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Managing wildlands to protect species and ecosystem services in response to climate 

change is challenging. To develop effective long-term strategies, natural resource managers need 

to account for the projected effects of climate change as well as the uncertainty inherent in those 

projections. Vegetation models are one important source of projected climate impacts. 

Interpreting those model results can be difficult due to both uncertainty in results and model 

limitations. Factors contributing to uncertainty include embedded assumptions about atmospheric 

CO2 levels, uncertain climate projections driving models, and model algorithm selection. 

Limitations include processes excluded by models, such as mortality from maladaptation and 

succession, as well as algorithmic simplifications such as assumptions about wildfire ignitions. 

To understand the potential impacts of climate change on vegetation and wildfire in 21st 

century, I used the MC2 dynamic global vegetation model (DGVM) to simulate vegetation for 

the Northwest conterminous United States using results from 20 different Climate Model 

Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. 

Results were generated for representative concentration pathways (RCP) 4.5 and 8.5 under 

vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for 

future projections. For analysis, results were aggregated by three subregions: the western 

Northwest (WNW), from the crest of the Cascade Mountains west; Northwest plains and plateau 



 

 
 

 

(NWPP), the non-mountainous areas east of the Cascade Mountains; and eastern Northwest 

mountains (ENWM), the mountainous areas east of the Cascade Mountains. 

To understand MC2 sensitivity to model assumptions, I further explored results and 

associated uncertainties from the MC2 Dynamic Global Vegetation Model for the WNW 

subregion. I compared model results for vegetation cover and carbon dynamics over the period 

1895-2100 assuming: 1) unlimited wildfire ignitions versus stochastic ignitions, 2) no fire, and 3) 

a moderate CO2 fertilization effect versus no CO2 fertilization effect. 

Finally, I implemented an Environmental Evaluation Modeling System (EEMS) decision 

support model using MC2 DGVM results to characterize biomass loss risk for the WNW 

subregion. Risk was based on biomass present, fire occurrence and severity, and mortality of 

climate-maladapted vegetation as indicated by modeled vegetation type change. I characterized 

the uncertainty due to RCP, fire suppression, and climate projection choice, and I evaluated 

whether fire or climate maladaptation mortality was the dominant driver of risk. 

In the 21st century, in the WNW, mean fire interval (MFI) averaged over all climate 

projections decreases by up to 48%. By the end of the 21st century, potential vegetation shifts 

from conifer to mixed forest under RCP 4.5 and 8.5 with and without fire suppression. In the 

NWPP, MFI averaged over all climate projections decreases by up to 82% without fire 

suppression and increases by up to 14% with fire suppression resulting in woodier vegetation 

cover. In the ENWM, MFI averaged across all climate projections decreases by up to 81%, 

subalpine communities are lost, but conifer forests continue to dominate the subregion in the 

future. 

In evaluating the effects of ignition and CO2 fertilization assumptions, the greatest carbon 

stock loss in the WNW, approximately 23% of historical levels, occurs with unlimited ignitions 

and no CO2 fertilization effect. With stochastic ignitions and a CO2 fertilization effect, carbon 

stocks are more stable than with unlimited ignitions. For all scenarios, the dominant vegetation 

type shifts from pure conifer to mixed forest, indicating that vegetation cover change is driven 

solely by climate and that significant mortality due climate-maladapted vegetation as indicated 

by modeled vegetation shifts are likely through the 21st century regardless of fire regime 

changes.  



 

 
 

 

The risk of biomass loss in the WNW generally increases in current high biomass areas 

within the study region through time. The pattern of increased risk is generally south to north and 

upslope into the Coast and Cascade mountain ranges and along the coast. Uncertainty from 

climate future choice is greater than that attributable to RCP or +/- fire suppression. Fire 

dominates as the driving factor for biomass loss risk in more model runs than mortality due to 

climate maladaptation. This method of interpreting DGVM results and the associated uncertainty 

provides managers with data in a form directly applicable to their concerns and could prove 

helpful in adaptive management planning at regional to local scales. 
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1 
1 Introduction 

1.1 Motivation 

Over the course of my academic and working careers, I have concentrated on natural 

sciences and computer science. The specter of global climate change inspired me to pursue a 

master’s in Computer Science with the goal of supporting climate modeling. I successfully met 

this goal with an internship at the National Center for Atmospheric Research and in a subsequent 

software engineering position at Oak Ridge National Laboratories. My primary responsibility in 

both these positions was porting global climate models (GCMs; e.g. Cramer et al., 2001) onto 

parallel supercomputers. 

