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There are four major contributions described in this thesis:

1. A set of geometric principles for understanding and optimizing the gaits of

drag-dominated kinematic locomoting systems. For systems with two shape

variables, the dynamics of gait optimization are analogous to the process by

which internal pressure and surface tension combine to produce the shape and

size of a soap bubble. The internal pressure on the gait curve is provided by

the flux of the curvature of the system constraints passing through the surface

bounded by the gait, and surface tension is provided by the cost associated

with executing the gait, which when executed at optimal (constant-power)

pacing is proportional to its pathlength measured under a Riemannian met-

ric. We extend these principles to work on systems with three, and then

more than three, shape variables. We demonstrate these principles on a vari-

ety of system geometries (including Purcell’s swimmer) and for optimization



criteria that include maximizing displacement and efficiency of motion for

both translation and turning motions. We also demonstrate how these prin-

ciples can be used to simultaneously optimize a system’s gait kinematics and

physical design.

2. Optimal swimming strategies for drag-dominated swimmers with a passive

elastic joint. We use frequency domain analysis to relate the motion of the

passive joint to the motion of the actuated joint. We couple this analysis

with elements of the geometric framework introduced in our first contribu-

tion, to identify speed-maximizing and efficiency-maximizing gaits for drag-

dominated swimmers with a passive elastic joint.

3. The first two contributions rely heavily on the total Lie bracket formula

to identify useful gaits. The total Lie bracket formula is obtained using a

truncated Baker-Campbell-Hausdorff (BCH) expansion, and its accuracy de-

pends on the choice of coordinates used to describe the system [34]. We relate

the magnitude of the higher order BCH terms to the physical parameters of

the gait such as its perimeter and the magnitude of the connection vector

fields. We use these relations to show and quantify how accurate the total

Lie bracket formula is in the optimized coordinates introduced in [34].

4. A data-driven approach to obtaining the local connection for systems in gran-

ular media. This approach lays the groundwork for future studies into using

the optimization framework presented in this thesis to analyze locomotion of

systems where the robot-environment interaction is difficult to model from

first principles.
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Chapter 1: Introduction

Many animals and robots move through the world by coupling cyclical changes in

shape called gaits to an interaction with the environment. The major goal of this

thesis is to build a framework that relates efficiency of gaits to geometric quantities

associated with the gait such as its perimeter and the area enclosed by the gait.

We use this framework to identify optimal gaits for swimmers in drag-dominated

environments and understand the impact of passive elements like springs on the

efficiency of swimmers.

Robot locomotion is a significant area of research in robotics. The design of

locomotors for robots draws heavily from locomotion methods employed success-

fully by different animals. This is particularly true for robots operating in harsh

environments with either heterogenous ground or deformable substrates like sand,

mud, and soil. Hence the diversity in locomotion techniques employed by robots

mirrors the diversity observed in animal locomotion. A major stumbling block

while studying robot locomotion is that most strong results are limited by a set of

assumptions (such as the quasi-static assumption) or are applicable to only a par-

ticular robot morphology (such as bipeds or quadrupeds). The lack of a universal

framework impedes comparison of different approaches to locomotion and hinders

discovering fundamental principles that apply to all locomoting systems.

One approach to developing a unifying framework to analyze, design and control
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robotic locomotion is to determine the normal form or a small number of normal

forms of the equations of motion (EOM) that can capture the mechanics of a

large class of locomoting systems. Here a normal form refers to a set of equations

exhibiting certain underlying structure. Systems whose EOM can be put into

a common normal form share the underlying structure of the normal form and

only the numerical values of the terms constituting the equations change between

individual systems. This approach has the potential to serve as the basis for

creating useful tools for analyzing locomotion analogous to how the normal form

ẋ = Ax + Bu in linear control theory helped build a substantial body of results

that help analyze and control a wide range of electromechanical systems.

A normal form that describes a broad class of systems allows for evaluation and

comparison of efficiency of locomotion across the class in a way that is independent

of how the forces were generated in individual cases. These comparisons help

uncover fundamental principles underlying locomotion for systems in the class

and provides insights greater than those obtained from the analysis of individual

systems similar to how the Spring-Loaded Inverted Pendulum (SLIP) model helped

the study of hopping, jumping and running gaits across different robots.

With this goal in mind, a normal form of the equations that describe mechanics

of locomotion when the interaction with the environment was presented in [55].

The purely kinematic version of the normal form in [55] captures the structure of

the underlying motion for a wide variety of physical systems, including those whose

behavior is dictated by conservation of momentum [64, 68], fluid interactions at

the extremes of low [4, 33] and high [33, 39, 46] Reynolds numbers, and explicit
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nonholonomic constraints such as passive wheels [11, 52, 53, 64].

The normal form in [55] helped show that many modes of locomotion can be

modelled using mathematical objects called connections from principle bundle the-

ory. This differential geometric insight helped develop an intuitive understanding

of how systems locomote and gave us tools that used the curvature of system dy-

namics (encoded in their Lie brackets) to identify classes of shape oscillations that

resulted in desirable net displacements.

An enduring goal [4, 40, 46, 51, 58, 64, 68] of the geometric mechanics commu-

nity has been to go beyond simply identifying the direction in which small shape

oscillations will propel the system, and to use these curvature methods to identify

and geometrically describe optimal gaits that generate the most displacement, ei-

ther per gait cycle or per energy expended. A key obstacle to reaching this goal

was the noncommutativity in the equations of motion for most interesting locomot-

ing systems. Because translations and rotations do not commute with each other,

summing up Lie brackets over a finite region provides only an approximation of the

displacement induced by a gait, and the error in this approximation increases with

the amplitude of the oscillation. Historically (e.g., [46]), this error was regarded as

growing too quickly to provide any meaningful information about the optimal gait

cycles. In [29–31, 34], however, the authors introduced a choice of coordinates that

converts much of the system’s noncommutativity into nonconservativity, which is

amenable to finite-scale integration. Working in these new coordinates has pro-

vided us insights into the optimal gaits of swimmers and crawlers, in low- and

high-viscosity fluids [28, 32, 33], and in granular media [27]. Further, these in-
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sights can be used to easily “hand-draw” optimized gaits that would otherwise

only have been found by a long numerical search of a high-dimensional space of

trajectory parameters [27].

1.1 Geometry of Optimal Gaits

In this thesis, we consolidate and extend the geometric insights from previous work

into a set of geometric principles that govern the geometry of optimally-efficient

gaits for drag-dominated systems with an arbitrary number of shape variables.

We formally encode these principles in a set of geometric expressions that together

make up the gradient of the gait efficiency with respect to variations in the gait

trajectory. This gradient can be used directly in a gradient-descent solver to find

optimal gaits (as in the examples we provide in the text), but more fundamen-

tally, the gradient geometrically describes the dynamics underlying any other gait

optimization algorithm applied to the system.

The core elements of the gait gradient are:

1. A gradient ascent/descent component that pushes the cycle to enclose a

large sign-definite region of the constraint curvature, maximizing the net

displacement generated by the gait;

2. A cost component based on a Riemannian metric that limits the growth of

the gait cycle; and

3. A perimeter-balancing component that evenly spaces the points along the

trajectory, stabilizing the solution and providing an efficiency-optimal pa-
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Figure 1.1: Gaits that maximize efficiency enclose the most curvature of the system dy-
namics (measured via the curl and Lie bracket of their locomotion dynamics) while min-
imizing their cost-to-execute (measured as the metric-weighted lengths of their perime-
ters). In [59], we showed that for kinematic systems with two shape variables this process
is analogous to the process by which internal pressure and surface tension combine to pro-
duce the shape and size of a soap bubble, as shown at left. More generally, the internal
pressure can be thought of as being provided by the flux of the curvature passing through
a surface bounded by the gait, as in the middle plot. This flux interpretation allows us
to boost our geometric framework to three (right plot) or more shape variables.

rameterization of the resulting motion.

As illustrated in Fig. 1.1, the dynamics of this optimizer are similar to the

dynamics of a soap bubble, with the Lie bracket providing an internal pressure

which causes the gait cycle to expand, the metric-weighted pathlength providing a

surface tension that constrains the growth of the gait, and the perimeter-balancing

term providing a concentration gradient that evenly distributes waypoints along

the gait.

With this basic soap-bubble framework in place for systems with two shape

variables, we next extend our formulation to three dimensions by recasting some
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of the geometric terms, as we initially described in [60]. In particular:

1. We show how the constraint-curvature “area enclosure” generalizes to a flux

integral through an oriented surface (more formally, an integral over a dif-

ferential two-form), as illustrated in Fig. 1.1;

2. We investigate how optimal gaits “bend” to exploit this orientation and max-

imize the flux passing through the surface.

Finally, we consider the structure of the “flux integral” term for systems with

n shape variables. Beyond three dimensions, the convenient vector-flux analogy

from two and three dimensions no longer holds, but fully-adopting the formalism

of differential-geometric two-forms allows us to extend our method to these spaces.

As a demonstration of this approach, we use it to identify optimal gaits for

a set of example systems moving in viscosity-dominated (low Reynolds number)

environments. These systems include Purcell’s three-link swimmer [57] (a standard

benchmark for locomotion analysis), four- and five-link swimmers, and several

continuous-curvature extensions of Purcell’s swimmer with different classes and

numbers of shape modes [35]. We identify optimal gaits for these systems in both

the forward and turning directions, which match those found previously via raw

parameter optimization in works such as [28, 66]. The optimal gaits we find for

these systems highlight the benefits of a continuous backbone. We then present

how this framework can also be used for design optimization by optimizing link

length ratio and joint kinematics simultaneously.
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1.2 Effect of Passive Elements on Optimal Gaits

We then extend this framework to identify optimal gaits for swimmers with pas-

sive elastic joints. Drag-dominated swimmers with passive elements were studied

in [15, 38, 42, 49, 56]. Of these works, [42, 56] and [49] are most relevant to us, as

they discuss the motion of swimmers with a harmonically-driven active joint and

a passive joint. The analysis in [56] is particularly relevant, where using pertur-

bation expansion, explicit expressions for leading order solutions were derived for

harmonic input oscillations, and the optimal swimmer geometry was obtained for

the Purcell swimmer. In this work, unlike in [56], we do not restrict our input to

simple harmonic oscillations, and use a higher order representation of the system

dynamics.

The ways in which the dynamics of swimmers with passive elastic joints differ

from the dynamics of fully actuated swimmers are:

1. The motion of the actuated and passive joints are coupled in the passive

swimmers, and hence passive swimmers can execute only some of the gait

kinematics the fully actuated swimmers can execute.

2. Due to this coupling, there is also a unique pacing associated with each gait

that the passive swimmer can execute, so the swimmer cannot minimize the

pacing cost separately from the kinematic cost.

As illustrated in Fig. 1.2, we address the two problems introduced by the pres-

ence of passive elastic joints: we first use frequency domain analysis to analytically
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Frequency

Frequency

Phase 
difference

(a) Optimal gait for the fully
      actuated Purcell Swimmer 

(b) Frequency response of the passive joint 
      to oscillations of the active joint

(c) Optimal gait for the passive
     Purcell swimmer

Figure 1.2: Effect of a passive elastic joint on the shape and pacing of the optimal gait
(speed-maximizing) for a Purcell swimmer. (a) The optimal gait (speed and efficiency
maximizing) for the fully actuated Purcell swimmer overlaid on the curvature of the
system dynamics. (b) Illustration of the Bode plot of the response of the passive elastic
joint to oscillations of the active joint. This response dictates the locus of achievable gaits
in the shape space for the passive swimmers. (c) The optimal gait (speed maximizing)
for the passive Purcell swimmer. While the optimal gait for the fully actuated Purcell
swimmer is plotted with a line of uniform thickness indicating constant power dissipation
throughout the cycle, the optimal gait for the passive Purcell swimmer in (c) is plotted
using a line of varying thickness, with thickness at a point corresponding to the magnitude
of power required at that point of the gait.
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approximate the motion of the unactuated joint in response to the motion of the

actuated joint. We then combine this frequency-space analysis with elements of the

geometric framework introduced in [61] to construct a gradient-descent algorithm

that identifies optimal gaits and the pacing associated with these gaits for passive

swimmers. The optimal gaits for passive swimmers maximize the CCF integral

relative to perimeter and pacing costs, subject to amplitude and phase constraints

of a first order system.

1.3 Accuracy of the Total Lie Bracket Formula

The total Lie bracket formula obtained by restricting the BCH expansion to the

first few terms forms the backbone of the optimization framework presented in

this thesis. Hence, it is crucial that the truncation be a good approximation of the

full BCH expansion. The aim of chapter 5 is to understand the factors affecting

the accuracy of the total Lie bracket formula. We show that the major factors

affecting the accuracy are the magnitude of the connection vector field and the

size of the gait. Since the optimal coordinate choice minimizes the magnitude

of the connection vector field, it improves the accuracy of the truncated Magnus

series and hence the accuracy of the total Lie bracket formula.
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1.4 Data-driven Connection Generation

Another key goal of our geometric study of locomotion is to make this approach

feasible for robots whose dynamics are difficult to model from first principles,

as in the granular systems of [16, 27]. In chapter 6 we present a process for

obtaining a data-driven connection for a robot operating in granular media. The

dimensionality extensions and explicit optimality criteria discussed in this thesis

will broaden the classes of systems that we can consider in the empirical-geometric

work. Additionally, the geometric structure we discuss here forms the foundation

of a geometric-Floquet approach to online data-driven locomotion analysis and

optimization on very-high dimensional systems [10].
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Chapter 2: Background

In this chapter we will review how the dynamics of our example systems are ob-

tained and some of the geometric insights from our previous work. Our treatment

below is condensed from a series of papers we have written for the robotics com-

munity [31, 33, 35], and at a deeper mathematical level, in [34].

For the purposes of this work, our focus is on the geometric structure of the

system dynamics. Accordingly, we work with the components of these dynamics

at a relatively high level of abstraction in the equations, and present their instan-

tiation for specific systems graphically rather than as algebraic expressions (which

would run to several pages of trigonometric terms if expanded, even for the three-

link swimmer). For worked examples of the construction of the dynamics of the

three-link swimmer, see [33], [35] and appendix B.

2.1 Geometric Locomotion Model

When analyzing a locomoting system, it is convenient to separate its configuration

space Q (i.e. the space of its generalized coordinates q) into a position space G and

a shape space R, such that the position g ∈ G locates the system in the world,

and the shape r ∈ R gives the relative arrangement of the particles that compose
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Figure 2.1: Geometry and configuration variables of some of the example systems. The
systems in the top row are articulated swimmers, while the bottom row consists of contin-
uous curvature swimmers. The shape of the systems in the first columns are described by
two shape variables whereas the shape of the systems in the second column are described
by three shape variables.
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it.1 For example, the positions of both the articulated and continuous-curvature

swimmers in Fig. 2.1 are the locations and orientations of their centroids and mean

orientation lines, g = (x, y, θ) ∈ SE(2). The shape of the articulated swimmers

are parameterized by their joint angles, r = (α1, α2) for the three link swimmer

and r = (α1, α2, α3) for the four-link swimmer. The shape of the continuous

curvature swimmers can be described by a set of modal amplitudes multiplied

by the curvature modes. In the serpenoid and piecewise-continuous systems, the

shape parameters α are weighting functions on curvature modes κ defined along

the body, as discussed in [35].

A useful model for locomotion in kinematic regimes where no gliding can occur,2

and which we employ in this work, is that at each shape, there exists a linear

relationship between changes in the system’s shape and changes in its position,

◦
g = A(r)ṙ, (2.1)

in which
◦
g = g−1ġ is the body velocity of the system (i.e., ġ expressed in the

system’s local coordinates), and the local connection A acts like the Jacobian of

a robotic manipulator, mapping from joint velocities to the body velocity they

produce by pushing the system against its environment. Each row of A can be

regarded as a body-coordinates local gradient of one position component with

1In the parlance of geometric mechanics, this assigns Q the structure of a (trivial, principal)
fiber bundle, with G the fiber space and R the base space [34].

2This kinematic condition has been demonstrated for a wide variety of physical systems,
including those whose behavior is dictated by conservation of momentum [64, 68], non-holonomic
constraints such as passive wheels [11, 52, 53, 64], and fluid interactions at the extremes of
low [4, 33] and high [33, 39, 46] Reynolds numbers.
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respect to the system shape. If we plot the rows of A as arrow fields, as in

Fig. 2.2, this means that moving in the direction of the arrows moves the system

positively in the corresponding body direction, and moving perpendicular to the

arrows results in no motion in that direction [31, 34].

In a drag-dominated environment, the effort required to change shape can be

modeled as the pathlength s of the trajectory through the shape space, weighted

by a Riemannian metric M as

ds2 = drTM dr. (2.2)

Inline with our previous work in [32], we take the metric tensorM as the mapping

from shape velocity to power dissipated into the surrounding medium,

P = ṙMṙ, (2.3)

which is encoded by the same matrix as the mapping from joint velocities to torques

on the joints

τ =Mṙ, (2.4)

and so can be readily calculated from the first-principles physics of the system.

As discussed in [3, 7, 35], the length of a path under this metric describes the

time it takes for a system dominated by viscous drag to follow the path at unit

power (or, equivalently, the square root of the power required to execute it in

unit time). Because moving with constant power is the least-costly pacing with
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which to execute a motion under viscous drag [7], this pathlength thus provides a

geometric cost for the best-case execution of the kinematics in a gait cycle.

Any pacing other than constant-power will make the trajectory take longer

for a given average power (or increase the average power required to complete

the motion in a fixed time). The additional cost for a non-optimal pacing can be

represented by squaring the difference between the average and instantaneous rates

at which the gait is being followed (measured as s per time), and then integrating

over the time during which the gait is being executed,

σ =

ˆ τtotal

0

(
stotal
τtotal

− d

dτ
(s(τ))

∣∣∣
τ=t

)2

dt, (2.5)

where τtotal is the time period of the gait, stotal is the length of the gait under

the metric M, and s is distance traveled along the gait as a function of time

corresponding to the given pacing. If the gait is proceeding at constant power,

stotal
τtotal

is equal to the rate at which s changes with time, so σ measures the extent

to which the pacing lags and leads the optimal pacing.

2.2 Example system dynamics models

In this work, as in [33, 35], we generate the dynamics for our example systems from

a resistive force model, in which each element of the body is subject to normal and

tangential drag forces proportional to their velocities in those (local) directions.3

3This model is most widely associated with swimmers at low Reynolds numbers (e.g. [66]), but
can also be regarded as an informative general model for systems that experience more lateral
drag than longitudinal drag (e.g. [27]). Our choice of resistive force here also does not preclude
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The normal drag coefficient is larger than the tangential component (here, by a

factor of 2 : 1), corresponding to the general principle that it is harder to move

a slender object in a fluid or on a surface crosswise than it is to move it along

its length. We then impose a quasi-static equilibrium condition that the net drag

force and moment on the system is zero at all times (treating the system as heavily

overdamped, with acceleration forces much smaller than drag forces); because the

drag forces are not isotropic, the system can use the angle-of-attack of its body

surfaces to generate net motion.

Together, these conditions impose a Pfaffian constraint4 on the system’s gen-

eralized velocity, 
F b
x

F b
y

F b
θ

 =


0

0

0

 = ω(r)

◦g
ṙ

 , (2.6)

in which the matrix ω that maps the velocities to the net forces on the body frame

is a function of the system’s internal kinematics and depends only on the shape

r.5

By separating ω into two sub-blocks, ω = [ω3×3
g , ω3×n

r ], it is straightforward to

the use of more detailed physical models (e.g., [24]) to construct the local connection A.
4A constraint that the allowable velocities are orthogonal to a set of locally-linear constraints,

i.e., that they are in the nullspace of a constraint matrix ω.
5The expressions for the dynamics are unwieldy (running to several pages of trigonometric

terms in even the simplest cases) so we do not write them out in full here. See [33] for a more
detailed treatment of (2.6)–(2.7) in the case of the three-link swimmer, and [35] for how we build
the metric tensor for that system.
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Figure 2.2: The connection vector fields for the three-link swimmer are shown in (a)
and that for the serpenoid swimmer are shown in (b). Scale in the vector fields has
been chosen to emphasize structure, so scales in different components or systems are
not comparable. Note that there is a qualitative similarity (modulo rotation) between the
vector fields of the linked and serpenoid systems [33].
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rearrange (2.6) into

◦
g = −(ω−1g ωr)ṙ, (2.7)

revealing the local connection as A = ω−1g ωr. For a more detailed treatment this

process, we refer the reader to [33]. Once A has been found, it can be used to

calculate a Riemannian metric M over the shape space as

M(r) =

ˆ
body

JT (r, `) c J(r, `) d`, (2.8)

where J(r, `) is the Jacobian from shape velocity to the local velocity of each section

of the body (which incorporates both A and the system’s internal kinematics), and

c is the matrix of drag coefficients, which acts as a local metric for the motion of

each link. For the systems considered in the paper it is given explicitly by,

c =


1 0 0

0 2 0

0 0 0

 (2.9)

indicating that for any infinitesimal element of a link, the resistance to lateral

motion is twice the resistance to longitudinal motion. See [36] for more details on

how we build the metric tensor.

