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In this dissertation, we derive and implement a new transport-diffusion hybrid al-

gorithm for solving thermal radiative transfer (TRT) problems. Using the method

of nonlinear elimination (NLEM), the TRT system of equations can be written

in terms of a transport equation with the absence of scattering and a diffusion

equation. The transport solution is obtained using a Monte Carlo (MC) method

with implicit capture and the diffusion solution is used to accelerate the transport

convergence. We name this method Diffusion Accelerated Implicit Monte Carlo

(DAIMC).

A series of tests are used to verify the proposed algorithm and its associated

solvers. After the verification of DAIMC, we investigate its performance by com-

paring DAIMC results to those obtained from the traditional Implicit Monte Carlo

(IMC) method. In 1D slab geometry calculations, we show that DAIMC yields a



more accurate solution than IMC when compared to the analytic solution. The

increased accuracy of the DAIMC solution comes at the cost of an increased com-

putational time when compared to IMC. We have also employed Quasi-Monte

Carlo (QMC) in the DAIMC algorithm for 1D calculations. QMC retains the

same accuracy as the MC implementation of DAIMC while decreasing the required

computing time.

We also implemented DAIMC in 2D-XY geometry using a piecewise constant

representation of temperatures for the Monte Carlo transport solver and a linear-

continuous discretization for the diffusion equation. For problems in which the

opacity is constant or has a T−1 temperature dependence, the implementation

choice for DAIMC converges to the correct equilibrium solution and provides more

accurate results than the IMC method. We observed that small time steps are

required for DAIMC to produce the analytic equilibrium solution when the opacity

has a temperature dependence of T−2.

DAIMC results for a crooked pipe problem are compared with results obtained

from the IMC method. We observed nonphysical overheating at the interface of the

thick and thin material region for both our DAIMC method and the IMC method.

The nonphysical overheating of the interface improves with refinement of the mesh

for both methods.



©Copyright by Adam Q. Lam
November 22, 2021
All Rights Reserved



Diffusion Accelerated Implicit Monte Carlo via Nonlinear
Elimination for Thermal Radiative Transfer

by

Adam Q. Lam

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented November 22, 2021
Commencement June 2022



Doctor of Philosophy dissertation of Adam Q. Lam presented on
November 22, 2021.

APPROVED:

Major Professor, representing Nuclear Engineering

Head of the School of Nuclear Science and Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Adam Q. Lam, Author



ACKNOWLEDGEMENTS

I would first like to express my gratitude to Dr. Todd Palmer. Thank you for

opening the doors and imparting your knowledge and wisdom to me over the

course of my graduate school career. Your guidance and patience made this all

possible. There is a saying,“Once my teacher, always my teacher” and I find it to

be particularly true in this case.

I would also like to thank my mentors at LLNL for their continual help and

support. Tom Brunner, thank you for your guidance and advice when I needed it.

Rick Vega, thank you for imparting your computer knowledge and taking the time

to help whenever I have questions. Nick Gentile, thank you for your discussions

on Monte Carlo methods which proved to be invaluable.

I thank the group of friends I have made throughout the course of graduate

school and particularly the Reactor Physics and Radiation Transport group. Nick

Whitman and Aaron Reynolds, I look forward to our continual friendship and

professional development together.

Lastly, I would like to thank my family. Grandmother and Grandfather, this

one’s for you. Mom and Dad, thank you for leaving everything you knew in moving

to a new country and providing me with this opportunity. Lauren, my wife, thank

you for being there every step of the way. Without any of you, this would never

have been possible.



TABLE OF CONTENTS

Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Thermal Radiative Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Implicit Monte Carlo (IMC) Method . . . . . . . . . . . . . . . . 9
2.2.1 IMC as a Newton iteration . . . . . . . . . . . . . . . . . . . 15
2.2.2 Towards a More Implicit Monte Carlo . . . . . . . . . . . . . 18

2.3 The Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Nonlinear Elimination (NLEM) Applied to Radiation Diffusion . . . . 21

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The Grey TRT Equations . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The Transport Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Monte Carlo Implementation . . . . . . . . . . . . . . . . . . 31

3.4 The Diffusion Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 The Material Energy Residual . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 1D Slab Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.3 Hot and Cold Zones . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Quasi-Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 2D-XY Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Hot and Cold Zones . . . . . . . . . . . . . . . . . . . . . . . 67



TABLE OF CONTENTS (Continued)

Page

4.3.4 Hot Corner . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.5 Crooked Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.6 Temperature Dependent Opacity . . . . . . . . . . . . . . . 89

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 1D Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 2D-XY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Newton’s Method for Nonlinear Systems . . . . . . . . . . . . . . . . 122

B Diffusion Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



LIST OF FIGURES

Figure Page

3.1 Position sampling using a pseudo-random number in 1D. . . . . . . 32

4.1 Initial temperatures for the 1D equilibrium test. . . . . . . . . . . . 42

4.2 The final temperatures for the 1D equilibrium test. . . . . . . . . . 42

4.3 The material temperatures of DAIMC and IMC for the 1D equili-
bration test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The radiation temperatures of DAIMC and IMC for the 1D equili-
bration test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Time evolution of the analytic solutions for the 1D equilibration test. 45

4.6 Time evolution of the material temperatures using DAIMC and IMC
for the hot and cold zone test . . . . . . . . . . . . . . . . . . . . . 47

4.7 Time evolution of the radiation temperatures using DAIMC and
IMC for the hot and cold zone test. . . . . . . . . . . . . . . . . . . 48

4.8 The temperatures from DAIMC, IMC, and QMC implementation
of DAIMC using σ = 13.0. . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 The run-time for the MC and QMC implementation of DAIMC, and
IMC using σ = 13.0. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 The temperatures from DAIMC, IMC, and QMC implementation
of DAIMC using σ = 1, 300.0. . . . . . . . . . . . . . . . . . . . . . 53

4.11 The run-time for the MC and QMC implementation of DAIMC, and
IMC using σ = 1, 300.0. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 The temperatures from DAIMC, IMC, and QMC implementation
of DAIMC using σ = 13, 000.0. . . . . . . . . . . . . . . . . . . . . . 56

4.13 The run-time for the MC and QMC implementation of DAIMC, and
IMC using σ = 13, 000.0. . . . . . . . . . . . . . . . . . . . . . . . . 57

4.14 The initial material temperatures using DAIMC for the 2D equilib-
rium test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



LIST OF FIGURES (Continued)

Figure Page

4.15 The final material temperatures using DAIMC for the 2D equilib-
rium test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.16 The initial radiation temperatures using DAIMC for the 2D equi-
librium test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.17 The final radiation temperatures using DAIMC for the 2D equilib-
rium test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.18 The initial material temperatures of DAIMC for the 2D equilibration
test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.19 The material temperatures after 10 time steps of DAIMC for the
2D equilibration test using 1k particles per time step. . . . . . . . . 63

4.20 The material temperatures after 10 time steps of DAIMC for the
2D equilibration test using 10k particles per time step. . . . . . . . 64

4.21 The material temperatures after 10 time steps of DAIMC for the
2D equilibration test using 100k particles per time step. . . . . . . . 64

4.22 The final material temperatures of DAIMC for the 2D equilibration
test using 1k particles per time step. . . . . . . . . . . . . . . . . . 65

4.23 The final material temperatures of DAIMC for the 2D equilibration
test using 10k particles per time step. . . . . . . . . . . . . . . . . . 65

4.24 The final material temperatures of DAIMC for the 2D equilibration
test using 100k particles per time step. . . . . . . . . . . . . . . . . 66

4.25 The time evolution of the temperatures for an equivalent single zone
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.26 The initial DAIMC material temperatures for the 2D hot and cold
zone problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.27 The initial DAIMC radiation temperatures for the 2D hot and cold
zone problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.28 The DAIMC material temperatures after 100 time steps for the 2D
hot and cold zone problem. . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES (Continued)

Figure Page

4.29 The DAIMC radiation temperatures after 100 time steps for the 2D
hot and cold zone problem. . . . . . . . . . . . . . . . . . . . . . . . 69

4.30 The DAIMC material temperatures after 500 time steps for the 2D
hot and cold zone problem. . . . . . . . . . . . . . . . . . . . . . . . 70

4.31 The IMC radiation temperatures after 500 time steps for the 2D hot
and cold zone problem. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.32 The DAIMC material temperatures at equilibrium. . . . . . . . . . 71

4.33 The DAIMC radiation temperatures at equilibrium. . . . . . . . . . 71

4.34 The initial DAIMC material temperatures. . . . . . . . . . . . . . . 73

4.35 The initial IMC material temperatures. . . . . . . . . . . . . . . . . 73

4.36 The DAIMC material temperatures after 50 time steps. . . . . . . . 74

4.37 The IMC material temperatures after 50 time steps. . . . . . . . . . 74

4.38 The DAIMC material temperatures after 400 time steps. . . . . . . 75

4.39 The IMC material temperatures after 400 time steps. . . . . . . . . 75

4.40 The final DAIMC material temperatures. . . . . . . . . . . . . . . . 76

4.41 The final IMC material temperatures. . . . . . . . . . . . . . . . . . 76

4.42 The initial IMC material temperatures for the crooked pipe problem. 78

4.43 The initial DAIMC material temperatures for the crooked pipe prob-
lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.44 The IMC material temperatures after 100 time steps for the crooked
pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.45 The DAIMC material temperatures after 100 time steps for the
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.46 The IMC material temperatures after 200 time steps for the crooked
pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



LIST OF FIGURES (Continued)

Figure Page

4.47 The DAIMC material temperatures after 200 time steps for the
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.48 The IMC material temperatures after 500 time steps for the crooked
pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.49 The DAIMC material temperatures after 500 time steps for the
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.50 The IMC material temperatures after 1000 time steps for the crooked
pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.51 The DAIMC material temperatures after 1000 time steps for the
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.52 The initial IMC material temperatures for the refined crooked pipe
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.53 The initial DAIMC material temperatures for the refined crooked
pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.54 The IMC material temperatures after 100 time steps for the refined
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.55 The DAIMC material temperatures after 100 time steps for the re-
fined crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . 85

4.56 The IMC material temperatures after 200 time steps for the refined
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.57 The DAIMC material temperatures after 200 time steps for the re-
fined crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . 86

4.58 The IMC material temperatures after 500 time steps for the refined
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.59 The DAIMC material temperatures after 500 time steps for the re-
fined crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . 87

4.60 The IMC material temperatures after 1000 time steps for the refined
crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . . . . . 88



LIST OF FIGURES (Continued)

Figure Page

4.61 The DAIMC material temperatures after 1000 time steps for the
refined crooked pipe problem. . . . . . . . . . . . . . . . . . . . . . 88

4.62 DAIMC and IMC temperatures for a single zone in 2D with T−1

opacity using ∆t = 1.0 · 10−3 sh. . . . . . . . . . . . . . . . . . . . . 90

4.63 DAIMC and IMC temperatures for a single zone in 2D with T−1

opacity using ∆t = 1.0 · 10−4 sh. . . . . . . . . . . . . . . . . . . . . 91

4.64 DAIMC and IMC temperatures for a single zone in 2D with T−1

opacity using ∆t = 1.0 · 10−5 sh. . . . . . . . . . . . . . . . . . . . . 92

4.65 The `∞-norm of the error for a single zone in 2D with T−1 opacity. 94

4.66 The `2-norm of the error for a single zone in 2D with T−1 opacity. . 95

4.67 The time evolution of the temperatures using DAIMC and IMC for
a single zone in 2D with T−2 temperature dependent opacity with
∆t = 1.0 · 10−3 sh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.68 The time evolution of the temperatures using DAIMC and IMC for
a single zone in 2D with T−2 temperature dependent opacity with
∆t = 1.0 · 10−4 sh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.69 The time evolution of the temperatures using DAIMC and IMC for
a single zone in 2D with T−2 temperature dependent opacity with
∆t = 1.0 · 10−5 sh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.70 The `∞-norm of the error for a single zone in 2D with T−2 opacity. 100

4.71 The `2-norm of the error for a single zone in 2D with T−2 opacity. . 101



LIST OF TABLES

Table Page

4.1 The norms of IMC and DAIMC for the 1D equilibration test. . . . . 46

4.2 The norms of the error for IMC, and the MC and QMC implemen-
tation of DAIMC in the 1D equilibration test using σ = 13.0 cm−1. 52

4.3 The norms of the error for IMC, and the MC and QMC implemen-
tation of DAIMC in the 1D equilibration test using σ = 1, 300.0
cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 The norms of the error for IMC, and the MC and QMC implemen-
tation of DAIMC in the 1D equilibration test using σ = 13, 000
cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 The norms for IMC and DAIMC using a single zone in 2D with T−1

opacity for different ∆t sizes. . . . . . . . . . . . . . . . . . . . . . . 93

4.6 The norms for IMC and DAIMC using a single zone in 2D with T−2

temperature dependent opacity with various ∆t sizes. . . . . . . . . 99



LIST OF APPENDIX FIGURES

Figure Page

B.1 The absolute error using a mesh size of 1.0 cm. . . . . . . . . . . . 132

B.2 The absolute error using a mesh size of 0.001 cm. . . . . . . . . . . 133

B.3 The absolute error using a mesh size of 0.0005 cm. . . . . . . . . . . 133

B.4 The absolute error using a mesh size of 0.000125 cm. . . . . . . . . 134

B.5 The norm of the error vs mesh size. . . . . . . . . . . . . . . . . . . 134

B.6 2D diffusion solution using reflecting boundary conditions on a square
mesh.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.7 2D diffusion solution using homogenous Dirichlet boundary condi-
tions on a square mesh. . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.8 2D diffusion solution using non-homogenous Dirichlet boundary on
a square mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.9 2D diffusion solution using reflecting boundary conditions on a star
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.10 2D diffusion solution using homogenous Dirichlet boundary condi-
tions on a star mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.11 2D diffusion solution using non-homogenous Dirichlet boundary con-
ditions on a star mesh. . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.12 The MMS solution for a single zone mesh. . . . . . . . . . . . . . . 142

B.13 The MMS solution for a 2x2 mesh. . . . . . . . . . . . . . . . . . . 142

B.14 The MMS solution for a 4x4 mesh. . . . . . . . . . . . . . . . . . . 143

B.15 The MMS solution for a 8x8 mesh. . . . . . . . . . . . . . . . . . . 143

B.16 The MMS solution for a 16x16 mesh. . . . . . . . . . . . . . . . . . 144

B.17 The MMS solution for a 32x32 mesh. . . . . . . . . . . . . . . . . . 144

B.18 The MMS solution for a 64x64 mesh. . . . . . . . . . . . . . . . . . 145

B.19 The MMS solution for a 100x100 mesh. . . . . . . . . . . . . . . . . 145



LIST OF APPENDIX FIGURES (Continued)

Figure Page

B.20 The MMS solution for a 200x200 mesh. . . . . . . . . . . . . . . . . 146

B.21 The l2 -norm of the error for the 2D MMS problem. . . . . . . . . . 147



Chapter 1: Introduction

Conduction, convection, and radiation are the three known mechanisms for heat

transfer. Radiation heat transfer, or thermal radiative transfer (TRT), describes

the process in which matter exchanges energy with its environment by emitting or

absorbing radiation via photons. That is, all objects (matter) above absolute zero

(0 K) emit thermal photons. Thermal photons are photons whose frequencies fall

within a specific range of the electromagnetic spectrum [1], [2].

