectively. These durations will be the primary input 

parameter of the DES model as a distribution (e.g., normal distribution, gamma 

distribution, etc.). The distributions were fitted using the Chi-Square Goodness-of-Fit 

test, which tests if a sample of data came from a specific theoretical distribution. This 

test groups the data into bins, then calculates the observed and expected counts for 

those bins and computes the chi-square test statistics. All four activities were fitted to 

normal distribution. Figure 3.6 shows the histogram and probability density of the 

loading times.    
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Figure 3.5. Cycle time durations of dump trucks 

 

Figure 3.6. Distribution of loading time 

The calculated means and standard deviations for all four activity durations are shown 

in Table 3.1. The return route for the trucks was longer than the hauling route which 

is reflected in the data. These values were assumed to be the initial input parameters 

for the base DES model.  

Table 3.1. The mean and standard deviation of each activity 

Activity 
Duration (Minutes) 

Mean Std. dev. 

Loading 2.49 0.23 

Hauling 15.02 1.77 

Dumping 0.83 0.18 

Returning 15.55 2.76 

 

3.5.3. Bayesian updating and DES model 

The base simulation model was developed (Figure 3.7) using the input parameters 

shown in Table 3.1. It was assumed that total of 20,000 cubic yards of soil needed to 

be moved from the cut areas to the fill area. As data could be obtained from three 

trucks (out of five), it was also assumed that the project was run by only three trucks 



73 

 

 

instead of five. The initial simulation predicted the project will be completed in 16 

days. To match the project duration with the collected data, the activity durations 

were divided into 16 sub-sections, representing data from each day of the project.  

 

Figure 3.7. DES model of the earthmoving operations 

It was decided to update the model every 2 days using the most recent durations. To 

update the input parameters (i.e., activity durations), the Bayesian technique was used 

to combine the initial estimates and actual sample data as described in the 

Methodology section. Figure 3.8 shows the comparison of prior and posterior 

distribution updated on day 2 for the loading time. We see that the prior was a normal 

distribution with a mean of 2.49 and a standard deviation of 0.23, which was updated 

to a posterior with a mean of 2.31 and a standard deviation of 0.19. This calculation 

was done for each of the four activities. So, the next prediction of the DES model was 

obtained using these updated input parameters. This process was continued every 2 

days to get an updated prediction from the simulation model.  
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Figure 3.8. Prior and posterior normal distribution of the loading time after day 2 

Figure 3.9 shows the percent completion of the project using a static prediction at the 

beginning (i.e., at day zero) of the project and dynamic prediction using the updated 

(at every 2 days) cycle times from the Bayesian update. The static simulation shows 

that the total project completion time was 16 days. However, when the cycle times 

were updated using the Bayesian updating technique and used as inputs in the 

simulation model, project completion time extended to 18 days. Figure 3.10 shows 

how cycle times changed throughout the project compared to the initial estimates. 

Following the updated cycle time, the productivity also changed, and we see how the 

productivity decreased with increased cycle time in Figure 10.  



75 

 

 

 

Figure 3.9. Percent completion of the project with initial vs. updated prediction 

 

Figure 3.10. Cycle times and productivities using initial and updated cycle times 

Figure 3.9 and Figure 3.10 show that simulations conducted during the construction 

might provide more accurate and reliable predictions as they used the actual data 
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from the site compared to the initial prediction. These results show that the Bayesian 

updating technique was successfully used to update the distribution of the input 

parameters. Moreover, it leads to the conclusion that updating the simulation model 

frequently with actual data collected from the field can improve the prediction of the 

project performance by eliminating uncertainty in the original assumption.  

3.6. Conclusions and future work 

Earthmoving operations usually involve many unforeseen factors, such as constant 

change of the site layout, weather conditions, geological conditions. Thus, simulation 

can be a useful tool to experiment with multiple scenarios instead of resorting to 

costly experiments in the field. DES modeling is a powerful approach to simulate the 

earthmoving operation; however, the input parameters of the model are mainly 

obtained based on assumptions and previous experience, rather than actual data. This 

yields an inaccurate representation of the engineering process and leads to erroneous 

predictions for the project. To reduce the uncertainty of the model and improve 

simulation prediction, a proper updating technique is required. The updating 

technique can be also used to improve overall project control over schedule and cost. 

Towards this end, this chapter proposes an integrated approach to collect field data, 

identify activities of the equipment, develop a simulation model, and update the 

model using actual field data to provide an accurate prediction. A real-world 

earthmoving operation was chosen as a case study. Field data were collected using 

IMU attached to the excavators and dump trucks. Deep learning techniques, 

specifically, LSTM network was used to predict the activities of the equipment. Cycle 

times calculated from the predicted activities were used as inputs in the DES 
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simulation model. Bayesian techniques were used to update the distribution of the 

input parameters of the simulation model. This demonstrates a formal approach to 

combine original estimates with the sample data collected from the site. The updated 

simulation prediction shows an increase in cycle times compared to the initial 

predictions as the project progresses. This shows reduced productivity, and the 

project duration was predicted to extend by 2 days compared to the initial prediction. 

These results can be used as a guideline to control the project cost and schedule.  

This research contributes to the body of knowledge by demonstrating the capability of 

the DES model and machine learning algorithms to facilitate the decision-making 

process by simulating the most up-to-date field conditions. Moreover, the study 

contributes to the practice by presenting an integrated framework that contains an 

activity identification model for heavy civil equipment and a DES model simulating 

earthmoving operations. This provides a platform to automatically monitor the 

activities as well as estimate productivity by utilizing the most recent information.  

The case study was performed only using data from the excavator and dump trucks. 

The future study can expand this work by including other earthmoving equipment 

(e.g., loader, scraper, grader, etc.) to capture the complex dynamics of typical heavy 

civil operations. Moreover, advanced algorithms such as reinforcement learning 

models can be integrated into the framework to automate the optimize process.  
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4. CHAPTER 4: AUTOMATED ACTIVITY IDENTIFICATION 

IN MODULAR CONSTRUCTION FACTORY 

The content of Chapter 4 is an adapted version of the following manuscripts: 

1. Rashid, K., Louis, J., (2020), “Activity identification in modular construction 

factory using audio signals and machine learning.” Automation in Construction. 

119, 103361. DOI: https://doi.org/10.1016/j.autcon.2020.103361  

 

2. Rashid, K., Louis, J., “Automated active and idle time measurement in modular 

construction factory using inertial measurement unit and deep learning for 

dynamic simulation input”. Accepted for Winter Simulation Conference 2021. 

 

4.1. Introduction 

Modular construction is an attractive and innovative project delivery method for 

buildings due to its advantages over traditional stick-built methods in terms of 

reduced waste, construction time and cost, control over resources and environment, 

and amenability to novel techniques in controlled factory settings. However, efficient 

and timely decision-making in modular factories requires spatiotemporal information 

about the resources regarding their locations and activities.  

Per the overarching research methodology of this dissertation, the first step towards 

improving decision-making is the provision of automated means of data collection for 

monitoring construction progress in modular factories, which can then be input into 

decision-making methodologies such as simulation and optimization. This chapter 

describs the first part of this process– automated activity monitoring – using a 

ubiquitous data source present in every modular construction factory: sound. Audio 

data will be used to automatically identify commonly performed manual activities 

such as hammering, nailing, sawing, etc.  

https://doi.org/10.1016/j.autcon.2020.103361
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To develop a robust activity identification model, it is imperative to engineer the 

appropriate features of the data source (i.e., traits of the signal) that provides a 

compact, yet the descriptive representation of the parameterized audio signal based on 

the nature of the sound, which is very dependent on the application domain. In-depth 

analysis regarding appropriate features selection and engineering for audio-based 

activity identification in construction is missing from current research. Thus, this 

research extensively investigates the effects of various features extracted from four 

different domains related to audio signals (time-, time-frequency-, cepstral-, and 

wavelet-domains), in the overall performance of the activity identification model.  

The effect of these features on activity identification performance was tested by 

collecting and analyzing audio data generated from manual activities at a modular 

construction factory. The collected audio signals were first balanced using time-series 

data augmentation techniques and then used to extract a 318-dimensional feature 

vector containing 18 different feature sets from the abovementioned four domains. 

Several sensitivity analyses were performed to optimize the feature space using a 

feature ranking technique (i.e., Relief algorithm), and the contribution of features in 

the top feature sets using a Support Vector Machine (SVM). Eventually, a final 

feature space was designed containing a 130-dimensional feature vector and 0.5-

second window size yielding about 97% F-1 score for identifying different activities. 

The contributions of this study are two-fold: (1) A novel means of automated manual 

construction activity identification using audio signal is presented; and (2) 

Foundational knowledge on the selection and optimization of the feature space from 

four domains is provided for future work in this research field.  
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4.2. Background 

4.2.1. Offsite and Construction 

Off-site and modular construction is increasingly being seen as a promising solution 

to meet the growing housing demands in urban areas, due to its advantages over 

traditional on-site construction methods which include shorter construction through 

parallel work, reduced material wastage, and resulting cost savings for projects 

(Alazzaz and Whyte 2014). The highest degree of modularization is obtained in 

volumetric construction where modular units in the form of three-dimensional units 

for buildings are constructed off-site and minimal work is left to be accomplished on-

site (Gibb and Isack 2003). A wide variety of built products are constructed in 

modular construction factories ranging from single-family homes to multi-family and 

office buildings, with a great variety and customization offered in terms of shapes and 

sizes amongst them.  

The construction of these modular units in the factory involves different construction 

processes that are in separate workstations. Typically, the workstations of a modular 

construction factory can be divided into two categories: off-line stations and online 

stations. The off-line stations are typically dedicated to the creation of panelized 

components such as walls, floors, and ceilings from raw material. On the other hand, 

online stations are part of the assembly line for the volumetric unit, where various 

pre-made components (some from the off-line stations) are added and assembled to 

the modular unit. Therefore, the overall productivity of the factory depends on the 

productivity of both types of workstations. A delay at any of these workstations can 

potentially cause bottlenecks in production that can adversely affect the factory’s 
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ability to meet the demand. Thus, to plan workstation layout and allocate resources to 

them, it is essential to know how much time is required to complete work at each 

station and to understand how that time is divided between various activities 

performed and idle times at the stations.  

4.2.2. Automated productivity monitoring and control in modular construction 

Several technologies have been proposed and adopted to ensure optimal performance 

of modular construction factories by focusing on the planning, monitoring, and 

control of modular processes. Researchers have integrated simulation models, RFID 

technologies, and optimization algorithms to develop control systems to assist 

operational decision-making. Mirdamadi et al. (2007) proposed a discrete event 

simulation (DES) and manufacturing executing system-based real-time production 

activity control framework for off-site construction.  

Afifi et al. (2017) developed a combined approach using discrete-event and 

continuous simulation approaches to increase the productivity of modular 

construction. Azimi et al. (2011) illustrated an automated project monitoring and 

control framework using high-level architecture and radio frequency technology 

(RFID). Altaf et al. (2018) developed a production planning and control system using 

RFID, data mining, and simulation-based optimization in a panelized home 

production factory. Jureidini et al. (2016) developed a 3D/4D visualization tool to 

better perform different activities inside a modular construction factory. Moreover, 

lean tools and techniques have been implemented in modular construction facilities to 

explore their feasibility in reducing production time and waste (Moghadam 2014; 

Nahmens and Ikuma 2012; Yu et al. 2013).  
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The above research showcase efforts to integrate real-world data into planning 

models for improving modular construction. However, automated data collection 

efforts in modular construction have, to date, only involved the use of RFID tags to 

track the location of components at various stations. There is yet more research 

required to identify exactly what activities are being performed at the various stations 

themselves. This area has been explored in more depth in conventional onsite 

construction, which is described in the next section to identify potential solutions for 

application in the domain of off-site construction.  