As discussed in our previous work [33, 34], the metric M encodes a quadratic

relationship between the shape velocities and power dissipated into the surround-

ings, given by

P = ṙTM(r)ṙ, (2.10)
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as well as the mapping from joint velocities to torques on the joints,

τ =M(r)ṙ (2.11)

Details of the calculations to generate the local connection A and the Riem-

manian metric M for our example systems are provided in Appendix B.

We apply this physics model to several example geometries, which are illus-

trated in Fig. 2.1: Purcell’s three-link swimmer [57], a four-link swimmer, a ser-

penoid swimmer [37] and piecewise-constant curvature swimmers with two, three,

and four segments. The three-link swimmer is a useful and widely-adopted [4,

8, 18, 23, 33, 46, 66] minimal example for locomotion, because its two degrees of

freedom can be easily visualized. The serpenoid swimmer, whose shape is defined

by the amplitude of sine and cosine curvature modes [32], provides an example

of a two-DoF system that has been shown to closely model how snakes and other

animals use undulatory locomotion to move through the world [37]. The piecewise-

constant curvature geometries are intermediaries between the discrete joints of the

linked systems and the smooth traveling waves of the serpenoid systems, and corre-

spond to system morphologies that are achievable via simple soft robotic actuators

[12].
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Figure 2.3: Constraint Curvature Functions (rows of D(–A)) for (a) the three link swim-
mer and (b) the serpenoid swimmer. As with the vector fields, the CCFs exhibit a qual-
itative similarity (modulo a rotation) between the two sets of functions.



21

2.3 Gaits

Because the shape space of locomoting systems is typically bounded (e.g., because

of joint limits or other restrictions on bending the body), these systems often move

via gaits: cyclic changes in shape that produce characteristic net displacements.

Several efforts in the geometric mechanics community [4, 46, 50, 52, 53, 64, 68]

(including our own [32, 33]), have aimed to use curvature of the system constraints

(a measure of how “non-canceling” the system dynamics are) to understand which

gaits produce useful displacements.

The core principle in these works is that because the net displacement gφ over

a gait cycle φ is the line integral of (2.1) along φ, the displacement can be approx-

imated6 by an area integral of the curvature D(–A) of the local connection (its

total Lie bracket [34]) over a surface φa bounded by the cycle:

gφ =

‰
φ

−gA(r) (2.12)

≈
¨
φa

−dA +
∑[

Ai,Aj>i

]︸ ︷︷ ︸
D(–A) (total Lie bracket)

, (2.13)

where dA, the exterior derivative of the local connection (its generalized row-wise

curl), measures how changes in A across the shape space prevent the net induced

motions from canceling out over a cycle, and the local Lie bracket
∑[

Ai,Aj>i

]
6This approximation (a generalized form of Stokes’ theorem) is a truncation of the Baker-

Campbell-Hausdorf series for path-ordered exponentiation on a noncommutative group, and
closely related to the Magnus expansion [45, 58]. The accuracy of this approximation depends
on the body frame chosen for the system, whose selection we discuss in [33, 34]. In presenting
this approximation, we also elide some details of exponential coordinates on Lie groups, which
are also discussed in [34].
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measures how translations and rotations in the induced motions couple into “par-

allel parking” effects that contribute to the net displacement.

For systems with two shape variables, the exterior derivative term evaluates as

dA =

(
∂A2

∂r1
− ∂A1

∂r2

)
dα1 ∧ dα2 (2.14)

and the local Lie bracket term for planar translation and rotation evaluates as

[
A1,A2

]
=


Ay

1A
θ
2 −Ay

2A
θ
1

Ax
2A

θ
1 −Ax

1A
θ
2

0

 dα1 ∧ dα2. (2.15)

In both cases, the wedge product dα1 ∧ dα2 indicates the oriented differential area

basis in the shape space.

Plotting these curvature terms as scalar functions over the shape space (as in

Fig. 2.3) reveals the effect of gaits’ geometry on the motion they induce: Gaits that

produce large net displacements in a given (x, y, θ) direction are located in strongly

sign-definite regions of the corresponding D(–A). For example, x-translation gaits

encircle the center of the shape space for both the three-link and serpenoid systems,

whereas y-translations or θ-rotations are produced by cycles in the corners or edges

of the shape space respectively [15].
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2.4 Finding optimal gaits

Optimal gait design has a long history of research in the physics, mathematics,

and engineering communities, as part of the broader field of optimal control [14,

54]. For systems of the classes we consider here, notable contributions include

those of Purcell, who introduced the three-link swimmer as a minimal template for

understanding locomotion, a series of works [8, 18, 23, 65, 66] aimed at numerically

optimizing the stroke pattern, the observation in [7] that the optimal pacing for the

gait keeps the power dissipation constant over the cycle, the recognition that the

gait optimization problem can be formulated as a variational optimization problem

with a perimeter-length cost [3, 4] and work on finding optimal gaits through two-

dimensional slices of higher-dimensional shape spaces [26]. Reasonably efficient

gaits are presented in [71] as natural oscillations of a locomoting system, defined

as the free periodic response obtained when the damping effect is partially reduced

so that the system becomes marginally stable. Optimally swimming between two

points can also be considered as swimming along a subriemmanian geodesic [48],

and [2] presents a shooting based method to identify these geodesics. [1, 9] present

numerical schemes to find these geodesics for swimming mechanisms.

Our geometric view of the system dynamics allows us to make two strong

statements about the nature of optimal gaits:

1. The maximum-displacement gaits (the “longest strides” that the systems can

take) follow the zero-contours of the constraint curvature functions, com-

pletely enclosing a sign definite region.
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2. The most efficient gaits (where we define efficiency η as the ratio of the

displacement produced by the gait to the cost of executing the gait,
gφ
s

),

are contractions/straightenings of these zero-contours as shown in Fig. 3.2,

and correspond to the systems’ “comfortable strides”: by giving up the low-

yield regions at the edges of the sign-definite regions (or crossing slightly into

opposite-sign regions) the system travels a shorter distance in each cycle, but

the consequently shorter perimeter length means the system can repeat the

cycles more quickly at a given level of power consumption.7

Our definition of efficiency is equivalent to the inverse of the mechanical cost of

transport used in [3] (where we prefer to work in terms of average velocity achieved

at a given power level instead of power required to maintain a desired average

speed). Gaits that optimize our criterion also optimize Lighthill’s efficiency, which

compares the power dissipated while executing the gait to the power dissipated in

rigidly translating the swimmer through the fluid.

7This definition of efficiency is invariant with respect to time reparameterizations of the gait
curve, in that it assumes that the gait curve will be reparameterized to follow at a best-case
(constant-power) pacing at execution time, and in that the relative efficiency of two gaits remains
the same under bulk rescaling of time. The efficiency is not, however, dimensionless with respect
to system parameters such length-scale or drag coefficients, which both affect the values in the
metric tensor M as discussed in [35].
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Chapter 3: Variational Framework for Optimal Gait Identification

In this chapter, we present our framework for identifying optimal gaits for fully

actuated drag-dominated swimmers. In §3.1 we present our variational optimizer

formulation for systems with two shape variables. In §3.2 we extend this formu-

lation to systems with three shape variables. In §3.3 we extend this formulation

to systems with more than three shape variables. In §3.4 we examine how our

variational formulation can be used to concurrently optimize a system’s physical

structure and the gaits it executes. Appendix A relates the work in this paper to

prior work on these systems that made use of subriemannian geometry, Appendix

B provides more details on computing the system dynamics for our examples

3.1 Soap-bubble Optimization of Gaits

In this section, we encode the geometric principles described in §2.4 into a gait

optimization algorithm for fully actuated drag dominated swimmers and show

that for systems with two shape variables, the process of identifying the optimal

gait is analogous to how a soap bubble obtains its shape.

We start from the basic variational principle that functions reach their extrema

when their derivatives go to zero. Given a gait parameterization p, maximum-

displacement cycles therefore satisfy the condition that the gradient of net dis-
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Gait described by
parameters p.

Moving in the direction produces
no change in area 

Change in area produced due to
movement along direction

Movement in the        direction does not 
change position of    along the     axis 

Movement in the      direction balances 
the side lengths 

Change in metric and segment 
length with movement of point 

Figure 3.1: Changes in area caused by moving in the two coordinate directions in the
local frame. Moving in the tangential direction e‖ produces no change in area, as the
area of the triangle given by half the product of base length and height remains the same.

placement with respect to the parameters is zero,

∇pgφ = 0. (3.1)

Maximum-efficiency cycles likewise satisfy the condition that the gradient of the

efficiency ratio is zero,

∇p
gφ
s

=
1

s
∇pgφ −

gφ
s2
∇ps = 0. (3.2)

where the efficiency, as described in Section §2.4, is taken as the displacement gφ

normalized by the pathlength-effort required to execute the cycle (s as calculated

in (2.2)).

For suitable seed values p0, solutions to (3.1) and (3.2) can therefore be reached
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by finding the respective equilibria of the dynamical systems

ṗ = ∇pgφ and ṗ = ∇p
gφ
s
. (3.3)

The stable equilibria of the right-hand equation in (3.3) are gaits in the same

“image families” as the system’s optimally-efficient gaits (i.e., they follow the same

curve as the optimal gait, but not necessarily at the same pacing). To construct

the optimal gait, we can either optimize via (3.3) and then choose a constant-

metric-speed parameterization, such that the pacing penalty σ from (4.20) goes to

zero, or directly include ∇pσ in our optimizer.1

Combining the gradient of the pacing term with the gradient of the image-

optimizer places the maximum-efficiency gait as the equilibrium of

ṗ = ∇pgφ −
gφ
s
∇ps+∇pσ (3.4)

(from which we have factored out a coefficient of 1
s

from (3.2)). As illustrated in

Fig. 3.4, this differential equation is directly analogous to the equations governing

the shape of a soap bubble: ∇pgφ takes the Lie bracket as an “internal pressure”

seeking to expand the gait cycle to fully encircle a sign-definite region, ∇ps is

the “surface tension” that constrains the growth of the bubble, and ∇pσ is the

1Including ∇pσ in the optimizer works best for parameterizations in which ∇pσ is orthogonal
to ∇p

gφ
s , such as waypoint based direct transcriptions. For other parameterizations, e.g., Fourier

series, the gradients may not be orthogonal and a two-step procedure of optimizing the image
then the pacing will produce better results. For waypoint-based parameterizations, the ∇pσ term
has a secondary benefit of helping to stabilize the optimizer by maintaining an even spacing of
points and thereby preventing the formation singularities in the curve.
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“concentration gradient” that spreads the soap over the bubble’s surface. In the

following subsections, we explore each of the terms in (4.33), discussing both their

fundamental geometric definitions and how they can be implemented in a direct-

transcription solver.

In our examples, we parametrize the gait as a sequence of waypoints pi such

that the gait parameters pi explicitly define the location of the discretization points.

As illustrated in Fig. 3.1, each waypoint pi forms a triangle with its neighboring

points and we can define a local tangent direction e‖ as

pi+1 − pi−1 = ` e‖ (3.5)

and a local normal direction e⊥ orthogonal to e‖.

We select this direct-transcription parameterization because it facilitates visu-

alizing the workings of our optimizer (and thus the dynamics governing any other

optimization applied to this problem). Additionally, it allows us to illustrate simul-

taneous optimization of the gait path and its pacing. We could also parametrize

the gait using a Fourier series or Legendre polynomials. In this case, the pacing

optimization would have to be done after the image of the optimal gait has been

found because finding an optimal pacing can no longer be formulated as a process

orthogonal to the gradient descent process for finding the image of the optimal

gait.
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3.1.1 Internal Pressure from the Lie Bracket

The first term in (4.33), ∇pgφ, guides the gait towards maximum-displacement

cycles. By sustituting the approximation from (5.5) into this expression as

∇pgφ ≈ ∇p

¨
φa

D(–A), (3.6)

and noting that variations in the gait parameters p affect the gait curve φ but not

the system’s underlying constraint D(–A) (as D(–A) is a property of the system

and not the gait), we can convert ∇pgφ into gradient of an area integral with

respect to variations in its boundary. We can then invoke a powerful geometric

principle,2 which states

The gradient of an integral with respect to variations of its boundary is equal

to the integral of the [gradient of the boundary with respect to these variations,

multiplied by the integrand evaluated along the boundary].

Formally, this multiplication is the interior product3 of the boundary gradient

with the integrand,

∇p

¨
φa

D(–A) =

‰
φ

(∇pφ) ⌟D(–A), (3.7)

which contracts D(–A) (a differential two-form [41]) along ∇pφ to produce a dif-

ferential one-form that can be integrated over φ. This formalism will become

2The general form of the Leibniz integral rule [22].
3Not the inner product; the interior product contracts a two-form integrated over areas to a

one-form integrated over a path by inserting a vector field as the “first” vector argument of the
two-form. See [22] for more details.
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important in Chapter 3.2 and Chapter 3.3 when we explore these principles on

systems with more than two shape variables; for the two-dimensional shape spaces

we consider in this section, the interior product reduces to a simple multiplica-

tion between the outward component of ∇pφ and the scalar magnitude of the Lie

bracket,

∇p

¨
φa

D(–A) =

‰
φ

(∇p⊥φ)(D(–A)). (3.8)

Implementation of the internal pressure: As illustrated in Fig. 3.1, the gradient

of the enclosed area with respect to variations in the position of pi, i.e. ∇piφa in

the e‖ and e⊥ directions, is the change in triangle’s area as pi moves. Because the

triangle’s area is always one half base times height (regardless of its pitch or the

ratio of its sidelengths), this gradient evaluates to

∇piφa =

[
e‖ e⊥

] 0

`/2

 . (3.9)

Note that this term matches the right-hand side of (4.37), with only normal mo-

tions of the boundary affecting the enclosed area.

3.1.2 Surface Tension from the Distance Metric

The second term in (4.33) takes ∇ps as a measure of how variations in the gait

affect the cost of executing it, and scales this term by a factor of
gφ
s

to compare

how the return on this investment compares to the efficiency of the gait in its
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present state. The gradient component of this term can be related to the system’s

Riemannian metric by first incorporating the arclength calculation from (2.2),

∇ps = ∇p

˛
φ

(

ds2︷ ︸︸ ︷
drTM dr)

1
2 (3.10)

and then applying standard calculus operations4 to arrive at

∇ps =
1

2s

˛
φ

(
2(∇pdr)

TM dr + drT (∇pM) dr
)
, (3.11)

in which the two parts of the integrand respectively measure how changes in the

relative positions of the boundary elements and changes in the metric at the un-

derlying points affect the pathlength, and hence the cost of motion.

The
gφ
s

factor (which normalizes the scales of ∇pgφ and ∇ps) can be calculated

directly from (5.4) and the integral of (2.2). Although the calculation of gφ could,

in theory, make use of the area approximation in (5.5), this would be inefficient and

impractical: integration of surfaces with arbitrarily complex boundaries requires

significantly more computational resources than are needed for line integration

around the boundary. Using the true line integral also improves the accuracy of the

solution; by continuously recalibrating to the true net displacement, the algorithm

avoids compounding any errors introduced by the approximation in (5.5).

Implementation of the surface tension: Each waypoint pi is at the head of a

vector extending from pi−1, such that the dr vector and its gradient in (3.11) can

4Namely: Differentiation under the integral sign, chain rule, product rule, and then exploiting
the symmetry of M to consolidate terms.
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be taken as

dri = pi − pi−1 (3.12)

∇pidri =

1

1

 (3.13)

∇pi−1
dri =

−1

−1

 . (3.14)

For computational simplicity, we evaluate the metric at the center of each segment.

This point moves at the mean speed of the segment endpoints, and its gradient

with respect to changes in pi is the mean of its gradient at the endpoints,

∇pMi =
1

2

(
∇pi−1

M|pi−1
+∇piM|pi

)
. (3.15)

These gradient relationships are illustrated in Fig. 3.1(b), with the metric repre-

sented by its Tissot indicatrix ellipse [32].

3.1.3 Concentration Gradient from Parameterization

Once the gradient descent along (3.2) has given us the image of the optimal gait, a

secondary gradient descent along the concentration gradient yields the optimal pac-

ing for the gait. As discussed in §3.1, if we use direct transcription to parametrize

the gait, we can simultaneously optimize for the image of the optimal gait, and its
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Figure 3.2: Optimal gaits found by our algorithm overlaid onto the constraint curvature
functions for their corresponding systems. Maximum-displacement gaits, which follow
the zero-contours of the corresponding CCF, are indicated by dashed lines. Maximum-
efficiency gaits, which are contractions of the zero-contour, are indicated by solid lines.
Red regions of the CCF are positive and black regions are negative. The direction of the
gait curves is matched to the sign of the region they enclose so that the displacement
from each gait is positive.

pacing. In this case, the third term in (4.33), ∇pσ, guides the gait towards pacings

(time parameterizations) in which the cycle is executed at a constant rate of power

dissipation.

Note that σ = 0 implies the mapping from τ to r(τ) gives us a constant power

dissipation pacing, which we know is the optimal pacing for executing any gait

from [7]. Thus σ serves as an additional cost beyond the best pacing cost of the

gait. σ compares the average and local relative rates at which the two length

coordinates are changing along the curve. Pushing the gait parameters along the

gradient of this stress, ∇pσ, brings the time parameterization into balance with the

metric spacing, similarly to how the concentration gradient of soap on the surface

of a bubble spreads it into a layer of uniform thickness.

The concentration gradient does not automatically appear in (3.1) or (3.2) be-



34

cause it is orthogonal to those optimization criteria: tangentially moving points

on a curve does not change its length or the region it encloses, and so this gra-

dient is orthogonal to the optimization gradients and acts inside their nullspace

(however, see the note below on implementations of this gradient in finite gait

parameterizations).

Implementation of the concentration gradient: The local strain energy at a given

waypoint corresponds to the square of the difference in the tangential distance from

that waypoint to each of its neighbors,

σi =
(
(pi+1 − pi)‖ − (pi − pi−1)‖

)2
, (3.16)

where (pi+1−pi)‖ refers to the distance between pi+1 and pi)‖ along the e‖ direction

defined at pi. The gradient of this strain energy with respect to the position of

pi is proportional to the sum of the tangential displacements of the neighboring

points relative to pi,

∇piσ ∝
[
e‖ e⊥

](pi+1)‖ + (pi−1)‖

0

 . (3.17)

where (pi+1)‖ = (pi+1 − pi)‖ and (pi−1)‖ = (pi−1 − pi)‖.

Note that in the direct-transcription parameterization, each point under con-

sideration can independently move both tangentially and perpendicularly to the

gait curve and that the orthogonality between ∇pσ and ∇p
gφ
s

is thus preserved in

the parameterization. Additionally, the spacing provided by ∇pσ helps ensure the
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stability of the optimization by keeping the gait curve from folding over on itself

and compromising the gradient calculation.

Other gait parameterizations (e.g., low-dimensional Fourier series) do not nec-

essarily preserve this orthogonality and may lead to the two gradients conflicting

with each other. In these cases, the parameterization itself is likely sufficient to

prevent the gait curve from becoming degenerate, and the concentration gradi-

ent can be left out of the optimization (with the constant-power pacing found by

post-processing the output of the curve optimization).

3.1.4 Analysis of the Purcell and serpenoid swimmers

We implemented the optimizer described in the previous section in Matlab, both

directly solving the differential equation in (4.33) using ode45, and by provid-

ing (4.33) as the gradient for the fmincon optimizer using the interior-point algo-

rithm. As expected, both implementations converged on the same solutions, with

the fmincon implementation completing more quickly (on the order of minutes for a

modern desktop computer for a gait with 100 parameters), due to its ability to take

larger steps through the parameter space. Since the periodicity of the gaits lends

itself to a Fourier series parametrization, for the fmincon optimizer we generate

the direct-transcription waypoints from a lower-order Fourier series parameteriza-

tion. The low-order restricts the optimizer to simple gaits, preventing neighboring

points from crossing each other under the discrete steps taken by fmincon and thus

increasing its numerical stability. Another interesting parametrization that could
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Figure 3.3: Isometric embedding of the serpenoid swimmer’s shape manifold in three di-
mensions for a drag ratio of (a) 2:1 and (b) 9:1. The surfaces in the center and right plots
are constructed such that pathlengths over the surface are equal to the metric-weighted
pathlengths that capture the cost of executing a gait. The red line indicates the optimal
gait when the cost is calculated using the power metricM, and the blue line indicates the
optimal gait when the power metric is replaced by an identity metric in the cost calcula-
tions (treating the cost as the simple pathlength in the parameter space). Comparing the
surfaces in (a) and (b) reveals that the cost manifold for the system with a drag ratio of
9 is more sharply curved than that of the system with a drag ratio of 2. This increased
curvature means that the embedding of the manifold is “steeper”, and that pathlength
thus grows more slowly with increased parameter-radius for the 9-swimmer than the 2-
swimmer, leading to a greater difference between the simple pathlength-optimum-stroke
and the power-dissipation-optimum stroke for the 9-swimmer.
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be incorporated in the future is the one presented in [10], where the motion of each

shape variable is parametrized as the sum of a set of compactly supported bump

functions added to first-order Fourier series.