The TRT process is known to be the dominant mode of heat transfer in

relatively-high to high-temperature (thousands to millions of degrees) physics

regimes. The thermal energy emitted by matter is proportional to the matter’s

temperature raised to the fourth power [1]. This is often thought of as a material

cooling off by emitting energy in the form of photons. These emitted photons then

contribute to the overall energy of the radiation field. Photons from the radiation

field can conversely be absorbed by the matter. When a material absorbs as much

energy as it emits, the system is in equilibrium.

TRT is an important process in many engineering and astrophysics applica-

tions, particularly in high-energy density physics regimes. In the climate science

community, TRT is used to model atmospheric heating and cooling [3]. Ther-

monuclear fusion is one of the many examples where TRT is a dominant process,

such as those which take place in star formations or laboratory-controlled inertial
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confinement fusion (ICF) [2].

Regardless of the application, it remains that solutions to the TRT equations

are of particular interest. The TRT process is modeled by sets of nonlinear, coupled

integro-differential equations. The complexity of the TRT equations often require

numerical approximations to obtain solutions, as analytical solutions apply to only

a small number of isolated cases. Methods for obtaining the numerical solutions

to the TRT equations can be categorized into the following: deterministic, Monte

Carlo, or hybrid (a combination of both deterministic and Monte Carlo).

Monte Carlo (MC) methods simulate a photon’s life history by sampling pseudo-

random numbers from the probability distribution functions which govern the in-

teractions of the photon. Quantities of interest are then tallied based on these

histories. The accuracy of the tallied quantities increases as more histories are

simulated. The exact solution to the system can, in theory, be obtained if an in-

finite number of histories are used. Since photon histories are independent of one

another, these can be computed in parallel (i.e., simulating multiple photons at

once) [4]. The Implicit Monte Carlo method (IMC) is commonly used as the stan-

dard for solving the TRT equations [5], [6]. A major advantage of using the IMC

method is due it being massively parallelizable. Many particles can be simultane-

ously simulated to yield accurate results. However, due to the effective-scattering

term in the IMC equations, particles may experience a prohibitively large num-

ber of scattering events. While accurate results may be generated using IMC, this

comes with the trade-off of being computationally expensive, as effective-scattering

prolongs a particle’s history [5], [7], [8].
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Deterministic methods seek solutions by directly solving the TRT equations. To

be more precise, these methods solve the approximate forms of the TRT equations.

In the discrete ordinates (SN) method, the angular variable is approximated with

quadrature sets to describe the direction of travel by photons [9]. The SN method

reduces the angular variable to a finite set of directions. This reduction leads to

systems that are easy and efficient to solve. A well-known numerical artifact of

the SN approximation is the so-called ray effects [10], [11]. Ray effects are due to

the angular variable being reduced from an infinite set to a discrete set.

Another deterministic method is known as the diffusion approximation [12]–

[16]. In the diffusion approximation, the angular variable is removed by an integra-

tion over all angles. This leads to a system of equations that is easy and efficient

to compute numerically. Though the system of equations is easy to solve, the so-

lutions may be inaccurate [7], [12], [15]. These inaccuracies are most prominent in

optically thin regions and instances when there are large gradients in the radiation

energy density [7].

Along with these approximations to the angular variable, the multigroup method

can be used to approximate the energy dependency with a discrete number of en-

ergy groups [7], [17]. When only one group is used, this is often referred to as a

‘gray problem’ within the TRT community. The multigroup method can be used in

conjunction with the discrete ordinates SN method, the diffusion approximation,

and the IMC method. These are only three examples of the several deterministic

methods used in the TRT community.

We attempt to overcome the expensive cost of effective-scattering and the de-
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ficiencies of the deterministic methods with a novel, hybrid transport-diffusion

method for solving the TRT equations. The objectives for this research can be

summarized as follows:

1. Derive and implement the NLEM method to the solution of the 1D (slab

geometry) TRT equations in conjunction with Monte Carlo particle transport

as the high-order solve, and diffusion as the low-order solver. Then, compare

the computational accuracy and performance of this new method with the

standard IMC method.

2. Derive and implement the NLEM approach to the solution of the 2D (XY ge-

ometry) TRT equations in conjunction with Monte Carlo particle transport

as the high-order solve, and diffusion as the low-order solver. Then, com-

pare the computational accuracy and performance with the standard IMC

method.

3. Assess the effects of statistical noise on the accuracy and efficiency of the

Monte Carlo/diffusion algorithm with the implementation of Quasi-Monte

Carlo.

1.1 Dissertation Overview

The remainder of this dissertation is organized in the following manner:

II. Chapter 2 begins by formally introducing the mathematical description of

TRT equations. This chapter then provides a literature review on the different
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methods used in solving the TRT equations.

III. In Chapter 3, the mathematical framework for a novel hybrid Monte Carlo

transport-diffusion method is presented. We name this method Diffusion

Accelerated Implicit Monte Carlo (DAIMC).

IV. Chapter 4 provides numerical results using DAIMC and provides comparisons

with the Implicit Monte Carlo method and a Quasi-Monte Carlo implemen-

tation of DAIMC.

V. Chapter 5 provides a discussion of the results from Chapter 4.

VI. Finally, Chapter 6 concludes this work and highlights future work.
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Chapter 2: Thermal Radiative Transfer

2.1 Introduction

The physical process that describes how radiation interacts with matter is known

as thermal radiative transfer (TRT). The radiation can be viewed as packets of

quantized light which can be treated as particles, called photons. As photons

traverse, they can interact with the material via scattering and/or absorption. As

photons are absorbed by the material, the internal energy of the material increases.

As the internal energy of the material increases so does the temperature of the

material, since temperature is a measure of internal energy. The heated material

cools off by emitting photons in accordance with Planck’s frequency spectrum [1],

[2], [18]–[20] .

The quantity of interest is the specific intensity I and can be defined as

I(r,Ω, ν, t) = c h ν n(r,Ω, ν, t), (2.1)

where
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Symbol Description

I [GJ/ns-cm2-keV-sr] specific intensity,

n(r,Ω, ν, t) [photons/cm3-sr-Hz] mean number of photons per differential volume,

c [cm/sh] speed of light in vacuum,

r [cm] position vector (x,y,x),

Ω [sr] unit angle vector,

t [sh] time,

h [keV/Hz] Planck’s constant,

ν [Hz] photon frequency.

With the specific intensity defined, we introduce the conservation equation for

photons. For systems without the presence of scattering or external sources of

radiation, the TRT equations are written as

1

c

∂I(r,Ω, ν, t)

∂t
+ Ω · ∇I(r,Ω, ν, t) + σ(r, ν, T )I(r,Ω, ν, t) = σ(r, ν, T )B(ν, T ).

(2.2)

and

ρ(r)cv(r)
∂T (r, t)

∂t
=

∫ ∞
0

∫
4π

σ(r, ν, T ) [I(r,Ω, ν, t)−B(ν, T )] dΩ′ dν ′, (2.3)

where
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Symbol Description

σ [cm−1] material opacity,

T [keV] material temperature,

B(ν, T ) Planck’s function for radiation,

ρ [g/cm3] material mass density,

cv [GJ/keV-cm3] heat capacity of the material.

The assumption of local thermodynamic equilibrium (LTE) was used in writing

Eq. (2.2) and Eq. (2.3). LTE states that the energy of the material can be well-

defined by its temperature and follows Planck’s function relating the temperature

to the frequency [8], [19].

The quantities of interest are then I and T , which are the unknowns we seek

in Eq. (2.2) and Eq. (2.3). Temperature T is given in units of kilo-electron-volts

[keV] in the description as opposed to the familiar units of kelvins [K]. The simple

conversion from [K] to [keV] can be expressed as

T [keV] = kBT [K], (2.4)

where kB = 8.617343 · 10−8 [keV/K] is known as the Boltzmann constant.

The nonlinear coupling of Eq. (2.2) and Eq. (2.3) arises from the black-body

Planckian term,

B(ν, T ) =
2hν3

c2

1

e(hν
T

) − 1
, (2.5)

which appears in both equations. A source of difficulty in solving the TRT equa-

tions arises from this strongly nonlinear Planckian term, which tightly couples
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both equations.

2.2 The Implicit Monte Carlo (IMC) Method

Fleck and Cummings developed an ‘implicit’ approximation to Eq. (2.2) and Eq. (2.3)

in which a Monte Carlo method can be applied, referred to as Implicit Monte Carlo

(IMC) [6]. The IMC method introduces three approximations to Eq. (2.2) and

Eq. (2.3):

1. Temperature-dependent data are evaluated using the beginning of the time

step temperature.

2. A parameter α is introduced, which serves to approximate Ūr by taking a

linear combination of its value at the beginning and end of the time step.

3. Time-averaged quantities are substituted with their time-continuous values.

The IMC method begins by rewriting Eq. (2.3) in terms of the material energy

density

∂Um
∂t

=

∫ ∞
0

∫
4π

σ (I −B) dΩ′ dν ′, (2.6)

and defining the equilibrium radiation energy density as

Ur = aT 4, (2.7)

where

a = 0.01372

[
GJ

cm3keV4

]
= radiation constant, (2.8)
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and

∂Um
∂T

= cv. (2.9)

The relationship between the material energy density and the equilibrium radiation

energy density can then be defined as

β =
∂Ur
∂Um

=
4aT 3

cv
. (2.10)

Planck’s radiation function is given as

B(ν, T ) =
2hν3

c2

1

e(hν
T

) − 1
, (2.11)

where

h = 4.135667516× 10−9 [keV-ns] = Planck’s constant, (2.12)

and the frequency-normalized Planckian is defined as

b ≡ B
∞∫
0

B dν

, (2.13)

where the frequency integrated Planckian is given as

∞∫
0

B dν =
caT 4

4π
. (2.14)
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The Planck opacity can then written as

σp ≡
∞∫

0

σ b dν. (2.15)

Next, define the time-average operator to be

(̄·) ≡ 1

∆t

tn+1∫
tn

(·)dt. (2.16)

Using the definitions above, Eq. (2.2) and Eq. (2.3) may now be written as

1

c

∂I
∂t

+ Ω · ∇I + σI = σb
cUr
4π

(2.17)

∂Um
∂t

+ σpcUr =

∫ ∞
0

∫
4π

σIdΩ′ dν ′. (2.18)

Applying approximation (1) to Eq. (2.17) and Eq. (2.18) yields

1

c

∂I
∂t

+ Ω · ∇I + σnI = σnbn
cUr
4π

(2.19)

∂Um
∂t

+ σp,ncUr =

∫ ∞
0

∫
4π

σnIdΩ′ dν ′. (2.20)

It is useful to write Eq. (2.20) as

1

βn

∂Ur
∂t

+ σp,ncUr =

∫ ∞
0

∫
4π

σnIdΩ′ dν ′, (2.21)
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in order to apply the second approximation. Using the time-average operator, and

discretizing in time, Eq. (2.21) becomes

1

βn

Un+1
r − Un

r

∆t
+ σp,ncŪr =

∫ ∞
0

∫
4π

σnĪdΩ′ dν ′, (2.22)

with

Ūr ≈ (1− α)Un
r + αUn+1

r . (2.23)

Substituting Eq. (2.23) back into Eq. (2.22) yields

Ūr = fnU
n
r +

(1− fn)

cσp,n

∫ ∞
0

∫
4π

σnĪdΩ′ dν ′. (2.24)

The third and final approximation replaces the time-averaged quantities in Eq. (2.24)

with their continuous values to get

Ur(t) ≈ fnU
n
r +

(1− fn)

cσp,n

∫ ∞
0

∫
4π

σnI(t)dΩ′ dν ′ (2.25)

where

fn =
1

1 + αβnσp,nc∆t
(2.26)

is known as the Fleck factor. The term α can be thought of as a control on the

implicitness of the approximation. The most common, and most implicit, value is

α = 1.0.