4.2.3. Audio-based classification  

The broader field of audio-based classification can be defined as machine hearing 

(Lyon 2010), which is the quest for making computers automatically sense their 

environment using human-like acoustic sensing. Research efforts in this area aim to 

detect and classify different sounds such as speech, music, and environmental sounds, 

using their distinctive aural characteristics. For example, while music presents 

repeated stationary patterns such as melody and rhythm, speech signals have different 

traits in spectral distribution and phonetic structure. Environmental sound detection is 

a more complex domain due to the lack of periodicity, complexity in the spectrum, 

and an almost infinite range of phonemes and notes (Alías et al. 2016). Thus, 

depending on the domain of interest, audio-based classification takes various 

approaches for feature extraction, window selection, and learning model selection. 

For instance, window lengths between 10 to 50 milliseconds are typically selected to 

analyze and classify speech or transient noise events detection (Fu et al. 2011), 
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whereas window length of several seconds is used in auditory scene analysis (Chu et 

al. 2009).  

Similarly, there are many feature extraction approaches developed and implemented 

based on specific types of sounds and their applications. For example, speech, music, 

and environmental sounds generally present rich time-domain variation with diverse 

content, which can be parameterized by computing sign-change rate, signal power, 

etc. (Alías et al. 2016). Moreover, those dynamic variations can also be retrieved by a 

transformed domain, such as Fourier transform, cepstral-, or wavelet-domain 

(Haubrick and Ye 2019). In addition to retrieving physical properties from the audio, 

perceptual features can also be relevant and extracted from the audio input by 

modeling a simplified version of the auditory model of the human hearing system 

considering Mel, Bark, Gammatone filter-banks (Richard et al. 2013).  

Audio signals have been explored to recognize daily human activities, such as 

walking, making coffee, brushing teeth, etc. in different built environments (García-

Hernández et al. 2017; Liang and Thomaz 2019; Tremblay et al. 2015).  Thus, it can 

be seen that there is a wide range of possibilities for analyzing an audio signal that 

varies depending on the domain of the audio being analyzed. The next section 

provides an overview of previous implementations of audio-based classification in 

construction.  

4.2.4. Audio-based activity identification in construction  

There have been recent applications of audio-based activity identification on 

construction sites. Sherafat et al. (Sherafat et al. 2019) proposed an automated activity 

recognition framework for construction equipment by fusing audio and kinematic 
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signals. A binary support vector machine (SVM) model was trained using frequency-, 

and wavelet-domain features to identify value-adding and non-value-adding activities 

of a loader, a dozer, an excavator, a drilling machine, and a lift. In another similar 

effort, the audio was used to extract short-time Fourier transform (STFT) based time-

frequency features and train an SVM model to identify productive and non-

productive activities of the equipment (Cheng et al. 2017).  

Sabillon et al. (Sabillon et al. 2020) proposed an audio-based Bayesian model for 

estimating cycle times of cyclic construction activities of equipment.  A frequency-

domain-based method, coupled with the hidden Markov model (HMM) was proposed 

to detect multi-layered construction activities from audio signals(Cho et al. 2017). 

Cheng et al. (Cheng et al. 2019) evaluated the software and hardware settings for 

audio-based activity analysis in construction operations by considering two different 

job site conditions (i.e., job site with a single machine and multiple machines), two 

types of SVM classifier (RBF and linear kernels), and two common frequency feature 

extraction techniques (short-time Fourier transform (STFT) and continuous wavelet 

transform (CWT)). Maccagno et al. (Maccagno et al. 2019) proposed a CNN-based 

approach for audio classification to identify what type of equipment was operating in 

the construction site. This study used Mel-spectrogram to extract Mel-scale features 

from the audio and demonstrated promising results in construction equipment activity 

classification.       

Even though extensive research has been done aiming to improve production 

planning and control in panelized and modular construction factories, a detailed 

activity or task identification framework is missing from the literature. This is 
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important as the activities performed at each workstation eventually contribute to the 

overall productivity of the factory. The nature of work (i.e., mostly using hand-held 

tools) inside a modular construction factory poses some practical challenges in 

implementing an active IMU-based framework while the unstructured movement of 

humans and materials poses obstacles toward implementing CV-based approaches. 

Moreover, existing audio-based activity analysis techniques for outdoor construction 

equipment may not be directly transferrable for manual activities in modular 

construction factories due to the difference in audio signals. Moreover, automated 

tracking of active and idle time in modular construction factories is missing from the 

literature. 

4.3. Research gaps and point of departure 

Based on the literature review performed, the following specific research gaps are 

identified and targeted in this chapter:  

(1) Lack of robust activity identification framework for modular construction: 

Even though RTLS-, IMU-, and CV-based approaches exist in the current 

literature for on-site construction, an audio-based activity identification 

framework can address some of their limitations (e.g., unable to detect 

activities in stationary location for RTLS-based methods, attaching 

sensors to all the resources for IMU-based approach, and sensitivity 

towards light and occlusion for computer vision-based approach). 

(2) Lack of audio-based activity recognition for manual activities: Even 

though audio-based activity identification frameworks for equipment in 

on-site construction exist in the current literature, temporal and spatial 
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characteristics of an audio signal generated from construction equipment 

are fundamentally different from the manual activities that are prevalent in 

building construction such as hammering, sawing, nailing, etc. Thus, there 

is a gap in knowledge regarding how sounds from manual activities from 

construction sites can be exploited towards extracting information about 

manual activities performed by factory workers. 

(3) Lack of systematic feature extraction method for audio-based activity 

identification in construction:  Compact yet descriptive feature extraction 

that is based on the type of audio signal and the targeted application is 

necessary to develop a successful activity identification framework. There 

is a clear gap in existing knowledge regarding an in-depth discussion on 

the process to extract, optimize, and synthesize features from different 

domains (i.e., time, frequency, wavelet, cepstral, etc.) to ensure successful 

implementation of a machine learning model for activity identification in 

the construction domain.   

(4) No system to track active and idle time manually: There is no previous 

work on automated active and idle time identification for modular 

construction operations.  

Considering the above gaps in knowledge, the goal of this chapter is to develop an 

automated activity identification framework to detect manual activities that occurs in 

the workstations of modular construction factories, as well as active and idle times in 

the workstations. This research goal is accomplished in this chapter through the 

pursuit of these specific research objectives: 
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(1) Develop and validate an audio-based activity identification framework for 

manual activities inside modular construction factories. 

(2) Perform feature engineering for the audio-based framework which includes 

feature extraction from multiple domains (i.e., time, frequency, wavelet, 

cepstral, etc.), dimensionality reduction, and feature space design. 

(3) Develop and validate a framework to automatically track active and idle times 

at different workstations in modular construction factories.  

The scope of this research is to validate the proposed audio-based activity 

identification for the single tasks performed at a time. In practice, multiple activities 

are performed at the same time generating sounds simultaneously. However, due to a 

lack of prior literature in this area (i.e., audio classification for manual construction 

activities), this research seeks to first engineer appropriate features for this domain, 

which eventually can serve as foundational knowledge for future work in 

simultaneous multi-task identification.  

4.4. Methodology 

Towards accomplishing the stated research goal, this research developed an audio-

based task identification framework, which is illustrated in Figure 4.1. 
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Figure 4.1. The overall framework for audio-based activity identification 

The framework consists of three phases that include data preparation, feature 

engineering, and model evaluation. Major importance is given to feature engineering 

to develop a robust machine learning model. Previous studies in similar fields used 

features from different domains (time-, time-frequency-, cepstral-domain) separately, 

and did not evaluate how each of those features contributes to the overall 

performance of the model. This step of the methodology ensures that the final feature 

space is optimized, containing a compact and descriptive set of features. The 

collected data is first prepared for the feature engineering phase, wherein domain-

specific features are extracted using different window sizes for feature space design. 

Four domain-specific features are tested in this study: time-, frequency-, cepstral-, 

and wavelet-domain. Finally, the optimized feature space and training dataset are 

used to train and evaluate the SVM model using the test dataset. The methodological 

steps to track active and idle time using IMU follow the same steps described in 

section 2.4. Thus, the following subsection will describe only the steps undertaken for 

the audio-based activity identification framework shown in Figure 4.1. 

4.4.1. Data Preparation  

The data preparation phase involves audio recording and separating audios of interest 

for this study. Data collection is performed by recording the sounds generated in a 

modular construction factory using commercial audio and video recorder. Audio 

associated with major activities (e.g. nailing using nail-gun, hammering, sawing using 

table saw, etc.) are then separated from the raw audio file. According to the scope of 

this study, multiple activities happening simultaneously are avoided to simplify the 
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problem domain. Only single activities are considered and separated, and the 

emphasis is placed on designing the feature and windows. Thus, the separated audios 

are then used to engineer the feature space. 

4.4.2.  Feature Engineering 

In this study, feature engineering refers to segmenting the input audio signal using 

various window sizes, extracting features from four different domains (i.e., time, 

frequency, wavelet, and cepstral), optimizing the features by using dimensionality 

reduction, and performing several sensitivity analyses. The following sub-sections 

discuss key components of the feature engineering process including (1) data 

segmentation, (2) feature extraction, and (3) feature and window optimization.  

4.4.3. Data Segmentation  

Data segmentation refers to the process of slicing the continuous time-series audio 

signal into discrete portions for feature extraction. In this study, two different levels 

of segmentation are used. The higher-level segmentation (referred to as “window”) is 

used to segment the audio for feature extraction so that each window of audio 

produces a feature vector. For the second level: each window is further divided into 

discrete “frames” to calculate the short-time characteristics of the audio. Generally, 

the length of the frames is much smaller than the length of the window, and one 

window contains several frames. Different sizes of windows are used with 50% 

overlapping. Frame size and overlap are decided based on the type of features 

extracted from the corresponding frames. The features from each frame are used to 

extract statistical descriptors (i.e., mean, variance, etc.) or simply concatenated, 

depending on the type of features, to generate the feature vector for the corresponding 
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windows. Figure 4.2 shows that the audio data are first segmented using Wm 

windows, and each window is then segmented using Fn frames.   

 

Figure 4.2. Segmenting the audio signal using windows and frames 

4.4.4. Feature Extraction 

Extracting compact and descriptive features from the audio is a key step to ensure 

successful machine learning applications for any classification problem. Feature 

extraction in audio classification is still an emerging field of research and based on 

reviewing state-of-the-art feature extraction techniques in audio classification in 

construction as well as in other research fields (e.g., speech, music, environmental 

sound classification), four domain-specific features are extracted in this study. They 

are time-, frequency-, cepstral-, and wavelet-domain features. Several features from 

each domain are extracted using the segmentation technique. Figure 3 shows the 

features obtained from the different feature spaces. These are described in greater 

detail in the following subsections.  
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Figure 4.3. Summary of all features from four domains 

4.4.4.1.Time-domain features 

In the time domain, three types of features; zero-crossing rate (ZCR), root-mean-

square (RMS), and short-time energy (STE) are extracted.  

Zero-Crossing Rate (ZCR): ZCR is the rate of sign-change of a signal from positive 

to negative or from negative to positive. ZCR can be a rough representation of the 

frequency content and is calculated in short time windows. ZCR is calculated by the 

number of times the audio signal changed signs divided by the length of the frame. 

ZCR is calculated using the following equation and is illustrated in Figure 4.4. 

If, 𝑥𝑖(𝑛) = 0,1, … , 𝑁 − 1 is the sample of the ith frame. 

𝑍(𝑖) =
1

2𝑁
 ∑ | 𝑠𝑔𝑛[𝑥𝑖(𝑛)] − 𝑠𝑔𝑛 [𝑥𝑖(𝑛 − 1)] |𝑁−1

𝑛=0     

Z (i) is the ZCR for ith frame. 
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Figure 4.4. Illustration of zero crossing 

Root-mean Square (RMS): RMS of an audio clip reveals the temporal variation of the 

signal’s magnitude in terms of volume. RMS values are calculated on short time 

windows, like ZCR using the following equation.  