We applied the optimizer to the three link system twice, first to find the gait

that maximizes the displacement in the x-direction over a single cycle and then

to find the maximum-efficiency cycle. The dashed line in Fig. 3.2(a) shows the

gait that optimizes the maximum displacement over the cycle for the three-link

swimmer. As expected, this gait follows the zero-contour of the height function.

The solid line in Fig. 3.2(a) shows the maximum efficiency gait for this system.

Because the maximum-efficiency optimizer places a cost on pathlength, this curve

gives up the low-yield regions at the ends of the cycle and crosses slightly outside

the zero contour. The gaits obtained via this procedure for the three link swimmer

match those obtained for maximum efficiency in [28] and, along the x direction,

those in [66].

Fig. 3.2(b) illustrates essentially-similar behavior for the serpenoid swimmer:

the dashed maximum-displacement gait traces the zero contour, and the solid

maximum-efficiency gait captures a more compact area within the sign-definite

region. Fig. 3.2(c) shows the gait that produces the most cost-effective rotational

motion of the three-link swimmer (the most sign-definite area it could capture on

the θ height function while still respecting the constraints on how much the joints

can move).

The low-yield region given up at the edges of the zero contour to increase effi-

ciency depends on the anisotropy of the drag experienced by the swimmer in the
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lateral and longitudinal directions. Fig. 3.3 shows the shape spaces of serpenoid

swimmers with drag ratio of (a) 2:1 and (b) 9:1 as manifolds isometrically embed-

ded in a higher dimensional ambient space such that the cost of executing the gait

is the distance traveled on the manifold while executing the gait. Such an embed-

ding lets us accurately visualize and compare the cost of executing different gaits.

Similar visualization tools were also used in [17] to study kinematic cartography

and in [63] to study two-degrees-of-freedom mechanisms. The greater anisotropy

would cause the embedding to have a larger curvature as seen in Fig. 3.3. The

reduction in cost associated with the contraction of a gait is smaller on manifolds

that are curved more. Thus contractions of zero contour at a drag ratio of two

reduces cost (distance traveled on the manifold) more than at a drag ratio of nine,

which explains why the optimal gait is closer to the zero contour at a drag ratio

of nine than at two.

3.2 Extension to Three Dimensions

For systems with three shape variables, the exterior derivative and local Lie bracket

terms from (5.5) each have three components, corresponding to the available pairs
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Figure 3.4: Gaits that maximize efficiency enclose the most curvature of the system dy-
namics (measured via the curl and Lie bracket of their locomotion dynamics) while min-
imizing their cost-to-execute (measured as the metric-weighted lengths of their perime-
ters). In [59], we showed that for kinematic systems with two shape variables this process
is analogous to the process by which internal pressure and surface tension combine to pro-
duce the shape and size of a soap bubble, as shown at left. More generally, the internal
pressure can be thought of as being provided by the flux of the curvature passing through
a surface bounded by the gait, as in the middle plot. This flux interpretation allows us
to boost our geometric framework to three (right plot) or more shape variables.

Figure 3.5: Changes in the area enclosed and the direction of change produced by move-
ment along the coordinate directions in the local frame for a three-dimensional shape
space. Moving in the tangential direction e‖ produces no change in the area enclosed, as
the area of the triangle given by half the product of base length and height remains the
same. Moving in the e⊥ direction increases the area along the e⊥ ∧ e‖ plane and moving
in the e	 direction increases the area along the e	 ∧ e‖ plane.
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of basis vectors:

dA =

(
∂A2

∂α1

− ∂A1

∂α2

)
dα1 ∧ dα2

+

(
∂A3

∂α1

− ∂A1

∂α3

)
dα1 ∧ dα3

+

(
∂A3

∂α2

− ∂A2

∂α3

)
dα2 ∧ dα3 (3.18)

and ∑[
Ai,Aj>i

]
=
[
A1,A2

]
+
[
A1,A3

]
+
[
A2,A3

]
. (3.19)

The area integral in (5.4) is taken over an oriented surface bounded by the gait.5

Employing the same change of coordinates we used for the two-dimensional

systems, we can express these two-forms with respect to a local basis in the shape

space, in which e‖ is tangent to the current gait and e⊥ is normal to the gait in

its current plane. We extend this basis into three dimensions with a new vector

e	 that is binormal to the gait trajectory, such that displacing a gait point in this

direction would rotate the local surface patch around e‖.

As illustrated in Fig. 3.5, extending into the third dimension means that in

addition to enclosing extra gait area in the e‖ ∧ e⊥ plane by displacing gait points

in the e⊥ direction, a gait can also enclose new area in the e‖ ∧ e	 plane by

5The existence of a set of such surfaces (the Seifert surfaces [67] of the gait) is guaranteed by
knot theory; by Stokes’ theorem the integral of dA is the same across all of these surfaces; the∑[

Ai,Aj>i

]
integral may depend on the surface but our minimum-perturbation coordinates [31]

make this term small; in any case we are computing the change in this surface with respect to
gait parameter variations, and so our algorithm does not need to explicitly identify or integrate
over a specific surface.



41

Figure 3.6: Optimal forward gaits for systems with three shape variables. (a) Four-link
swimmer. The black ellipse at the center is the gait the optimizer was initialized with,
and the outer red rectangle is the optimal gait found by our process. The black arrows

show the vector-dual to the constraint curvature,
−−−−→
D(–A) at various points. This vector-

dual has an approximately constant heading over the region of the shape space explored
by the optimizer and the optimal gait thus approximately evolves along a plane. (b)
Three-segment piecewise-constant curvature swimmer. Top: The forward progress of the
systems as they execute their optimal gait cycles. Both systems move about a tenth of a
body length per cycle during these gaits, with the piecewise-constant system requiring less
effort for each cycle. Insets: The time-history of the three deformation modes, illustrating
a 90◦ phase shift between the joints on the linked system, and a smaller phase shift (more
tightly-grouped peaks) between the segments of the piecewise-constant system.
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displacing gait points in the e	 direction. The interior product from (4.36) now

preloads the constraint curvature D(–A) with the gradients of gait points in both

the normal and binormal directions, such that the gradient of the net displacement

with respect to changes in the gait parameters becomes the integral around the gait

of the sum of these gradients multiplied by their respective constraint curvature

components, such that

∇p

¨
φa

D(–A) =

‰
φ

(∇pφ) ⌟D(–A) (3.20)

=

‰
φ

(
(∇p⊥φ)D(–A)‖⊥ (3.21)

+ (∇p	φ)D(–A)‖	

)
.

Note that the ⊥	 component of D(–A) does not contribute to the gradient of

net displacement: no motion of a single point on the gait perimeter can cause its

enclosed area to project onto this plane, and so the influence of this term on the

gait performance is at most second-order.

Intuitively, this optimization process can be visualized as positioning the gait

curve such that it maximizes the flux of a vector field corresponding to D(–A)

through a surface bounded by the curve. This vector field
−−−−→
D(–A) is formed by

associating each plane in the R3 shape space with its right-hand normal vector

(noting that the e2 basis vector is right-hand normal to the e3 ∧ e1 plane rather

than the e1∧e3 plane, and adjusting signs accordingly). Motions of the gait points

that incorporate more sign-matched area on the e‖∧e⊥ and e‖∧e	 planes in the two-
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form interpretation serve to increase the area of the surface enclosed by the gait and

to better-align it with the direction of the flux field, as illustrated in Fig. 3.4(c).6

For systems with three shape variables, our optimizer is a generalization of [26]

from optimal gaits through 2-D slices of high-dimensional spaces to arbitrary paths

through these spaces.

3.2.1 Selecting a seed gait

For systems with two shape variables, we know the maximum displacement gait

follows the zero contour of the constraint curvature function (CCF). The zero

contour of the CCF therefore provides a natural starting point for the optimizer

when trying to find the maximum efficiency gait. Analogous to this, in systems

with three or more shape variables, we start our optimizer along the zero contour

of the CCF projected onto the plane most aligned with the CCF at the extremum

of its absolute value.

As discussed above, in systems with three shape variables we can associate a

vector field
−−−−→
D(–A) with the CCF D(–A). The plane most aligned with D(–A) at

the origin is uniquely given by the plane perpendicular to this vector field
−−−−→
D(–A)

6This vector-flux interpretation highlights the point that the orientation of the gait in the
shape space (determined by the phase offsets between the joint oscillations) is as important as
its location in the shape space (the mean and range of the joint motions) when determining the
net displacement induced by the cycle.

Simply placing a gait in a region where the signs of all components of D(–A) are the same, as
suggested in [64], is neither sufficient nor necessary for generating net motion: A gait in an “all

positive” region will produce no net displacement if it is orthogonal to D(–A) (i.e. if
−−−−→
D(–A) is in

the plane of the gait), and a gait in a “mixed-sign” region can produce displacement proportional

to the magnitude of the constraint curvature if it is aligned with D(–A) (i.e., if
−−−−→
D(–A) is normal

to the surface).
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at the origin. The zero contour of D(–A) projected onto this plane forms the seed

gait for our optimizer in systems with three shape variables.

3.2.2 Analysis of the four-link swimmer

We used the optimizer to find the most efficient forward gait for a four-link (three-

joint) swimmer. The optimal gait is shown in Fig. 3.6(a). The optimal gait for

the four-link swimmer is 50% more efficient than a three-link swimmer with same

total length and same drag coefficients. (Three link swimmer efficiency is 0.11,

and that of the four-link swimmer is 0.16), but it is still less than the efficiency of

a serpenoid swimmer with two mode shapes (0.24).

From Fig. 3.7, we can see that the optimal gait for the four-link swimmer lies

very close to the α3 = −α1 plane, such that these joints oscillate almost 180◦ out

of phase with each other and cross each other at zero angle. The α2 oscillation is

at approximately 90◦ phase difference to the other two joint motions and is slightly

higher amplitude, tilting the gait within this plane.

3.2.3 Analysis of three segment piecewise continuous curvature swim-

mer

We used the optimizer to find the most efficient forward gait for a system with three

piecewise-continuous curvature segments. The optimal gait is shown in Fig. 3.6(b).

This gait is similar to the one we found for the linked system, but it has a smaller
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(a) (b)

Figure 3.7: Projection of the constraint curvature function for the 4-link swimmer onto
the plane most aligned with it at its center. The blue line indicates the optimal forward
gait for the 4-link swimmer. (a) The projection of the optimal gait onto this plane is
a contraction of the zero contour in that plane. (b) The optimal gait for the five-link
swimmer only deviates slightly from this plane, hence the zero contour of the constraint
curvature function projected onto this plane provides a good seed gait for the optimizer.
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phase shift between adjacent actuators, and so is rotated around the α3 axis by

approximately 45◦. The efficiency of this gait is 0.18, which is better than the

four-link swimmer but still falls short of the efficiency of the serpenoid swimmer

with two shape modes.

3.3 Extension to n dimensions

The gradient of gait displacement for systems with n-dimensional shape spaces has

a a similar form to the three-dimensional formulation in (3.21). The key difference

is that there are now n − 2 “binormal” directions7 in which gait points can be

displaced, making the displacement gradient

∇p

¨
φa

D(–A) =

‰
φ

(
(∇p⊥φ)D(–A)‖⊥

+
n−2∑
i

(∇p⊥⊥i
φ)D(–A)‖⊥⊥i

)
. (3.22)

Note that because the interior-product formulation excludes the influence any

components of D(–A) that do not include e‖, the number of components in (3.22)

goes up linearly with n, even though the number of independent planes (and thus

components of D(–A)) scales quadratically as n(n−1)
2

, as illustrated in Fig. 3.8.

The vector-flux analogy that we made in three dimensions becomes a “patch-

flux” analogy as we move into higher dimensions: The basis areas for two-forms no

7Outside of three dimensions, “rotation around a line segment” is not a well-defined operation,
so we no longer call these directions “rotational.”
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Figure 3.8: The number of components of the constraint curvature in n-dimensional space
is equal to the number of non-parallel two-dimensional faces on an n-cube: one for the
2-cube, or square; three for the standard 3-cube; and six for the 4-cube (or “tesseract”).
(Faces on the tesseract are considered parallel if they are formed from the same pair
of basis vectors, e.g., all xw faces are parallel to each other.) For higher-dimensional

spaces, the number of independent two-dimensional faces continues to scale as n(n−1)
2 .

longer have unique normal vectors, so we cannot directly map D(–A) to a vector

field. We can, however, still take the area integral of D(–A) as an area integral

over a surface, and each change of the gait boundary adds an infinitesimal patch

to the edge of this surface, each of which contributes to the net integral based on

its alignment with the basis areas of the space and the values of D(–A) in those

basis-area directions.
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3.3.1 Selecting a seed gait

In systems with more than three shape variables, the problem of finding a plane

most aligned with the D(–A) can be more generally restated as finding two unit

vectors v, w ∈ T0R that maximize the value of D(–A)|r=0(v, w). We shall refer to

the constraint curvature function at the extremum of its absolute value, D(–A)|r=0

as D(–A)0. We can associate a real skew-symmetric matrix B to D(–A)0 such

that

D(–A)0(v, w) = vTBw ∀v, w ∈ T0R (3.23)

We know that the eigenvalues of real skew symmetric matrices are purely imag-

inary. Let iλ be the largest eigenvalue and z be the unit eigenvector associated

with it. let z = x+ iy where x and y are real column vectors. Therefore,

Bz = iλz (3.24)

B(x+ iy) = −λy + iλx (3.25)

Therefore, xTBy = λ‖x‖22 and yTBx = −λ‖y‖22. Since B is skew-symmetric,

xTBy = −yTBx, therefore ‖x‖2 = ‖y‖2 = 1√
2

as z is a unit eigenvector.8 Therefore

if v =
√

2x and w =
√

2y, then D(–A)0(v, w) = λ. Since λ is the magnitude of

the largest eigenvalue of B, this is the largest value D(–A)0 can attain by acting

on two unit vectors.

8Note that outside of the case when D(–A) = 0 on the whole region, x cannot be equal to y
as that would imply xTBx = −xTBx, hence x = y = 0 which would mean the largest eigenvalue
of B is zero which would mean D(–A) is zero at the at the extrema of its absolute value.
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Figure 3.9: Optimal forward gait for the five-link swimmer. The three axes represent
the first three joint angle. The value of the fourth joint angle is given by the color and
thickness of the line. Thin black lines indicates sections of the gait with low values of α4

and thick red lines indicate sections of the gait with high α4.

Thus the plane most aligned with the constraint curvature function at the origin

is the plane spanned by vectors v and w such that z = v + iw is an eigenvector

corresponding to the largest eigenvalue of the skew symmetric matrix B associated

with D(–A) at the origin. We project D(–A) onto this plane and use the zero

contour thus obtained as the seed gait for our optimizer.
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3.3.2 Analysis of the five-link swimmer

We used the optimizer to find the most efficient forward gait for a five-link (four-

joint) swimmer. The optimal gait is shown in Fig. 3.9. The three axes represent

the first three joint angle. The value of the fourth joint angle is given by the color

and thickness of the line. Thin black lines indicates sections of the gait with low

values of α4 and thick red lines indicate sections of the gait with high α4. The

optimal gait for the five-link swimmer has an efficiency of 0.21

3.3.3 Comparison of different swimmers

In Fig. 3.10, we present a comparison of the efficiency of optimal gaits found for

various systems of up to four shape dimensions. Fig. 3.10 shows a comparison of

the cost and displacement produced by executing these gaits. For two shape modes,

the serpenoid system outperforms the jointed and piecewise-constant systems, but

its efficiency improves only slightly if we add a second pair of (double-spatial

frequency) shape modes. The jointed and piecewise-constant systems both exhibit

a pattern where moving from two to three shape degrees of freedom allows them to

lower their cost of motion while increasing the net displacement, and then moving

from three to four shape modes significantly increases the net displacement while

increasing the cost of the motion only slightly. at any level of articulation, the

piecewise-constant system outperforms the jointed system and at four degrees of

freedom approaches the serpenoid efficiency.
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Figure 3.10: Comparison of the efficiencies of different swimmers. Red squares represent
discrete link swimmers, black circles represent piecewise continuous swimmers, and blue
plus signs represent serpenoid swimmers. The number next to each symbol indicates the
shape variables of the system. Displacement produced by the most efficient gait for each
swimmer is given by the ordinate value, and the cost of executing the gait is given by
the abscissa value of the symbol representing the swimmer, and their efficiencies are the
slopes of the lines connecting them to the origin. The serpenoid swimmers are the most
efficient, followed by the piecewise swimmers and then the discrete link swimmers. A
movie presenting a side-by-side comparison of these gaits is included in the Supplemen-
tary Material.
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3.4 Simultaneous Design and Gait Optimization

A common approach to finding the optimal value of a design variable for a lo-

comoting system is via a nested optimization in which the outer loop optimizes

the design variable, and the inner loop finds the optimal gait for each geometry

considered in the outer loop. Our variational framework can be used to unify the

design and gait optimization process for drag dominated systems.

By introducing the design variables as extra shape variables with the constraint

that these variables are constant within the gait cycle (i.e., that the gaits trace out

level sets in the design parameters), we can use our optimizer to simultaneously find

the optimal value for the design variables and the optimal gait for that design. For

example, if we wanted to design a three-link swimmer of a specified total length,

the optimal ratio between the length of the middle link to the length of the outer

links would be the one at which the optimal gait at that ratio is more efficient

than the optimal gaits for other ratios.

To include design variables in our optimization, we treat them as pseudo-shape

variables. Suppose β = (β1 · · · βm) are our design variables. We redefine our shape

variables to be r = (α1, · · · , αn, β1, · · · , βm). We then restrict our optimizer to only

move points in ways that would keep the value of the design variables constant

around the gait by imposing the constraint βi|pj = βi|pk , for each design parameter

βi, across all points pj and pk.

By simultaneously optimizing the design and control variables, our procedure

avoids having to compute the optimal gait at each intermediate set of design val-
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ues, and thus requires many fewer iterations than a nested optimization scheme.

If this simultaneous optimization were incorporated into a numerical optimizer

without the benefit of our geometric construction of the gradient, then the design

variables would compound the dimensionality of the control space, and the ensuing

complexity would not be mitigated by the locality of the geometric process.

Identifying an optimal link-length ratio for the Purcell swimmer

We used our optimizer to find that the optimal ratio between the length of the

middle link to the length of the outer links for the Purcell swimmer is 0.80, which

is close to the value of 0.75 obtained by nested optimization in [66]. The efficiency

of the optimal gait we found at the optimal link ratio is 0.12, which matches the

efficiency found for the optimal gait on the 0.75-ratio system in [66] (i.e., our results

are equivalent to previous results up to the precision of our gait-displacement ODE

solver).

The steps9 that our optimizer takes from a (deliberately non-optimal) seed gait

and equal link lengths to the optimal gait at an optimal ratio are illustrated in

Fig. 3.11. Note that because we are simultaneously stepping along the gait and

design gradients, the system does not monotonically approach the optimal link

ratio, but instead moves to design variables that make the best use of the current

gait geometry; as the gait geometry moves from the sub-optimal ellipse to the more

efficient round shape, the design variable settles to its optimal value.

9Every third iteration of fmincon, using our provided gradient.
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Figure 3.11: This figure shows the process of finding the optimal link length ratio and the
maximum efficiency gait for the Purcell swimmer simultaneously. We seed our optimizer
at the black gait (1), and the red gait (6) is the optimal gait. The inset figures provide
a top view of the gaits at each iteration, and the numbers show the steps through which
the gait and design variables evolve
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3.5 Conclusion

In this chapter, we consolidate upon and extend prior geometric insights about

locomotion into a set of geometric principles that govern the shape of optimally-

efficient gaits for drag dominated systems. We formally encode these principles

in a set of geometric expressions that together make up the gradient of the gait

efficiency with respect to variations in the gait trajectory. We use this gradient in

a gradient-descent solver to find optimal gaits, but more fundamentally, the gra-

dient geometrically describes the dynamics underlying any other gait optimization

algorithm applied to the system.

For systems with two shape variables, the dynamics of this solver are analogous

to those of a soap bubble, with the Lie bracket providing an “inflating pressure”

to the trajectory and the Riemannian metric on the shape space contributing

“surface tension” that halts growth of the cycle in the face of diminishing returns,

and a “concentration gradient” that provides a power-optimal pacing along the

gait. Together, these elements drive the gait cycle to a “comfortable stride” that

converts shape change effort into net displacement with optimal efficiency.

By extending the gradient calculation to systems with three shape variables we

see that dynamics of our solver generalize to maximizing flux through an oriented

surface. For systems with three shape variables, the constraint curvature functions

can be visualized as vector flux because each surface element has a unique normal.

In systems with more than three shape variables, each surface element no longer

has a unique normal direction associated with it, and we thus drop the “vector
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flux” analogy for these higher-dimensional systems, but can preserve the idea of

two-form flux passing through the surface elements that make up the “interior” of

the gait.