Circumstances led me to western Oregon, and necessity led me to work in a corporate 

environment. My desire to do climate-related modeling did not wane and I went back to school 

for a master’s degree in biology, concentrating on modeling wildfire occurrence and its 

relationship to climate change. That led to a position at an environmental nonprofit in which my 

modeling work included both vegetation modeling using a dynamic global vegetation model 

(DGVM) and decision support modeling. 

It is a challenge to provide the best science and characterize its uncertainty in a manner 

suitable for decision makers. The path from climate modeling to environmental management 

decisions is long and involves scientists, engineers, managers, and stakeholders from disciplines 

too numerous to name. The work in my dissertation is an effort to span the part of that path that 

lies between projected climate futures and considering climate risks to some of the ecosystem 

services provided by wildlands in the natural resource rich region of the Pacific Northwest 

(PNW). Within this context my dissertation offers both results and methods that may be useful in 

supporting current and future environmental decision making. 

I continue this introduction with a description of the project that funded my initial 

research and an overview of the research I completed. After that I present a literature review of 

topics directly applicable to this dissertation’s research and that provide context for that research. 

Some of what is presented in the literature review is taken from or redundant with material in the 

research chapters as well as a paper I have published on a decision support modeling framework 

I created (Sheehan and Gough, 2015). 



  

 
 

 

2 
1.2 Dissertation overview 

The Northwest Climate Science Center’s Integrated Scenarios of climate, hydrology and 

vegetation for the Northwest project (Integrated Scenarios; 

https://www.sciencebase.gov/catalog/item/55db7caae4b0518e35470be5) was designed to 

provide climate science results for managers. Its stated goals include “a series of freely available 

datasets that can be used to address specific management questions” and supporting “a range of 

management activities to increase the resilience of Northwest ecosystems, agricultural systems, 

and built environments.” This project had several concrete goals: identifying the “best” CMIP5 

GCM and earth system model (ESM; IPCC, 2014) projections for the Northwest; providing 

downscaled climate projections; modeling future vegetation and potential productivity; and 

modeling future hydrology. My dissertation starts with research undertaken as part of Integrated 

Scenarios, and then expands on that work. 

Chapter 2 is based directly on vegetation modeling research I did for Integrated 

Scenarios. This chapter focuses on the entire PNW region (Fig. 1, 2A), from the southeast corner 

of Idaho north to the Canadian border, and west to the Pacific Coast. Fire and vegetation change 

were modeled using the MC2 DGVM with varied climate inputs and model assumptions 

regarding fire suppression. Representative concentration pathways (RCPs; van Vuuren et al., 

2011) 4.5 and 8.5 were used for CO2 concentrations and climate futures driving MC2. Projected 

climate futures from 20 different GCMs and ESMs were used. Simulations were run with and 

without fire suppression. In total 80 runs of the model were completed (2 RCPs x 2 fire 

suppression/no fire suppression x 20 climate futures). In this chapter I answer the question, 

“What is the range of vegetation and fire response to a large set of the most recent projections of 

future climate and carbon concentration pathways under different assumptions regarding fire 

suppression?” 
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Fig. 1: Study area: (A) Index map of study area within the contiguous United States; (B) 
subregions defined for this study: 1. western Northwest (WNW); 2. Northwest plains and plateau 
(NWPP); and 3. eastern Northwest mountains (ENWM); and (C) elevation in meters. 