𝑠𝑔𝑛 [𝑥𝑖(𝑛)] = {
1, 𝑥𝑖(𝑛) ≥ 0

−1, 𝑥𝑖(𝑛) < 0
   

𝑅𝑀𝑆(𝑖) = √
1

𝑁
 ∑[𝑥𝑖(𝑛)]2

𝑁−1

𝑛=0

  

The RMS values are divided by the frame length to remove any dependency.  

Short-time energy (STE): Analogous to RMS, STE is also a simple representation of 

the energy in a signal and reveals how energy is varying through the time domain. 

The STE is calculated using the following equation.     

𝑆𝑇𝐸(𝑖) = ∑ [𝑥𝑖(𝑛)]2𝑁−1
𝑛=0         

Each of the time-domain features produces an array revealing the temporal variation 

of the audio signal. The arrays are concatenated to generate the feature vector for the 

corresponding window. Figure 4.5 shows the three time-domain features (i.e., ZCR, 

RMS, and STE) for a sample window. By looking at the waveform and the features, it 
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can be noticed that all three time-domain features successfully capture the temporal 

variation of the signal.   

 

 

 
 

 

 

Figure 4.5. Three time-domain features with the audio signal of a sample window 

4.4.4.2.Frequency-domain features 

To extract frequency-domain features from the audio, first, a short-time Fourier 

transform (STFT) is applied to reveal time-localized frequency information from the 

signal. The STFT converts time-domain signals into a time-frequency domain, where 

the power of each frequency is illustrated by a color scale, and this time-frequency 

representation of the signal is also known as “spectrogram”. In this study, a hamming 

window of 512 sample size, 265 sample overlap is selected as a frame, and 512 FFT 

length is used during the STFT. There is a trade-off between time and frequency 

resolution in STFT depending on the size of the window. A narrow-band window 

produces better resolution in the time-domain, but the poor resolution in frequency-

domain, and vice-versa. Thus, the window length of 512 samples is selected as a 

medium window. Figure 4.6 illustrates the process of implementing short-time 

Fourier transform (STFT) and generating spectrogram.   
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Figure 4.6. Steps of Short-time Fourier transform 

Initially, the signal is segmented using a 512 sample size length into a finite number 

of frames. Fast Fourier transform (FFT) is applied to each of those frames to convert 

the signal from time-domain to frequency-domain. Finally, the intensity of the FFT 

can be illustrated using a color bar generating a time-frequency signal, a.k.a. 

spectrogram. From this time-frequency signal, several frequency-domain features, 

i.e., spectral centroid, spectral spread, spectral entropy, spectral crest, spectral flux, 

and spectral roll-off point are extracted. The spectral centroid can be defined as the 
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center of gravity of the magnitude spectrum of the STFT. Spectral spread is the 

standard deviation around the spectral centroid. The spectral crest is the ratio of 

power spectral density (PSD) and the mean PSD. Spectral flux captures the sudden 

changes in the frequency energy distribution of the sound. And spectral roll-off is 

defined as the 95th percentile of the power spectral distribution and can be a measure 

of the skewness of the spectral shape.  

Spectral Centroid: Spectral centroid is a representation of the “brightness” of the 

sound. This is measured by calculating the “center of gravity” of the magnitude 

spectrum of the STFT. Spectral centroid can be calculated using the following 

equation. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  
∑ 𝑓𝑘∗𝑠𝑘

𝑏2
𝑘=𝑏1

∑ 𝑠𝑘
𝑏2
𝑘=𝑏1

      

Where fk = frequency of frame k, sk = spectral magnitude of frame k, and b1 and b2 

are band edges of the frame k. 

Spectral Spread: Spectral spread is the measure of the average spread of the 

magnitude spectrum of STFT in relation to the spectral centroid. This is a measure of 

the bandwidth of the sound. Spectral spread can be calculated using the following 

equation. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑆𝑝𝑟𝑒𝑎𝑑 =  √
∑ (𝑓𝑘−𝑆𝐶)2∗𝑠𝑘

𝑏2
𝑘=𝑏1

∑ 𝑠𝑘
𝑏2
𝑘=𝑏1

      

Where SC = spectral centroid of frame k. 

Spectral Entropy: Spectral entropy represents the “peakiness” of the STFT magnitude 

spectrum and is calculated by the following equation.   
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𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  
∑ 𝑠𝑘𝑙𝑜𝑔(𝑠𝑘)𝑏2

𝑘=𝑏1

log(𝑏2−𝑏1)
       

Spectral Crest: Similar to spectral entropy, the spectral crest is also a measure of the 

“peakiness” of the spectrum, where the higher crest specifies tonality and the lower 

crest indicates noise. The spectral crest is calculated by measuring the ratio of the 

maximum spectrum to the arithmetic mean of the spectral, as shown in the following 

equation. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐶𝑟𝑒𝑠𝑡 =  
𝑚𝑎𝑥(𝑆𝑘[𝑏1,𝑏2]

1

𝑏2−𝑏1
 ∑ 𝑠𝑘

𝑏2
𝑘=𝑏1

       

Spectral Flux: Spectral flux measures the variation of the magnitude of the spectrum 

over time. This feature is useful in detecting any onset in the audio. The following 

equation is used to calculate spectral flux. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐹𝑙𝑢𝑥 =  (∑ |𝑠𝑘(𝑡) −  𝑠𝑘(𝑡 − 1)|𝑝 𝑏2
𝑘=𝑏1 )

1

𝑝       

Spectral roll-off point: The spectral roll-off point is the bandwidth of the audio signal 

under which 95% of the total energy exist and can be calculated by the following 

equation. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑟𝑜𝑙𝑙 − 𝑜𝑓𝑓 𝑝𝑜𝑖𝑛𝑡 = 𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ |𝑠𝑘| = 0.95 ∗ ∑ 𝑠𝑘
𝑏2
𝑘=𝑏1

𝑖
𝑘=𝑏1     

All the feature arrays across all the frames are concatenated to generate a frequency-

domain feature vector for the corresponding window. Figure 4.7 illustrates waveform, 

spectrogram, and all the frequency domain features of a sample window. The X-axis 

of the features is the frame number, and the y-axis is the normalized values. Figure 

4.7 gives a visual snapshot of how the frequency-domain features are measuring the 

variation of the magnitude of the spectrum.  
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Figure 4.7. Waveform, spectrogram, and frequency-domain features of a sample 

window 

4.4.4.3.Cepstral-domain features 

Cepstral and cepstrum are derived by reversing the first four letters of spectral, or 

spectrum (Bogert 1963). A cepstrum reveals the information regarding the rate of 

change in a spectral band of audio. Cepstrum is derived by first taking a log of the 

STFT, and then again taking the spectrum of that log by discrete cosine 

transformation. In cepstral-domain, Mel-frequency cepstral coefficients (MFCC), 

perceptual linear prediction cepstral coefficients (PLPCC). During the feature 

extraction, a hamming window of 512 samples, and 256 sample overlap is used to 

segment each window of audio into several frames. The following sub-section 

discusses details on these two features. 

Mel-frequency cepstral coefficients (MFCC): MFCC is a perceptual feature, where 

the frequency is converted from linear scale to a logarithmic scale, known as Mel 

scale. This is done to match the features more closely to human hearing as humans 
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are better at perceiving any changes in audio pitch at lower frequencies than they are 

at higher frequencies. The following equation is the formula to convert frequencies 

from linear scale to Mel scale.    

𝑀(𝑓) = 1125 ln (1 + 𝑓/700)      

Where f is the frequency in the linear scale, and M(f) in the Mel scale. The steps to 

calculate the MFCC are shown in Figure 4.8.   

 

Figure 4.8. Steps involved in MFCC feature extraction 

After windowing and framing the signal, first, the spectrogram is calculated using 

STFT. The magnitudes of STFT are then warped into Mel frequency using a Mel 

filterbank. The outputs from the Mel filterbank are then logarithmzed and 

transformed using discrete cosine transformation (DCT) to get the Mel-frequency 

cepstral coefficients. The first 13 MFCCs are used in this study. This means if there 

are Fn frames in one window, the feature dimension for MFCCs is 13XFn. To reduce 

dimensionality, the mean, the median for each coefficient, as well as diagonal of the 

covariance matrix is selected as final features.  

Perceptual linear prediction cepstral coefficients (PLPCC): PLPCC represents the 

spectral contour by using a linear prediction-based approach. Like MFCC, the linear 

frequency scale of the audio is converted to a different scale, known as Bark-scale, 

inspired by human hearing properties. Bark-scale is a psychoacoustic scale accounted 
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for subjective measurement of the loudness of the audio and can be expressed by the 

following equation.  

𝐵(𝑓) = 6 ln [
𝑓

600
+ √(

𝑓

600
)

2

+ 1]     

Where B(f) is the frequency in Bark-scale, and f in linear scale. Figure 4.9 illustrates 

the steps necessary to calculate PLPCCs.   

 

Figure 4.9. Steps required to compute PLPCCs 

After windowing and framing the audio segment, the energy spectrum is computed 

using STFT. The magnitudes of STFT are then warped into Bark frequency using 

Bark filterbank. Then an equal-loudness pre-emphasis is applied to the filterbank 

outputs to simulate varying sensitivity of human hearing across different frequencies. 

Then a cubic-root amplitude compression is applied to represent the relation between 

intensity and loudness. The energy spectrum is then approximated using linear 

prediction. Finally, cepstral coefficients are extracted from the linear prediction.   

12th order PLPCCs are calculated in this study, yielding 13 coefficients. This means if 

there are Fn frames in a window, the dimension of PLPCCs is 13XFn. The mean, 

median, and diagonals of the covariance matrix are extracted to reduce the dimension 

of the feature space. In addition to PLPCCs, the changes of coefficients across frames 

(a.k.a. delta) and change of delta (a.k.a. delta delta) are also computed and used as 

features. 
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Figure 4.10 visualizes the transformation of frequencies from linear scale to Mel-, and 

Bark-scale. This figure contains a 10-second sample audio segment. First, a 

spectrogram is plotted using a 512 size hamming window and 50% overlap, which 

represents the original spectrogram. Then a reconstructed spectrogram is obtained 

from the MFCCs, titled “Reconstructed Spectrogram from Cepstra”. The last plot 

shows the PLPCC spectra.  It can be noticed that the power variation across the time 

is much more distinguishable when using MFCCs, and PLPCCs than linear frequency 

scale. 

 

Figure 4.10. Transformation of a 10-sec audio segment into Mel- and Bark-scale 

4.4.4.4.Wavelet-domain features 

A wavelet is an oscillation with zero mean and finite length, represented by a 

mathematical function. One primary limitation of STFT is the theoretical limitation of 

Fourier Transform (FT) known as the uncertainty principle. This means that the 

smaller the size of the frame in STFT, the more information can be obtained 

regarding the location of the frequency in time, but less about the frequency value 

itself. On the other hand, wider frames in STFT reveals more information about the 

value of the frequency and less about the time. Thus, to analyze signals with dynamic 
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frequency spectrum, a Wavelet Transform (WT) is frequently applied. Unlike FT, the 

WT has higher resolution both in the time and frequency domain. The basic 

differences of FT, STFT, and WT in terms of time, and frequency domain resolution 

is shown in Figure 4.11.  The size of the blocks represents the resolution of the 

features in the time or frequency domain. The time series has high resolution in the 

time domain, and zero resolution in the frequency domain. On other hand, FT has 

high resolution in the frequency domain and zero resolution in the time domain. The 

STFT has medium resolution both in time- and frequency-domain and increasing 

resolution in one domain yields to decrease of resolution in another. However, WT 

has high-frequency resolution and low time resolution for smaller frequencies, and 

vice versa, high time resolution and low-frequency resolution for higher frequencies. 