We demonstrated this variational principle in operation on a number of test

systems in viscous-dominated environments, including Purcell’s three-link swim-

mer (a standard minimal template for locomotion modeling) and a serpenoid

swimmer (a model widely used in studies of animals and snake robots). In the

lower-dimensional cases, the optimal gaits found by our approach match those

previously found by exhaustive optimizations of the gait cycles [66], and in the

higher-dimensional cases, the optimizer allowed us to efficiently explore a space of

candidate swimming morphologies.

We also presented how the framework can be used to simultaneously optimize

design and control variables for locomoting systems. We demonstrated this by

finding the optimal link length ratio for the Purcell swimmer.

In the context of related works, our framework can be viewed as a “macro-

scopic” extension of the Lie-bracket control schemes in [50, 52]. This extension

is significant because it uses the geometry of the systems’ dynamics to identify

the amplitudes of their most efficient gait cycles (in addition to the useful sets of

phase-couplings identified in previous work). For our example systems swimming

at low Reynolds number, the two-dimensional “soap-bubble” analysis can be seen

as an instantiation of the boundary-value problem suggested in [3], for which we

have analytically constructed a gradient from the curvature of the constraints, and

the higher-dimensional portions of a work to be a generalization of this princi-
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ple. These extensions and generalizations of previous work in the literature have

both been enabled by our calculation of a minimum-perturbation body frame [34],

which significantly increases the accuracy of Lie-bracket approximations to large

motions.
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Chapter 4: Swimmers with Elastic Tails

In this chapter, we extend the framework presented in chapter 3 to identify optimal

gaits for swimmers with a passive elastic joint. Drag-dominated swimmers with

passive elements were studied in [15, 38, 42, 49, 56]. Of these works, [42, 56]

and [49] are most relevant to this chapter, as they discuss the motion of swimmers

with a harmonically-driven active joint and a passive joint. The analysis in [56]

is particularly relevant, where using perturbation expansion, explicit expressions

for leading order solutions were derived for harmonic input oscillations, and the

optimal swimmer geometry was obtained for the Purcell swimmer. Unlike in [56],

we do not restrict our input to simple harmonic oscillations, and use a higher order

representation of the system dynamics.

The ways in which the dynamics of swimmers with passive elastic joints differ

from the dynamics of fully actuated swimmers are:

1. Because of the coupling between the actuated and passive joints, the passive

swimmers can execute only a subset of the gait kinematics the fully actuated

swimmers can execute.

2. This coupling between the actuated and passive joints also endows each gait

achievable by the passive swimmer with a unique pacing. Hence, the pacing

cost cannot be minimized separately from the kinematic cost.



59

As illustrated in Fig. 1.2, we address the two problems introduced by the pres-

ence of passive elastic joints: we first use frequency domain analysis to analytically

approximate the motion of the unactuated joint in response to the motion of the

actuated joint. We then combine this frequency-space analysis with elements of the

geometric framework introduced in [61] to construct a gradient-descent algorithm

that identifies optimal gaits and the pacing associated with these gaits for passive

swimmers. The optimal gaits for passive swimmers maximize the CCF integral

relative to perimeter and pacing costs, subject to amplitude and phase constraints

of a first order system.

4.1 Frequency Domain Analysis

The key difference in the dynamics of a swimmer with an elastic joint when com-

pared to a fully actuated swimmer is the coupling of the motion of the actuated

and unactuated joint. In this section, we explore this difference further and present

a way of accurately approximating the motion of the unactuated joint from the

motion of the actuated joint using frequency domain analysis. The method of lin-

earizing the passive dynamics to obtain approximate limit cycles presented in this

section is in the same vein as the limit cycle analysis presented in [15], where a

two-link system with static separation between centers of mass and buoyancy was

studied.
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(a) Purcell swimmer

(b) T-link swimmer

Figure 4.1: Comparison of the exact stroke limit cycles with the shape predicted by fre-
quency domain analysis. Each black solid line represents the motion of the swimmer when
the input to the actuated joint is a sinusoidal wave. We can see the motion converges
to a limit cycle. The red dashed line represent the shape of the limit cycles predicted by
frequency domain analysis presented in §4.1. The cartoons in the background show how
the Purcell swimmer looks like at different points of the shape space.
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4.1.1 Dynamics of the passive elastic joint

As discussed in [33, 34], the mapping between joint velocities and torques on the

joint in the fully actuated swimmers is encoded in the metric calculated in (2.11),

τ =M(r)ṙ. (4.1)

Since the systems considered in this paper have only one active and one passive

joint, τ1
τ2

 =M(α1, α2)

α̇1

α̇2

 . (4.2)

In the case of the swimmers with an elastic joint, because the actuation in the

second joint is replaced by an elastic element with stiffness k, the torque τ2 is

always equal to −kr2, i.e.,

 τ1

−kα2

 =M(α1, α2)

α̇1

α̇2

 . (4.3)

The first equation in this system of equations,

τ1 =M11α̇1 +M12α̇2, (4.4)

thus relates the torque in the actuated joint to the motion of the joints and can

be used to calculate the torque required to effect any feasible motion. The second
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equation in this system of equations,

−kα2 −M22α̇2 =M21α̇1 (4.5)

or equivalently,

− k

M21

α2 −
M22

M21

α̇2 = α̇1 (4.6)

encodes the dynamics of the passive elastic joint in terms of the active joint, and

thus defines the space of feasible motions.

Since the joint α1 is assumed to be the actuated joint, we have full control of

α̇1. The value of M depends on α1 and α2. Its dependence on α1 and α2 conveys

how the shape of the robot affects the effort required to move the joints.

If we consider gaits that are relatively small oscillations of shape, we can ap-

proximate the value of M to be constant throughout the gait. This assumption

necessarily introduces errors in our prediction of the motion of the passive joint

when the amplitude of input to the active joint is large. For both the Purcell and

T-link swimmers with passive elastic joints, assuming the value of M to be con-

stant does not introduce significant errors for gaits of amplitude up to 1.5 radians.

In Fig. 4.1, we illustrate the distortions caused in the shape of the limit cycles

when we assume M to be constant throughout the shape space. Each solid black

line represents the motion of the full swimmer model when the input to the ac-

tuated joint is a sinusoidal wave, and the system starts with both angles at zero.

There is a transient term that dominates before the system reaches the limit cycle.
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KeqCeq

Figure 4.2: Spring damper system whose dynamics are equivalent to the passive dynamics
of the Purcell swimmer with a passive elastic joint.

The red dashed line represents the shape of the limit cycles predicted when we

assume M is constant (we describe the calculation of the limit cycle in the next

subsection).

4.1.2 Transfer function analysis

In this subsection, our goal is to obtain an analytical approximation of the response

of the passive joint to input oscillations of the actively controlled joint. We assume

M to be constant throughout the gait, which makes (4.6)— the equation that

describes the dynamics of the passive elastic joint— a linear first order differential

equation and thus well suited to frequency domain analysis.

We use the Laplace transform on (4.6) to obtain the dynamics of the passive

elastic joint in the frequency domain as

KeqL(α2(t)) + CeqsL(α2(t)) = sL(α1(t)) (4.7)

where Keq =
−k
M21

and Ceq =
−M22

M21

. These substitutions reveal that the



64

Change in amplitude 

of input

Change in frequency 

of input

(b) Amplitude=1, Frequency=0.5(a) Amplitude=1.2, Frequency=0.5 (c) Amplitude=1, Frequency=0.25

Figure 4.3: Changes in the shape of a gait resulting from changes to am-
plitude and frequency of input oscillation. (a) The gait resulting from
a change in amplitude of the nominal input (black) is a scaled ver-
sion of the gait corresponding to the nominal input actuation (red).
(b) The gait resulting from nominal input actuation. (c) The gait resulting from
a change in the frequency of the nominal input (black). A change in the frequency of
the nominal input leads to a change in both the amplitude and phase of the response of
the passive joint.

dynamics of the passive joint resemble those of a massless particle attached to

a fixed base through a spring and being driven through a damper by a position

trajectory α1 as shown in Fig. 4.2. Note that the damping coefficient is completely

dependent on the physics of the interaction between the swimmer and the fluid.

We can rewrite (4.7) as a transfer function relation between the active joint α1

and passive elastic joint α2

L(α2(t)) = H(s)L(α1(t)) (4.8)

where H(s) =
s

(Ceqs+Keq)
is the transfer function that encodes the response of

the passive elastic joint to osciallations of the active joint.

Equation (4.8) tells us how inputs to the controlled joint, α1 are mapped to

the response of the passive joint in the frequency domain. In order to find the
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Figure 4.4: Bode plot of the transfer function relating the output of the passive joint
to the input of the actuated joint in the Purcell swimmer with a passive elastic tail.
The inset figures show how the periodic orbits corresponding to gain and phase at certain
frequencies look like in the shape space. We can see that actuation at very low frequencies
leads to gaits that enclose very little surface area due to the amplitude of the passive joint
being low, while at very high frequencies the surface area enclosed by the gait is low due
to the almost 180 degree phase shift between the oscillations of the actuated and passive
joints.
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response of the passive joint to a sinusoidal oscillation of the actuated joint, we let

α1(t) = sin(wt), then using (4.8), we obtain

L(α2(t)) =

H(s)︷ ︸︸ ︷
s

(Ceqs+Keq)

L(α1(t))︷ ︸︸ ︷
ω

(s2 + ω2)
(4.9)

=
A1

(Ceqs+Keq)︸ ︷︷ ︸
Transient term

+
A2s+ A3

(s2 + ω2)︸ ︷︷ ︸
Phase shifted sine wave

(4.10)

where A1, A2 and A3 can be obtained by equating the two expressions for L(α2(t))

in (4.9) and (4.10) as

sω = A1(s
2 + ω2) + (A2s+ A3)(Ceqs+Keq), (4.11)

and equating the coefficients of powers of s on each side to extract a system of

three equations,


1 Ceq 0

0 Keq Ceq

ω2 0 Keq



A1

A2

A3

 =


0

ω

0

 , (4.12)

which can be easily solved to obtain A1, A2 and A3 as


A1

A2

A3

 =


1 Ceq 0

0 Keq Ceq

ω2 0 Keq


−1 

0

ω

0

 . (4.13)
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If our actuated joint follows a trajectory given by α1(t) = B1 sin(ωt), after

reaching the steady state periodic orbit, the unactuated joint, therefore, follows

the trajectory

α2(t) = B1A2 cos(ωt) +B1A3 sin(ωt). (4.14)

If our actuated joint follows a trajectory given by α1(t) = B1 sin(ωt) +B2 cos(ωt),

after reaching the steady state periodic orbit, the unactuated joint follows the

trajectory

α2(t) = B1(A2 cos(ωt) + A3 sin(ωt))

+B2(−A2 sin(ωt) + A3 cos(ωt)). (4.15)

Note that the value of A2 and A3 depend on the value of ω, the frequency of

the sinusoidal input to the actuated joint. The image of the gait in the shape space

is thus coupled to the pacing of the input to the actuated joint.

This coupling between the image of the gait in the shape space and the input

to the actuated joint is illustrated in Fig. 4.3. Fig. 4.3(b) shows the shape of

the gait resulting from a sinusoidal oscillation of the actuated joint of amplitude

1 and frequency 0.5. Fig. 4.3(c) shows the effect of decreasing the frequency of

oscillation on the shape of the gait, with a slower oscillation leading to a weaker

response (in terms of magnitude) from the passive joint. Fig. 4.3(a) shows the

effect of increasing the amplitude of oscillation on the shape of the gait. As we

have linearized the dynamics of the passive joint, a change in amplitude without

a change in frequency produces a scaled version of the original gait.
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The Bode plot of the transfer function H in (4.8), presented in Fig. 4.4, illus-

trates the specific nature of the relationship. We can see that if the frequency of

input to the controlled joint is very high, the response of the passive elastic joint

is phase shifted relative to the actuated joint by almost 180 degrees, resulting in

a gait with a small area. At very low frequencies, the magnitude of the response

of the passive elastic joint is small and results in a gait with a small area. At mid

range frequencies, however, the response of the passive elastic joint has a larger

amplitude and a phase shift that results in gaits with larger areas.

4.2 Efficiency in the presence of passive elements

4.2.1 Efficiency for fully actuated swimmers

In drag-dominated environments, a common measure of the cost of any motion

executed by a swimmer is the power dissipated into the surrounding fluid while

executing the motion. A natural choice of definition for efficiency for these systems

is thus

η1 =
gφ

PavgT
, (4.16)

where gφ is the displacement produced in the x direction over a gait cycle φ, Pavg is

the average power dissipated into the surrounding while executing the gait φ, and

T is the time taken to execute the gait φ. Therefore PavgT is the energy dissipated

into the surrounding on executing one cycle of the gait, which can be calculated
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using (2.10).

Note that this definition of efficiency is the inverse of the mechanical cost of

transport used in [3]. The mechanical cost of transport is a widely used efficiency

metric in the robotics community, especially while studying legged locomotion.

Gaits which optimize our criterion also optimize Lighthill’s efficiency [44], which

compares the power dissipated while executing the gait to the power dissipated in

rigidly translating the swimmer through the fluid; this measure has an advantage

over Lighthill in that it allows for effective comparison between systems with dif-

ferent morphologies and does not require designating a reference shape for rigidly

dragging the swimmer. An Explanation for why gaits that optimize our criterion

also optimize Lighthill’s efficiency is provided in appendix C.

The power term in (4.16) depends on the pacing at which the gait is executed as

well as the gait kinematics. Becker et al. showed in [7] that the optimal pacing for

drag-dominated systems is the one in which the power dissipated remains constant

throughout the cycle, i.e., the pacing at which

P (t) = Pavg. (4.17)

for all t. As detailed in [61], for fully actuated swimmers, this insight lets us restrict

our optimization to constant power trajectories and utilize a geometric definition

of efficiency,

η2 =
gφ
s

(4.18)

where s is the pathlength of the gait in the shape space as measured under the
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power metric. This measure of efficiency lets us abstract out the pacing compu-

tation and relate the efficiency of the gait directly to the geometric parameters of

the gait (the surface integral of the CCF and the metric weighted pathlength). As

discussed in [59], we can relate the two efficiency measures by

1

η1
=

1

η2
+ σ(φ) (4.19)

where σ(φ) measures the extent to which the system deviates from constant power

pacing. It can be represented by squaring the difference between the average and

instantaneous rates at which the gait is being followed (measured as s per time),

and then integrating over the time during which the gait is being executed,

σ =

ˆ τtotal

0

(
stotal
τtotal

− d

dτ
(s(τ))

∣∣∣
τ=t

)2

dt, (4.20)

where τtotal is the time period of the gait, stotal is the length of the gait under

the metric M, and s is distance traveled along the gait as a function of time

corresponding to the given pacing. If the gait is proceeding at constant power,

stotal
τtotal

is equal to the rate at which s changes with time, so σ measures the extent

to which the pacing lags and leads the optimal pacing.

For any gait φ with constant power pacing, σ(φ) = 0. The geometric definition

of efficiency, η2 was used to establish the geometric framework in [59, 60].
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4.2.2 Efficiency for swimmers with passive elastic joints

In fully actuated swimmers, the transformation of efficiency from the inverse of

cost of transport as defined in (4.16) to a more geometric definition in (4.18)

was possible because we knew that the optimal pacing keeps the rate of power

dissipation constant [7]. In the case of swimmers with passive joints, the response

of the passive joint is dictated by the dynamics of the active joint, as illustrated by

the Bode plots shown in Fig. 4.4. As a result, there is a unique pacing associated

with every gait the passive swimmer can execute. Changing the pacing of the

actuated joint changes the response of the passive joint as shown in §4.1 and hence

the shape of the gait. Thus to find the most efficient gait for the Purcell swimmer

with a passive elastic joint, we have to directly use the definition of efficiency

in (4.16).

While we could choose a constant power pacing for all gaits for fully actuated

swimmers, in the case of the Purcell and T-link swimmers with a passive elastic

joint, every gait that respects the passive dynamics of the elastic joint comes with

an inherent pacing. Thus for a given spring stiffness of the passive joint, the

gait that maximizes forward velocity comes with a power requirement associated

with it. Even if we are capable of giving the system more power, there is no way

for the system to utilize that power to go faster. Hence for the swimming systems

considered in this paper, there are two meaningful measures for comparing different

gaits that lead to different definitions of gait optimality: Gaits can be compared

by



72

Speed-maximization Efficiency-maximization

Fourier series parametriazation
of input to actuated joint.
(a0,a1,...,a4,b1,...,b4)

Time period of input (T)

Displacement per cycle
(    ) 

Energy per cycle (E)

Parameters 
describing input to 
actuated joints

Optimality criteria

Figure 4.5: A flowchart describing how the parameters describing our input to the actu-
ated joint affect the two optimality criteria in the case of drag-dominated swimmers with
a passive joint.

1. Comparing the average speeds they produce (η =
gφ
T

)

2. Comparing their energetic efficiency (η1 in (4.16))

4.2.3 Gait parametrization for passive swimmers

We use a truncated Fourier series to parametrize the gait. This choice of parametriza-

tion lets us accurately approximate a large family of smooth periodic gaits. The

framework introduced in [61] uses a gradient descent algorithm to identify gaits

that maximize efficiency as defined in (4.18). During the gradient calculation pro-

cess outlined in §3.1, it is useful to think of the gait as being parametrized by a
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series of waypoints. We can generate these waypoints from the Fourier parametriza-

tion. We use the gradients calculated at each of these waypoints to calculate

gradients with respect to the Fourier series parametrization.

In the case of swimmers with a passive joint, we let the actuated joint trajectory

α1(t) be given by a fourth order Fourier series,

α1(t) = a0 +
4∑
i=1

ai cos
(2πi

T
t
)

+ bi sin
(2πi

T
t
)

(4.21)

Using (4.8), i.e. the transfer function relating the movement of the active and

passive joints, we obtain the response of passive joint to α1(t) as

α2(t) = L−1(H(s)L(α1(t)). (4.22)

Using explicit evaluation of the transfer function from (4.10) and (4.12), we can

write the steady state response of the passive joint as

α2(t) =
4∑
i=1

ci cos
(2πi

T
t
)

+ di sin
(2πi

T
t
)
, (4.23)

where ci and di are functions of ai and bi and T .

Using this low-order Fourier series parameterization of the gait, we can generate

the direct transcription waypoints, calculate the gradient of the objective function

at each waypoint (details of this gradient calculation process for speed-maximizing

and efficiency-maximizing gaits are presented in §4.3 and §4.4 respectively), then
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project these gradients onto the Fourier basis, to obtain gradients with respect to

the Fourier series parameters.

If the system were fully actuated, we could move the Fourier series parameters

along these calculated gradient directions to obtain the optimal gait. In the case

of passive swimmers, the Fourier coefficients of the unactuated shape direction

(ci, di) are functions of the Fourier shape coefficients of actuated shape direction

(ai, bi). Therefore, to find the correct gradient directions for the Fourier coefficients

of the actuated shape, we have to account for the change in the unactuated shape

direction that a change in the actuated shape direction would produce.

For an objective function f that depends on ai, bi, ci and di, we can calculate

the total derivatives of f with respect to ai and bi as

df

dai
=
∂f

∂ai
+
∂ci
∂ai

∂f

∂ci
+
∂di
∂ai

∂f

∂di
(4.24)

df

dbi
=
∂f

∂bi
+
∂ci
∂bi

∂f

∂ci
+
∂di
∂bi

∂f

∂di
, (4.25)

where ∂ci
∂ai
, ∂ci
∂bi
, ∂di
∂ai

and ∂di
∂bi

are directly taken from the transfer function coeffi-

cients (4.15)

∂ci
∂ai

= A2 (4.26)

∂ci
∂bi

= A3 (4.27)

∂di
∂ai

= −A2 (4.28)

∂di
∂bi

= A3. (4.29)
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We use these total derivatives to calculate the correct gradient directions for

the Fourier coefficients of the actuated shape variables, which account for the fact

that in passive swimmers, a change in the shape of input to the actuated shape

variable affects the response of the passive elastic joint.

4.3 Speed-maximizing Gaits

A major goal of this paper is to geometrically identify gaits for the Purcell and T-

link swimmers with an elastic joint that will give it the maximum forward velocity.

Therefore, the objective function we set out to maximize is
gφ
T

, where gφ is the

displacement in the x direction produced on executing the gait φ, and T is the

time period required to execute the gait.

As explained in §4.2.3, we parametrize the actuated shape variable using a low-

order Fourier series and obtain the Fourier series parametrization of the resulting

motion of the passive joint using the dynamics of the passive elastic joint presented

in §4.1. With these Fourier-series parameters, pf , we can obtain a sequence of

waypoints pi (in our implementation we use 100 waypoints), equally spaced in

time, that describe the location of the discretization points in the shape space. As

illustrated in this section, we can then calculate the gradient of speed with respect

to each of these waypoints, i.e., calculate the effect moving the waypoints would

have on the forward speed attained by the swimmer on executing the gait. We

then project these gradients onto the Fourier series basis as explained in §4.2.3 to

obtain the speed-maximizing gaits using gradient descent.
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We start from the basic variational principle that functions reach their extrema

when their derivatives go to zero. Given a gait parametrization defined by waypoint

parameters p, executed in time T , the maximum-velocity cycle must satisfy the

condition that the gradient of forward velocity with respect to the parameters p

and T is zero, i.e.