13

These three approximations, applied to Eq. (2.2) and Eq. (2.3), produce

1

c

∂I
∂t

+ Ω · ∇I + σnI

=
σnbn
σp,n

1

4π

∫ ∞
0

∫
4π

(1− fn)σnIdΩ′ dν ′ + fnσp,n
σnbn
σp,n

cUn
r

4π
, (2.27)

and

∂Um
∂t

+ fnσp,ncU
n
r =

∫ ∞
0

∫
4π

fnσnIdΩ′ dν ′, (2.28)

which are known as the IMC equations. Temperature at the next time step can

then be computed using

Tn+1∫
Tn

cvdT
′ = Un+1

m − Un
m. (2.29)

Symbol Description

σn [cm−1] material opacity,

σp,n [cm−1] Planck opacity,

bn frequency normalized Planck spectrum,

Um material energy density,

Un
r equilibrium radiation energy density,

fn Fleck factor.

For a detailed description of a Monte Carlo implementation using Eq.(2.27) and

Eq. (2.28), the reader can refer to [5]. While the IMC method provides a widely

adopted Monte Carlo interpretation to the TRT equations, there are still several
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deficiencies to the method. Approximation 2 introduces a variable α ∈ [0, 1] which

directly controls the implicitness of the IMC method. As previously mentioned,

α = 1 is the most commonly used, as well as the most implicit choice for α.

Still, temporal oscillations may occur even with the most implicit choice of α. For

example, temporal oscillations may appear when large time steps are chosen for

a given transient problem. The lower limit of this ‘large’ time step is difficult to

determine a priori. [5]

Notice the first term on the right hand side of Eq. (2.27) appears to be an

isotropic scattering term. Recall, the derivations began with Eq. (2.2) having no

isotropic scattering. The IMC approximations introduce an effective scattering

term to the radiation transport equation. This effective scattering term simulates

the absorption-reemission process through a scattering event. When the Fleck

factor is small (i.e., f << 1.0) or the material is optically thick, effective-scattering

events will be the dominant mode of interaction for photons. This requires longer

particle histories and, consequently, increased computation time.

Several methods have been developed to improve the computational efficiency

of effective scattering. The first of these methods introduced a random walk treat-

ment where effective scattering events are replaced by a single advancement of a

photon in phase space [21]. Gentile also proposed a method called IMCD [22],

[23] to decrease computational cost. IMCD utilizes the diffusion approximation

in regions where IMC is prohibitively slow (i.e., optically thick regions) and re-

verts back to IMC in optically thinner regions. Another method which combines

transport-diffusion is called Discrete Diffusion Monte Carlo (DDMC) [24].
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As mentioned previously, IMC should be thought of as ‘semi-implicit’ rather

than truly implicit [5], [25], [26]. Several different methods have been developed

as a remedy to this semi-implicit behavior, which involves an iterative process.

One such method is called Iterative Implicit Monte Carlo (IIMC), which is fully

implicit, but comes with the trade-off of being computationally expensive in cold,

opaque regions [27]. Another iterative method which attempts to be more implicit

is the iterative thermal emission IMC (ITE IMC), which can take larger time steps

than traditional IMC [28].

2.2.1 IMC as a Newton iteration

The ‘semi-implicit’ nature of Fleck and Cummings’s IMC may lead to a direct

violation of the maximum principle, causing overheating [26], [29], [30]. Vega and

Brunner have shown that the IMC equations can be obtained by casting the TRT

equations as a Newton iteration [30]. The reader may refer to Appendix A for

an overview of a Newton iteration and the notations used in this section. The

time-continuous form of the TRT equations used are

1

β

∂Ur
∂t

+ σpcUr =

∫ ∞
0

∫
4π

σIdΩ′ dν ′, (2.30)

and

1

c

∂I
∂t

+ Ω · ∇I + σI = σ
cUr
4π

. (2.31)
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Now, discretize Eq. (2.30) and Eq. (2.31) implicitly in time and define the residuals

as

m(Un+1
r , In+1) =

1

β∆t
(Un+1

r − Un
r ) + σpcU

n+1
r −

∫ ∞
0

∫
4π

σIn+1dΩ′ dν ′, (2.32)

and

r(Un+1
r , In+1) =

1

c∆t
(In+1 − In) + Ω · ∇In+1 + σIn+1 − cσ

4π
Un+1
r , (2.33)

wherem(Un+1
r , In+1) is the residual of the material energy equation and r(Un+1

r , In+1)

is the residual of the radiation transport equation. The system of equations of in-

terest has two equations and two unknowns. The two equations are the residual

of the material energy equation and the residual of the radiation transport equa-

tion. The two unknowns are Un+1
r and In+1. The Newton formulation can then be

written as a 2x2 system, given as

f(x) =

m(Un+1
r , In+1)

r(Un+1
r , In+1)

 =

0

0

 . (2.34)

The entries of the Jacobian are

Jm,Ur =
1

β∆t
+ σpc = A, Jm,I = −

∫ ∫
4π

σ(·)dΩ = B (2.35)

Jr,Ur = − cσ
4π

= C, Jr,I =
1

c
+ Ω · ∇ (·) + σ = D. (2.36)



17

For the system defined above, a Newton step then takes the form

A B

C D


δUr
δI

 = −

m(Un
r , In)

r(Un
r , In)

 . (2.37)

Using the Schur complement, δI can be obtained via

(D−CA−1B)δI = −r(Un
r , In) + CA−1 (m(Un

r , In)) . (2.38)

Expand Eq. (2.38) with the definitions of A,B,C and D we find that the IMC

radiation transport equation is obtained.

1

c

∂I
∂t

+ Ω · ∇I + σnI

=
σnbn
σp,n

1

4π

∫ ∞
0

∫
4π

(1− fn)σnIdΩ′ dν ′ + fnσp,n
σnbn
σp,n

cUn
r

4π
, (2.39)

where

CA−1 = − 1

4π
(1− fn). (2.40)

It can be shown that the term CA−1B is the effective scattering term of Eq. (2.27).

This confirms that IMC is a single Newton step with the material residual and the

radiation residual defined as Eq. (2.32) and Eq. (2.33), respectively.
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2.2.2 Towards a More Implicit Monte Carlo

As previously mentioned, IMC can be viewed as a single Newton iteration, but

more than one Newton step can be taken. The system in Eq. (2.37) can be modified

to look like A∗ B∗

C∗ D∗


δUr
δI

 = −

m(U∗r , I∗)

r(U∗r , I∗)

 , (2.41)

where

δUr = Un+1
r − U∗r ; δI = In+1 − I∗.

The superscript (·)∗ represents the most recent evaluation of the quantities. The

system can then be rewritten as

(D∗ −C∗(A∗)−1B∗)δI = −r(U∗r , I∗) + C∗A∗−1 (m(U∗r , I∗)) . (2.42)

Once expanded, Eq. (2.42) becomes

1

c

In+1 − In

∆t
+ Ω · ∇In+1 + σ∗In+1

=
1

4π

∫
4π

(1− f ∗)σ∗In+1dΩ′

+

(
cσ∗f ∗

4π
U∗r −

1

4πβ∗∆t
(1− f ∗)(U∗r − Un

r )

)
. (2.43)

When the initial guess is U∗r = Un
r , as it is when a single Newton step is taken, we

recover the grey IMC radiation transport equation [30].
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2.3 The Diffusion Approximation

The diffusion approximation is applied by first integrating Eq. (2.2) over all angles

and energies, i.e., ∫
4π

∞∫
0

(·)dΩdν, (2.44)

to obtain

1

c

∂E

∂t
+∇ · ~F + σaE = 4πσaB(Tm) +Qr, (2.45)

with

E =
1

c

∫
4π

∞∫
0

I dΩ dν (2.46)

and

F =

∫
4π

∞∫
0

ΩIdΩ dν. (2.47)

Then, approximate

F = − 1

3σt
∇E (2.48)

to arrive at the thermal radiation diffusion equation [7], [12]

1

c

∂E

∂t
−∇ · 1

3σt
∇E + σtE = 4πσtB(Tm) +Qr, (2.49)
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coupled with the material energy density equation

∂Um
∂t

=

∫ ∞
0

cσa(E − 4πB(Tm))dν +Qm. (2.50)

In the approximation required to arrive at the diffusion Eq. (2.49) from the

transport Eq. (2.2), there has been a fundamental change in the behavior of the

equation. The transport equation, Eq. (2.2) is classified as hyperbolic, which re-

quires a finite propagation speed. The diffusion equation Eq. (2.49) is classified as

parabolic, implying that a change in any particular region is immediately propa-

gated through all other regions. This results in speeds that are faster than light,

which is nonphysical, and a correction must be made. A flux-limiting method is

usually applied to the diffusion equation in order to correct this deficiency [7], [19].

A variety of flux limiting methods exist, many of which can be cast in the form

1

c

∂E

∂t
−∇ · χ

σt
∇E = σa(4πB(Tm)− E) +Qr, (2.51)

where χ is the Eddington factor. Different flux-limiting schemes vary in the ex-

pressions for χ [7], [15], [16], [31]–[33], a common expression being the Levermore-

Pomraning flux limiter, where the approximation is

χ =
1

R

[
cothR− 1

R

]
(2.52)

with

R =
∇E
σtE

. (2.53)
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2.4 Nonlinear Elimination (NLEM) Applied to Radiation Diffusion

The diffusion approximation to Eq. (2.2) and Eq. (2.3) can written as

ρ
∂e

∂t
= −cσaB + cσaφ+Q, (2.54)

and

∂φ

∂t
= ∇ · c

3σt
∇φ+ cσaB − cσaφ+ S. (2.55)

The material residuals and the radiation residuals of Eq. (2.54) and Eq. (2.55) are

then defined as

m(e, φ) = ρ
(e− en−1)

∆t
+ cσaB − cσaφ−Q (2.56)

and

r(e, φ) =
(φ− φn−1)

∆t
−∇ · c

3σt
∇φ− cσaB + cσaφ− S. (2.57)

Recall the definitions of the Jacobian matrix and apply them to Eq. (2.56) and

Eq. (2.57) to obtain the following entries [34],

Je,e =
ρ

∆t
+

c

cv
σa
∂B

∂T
= A (2.58a)

Je,φ = −cσa = B (2.58b)

Jφ,e = − c

cv
σa
∂B

∂T
= C (2.58c)

Jφ,φ =
1

∆t
−∇ · c

3σt
∇+ cσa = D. (2.58d)
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The Schur complement for this system is then

(D−CA−1B)δφ = −r(el, φl) + CA−1(m(el, φl)). (2.59)

The nonlinear elimination method (NLEM) [34], [35] is applied by solving for

an ê(φ) that is a solution to

r(ê(φ), φ) = 0, (2.60)

which is also a solution of

m(ê, φ) = 0 (2.61)

while maintaining

r(ê(φ), φ) = f(e, φ) = 0. (2.62)

This method effectively removes the material residual equation from the Schur

complement and reduces Eq. (2.59) to

(D−CA−1B)δφ = −r(el, φl). (2.63)

Though the new system has effectively eliminated the material energy residual

equation, it must still be solved via Eq. (2.56).

The expanded Eq. (2.63) has the form

1

∆t
φl+1 −∇ · c

3σt
∇φl+1 + cσaφ

l+1 + CA−1cσaφ
l+1

=
1

∆t
φn−1 + cσaB + S + CA−1cσaφ

l. (2.64)
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The solution can be obtained by splitting Eq. (2.64) into two parts, namely

1

∆t
φl+1,k+1/2 −∇ · c

3σt
∇φl+1,k+1/2 + cσaφ

l+1,k+1/2

=
1

∆t
φn−1 + cσaB + S + CA−1cσa(φ

l − φl+1,k), (2.65)

and

(D−CA−1B)φ† = CA−1B
(
φl+1,k+1/2 − φl+1,k

)
. (2.66)

Once these two solutions are computed, the next iteration’s estimate is then

φl+1,k+1 = φl+1,k+1/2 + φ†. (2.67)

For a detailed description, please refer to [34].

This nonlinear elimination method applied to radiation diffusion allows for

larger time steps and improved accuracy for certain test problems. Though this

method requires an extra iteration loop for the material energy residual equation,

this additional loop does not increase the computational cost when compared to

traditional methods [34]. We extend this work by applying NLEM to the full TRT

rather than thermal radiation diffusion.

2.5 Summary

In this section, the equations which model the TRT process were introduced and

discussed. Several different methods which are commonly used to solve the TRT
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equations, or its approximate forms, were detailed. The IMC method, and several

of its variations, were discussed. It was shown that the IMC method can be

viewed as a single Newton step. The next chapter extends the method of nonlinear

elimination to thermal radiation transport.
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Chapter 3: Methodology

3.1 Introduction

In this chapter, a detailed description for Diffusion Accelerated Implicit Monte

Carlo (DAIMC) is given. The derivation for DAIMC begins with the grey TRT

equations. The TRT equations are then rewritten to take form of a Newton iter-

ation. Nonlinear elimination is applied to the Newton system, which results in a

transport equation similar to Eq. (2.64).

3.2 The Grey TRT Equations

Assuming no volumetric sources of heat or particles, and no scattering, the grey

TRT equations are

∂Um
∂t

=

∫
4π

σ (I −B) dΩ, (3.1)

and

1

c

∂I
∂t

+ Ω · ∇I + σI = σB. (3.2)
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Recall that under local thermodynamic equilibrium [36], the frequency integrated

Planckian can be written as

B(T ) =

∞∫
0

B(ν, T ) dν =
caT 4

4π
= c

Ur
4π
. (3.3)

Eq. (3.1) and Eq. (3.2) can be written in terms of the equilibrium radiation energy

density, Eq. (2.7), and the frequency integrated Planckian as

∂Um
∂t

=

∫
4π

σIdΩ− σcUr, (3.4)

and

1

c

∂I
∂t

+ Ω · ∇I + σI = σc
Ur
4π
. (3.5)

Next, define the residuals of Eq. (3.4) and Eq. (3.5) as the time-integrated functions

given by

m(Um, I) =

∫
∆t

∂Um
∂t

dt+

∫
∆t

σcUr dt−
∫

∆t

∫
4π

σIdΩ′ dt, (3.6)

and

r(Um, I) =

∫
∆t

1

c

∂I
∂t

dt+

∫
∆t

Ω · ∇I dt+

∫
∆t

σI dt−
∫

∆t

σc
Ur
4π

dt. (3.7)

The evaluation of these residuals can be written as

m(Um, I) = [Um − Un
m] + [∆tσcUr]−

{∫
∆t

∫
4π

σIdΩ dt

}
, (3.8)
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and

r(Um, I) =
1

c
[I − In] +

{∫
∆t

Ω · ∇I dt+

∫
∆t

σI dt

}
−
[
∆tσc

Ur
4π

]
, (3.9)

where the terms in {·} represents the time-averaged quantities and the superscript

n represents the beginning of time step quantities.