These are particularly intriguing characteristics of WT for audio classification, as 

frequency-dependent features are important for lower frequencies, and time-

dependent features are for higher frequencies, and WT makes this trade-off.   

 

Figure 4.11. Schematic of time and frequency resolution of different transformation 

Where sine and cosine waves are used in FT, which are infinite in length, wavelet has 

a finite length making it localized in time. Two major types of wavelets are discrete 

wavelet and continuous wavelet. The main difference between discrete and 
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continuous wavelet is that scale and translation factors of discrete wavelet are 

discrete, where continuous wavelet can have an infinite number of scale and 

translation factors. This should be noted that discrete wavelets are not discrete in the 

time domain. Moreover, there are different wavelet families, with different shapes, 

smoothness, and compactness, and generally selected based on the specific 

application. 

A discrete wavelet transform is used in this study. The process of a typical three-level 

DWT is illustrated in Figure 4.12. As seen from the figure, the signal is passed 

through a high-pass and low-pass filter. Outputs from the high-pass filter are called 

detail coefficients, and from the low-pass are called approximate coefficients. Both 

the coefficients are then down-sampled, generally to half of the length. Then 

approximate coefficients pass through the same process repeatedly. In this study, 

approximates coefficients from the last level (e.g., A3), and detail coefficients from 

all the levels (e.g., D1, D2, and D2) are used as features.   

 

 

Figure 4.12. Process of Multi-level DWT 

A Symlets wavelet family, specifically ‘sym2’ with five-level decomposition is used 

in this study. Figure 4.13 shows a 250 ms (4000 sample) audio signal with the DWT 



103 

 

 

parameters (without down-sampling), where s is the signal, a5 is the level 5 

approximate coefficients, and d1-d5 are detail coefficient at each level. The mean, 

median, standard deviation, variance, and short-time energy of each coefficient are 

selected for the final feature vector. 

 

Figure 4.13. Five-level decomposition of a signal using ‘sym2’ wavelet 

The next step is to identify the most important features from the feature space, which 

are representative of the audio, yet concise and computationally effective. The next 

sub-section discusses the feature selection approach taken in this study.   

4.4.5. Feature and window optimization 

One of the fundamental challenges of any classification problem is to accurately 

characterize the relationship between the features and the labels. However, only 



104 

 

 

certain features in a dataset are descriptive and informative, and thus relevant to the 

problem domain. Irrelevant features are rarely differentiable, yet they contribute to 

the overall dimensionality and increase the complexity and computation time. In 

order to remove the irrelevant features from the data set, a Relief-based feature 

selection algorithm, known as ReliefF, is implemented. ReliefF calculates the feature 

weights or relevance to the labels using nearest neighbor concepts (Urbanowicz et al. 

2018). The features are then ranked based on their respective weights. Different 

subsets from the features are used in several sensitivity analyses to examine their 

performance.  

Since all the features are multi-dimensional and spread over different frames within a 

window, the window size is also an important factor in the sensitivity analyses. For 

example, a window containing i number of frames will generate 1xFi dimensional 

features. Moreover, the size of the window should be small enough to provide high 

resolution, and wide enough to provide enough information to detect variation over 

time. Thus several window sizes, from 0.05 seconds to 1.5 seconds at different 

intervals are tested. Each sensitivity analysis containing different feature 

combinations, as well as different window sizes are validated and compared using 

support vector machine (SVM) and 5-fold cross-validation (CV).    

4.4.6. Model evaluation  

In this study, a multi-class support vector machine (SVM) is implemented in Matlab® 

for classifying activities. In multi-class SVM implementation, a one-vs-one setting is 

adopted, where each pair of classes is trained using one binary SVM with quadratic 

kernel function, and the final prediction decision is made using majority voting. 5-
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fold cross-validation is used for parameter optimization, and 85/15 training and test 

ratio is used to test the final model. The main reason for choosing SVM as a classifier 

is to achieve the primary objective of this study, which is to compare various 

combinations of features from different domains, and window sizes to engineer the 

most optimum feature space. As training time from SVM is much shorter than the 

more recent deep learning architectures, quickly comparing different combinations of 

feature space becomes more computationally efficient. In this study, four 

performance measures; accuracy, precision, recall, and F-1 score are used to measure 

the performance of the SVM model. Moreover, a confusion matrix is used to examine 

the inter-class classification confusion among different activities. In addition to the 

overall precision, and recall of the model, those two measures are computed for each 

of the activities to see how they behave individually.  

4.5. Case study 

To validate the proposed methodology, field data were collected from a modular 

construction factory that contained several workstations dedicated to building floors 

and walls. Both video and audio data were collected using a commercial video 

camera. The audio was used for activity identification while the video was for 

labeling the audio data with associated activities. Video cameras were placed in two 

different locations for two consecutive days. Figure 4.14 shows the schematic 

diagram of the camera sources as well as the area of interest inside the modular 

construction factory. The data collection effort was focused on three specific 

workstations, one station with a table saw one partition wall (P-wall), and one long 
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wall (L-wall) station as can be seen in Figure 4.14. Figure 4.15 shows snapshots from 

both camera sources. 

 

 

Figure 4.14. Schematic of the area of interest and camera sources 

 

Figure 4.15. Snapshot from the video located at two different sources 

Moreover, accelerometer data from both online and offline workstations were 

collected. For online workstations, six modular units were mounted with IMUs under 

the floor. For each unit, one full working day (i.e., 8 hours) data were collected. For 
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offline workstations, three IMU units were attached under three tables where partial 

walls are built. Four hours of vibration data were collected for each of the offline 

stations. Figure 4.16 shows the IMU attachment positions in online and offline 

stations. The vibration data were collected with a sampling frequency of 10 Hz.  

  

Figure 4.16. Location of the IMU attachment 

4.5.1. Audio data collection and labeling 

Audio from all other stations, except the highlighted stations in Figure 4.15 was 

ignored to simplify the data labeling process. From the captured audio, four major 

manual activities performed in those workstations were separated using the video as 

the reference and these include: nailing using nail-gun, hammering, cutting using 

table-saw, and drilling (denoted as NG, HM, TS, and DL respectively). In addition to 

the four activities, ambient sounds from the stations when they were idle were also 

separated, which is denoted as ID. Table 4.1 summarizes the different activities 

studied in this research.  

Table 4.1. Different activities and abbreviations used in this research 

Activity Abbreviation 

Nailing with nail-gun NG 

Hammering HM 
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Sawing using table saw TS 

Drilling with electric drill DL 

No task/ Idle ID 

Figure 4.17 shows the waveform (i.e., time vs. amplitude) and spectrogram (i.e., time-

frequency representation) of audio signals of the major activities. While some 

activities generate similar types of audio signals in the time-domain (first and third 

rows of pictures), there are variations present in the frequency-domain (second and 

fourth rows). For example, NG and HM produce almost identical waveforms, but NG 

has more power in higher frequencies than HM.    

Nail-gun (NG) Hammer (HM) 

  

Table saw (TS) Drill (DL) 

  

Figure 4.17. Waveform and spectrogram of four major activities performed in the 

factory 
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4.5.2. Audio data balancing 

Figure 4.18 shows the proportion of data for each data label (task), and initially, DL 

and ID contained only 5% of the dataset where NG had 39%. This imbalance in the 

dataset can create a bias while training the classification model. This issue was 

addressed by adding white Gaussian noise to augment additional data for DL, ID, and 

HM activities. From Figure 4.18, after augmentation, each of the five activities 

contains a similar amount of data.   

Before augmentation 

 

 

After augmentation 

 

 

Figure 4.18. The proportion of data in each label before and after augmentation 

4.5.3. IMU data collection and labeling 

The dataset was then labeled using the reference videos and segmented into 

sequences using two different window sizes (15 seconds for online and 25 seconds 

for offline workstations), both with 50% overlap. However, as moving happens only 

when the modular units travel from one station to another, IMU data regarding 

moving activity are few compared to active or idle. This can create a bias in the 

training process. Thus, time-series data augmentation techniques presented in (Rashid 

and Louis 2019b) were used to augment moving data. Table 4.2 shows the data 

distribution in training, validation, and testing sets. 

NG

37%

HM

18%

TS

35%

DL

5%

ID

5%
NG

22%

HM

21%

TS

21%

DL

20%

ID

16%
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Table 4.2. Training, validation, and testing data distribution for online and offline 

stations 

Class 

Labels 

Number of Sequences 

Online Stations 

(15 sec. window size) 

Offline Stations 

(25 sec. window size) 

Training Validation Testing Training Validation Testing 

Active 12040 1720 3440 1376 197 393 

Idle 20503 2929 5858 459 66 131 

Moving 4715 674 1347 N/A 

 

Online workstations were labeled with three states: active, idle, and moving. As 

modular units pass through various online stations in the assembly line, it is important 

to know when a unit moves from one station to the next. This moving state will help 

to calculate the idle and active time at the different online stations. As offline 

workstations are stationary, only active, and idle states are labeled. 

4.6. Results and Discussion 

For the audio-based activity identification framework, data augmentation was applied 

to create a balanced training data set to eliminate any bias while training the model. 

Then parameter optimization was performed to find optimized features and window 

sizes. Upon selecting the parameter, the SVM model was trained and tested to 

examine the inter-class confusion of the model. For validating data balancing and 

parameter optimization, a 5-fold cross-validation approach was undertaken to 

compare before-after scenarios. For testing the final model trained with optimized 

parameters, 85%/15% of training and test data were used.  

For the active and idle time prediction, the labeled data were split into training, 

validation, and testing datasets with 70%, 10%, and 20% ratios. Raw acceleration 

data were used as inputs to the LSTM layer with 100 hidden units. This layer mapped 
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the input sequence into 100 features. The training and validation data set were used to 

train the model with fine-tuned hyperparameters. 

4.6.1.  Audio-based activity identification 

Two SVM models were trained using data before and after augmentation to evaluate 

its effect. 0.25-second window size with 50% overlap, and time- and frequency-

domain features were combined and used to train the SVM. 5-fold cross-validation 

(CV) yielded an overall accuracy of 72.3% before augmentation, and 75.4% after 

augmentation. However, only this improvement in overall model accuracy does not 

provide the complete picture regarding the performance improvement of the 

augmented classes. Thus, precision and recall values for each of the activities were 

calculated and provided in Table 4.3.  

Table 4.3. Precision and recall of 5-fold CV before and after data augmentation 

Activities 
Before Aug. After Aug. 

Precision Recall Precision Recall 

NG 86% 84% 88% 83% 

HM 77% 77% 77% 76% 

TS 74% 90% 75% 92% 

DL 25% 7% 50% 59% 

ID 37% 17% 95% 93% 

The table shows significant improvement in the precision and recalls for DL and ID 

after data augmentation. For example, the precision of DL was improved from 25% to 

50% and recall from 7% to 59%. However, as only time- and frequency-domain 

features are used in this step, the overall performance of DL and ID is low. The next 

phase of the analysis examines the impact of features from different domains. 
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4.6.1.1.Feature Engineering 

This step of the analysis investigates features from four different domains (time-, 

frequency-, cepstral-, and wavelet domain), optimizes them by fusing features from 

various domains, and eventually designs the optimal feature space using appropriate 

window sizes. Various window sizes from 0.05 seconds to 1.5 seconds were tested. 

This section is divided into two sub-sections: dimensionality reduction discussing 

feature optimization, and window size selection discussing the effect of different 

window sizes on the overall performance of the learning model. 

The primary objective of dimensionality reduction is to reduce the dimension of the 

feature space by identifying the most descriptive (i.e., most contributing in distinguish 

the activities), and effective (computational efficient) features. Initially, a 318-

dimensional feature vector was extracted from all four feature domains (48, 84, 156, 

and 30-dimensional feature vector from time-, time-frequency-, cepstral-, and 

wavelet-domain respectively).  A 0.25-second window size with 50% overlap was 

used to train the SVM model and a 5-fold CV was used to evaluate the model using 

all combined features, as well as each domain-specific feature. Table 4.4 summarizes 

the performance measures (i.e., accuracy, precision, recall, and F-1 score) of SVM 

models based on domain-specific features, as well as combined features. Feature 

extraction time for each domain is also given in the “Time” column. The time is in 

millisecond per window. The “Dimension” column indicates the dimension of 

features from each domain. Figure 4.19 also visualizes the performance of different 

domain-specific features.  