∂

∂p

(gφ
T

)
=

1

T

∂gφ
∂p
− gφ
T 2

∂T

∂p
(4.30)

=
1

T

∂gφ
∂p

= 0, (4.31)

and

∂

∂T

(gφ
T

)
=

1

T

∂gφ
∂T
− gφ
T 2

= 0, (4.32)

where ∂T
∂p

term in (4.30) can be taken as zero since T and p are two independent

variables describing the gait, i.e. the time taken to complete a gait T does not

depend on the shape and pacing of the input to the actuated joint described by p.

Once we have the gradient of speed with respect to a direct transcription

parametrization p obtained from a Fourier series parametrization pf , we follow

the process outlined in §4.2.3, specifically (4.24) and (4.25), to obtain the gradient

of speed with respect to the Fourier series parametrization, ∂
∂pf

(
gφ
T

)
. A graphi-

cal depiction of how elements of the Fourier series parametrization affect the gait

optimization process is shown in Fig. 4.5.

For suitable seed values pf0 and T0, the maximum-velocity gaits can thus be
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obtained by finding the equilibrium of the dynamical system

ṗf =
∂

∂pf

(gφ
T

)
(4.33)

Ṫ =
∂

∂T

(gφ
T

)
=

1

T

∂gφ
∂T
− gφ
T 2
. (4.34)

In the geometric framework we introduced in [59], we showed that the process

of finding efficient gaits for the fully actuated Purcell swimmer is akin to the

dynamics of a soap-bubble in which internal pressure and surface tension combine

to determine the shape, size and surface concentration of the soap bubble. This is

not the case in swimmers with a passive elastic joint. Instead of two independent

processes, the optimization process for finding the fastest gait is more unified

where (4.33) is the equation that helps obtain the shape of the optimal input to

the actuated joint and (4.34) is the equation that helps obtain the optimal pacing

of the input.

4.3.1 Shape gradient of the optimal input to the actuated joint.

As discussed in [61], the gradient that affects the shape of the input to the actuated

joint,
dgφ
dp

, pushes the gait towards maximum displacement cycles. From (5.5), and

the fact that variations in p affect φ but not the underlying DA structure, we can

reduce this term to

∂gφ
∂p
≈ ∇p

¨
φa

(−DA). (4.35)
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A powerful geometric principle (the general form of the Leibniz integral rule [22])

tells us that the gradient of an integral with respect to variations of its boundary

is equal to the gradient of the boundary with respect to these variations, multiplied

by the integrand evaluated along the boundary, and allows us to rewrite (4.35) in

terms of the constraint curvature value and how changes in parameter values move

the gait’s trajectory through the shape space.

Formally, the multiplication of the gradient of the boundary and the integrand

evaluated along the boundary is the interior product 1 of the boundary gradient

with the integrand,

∇p

¨
φa

D(–A) =

‰
φ

(∇pφ) ⌟D(–A). (4.36)

In systems with just two shape variables, the interior product reduces to a

simple multiplication between the outward component of ∇pφ and the scalar mag-

nitude of the Lie bracket,

∇p

¨
φa

(−DA) =

˛
φ

(∇p⊥φ)(−DA). (4.37)

This gradient calculation is illustrated in Fig. 3.1. The gradient of the enclosed

area with respect to variations in the position of pi, i.e. ∇piφa in the e‖ and e⊥

directions, is the change in triangle’s area as pi moves. Because the triangle’s

area is always one half base times height (regardless of its pitch or the ratio of its

1Not the inner product, see [22] for more details.
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sidelengths), this gradient evaluates to

∇piφa =

[
e‖ e⊥

] 0

`/2

 . (4.38)

Note that this term matches the right-hand side of (4.37), with only normal mo-

tions of the boundary affecting the enclosed area.

4.3.2 Frequency gradient of the optimal input to the actuated joint

In the case of the fully actuated Purcell swimmer, the shape of the gait, and

therefore the displacement produced by executing the gait, are independent of the

time taken to execute the gait. This is not true in the case of the Purcell swimmer

with a passive elastic joint.

In this subsection, we examine the gradient that guides the optimizer towards

the optimal frequency of input to the actuated joint. When the time period re-

quired to execute the gait is changed, the shape of the gait changes due to the

coupling between the frequency of input to the actuated joint and the response of

the passive joint as described in §4.1. Changing the time period T thus changes

not only the frequency of the gait cycle but also the displacement produced per

cycle.

We use the chain rule to calculate this gradient,
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∂

∂T

(gφ
T

)
=

1

T

∂gφ
∂T
− gφ
T 2

(4.39)

=
1

T

(
∂gφ
∂α1

∂α1

∂T
+
∂gφ
∂α2

∂α2

∂T

)
− gφ
T 2

(4.40)

Because α1 is the actuated shape variable and the shape of the input actuation

is independent of the frequency of actuation, ∂α1

∂T
reduces to zero. Therefore, the

gradient of speed with respect to T reduces to

∂

∂T

(gφ
T

)
=

1

T

(
∂gφ
∂α2

∂α2

∂T

)
− gφ
T 2
. (4.41)

The first term of the right hand side of (4.41) captures the contribution to the

velocity of the gait caused by the change in the shape of the gait resulting from a

change in T . The second term accounts for the fact that, even without a change

in the shape of the gait, an increase in the time required to execute the gait would

result in a decrease in the velocity of the gait.

4.3.3 Passive Purcell and T-Link swimmers

We implemented the optimizer described in the §4.3 in Matlab by providing (4.33)

and (4.34) as the gradient for the fmincon optimizer using the sqp algorithm. The

shape of the gait obtained is illustrated in Fig. 4.6(a). Fig. 4.6(b) shows the power
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Units=

= length of the swimmer

= stiffness of the 

= drag force per unit length

passive joint

per velocity

(c) Maximum speeds achieved by the 
      passive and active Purcell swimmer 

(b) Shape and power of input to the actuated 
      joint of the passive Purcell swimmer 

(a) Speed-maximizing gait 
     and pacing

Figure 4.6: Gaits that maximize speed along x-direction for the Purcell swimmers. (a)
The optimal gait for the passive Purcell swimmer (red) and the optimal gait for the
fully actuated Purcell swimmer (black). The thickness of the line shows the magnitude
of power required at different points of the gait. (b) The power required to execute the
optimal gait for the passive Purcell swimmer and input to the actuated joint over one
gait cycle. (c) A comparison table of the speeds achieved by the passive and fully actuated
Purcell swimmers at different power levels.

(c) Maximum speeds achieved by the 
      passive and active T-link swimmer 

(b) Shape and power of input to the actuated 
      joint of the passive T-link swimmer 

(a) Speed-maximizing gait 
     and pacing

Units=

= length of the swimmer

= stiffness of the 

= drag force per unit length

passive joint

per velocity

Figure 4.7: Gaits that maximize speed along x-direction for the T-link swimmers. (a)
The optimal gait for the passive T-link swimmer (red) and the optimal gait for the fully
actuated T-link swimmer (black). The thickness of the line corresponds to the magnitude
of power required at different points of the gait. (b) The power required to execute the
optimal gait for the passive T-link swimmer and input to the actuated joint over one gait
cycle. (c) A comparison table of the speeds achieved by the passive and fully actuated
T-link swimmers at different power levels.
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input to the actuated joint over the cycle. Fig. 4.6(c) shows a comparison of the

speeds achievable by the Passive and fully actuated Purcell swimmers at different

power levels. Fig. 4.7 shows the same results for a passive T-link swimmer.

The transfer function relating the response of the passive joint to oscillations

of the input joint is given by (4.9), H(s) =
s

Ceqs+Keq

. Therefore a change in

the value of the spring stiffness does not affect the fundamental shape and nature

of the response shown by the Bode plot in Fig. 4.4, but it does shift the entire

bode plot to the left or right along the frequency axis. Thus an increase in spring

stiffness shifts the Bode plot to the right, which results in the shape of the speed

maximizing gait remaining the same, but the time period required to complete the

gait decreases, leading to faster speeds.

4.4 Energy-Efficient Gaits

In this section, we describe the gradient calculations involved in identifying the

gait that maximizes the efficiency of the swimmers. The objective function we set

out to maximize is

η =
gφ
E
, (4.42)

where gφ is the displacement produced on executing the gait φ and E is the total

energy expended by the robot executing the gait, i.e.

E = PavgT (4.43)
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As explained in §4.2.3, we parametrize the actuated shape variable using a

low-order Fourier series, pf , and obtain the Fourier series parametrization of the

resulting motion of the passive joint using the dynamics of the passive elastic joint

presented in §4.1. With these Fourier-series parameters, we can obtain a sequence

of waypoints pi equally spaced in time, that explicitly define the location of the dis-

cretization points in the shape space. These waypoints form a direct-transcription

parametrization of the gait p, obtained from the Fourier series parametrization pf .

In this section, we present the calculation of the gradient of efficiency at each of

these points with respect to p. We then project these gradients onto the Fourier

series basis as explained in §4.2.3 to obtain the efficiency maximizing gaits using

gradient descent.

The maximum-efficiency cycle must satisfy the condition that the gradient of

efficiency with respect to the parameters, p and T is zero, i.e.

∂

∂p

(gφ
E

)
=

1

E

∂gφ
∂p
− gφ
E2

∂E

∂p

= 0 (4.44)

and

∂

∂T

(gφ
E

)
=

1

E

∂gφ
∂T
− gφ
E2

∂E

∂T

= 0 (4.45)

Once we have the gradient of efficiency with respect to a direct transcription
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parametrization p obtained from a Fourier series parametrization pf , we follow the

process outlined in §4.2.3 to obtain the gradient of efficiency with respect to the

Fourier series parametrization, ∂
∂pf

(
gφ
E

)
.

Thus for suitable seed values of pf0 and T0, the maximum efficiency gaits can

be obtained by finding the equilibrium of the dynamical system,

ṗf =
∂

∂pf

(gφ
E

)
(4.46)

Ṫ =
1

E

∂gφ
∂T
− gφ
E2

∂E

∂T
(4.47)

Thus the process of finding the most efficient gait is the result of a unified process

where (4.46) is the equation that helps find the shape of the input to the actuated

joint and (4.47) is the equation that helps find the optimal pacing of the input.

Note that as in §4.3, the two equations do not operate independently, and the

gradient of shape depends on the time period T , and the gradient of the time

period depends on the shape of the gait.

4.4.1 Shape gradient of the optimal input to the actuated joint

The shape of the optimal input to the actuated joint is affected by two gradients,

∂gφ
∂p

and ∂E
∂p

(4.46). The details of how
∂gφ
∂p

is calculated are explained in §4.3.

Whereas
∂gφ
∂p

pushes the gait towards maximum displacement cycles, E is a measure
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Fully Actuated 
Purcell Swimmer

Passive gait same 
speed

1.33

Ac�ve gait same 
speed

1.99

3.10.42221.62

Passive Purcell 
Swimmer

Units=

= length of the swimmer

= stiffness of the passive joint

(c) Maximum efficiencies achieved by the 
      passive and active Purcell swimmer 

(b) Shape and power of input to the actuated 
      joint of the passive Purcell swimmer 

(a) Efficiency-maximizing gait 
     and pacing

Figure 4.8: Gaits that maximize efficiency along x-direction for the Purcell swimmers.
(a) The optimal gait for the passive Purcell swimmer (red) and the optimal gait for the
fully actuated Purcell swimmer (black). The thickness of the line shows the magnitude
of power required at different points of the gait. (b) The power required to execute the
optimal gait for the passive Purcell swimmer and input to the actuated joint over one
gait cycle. (c) A comparison table of the efficiencies achieved by the passive and fully
actuated Purcell swimmers moving forward at the same speed as the passive swimmer.
Note that for the passive Purcell swimmer, the optimizer stops because reducing the
frequency further or making the gait smaller does not provide any meaningful increase
in efficiency. This observation is line with the results in [56].

(c) Maximum efficiencies achieved by the 
      passive and active T-link swimmer 

Units=

= length of the swimmer

= stiffness of the passive joint

 

(b) Shape and power of input to the actuated 
      joint of the passive T-link swimmer 

(a) Efficiency-maximizing gait 
     and pacing

Figure 4.9: Gaits that maximize efficiency along x-direction for the T-link swimmers. (a)
The optimal gait for the passive T-link swimmer (red) and the optimal gait for the fully
actuated T-link swimmer (black). The thickness of the line corresponds to the magnitude
of power required at different points of the gait. (b) The power required to execute the
optimal gait for the passive T-link swimmer and input to the actuated joint over one
gait cycle. (c) A comparison table of the efficiencies achieved by the passive and fully
actuated T-link swimmers moving forward at the same speed as the passive swimmer.
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of the cost required to execute the gait and ∂E
∂p

pushes the gait towards low cost

shapes. At the most efficient gait, these two opposing gradients cancel each other

out, and we get an equilibrium for the gait optimization process.

Over a gait cycle, no energy is stored in the spring. Hence we can calculate the

energy expended, P , while executing a gait by integrating the power flow through

the actuated joint (α1).

E =

ˆ T

0

α̇1(t)
T τ1dt (4.48)

=

ˆ T

0

α̇1(t)
TM1(t)α̇(t)dt (4.49)

where M1(t) is the first row of the power metricM(t). The gradient of cost with

respect to the shape of the gait, ∂E
∂p

, is calculated by

∂E

∂p
=

∂

∂p

ˆ T

0

α̇1(t)
TM1(t)α̇(t)dt (4.50)

=

ˆ T

0

(∂α̇1

∂p
M1α̇ + (4.51)

α̇T1M1
∂α̇

∂p
+ α̇T1

∂M1

∂p
α̇
)
dt (4.52)

4.4.2 Frequency gradient of the optimal input to the actuated joint

The equation that governs the optimization process for finding the time period of

the most efficient gait is described by (4.47). The term
∂gφ
∂T

is calculated as de-

scribed in §4.3.2. The second gradient in the right hand side of (4.47) is calculated
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as

dE

dT
=
∂E

∂α1

∂α1

∂T
+
∂E

∂α2

∂α2

∂T
+
∂E

∂T
. (4.53)

Because α1 is the actuated shape variable and the shape of the input actuation

is independent of the frequency of actuation, ∂α1

∂T
reduces to zero. Therefore the

gradient of energy with respect to period reduces to

dE

dT
=
∂E

∂α2

∂α2

∂T
+
∂E

∂T
. (4.54)

The first term accounts for the fact that a change in frequency would change the

response of the passive joint α2 resulting in a change in the shape of the gait, and

hence a change in the power dissipated while executing the gait. The second term

accounts for the fact that even if the shape of the gait remains unchanged, a change

in the frequency of input to the actuated joint will change the time required to

execute the gait and hence would change the power dissipated while executing the

gait.

4.4.3 Passive Purcell and T-Link swimmers

We implemented the optimizer described in the §4.4 in Matlab by providing the gra-

dients of efficiency with respect to shape and time period, calculated using (4.46)

and (4.47) respectively, to the fmincon optimizer using the sqp algorithm. The

shape of the gait obtained is illustrated in Fig. 4.8(a) for a Purcell swimmer.
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Fig. 4.8(b) shows the power input to the actuated joint over the cycle. Fig. 4.6(c)

shows a comparison of the efficiencies achievable by the Passive and fully actuated

Purcell swimmers when the forward speed for all the systems is fixed to be equal to

the forward speed achieved by the passive swimmer when executing its maximum

efficiency cycle. Fig. 4.9 shows the same results for a passive T-link swimmer. Note

that for the Purcell swimmer, the optimizer stops because reducing the frequency

further or making the gait smaller does not provide any meaningful increase in

efficiency. This observation is line with the results from [56], where the efficiency

was found to asymptotically approach a maximum value as frequency of gait os-

cillations approached zero.

As discussed in §4.3.C, change in spring stiffness does not affect the shape and

nature of the response of the passive joint, but shifts the bode plot shown in Fig. 4.4

to the left or right along the frequency axis. An increase in spring stiffness shifts

the bode plot to the right, which results in the shape of the efficiency maximizing

gait cycle remaining the same, but the time taken to execute the gait will decrease.

The energy required to execute a gait is inversely proportional to the time taken

to execute the gait. Therefore, more energy is required to execute a gait faster.

Thus, increasing spring stiffness will result in an overall decrease in the efficiency

of swimming.
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(c) Purcell Swimmer

(d) T-Link Swimmer

(g) Purcell Swimmer

(h) T-Link Swimmer

Speed vs Frequency Efficiency vs Frequency Efficiency vs Stroke Amplitude

(e) Purcell Swimmer

(f) T-Link Swimmer

Speed vs Stroke Amplitude

(a) Purcell Swimmer

(b) T-Link Swimmer

Optimal Input

Sinusoidal 
Input

Figure 4.10: In all the subfigures, the solid red lines and the red circles show the speeds
and efficiencies predicted by numerical simulation and integral of CCF respectively. The
solid black lines show the speeds and efficiencies predicted by the constant-CCF assump-
tion used in [56] in the link-attached coordinates. The first column of figures illustrate
the speed of the (a) Purcell swimmer as a function of actuation frequency when the input
to the controlled joint is a sinusoidal oscillation of unit amplitude and when the input to
the controlled joint has the optimal shape and (b) T-link swimmer as a function of actu-
ation frequency when the input to the controlled joint has the optimal shape as obtained
in §4.3. In (a), the grey line shows the speed predicted by the constant-CCF assump-
tion for a sinusoidal input. The small amplitude perturbation analysis in [56] predicts
speed to be a monotonically increasing function of frequency for all inputs. The speed
is a monotonically increasing function of frequency for the sinusoidal input. However,
it is not monotonically increasing for the optimal input contrary to the prediction from
the small amplitude perturbation analysis in [56]. The second column of figures illus-
trate the efficiency of the (c) Purcell swimmer and (d) T-link swimmer as a function of
actuation frequency when the input to the controlled joint has the optimal shape as ob-
tained in §4.4. Figures (e)-(h) illustrate the speed and efficiency of the Purcell swimmer
and T-link swimmer as a function of the magnitude of optimally shaped input actuation
obtained from §4.4.
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4.5 Comparison with previous work

Passive swimmers have been previously studied, e.g., in [15, 38, 42, 49, 56]. Of

these works, [42, 49] and [56] are most relevant to this paper, as they discuss the

motion of swimmers with a harmonically-driven active joint and a passive joint.

The T-link swimmer used in this paper was introduced in [42] as a simplified model

to study the swimming dynamics of Schistosoma mansoni. The analysis in [56] is

particularly relevant, as it applies perturbation theory to investigate the motion of

the Purcell swimmer.

The approximation used in the perturbation analysis in [56] is equivalent to

assuming that the displacement produced by executing a gait is equal to the area

enclosed by the gait in the shape space multiplied by the constraint curvature value

at the center of the gait,

gφ ≈
¨
φa

D(−A)|0 = φa ·D(−A)|0. (4.55)

This approximation has been used in several works from the geometric mechanics

community to identify useful shape oscillations that resulted in useful net displace-

ments e.g., [50, 52].

Using the approximation in (4.55), the authors of [56] concluded that for har-

monic inputs, the speed of the swimmer monotonically increases with frequency

and asymptotically approaches a maximum value as the actuation frequency ap-

proaches ∞. They similarly concluded that the efficiency of the swimmer asymp-

totically approaches a maximum value as the actuation frequency approaches zero.
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A drawback of this approximation is that the accuracy falls steeply with in-

creasing gait size, as a larger gait would mean larger variations in the value of

CCF inside the region bounded by the gait. Our analysis improves on this ap-

proximation in three ways: first, our use of a body-averaged frame instead of the

link-attached frame in [56] “flattens” some of the nonlinearity in the system, ex-

panding the domain of gait amplitude for which the perturbation analysis gives

accurate results. Second, our use of the full integral of constraint curvature over

the area enclosed by the gait,

gφ ≈
¨
φa

D(−A), (4.56)

absorbs much of the remaining nonlinearity. Third, we use (4.56) only to calculate

gradients, and numerically evaluate the value of gφ at each step of the gradient

descent process described in §4.3 and §4.4 to avoid compounding errors from any

residual nonlinearity

Fig. 4.10(a) and Fig. 4.10(b) show how the effect on swimming speed from

changing the frequency of the input stroke for Purcell and T-link swimmers re-

spectively. The solid red lines and the red circles show the speeds predicted by

numerical simulation and area integral of curvature respectively. The solid black

and grey lines show the speeds predicted by the constant-CCF assumption used

in [56] in the link-attached coordinates for optimally shaped and sinusoidal inputs

respectively. The speeds predicted by the constant-CCF assumption are higher

than the actual speeds obtained by numerical simulations, and our integral of
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CCF is a good approximation of the ground-truth simulation.

We can also see from Fig. 4.10(a) that the velocity obtained by the Purcell

swimmer does not monotonically increase with frequency for all inputs to the

actuated joint. This results in the speed-maximizing gaits found in §4.3 having

an optimal frequency associated with them, rather than exhibiting a monotonic

increase in speed with frequency.