 
Fig. 2: Schematic of research presented in this dissertation. (A) Climate futures from 20 
GCMs/ESMs under RCP 4.5 and 8.5 were used as inputs to MC2, which was run with and 
without fire suppression for each climate future for Chapter 2. (B) The climate future for CCSM4 
was used to analyze the sensitivity of MC2 to assumptions regarding fire occurrence and the 
effect of CO2 fertilization. (C) MC2 outputs were in turn used to model biomass loss risk and 
associated uncertainty using the EEMS modeling framework for chapter 4. 
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Chapter 3 focuses on the region from the crest of the Cascade mountain range west in 

Oregon and Washington. In this chapter I answer the question, “How do MC2 assumptions about 

fire occurrence and the CO2 fertilization affect fire occurrence, carbon dynamics, and vegetation 

change?” For a single climate future, it examines uncertainty in model results for fire, carbon 

dynamics, and vegetation change related to assumptions in MC2’s fire modeling algorithm and 

its application of the CO2 fertilization effect (Fig. 2B). 

Chapter 4 explores how complex model results can be simplified for management 

decisions. It focuses on biomass loss risk in the region using results from Chapter 2 as inputs to 

an Environmental Evaluation Modeling System (EEMS; Sheehan and Gough, 2015) decision 

support model (Fig. 2C). It also quantifies uncertainty in model results, identifies the drivers of 

uncertainty, and distinguishes whether wildfire or vegetation maladaptation to climate change 

drives risk. 

Each of Chapters 2-4 is presented as an independent research study suitable for 

publication. In Chapter 5, I present the overall conclusions. The next section begins the literature 

review and presents a discussion of climate change and its impacts. 

1.3 Climate change 

Climate change is the major issue driving my research. Anthropogenic emissions have 

driven atmospheric CO2 concentrations from approximately 280 parts per million (ppm) in 1850 

to over 410 ppm today (https://www.esrl.noaa.gov/gmd/ccgg/trends/). Over two-thirds of this 

increase has occurred during my lifetime, and this concentration is higher than at any time in the 

past 800 thousand years (Bereiter et al., 2015; Lüthi et al., 2008). The increase has led to 

warming of global land and ocean surfaces, reduced snow and ice, rising sea levels, changing 

patterns of precipitation, and increasing frequency of extreme weather events (IPCC, 2014). 

Impacts of climate change are observed worldwide, affecting physical (e.g. ice melt, floods, 

coastal erosion), biological (e.g. ecosystem shifts, wildfires), and human systems (e.g. health, 

food production; IPCC, 2014). Surface temperatures are projected to continue rising over the 21st 

century with further, unevenly distributed impacts (IPCC, 2014). 

I have focused my work in the Pacific Northwest of the conterminous United States 

(PNW), where anthropogenic influences are the leading contributor to observed warming (May 

et al., 2018; Abatzoglou et al., 2014), with impacts including lower winter snowpack and 
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increased wildfire risk (May et al., 2018). Expected climate change effects on ecosystems 

include altered fire regimes (e.g. Rogers et al., 2011; Westerling et al., 2006), pest and insect 

outbreaks (e.g. Kurz et al., 2008), hydrologic changes (e.g. Mote et. al., 2003), altered nutrient 

cycling (e.g. Fowler et al., 2015), species range shifts (e.g. Chen et al., 2011; Rehfeldt et al., 

2009; Rehfeldt et al., 2006), and the emergence of novel species assemblages (e.g. Lurgi et al., 

2012; Williams and Jackson, 2007). Vegetation models have been used to simulate such changes 

and provide resource managers science-based projections to inform their decision process (Littell 

et al., 2011). Estimating associated uncertainty allows managers to refine their strategies (Littell 

et al., 2011). 

A description of the study area follows next. 

1.4 Study area 

Chapter 2 focuses on fire and vegetation in the entire PNW region. It defines three 

subregions based on topographic and climatological characteristics and derived from EPA Level 

III Ecoregions (Omernik and Griffith, 2014) within the study area (Fig. 1): the Eastern Northwest 

Mountains (ENWM); the Northwest Plains and Plateau (NWPP); and the Western Northwest 

(WNW). Chapters 3 and 4 include analyses of carbon and biomass and are geographically 

limited to the WNW where ecosystem carbon concentrations are among the highest in the world. 