Table 4.4. Performance of SVM for features from each domain, their extraction times 

and dimensions 
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Feature 

Domain 

Dimension of 

the feature 

vector 

Accuracy Precision Recall 
F-1 

Score 

Processing 

Time 

(ms/vector) 

Time 48 71.5% 71.0% 75.0% 72.9% 3.7 

Frequency 84 75.7% 68.0% 60.2% 63.9% 10.4 

Cepstral 156 94.3% 92.0% 89.6% 90.8% 21.1 

Wavelet 30 71.5% 70.0% 64.6% 67.2% 5.6 

Combined 318 93.60% 91.00% 88.40% 89.7% 33.6 

 

 

Figure 4.19. Performance measures of domain-specific features 

Figure 4.19 shows that individually, cepstral-domain features demonstrated maximum 

CV accuracy 94.3%, precision 92%, recall 89.6%, and F-1 score of 90.8%. Cepstral-

domain contains 156-dimensional features, and feature extraction time per window 

was 21.1 milliseconds. When features from all four domains were combined to a 318-

dimension feature vector, the performance was lower than when only cepstral-domain 

features were used. This can be explained by the fact that not all features positively 

contribute to training the model. There might be some features that negatively 

contribute to the overall training process, creating more inter-class confusion, 

eventually reducing the performance of the model. Thus, it is important to investigate 
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which features are representative, distinguishable, yet succinct in capturing the 

characteristics of the audio signals per specific activities. To do so, a feature selection 

algorithm, known as ReliefF was implemented. 

The RelieF algorithm calculated the importance weights of all the features based on 

the nearest neighbor approach and ranked the features based on their relative 

importance weights. Feature ranks and their weights are plotted in Figure 4.20. The 

rightmost portion of the figure shows that some features have negative weight, 

meaning they negatively contribute to the model’s performance. A closer look at the 

crossing point (from positive to negative weight) of the plot reveals that the top 269 

features are positive contributors, and the last 49 features act as negative contributors. 

Thus, in the next step, only positive 269 features were selected and several subsets of 

them were used to examine their impact on learning. 
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Figure 4.20. Results from the RelieF algorithm showing feature ranks and feature 

importance weights 

Different subsets from all the positive features were selected by incrementing 10 

features in each iteration (i.e., top 10 features, top 20 features, top 30 features, and so 

on), and SVM was trained for each of the subsets.  The F-1 scores were computed 

using 5-fold cross-validation for each of the feature subsets and the result is plotted in 

Figure 4.21. A higher rate of improvement is noticed up to the top 170 features. After 

that, the performance of the SVM flattens while increasing the feature dimension. 

This implies that additional features after the top 170 only add extra dimensionality to 

the model instead of providing distinguishable information while classifying different 

activities. To reduce the dimensionality of the feature space, the top 170 features were 

further investigated in detail. 

 

 

Figure 4.21. F-1 score for different subsets of the top features from ReliefF 
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Most of the features used in this study are multi-dimensional. Thus, it is more 

practical to look at which domain and feature class those top features belong to, rather 

than selecting them individually. For example, short-time energy (STE) is a 1XFm 

vector, where Fm is the number of frames within a window. Some elements of STE 

could be within the top 170 ranks and some even might be negative features. Thus, it 

is important to examine how each feature and domain contributes to the overall 

feature space. To examine this, the number of elements of features from each domain 

was counted and their percentage contribution to the top 170 ranks was computed. 

The number of elements was normalized based on their length to remove size 

dependency. Figure 4.22 shows the percentage of domain-specific features present in 

the top 170 features retained from the ReliefF algorithm.   
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Figure 4.22. Contribution of features and associated domains in top 170 features from 

ReliefF 

Figure 4.22 reveals that cepstral-domain features contribute the highest (i.e., 35%), 

and wavelet-domain features contribute the lowest (i.e., 8%) to the feature space. 

Each domain was also segmented to reveal the contribution of features within that 

domain. For example, within the cepstral-domain, MFCC and PLPCC contribute 

significantly higher (38% and 45% respectively) than delta, and delta delta (10% and 

7% respectively). A final feature space with 130 dimensions was designed based on 

the contribution and summarized in Table 4.5. Wavelet-domain features were 

removed altogether from the final feature space due to their low significance. 

However, it will be misleading to conclude that wavelet-transformation is not an 

appropriate features extraction approach for audio classification in modular 

construction, as only one family of wavelets (i.e., Symlets) with one level of 

deconstruction (i.e., level 5) was used in this study. Other families of wavelets with 

different parameters can be explored to investigate the overall performance of 

wavelet transformation in audio-based task identification in the construction domain. 

Table 4.5. Final feature space designed based on their contribution 

Domain Feature 

Time Zero-cross rate 

Root-mean-square 

Short-time energy 

Frequency Spectral centroid 

Spectral spread 

Spectral flux 

Spectral roll-off points 

Cepstral Mel-frequency cepstral 

coefficients 

Perceptual linear prediction 

cepstral coefficients 
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An SVM was trained using the final feature space using 0.25-second window length 

and 50% overlap, and the results of 5-fold CV are summarized as shown in Table 4.6. 

This table shows that the performance of the final feature space (90.9% F-1 score) is 

comparable with the top 170 features (91.6% F-1 score), even though the dimension 

is reduced from 170 to 130. This provides a practical means of designing the features 

which reduce the dimensionality (and thus complexity and duration) of the training 

process without unduly compromising performance. 

Table 4.6. Performance of final feature space compared to top 170 features from 

ReliefF 

Feature Space Accuracy Precision Recall F-1 

Score 

Top 170 features from ReliefF 94.6% 92.6% 90.6% 91.6% 

Final 130 features based on 

contribution 

94.1% 92.4% 89.6% 90.9% 

 

Until this stage of the analysis, a fixed window size of 0.25 seconds and 50% overlap 

was used to segment the audio data. The following sub-section investigates different 

window sizes and their effect on the model. 

4.6.1.2.Window size selection 

Selecting an appropriate window size is an important step in any type of classification 

problem. A smaller window size provides good resolution but lacks details and vice 

versa. The window sizes selected in this study are 0.05 sec, 0.1 sec, 0.25 sec, 0.5 sec, 

0.75 sec, 1 sec, 1.25 sec, and 1.5 sec. Precision, recall and F-1 score were computed 

for each window size and plotted in Figure 4.23. This figure demonstrates that the 

performance of the model increases initially with the increase of window length, 

however after a certain window length (i.e., 0.5 sec) the performance decreases. This 
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demonstrates that a 0.5-sec window size provides a good resolution with enough 

details to classify different activities.

 

Figure 4.23. Cross-validation F-1 score for different window sizes 

4.6.1.3.Activity prediction 

In this section, the optimized parameters from the previous section were used to train 

an SVM model with the 130-dimension designed feature space (shown in Table 4) 

and 0.5-second window size with 50% overlap. Data were separated into training and 

test dataset using an 85%/15% train test ratio. Overall accuracy, precision, recall, and 

F-1 score are plotted in Figure 4.24. The trained model yielded to 96.6% F-1 score for 

test data. 
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Figure 4.24. The test performance measures of the SVM model with optimized 

features and window size 

Next, a detailed analysis was conducted to examine inter-class confusion of the SVM 

based on the test data set. A confusion matrix is plotted with the precision and recall 

of each activity in Figure 4.25. Figure 4.25 shows that ID demonstrates the highest 

performance with 100% precision and 100% accuracy.  HM, NG, and TS demonstrate 

about 99%, 98%, and 97% precision and 94%, 97%, and 94% recall. Even though DL 

has a high recall value (about 99%), this class was confused with HM, and TS class 

about 10% of the time.   
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Figure 4.25. Confusion matrix of the SVM 

Finally, a 25-second segment was separated from the raw audio, and the activities 

labels were predicted using the model trained in the previous step (i.e., with 

optimized parameters). The actual activities and predicted activities are shown in a 

stair-step graph in Figure 4.26. The figure shows that the model could predict correct 

activities with occasional misclassification.  

 

Figure 4.26. Actual and predicted activities of 25-sec audio segments 

4.6.2. Active and idle time tracking 

An LSTM network was trained to track the active and idle time in the workstations. 

The labeled data were split into training, validation, and testing datasets with 70%, 

10%, and 20% ratios. Raw acceleration data were used as inputs to the LSTM layer 

with 100 hidden units. This layer mapped the input sequence into 100 features. The 
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training and validation data set were used to train the model with fine-tuned 

hyperparameters. Figure 4.27 shows the training progress of the LSTM network of 

the online workstations. 

  

Training and validation accuracy Training and validation loss 

Figure 4.27. Training progress of the LSTM network for online workstations 

The validation accuracy for online stations was 94.1% and for offline stations was 

94.8%. After training the LSTM, the testing data was used to evaluate the 

performance of the model. Table 4.7 shows the evaluation results of the model tested 

with the testing data. 

Table 4.7. Accuracy, precision, recall, and F-1 score of the LSTM model for online 

and offline stations 

 Accuracy Precision Recall F-1 Score 

Online Stations 93.4% 93.4% 93.8% 93.6% 

Offline Stations 93.5% 92.1% 90.9% 91.5% 

 

The trained LSTM models demonstrated a 93.6% F-1 score for online stations and a 

91.5% F-1 score for offline stations. Even though the F-1 score represents the overall 

performance of the network, they do not provide information regarding the 
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misclassification of different classes. Thus, a confusion matrix was used to identify 

the classes that are misclassified as shown in Figure 4.28. 

 

 

Online workstations Offline workstations 

Figure 4.28. Confusion matrix of LSTM network 

The confusion matrix of online stations shows that Moving demonstrates the highest 

precision and recall. Moreover, Moving is mostly misclassified with Active, which is 

understandable as some Activities may have a very similar signal pattern as Moving.  

Next, one random section was selected from the dataset for both online and offline 

workstations to calculate active and idle time from the trained model. An 8.5-hour 

dataset for the offline station was used as input to the trained model. Figure 4.29 

shows the ground truth and the prediction for the online stations. We can see there 

were two Moving instances in the ground truth, where five were predicted by the 

model. A closer look reveals that each of the three misclassified Moving instances 

occurred during the Active class. The original dataset contained very few Moving 

classes, as, after a couple of hours of activities, the modular units are moved to the 

next station using an electric pusher, which takes about 15 to 30 seconds. To balance 

the dataset, augmentation techniques were used to generate synthetic Moving data. A 
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similar plot was drawn for the offline stations in Figure 4.30. Figure 4.30 contains 

only the Idle and Active state of the offline workstations.

 

Figure 4.29. Ground truth and prediction of the LSTM model for online stations 

Figure 4.30. Ground truth and prediction of the LSTM model for offline stations 

Finally, idle, and active time was calculated using the predictions shown in Table 4.8. 

We see that, for offline stations, out of the 8.5 hours 387.2 minutes were active, and 

the prediction was 380 minutes with a 1.8% error. Similarly, the online workstation 

showed a 1.4% error in calculating active time from the prediction.  

Table 4.8. Active and idle time calculation from the trained LSTM model 

 Time (minutes)  
Offline Stations 

(8.5 hours) 

Online Stations 

(4.6 hours)  
Active Idle Active Idle 

Ground Truth 387.20 123.30 175.00 105.88 
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Prediction 380.00 129.70 177.50 103.33 

Error 1.80% 5.19% 1.40% 2.40% 

 

4.6.3. Summary of results 

The segmented audio data was first balanced using data augmentation to ensure 

unbiased training. Significant improvement was noticed after data augmentation, 

especially for underrepresented activity, drilling in the dataset. Next, four domain-

specific features were analyzed to find and select the most appropriate features which 

are representative, distinguishable, and concise. In doing so, several sensitivity 

analyses were conducted, and a final feature space with 170 features was designed.  