The Newton iteration for this system is written as

A B

C D


δ`Um
δ`I

 = −

m(U `
m, I`)

r(U `
m, I`)

 , (3.10)

with

δ`Um = U `+1
m − U `

m and δ`I = I`+1 − I`, (3.11)

where ` is the current Newton iteration’s index. The entries of the Jacobian matrix

are then

1 + σcβ∆t = A, (3.12a)

−
∫

∆t

∫
4π

σ(·)dΩ dt = B, (3.12b)

−(
cσβ∆t

4π
) = C, (3.12c)

1

c
+

∫
∆t

Ω · ∇ (·) dt+

∫
∆t

σ (·) dt = D. (3.12d)
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The Schur complement for the system given as

(D−CA−1B)(I`+1 − I`) = −r(U `
m, I`) + CA−1(m(U `

m, I`)). (3.13)

NLEM is applied by solving the material residual equation

m(U `
m, I`) = U `

m − Un
m + ∆tσcU `

r −
{∫

∆t

∫
4π

σI`dΩ dt

}
= 0. (3.14)

This material residual will be discussed in subsequent sections. Once the material

residual is eliminated from the system,

(D−CA−1B)(I`+1 − I`) = −r(U `
m, I`), (3.15)

or

(D−CA−1B)I`+1 = (D−CA−1B)I` − r(U `
m, I`). (3.16)

As previously mentioned, the CA−1B on the left hand side of Eq. (3.16) is respon-

sible for effective scattering.

The effective scattering can be treated by first introducing an iteration index

k to the solution, i.e.,

I`+1 = I`+1,k+1 (3.17)

Then, split the solution into two components [34], [37], [38], namely

I`+1 = I`+1,k+1 = I`+1,k+1/2 + I†. (3.18)
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A substitution of Eq. (3.18) into Eq. (3.16) will yield

(D−CA−1B)(I`+1,k+1/2 + I†) = (D−CA−1B)I` − r(U `
m, I`). (3.19)

3.3 The Transport Solution

The solution to Eq. (3.19) requires the solution to

(D−CA−1B)I`+1,k+1/2, (3.20)

or, by distributing the operators,

(D)I`+1,k+1/2 − (CA−1B)I`+1,k+1/2. (3.21)

Recall, the operator given by Eq. (3.12d),

D =
1

c
+

∫
∆t

Ω · ∇ (·) dt+

∫
∆t

σ (·) dt, (3.22)

is simply a transport operator. Define I`+1,k+1/2 as the solution to the following

transport equation,

(D)I`+1,k+1/2 = (D−CA−1B)I` − r(U `
m, I`) + (CA−1B)I`+1,k. (3.23)

All the terms on the right hand side of Eq. (3.23) are known and evaluated at

a previous iteration. This amounts to solving a transport equation for I`+1,k+1/2
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with the right side of Eq. (3.23). Importantly, the term responsible for effective-

scattering has been approximated with a known scattering term,

(CA−1B)I`+1,k. (3.24)

The right hand side of the transport operator in Eq. (3.23) can be further

simplified. Recall the definition of radiation residual,

r(Um, I) =
1

c
[I − In] +

{∫
∆t

Ω · ∇I dt+

∫
∆t

σI dt

}
−
[
∆tσc

Ur
4π

]
, (3.25)

or, evaluated at a specific Newton index `,

r(U `
m, I`) =

1

c
[I` − In] +

{∫
∆t

Ω · ∇I` dt+

∫
∆t

σI` dt

}
−
[
∆tσc

U `
r

4π

]
. (3.26)

With some rearrangement, Eq.(3.26) can be written as

r(U `
m, I`) = −I

n

c
+

(
I`

c
+

{∫
∆t

Ω · ∇I` dt+

∫
∆t

σI` dt

})
−
[
∆tσc

U `
r

4π

]
. (3.27)

The terms in (·) are simply the transport operator

(D)I` =
I`

c
+

{∫
∆t

Ω · ∇I` dt+

∫
∆t

σI` dt

}
, (3.28)

and the radiation residual can be expressed as

r(U `
m, I`) = −I

n

c
+ (D)I` −

[
∆tσc

U `
r

4π

]
. (3.29)
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Next, substitute Eq. (3.29) back into Eq. (3.23) to obtain

(D)I`+1,k+1/2 = (D−CA−1B)I` +
In

c
− (D)I` +

[
∆tσc

U `
r

4π

]
+ (CA−1B)I`+1,k.

(3.30)

The right hand side can be further reduced to

(D)I`+1,k+1/2 =
In

c
+

[
∆tσc

U `
r

4π

]
+ (CA−1B)(I`+1,k − I`). (3.31)

The transport equation in Eq. (3.31) amounts to solving the time-continuous trans-

port equation

1

c

∂

∂t
I`+1,k+1/2 +Ω ·∇I`+1,k+1/2 +σI`+1,k+1/2 = σc

U `
r

4π
+ ξσc

(
E`+1,k − E`

)
, (3.32)

where

E(·) =
1

c

∫
4π

I(·)dΩ, (3.33)

and the term ξ will be discussed in the Diffusion Solution section.

3.3.1 Monte Carlo Implementation

A Monte Carlo algorithm, using implicit capture, is used to model the transport

equation, Eq (3.32). The 1D Monte Carlo implementation can be summarized as

follows. Each Monte Carlo particle is generated in a zone with an energy-weight
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that is

w0 =
total energy of the zone

total number of particles per zone
. (3.34)

The weight change of a particle due to implicit capture along a path s can be

written as

w =

s∫
0

ds′ w0 exp{(−σs′)} =
1

σ
w0 [1− exp{(−σs)}] . (3.35)

The location at which a particle is created can be sampled by

x = xj,left + η1(xj,right − xj,left) = xj,left + η1∆xj, (3.36)

where η1 ∈ [0, 1] and is sampled using a pseudo-random number generator. The

figure below illustrates the position sampling of a particle.

xj,left xj,rightj-th zone

xx = xj,left + η1∆xj

Figure 3.1: Position sampling using a pseudo-random number in 1D.

The direction of travel can be sampled with

µ = 2η2 − 1, η2 ∈ [0, 1], (3.37)

where

µ = cos(θ), µ ∈ [−1, 1], (3.38)
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and θ is the angle between the direction of travel and the x-axis.

As the governing transport equation has no scattering, only three interactions

are possible. The particle either reaches census, reaches a boundary, or the par-

ticle’s weight is below a cutoff threshold. When the particle’s energy-weight falls

below 1% of its original energy-weight, the particle is killed and the energy is

deposited into the current zone. The distance to census can be sampled through

dcensus = η2c∆tn. (3.39)

The distance to boundary can be obtained through

dboundary =
(xboundary − x0)

µ
, (3.40)

where µ is the direction of travel, xboundary is the boundary in the direction of travel,

and x0 is the current location of a particle. The particle’s birth location, distance

to census, and distance to boundary are now prescribed by a set of pseudo-random

numbers. The reflecting boundary conditions are treated by changing the sign for

the direction of travel once a particle is at the boundaries of the problem.

3.4 The Diffusion Solution

In the previous section, the transport equation was defined as

(D)I`+1,k+1/2 = (D−CA−1B)I` − r(U `
m, I`) + (CA−1B)I`+1,k. (3.41)
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Now, subtract (CA−1B)I`+1,k+1/2 from both sides

(D−CA−1B)I`+1,k+1/2 = (D−CA−1B)I` − r(U `
m, I`)

+ (CA−1B)I`+1,k − (CA−1B)I`+1,k+1/2. (3.42)

Recall Eq. (3.16),

(D−CA−1B)(I`+1,k+1/2 + I†) = (D−CA−1B)I` − r(U `
m, I`), (3.43)

and subtract by Eq. (3.42) to obtain

(D−CA−1B)I† = CA−1B(I`+1,k+1/2 − I`+1,k). (3.44)

Next, we expand Eq. (3.44)

1

c

1

∆t
I† + Ω · ∇I† + σI† −

(
cσβ∆t

4π

)(
1

1 + σpcβ∆t

)(∫
4π

σI†dΩ

)
=

(
cσβ∆t

4π

)(
1

1 + σpcβ∆t

)(∫
4π

σ(I`+1,k+1/2 − I`+1,k)dΩ

)
. (3.45)

Then, use the first and second angular moments,

I†0 =

∫
4π

I†dΩ, (3.46)

I†1 =

∫
4π

ΩI†dΩ, (3.47)
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to write Eq. (3.45) as

1

c

1

∆t
I†0 +∇ · I†1 + σI†0 − (cσβ∆t)

(
1

1 + σpcβ∆t

)
(σI†0)

= (cσβ∆t)

(
1

1 + σpcβ∆t

)(
σ(I

`+1,k+1/2
0 − I`+1,k

0 )
)
. (3.48)

Now, the diffusion approximation can be applied by using

I†1 = −D∇I†0, (3.49)

where

D =
1

3σ
, (3.50)

and

I†1 = − 1

3σ
∇I†0. (3.51)

Eq. (3.48) can now be written as

1

∆t
E† −∇ · cD∇E† + cσE† − (cσβ∆t)

(
1

1 + σcβ∆t

)(
cσE†

)
= (cσβ∆t)

(
1

1 + σcβ∆t

)(
cσ(E`+1,k+1/2 − E`+1,k)

)
, (3.52)

where the radiation energy density is defined as

E(·) =
1

c
I

(·)
0 =

1

c

∫
4π

I(·)dΩ. (3.53)
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The final form of Eq. (3.52) can then be expressed as

−∇ ·D∇E† + σ̃aE
† = ξσ

(
E`+1,k+1/2 − E`+1,k

)
, (3.54)

where

σ̃a =
1

c∆t
+ (1− ξ)σ, (3.55)

and

ξ = (cσβ∆t)(
1

1 + σcβ∆t
). (3.56)

Once the transport and diffusion solutions have been obtained from Eq. (3.32)

and Eq. (3.54), the next estimate of the radiation energy density is then

E`+1,k+1 = E`+1,k+1/2 + E†. (3.57)

Eq. (3.57) will either be used for another transport-diffusion calculation and, upon

convergence of the Newton iteration, it will be used in solving the material energy

residual equation.

3.5 The Material Energy Residual

The material energy residual for our system is defined as

m(U `
m, I`) = U `

m − Un
m + ∆tσcU `

r −
{∫

∆t

∫
4π

σI`dΩ dt

}
= 0, (3.58)
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or, in terms of the radiation energy density,

m(U `
m, I`) = U `

m − Un
m + ∆tσcU `

r − c
{∫

∆t

σE` dt

}
= 0. (3.59)

Next, we define

U `
m = ρcvT`,i , (3.60)

U `
r = aT 4

`,i , (3.61)

and insert into Eq. (3.59) to find

m(U `
m, I`) = ρcvT`,i − ρcvTn + ∆tσncaT

4
`,i − c

{∫
∆t

σE` dt

}
= 0. (3.62)

Eq. (3.62) is solved using a local Newton solver with an iteration index i. This is

the final equation required for DAIMC.

3.6 Summary

In this chapter, the mathematical framework for Diffusion Accelerated Implicit

Monte Carlo (DAIMC) was derived. Nonlinear elimination and solution splitting

were applied to the TRT equations. This resulted in a transport equation with

the absence of scattering. DAIMC can be summarized by solving three equations,

namely Eq. (3.62), Eq. (3.32), and Eq. (3.54). An algorithm outline for DAIMC is

given below.
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Algorithm 1: Diffusion Accelerated Implicit Monte Carlo

while tn < tmax do
Set ` = 0
Guess E` = E0 = En

while T`,i+1 not converged do
Solve Eq. (3.62)

end
Set U `

r = Eq. (3.61)
while T`+1 not converged do

k = 0, E`+1,k = E`

while E`+1,k+1 not converged do
Solve Eq. (3.32) for E`+1,k+1/2

Use E`+1,k+1/2 to solve Eq. (3.54) for E†

E`+1,k+1 = E`+1,k+1/2 + E†

end
Set E`+1 = E`+1,k+1

while T`+1,i+1 not converged do
Solve Eq. (3.62)

end
Set U `+1

r = Eq. (3.61)
` = `+ 1

end
tn = tn + ∆t

end
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Chapter 4: Results

4.1 Introduction

In this chapter, we begin by performing verification tests of the DAIMC method.

As detailed in the previous chapter, DAIMC requires three different solvers: a dif-

fusion solver, a Monte Carlo transport solver, and a Newton solver for the material

residual equation. The verification of these solvers can be found in Appendix B. In

section 4.2, DAIMC results for several 1D grey TRT test cases are generated and

compared with IMC. In section 4.3, DAIMC results for several 2D-XY test prob-

lems are presented. Note, all test problems involve reflecting boundary conditions

in the transport and diffusion solvers. This is not a limitation of the methodology,

but it is currently a limitation of the software implementation.