In the case of efficiency-maximizing gaits, for the optimal gait shape obtained

in §4.4, the efficiency does asymptotically approach a maximum value as shown

in Fig. 4.10(c) and Fig. 4.10(d) as the frequency approaches zero, but the value

is different from the maximum efficiency predicted by applying the small pertur-

bation analysis from [56] to the T-link swimmer, showing that small perturbation

analysis does not completely characterize optimal performance. In the case of the

Purcell swimmer, the efficiency-maximizing gait is small enough for the perturba-

tion analysis to yield accurate results.

Fig. 4.10(e)-(h) show how the constant-CCF assumption can introduce errors in

identifying optimal actuation shape. Fig. 4.10(e) and Fig. 4.10(f) show the effect on

the swimming speed from changing the size of the input stroke (the reference input

is the optimal input obtained in §4.3). Fig. 4.10(g) and Fig. 4.10(h) show the effect

on the swimming efficiency from changing the size of the input stroke (the reference

input is the optimal input obtained in §4.4). The solid red lines and the red circles

show the speeds and efficiencies predicted by numerical simulation and integral of

CCF respectively. The solid black lines show the speeds and efficiencies predicted

by the constant-CCF assumption used in [56] in the link-attached coordinates.
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We can see that in the case of the Purcell swimmer, the constant-CCF as-

sumption used in [56] incorrectly predicts a monotonous increase in speed with an

increase in the amplitude of the input to the actuated joint. In the case of the

T-link swimmer, the constant-CCF assumption used in [56] incorrectly predicts an

increase in efficiency as we shrink the optimal gait. The efficiency would go down

if we shrink the optimal gait, because the CCF value for T-link swimmer is higher

at the edges than at the center of the shape space. When we shrink the gait, it

loses these regions of high value, leading to a decrease in efficiency, which is not

captured by the constant-CCF assumption.

The T-link swimmer was first introduced in [42]. The analysis in this paper

agrees with the most relevant results from [42], which are that when the actuated

joint is driven by a simple harmonic input:

1. There exists a linear relationship between the speed-maximizing value of

spring stiffness and frequency of actuation.

2. The average swimming speed increases monotonically with the amplitude of

actuation from π
2

radians to 11π
9

radians.

In §4.3.3, we noted that an increase or decrease in spring stiffness shifts the Bode

plot of the response of the passive joint to the right or to the left without changing

the shape of the Bode plot resulting in frequency of the speed-maximizing input

being linearly related to the stiffness of the passive joint.

In Fig. 4.7(a), we can see that the CCF value for T-link swimmer is higher at

the edges than at the center of the shape space. Thus an increase in the amplitude
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of actuation would enclose more of the high value region leading to an increase in

speed.

4.6 Conclusions

In this paper, we have identified the geometric structure of optimal gaits for vis-

cous swimmers with passive elastic joints by combining the constraint-curvature

analysis in [61] with frequency-response models for the steady state motion of

driven oscillators. We use this structure to identify both speed-maximizing and

efficiency-maximizing gaits. The optimal gaits for passive swimmers maximize the

CCF integral relative to perimeter and pacing costs, subject to amplitude and

phase constraints of a first order system.

For the fully actuated swimmers, the maximum forward speed achievable is

only restricted by the maximum power we are able to supply the joints, but for

the swimmers with the passive elastic joint, even with more powerful actuators,

there is a theoretical maximum forward speed the system can achieve dictated by

the stiffness of the passive joint.

The important factor that makes the performance of the fully actuated swim-

mers superior to that of the swimmers with the passive elastic joint in terms of

energy efficiency is the fact that not only can the fully actuated swimmers execute

any gait the passive swimmers can execute, they can do so at a pacing that is just

as good or better than the pacing dictated by the dynamics of the passive joint,

which is the only pacing at which the passive swimmers can execute the gait.
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This raises the question of what benefits, e.g., simplicity of construction, does

having a passive elastic member give to biological organisms that locomote in a

low Reynolds number fluid? Most biological organisms have tails that resemble

an elastic filament. The propulsive and flexive dynamics of such filaments have

been well studied [13, 25, 69, 70]. Artificial microscopic swimmers with elastic

filaments have been proposed based on this body of work [19, 20]. An interesting

line of future work would involve investigating the tradeoff between elastic element

inefficiencies and structural complexity of being fully actuated.

This work is the first step towards expanding the applicability of the geometric

framework presented in [59–61] to systems where underactuated shape parame-

ters play a role in the dynamics of the system. In the case of the passive Purcell

swimmer, assuming the torque required to affect a desired shape change did not

depend on the current shape of the swimmer did not introduce significant errors

in the predicition of the limit cycle corresponding to inputs to the actuated joint

as shown in Fig. 4.1. This might not always be the case in all the swimmers we

consider. A future line of research would be to improve our frequency domain anal-

ysis by using non-linear perturbation theory to obtain more accurate predictions

of limit cycles.
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Chapter 5: Magnus Expansion and Application to Gait Analysis

Many kinematic locomoting systems can be modeled as time-varying systems with

a linear relationship between the rate of internal deformation and rate of movement

through the world. Several efforts in the geometric mechanics community [4, 46, 50,

52, 53, 64, 68] (including our own [32, 33]), have aimed at simplification of the BCH

expansion in attempts to use curvature of the system constraints (a measure of

how “non-canceling” the system dynamics are) to understand which gaits produce

useful displacements. This resulted in works that showed Lie brackets of the system

dynamics can be used to approximately identify shape oscillations that produce

useful net displacements [50, 52], and that the scale of motions for which the

curvature methods provide accurate information can be significantly extended by

pre-optimizing the choice of system coordinates [34]. By working in these new

coordinates, we have gained insight into the optimal gaits of swimmers and crawlers

in low- and high-viscosity fluids [28, 32, 33], and in granular media [27]. We used

these insights to build a variational framework to identify optimal gaits for drag

dominated kinematic systems [59, 60].

Since all these works base their analysis on the total Lie bracket formula ob-

tained by restricting the BCH expansion to the first few terms, it is crucial that

the truncation be a good approximation of the full BCH expansion. The aim of the

paper is to understand the factors affecting the accuracy of the total Lie bracket
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formula. We show that the major factors affecting the accuracy are the magnitude

of the connection vector field and the size of the gait. Because the optimal coor-

dinate choice minimizes the magnitude of the connection vector field, it improves

the accuracy of the truncated Magnus series and hence the accuracy of the total

Lie bracket formula.

The rest of the paper is organized as follows: In §5.1 we present a derivation

of the total Lie bracket formula used to identify optimal gaits. We show that

the accuracy of the total Lie bracket formula hinges on two sets of assumptions.

In §5.2, we relate the accuracy of these assumptions to the system dynamics and

the physical parameters of the gait. In §5.3, we present a heuristic for selecting

a starting point that minimizes the leading order error associated with the total

Lie bracket formula. We then demonstrate the impact of operating in optimal

coordinates on the total Lie bracket accuracy for our example systems.

5.1 Gaits and BCH formula

5.1.1 Gaits

Many locomoting systems, including our example systems move via gaits: cyclic

changes in shape that produce characteristic net displacements. We now recall

some of the conventions associated with gaits introduced in [34].

Definition 1 A gait φ with a time period of T is a periodic mapping from time

R to the shape space R, i.e. φ : R → R, such that φ(t) = φ(t + nT ), ∀n ∈ Z and
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∀t ∈ R.

Therefore the set of all possible gaits is given by,

Φ = {φ : R→M |φ(t) = φ(t+ T ),∀t ∈ R,∀n ∈ Z} (5.1)

Definition 2 The image family φ of a gait φ is the set of all gaits which share

its image (i.e. trace out the same closed curve) in R,

φ = {ψ ∈ Φ|Im(ψ) = Im(φ)} (5.2)

Note that since we are dealing with kinematic systems, the time period and pacing

taken to execute a gait does not affect the displacement produced by the gait,

hence from hereon, we will assume that all gaits we consider have a constant time

period, T .

The net displacement produced by one cycle of a gait φ with a time period T

is given by:

gφ = (g(0))−1g(T ) =

ˆ T

0

g(t)A(r(t))ṙ(t)dt (5.3)

where r(t) = φ(t). If we assume that the system starts out at the identity element

of the position space G, then gφ = g(T ).

Several efforts in the geometric mechanics community [4, 46, 50, 52, 53, 64, 68]

(including our own [32, 33]), have aimed at using the Baker-Campbell-Hausdorff(BCH)
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formula in attempts to use curvature of the system constraints (a measure of how

“non-canceling” the system dynamics are) to understand which gaits produce use-

ful displacements.

The core principle in these works is that because the net displacement gφ over

a gait cycle φ is the line integral of (2.1) along φ, the displacement can be approx-

imated by an area integral of the curvature DA of the local connection (its total

Lie bracket [34]) over a surface φa bounded by the cycle:

gφ =

ˆ T

0

−g(t)A(r(t))ṙ(t)dt =

‰
φ

−gA(r)dr (5.4)

≈ exp
(¨

φa

−dA +
∑[

Ai,Aj>i

]︸ ︷︷ ︸
DA (total Lie bracket)

)
, (5.5)

where dA, the exterior derivative of the local connection (its generalized row-wise

curl), measures how changes in A across the shape space prevent the net induced

motions from canceling out over a cycle, and the local Lie bracket
∑[

Ai,Aj>i

]
measures how translations and rotations in the induced motions couple into “par-

allel parking” effects that contribute to the net displacement.

In this chapter, our goal is to understand the factors affecting the quality of

this approximation in (5.5). To do this we first present a derivation of (5.5) and

relate the quality of the approximation to the characteristics of the system such

as the magnitude of the vector fields and characteristics of the gait, such as the

circumference and area enclosed on the shape space.
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5.1.2 Total Lie Bracket

In this section we present the derivation of the total Lie bracket formula (5.5). We

show that the accuracy of (5.5) is dependent on two sets of approximations.

The kinematic locomotion model used to describe the systems in this chapter

is

ġ(t) = g(t)A(t). (5.6)

Therefore from linear systems theory, we can write the infinitesimal time evolution

of the system as

g(t+ δt) = g(t) exp(A(t)dt), (5.7)

and the complete time evolution as

g(T ) = g(0)
t=T

R
t=0

exp(A(t)dt) (5.8)

where R is the product-integral, which is the continuous counterpart to the prod-

uct of a sequence, much in the same way that the standard integral is the continuous

counterpart to summation:

b

R
a

(I + v(x)dx) = lim
n→∞

n∏
k=1

(I + v(xk)δx) (5.9)

where δx = b−a
n

and xk = (a+ (k − 1)δx).

For all time time t, A(t) is an element of the noncommutative Lie algebra

se(2). Therefore the product-integral in (5.8) is a product of exponentials of non-
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commutative Lie algebra elements. The Baker-Campbell-Hausdorff formula tells

us how to evaluate the product of exponentials of two noncommutative Lie algebra

elements. If X and Y are two noncommutative Lie algebra elements, the BCH

formula says that

exp(X) exp(Y ) = exp
(
X + Y +

1

2
[X, Y ] +

1

12
([X, [X, Y ]] + [Y, [Y,X]])

− 1

24
([Y, [X, [X, Y ]])

− 1

720
([Y, [Y, [Y, [Y,X]]]] + [X, [X, [X, [X, Y ]]]])

+ · · ·
)

(5.10)

Thus if X and Y were to commute with each other, i.e. if [X, Y ] = 0, then,

exp(X) exp(Y ) = exp(X + Y ) (5.11)

Using this insight, if we divide the gait into four temporally equal parts and assume

local commutativity in each of the four section, we get from (5.8),

g(T ) = g(0)

t=
T
4

R
t=0

exp(A(t)dt)

t=
T
2

R
t=
T
4

exp(A(t)dt)

t=
3T
4

R
t=
T
2

exp(A(t)dt)
t=T

R
t=

3T
4

exp(A(t)dt)

≈ g(0) exp(a) exp(b) exp(c) exp(d) (5.12)
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where

a = exp

(ˆ T
4

0

dt1A(t1)

)
(5.13)

b = exp

(ˆ T
2

T
4

dt1A(t1)

)
(5.14)

c = exp

(ˆ 3T
4

T
2

dt1A(t1)

)
(5.15)

d = exp

(ˆ T

3T
4

dt1A(t1)

)
(5.16)

Thus our first assumption of local commutativity, made in in (5.12), lets us describe

the displacement resulting from a gait as

gφ = g−1(0)g(T ) ≈ exp(a) exp(b) exp(c) exp(d) (5.17)

where a, b, c and d are elements of the noncommutative Lie algebra se(2) which

encode the contribution to the final displacement from each quarter of the gait.

We can use the BCH formula to simplify the expression for total displacement

further,
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gφ ≈ exp(a) exp(b) exp(c) exp(d) (5.18)

= exp
(
a+ b+ c+ d+

1

2
([a, b] + [c, d])

+
1

2
([a, c] + [a, d] + [b, c] + [b, d])

+
1

12
([a− b, [a, b]] + [c− d, [c, d]])

+
1

4
([a+ b, [c, d]]− [c+ d, [a, b]] +

1

8
([[a, b], [c, d]])

+ · · ·
)
. (5.19)

To relate the displacement resulting from each quarter of the gait to the magni-

tude of the connection vector fields and the size of the gait we define new variables

α, β, δ and ∆ related to a, b, c, d as:

a = α− δ/2 (5.20)

b = β + ∆/2 (5.21)

c = −(α + δ/2) = −α− δ/2 (5.22)

d = −(β −∆/2) = −β + ∆/2, (5.23)

In appendix D, we show that assuming a linearly varying connection vector field
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over the shape space, α, β, δ and ∆ are related to the connection vector field by:

α = 2LA1|(0,0) (5.24)

β = 2LA2|(0,0) (5.25)

δ = 4L2∂A1

∂α2

(5.26)

∆ = 4L2∂A2

∂α1

. (5.27)

Substituting these variables, (5.20)- (5.23), into the expression for total displace-

ment (5.19), expanding and reducing the Lie brackets, we get,

exp(a) exp(b) exp(c) exp(d) = exp(−δ + ∆ + [α, β] +
1

4
[−δ,∆]

+
1

2
[(α + β +

1

4
([α,∆] + [β, δ])), (−δ + ∆ + [α, β] +

1

4
[−δ,∆])] + · · ·

)
(5.28)

To understand what these terms mean in terms of the gait and connection vector

fields of the system, we add equations (5.20)-(5.23) to obtain

a+ b+ c+ d = −δ + ∆ (5.29)

The above equation tells us that the sum of the first two terms of the BCH for-

mula in (5.28) is equal to the the sum of the contribution to the displacement

from each quarter of the gait. Adding the local commutativity approximation

equations (5.13)-(5.16), we can show that the sum of the contribution to the dis-

placement from each quarter of the gait is equal to the area integral of the curl of



105

the connection vectorfield over the region enclosed by the gait:

a+ b+ c+ d =

ˆ T

0

dt1A(t1) =

¨
φ

dA (5.30)

Therefore, the first two terms of the BCH formula in (5.28) equal the area integral

of the curl of the connection vectorfield over the region enclosed by the gait:

−δ + ∆ = a+ b+ c+ d =

ˆ T

0

dt1A(t1) =

¨
φ

dA. (5.31)

If we approximate A as a linearly varying vector field over the shape space, i.e.,

∂Ai

∂rj
is constant throughout the shape space ∀i, j, and assume a square gait of

perimeter l, the first two terms of the BCH formula in (5.28), −δ + ∆, and the

third term, [α, β], are of the order O(l2), and the other terms are O(l3) or higher.

Details of these calculations are presented in appendix D. We also get,

[α, β] =

¨
φ

[A1,A2] (5.32)

where A1 is the first column of A, and A2 is the second column of A. Note that,

although we restrict our analysis to square shaped gaits, we can always remap any

simple closed loop in the shape space onto a square through a change of coordinates

for the shape space.

In our second approximation we assume all terms of order O(l3) and higher are
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small enough to be ignored, i.e.

exp(a) exp(b) exp(c) exp(d) ≈ exp(−δ + ∆ + [α, β]) (5.33)

= exp(

¨
φ

dA + [A1,A2]). (5.34)

Therefore,

gφ ≈ exp(a) exp(b) exp(c) exp(d) ≈ exp(

¨
φ

dA + [A1,A2]) (5.35)

We can now see that the accuracy of our approximation of the displacement pro-

duced on executing a gait by the surface integral of the total Lie bracket depends

on the accuracy of two assumptions. The first set of assumptions are in (5.13)-

(5.16) where we assume local commutativity over each quarter of the gait and the

second assumption is in (5.34), where we assume all terms of O(l3) and higher from

the BCH formula are small enough to be ignored (l is the perimeter of the gait).

5.2 Accuracy of Total Lie Bracket

In the previous section, we showed that the accuracy of approximating the dis-

placement produced by a gait using the surface integral of the total Lie bracket

depends on two sets of assumptions: local commutativity assumption in (5.12) and

restricting ourselves to second order terms of the BCH formula in (5.34). In this

section, we relate the accuracy of the two sets of assumptions to the magnitude of

the connection vector field and physical parameters of the gait such as its perimeter
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and area enclosed.

5.2.1 Accuracy of Approximation I

The local commutativity assumption in (5.12) assumes commutativity in each quar-

ter of the gait. This lets us evaluate the contribution from each quarter of the gait

as

g−1(0)g(T
4
) =

T/4

R
t=0

exp(A(t)dt) ≈ exp

(ˆ T/4

0

dt1A(t1)

)
(5.36)

g−1(T
4
)g(T

2
) =

T/2

R
T/4

exp(A(t)dt) ≈ exp

(ˆ T/2

T/4

dt1A(t1)

)
(5.37)

g−1(T
4
)g(3T

4
) =

3T/4

R
T/2

exp(A(t)dt) ≈ exp

(ˆ 3T/4

T/2

dt1A(t1)

)
(5.38)

g−1(3T
4

)g(T ) =
T

R
3T/4

exp(A(t)dt) ≈ exp

(ˆ T

3T/4

dt1A(t1)

)
(5.39)

But assuming the body velocity is commutative over every quarter of the gait

will introduce errors in our analysis, and in this section we quantify these errors.

The errors will depend on the connection vector field and the shape of the gait.

To obtain an estimate of the errors introduced by assuming local commutativity,

we start with the following assumptions:

1. A linearly varying connection vector field over the shape space.

2. We restrict our analysis to families of gait that trace out squares on the shape

space.
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We then subdivide each quarter of the gait further and show that the contribu-

tion of each quarter calculated using the BCH formula asymptotically approaches,

upto O(l3),

g−1(3T
4

)g(T ) = exp
(
− β +

∆

2
− 1

3
[∆1, β]

)
(5.40)

g−1(T
2
)g(3T

4
) = exp

(
− α− δ

2
− 1

3
[δ1, α]

)
(5.41)

g−1(T
4
)g(T

2
) = exp

(
β +

∆

2
+

1

3
[∆1, β]

)
(5.42)

g−1(0)g(T
4
) = exp

(
α +

δ

2
+

1

3
[δ1, α]

)
(5.43)

where 2l is the side length of the square gait centered at the origin of the shape

space and,

α = 2lA1|(0,0) (5.44)

β = 2lA2|(0,0) (5.45)

δ = 4l2
∂A1

∂α2

∣∣∣∣∣
(0,0)

(5.46)

∆ = 4l2
∂A2

∂α1

∣∣∣∣∣
(0,0)

(5.47)

δ1 = −l2∂A1

∂α1

∣∣∣∣∣
(0,0)

(5.48)

∆1 = −l2∂A2

∂α2

∣∣∣∣∣
(0,0)

(5.49)

(5.50)
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Hence the errors introduced by the local commutativity assumption are of O(l3)

or higher, and more importantly, combining the contribution from each quarter

using the BCH formula leads to errors of O(l4) or higher in the total Lie bracket

formula. Explicit details of these calculations are shown in appendix D. Thus

errors from assumption II discussed in the next section, which are of O(l3), would

become significant before errors from local commutativity assumption.

5.2.2 Accuracy of Assumption II

In this subsection, we look at the accuracy of the approximation (5.34). Given

a, b, c and d such that (5.20)- (5.23) holds, assumption (5.34) states that

exp(a) exp(b) exp(c) exp(d) ≈ exp(−δ + ∆ + [α, β]) (5.51)

The expression on the right hand side is obtained by limiting ourselves to terms

of O(l2), where l is the perimeter of the gait. In this section we look at terms of

O(l3).

The order O(l3) term of the expansion in (5.34) is 1
2
[(α+β), (−δ+ ∆ + [α, β])].

Thus the leading order error term is

E =
1

2
[(α + β), (−δ + ∆ + [α, β])] (5.52)

=
1

2

[
(α + β),

¨
DA

]
. (5.53)
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From (5.13)-(5.16) and (5.20)-(5.23), we get that,

α + β =
(a+ b)− (c+ d)

2
=

1

2

(ˆ T
2

0

dt1A(t1)−
ˆ T

T
2

dt1A(t1)

)
. (5.54)

Therefore, for gaits belonging to the same image family, unlike the O(l2) terms,

the leading order error terms, of O(l3), depend on the starting point of the gait.