The result of the feature engineering demonstrated that the cepstral-domain features 

contribute most (35%) among the four domains in the top 170 features. PLPCC and 

MFCC were found to be the two most important features, contributing about 45% and 

38% respectively in the cepstral domain. This explains the fact that the features that 

are inspired by human hearing properties tend to contain most spatiotemporal 

information of the audio signal. Both MFCC and PLPCC are perceptual features 

where the signal is converted to different scales (i.e., Mel-scale for MFCC, and Bark-

scale for PLPCC) to match the features more closely to human hearing.  

Next, different window sizes were tested to select an appropriate window size, which 

gives higher resolution as well as contains enough information to classify activities 

accurately. By doing so, a 0.5-second window size was selected as it yielded to 

maximum F-1 score for the model. This can be explained by observing the 

waveforms of the four selected activities in Figure 7. While TS (i.e., table saw) and 

DL (i.e., drilling) audio signals maintain a roughly constant power throughout the 
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temporal domain, NG (i.e., nail gun) and HM (i.e., hammering) signals have a 

variation of power with time and the variation can be roughly wrapped with 0.5-

seconds window. This explains the reason why a 0.5-second window size yielded to 

maximum F-1 score for the SVM model.  

The data augmentation, and parameter (i.e., feature, and window size) optimization 

was validated using 5-fold cross-validation. After optimizing the parameters, an SVM 

model was trained and evaluated using the 85%/15% training test dataset ratio. The 

test result demonstrated a 96.6% F-1 score. A confusion matrix with precisions and 

recalls was plotted to examine inter-class confusion. The highest misclassification 

was observed for the DL class, which was confusion with NG class 5% of the time, 

and with TS class other 5% of the time. This may be because the audio signal from 

intermittent drilling showed some similarity with the nailing activity, while 

continuous drilling has some similarity with the sawing activity. Finally, a 25-second 

segment from the raw audio was separated and predicted using the trained SVM with 

optimized parameters to demonstrate how a real-world application could look like.   

For the active and idle time tracking, this study also investigated the potential of 

vibration generated from the activities performed to identify the active and idle time 

using a deep learning approach. One of the major challenges was to choose the 

appropriate window size as an active sequence can have multiple idle durations in 

between and considering those as idle time is not purely logical. Thus, a larger 

window size (i.e., 15 seconds for online stations and 25 seconds for offline stations) 

was considered in this study. The trained LSTM network demonstrated a 93.6% F-1 

score for online stations and a 91.5% F-1 score for offline stations. The prediction of 
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the LSTM network showed the capability of automatically measuring active and idle 

time with an average error of 2.7%. 

4.7. Major findings and research contribution 

 

The proposed framework in this chapter consisted of two major components: an 

audio-based activity identification framework, and an IMU-based active and idle time 

tracking for modular construction operations  

The major findings of this study are: 

- Similar to the findings of Chapter 2 (i.e., for IMU-based activity 

identification), deep learning network and data augmentation significantly 

improves the performance of the audio-based activity identification model. 

- For audio-based classification, it is essential to engineer features from 

various domains (e.g., time-, frequency-, cepstral-, and wavelet) to 

maximize the performance of the model. 

- Vibration generated at the workstations while working can be used to 

reliably track active and idle time in a modular construction factory.  

The specific contribution of this chapter to the body of knowledge and practice are: 

- This study demonstrates the potential of using environmental audio to 

automatically identify manual activities inside a modular construction 

factory.  
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- Audio data augmentation was found to improve the performance of the 

activity identification model and can reduce the need for training data for 

such methods. 

- The systematic approach presented in this chapter to engineer appropriate 

features can be applied to identify any type of construction worker from 

the audio signal. 

- Active and idle times can be automatically and accurately tracked using 

the vibration generated from work performed in the workstations, which 

can lead to automatic productivity monitoring. 

4.8. Conclusion 

Identifying, tracking, and monitoring activities in a modular construction factory is a 

key step in productivity assessment. Towards this end, this chapter proposed and 

validated an automated audio-based manual activity identification framework for 

modular construction. Also, an IMU-based framework was proposed which 

successfully tracked idle and active time in different workstations. The proposed 

methods can be applied to modular construction factories, possibly in combination 

with RTLS-, or CV-based activity recognition approaches for automated data 

collection (e.g., cycle time, value-adding time, active/busy time, etc.), as well as real-

time monitoring of the factories.  

This information eventually can support data-driven decision-making, possibly 

coupling with dynamic simulation models. Even though the proposed method was 

validated for a modular construction factory, this framework can be extended for on-

site constructions as well, where many activities are performed manually (e.g., stick-
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built house building).  In developing the framework particular focus was given 

towards engineering appropriate features, which essentially is a paramount step in 

ensuring robust model training and validation. The methodology, especially how the 

feature space was engineered in this study can serve as a platform for future 

endeavors in this domain and can be extended to other types of activities with deep 

classification architecture (e.g., convolutional neural network, recurrent neural 

network, etc.).  

4.9. Limitations and Future Work 

The scope of this research was to identify single activities happening at any point in 

time. However, in real-world conditions, multiple activities happen simultaneously, 

thereby generating a layered audio file. This problem falls under the multi-label time 

series classification domain. Future work will use the results obtained from this study, 

especially regarding feature engineering, to perform simultaneous activity 

identification using deep learning approaches. Source identification from different 

workstations using a single microphone is another challenge in audio-based 

approaches. Towards this end, beamforming techniques using microphone arrays can 

be adopted to differentiate and separate audio sources based on their location of 

origin to analyze station-based activities.  

Another challenge of the audio-based approach as a stand-alone application is to 

identify activities that are value-adding, but which do not generate distinct sounds. 

This problem can be addressed by adding another layer of pattern recognition model 

on top of the classification model or using windowing techniques to incorporate non-

sound generating activities between identified fine activities to predict the coarse 
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activity. For example, predicting the pattern of hammering, nailing, sawing (i.e., fine 

activities) can yield to the prediction of frame building for a wall (i.e., coarse 

activity). For the active and idle time tracking, the primary limitation was that some 

activities such as painting, sanding has the higher potential of not generating enough 

vibration to distinguish between active and idle state. Future research will be 

extended for other workstations where little or no vibration is generated by utilizing 

computer vision and machine hearing techniques.  
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5. CHAPTER 5: OPTIMIZING LABOR ALLOCATION IN 

MODULAR CONSTRUCTION FACTORY 

The content of Chapter 5 is an adapted version of the following manuscripts: 

Rashid, K., Louis, J. & Swanson, C., (2020). “Optimizing labor allocation in 

modular construction factory using discrete-event simulation and genetic algorithm”, 

Proceeding of the Winter Simulation Conference, Orlando, FL. DOI: 

09/WSC48552.2020.9383867 

 

5.1. Introduction 

This chapter presents a resource allocation framework combining a discrete event 

simulation (DES) model and a genetic algorithm (GA) to facilitate data-driven 

decision-making. The DES model simulates the process of constructing modular units 

in the factory, and the GA optimizes the number of the worker at different 

workstations yielding to minimize makespan. A case study with a real-world modular 

construction factory showed that optimizing the assignment of available workers can 

reduce the makespan by up to 15%.  

While it is not explicitly implemented currently, it is assumed that the results of 

Chapter 4 will be used to periodically update the DES model-based GA optimization 

to enable a near real-time decision-making framework for modular construction. This 

study demonstrates the potential of the proposed method as a practical tool to 

optimize resource allocation in uncertain work environments in modular construction 

factories.  

5.2. Background 

The construction process in modular factories closely resembles a manufacturing 

production line, where different workstations are dedicated to a specific type of 

https://doi.org/10.1109/WSC48552.2020.9383867
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activity (e.g., building floors and walls, installing walls, installing insulation, etc.), 

and through which the modular unit would travel travels through. Thus each 

component of the modular unit (e.g., wall, floor, ceiling, etc.), as well as the modular 

unit spends a different amount of time (i.e., cycle time) at each station based on their 

particular design specifications. An important factor that has a direct impact on the 

cycle time is the number of workers working at the station, which is referred to as 

‘labor allocation’ in this chapter. Thus, effective and data-driven labor allocation at 

various stations is a significant factor in improving productivity and maximizing the 

benefits of modular construction.  

To that end, this chapter proposes an optimization framework for labor allocation in 

modular construction factories by utilizing discrete event simulation (DES) and 

genetic algorithm (GA). The DES methodology is used to model and simulate the 

process workflow while the GA searches for the labor allocation to workstations that 

results in the optimal solution (i.e., maximum production rate or minimum makespan) 

in the process workflow. The following section discusses previous studies related to 

simulation modeling and GA-based optimization in construction. 

5.2.1. Simulation modeling for modular construction 

In the context of this research, simulation modeling is the process of creating and 

analyzing a virtual model of a real-world process to predict and forecast its 

performance. Simulation modeling has been widely explored for on-site and off-site 

construction processes in several previous studies (Afifi et al. 2017; Akhavian and 

Behzadan 2013; AlDurgham and Barghash 2008; Altaf et al. 2015b, 2018; Hammad 

et al. 2002; Jeong et al. 2011; Louis et al. 2014; Louis and Dunston 2016a; Zhang 
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2004). Altaf et al. (2018) proposed an integrated production planning and control 

system for panelized home building using DES and radio frequency identification 

(RFID)- based tracking. A discrete and continuous simulation approach was also 

explored to optimize the production of modular construction elements (Afifi et al. 

2017). AlDurgham and Barghash (2008) proposed a simulation-based approach to 

facilitate decision-making for planning layout, material handling, scheduling, and 

manufacturing processes and resources for off-site house building. Lu and Olofsson 

(2014) proposed a framework consisting of building information modeling (BIM) and 

DES to enable the integration of DES in the planning and follow-up of construction 

activities.  

5.2.2. Genetic algorithm for optimization 

Genetic algorithms (GAs) are optimization techniques that are based on the principles 

of Darwinian evolution which simulate biological evolution through stochastic search 

techniques (Holland 1975). GAs has been used for optimizing simulation models in 

construction, as well as in other fields. Yang et al. (2016) developed a flow shop 

scheduling optimization model for multiple production lines for precast production. 

In another effort, an adaptive GA was presented for resource-leveling as a flexible 

decision support system to enable practitioners to choose a feasible solution (Ponz-

Tienda et al. 2013). GA, analytic hierarchy process, and computer simulation were 

integrated for optimization of operator allocation in the cellular manufacturing 

process (Azadeh et al. 2014). A combination of GA with simulated annealing (SA) 

was also adopted for generic multi-project scheduling optimization with multiple 

resources constrain in complex construction projects (Chen and Shahandashti 2009). 
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Leu et al. (2000) presented a prototype of a decision support system for construction 

resource-leveling using GA to achieve an optimal or near-optimal combination of 

multiple construction resources.  

5.3. Research gaps and point of departure 

Based on the review of the literature conducted, the following gaps are identified and 

targeted in this chapter: 

(1) There is a lack of literature related to the optimization of resources in 

modular construction factories. 

(2)  It is not known how DES modeling and GA can be coupled together to 

provide decision-making support in modular construction factories. 

Considering the above gaps in knowledge, the goal of this research is to develop a 

framework to automatically optimize workers at various workstations in modular 

construction factories by coupling DES modeling and GA. This research goal is 

accomplished in this chapter through the pursuit of these specific research objectives: 

(1) Develop simulation model of high-level activities in modular construction 

factory. 

(2) Optimize the labor allocation at different workstations using a genetic 

algorithm (GA) and the simulation model. 