Here I present a brief introduction of these three regions. More detailed descriptions can be 

found in Chapters 2-4. 

1.4.1 Eastern Northwest Mountains (ENWM) 

ENWM covers 41% of the study area and comprises the mountainous regions east of the 

Cascades. This subregion includes the Wasatch and Uinta Mountains, Wyoming Basin, Blue 

Mountains, Idaho Batholith, Middle Rockies, Northern Rockies, and Canadian Rockies Level III 

Ecoregions. It is the coldest of the subregions and has precipitation amounts intermediate to 

those of the other two. Conifers dominate this subregion with species including Douglas-fir, true 

firs, cedar, hemlock, lodgepole pine, and ponderosa pine (Kuchler, 1975; Kerns et al., 2018). The 

fire regime over most of this region is 35-200 years with mixed severity, with some high 

elevation areas having a 200+ year frequency (Sommers et al., 2011). 
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There are many climate related risks to forests in this region. For instance, in the 

Northern Rockies, wildfire, bark beetles, disease, and invasive non-native plants have been 

identified as climate sensitive disturbances (Loehman et al., 2018), and in the Blue Mountains 

vegetation range changes and loss of subalpine and alpine vegetation types have been projected 

(Kerns et al., 2018).  

1.4.2 Northwest Plains and Plateau (NWPP) 

The Northwest Plains and Plateau (NWPP) subregion comprises 38% of the study area 

and includes the Eastern Cascades Slopes and Foothills, Northern Basin and Range, Columbia 

Plateau, Snake River Plain, Northwest Great Plains, and Northwest Glaciated Plains Level III 

Ecoregions. This subregion is lower in elevation than the Cascades and other Northwest 

mountain ranges. It is drier than the other two subregions and experiences higher maximum 

temperatures. Shrubs and grasses dominate the NWPP. The most common potential vegetation 

type is sagebrush steppe, with grasses in some areas (Kuchler, 1975). While grasslands in the 

subregion have fire return intervals as short as 5 years (Leenhouts, 1998), FRIs over the majority 

of the subregion are 35 to 200 years with mixed severity in the northwestern portion of the 

region and stand replacing severity in the southwestern portion (Sommers et al., 2011). 

Native vegetation in this region has been negatively affected by grazing and invasive 

species (Shinneman and McIlroy, 2016; Loehman et al., 2018; Reeves et al., 2018). Invasive 

annual grasses, especially cheatgrass, alter fire regimes by providing continuous fuels between 

native sagebrush or bunch grasses and outcompeting native species for soil and water after fires 

(Shinneman and McIlroy, 2016; Loehman et al., 2018; Reeves et al., 2018). The effects of 

climate change on rangelands has not been extensively studied (Shinneman and McIlroy, 2016; 

Reeves et al., 2018), but sagebrush resilience to disturbance is higher on northern slopes than 

southern in cold deserts (Reeves et al., 2018), suggesting that climate may play a role in 

sagebrush resilience. 

1.4.3 Western Northwest (WNW) 

The Western Northwest (WNW) subregion comprises the area west of the crest of the 

Cascade Mountains and represents 21% of the study area. It includes the Coast Range, Klamath 

Mountains/California High North Coast Range, Willamette Valley, Puget Lowlands, Cascades, 
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and North Cascades Level III Ecoregions. This subregion falls under strong coastal 

climatological influence with warmer minimum temperatures and much greater precipitation 

than the other two subregions. 