5.3 Minimizing Leading Order Error

We can use the relation between leading order error and starting point of the gait

encoded in (5.53) to identify starting points for an image family of gaits which

minimize the leading order error. Starting a gait from a point such that the

tangent to the gait at that point coincides with the general direction of the Aθ

vector field flow in the region enclosed by the gait, reduces the leading order error

to zero when the system has a constant rotational vector field. The accuracy of

the heuristic goes down with increasing non-linearity of the Aθ connection vector

field. Justification for this heuristic is presented in appendix E.

In Fig. 5.1, we demonstrate the accuracy of the starting point selection heuristic

for the differential drive car (which has a constant rotational vector field) and

kinematic snake (which has a non-constant rotational vector field). In Fig. 5.1(a)

and Fig. 5.1(c), we show a square image family of gaits with side length, L = 1,

overlaid on the rotational connection vector field for the differential drive car in

the original and optimal coordinates respectively. Similar rotational connection
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Figure 5.1: A square image family of gaits with side length, L = 1, overlaid on the
rotational connection vector field for the differential drive car in the original and optimal
coordinates are shown in (a) and (c) respectively. Similar rotational connection vector
field plots for the kinematic snake are shown in (e) and (g) respectively. The black boxes
with numbers 1 and 3 indicate the starting points which minimize the leading order error
and the blue boxes with numbers 2 and 4 indicate the starting points which maximize the
leading order error. The displacement produced by executing the square gait from these
starting points are shown in the figures adjacent to the connection vector field plots. The
red circles in (b),(d),(f) and (g) show where the systems starts out from and the red
star shows the displacement predicted by the total Lie bracket formula. The magnitude
of leading order error E depends on the starting point of the gait. The red dashed lines
represent the range of leading order error E. Starting the gait from locations denoted by
black boxes produce the least amount of error, while starting from blue boxes maximizes
the error as expected. The range of leading order error E is also smaller in the optimal
coordinates than in the original coordinate used to describe the systems.
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vector field plots for the kinematic snake are shown in Fig. 5.1(e) and Fig. 5.1(g)

respectively. In Fig. 5.1(a),(c),(e) and (g), the black boxes with numbers 1 and 3

indicate the starting points which minimize the leading order error and the blue

boxes with numbers 2 and 4 indicate the starting points which maximize the leading

order error. The displacements produced by executing the square gait from these

starting points are shown in the figures adjacent to the connection vector field

plots. The red circles in Fig. 5.1(b),(d),(f) and (g) show where the systems starts

out from and the red star shows the displacement predicted by the total Lie bracket

formula. The magnitude of leading order error E depends on the starting point of

the gait. The red dashed lines represent the range of leading order error E.

Starting the gait from locations denoted by black boxes produce the least

amount of error, while starting from blue boxes maximizes the error as expected in

the differential drive car. In the case of the kinematic snake, our predictions about

starting points that produce extremas of leading order error E are accurate despite

non-constant Aθ connection vector fields in the original and optimal coordinates

because of symmetries in the rotational vector fields. The range of leading order

error E is also smaller in the optimal coordinates than in the original coordinate

used to describe the systems.

5.4 Conclusion

Identifying optimal gaits for locomotion is an important topic of research in the

robotics community. In [59], we presented a geometric framework for identifying
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optimal gaits for kinematic locomoting system. That work built on several re-

sults from the geometric mechanics community aimed at relating the displacement

produced by a gait to physical parameters of the gait using a truncated BCH ex-

pansion. The accuracy of the truncated BCH expansion depended on the choice

of body coordinates. In [31], we presented a way of choosing optimal coordinates.

In this paper, our goal was to relate the magnitude of the higher order BCH

terms associated with a gait to physical parameters of the gait and the magnitude of

the connection vector fields, and show that in the optimal coordinates these decay

faster than in the unoptimized coordinates. Along with identifying optimal gaits

using the framework, we can now provide an estimate of uncertainty of resulting

displacement because of ignoring higher order BCH expansion terms.
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Chapter 6: Data-driven Connection in Granular Media

We have focused on swimmers in drag dominated-environments so far in this the-

sis. The dynamics governing the operation of these systems can be analytically

obtained using resistive force theory (RFT). The optimization framework presented

in this thesis is applicable to a larger class of kinematic systems. In this chapter,

we demonstrate the process of obtaining a data-driven connection for a robot op-

erating in granular media. This will lay the groundwork for future exploration into

identifying optimal gaits in granular media using the framework presented in this

thesis.

Studying motion of animals and robots that maneuver through sand, rubble

and debris is often analytically intractable and computationally very expensive.

This makes obtaining an analytical model or a high-fidelity finite element model

difficult.

Previous research has shown that for sand swimming of robots in dry granular

media, arguably the simplest flowing terrestrial material, the granular media can be

modelled as a “frictional fluid” in which forces are dominated by Coulomb friction,

making them insensitive to rate, and in which inertial effects are small. Hence we

would expect the connection vector fields generated by our approach for the SEA

snake robot used for experiments in this chapter to be qualitatively similar to the

connection vector field of a swimming robot with an identical morphology in a
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drag-dominated fluid.

6.1 Previous Work

A simple Purcell swimmer in granular media was studied in [27]. An empirical

swimming model of the robot was generated by treating the media as a “frictional

fluid.” The predictions of displacements produced by the robot were shown to be

excellent at small amplitudes and good at large amplitudes.

A data-driven geometric model of a snake robot was presented in [16] by re-

peating the following process over a uniform sampling of the shape space.

1. Sampling a configuration

2. Commanding a small shape velocity

3. Measuring the resultant body velocity

4. Fitting the local connection

When experimentally determining the local connection, the surface is flattened

after each “twitch”. This leads to a contact pattern of the robot and media that is

different from what the robot actually experiences when executing a gait, resulting

in a discrepancy in the magnitude of predicted and observed displacements.
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6.2 Data-driven Connection Generation

6.2.1 Shape and position data from encoders and markers

The data for generating the connection for the SEA snake is obtained by letting

the robot do multiple trials of different gaits (circular, spiral, rotating ellipsoidal).

In Fig. 6.1, we overlay shape space trace from all the trials used for obtaining the

data driven connection vector field. We can see it provides a good covering of the

shape space.

The next step to obtaining the data driven connection is deciphering the shape

velocity and position velocity from marker and encoder data at each data point.

Encoder data from the SEA robot is fairly robust and obtaining shape and shape

velocity data from encoder data is fairly straightforward. During data collection,

some markers were often occluded by the granular medium and the encoder data

is generally more accurate than the marker data. We use a combination of marker

and joint angle data to obtain the body frame, which is defined to be located at

the center of the fifth link and oriented along the fifth link. At each step we use

the encoder data to correct the marker data so that the marker data respects the

observed joint angles.

The 7 markers for data collection are placed approximately at the centers of

links 2,3,4,5,6,7 and 8. Let (xi, yi) denote the location of the markers on link i.

If we assume the the center of the 5th link is at (x̂5, ŷ5) and the link is oriented

at angle θ, we can reconstruct the locations of the centers of other links through

kinematics and joint angle data. Let’s call these locations (x̂i, ŷi). We find the
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Figure 6.1: Motion of the SEA snake from all datasets imposed on a single figure. These
motions were used to experimentally determine the local connection A for the SEA snake.

position and orientation of the body frame by running the following optimization

at each time step of each trial:

argmin
x̂5,ŷ5,θ

8∑
i=2

(xi − x̂i)2 + (yi − ŷi)2 (6.1)

This process is equivalent to correcting the observed marker data at each step so

that it respects the joint angle data from the encoders and then obtaining the

location and orientation of the middle link from the corrected marker data.
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6.2.2 Connection from shape and position data

The process of finding the data-driven connection vector field from the shape veloc-

ity and position data is identical to the method presented in [62]. As explained in

Chapter 2, the geometric model assumes a linear relationship between the system’s

shape and changes in its position,

◦
g = A(r)ṙ. (6.2)

The local connection A is a function of purely the shape of the robot and the goal

of our analysis is to quantify this relationship. We do this by

1. Overlaying a uniform grid on top of our shape space

2. Estimating the value of the local connection at each grid point using data

points (combination of shape velocity and the resulting position velocity)

near the grid point [62].

6.3 Results

The connection vector fields obtained through data-driven analysis are shown in

Fig. 6.2. The y and θ-directional vector fields agree nicely with what we expect

from theory. The x- directional vector field shows qualitatively similar properties

to the vector field predicted by theory but the agreement is not as good as that

seen in y and θ directions. In Fig. 6.3,6.4 and 6.5, we compare the body velocities

predicted by our data-driven vector fields (black-dashed lines) with the observed
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body velocities (colored lines) in the x, y and θ direction respectively.

6.4 Future Directions

6.4.1 Predicting displacements for systems with higher dimensional

shape spaces

The connection vector field for the viscous swimmer was generated using Resistive

Force Theory (RFT) with a 2:1 ratio between normal and tangential drag coeffi-

cients. We know RFT describes granular locomotion well from previous work but

the normal to tangential drag coefficient depends on the material of the robot and

the substrate. If we can identify this ratio from the data driven vector fields we

have generated, we can use it to predict the displacements produced by the SEA

snake when we use more than two shape modes to describe its motion.

The brute force way of finding the normal to tangential drag ratio governing the

SEA snake would be to generate theoretical vector fields at a range of these ratios

and identify the vector field that matches best with the data-driven vector field.

Combining the data-driven physics framework with the soap bubble optimizer, we

would be able to predict optimal gaits when complex and more than two shape

modes are employed from data obtained while executing gaits described by simple

shape modes.
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Figure 6.2: Comparison of the connection vector fields obtained through RFT for the 9
link viscous swimmer with the connection vector fields obtained through data driven anal-
ysis for the SEA snake. The connection vector fields show many qualitative similarities.
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Figure 6.3: A comparison of the predicted x-directional body velocity by our data-driven
vectorfield (black dotted line) and the observed x-directional body velocity when executing
spiral gaits.

Figure 6.4: A comparison of the predicted y-directional body velocity by our data-driven
vectorfield (black dotted line) and the observed y-directional body velocity when executing
spiral gaits.

Figure 6.5: A comparison of the predicted rotational body velocity by our data-driven
vectorfield (black dotted line) and the observed rotational body velocity when executing
spiral gaits.
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6.4.2 Inclines

Another interesting line of inquiry would be generating the data driven vector

fields when the SEA snake is operating on an inclined surface. Along with the

normal to tangential drag ratio, the drag would also depend on whether the snake

is moving up or down the incline. An initial study could involve identifying the

connection vector fields when the snake is moving purely downhill and when the

snake is moving purely uphill. It would be interesting to see if the difference in

dynamics between moving uphill and downhill can be captured just by a change

in the normal to tangential drag ratio or if we need a physics model fundamentally

different from RFT to capture the dynamics of the snake moving on an incline.
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Chapter 7: Conclusion

In this thesis, we consolidate upon and extend prior geometric insights about

locomotion into a set of geometric principles that govern the shape of optimally-

efficient gaits for drag dominated systems. We formally encode these principles

in a set of geometric expressions that together make up the gradient of the gait

efficiency with respect to variations in the gait trajectory. We use this gradient in

a gradient-descent solver to find optimal gaits, but more fundamentally, the gra-

dient geometrically describes the dynamics underlying any other gait optimization

algorithm applied to the system.

For systems with two shape variables, the dynamics of this solver for a fully

actuated swimmer are analogous to those of a soap bubble, with the Lie bracket

providing an “inflating pressure” to the trajectory and the Riemannian metric on

the shape space contributing “surface tension” that halts growth of the cycle in

the face of diminishing returns, and a “concentration gradient” that provides a

power-optimal pacing along the gait. Together, these elements drive the gait cycle

to a “comfortable stride” that converts shape change effort into net displacement

with optimal efficiency.

By extending the gradient calculation to systems with three shape variables we

see that dynamics of our solver generalize to maximizing flux through an oriented

surface. For systems with three shape variables, the constraint curvature functions
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can be visualized as vector flux because each surface element has a unique normal.

In systems with more than three shape variables, each surface element no longer

has a unique normal direction associated with it, and we thus drop the “vector

flux” analogy for these higher-dimensional systems, but can preserve the idea of

two-form flux passing through the surface elements that make up the “interior” of

the gait.

We demonstrated this variational principle in operation on a number of test

systems in viscous-dominated environments, including Purcell’s three-link swim-

mer (a standard minimal template for locomotion modeling) and a serpenoid

swimmer (a model widely used in studies of animals and snake robots). In the

lower-dimensional cases, the optimal gaits found by our approach match those

previously found by exhaustive optimizations of the gait cycles [66], and in the

higher-dimensional cases, the optimizer allowed us to efficiently explore a space of

candidate swimming morphologies.

We also presented how the framework can be used to simultaneously optimize

design and control variables for locomoting systems. We demonstrated this by

finding the optimal link length ratio for the Purcell swimmer.

In the context of related works, our framework can be viewed as a “macro-

scopic” extension of the Lie-bracket control schemes in [50, 52]. This extension

is significant because it uses the geometry of the systems’ dynamics to identify

the amplitudes of their most efficient gait cycles (in addition to the useful sets of

phase-couplings identified in previous work). For our example systems swimming

at low Reynolds number, the two-dimensional “soap-bubble” analysis can be seen



125

as an instantiation of the boundary-value problem suggested in [3], for which we

have analytically constructed a gradient from the curvature of the constraints, and

the higher-dimensional portions of a work to be a generalization of this princi-

ple. These extensions and generalizations of previous work in the literature have

both been enabled by our calculation of a minimum-perturbation body frame [34],

which significantly increases the accuracy of Lie-bracket approximations to large

motions.

We then extend this framework to study the geometric structure of optimal

gaits for viscous swimmers with passive elastic joints by combining the constraint-

curvature analysis in [61] with frequency-response models for the steady state mo-

tion of driven oscillators. We use this structure to identify both speed-maximizing

and efficiency-maximizing gaits. The optimal gaits for passive swimmers maximize

the CCF integral relative to perimeter and pacing costs, subject to amplitude and

phase constraints of a first order system.

As discussed in §4.2.2, for the fully actuated swimmers, the maximum forward

speed achievable is only restricted by the maximum power we are able to supply

the joints, but for the swimmers with the passive elastic joint, even with more

powerful actuators, there is a theoretical maximum forward speed the system can

achieve dictated by the stiffness of the passive joint.

The important factor that makes the performance of the fully actuated swim-

mers superior to that of the swimmers with the passive elastic joint in terms of

energy efficiency is the fact that not only can the fully actuated swimmers execute

a much larger set of gaits, they can execute any gait the passive swimmer can
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execute at a pacing that is just as good or better than the pacing dictated by the

dynamics of the passive joint.

This raises the question of what benefits, e.g., simplicity of construction, does

having a passive elastic member give to biological organisms that locomote in a

low Reynolds number fluid? Most biological organisms have tails that resemble

an elastic filament. The propulsive and flexive dynamics of such filaments have

been well studied [13, 25, 69, 70]. Artificial microscopic swimmers with elastic

filaments have been proposed based on this body of work [19, 20]. An interesting

line of future work would involve investigating the tradeoff between elastic element

inefficiencies and structural complexity of being fully actuated.

The work presented in chapter 4 is the first step towards expanding the appli-

cability of the geometric framework presented in [59–61] to systems where under-

actuated shape parameters play a role in the dynamics of the system. In the case

of the passive Purcell swimmer, assuming the torque required to affect a desired

shape change did not depend on the current shape of the swimmer did not intro-

duce significant errors in the predicition of the limit cycle corresponding to inputs

to the actuated joint as shown in Fig. 4.1. This might not always be the case in

all the swimmers we consider. A future line of research would be to improve our

frequency domain analysis by using non-linear perturbation theory to obtain more

accurate predictions of limit cycles.

The gradient calculation process in Chapters 3 and 4 depends on the total

Lie bracket formula obtained by restricting the BCH expansion to the first few

terms. It is crucial that the truncation be a good approximation of the full BCH
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expansion. In chapter 5 we explain the factors affecting the accuracy of the total

Lie bracket formula. We show that the major factors affecting the accuracy are

the magnitude of the connection vector field and the size of the gait. Since, the

optimal coordinate choice minimizes the magnitude of the connection vector field,

it improves the accuracy of the truncated Magnus series and hence the accuracy of

the total Lie bracket formula. We relate the accuracy of these assumptions to the

system dynamics and the physical parameters of the gait, present a heuristic for

selecting a starting point that minimizes the leading order error associated with

the total Lie bracket formula.

A key goal of our geometric study of locomotion is to make this approach

feasible for robots whose dynamics are difficult to model from first principles, as

in the granular systems of [16, 27]. As they do for the ideal system models used

as examples in this paper, the dimensionality extensions and explicit optimality

criteria discussed here will broaden the classes of systems that we can consider

in the empirical-geometric work. Additionally, the geometric structure we discuss

here forms the foundation of our geometric-Floquet approach to online data-driven

locomotion analysis and optimization on very-high dimensional systems [10].
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Appendix A: Relation to sub-Riemannian Geometry

In the geometric mecahnics community, optimal paths between two points in the

configuration spaces of swimmers in drag dominated environments have been iden-

tified as being the subriemannian geodesics joining these two points [48]. In this

section, we review what subriemannian geodesics are, discuss previous research

aimed at finding these subriemannian geodesics and present why the variational

framework presented in this work simplifies the process of finding a subriemannian

geodesic.

For swimmers in a drag dominated environment, the constraints (which are

completely encoded in the local connection A) determine a vector subbundle of the

tangent bundle of Q, H ⊂ TQ called the horizontal distribution. This horizontal

distribution represents the set of all velocities q̇ the swimmer can achieve. Any

path that is tangent to H is called a horizontal path. Any absolutely continuous

horizontal path that minimizes the distance (according to the power metric M)

between any points on it is called a subriemannian geodesic [48].

Many methods to find these geodesics are based on the theorem proved in [5, 6],

which states that every subriemannian geodesic is the cotangent projection to Q

of a solution on T ∗Q to the Hamiltonian differential equations for the Hamilto-

nian H, which is uniquely determined by the power metric M and the horizontal

distribution H. In general the Hamiltonian differential equations are a set of 2n
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coupled first order differential equations, where n is the dimension of Q. This

makes calculating the subriemmanian geodesic a numerically expensive problem.

A shooting based method to find subriemannian geodesics is presented in [2].

Gaits are closed loops in the shape space R, which can be identified as the

quotient space of Q under the group action G, Q/G. With each gait φ : [0, 1]→ R

and a base point φ(0), we can associate a measure of the movement along the

fiber produced by executing the gait, called the representative holonomy of φ with

respect to φ(0). The problem of finding the shortest loop with a given holonomy

is called the isoholonomic problem and has been studied in detail in [21, 43, 48].

The version of this problem most relevant to us is finding a shortest loop with

a given holonomy class independent of the base point in R as studied in [47].

This shortest loop is a subriemannian geodesic, and [2] presents a shooting based

method to find such a geodesic. This method was also used in [1] to identify

optimal gaits for low-Re swimmers. That paper also presented analytical solutions

for small shape changes that optimize efficiency. Similar schemes were used in [9]

to identify optimal gaits for copepod swimmer and the purcell swimmer. The

problem addressed in this work can be considered as an extended isoholonomic

problem where amongst all the subriemannian geodesics that are horizontal lifts

of closed loops in the shape space and have representative holonomy in a certain

desired direction, we want to find the geodesic that maximizes the efficiency η as

defined in 2.4. The numerical advantages of our method stem from the facts that:

1. In the optimal coordinates, all gaits within the same image family have ap-

proximately the same holonomy. So we only have to identify the image of the
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gait, whose horizontal lift yields the most efficient subriemmanian geodesic

with holonomy in a certain desired direction.

2. Switching to the optimal coordinates makes the approximation in (5.5) valid

for large angle gaits. This approximation enables quicker computation of

the change in holonomy with respect to small perturbations of the gait φ,

because the approximation makes the mapping from the image of the gait to

holonomy of the gait history independent (In the optimal coordinates, if we

change one part of the gait, the contribution of the other parts towards the

holonomy of the gait does not change).
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Appendix B: Kinematics of LowRe Swimmers Obtained using RFT

B.1 Kinematics of LowRe Swimmers Obtained Using RFT

For all the example systems in the work, we obtain the local connection A and

metric M by applying a resistive force model to the system geometry. This ap-

pendix describes how to define the geometry for a n-link swimmer and how to

apply RFT to obtain A and M.

B.2 Position of links and joints

Each link λi in the chain has link length `i, and each joint σj in the chain has an

angle αj. Using the standard matrix representation of planar translations,

(x, y, θ) =


cos θ − sin θ x

sin θ cos θ y

0 0 1

 , (B.1)
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the transformation associated with moving by half a link length (from the proximal

end of a link to its midpoint, or from the midpoint to the distal end) is

hi =


1 0 `i/2

0 1 0

0 0 1

 , (B.2)

and the transformation associated with each joint (from the distal end of the

proximal link to the proximal end of the distal link) is

aj =


cosαj − sinαj 0

sinαj cosαj 0

0 0 1

 . (B.3)

Taking the midpoint of the first link as being at the origin (with an identity

transformation), the relative transformation from this link to each other link is

given by the right-propagating product of the intermediate transformations,

gλi=1
= Id (B.4)

gλi≥2
= −→

i∏
k=2

(hk−1)(ak)(hk), (B.5)

where the midpoint-to-midpoint transformations are formed by combining a half-

length step along the proximal link, the joint rotation, and a half-length step along

the distal link.
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The joint locations are calculated similarly, with the stator of the first joint at

the end of the first link, and the location of each subsequent joint given by the

product of the relative transformations,

gσj=1
= h1 (B.6)

gσj≥2
= h1−→

j∏
k=2

(ak−1)(hk)(hk), (B.7)

where the stator-to-stator transformations are formed by combining the joint ro-

tation and two half-steps along the link.