(3) Compare productivity of the operation between current labor allocation vs. 

optimized labor allocation. 
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5.4. Methodology 

The objective of this study is to obtain the optimal number of workers at each 

workstation of the modular factory to minimize the makespan, which is defined as the 

amount of time each unit spends in the production line from start to end. Thus the two 

primary components of the proposed methodology are a DES model to simulate the 

process of the factory, and a GA to optimize the number of workers that yield the 

minimum makespan of the modular units. The proposed methodology is illustrated in 

Figure 5.1.  

 

Figure 5.1. Overview of the proposed methodology 

As discussed previously, the methodology consists of two primary components: DES 

and GA. The DES model is created by modeling the interdependencies between the 

workstations. The duration of the activities at the workstations is modeled as a factor 

of the number of workers working at the corresponding stations using a linear 

relationship. The output of the simulation is the average makespan of the modular 

unit in 100,000 minutes of simulation time. The number of workers at the 

workstations is the input variable, and minimizing the makespan is the objective 

function of the GA. As shown in Figure 1, first an initial population (i.e., a vector 
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containing number of workers in each workstation) is selected randomly and passed 

to the DES model.  

The DES model simulates the process of constructing modular units in the factory 

and average makespans for units are calculated. Then the objective function (i.e., to 

minimize makespan) is evaluated for every one of the population to check whether it 

meets the optimization criteria (i.e., a threshold value for minimum makespan). If yes, 

this best individual from the population is selected as the best solution. If no, two 

pairs of individuals (i.e., vectors containing the number of workers) are selected as 

parents based on their fitness score (i.e., minimum makespan). For each pair of the 

parents to be mated, a crossover point is chosen at random from within their genes 

(i.e., index of the worker vector), and the offspring exchanges the genes of parents 

among themselves until the crossover point. After new offspring (i.e., a new vector of 

the number of workers) is created, some of their genes can be subjected to a mutation 

where some of the genes in the offspring can be flipped. An illustration of crossover 

and mutation is shown in Figure 5.2.  

 

Figure 5.2. Crossover and mutation of GA 

After a new population is generated, they are again passed to the DES model to 

calculate makespan for construction modular units. This process of selection, 
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crossover, and mutation continues until the optimization criteria are met. Pseudocode 

for the GA can be expressed as: 

 

This methodology was validated using the data from a real-world modular 

construction factory, and the case study is presented in the following section. 

5.5. Case Study and Results 

To validate the proposed methodology, a real-world modular construction factory was 

selected. This factory makes volumetric modular units for projects like multi-family 

housing that are then shipped and set up on-site. There are several workstations in the 

factory dedicated to specific activities. The workstations in that factory can be 

divided into two categories: off-line stations and online stations. The panelized 

components of the unit, such as walls, floors, and ceilings are built from raw material 

in the off-line stations. The online stations are part of the assembly line for the 

volumetric unit, where various pre-made components (some from the off-line 

stations) are added and assembled to the modular unit.  

A schematic floor plan with the major workstations of the factory is shown in Figure 

3. Three main off-line workstations clusters are Partial Wall, Long Wall, and Ceiling 
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stations. Some of those off-line stations are further divided into several smaller 

stations dedicated to separate activities. For example, in the ceiling workstation, first, 

the ceiling frame and drywall are put and moved for rough plumbing and electrical 

station. Eventually, the final ceiling is built and moved to the online station to 

assemble to the modular unit. Each of the workstations (both online and off-line) are 

denoted with the number of worker and cycle time in Figure 5.3. For example, 

typically 5 workers are placed to the first online station, Floor Build, and it takes 

about 260 minutes to build a 50 feet floor. Cycle time and the typical number of 

workers were acquired from actual time study, expert opinion, as well as from the 

experience of floor manager of the factory.     

 

Figure 5.3. A schematic of the floor plan of the modular factory 

After gathering the cycle time and worker data, a DES model of the factory floor was 

developed using the SimEvent tool of MathWorks. Figure 5.4 shows the diagram of 
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the DES model, where the three major off-line workstations (i.e., Partial Wall, Long 

Wall, and Ceiling) are denoted by rectangular borders. It should be noted that there 

are two different Long Wall (denoted as Long Wall 1 and Long Wall 2) stations in the 

factory to build long walls of two sides of the modular units. The number “1” denoted 

at each activity represents the queue capacity of each station. In the factory, each 

station can only handle one component at a time. There are some surge spaces on the 

factory floor which work as queues with a FIFO (i.e., first-in-first-out) queue policy. 

Several assumptions were made while developing the DES model, such as the 

transfer of material from one station to another is instantaneous, there are no 

constraints for the workers to move from one station to another, every worker is 

eligible to work in any station, etc.  The assumptions were made because the focus of 

this study is on the aspect of labor allocation. 

 

Figure 5.4. The DES model of the modular factory 

The cycle times of the activities were converted to worker minutes and were set up as 

a function of the number of workers. A linear relationship was assumed between the 
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number of workers at a station and its cycle time based on input from the factory 

manager. A genetic algorithm was developed where the variables were the number of 

workers at each workstation, and the objective was to minimize the makespan. The 

maximum number of workers in the factory was 74, which was the same as currently 

placed in the factory. The lower and upper bound of the worker number was set as 

one and eight, respectively. At each iteration of the simulation, the GA module sent 

an array to the DES model representing the number of workers at each workstation, 

the simulation model calculated the makespan and sent it to the GA module. 

Progressively the GA minimized the makespan and the simulation progress is shown 

in Figure 5. The GA was run for 1000 generations, each generation containing 30 

populations. Figure 5.5 shows that the penalty value (i.e., average makespan) 

plateaued after 460 generations.  

 

Figure 5.5. Optimization of the makespan using genetic algorithm 

The duration of each station was assumed to be a triangular distribution with 15% 

upper and lower bound. The average makespan was calculated for three different 

combinations of the number of workers. The simulation model was run 100 times 

using the number of workers in the factory (i.e., as is), an optimized combination 

using 74 workers (i.e., GA Opt_74), as well as an optimized combination using 100 
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workers (GA Opt_100). Figure 5.6 shows the boxplot containing the makespan 

distribution of each of the three combinations. The first boxplot shows the makespan 

with current “as is” labor allocation in the factory. The second boxplot is the 

makespan with an optimized number of workers by GA with a maximum 74 number 

of workers in the factory. The last boxplot illustrates the makespan with a maximum 

of 100 workers in the factory.   

 

 

Figure 5.6. The DES model of the modular factory 

The median makespan for “as is” is 4.92 hours, “GA optimized with 74 workers” is 

4.16 hours, and “GA optimized with 100 workers” is 3.02 hours. Thus, this analysis 

shows that the makespan can be reduced by about 15% with the same total number of 

workers currently situated in the factory, just by shuffling their numbers in a couple 

of stations. Moreover, if a decision is made to increase the total number of workers 
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from 74 to 100, the makespan can be reduced by about 38%. Table 5.1 shows the 

result of the optimized number of workers at different workstations.  

Table 5.1. Optimized number of workers at each workstation 

Station Name As-Is GA 

Opt_74 

Floor Build 7 8 

Plumbing 3 3 

Floor Prep 2 2 

P-Wall Set 2 2 

S-Wall Set 1 2 2 

S-Wall Set 2 2 2 

Finished Floor 2 2 

Ceiling Set 2 2 

Back Panel 2 4 

1st and 2nd Coat 5 6 

3rd Coat 3 4 

Sand and Paint 6 6 

Interior 2 2 

Cabinet 6 8 

Trimming 2 2 

Touch Up 1 4 3 

Touch Up 2 6 3 

Jack 4 2 

P-Wall Build 4 3 

S-Wall Build 1 2 2 

S-Wall Build 2 2 2 

Ceiling Build 4 4 

 

Stations requiring a change in the number of workers are highlighted in the table. The 

analysis is suggesting adding workers to Floor Build (1 worker), Back Panel (2 

workers), 1st and 2nd Coat (1 worker), 3rd Coat (1 worker), and Cabinet (2 workers) 

stations, and reduce workers from Touch Up1 (1 worker), Touch Up 2 (3 workers), 

and Jack (2 workers) station. However, in both cases, the total number of workers in 

the factory remains the same (74 workers). 
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5.6. Conclusion and future work 

This study presents a methodology for optimizing the number of workers at different 

workstations in a modular construction factory. This consists of a DES model and a 

GA to optimize the DES model. A vector consisting of the number of workers is sent 

to the DES model to calculate the average makespan, and the GA simultaneously 

tried to minimize the average makespan by performing selection, crossover, and 

mutation until the performance of the algorithm plateaued. A real-world modular 

construction factory was selected to validate the proposed methodology. In particular, 

there were 22 different workstations in the factory dedicated to various activities. The 

entire assembly line process of the modular construction factory was modeled using 

DES, and the GA optimization showed a makespan reduction of 15%.  Specifically, if 

the total number of workers in the factory remains the same (i.e., 74), reallocating the 

number of workers based on the results of the analysis can yield 15% makespan 

savings. If the number of workers in the entire factory is increased to 100, the 

optimization showed a 38% reduction in makespan.    

The real-world case study illustrated that the proposed approach could help 

management to optimize worker allocation in the complex modular construction 

factory. The dynamic approach of labor allocation presented in this chapter can 

eliminate the limitations of traditional CPM-based resource allocation by updating the 

DES model at the desired interval. The integration of worker tracking technologies 

using an indoor positioning system (IPS) or computer vision with the DES model in 

the proposed system can unleash the true potential of a dynamic data-driven decision 

support system. The primary limitations of the DES model stem from the assumptions 
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made in terms of instantaneous transfer of components, linear relationship between 

duration of an activity and the number of workers, and the same expertise level for all 

the workers. In the future, the abovementioned dependencies will be added to the 

DES model for a more realistic simulation of the process. Moreover, future research 

will be directed to develop multi-objective optimization, where other criteria (e.g., 

wait time, worker expertise, etc.) can be included in the objective function. An 

adaptive GA can be explored for real-time dynamic optimization of worker allocation 

in the future.    
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6. CHAPTER 6: CONCLUSION, LIMITATIONS, AND 

FUTURE RESEARCH 

The overarching goal of this dissertation was to advance the body of knowledge and 

make practical contributions to integrate emerging technologies with project 

monitoring for data-driven decision-making. Two major objectives are identified 

to achieve this goal, and they are 

1. Automatically identify states (i.e., location and activity) of the resources in the 

construction site.   

2. Develop dynamic simulation tools to analyze and optimize the operations. To 

attain the research goal and objectives, the following questions were 

developed to guide the overall development and outcome of this study: 

Q1. What type of consumer-grade sensors can be used on construction sites to 

ensure a safe and reliable source of data collection? 

Q2. What type of data analytics techniques is appropriate to automatically identify 

activities from the resources? 

Q3. What are the key considerations that ensure optimum performance of the 

activity identification framework? 

Q4. Can simulation tools be used to provide dynamic predictions using the 

outcomes of the activity identification framework? 

Q5. What type of feedback can be provided from the monitoring and simulation 

for timely and effective decision-making? 
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To answer the research questions, and achieve the research goal and objectives, four 

research activities were conducted, and are each presented in single chapters from 

Chapters 2 to 5. Chapters 2 and 3 addressed Research Objectives 1 and 2 for heavy 

civil operations, while Chapters 4 and 5 addressed Research Objectives 1 and 2 for 

modular construction operations. The methods developed and implemented, main 

conclusions, research limitations, and future directions are summarized in this 

section. Finally, the overall conclusions and contributions of the entire research study 

are discussed for future research. 

6.1. Automated Activity Identification for Heavy Civil Operations (Chapter 2) 

The research presented in Chapter 2 was performed to accomplish the objective of 

enabling automated activity identification for heavy civil operations by answering the 

following research questions related to (1) exploring consumer-grade sensors for 

automated and reliable data collection from construction operations, (2) appropriate 

analytical tools for automated activity identification in construction, and (3) various 

technical and physical considerations to optimize the performance of automated 

activity identification of construction operations. These three questions were 

answered in this chapter focusing on heavy civil operations.  