4.2 1D Slab Geometry

The purpose of the following series of test problems is to verify the behavior of

DAIMC in 1D. We begin with the 1D grey TRT equations in the absence of external

sources and scattering,

1

c

∂I
∂t

+ µ
∂I
∂x

+ σI =
1

2
σB, (4.1)
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and

∂Um
∂t

=

1∫
−1

σ(I − 2B)dµ′. (4.2)

Impose the following initial and boundary conditions:

T i(x) = T0, (4.3a)

I i(x, µ) =
1

2
B(T0), (4.3b)

I l(µ) =
1

2
B(T0). (4.3c)

Using the definition of Planck’s function, Eq. (4.1) and Eq. (4.2) can be written as

1

c

∂I

∂t
+ µ

∂I

∂x
+ σI =

1

2
σcUr, (4.4)

∂Um
∂t

+ σcUr =

∞∫
0

1∫
−1

σIdµ′. (4.5)

The exact solution for a grey, purely-absorbing, homogenous, and infinite medium

problem is

dE

dt
= cσ(aT 4 − E), (4.6)

and

dUm
dt

= −cσ(aT 4 − E), (4.7)

or,

dTm
dt

=
−cσ
ρcv

(aT 4 − E), (4.8)
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where E is the radiation energy density [39]. The coupled set of equations, Eq. (4.6)

and Eq. (4.8), are solved using the SciPy Python package and are considered the

analytic solutions for the radiation field temperature and material temperature,

respectively. Note, the radiation energy density is the quantity of interest, but,

for verification purposes, it is often expressed as the radiation temperature. A

derived quantity, the effective radiation “temperature”, Tr, is computed by equat-

ing the local radiation energy density to a(Tr)
4 because Er ≡

∫
4π
dΩ
∫∞
o
dνI, and

if I = B(ν, T ), as it does at equilibrium, then Er = aT 4. This quantity will be

distinct from the material temperature when the radiation and the matter are out

of equilibrium. Tr has no physical meaning, but mathematically it provides a way

to observe the evolution to equilibrium through two distinct temperatures. The

following results in 1D slab geometry has a tolerance of ε = 1.0 · 10−3 for all three

convergence criterion.

4.2.1 Equilibrium

A simple test problem is used to verify the equilibrium behavior of DAIMC. The

problem starts with the material and the radiation field in equilibrium. The prob-

lem simulates a slab of length 1.0 cm with 20 equally spaced zones and 100k

particles per zone. The opacity is assumed to be uniform throughout the slab and

has a value of σ = 29.0 cm−1. The time step size is ∆ = 1.0 · 10−8 sh and a total

of 10 steps were simulated. The results are given below.
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Figure 4.1: Initial temperatures for the 1D equilibrium test.
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Figure 4.2: The final temperatures for the 1D equilibrium test.
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The purpose of this problem is to verify the behavior of DAIMC when begin-

ning in equilibrium. It is expected that the material temperature and radiation

temperature are the same for the beginning and end of the simulation. This can

be observed in Figure 4.1 and Figure 4.2.

4.2.2 Equilibration

The next test problem simulates the equilibration of the material and radiation

field when starting out of equilibrium. The problem simulates a slab with a length

of 1.0 cm, 10 equally spaced zones, and 100k particles per zone. The opacity is

assumed to be uniform throughout the slab and has a value of σ = 13.0 cm−1.

The time step size is ∆t = 1.0 · 10−5 sh, where a total of 100 steps are simulated.

The material has an initial temperature of Tm = 8.0 and the radiation field has an

initial temperature of Tr = 0.01. The results are given below.
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Figure 4.3: The material temperatures of DAIMC and IMC for the 1D equilibration
test.
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Figure 4.4: The radiation temperatures of DAIMC and IMC for the 1D equilibra-
tion test.
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Figure 4.5: Time evolution of the analytic solutions for the 1D equilibration test.
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Method Variable l2-norm inf-norm

DAIMC Material temp. 0.00637 0.28501
Radiation temp. 0.00263 0.16429

IMC Material temp. 0.00881 0.40640
Radiation temp. 0.00379 0.24425

Table 4.1: The norms of IMC and DAIMC for the 1D equilibration test.

The DAIMC results in Figure 4.3 and Figure 4.4 illustrate the expected behav-

ior for this test problem. The material and radiation field comes to an equilibrium

with a temperature given by Eq. (4.6) and Eq. (4.8). This can be confirmed in

Figure 4.5. Two different norms for the DAIMC and IMC method are given in

Table 4.1. The results indicate DAIMC gives a closer estimate to the analytic

solution when compared with IMC.

4.2.3 Hot and Cold Zones

The next test case involves a material having a ‘hot zone’ and a ‘cold zone’ in order

to simulate a wave. A slab with length 4.0 cm is modeled by 10 uniform cells (∆x

= 0.4 cm), σ = 13.0 cm−1, and ∆t = 1.0 · 10−4 sh. The first 4 cells from the left

boundary start at an initial material temperature of 123.0 keV. The remaining 6

cells’ initial material, and all initial radiation temperatures, have a value of 0.01

keV. We allow this problem to run until equilibrium.
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The analytic equilibrium temperature is given by

(aT 4 + ρcvT )Vtotal =
Z∑
i=1

(T 4
r,i + ρcvTm,i)Vi, (4.9)

where Z is the total number of zones, i is a particular zone, and Vtotal is the total

volume of the problem. Solving Eq.(4.9) yields four solutions for the final equilib-

rium temperature (T ). Of these four solutions, three will involve a combination

of negative and complex temperatures, and only one solution is physically mean-

ingful. The physically meaningful solution yields a positive temperature and is

plotted as the analytical solution.
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Figure 4.6: Time evolution of the material temperatures using DAIMC and IMC
for the hot and cold zone test .
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Figure 4.7: Time evolution of the radiation temperatures using DAIMC and IMC
for the hot and cold zone test.

This test problem aims to verify DAIMC by introducing nonuniform initial

conditions. Figure 4.6 and Figure 4.7 illustrate that DAIMC converges to the

correct equilibrium temperature. For comparison, results obtained using IMC are

also plotted in the same figures.

4.2.4 Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) is a method in which the pseudo-random numbers

of Monte Carlo are replaced with a deterministic sequence of numbers [40]–[43].

These sequences typically include the Halton sequence and the Sobol sequence [44],

[45]. QMC is designed to have a more uniform distribution than traditional pseudo-
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random numbers, thus resulting in faster convergence. QMC becomes less effective

for problems in which the dimensions become extremely large [42]. For problems

involving particle transport, the dimension increases as the particle interacts. More

specifically, the dimension of QMC increases with more scattering or effective-

scattering events. Since DAIMC does not have scattering as an interaction, QMC

may prove to be effective at increasing the convergence rate.

The following results compare DAIMC using a pseudo-random number gen-

erator, DAIMC sampled from a Sobol sequence, as well as the traditional IMC

method. The problem models a slab with a length of 1.0 cm using four equally

spaced zones of size ∆ = 0.25 cm. The problem specifications are ∆t = 1.0 · 10−5.

The material has an initial temperature of 8.0 keV and the radiation has an initial

temperature of 0.001 keV. The results below utilized three different values for the

opacity, σ = 13.0 cm−1, 1, 300.0 cm−1 and 13, 000.0 cm−1.
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Figure 4.8: The temperatures from DAIMC, IMC, and QMC implementation of
DAIMC using σ = 13.0.
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Figure 4.9: The run-time for the MC and QMC implementation of DAIMC, and
IMC using σ = 13.0.
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Method Variable `2-error `∞-error

IMC Material temp. 1.762 · 10−2 4.064 · 10−1

Radiation temp. 7.582 · 10−3 2.442 · 10−1

MC Material temp. 1.273 · 10−2 2.850 · 10−1

Radiation temp. 5.264 · 10−3 1.643 · 10−1

QMC Material temp. 1.273 · 10−2 2.850 · 10−1

Radiation temp. 5.264 · 10−3 1.643 · 10−1

Table 4.2: The norms of the error for IMC, and the MC and QMC implementation
of DAIMC in the 1D equilibration test using σ = 13.0 cm−1.
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Figure 4.10: The temperatures from DAIMC, IMC, and QMC implementation of
DAIMC using σ = 1, 300.0.
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Figure 4.11: The run-time for the MC and QMC implementation of DAIMC, and
IMC using σ = 1, 300.0.



55

Method Variable `2-error `∞-error

IMC Material temp. 4.127 · 10−2 1.948 · 100

Radiation temp. 1.362 · 10−2 6.532 · 10−1

MC Material temp. 4.083 · 10−3 4.173 · 10−2

Radiation temp. 4.079 · 10−3 3.955 · 10−2

QMC Material temp. 4.542 · 10−4 1.674 · 10−2

Radiation temp. 3.292 · 10−4 4.752 · 10−3

Table 4.3: The norms of the error for IMC, and the MC and QMC implementation
of DAIMC in the 1D equilibration test using σ = 1, 300.0 cm−1.
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Figure 4.12: The temperatures from DAIMC, IMC, and QMC implementation of
DAIMC using σ = 13, 000.0.



57

2 4 6 8 10 12 14 16 18 20

Time steps 

0

25

50

75

100

125

150

175

200

Ti
m
e 
[m

in
]

σ=  13,000.0 cm−1 
MC
QMC
IMC

Figure 4.13: The run-time for the MC and QMC implementation of DAIMC, and
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Method Variable `2-error `∞-error

IMC Material temp. 1.018 · 10−1 1.932 · 100

Radiation temp. 3.356 · 10−2 6.462 · 10−1

MC Material temp. 4.891 · 10−3 4.651 · 10−2

Radiation temp. 5.136 · 10−3 3.919 · 10−2

QMC Material temp. 2.936 · 10−4 1.575 · 10−3

Radiation temp. 2.990 · 10−4 1.680 · 10−3

Table 4.4: The norms of the error for IMC, and the MC and QMC implementation
of DAIMC in the 1D equilibration test using σ = 13, 000 cm−1.

In Figures 4.9, 4.11, 4.13, the lines labeled ‘MC’ represent the Monte Carlo

implementation of DAIMC and the lines labeled ‘QMC’ represent the QMC im-

plementation of DAIMC. The IMC method has a shorter run-time than the MC

implementation of DAIMC for all three test cases (σ = 13.0 cm−1, 1, 300.0 cm−1

and 13, 000.0 cm−1). However, the MC implementation has a smaller norm of the

error when compared to the IMC method, as shown in Tables 4.2, 4.3, and 4.4.

The QMC implementation has the smallest norm of the error of the three methods.

For smaller opacities, such as σ = 13.0, the QMC implementation has a longer run-

time than the IMC method, as shown in Figure 4.9. The QMC implementation

starts to have comparable run-time to IMC for σ = 1, 300.0 and is faster than the

IMC method for σ = 13, 000.0, as shown in Figures 4.11 and 4.13.
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4.3 2D-XY Geometry

The 2D implementation of DAIMC used a Monte Carlo transport code called

Hoth. Hoth is a research code developed at LLNL and was built on the frame-

work of solving the TRT equations as a Newton system (as discussed in Chapter

2). Modifications were made to Hoth in order to implement DAIMC. The diffu-

sion equation is solved using the finite element library developed at LLNL called

MFEM [46], [47]. Unless stated otherwise, the opacity will be modeled by

σ = ρκ, (4.10)

where ρ [ g
cm3 ] is the density and κ [ cm2

g
] is the cross section. Results for several test

problems are provided in the subsequent sections.

4.3.1 Equilibrium

The first test case in 2D-XY geometry follows that of section 4.2.1, where the

equilibrium behavior of DAIMC is verified. A square with a length of 2.0 cm is

divided into 9 equally spaced zones, where the material and radiation field start

in equilibrium. The following problem specifications are used: Tm = Tr = 1.4 keV,

∆t = 1.0 · 10−3 sh and 10 total time steps, cv = 0.1, ρ = 0.005 [ g
cm3 ], and κ = 10.0

[ cm2

g
].
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Figure 4.14: The initial material temperatures using DAIMC for the 2D equilib-
rium test.

Figure 4.15: The final material temperatures using DAIMC for the 2D equilibrium
test.
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Figure 4.16: The initial radiation temperatures using DAIMC for the 2D equilib-
rium test.

Figure 4.17: The final radiation temperatures using DAIMC for the 2D equilibrium
test.
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It is expected that the material temperature and radiation temperature remain

constant for the duration of the simulation. This can be observed when com-

paring the initial material temperatures and the initial radiation temperatures in

Figure 4.14 and Figure 4.16 to the final material and radiation temperatures in

Figure 4.15 and Figure 4.17. This behavior indicates that DAIMC has been im-

plemented correctly for cases where the material and radiation temperatures start

at equilibrium in 2D-XY geometry.

4.3.2 Equilibration

The next test problem simulates the equilibration of the material and radiation field

when starting out of equilibrium. A square with a length of 2.0 cm is divided into 9

equally spaced zones. Each zone has a radiation temperature of Tr = 2.0 keV and

a material temperature of Tm = 0.001 keV. The time step size is ∆t = 1.0 ·10−5 sh

and a total of 100 time steps are simulated. The opacity is modeled with κ = 50.0,

cv = 0.4382, and ρ = 1.0.
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Figure 4.18: The initial material temperatures of DAIMC for the 2D equilibration
test.

Figure 4.19: The material temperatures after 10 time steps of DAIMC for the 2D
equilibration test using 1k particles per time step.
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Figure 4.20: The material temperatures after 10 time steps of DAIMC for the 2D
equilibration test using 10k particles per time step.

Figure 4.21: The material temperatures after 10 time steps of DAIMC for the 2D
equilibration test using 100k particles per time step.
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Figure 4.22: The final material temperatures of DAIMC for the 2D equilibration
test using 1k particles per time step.

Figure 4.23: The final material temperatures of DAIMC for the 2D equilibration
test using 10k particles per time step.
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Figure 4.24: The final material temperatures of DAIMC for the 2D equilibration
test using 100k particles per time step.
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Figure 4.25: The time evolution of the temperatures for an equivalent single zone
problem.
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For verification purposes, the analytic solution can be obtained by running an

equivalent 1 zone problem in 2D-XY geometry. The equilibrium solution is given

in Figure 4.25. The equilibrium temperatures from Figures 4.22, 4.23 and 4.24

follow the equilibrium temperature given in Figure 4.25. This confirms the correct

implementation of DAIMC for the constant opacity test problem when starting

out of equilibrium.