The WNW region includes the Seattle and Portland metropolitan areas, and its total 

population exceeds six million (www.census.gov), with higher population densities lying along 

the I-5 corridor. This region includes PNW’s moist coniferous forests (detailed description in 

Franklin et al., 2017). Douglas-fir is dominant over most of this region. Western hemlock, 

western redcedar, red alder, and big leaf maple are among species also common at lower 

elevations. Oregon white oak and Pacific madrone are common in drier lowlands. Sitka spruce is 

common along the Pacific Coast in valleys where marine fog occurs. At mid elevations, noble fir 

occurs in the Cascade Range, and Pacific silver fir occurs in both the Cascade and the Olympic 

Range. Douglas-fir does not range into the subalpine regions where true firs, mountain hemlock, 

and Alaska yellow cedar are common. In the warmer, drier southern portion of the region, mixed 

conifer hardwood forests are more common, with species including ponderosa pine, tanoak, and 

live oaks. 

Prior to Euro-American settlement, the fire regime in the WNW was predominantly one 

of large wildfires at 100 to 400-year intervals with more frequent fires in the southern portion of 

the region (Franklin et al., 2017). Locally, Native Americans had altered the fire regime for 

hunting and food gathering, for example the oak woodlands and savannahs that dominated the 

Willamette Valley were maintained through frequent Native American burning prior to Euro-

American settlement (Boyd, 1999; Whitlock and Knox, 2002). 

Productivity in the WNW is high compared to other boreal and temperate forests 

(Harmon and Campbell, 2017). Carbon densities in the region are among the highest in the 

world, with values exceeding 200 MgC/ha over much of the Coast, Cascade, and Olympic 

mountains (Wilson et al., 2013, in Olsen and Van Horne, 2017). These highly productive forests 

are valuable for both natural resources and biodiversity. Conflicts between timber production and 

endangered species – most emblematically the northern spotted owl – are well known in this 

subregion. The Northwest Forest Plan was created in1994 to balance these conflicting interests. 

Challenges remain on how to maintain forests in this region sustainably in light of conflicting 

interests and climate change (Olsen et al., 2017a). 
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While ecosystem services are not a main focus of this study, they are a driver of land use 

conflicts in the region, and this dissertation’s results have strong implications for them. As 

background, the next section provides a brief review of ecosystem services. 

1.5 Ecosystem services 

I examined the ecological impacts of climate change on the landscape. Implicit in those 

impacts are effects on humans, both within and outside of the study region. The concept of 

ecosystem services, (coined by Ehrlich and Ehrlich, 1981), provides a lens through which 

impacts on humans can be viewed. Definitions of the ecosystem services, vary. Commonly used 

definitions include (Fisher et al., 2007): [T]he conditions and processes through which natural 

ecosystems, and the species that make them up sustain and fulfill human life (Daily, 1997); The 

benefits human populations derive, directly or indirectly, from ecosystem functions (Costanza et 

al., 1997); The benefits people obtain from ecosystems (Millennium Ecosystem Assessment, 

2005); and [C]omponents of nature, directly enjoyed, consumed, or used to yield human well-

being (Boyd and Banzhaf, 2006). The value ecosystems provide to humans is central to the 

concept. 

There are various classification schemes for ecosystem services, the most appropriate of 

which depends on context (Fisher et al., 2007).  The Millenium Ecosystem Assessment (2005) 

uses three broad categories: Provisioning which includes the production of consumable goods 

such as food, fiber, and water; Regulating which includes the maintenance of conditions such as 

air quality, climate, and water quality; and Cultural which includes spiritual, aesthetic, and 

recreational values and activities. De Groot et al. (2002) define four categories based on 

function: Regulation, which includes the capacity of natural systems to maintain ecosystems and 

their services that benefit humans (e.g. clean air and water); Habitat, which includes the 

provision of natural habitat that conserves biological and genetic diversity; Production which 

includes the production of ecosystem goods for human consumption including food, raw 

materials, and energy production; and Information which includes opportunities for reflection, 

recreation, and spiritual enrichment. Fisher et al. (2007) outlined a classification scheme based 

on the relationship of the service to where the benefits are realized: in situ where benefits are 

realized locally; omni-directional where the benefits are realized in the surrounding landscape 

with no directional bias; and directional where benefits flow to a specific location. 
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Valuation of ecosystem services is needed to track and account for them (Costanza et al., 

1997; de Groot et al., 2002; Millenium Ecosystem Assessment, 2005; Boyd and Banzhaf, 2006; 