Multiplying the inverse of the joint positions by the link positions gives the

positions of the links relative to the joints,

h i
j

= (g -1σj)(gλi). (B.8)

B.3 Velocities of links and joints

If the joints are held rigid, the body velocity of link i is related to the body velocity

of the base link by the adjoint-inverse mapping associated with its position relative

to the base link,

◦
gi = Ad-1gλi

◦
g1, (B.9)

where the adjoint-inverse mapping encodes the cross-product and rotation re-

quired to transfer velocities between frames on a rigid body,
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Ad-1g =

rotation
cos θ sin θ 0

− sin θ cos θ 0

0 0 1


cross product
1 0 −y

0 1 x

0 0 1

 (B.10)

=


cos θ sin θ x sin θ − y cos θ

− sin θ cos θ x cos θ + y sin θ

0 0 1

 . (B.11)

Similarly, if the base link is held fixed and a single joint is rotated, the body

velocity of each link distal to that joint is related to the joint velocity by the

adjoint-inverse mapping associated with the position of the link relative to the

joint (and links proximal to the joint do not move),

◦
gi>j = Ad-1h i

j


0

0

α̇j

 ⇐ links distal to joint (B.12)

◦
gi≤j =


0

0

0

 ⇐ links proximal to joint. (B.13)

If both the base link and the joints are moving, then the body velocity of

the links is the sum of the contributions from the base-link and joint motion.
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This means that we can combine the adjoint-inverse mappings from (B.9), (B.12),

and (B.13) into a set of augmented matrices Ji that serve as Jacobians from the

system’s generalized velocity (body velocity of the base link and the joint angular

velocities) to the body velocities of the links,

◦
gi = Ji



◦
g1

α̇1

...

α̇i−1

α̇i
...

α̇m



(B.14)

where

Ji =

Ad-1gλi Ad-1h i
1


0

0

1

 . . . Ad-1h i
i−1


0

0

1

 03×(n−i)

 . (B.15)

B.4 Low Reynolds number resistive force model

With the kinematics of the system described in (B.5) and (B.14), we can calculate

the forces on the system. At low Reynolds number, swimming bodies experience

linear resistive drag, with geometry-dependent coefficients. In a full model for

these forces, the drag coefficients depend on the relative proximity and orientation



144

of the bodies, but a useful approximation to the dynamics for slender bodies is to

take the drag forces on a link as being linearly related to the link’s body velocity

as

F b
i = −

D︷ ︸︸ ︷
L

kL

kL3

12

 ◦gi, (B.16)

where k is the ratio between longitudinal and lateral drag coefficients and the

kL3

12
term is the result of integrating the lateral drag on a spinning object over its

length,
´ L/2
−L/2 (ks)s ds. (In a more general model, the structure of (B.16) would

be preserved, but D would become a function of α and would potentially gain

off-diagonal terms.)

Forces are mapped along bodies by the dual adjoint actions Ad∗g, which are

encoded by the transposes of the adjoint actions. The map from body-frame forces

on the ith link, F b
i , to the corresponding body-frame forces acting on the base link,

F b
1 , is specifically given by the dual adjoint-inverse mapping,

F b
1 = Ad–∗gλi

F b
i , (B.17)

which expands as
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Ad–∗g =


cos θ − sin θ 0

sin θ cos θ 0

x sin θ − y cos θ x cos θ + y sin θ 1

 (B.18)

and, as before, encodes the rotation and cross product operations. Here, be-

cause of the transposition, the dual adjoint action transforms translational forces

in the input into rotational moments in the output (rather than transforming ro-

tational velocity in the input to translational velocity in the output).

Combining the drag matrix from (B.16) with the dual adjoint-inverse matrix

in (B.18) and the Jacobians from (B.14), then summing over the links, produces

a linear map from the system body and shape velocity to the force acting on the

body, which we denote ω:

F b
1 =

( ω(α)︷ ︸︸ ︷∑
i

Ad–∗gλi
(–D) Ji

)◦g1
α̇

 , (B.19)

in which the dependence of ω on α is inherited from the J and Ad–∗ terms.

At low Reynolds numbers, swimmers are at quasistatic equilibrium, with the

net external force equal to zero in all directions. This means that the ω term

from (B.19) acts as a Pfaffian constraint on the feasible velocities for the system:

for a set of
◦
g1 and α̇ velocities to be a solution to the system equations of motion,

they must be in the null space of ω:
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[0] = ω(α)

◦g1
α̇

 . (B.20)

We can convert this null-space condition on achievable velocities to a mapping

from specified α̇ shape velocities to their complementary body velocities
◦
g1 inside

the null space. We first separate ω into two blocks, one of which operates on the

body velocity and the second of which operates on the shape velocity,

[0] =

[
ωg ωα

]◦g1
α̇

 , (B.21)

Taking advantage of the left-hand side of this equation being zero, we then

manipulate the blocks of the constraint equation as

−ωg
◦
g1 = ωαα̇ (B.22)

◦
g1 = −ω -1

g ωαα̇ (B.23)

◦
g1 = −A(α)α̇, (B.24)

with A in the final expression serving as a linear map from shape to body

velocities of the system, and known in the geometric mechanics literature as the

system’s local connection.

Because A linearly maps α̇ to
◦
g1, we can use it to construct a set of Jacobians

Jαi mapping from α̇ to the body velocities of the links, with
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◦
gi = Ji(α)

−A(α)α̇

α̇

 =

( Jαi (α)︷ ︸︸ ︷
Ji(α)

−A(α)

Idm×m

)α̇, (B.25)

where Id is an identity matrix.

In addition to acting as a linear map from body velocity to body force, the

drag matrix D from (B.16) also serves as a quadratic map from body velocity of

a link to the power required to maintain that velocity in the presence of viscous

drag,

Pi = F b
i ·
◦
gi = (D

◦
gi)

T ◦gi =
◦
gTi D

◦
gi. (B.26)

Pre- and post-multiplying the drag matrix by the Jacobian in (B.25) pulls it

back to an effective drag matrix for that link on the joint angle space,

Pi = α̇T
( Dα

i︷ ︸︸ ︷
Jα,Ti DJαi

)
α̇. (B.27)

Summing the Dα
i matrices across the links produces a total drag matrix Dα on

the joint angle space,

P =
∑
i

Pi = α̇T
( Dα︷ ︸︸ ︷∑

i

Jα,Ti DJαi

)
α̇. (B.28)

As discussed in [35] and the main text, this drag matrix serves as a Riemannian

metric on the joint space, such that pathlengths
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s =

ˆ √
dαTDα dα (B.29)

are equal to the time required to traverse paths in the shape space at constant

unit power dissipation.

B.5 Subriemannian geometry

From a subriemannian perspective, the local connection and metric tensors from (B.24)

and (B.28) can be calculated by first using the link Jacobians Ji to pull the drag

matrices back to a metric tensor M on the full configuration space,

P =

[
◦
gT1 α̇T

]( M︷ ︸︸ ︷∑
i

JTi Di Ji

)◦g1
α̇

 . (B.30)

We then generate our connection on the configuration space by taking the

vertical space of motions as the pure body velocities, and the horizontal space

of motions (allowable under the system constraints) as being orthogonal to the

vertical velocities with respect to M , i.e.

V ⊂ TQ 3

◦g1
0

 (B.31)

H ⊂ TQ 3 vTMh = 0. (B.32)



149

Taking the metric tensor M as having a block structure

M =

Mg Mgα

MT
gα Mα

 (B.33)

(with separations corresponding to the separation between
◦
g1 and α̇ in the

generalized velocity vector), the top section of M must have same nullspace as the

ω constraint calculated in (B.19) (and here happens to be equal to ω), because

horizontal velocities must produce zero metric product with vertical velocities: the

condition

0 =

[
◦
gT1 0

]
V

M

◦g1
α̇


H

(B.34)

implies that

0 =

[
Mg Mgα

]◦g1
α̇


H

(B.35)

from which we can construct the local connection as A = M -1
g Mgα.

Once we have constructed this local connection, we can pull back the metric

M from the full configuration space to the base space as

P = α̇T
(

MB︷ ︸︸ ︷[
−AT Idm×m

]
M

 −A
Idm×m

)α̇, (B.36)
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with the result that MB is equal to the Dα drag matrix that we calculated in (B.28).

B.6 Changing frames

For visualizing system motion, it is often helpful to use a base frame that is not

the first link. For example, many system symmetries are more apparent if we use

the middle link of a chain, or a generalized center-of-mass frame at an averaged

position and orientation of the links. If we designate the new base frame as link

0, we can take the position of the new body frame relative to the original link as

g 0
λ1

, and the positions of the other links relative to the new body frame are

gλi
0

= (g -10
1
)(gλi). (B.37)

Similarly, we can use the position of the new body frame relative to the original

base link to transform the link Jacobians so that they take the body velocity of

the new frame and the shape velocities as inputs,

◦
gi = J i

0

◦g0
α̇

 . (B.38)

When calculating J i
0
, we need to account for the fact that changing the joint

angles moves the new body frame relative to the original base link. To make the

calculation, we first start by finding the Jacobian from the joint angular velocities

to the new frame’s body velocity, with the original body frame held fixed. This is
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the derivative of the g0 frame’s position with respect to the joint angles, rotated

into the g0 frame as

J 0
α

=


cos θ0 sin θ0 0

− sin θ0 cos θ0 0

0 0 1

 ∂g0(α)

∂α
. (B.39)

Once we have found this Jacobian, we can separate the original link Jacobians into

the blocks that interact with base-link and joint motion,

◦
gi =

[
Ji,g Ji,α

]◦g1
α̇

 , (B.40)

and use these blocks to calculate the new link velocities as

◦
gi =

J i
0︷ ︸︸ ︷[

(Ji,g Ad
-1
gλ1

0

) (Ji,α − Ad-1gλi
0

J0)

]◦g0
α̇

 , (B.41)

where the Ad-1gλ1
0

term in the first block maps
◦
g0 to

◦
g1, on which Ji,g then acts to

produce its contribution to
◦
gi. The −Ad-1gλi

0

J0 transformation on the second block

makes its contribution to the link body velocity relative to the new body frame’s

motion, rather than relative to the original base link’s motion. Alternatively, the
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new link Jacobians can also be written directly as

◦
gi =

J i
0︷ ︸︸ ︷[

Ad-1gλi
0

Ji,α − Ad-1gλi
0

J0

]◦g0
α̇

 , (B.42)

in which the first block (corresponding to rigid motion of the system) is recognized

as being simply the adjoint mapping associated with the position of the link relative

to the new body frame.

Once the gλi
0

and J i
0

terms have been calculated, they may used wherever the

gλi and Ji terms were previously used, such as in the calculations of low Reynolds

numbers described above.

B.7 Continuous backbones

To calculate the kinematics of the continuous-backbone systems, we use an essentially-

similar procedure to that for the discrete-link system, except that the product and

summing operations are replaced by integrals. In place of discrete joint angles,

the shape of a continuous system is given by its curvature κ, which is the rate

at which the tangent direction of the body changes along the length of the body.

Taking κ as a function of the shape variables α and the position s along the body,

the displacement of a frame tangent to the body at point s relative to the tangent

frame at s = 0 is the integral along the body of a vector that flows along the body
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at unit speed while rotating at rate κ,

h(α, s) =

ˆ s

0


cos θ(α, S) sin θ(α, S) 0

− sin θ(α, S) cos θ(α, S) 0

0 0 1




1

0

κ(α, S)

 dS. (B.43)

The Jacobian from shape velocity to body velocity of a tangent-frame on the system

is the gradient of h(α, s) with respect to α, rotated into that tangent frame,

Jα(α, s) =


cos θ(s) sin θ(s) 0

− sin θ(s) cos θ(s) 0

0 0 1

∇αh(α, s), (B.44)

where by taking the gradient of (B.43), making an exchange in the order of inte-

gration and derivation, and applying the product rule, the gradient of h is

∇αh(α, s) =

ˆ s

0

(
∇αθ


− sin θ − cos θ 0

cos θ − sin θ 0

0 0 1




1

0

κ



+


cos θ sin θ 0

− sin θ cos θ 0

0 0 1




1

0

∇ακ


)
dS, (B.45)
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in which (by a second exchange of integration and derivation, this time applied to

the θ component of (B.43))

∇αθ(α, s) =

ˆ s

0

∇ακ(α, S) dS. (B.46)

Once h(α, s) and Jα(α, s) have been found, J(α, s) can be constructed by con-

catenating it with the adjoint inverse from the base frame to the tangent frame at

s,

J(α, s) =

[
Ad-1h(α,s) Jα(α, s)

]
, (B.47)

enabling computation of the Pfaffian, shape-space drag metric, and full-configuration

drag metric by substituting
´ s
0

for ∑
i

into their respective equations.
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Appendix C: Comparison with Lighthill Efficiency

Lighthill’s efficiency is defined as the mechanical power required to drag the swim-

mer at a given velocity, vreq, at a fixed configuration, by an externally applied

force, divided by the actual power required for swimming at the same velocity,

ηlh =
Pref
Pavg

, (C.1)

where Pref is the mechanical power required to drag the swimmer at a given velocity

vreq at a fixed configuration, and Pavg is the average power required for the swimmer

swimming at the same velocity. Note that, Pavg is a function of the gait the

swimmer is executing, φ, and Pref is constant across all gaits.

It is readily shown that for a given swimmer, ηlh is proportional to
v2avg
Pavg

[56].

Ignoring the proportionality factor we can write,

ηlh =
v2avg
Pavg

(C.2)

where vavg is the average velocity of the swimmer.

In this paper we use a geometric measure of efficiency, η2, defined in (4.18) as:

η2 =
gφ
s
. (C.3)
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In this appendix, we show that for fully actuated swimmers this definition is equiv-

alent to Lighthill’s efficiency, i.e. we will show that the gait that maximizes η2,

maximizes Lighthill’s efficiency and vice versa.

Since s is the pathlength of the gait in the shape space as measured under the

power metric, we can rewrite η2 as:

η2 =
gφ´ T

0

√
P (t)dt

(C.4)

From [7], we know that the optimal pacing for any gait utilizes a constant power

pacing. Hence for all t,

P (t) = Pavg (C.5)

Substituting (C.5) into the expression for η2, we get,

η2 =
gφ√
PavgT

(C.6)

=
vavg√
Pavg

(C.7)

=
√
ηlh (C.8)

Since square root is a monotonic function, a gait that maximizes our definition

of efficiency also maximizes the Lighthill efficiency and vice versa.
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Appendix D: Local Commutativity Assumption

In this subsecton, we quantify the errors introduced by the local commutativity

assumption in obtaining the Lie bracket formula (5.12). In this analysis, we will

restrict ourselves to square gaits of side length 2L and we start the gait from the

bottom left corner. We also assume a linearly varying vector field. Note that,

while we restrict our analysis to square shaped gaits, we can always remap any

closed loop in the shape space onto a square through a change of coordinates for

the shape space. From the local commutativity assumption, for the first quarter

of the gait we get

g−1(0)g(T
4
) =

T/4

R
t=0

exp(A(t)dt) ≈ exp

(ˆ T/4

0

dt1A(t1)

)
(D.1)

Since we have assumed a linearly varying vector field, we can use Taylor series

expansion to obtain the value of the connection vector field over the shape space,

g−1(0)g(T
4
) ≈ exp

(ˆ T
4

0

dt1A(t1)
)

(D.2)

= exp
(ˆ (L,−L)

(−L,−L)
A(r1, r2)dr

)
(D.3)

= exp
(ˆ (L,−L)

(−L,−L)

(
A|(0,0) + r1

∂A

∂α1

+ r2
∂A

∂α2

)
dr
)

(D.4)

= exp
(

2L
(
A1|(0,0) − L

∂A1

∂α2

))
(D.5)
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We can obtain similar expressions for displacements resulting from other quarters

of the gait:

g−1(T
4
)g(T

2
) ≈ exp

(
2L
(
A2|(0,0) + L

∂A2

∂α1

))
(D.6)

g−1(T
2
)g(3T

4
) ≈ exp

(
− 2L

(
A1|(0,0) − L

∂A1

∂α2

))
(D.7)

g−1(3T
4

)g(T ) ≈ exp
(
− 2L

(
A2|(0,0) + L

∂A2

∂α1

))
(D.8)

To make the equations describing displacement resulting from each quarter of

the gait to the magnitude of the connection vector fields and size of the gait concise,

we define new variables:

α = 2LA1|(0,0) (D.9)

β = 2LA2|(0,0) (D.10)

δ = 4L2∂A1

∂α2

(D.11)

∆ = 4L2∂A2

∂α1

(D.12)

Substituting these variables into (D.5)-(D.8), for the first quarter of the gait, we

get

g−1
(

0
)
g
(T

4

)
≈ exp

(ˆ T
4

0

dt1A(t1)
)

= exp(α− δ/2) (D.13)

Similarly when we divide the entire gait into 8 equal parts, we can show that
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upto O(L3)

g−1
(

0
)
g
(T

4

)
= g−1

(
0
)
g
(T

8

)
g−1
(T

8

)
g
(T

4

)
(D.14)

= exp
(α

2
− δ

4
+
δ1
2

)
exp

(α
2
− δ

4
− δ1

2

)
(D.15)

≈ exp
(
α− δ

2
+

1

4
[δ1, α]

)
(D.16)

where,

δ1 = −L2∂A1

∂α1

(D.17)

Dividing the gait into 2k+2 parts yields,

g−1
(

0
)
g
(T

4

)
= g−1

(
0
)
g
( T

2k+2

)
· · · g−1

((2k − 1)T

2k+2

)
g
(T

4

)
(D.18)

= exp
(
α− δ

2
+ (

1

4
+

1

16
+ · · ·+ 1

4k
)[δ1, α]

))
(D.19)

Thus, in the limit of k approaching ∞, we get,

g−1
(

0
)
g
(T

4

)
= exp

(
α− δ

2
+

1

3
[δ1, α]

)
(D.20)
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Appendix E: Starting Point Selection Heuristic

In this appendix, we show that a good heuristic for selecting starting points that

reduce leading order error is to select a point such that the tangent to the gait

at that point coincides with the general direction of rotational vector field flow in

the region enclosed by the gait. We assume the system has a constant rotational

vector field to obtain this heuristic.

Since the rotational connection vector field is constant, we know that there is

no net rotation produced by any gait, i.e. for any gait φ, the net rotation produced

on executing the gait, gθφ is

gθφ =

¨
DAθ = 0. (E.1)

Recall that the leading order error term associated with a gait is given by (5.53)

as:

E =
1

2

[
(α + β),

¨
DA

]
. (E.2)

where

α + β =
(a+ b)− (c+ d)

2
=

1

2

(ˆ T
2

0

dt1A(t1)−
ˆ T

T
2

dt1A(t1)

)
. (E.3)

So the leading order error is equal to the Lie bracket of difference in the line integral
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of the connection vector field over the first and second half of the gait with the

displacement predicted by the total Lie bracket formula. The Lie bracket of two

elements a, b ∈ se(2) is given by



ax

ay

aθ

 ,


bx

by

bθ


 =


bθay − aθby

aθbx − bθax

0

 (E.4)

Because of this structure, we can use the fact that no net rotation is produced on

executing a gait to simplify the leading order error expression to

E =
1

2

[
(α + β),

¨
DA

]
=

1

2
(α + β)θ


−
˜
DAy

˜
DAx

0

 . (E.5)

Thus for any image family of gaits, an optimal starting point that minimizes the

leading order error, E, would be one where the θ component of α + β is zero, i.e.

(α + β)θ =
1

2

(ˆ T
2

0

dt1A
θ(t1)−

ˆ T

T
2

dt1A
θ(t1)

)
= 0. (E.6)

Since the vector fields are constant, we also know that no net rotation is produced

when executing a gait, i.e.,

gθφ =

(ˆ T
2

0

dt1A
θ(t1) +

ˆ T

T
2

dt1A
θ(t1)

)
= 0 (E.7)
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Solving the system of equations described by (E.6) and (E.7), we get that the

leading order error E is minimized when

(ˆ T
2

0

dt1A
θ(t1) =

ˆ T

T
2

dt1A
θ(t1)

)
= 0. (E.8)

In other words, for a system with constant rotational vector field such as the

differential drive car, the leading order error associated with any gait is minimized

when each half of the gait produces no rotation. Similarly, it is also possible to

show that starting points which maximize the leading order error E are ones which

maximize the magnitude of rotation produced by each half of the gait. For a system

with a constant rotational field, this is equivalent to selecting a point such that

the tangent to the gait at the point coincides with the direction of the rotational

vector field.