4.3.3 Hot and Cold Zones

The next test case involves a material having a ‘hot zone’ and a ‘cold zone’ to

simulate a wave. A square with a length of 2.0 cm is modeled with 20 zones. The

‘hot’ zones have an initial material temperature of 4.3 keV and the ‘cold’ zones

have an initial material temperature of 0.001 keV. The radiation temperatures for

all zones have an initial value of 0.001 keV. The material is uniform in each zone

and has the following properties: ρ = 0.4, κ = 5.0, and cv = 1.0. The time step is

chosen as ∆t = 1.0 · 10−4 sh and we allow this problem to run until equilibrium.
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Figure 4.26: The initial DAIMC material temperatures for the 2D hot and cold
zone problem.

Figure 4.27: The initial DAIMC radiation temperatures for the 2D hot and cold
zone problem
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Figure 4.28: The DAIMC material temperatures after 100 time steps for the 2D
hot and cold zone problem.

Figure 4.29: The DAIMC radiation temperatures after 100 time steps for the 2D
hot and cold zone problem.
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Figure 4.30: The DAIMC material temperatures after 500 time steps for the 2D
hot and cold zone problem.

Figure 4.31: The IMC radiation temperatures after 500 time steps for the 2D hot
and cold zone problem.
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Figure 4.32: The DAIMC material temperatures at equilibrium.

Figure 4.33: The DAIMC radiation temperatures at equilibrium.
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The analytic temperature obtained from Eq. (4.9) is 1.531 keV. Figure 4.26

shows the initial material temperature and Figure 4.27 shows the initial radiation

temperature. The hot material is expected to emit radiation and heat up the cold

zones, which is observed in Figures 4.28 - 4.33. Once in equilibrium, the DAIMC

results oscillate around the analytic value of 1.531 keV, as shown in Figure 4.32

and Figure 4.33.

4.3.4 Hot Corner

This test problem illustrates a material with an initial hot corner. A square of

length 1.0 cm is divided into 100 equally spaced zones with 16 zones starting at an

initial ‘hot’ temperature of 4.3 keV and the ‘cold’ zones have an initial temperature

of 0.001 keV. The problem specifications used σ = 2.0 cm−1, ρ = 0.4, κ = 5.0,

cv = 0.1, 10k particles per time step, ∆t = 1 · 10−4 sh, 4000 total steps were

simulated. A total of 5 outer (material temperature solve) and inner (radiation

solve) iterations were used with DAIMC. The results from DAIMC and IMC are

given below. The analytic equilibrium temperature is calculated to be T = 0.633

KeV.
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Figure 4.34: The initial DAIMC material temperatures.

Figure 4.35: The initial IMC material temperatures.
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Figure 4.36: The DAIMC material temperatures after 50 time steps.

Figure 4.37: The IMC material temperatures after 50 time steps.
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Figure 4.38: The DAIMC material temperatures after 400 time steps.

Figure 4.39: The IMC material temperatures after 400 time steps.
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Figure 4.40: The final DAIMC material temperatures.

Figure 4.41: The final IMC material temperatures.
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The analytic temperature obtained from Eq. (4.9) is T = 0.633 keV. Fig-

ures 4.34 and 4.35 shows the initial material temperatures for DAIMC and IMC,

respectively. Temperatures after 50 and 400 time steps for both methods are shown

in Figures 4.36 - 4.39. After 400 time steps, both methods reach the equilibrium

temperature as shown in Figures 4.40 and 4.41.

4.3.5 Crooked Pipe

In this section, results for a modified crooked pipe problem are shown. This prob-

lem illustrates the radiation flow in a crooked pipe for an optically thick and

optically thin material. The optically thick material has a density of ρ = 10.0 and

the optically thin material has a density of ρ = 0.01. The opacity in the thick ma-

terial region is σ = 200.0 and the opacity for the thin region is σ = 0.2. The time

step size is ∆t = 1.0 · 10−4 sh and a total of 1000 time steps were simulated. The

DAIMC used 1 inner and 1 outer iteration. The pipe is modeled with a portion

of the zones starting at a ‘hot’ temperature of T = 3.0 keV and the cold zones

have a temperature of T = 0.05 keV. A total of 2520 zones were used to model the

crooked pipe.
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Figure 4.42: The initial IMC material temperatures for the crooked pipe problem.

Figure 4.43: The initial DAIMC material temperatures for the crooked pipe prob-
lem.
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Figure 4.44: The IMC material temperatures after 100 time steps for the crooked
pipe problem.

Figure 4.45: The DAIMC material temperatures after 100 time steps for the
crooked pipe problem.
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Figure 4.46: The IMC material temperatures after 200 time steps for the crooked
pipe problem.

Figure 4.47: The DAIMC material temperatures after 200 time steps for the
crooked pipe problem.
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Figure 4.48: The IMC material temperatures after 500 time steps for the crooked
pipe problem.

Figure 4.49: The DAIMC material temperatures after 500 time steps for the
crooked pipe problem.
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Figure 4.50: The IMC material temperatures after 1000 time steps for the crooked
pipe problem.

Figure 4.51: The DAIMC material temperatures after 1000 time steps for the
crooked pipe problem.
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Figures 4.42 and 4.43 show the initial material temperatures for this problem.

The radiation travels along the pipe in the thin material and the material tem-

peratures after 100 time steps are shown in Figures 4.44 and 4.45 for the DAIMC

and IMC method, respectively. After 500 time steps, the radiation has made it

farther along the pipe for DAIMC than IMC, as shown in Figures 4.48 and 4.49.

The temperatures after 1000 time steps are shown in Figures 4.50 and 4.51.

4.3.5.1 Crooked Pipe Mesh Refinement

This section provides results for the crooked pipe problem using the same problem

specifications as the previous section except the pipe is divided into 9904 zones

instead of the 2520 used previously.
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Figure 4.52: The initial IMC material temperatures for the refined crooked pipe
problem.

Figure 4.53: The initial DAIMC material temperatures for the refined crooked
pipe problem.
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Figure 4.54: The IMC material temperatures after 100 time steps for the refined
crooked pipe problem.

Figure 4.55: The DAIMC material temperatures after 100 time steps for the refined
crooked pipe problem.
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Figure 4.56: The IMC material temperatures after 200 time steps for the refined
crooked pipe problem.

Figure 4.57: The DAIMC material temperatures after 200 time steps for the refined
crooked pipe problem.
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Figure 4.58: The IMC material temperatures after 500 time steps for the refined
crooked pipe problem.

Figure 4.59: The DAIMC material temperatures after 500 time steps for the refined
crooked pipe problem.
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Figure 4.60: The IMC material temperatures after 1000 time steps for the refined
crooked pipe problem.

Figure 4.61: The DAIMC material temperatures after 1000 time steps for the
refined crooked pipe problem.
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Figures 4.52 and 4.53 show the initial material temperatures for the crooked

pipe problem with mesh refinement. The radiation travels along the pipe in the

thin material and the material temperatures after 100 time steps are shown in

Figures 4.54 and 4.55 for the DAIMC and IMC method, respectively. After 500

time steps, the temperatures are given in Figures 4.58 and 4.59. The temperatures

after 1000 time steps are shown in Figures 4.60 and 4.61.

4.3.6 Temperature Dependent Opacity

The previous section highlights test cases for multiple zones in 2D-XY geometry

using a constant opacity treatment. We now provide a study for the behavior of

DAIMC when the opacity is modeled by

σ = ρκT−n, n = 1, 2, (4.11)

where T is the temperature of the material. The following test problems use ρ =

0.005, κ = 10.0, cv = 0.1. The material has an initial temperature of Tm = 0.001

and the radiation field has an initial temperature of Tr = 0.3. The analytic solution

is modeled by

dE

dt
= cσ(aT 4 − E), (4.12)

and

dTm
dt

=
−cσ
ρcv

(aT 4 − E), (4.13)

with the opacity prescribed by Eq. (4.11).
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Figure 4.62: DAIMC and IMC temperatures for a single zone in 2D with T−1

opacity using ∆t = 1.0 · 10−3 sh.
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Figure 4.63: DAIMC and IMC temperatures for a single zone in 2D with T−1

opacity using ∆t = 1.0 · 10−4 sh.
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Figure 4.64: DAIMC and IMC temperatures for a single zone in 2D with T−1

opacity using ∆t = 1.0 · 10−5 sh.
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∆t [sh] Method Variable `2-error `∞-error

1.0 · 10−3 DAIMC Material temp. 6.222 · 10−4 4.182 · 10−2

Radiation temp. 3.484 · 10−4 1.733 · 10−2

IMC Material temp. 2.737 · 10−3 1.511 · 10−1

Radiation temp. 3.809 · 10−3 2.653 · 10−1

1.0 · 10−4 DAIMC Material temp. 6.870 · 10−5 1.456 · 10−2

Radiation temp. 3.344 · 10−5 5.209 · 10−3

IMC Material temp. 1.280 · 10−3 1.487 · 10−1

Radiation temp. 9.638 · 10−4 8.534 · 10−2

1.0 · 10−5 DAIMC Material temp. 2.424 · 10−6 2.177 · 10−3

Radiation temp. 1.163 · 10−6 7.503 · 10−4

IMC Material temp. 2.366 · 10−5 2.380 · 10−2

Radiation temp. 1.087 · 10−5 8.595 · 10−3

Table 4.5: The norms for IMC and DAIMC using a single zone in 2D with T−1

opacity for different ∆t sizes.
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Figure 4.65: The `∞-norm of the error for a single zone in 2D with T−1 opacity.
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Figure 4.66: The `2-norm of the error for a single zone in 2D with T−1 opacity.

When the opacity varies as T−1, DAIMC converges to the correct equilibrium

solution, as shown in Figures 4.62, 4.63, and 4.64. In Figures 4.62 and 4.63, the

IMC method exhibits an overheating behavior where the material temperature

exceeds the driving temperature of the radiation field. The overheating of the

material can be resolved using a ∆t = 1.0 · 10−5 sh or smaller, as illustrated in

Figure 4.64. DAIMC does not exhibit the overheating behavior since more Newton

steps are taken within a single time step as opposed to IMC’s single Newton step.
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As the time step size decreases, it is expected that the results from DAIMC and

IMC converges to the analytic solution. This can be confirmed by the decreasing

l2-norm and infinity-norm in Table 4.6.

4.3.6.2 T−2
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Figure 4.67: The time evolution of the temperatures using DAIMC and IMC for
a single zone in 2D with T−2 temperature dependent opacity with ∆t = 1.0 · 10−3

sh.



97

0.000 0.002 0.004 0.006 0.008 0.010

t [sh]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
 [k

eV
]

2DXY

Tr Analytic

Tm Analytic

DAIMC Tr

DAIMC Tm

IMC Tr

IMC Tm

Figure 4.68: The time evolution of the temperatures using DAIMC and IMC for
a single zone in 2D with T−2 temperature dependent opacity with ∆t = 1.0 · 10−4

sh.
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Figure 4.69: The time evolution of the temperatures using DAIMC and IMC for
a single zone in 2D with T−2 temperature dependent opacity with ∆t = 1.0 · 10−5

sh.
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∆t [sh] Method Variable `2-error `∞-error

1.0 · 10−3 DAIMC Material temp. 3.134 · 10−3 1.165 · 10−1

Radiation temp. 3.133 · 10−3 8.251 · 10−2

IMC Material temp. 7.642 · 10−4 6.573 · 10−2

Radiation temp. 1.798 · 10−3 1.701 · 10−1

1.0 · 10−4 DAIMC Material temp. 3.416 · 10−3 1.150 · 10−1

Radiation temp. 2.518 · 10−3 6.684 · 10−2

IMC Material temp. 2.699 · 10−3 1.121 · 10−1

Radiation temp. 3.469 · 10−3 1.474 · 10−1

1.0 · 10−5 DAIMC Material temp. 5.191 · 10−4 9.956 · 10−2

Radiation temp. 3.058 · 10−4 4.659 · 10−2

IMC Material temp. 4.726 · 10−4 1.145 · 10−1

Radiation temp. 3.471 · 10−4 6.390 · 10−2

Table 4.6: The norms for IMC and DAIMC using a single zone in 2D with T−2

temperature dependent opacity with various ∆t sizes.
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Figure 4.70: The `∞-norm of the error for a single zone in 2D with T−2 opacity.
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Figure 4.71: The `2-norm of the error for a single zone in 2D with T−2 opacity.
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The results in Figure 4.67 shows the convergence of DAIMC and IMC for a given

time step size of ∆t = 1.0·10−3. DAIMC is observed to not converge to the expected

analytic solution. While IMC converges to the analytic solution, overheating of

the material can be observed. The converged equilibrium temperatures of DAIMC

approaches the expected analytic value as the size of ∆t decreases. This is observed

in Figures 4.67-4.69. Table 4.6 shows the norms of both DAIMC and IMC for

several different time step sizes.

4.4 Summary

In this chapter, results from DAIMC for a series of test problems in 1D and 2D-

XY geometry were given. In 1D, QMC was introduced to the DAIMC method by

sampling from the Sobol sequence rather than traditional pseudo-random numbers.

The 1D and 2D-XY geometry results verify that DAIMC has been implemented

correctly since the analytic solutions were recovered. Chapter 5 gives a discussion

of these results and highlights the significance of the spatial discretizations used

in DAIMC.
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Chapter 5: Discussion

In this chapter, we discuss the significance of the results presented in Chapter 4.

Section 5.1 gives a discussion of the results obtained from 1D calculations. Section

5.2 provides a discussion on the results from the 2D implementation of DAIMC.