To answer these questions, this chapter developed a deep learning-based activity 

identification framework to automatically identify activities of heavy civil equipment 

from earthmoving sites using inertial measurement units (IMUs). Several IMUs were 

attached to different articulated components of the equipment (e.g., bucket, boom, 

stick of the excavator). Vibration and orientation data were collected, processed, and 

segmented using sliding window techniques. These segmented data were used as 
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inputs to a long short-term memory (LSTM) network to train the model. Moreover, 

several data augmentation techniques were implemented to generate synthetic 

training data to reduce manual field data collection efforts. Finally, test data were 

used to evaluate the performance of the trained model to identify various activities. In 

doing so, various sensitivity analyses were performed to explore physical and 

technical parameters that optimize the performance of the trained model. The 

developed methodology was validated for three major types of heavy civil equipment: 

excavator, front-end loader, and dump truck. The major conclusions from this 

research are: 

(1) As opposed to the traditional machine learning classification algorithms, 

the LSTM network contains long-term temporal dependency of the 

training data between consecutive time steps. 

(2) The LSTM network eliminated the necessity of manual feature extraction, 

which is limited to human domain knowledge. Instead, the deep network 

automatically learned high-level representative features from the raw 

training data. 

(3) Implementation of data augmentation eliminated the necessity of 

collecting a large volume of training data from the construction site. This 

improves the practicality of such classification techniques for temporary 

and transient construction operations. 

(4) Synthetic training data removed bias in the trained model due to the 

imbalanced volume of training data. For example, if there is little training 
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data of one specific class compared to other classes, the trained model 

might be biased towards that class.  

(5) The location with the highest degree of movement is the best place to 

attach the sensor for activity identification purposes.  

Research presented in this study shows the potential of consumer-grade sensors and 

deep learning algorithms to automatically identify activities from heavy civil 

equipment. However, there are several limitations in this study, which include: 

(1)  Training a deep learning algorithm requires lots of training data, which 

sometimes is challenging to collect from an active construction site. Even 

though data augmentation techniques showed promising results in 

generating synthetic training datasets, further study is required to 

investigate the acceptable amount of field data collection without 

compromising the performance of the trained model. 

(2) Field data were collected from three different excavator models, one front-

end loader, and two types of dump-truck models. In practice, there are lots 

of variety in the sizes and shapes of this equipment. So, further study is 

required to develop a generalized model incorporating different sizes and 

shapes of the equipment into the model for practical use. 

6.2. Automated Decision-making for Heavy Civil Operations (Chapter 3) 

The research presented in Chapter 3 was performed to accomplish the objective of 

developing a dynamic simulation tool for analyzing and optimizing heavy civil 

operations. This objective was accomplished by answering the research questions 
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related to (1) exploring the capacity of simulation tools to perform dynamic 

productivity estimation, and (2) appropriate feedback provided for effective decision-

making. These two questions were answered in this chapter focusing on heavy civil 

operations.  

To answer the questions mentioned above, this chapter provides a framework that 

integrates automatically collected field data from IMUs mounted on heavy equipment 

and processes them for use as updated input for simulation models to estimate 

dynamic productivity which presents the operation realistically. Activities (e.g., 

loading, hauling, etc.) are identified from the collected data and the cycle times are 

calculated using machine learning methods. The cycle time distributions are updated 

using Bayesian updating and used as inputs in the simulation model for more accurate 

productivity prediction. A real-world earthmoving site is used in the case study to 

validate the framework. This framework will help the decision-making process by 

realistically reflecting the field condition using the most up-to-date information in the 

simulation model. The major findings of this study were: 

(1) Simulation modeling and Bayesian updating methods can be used to 

update the productivity estimation of earthmoving projects during the 

construction phase. 

(2) The proposed framework can provide aid to the managers in deciding on 

adding or removing equipment from the fleet to optimize productivity. 

The real-world case study in this research illustrated that the proposed approach could 

help management to optimize fleet composition in heavy civil projects. However, 

there are certain limitations in this study, and they are: 
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(1) Several assumptions were made during developing the DES model, such 

as only interaction between the excavator and dump trucks were modeled. 

In reality, other equipment such as the loader, grader, etc. are also in 

operation in earthmoving sites. Thus, further work is required to 

completely comprehend the complex interaction among all those different 

equipment during the construction phase. 

(2)  Even though this provides a platform for managers to optimize 

productivity by making changes to their equipment fleet, no actual 

analysis was conducted to demonstrate how this manual/automated 

optimization process can work in actuality. Future work is envisioned 

utilizing reinforcement learning (RL) – based policy optimization 

techniques to automatically optimize the fleet composition and provide the 

manager with shortlisted options. 

6.3. Automated Activity Recognition for Modular Construction (Chapter 4) 

The research presented in Chapter 4 was performed to accomplish the objective of 

enabling automated activity identification and idle time tracking for prefabricated 

construction operations by answering the following research questions related to (1) 

exploring consumer-grade sensors for automated and reliable data collection from 

construction operations, (2) appropriate analytical tools for automated activity 

identification and idle time tracking in construction, and (3) various technical and 

physical considerations to optimize the performance of automated activity 

identification of construction operations. These three questions were answered in this 

chapter focusing on modular construction operations.  
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To answer the questions mentioned above, this study proposed and validated an 

automated audio-based manual activity identification framework for modular 

construction. Also, the IMU-based framework successfully tracks idle and active time 

in different workstations. Audio and IMU data were collected from an actual modular 

construction factory. Both audio and IMU data were processed, segmented, and used 

as inputs to machine learning and deep learning models. Finally, test data were used 

to evaluate the performance of the trained model. In developing the framework 

particular focus was given towards engineering appropriate features, which 

essentially is a paramount step in ensuring robust model training and validation. 

The major findings from this study are: 

(1) Audio can be used as a reliable data source in identifying manual activities 

inside a modular construction factory. 

(2) Audio augmentation techniques significantly improve the performance of 

the activity identification model.  

(3) A systematic approach to engineer appropriate features from all the four 

different domains (e.g., time-, frequency-, cepstral-, and wavelet) is 

required to maximize the performance of the prediction model. 

(4) Active and idle times can be automatically and accurately tracked using 

the vibration generated from work performed in the workstations. 

While the proposed model successfully can identify manual activities and active, idle 

time in a modular construction factory, there are several limitations to the work 

presented. The limitations are: 
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(1) The scope of this research was to identify single activities happening at 

any point in time. However, in real-world conditions, multiple activities 

happen simultaneously, thereby generating a layered audio file. This 

problem falls under the multi-label time series classification domain. 

Further work is required to investigate the use of microphone arrays and 

beamforming techniques to identify sources of sound and simultaneous 

identification of multiple activities.  

(2) To derive meaningful information from the factory, it is essential to 

identify complex activities, such as building walls, assembling ceilings, 

etc. While this study provides the first pillar on audio-based activity 

identification, future work is required to combine sequential manual 

actions (e.g., hammering, nailing, etc.) to predict complex activities. 

(3) The consumer-grade IMU used in this study to collect vibration data from 

the workstations was not sensitive towards low-amplitude vibrations. 

These sensors might miss activities like mudding, painting, finishing, 

those do not generate high-amplitude vibrations. Thus, further 

investigation is required to explore the usability of high-fidelity sensors to 

capture smaller vibrations and track active times from them. 

6.4. Automated Decision-making for Modular Construction (Chapter 5) 

The research presented in Chapter 5 was performed to accomplish the objective of 

developing a dynamic simulation tool for analyzing and optimizing operation in 

modular construction operations. This objective was accomplished by answering the 

research questions related to (1) exploring the capacity of simulation tools to perform 
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dynamic productivity estimation, and (2) appropriate feedback provided for effective 

decision-making. These two questions were answered in this chapter focusing on 

modular construction operations.  

To answer these questions, this study utilizes the capability of discrete-event 

simulation (DES) to model the high-level operations of a modular construction 

factory. Cycle times were used from the outputs of chapter 4, as well as from the 

manual cycle time study. Dependencies of productivity on available labor were also 

modeled and a genetic algorithm (GA) was developed to optimize the simulation 

input parameter (i.e., labor allocation at workstations). The major findings of this 

study were: 

(3) Simulation modeling and optimization algorithms can be successfully used 

to optimize labor allocation in the modular construction factory. 

(4) The proposed framework can provide aid to the managers in deciding on 

adding or removing workforces from different workstations. 

The real-world case study in this research illustrated that the proposed approach could 

help management to optimize worker allocation in the complex modular construction 

factory. However, there are certain limitations in this study, and they are: 

(1) Several assumptions were made during the development of the DES 

model. Such as instantaneous transfer of components (i.e., no time lag was 

considered while moving modular components from one station to 

another), linear relationship between duration of an activity and the 

number of workers, and same expertise level for all the workers. A more 
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robust model can be built in the future addressing these assumptions for a 

more accurate prediction. 

(2) The optimization process using a genetic algorithm (GA) is not 

computationally efficient for real-time usage. Thus, it will be challenging 

to implement the proposed method for dynamic prediction in the decision-

making process. However, reinforcement learning (RL) – based 

optimization techniques can be adopted using the same principles for time-

efficient thus the real-time implementation of the proposed framework. 

(3) This research used a single objective optimization approach, minimizing 

the average makespan of the modular units. Future study is required to 

investigate multi-objective optimization, where other criteria (e.g., wait 

time, worker expertise, etc.) can be included in the objective function. 

6.5. Overall research conclusion and contributions 

The present research demonstrates the feasibility of consumer-grade sensors, machine 

learning algorithms, and simulation modeling techniques to automatically monitor 

construction operations, optimize them, and provide aid for data-driven decision-

making. This study contributes to the body of knowledge by providing a means for 

automated monitoring of construction operations using emerging technologies and 

assessing the use of simulation modeling for data-driven decision-making. Future 

researchers could use the findings and insights of this study as a starting point to 

advance the knowledge for a connected and smart construction environment.  

The study also makes a practical contribution by developing machine learning and 

deep learning models to automatically identify construction activities. One model 
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uses inertial measurement units (IMUs) to track heavy civil operations and another 

model uses audio signals to monitor manual activities inside a modular construction 

factory. Moreover, a framework was also presented to optimize the operations using a 

discrete event simulation (DES) model, dynamic prediction, and optimization 

algorithms. Researchers could use the information presented in this work to develop 

more advanced tools and models for a similar type of construction operation. 

Moreover, construction practitioners could utilize the proposed models to make 

timely data-driven decisions. 

6.6. Recommendations for future research 

The physical and technical parameters for automated activity identification of 

construction operations presented in this study are expected to set the foundation for 

subsequent and future work on digitization, and a data-driven approach in 

construction operations to improve efficiency. Further studies are required to address 

the limitations of the current study, as well as push the boundaries of the application 

of emerging technologies in construction. 

As for the activity identification of heavy civil equipment, limited case studies were 

conducted. Future studies are anticipated to apply and validate the proposed 

framework for other types of construction equipment. Moreover, wireless 

technologies, the internet of things (IoT), and database management systems could be 

integrated to implement the proposed system in real-time. An accurate and reliable 

activity identification model could be used for several other practical purposes, such 

as automated productivity monitoring, safety, environmental assessment, and 

applications in AR/VR visualization. 
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As for the developed audio-based activity identification model for modular 

construction, microphone arrays and audio source localization techniques could be 

used to predict multiple activities simultaneously. More high-end and expensive 

sensors could be used to investigate the validity of the proposed model for activities 

like mudding, painting, finishing, etc. that generate low-magnitude vibrations. 

Lastly, future studies could be performed to tie all the different components described 

in this study by using wireless technology, IoT, and database management system for 

real-time data-driven decision making. 
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