5.1 1D Results

The simple test cases from Section 4.2 demonstrated the behavior of the DAIMC

algorithm for problems involving constant opacity treatment in 1D slab geometry.

When comparing the `2 and `∞-norms of the error, Table 4.1 shows that DAIMC

yields closer results to the analytic solution than the IMC method. It was shown in

Chapter 2 that the IMC method is a single Newton iteration. Since DAIMC uses

several Newton steps, it is not surprising that the norms are smaller than those of

IMC. However, this smaller norm comes with the trade-off of taking more Newton

steps and requiring more transport solves.

Quasi-Monte Carlo (QMC) was introduced and implemented with DAIMC. Fig-

ures 4.8, 4.10, and 4.12 show that both the Monte Carlo (MC) and the QMC imple-

mentation of DAIMC converge to the correct equilibrium solution. Tables 4.2, 4.3,

and 4.4 show that both the QMC and MC implementation of DAIMC yield results

which have a smaller `2 and `∞-norms of the error when compared to the tradi-
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tional IMC method. For optically thin problems, IMC has a faster run-time than

the QMC and MC implementations of DAIMC as shown in Figure 4.9. As the

opacity increases the MC implementation of DAIMC remains the slowest of the

three methods as shown in Figures 4.11 and 4.13. In Figure 4.11, the QMC imple-

mentation is observed to have comparable run-time to that of the IMC method.

For optically thicker problems, such as σ = 13, 000, QMC has a faster run-time

than IMC. On average, the QMC implementation of DAIMC requires half as many

iterations as the MC implementation.

The Monte Carlo transport solver used a piecewise constant treatment for the

temperature and opacity. Each zone in the Monte Carlo solver was then divided

into two half-cells, as the linear discontinuous diffusion solver requires two un-

knowns per cell. The results show that a piecewise constant treatment for Monte

Carlo transport and a linear-discontinuous discretization of the diffusion equation

are compatible when using the DAIMC algorithm in 1D. For problems in which

the time analytic solution can be modeled by Eq. 4.6 and Eq. 4.8, the DAIMC

results yield more accurate solutions than IMC when comparing the l2-norms of

the error and infinity-norms.

5.2 2D-XY

The 2D-XY implementation of DAIMC uses a constant treatment of the opacity

and temperature in the Monte Carlo transport solver. Linear-continuous repre-

sentations of the radiation energy density are then tallied for use in the diffusion
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solver. Section 4.3.1 shows results from a test case in which the material and

radiation field start in equilibrium. The results indicate that the implementation

choice made for the Monte Carlo transport solver and the diffusion solver can yield

the expected behavior when starting in equilibrium.

Section 4.3.2 provides results for an equilibration test using a constant treat-

ment of the opacity. The temperatures obtained from DAIMC for a single zone fol-

low those of the analytic solutions modeled by Eq. (4.6) and Eq. (4.8), as illustrated

in Figure 4.25. It can be verified that each of the nine zones in Figures 4.22, 4.23,

and 4.24 have the same equilibrium temperatures which oscillate around this an-

alytic solution. These three figures show that as the number of particle histories

increase the interval range of the temperature decreases. This is expected since

increasing the number of particles gives more resolution (noise reduction) in the

temperature for a given problem. The results indicate the implementation choice

of the Monte Carlo transport solver and the diffusion solver can produce solutions

which follow the time evolution of Eq. (4.6) and Eq. (4.8).

Section 4.3.3 presents results from a problem in which a material has ‘hot’ zones

and ‘cold’ zones. To our knowledge, an analytic solution in time is not available

in literature, and therefore a time evolution comparison with a known analytic

solution cannot be made. We allow the problem to equilibrate and compare the

results from DAIMC to those of the analytic equilibrium solution. The problem

simulated a total of 1,200 time steps. The final material and radiation tempera-

tures from DAIMC oscillate about the analytic equilibrium temperature of 1.531

keV, as shown in Figure 4.32 and Figure 4.33. This indicates that the choice of



106

a piecewise constant treatment of the temperature and the linear-discontinuous

treatment of the radiation energy density can produce the expected analytic equi-

librium solution.

The ‘hot corner’ problem from Section 4.3.4 shows the temperature change

and equilibration of a homogeneous material with hot and cold zones. The time

evolution of the temperatures for both DAIMC and IMC are comparable, as shown

in Figures 4.36 - 4.39. DAIMC and IMC both yield the correct analytic equilibrium

temperature, as shown in Figures 4.40 and 4.41, respectively.

Section 4.3.5 provides results for radiation flow in a crooked pipe using 2520

zones. The problem starts with a portion of the pipe at a temperature of 3.0

keV, as shown in Figures 4.42 and 4.43. The results after 100 time steps from

DAIMC and IMC are comparable as the propagation of the radiation reached

the same portion of the pipe, as illustrated in Figures 4.44 and 4.45. DAIMC

shows higher temperatures near the interface of the thick and thin material than

the IMC method. This behavior can be observed when comparing Figures 4.46

and 4.47. After 500 time steps, the DAIMC method shows that the radiation

has made farther into the pipe than the IMC method, as shown in Figures 4.48

and 4.49. The temperatures after 1000 time steps for DAIMC and IMC are shown

in Figures 4.50 and 4.51. Figure 4.51 shows that the zones near the interfaces have

a higher temperature than the zones that are closer to the interior of the pipe.

This overheating of the zones near the interface introduces more radiation into the

system and therefore causes the radiation to propagate farther into the pipe when

using the DAIMC method than is observed in the IMC results.
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Section 4.3.5.1 provides results for radiation flow in a crooked pipe using more

zones. A total of 9904 zones were used to model the crooked pipe. The problem

starts with some initial zones at a temperature of 3.0 keV, as shown in Figures 4.52

and 4.53. After 100 time steps, the temperatures for DAIMC and IMC are shown

in Figures 4.54 and 4.55. A comparison of Figures 4.44, 4.45, 4.54, and 4.55 show

that the radiation has reached the same portion of the pipe. A closer examina-

tion of Figures 4.45 and 4.55 show that the interface between the thick and thin

material has a higher temperature using a refined mesh for DAIMC. This is also

observed with the IMC method, as shown in Figures 4.44 and 4.54. After the 200

time steps, the radiation wave front computed by DAIMC and IMC reaches the

same approximate location of the pipe as is evident in Figures 4.46, 4.47, 4.56,

and 4.57. A nonphysical overheating of the IMC method can be observed in the

refined mesh, as shown in Figure 4.56, which is not present in Figure 4.46. Fig-

ures 4.48, 4.58, and 4.59 show the radiation reaching the same approximate region

into the pipe after 500 time steps. In contrast, Figure 4.49 shows that the radia-

tion as propagated farther into the pipe. This may be caused by the nonphysical

overheating at interface of the material with DAIMC, which cannot be resolved by

the coarser mesh used in Section 4.3.5. The DAIMC results after 1000 time steps

are provided in Figures 4.51 and 4.61. It is observed that using mesh refinement

can help the nonphysical overheating at the interface, and, consequently, lead to

radiation propagation that is similar to that of the IMC method. This can be

observed when comparing the temperatures of DAIMC in Figures 4.51 and 4.61 to

those of Figure 4.50.
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The previous test problems all used a temperature independent treatment of the

opacity. The test problems from Section 4.3.6 use a temperature varying opacity.

Section 4.3.6.1 provides results for which the opacity varies proportionally with

T−1. For larger time steps, such as ∆t = 1.0 · 10−3 sh and ∆t = 1.0 · 10−4 sh,

the IMC method exhibits an overheating behavior of the material. This effect is

not observed with the results of DAIMC. The overheating of IMC can be remedied

by using a smaller time step such as ∆t = 1.0 · 10−5 sh, as shown in Figure 4.64.

Table 4.6 compares the `2 and `∞-norms of the error for DAIMC and IMC for

various time steps sizes. The norms for both IMC and DAIMC decrease as the

time step size decreases, as shown in Table 4.6. We observe that the DAIMC

results are more accurate than the IMC results when comparing the norms.

Section 4.3.6.2 provides results for which the opacity varies proportionally with

T−2. When using a time step ∆t = 1.0 · 10−3 sh, DAIMC fails to converge to the

correct equilibrium solution, as illustrated in Figure 4.67. By refining the time step

size, the DAIMC results approach the expected analytic equilibrium solution. This

can be confirmed by comparing the norms of the DAIMC results for different time

step sizes in Table 4.6. The material overheating from IMC can be observed with

all the time step sizes in this study, as shown in Figures 4.67, 4.68 and 4.69. When

smaller time step sizes are used, such as ∆t = 1.0 · 10−5 sh and ∆t = 1.0 · 10−6

sh, DAIMC yields results that are more accurate than IMC when comparing the

norms.

The piecewise constant treatment of the temperature for the Monte Carlo trans-

port and the linear-continuous discretization of the diffusion equation can provide
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accurate results when the opacity is treated as constant or varies as T−1. When

the opacity varies at T−2, smaller time step sizes are required with the current im-

plementation choice of DAIMC in order to obtain the correct equilibrium solution.
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Chapter 6: Conclusions and Future Work

The goal of this research was to derive, implement and assess a new transport-

diffusion hybrid method for thermal radiative transfer (TRT) problems. This was

accomplished by rewriting the TRT equations as a Newton system; then, nonlinear

elimination is applied to the TRT Newton system. This resulted in a system of

equations which can be solved using an implicit capture transport Monte Carlo

algorithm coupled to a diffusion approximation.

Chapter 3 detailed the mathematical framework for DAIMC. By formulating

the TRT equations as a Newton system, nonlinear elimination (NLEM) can be

applied to the system as a preconditioner. We then seek a solution to the equations

that is a combination of a) the solution of a transport equation without scattering

and b) the solution of a diffusion equation. The use of NLEM requires an additional

solver for the material energy residual equation at the beginning and end of each

Newton step.

Chapter 4 includes numerical results obtained from DAIMC for verification

purposes. In developing the DAIMC algorithm, a series of test problems were

used to verify its behavior. The 1D test problems used a constant treatment for

the opacity. For problems where an analytic solution in time can be obtained,

it was observed that DAIMC yields more accurate results than IMC. The QMC

implementation of DAIMC maintained the accuracy of the MC implementation
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while decreasing the number of required iterations and, consequently, run-time.

The 2D implementation of DAIMC used a piecewise constant treatment for the

temperature and a linear-continuous discretization of the diffusion equation. In

Section 4.3.1 and 4.3.2, the DAIMC results show that the implementation choices

in 2D can produce the expected analytic equilibrium solutions.

The crooked pipe results from Section 4.3.5 suggest that mesh refinement is

required to resolve the nonphysical overheating at the interface of the thick and thin

region. On a coarser mesh, the DAIMC method propagates the radiation farther

into the pipe than the IMC method. This is due to the nonphysical overheating of

DAIMC. The overheating can be remedied by using a mesh refinement, as evident

by the results in Section 4.3.5.1.

Several test problems were studied in which the opacity was a non-linear func-

tion of temperature to assess the behavior of several implementation choices. The

results from Section 4.3.4.1 indicate that DAIMC can produce the equilibrium so-

lution and provide more accurate results than IMC when comparing the l2-norms

and infinity-norms, in instances where the opacity varies as T−1. In Section 4.3.4.2,

problems in which the opacity varies as T−2 indicate that the implementation of

DAIMC requires small time steps in order to produce the correct equilibrium so-

lution. However, once a sufficiently small step size is used to produce the correct

equilibrium solution, DAIMC provides more accurate results than the IMC results.

This can be observed when comparing the norms, as discussed in Chapter 5.
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6.1 Future Work

Since DAIMC is a novel method, there are several improvements which will be

explored. The 1D and 2D implementation of DAIMC did not consider efficiency.

The current implementation requires the diffusion matrix to be built after each

transport iteration. There may be an increase in efficiency if the diffusion matrix

is built once at the beginning of each time step and only the right hand side of the

diffusion equation is updated after each transport iteration. Another improvement

can be made by solving the material energy residual in parallel since this is done

locally in each zone.

The implementation of QMC in higher dimensions can be useful in providing

convergence and efficiency studies. Results from implementing QMC with DAIMC

in 1D suggests that more efficient and accurate solutions can be obtained than the

traditional IMC method.



113

Bibliography

[1] G. C. Pomraning, “Radiation hydrodynamics,” Los Alamos National Lab.,

NM (United States), Tech. Rep., 1982.

[2] J. Howell, M. Menguc, and R. Siegel, Thermal Radiation Heat Transfer. CRC

Press, 2015, isbn: 9781498757744. [Online]. Available: https : / / books .

google.com/books?id=aeSYCgAAQBAJ.

[3] H. Harde, “Radiation and heat transfer in the atmosphere: A comprehen-

sive approach on a molecular basis,” International Journal of Atmospheric

Sciences, vol. 2013, Oct. 2013. doi: 10.1155/2013/503727.

[4] A. F. Bielajew, “Fundamentals of the Monte Carlo method for neutral and

charged particle transport,” The University of Michigan, vol. 1, 2001.

[5] A. B. Wollaber, “Four decades of Implicit Monte Carlo,” Journal of Com-

putational and Theoretical Transport, vol. 45, no. 1-2, pp. 1–70, 2016.

[6] J. Fleck Jr and J. Cummings Jr, “An implicit Monte Carlo scheme for calcu-

lating time and frequency dependent nonlinear radiation transport,” Journal

of Computational Physics, vol. 8, no. 3, pp. 313–342, 1971.

[7] T. A. BRUNNER, “Forms of approximate radiation transport,” Sandia Na-

tional Labs., Albuquerque, NM (US); Sandia National Labs . . ., Tech. Rep.,

2002.



114

[8] A. B. Wollaber, Advanced Monte Carlo methods for thermal radiation trans-

port. University of Michigan, 2008.

[9] J. I. Castor, Radiation hydrodynamics. 2004.

[10] E. E. Lewis and W. F. Miller, “Computational methods of neutron trans-

port,” 1984.

[11] W. Miller Jr and W. H. Reed, “Ray-effect mitigation methods for two-

dimensional neutron transport theory,” Nuclear Science and Engineering,

vol. 62, no. 3, pp. 391–411, 1977.

[12] T. A. Brunner, “Mulard: A multigroup thermal radiation diffusion mini-

application,” 2012.
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Appendix A: Newton’s Method for Nonlinear Systems

The general form of Newton’s method for nonlinear systems of equations is

f(x) = 0, (A.1)

where

x =



x1

x2

...

xn


, (A.2)

and

f(x) =



f1(x1, x2, ..., xn)

f2(x1, x2, ..., xn)

...

fn(x1, x2, ..., xn)


= 0. (A.3)

Newton’s method has the form of

xn+1 = xn −
f(xn)

f ′(xn)
, (A.4)
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where

f ′(xn) = J(xn) (A.5)

is known as the Jacobian and

1

f ′(xn)
= J−1(xn) (A.6)

the inverse of the Jacobian.

The Jacobian is defined as

Ji,j =



∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

... ... ... ...

∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn


and using the Jacobian, Eq. (A.4) can be written as

xn+1 = xn − J−1
i,j (xn)f(xn). (A.7)

The above equation can be rearranged to

xn+1 − xn = −J−1
i,j (xn)f(xn) (A.8)

and define

δxn = xn+1 − xn, (A.9)
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to obtain

δxn = −J−1
i,j (xn)f(xn). (A.10)

Typically, the inverse of the Jacobian is difficult to compute, or it does not exist,

so

Ji,j(xn)δxn = −f(xn) (A.11)

is used instead [48].

Using 2 variables e and φ (i.e., Ji,j → Je,φ, δxn → δxe,φ, f(xn) → f(e, φ) ),

Eq. (A.11) becomes

Je,φδxe,φ = −f(e, φ). (A.12)

For convenience, define

δxe,φ =

δe
δφ

 , (A.13)

f(e, φ) =

m(el, φl)

r(el, φl)

 , (A.14)

Je,φ =

Je,e Je,φ

Jφ,e Jφ,φ

 =

A B

C D

 , (A.15)
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and substituting back into equation (A.12) to get

A B

C D


δe
δφ

 = −

m(el, φl)

r(el, φl)

 . (A.16)

A.1 Schur Complement

A generic matrix

M =

A B

C D

 , (A.17)

has certain properties when A is invertible. Write Eq. (A.16) as

A B

C D


δe
δφ

 = −

m(el, φl)

r(el, φl)

 . (A.18)

For clarity, it will be useful to change δe → x and δφ → y, and rewrite Eq. (A.18)

as A B

C D


x
y

 = −

m(el, φl)

r(el, φl)

 . (A.19)
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The system in Eq. (A.19) is

Ax+ By = −m(el, φl), (A.20a)

Cx+ Dy = −r(el, φl). (A.20b)

If A is invertible, then multiplying Eq. (54a) by CA−1 (Step 1) and subtracting

from Eq. (54b) (Step 2) we have

Step 1:

CA−1(Ax+ By) = −CA−1(m(el, φl)) (A.21a)

CA−1Ax+ CA−1By = −CA−1(m(el, φl)) (A.21b)

Cx+ CA−1By = −CA−1(m(el, φl)) (A.21c)

Step 2:

Cx+ Dy = −r(el, φl)

−

Cx+ CA−1By = −CA−1(m(el, φl))

0 + (D−CA−1B)y = −r(el, φl) + CA−1(m(el, φl)).
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The final result is

(D−CA−1B)y = −r(el, φl) + CA−1(m(el, φl)). (A.22)

and the term (D−CA−1B) is called the Schur complement of A in M and only

exist if A is invertible [49].
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Appendix B: Diffusion Verification

B.1 1D Verification

Recall and focus on the left-hand side while inserting a place holder, Q, for the

right-hand side. We have

−∇ ·D∇E + σaE = Q. (B.1)

Using a discontinuous, corner balance scheme in 1-d [50], we have

− ∂

∂x
D(x)

∂E

∂x
+ σ(x)E(x) = Q(x). (B.2)

Integrate Eq. (B.2) over half-cells:

xi∫
xi−1/2

Eq. (B.2) = − D(x)
∂E

∂x

∣∣∣∣xi
xi−1/2

+ σiEi,L(
∆x

2
) = Qi,L(

∆x

2
) (B.3)

xi+1/2∫
xi

Eq. (B.2) = − D(x)
∂E

∂x

∣∣∣∣xi+1/2

xi

+ σiEi,R(
∆x

2
) = Qi,R(

∆x

2
) (B.4)
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Now, approximate the following:

− D(x)
∂E

∂x

∣∣∣∣
xi

≈ −Di

(
Ei,R − Ei,L

∆xi

)
(B.5)

− D(x)
∂E

∂x

∣∣∣∣
xi−1/2

≈ Ji−1/2 = J+
i−1/2 − J

−
i−1/2 = J+

i−1,R − J
−
i,L

=

(
Ei−1,R

4
− Di−1

2

[
Ei−1,R − Ei−1,L

∆xi−1

])
−
(
Ei,L

4
+
Di

2

[
Ei,R − Ei,L

∆xi

])
(B.6)

− D(x)
∂E

∂x

∣∣∣∣
xi+1/2

=(
Ei,R

4
− Di

2

[
Ei,R − Ei,L

∆xi

])
−
(
Ei+1,L

4
+
Di+1

2

[
Ei+1,R − Ei+1,L

∆xi+1

])
. (B.7)

Left Equation:

We combine Eq. (B.3),(B.5) and (B.6) to get the left half-cell averaged equation,

−
(
Ei−1,R − Ei,L

4

)
− Di

2

(
Ei,R − Ei,L

∆xi

)
+
Di−1

2

(
Ei−1,R − Ei−1,L

∆xi−1

)
+ σiEi,L(

∆xi
2

) = Qi,L(
∆xi

2
). (B.8)
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We collect like terms to obtain the system for the left half-cell

Ei−1,L =⇒ −
(

Di−1

2∆xi−1

)
Ei−1,L (B.9a)

Ei−1,R =⇒
(

Di−1

2∆xi−1

− 1

4

)
Ei−1,R (B.9b)

Ei,L =⇒
(

1

4
+

Di

2∆xi
+
σa,i∆xi

2

)
Ei,L (B.9c)

Ei,R =⇒ −
(

Di

2∆xi

)
Ei,R. (B.9d)

Right Equation:

To obtain the right half-cell averaged equation, we combine Eq. (B.4),(B.5) and

(B.7) to get

(
Ei,R − Ei+1,L

4

)
+
Di

2

(
Ei,R − Ei,L

∆xi

)
− Di+1

2

(
Ei+1,R − Ei+1,L

∆xi+1

)
+ σa,iEi,R(

∆xi
2

) = Qi,R(
∆xi

2
). (B.10)

We collect like terms to obtain the system for the right half-cell

Ei,L =⇒ −
(

Di

2∆xi

)
Ei,L (B.11a)

Ei,R =⇒
(

1

4
+

Di

2∆xi
+
σ̃a,i∆xi

2

)
Ei,R (B.11b)
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Ei+1,L =⇒
(

Di+1

2∆xi+1

− 1

4

)
Ei+1,L (B.11c)

Ei+1,R =⇒ −
(

Di+1

2∆xi+1

)
Ei+1,R. (B.11d)

B.1.1 Method of Manufactured Solutions (MMS)

To verify the diffusion solver, we use the Method of Manufactured Solutions [51].

Assume the solution is

E = e−ax, (B.12a)

∂E

∂x
= −ae−ax, (B.12b)

−D ∂

∂x

∂E

∂x
= −Da2e−ax. (B.12c)

Equation (B.2) becomes

(−Da2 + σ̃a)e
−ax = Q(x). (B.13)

The parameters for this verification are as follows: D = 1.9, a = 1.1, σ̃a = 11.7.

For this test problem, the following incoming partial currents are imposed at the

left and right boundaries [52]:

Left BC: J+ =
E

4
− D

2

dE

dx

∣∣∣∣
0

(B.14a)

Right BC: J− =
E

4
+
D

2

dE

dx

∣∣∣∣
xL

(B.14b)
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Results obtained from MMS for varying mesh sizes are given below.

Figure B.1: The absolute error using a mesh size of 1.0 cm.
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Figure B.2: The absolute error using a mesh size of 0.001 cm.

Figure B.3: The absolute error using a mesh size of 0.0005 cm.



134

Figure B.4: The absolute error using a mesh size of 0.000125 cm.

Figure B.5: The norm of the error vs mesh size.
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Figure B.1 shows the solution of the diffusion solver using the discontinuous,

corner-balance approach. As seen in the figure, the numerical solution labeled ‘My

solution’ is visibly different from the analytic solution. This behavior is minimized

as the mesh size is decreased, as illustrated is Figures B.2-B.4. The ∞-norm and

the l2-norm are used to measure the rate of convergence. Figure B.5 shows the

two norms vs. mesh size. To measure the slope, we use

slopen =
log(error(hn))− log(error(hn+1))

log(hn)− log(hn+1)
. (B.15)

The l2-norm has a slope of 1.5 and the ∞-norm has a slope of 1.0. The observed

convergence behavior indicates the discontinuous, simple corner-balance discretiza-

tion of Eq. (B.1) has implemented correctly.

B.2 2D Verification

For 2D-XY geometry, the diffusion equation

−∇ ·D(x, y)∇E(x, y) + σ(x, y)E(x, y) = Q(x, y) (B.16)

is solved using library for finite element methods called Modular Finite Element

Method (MFEM) [46], [47]. MFEM is a free, lightweight, scalable C++ code

developed by Lawrence Livermore National Laboratory (LLNL). The diffusion ac-

celeration of DAIMC in 2D-XY (and consequently 3D-XYZ) uses the continuous

diffusion-reaction solver from MFEM. Results for the verification of this diffusion
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solver are given in the subsequent sections.

B.2.1 Square Mesh

The following figures show the results of Eq. (B.16) with constant data of Q =

8.0, σ = 4.0, D = 1
3σ

= 1/12 on a 2D-XY square mesh. The results aim to demon-

strate the correct behavior on the boundaries.

Figure B.6: 2D diffusion solution using reflecting boundary conditions on a square
mesh..
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Figure B.7: 2D diffusion solution using homogenous Dirichlet boundary conditions
on a square mesh.

Figure B.8: 2D diffusion solution using non-homogenous Dirichlet boundary on a
square mesh.
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The analytic solution for an infinite-medium, with the data above is given by

E =
Q

σ
= 2.0. (B.17)

Figure B.6 shows that the numerical solution agrees with Eq. (B.17) for the re-

flecting boundary case. For problems which the Dirichlet boundary conditions are

specified, the solution at the center of the mesh should be

E ≈ Q

σ
= 2.0. (B.18)

Figure B.7 preserves the value of Eq. (B.18) at the center while also taking the

homogenous boundary conditions, as expected. Figure B.8 also follows the same

behavior as Figure B.8 with the exception of taking on the prescribed, nonhomege-

nous Dirichlet boundary conditions of 1.2.

B.2.2 Star Mesh

We repeat the same set of tests but on a more complex star mesh. The results

follow that of the square mesh results from the previous subsections.
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Figure B.9: 2D diffusion solution using reflecting boundary conditions on a star
mesh.

Figure B.10: 2D diffusion solution using homogenous Dirichlet boundary condi-
tions on a star mesh.



140

Figure B.11: 2D diffusion solution using non-homogenous Dirichlet boundary con-
ditions on a star mesh.

Figure B.9 shows that the numerical solution agrees with Eq. (B.17) for the

reflecting boundary case. Figure B.7 preserves the value of Eq. (B.18) at the center

while also taking the homogenous boundary conditions, as expected. Figure B.8

also follows the same behavior as Figure B.8 with the exception of taking on the

prescribed, nonhomegenous Dirichlet boundary conditions of 1.2.

B.2.3 Method of Manufactured Solution (MMS)

We now use MMS to verify our implementation of MFEM’s diffusion solver to the

equation

−∇ ·D(x, y)∇E(x, y) + σE(x, y) = Q(x, y). (B.19)
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The manufactured solution chosen is of the form

E(x, y) = sin(πx)sin(πy), (B.20)

and the opacity data consists of

σ(x, y) =
1

exey
, (B.21)

and consequently,

D(x, y) =
1

3σ(x, y)
=

1

3
exey. (B.22)

Inserting these definitions into Eq. (B.19) and the source term is

−
(
π

3
exeycos(πx)sin(πx) +

π

3
exeysin(πx)cos(πx)− 2π2

3
exeysin(πx)sin(πy)

)
+

1

exey
sin(πx)sin(πy) = Q(x, y). (B.23)

The results model a square with length x from (0.0,1.0) and y from (0.0, 1.0) with

different mesh sizes.



142

Figure B.12: The MMS solution for a single zone mesh.

Figure B.13: The MMS solution for a 2x2 mesh.
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Figure B.14: The MMS solution for a 4x4 mesh.

Figure B.15: The MMS solution for a 8x8 mesh.
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Figure B.16: The MMS solution for a 16x16 mesh.

Figure B.17: The MMS solution for a 32x32 mesh.
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Figure B.18: The MMS solution for a 64x64 mesh.

Figure B.19: The MMS solution for a 100x100 mesh.
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Figure B.20: The MMS solution for a 200x200 mesh.
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Figure B.21: The l2 -norm of the error for the 2D MMS problem.

The l2-norm of the error vs the mesh size are plotted below. Using the same

formula as before, the slope of the plot is

m = − log(l2(x1))− log(l2(x2))

log(x1)− log(x2)
≈ 2.02 (B.24)

The observed convergence behavior indicates the 2-d discretization of Eq. (B.16)

has implemented correctly in MFEM.