Fisher et al., 2007; Guerry et al., 2015). Challenges to valuation include the fact that ecosystem 

services include both market and non-market components (Costanza et al., 1997; Boyd and 

Banzhaf, 2006; Guerry et al., 2015) and external costs (Millenium Ecosystem Assessment, 2005; 

Fisher et al., 2007). Costanza et al. (1997) provided a method of valuation and estimated a range 

of US$16-$54 trillion globally per year, while acknowledging the challenges and uncertainties in 

doing so. Boyd and Banzhaf (2006) argue for a standardized measure of the value of ecosystem 

services whose units are clearly defined and consistent both economically and ecologically. 

Valuation is important for decision support surrounding ecosystem services not only so that 

beneficiaries can pay providers, but also for evaluating competing stakeholder interests, for 

instance between carbon sequestration and fuel wood (Fisher et al., 2007). Guerry et al. (2015) 

examined the adoption of ecosystem services in decision making and found awareness of human 

well-being/ecosystem interdependence is at an all-time high, for instance with the environment 

listed as one of the top global risks by the World Economic Forum. However, they found the 

science of ecosystem services is advancing, but that successful implementation the science in 

decision making is not yet widespread. 

Within the WNW, timber production and salmon are two important provisioning 

ecosystem services (Deal et al., 2017). Regulating ecosystem services include water quality 

(Olson et al., 2017b) and carbon sequestration (Harmon and Campbell, 2017). Cultural 

ecosystem services include recreation and aesthetics (Deal et al., 2017). Within the context of 

this dissertation (which includes results for carbon dynamics) results are most directly applicable 

to carbon sequestration. However, results for changes in biomass, changes in vegetation type, 

and fire occurrence and severity have clear implications for many ecosystem services, which are 

a logical next step for the decision support modeling method used in Chapter 4. 

Having set the context for practical implications of modeling results, I now present 

descriptions and issues related to this dissertation’s methods.   

1.6 Vegetation modeling with the MC2 Dynamic Global Vegetation Model 

Dynamic Global Vegetation Models (DGVMs) are process-based models that simulate 

vegetation, carbon, nutrient, and hydrological dynamics. They are driven by historical climate 
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data or climate projections. I used MC2, the C++ version of the MC1 DGVM (Bachelet et al., 

2015), a process-based model with biogeography, biogeochemistry, and fire modules. The model 

runs on a monthly timestep and is forced by climate inputs (minimum temperature, maximum 

temperature, precipitation, and either relative humidity or vapor pressure deficit) and by soil 

characteristics (bulk density, texture, and depth). The model simulates functional types, not 

species. Woody types (trees and shrubs) are distinguished by leaf phenology (evergreen vs 

deciduous) and morphology (needleleaf vs broadleaf). Herbaceous vegetation (grasses, forbs, 

and sedges) are distinguished between C3 and C4. The model always simulates competition for 

light, water, and nutrients between herbaceous and woody vegetation.  

The fire module (Lenihan et al., 1998; Conklin et al., 2015) simulates fire occurrence and 

fire effects, including area burned, mortality, consumption of aboveground biomass, carbon 

emission, and nitrogen volatilization. Mortality and consumption of overstory biomass are 

simulated as a function of fire behavior and the canopy vertical structure. Fire occurrence is 

simulated as a discrete event. The module runs on a daily time step using a randomly distributed 

set of daily precipitation values derived from monthly precipitation values. Estimates for fine 

fuel moisture code (FFMC, Van Wagner, 1987), buildup index (BUI, Canadian Forestry Service, 

1984), and energy release component (ERC, Cohen and Deeming, 1985) are calculated daily. An 

ignition source is always assumed and a fire is simulated the first time FFMC and BUI values 

exceed their thresholds for current vegetation type and when the fuel load is sufficiently dense to 

carry a fire. The fire suppression algorithm suppresses fires by limiting fraction of a cell burned 

to 0.06% if fuel loads fall below a vegetation specific ERC threshold. The assumption is that low 

severity fires can be extinguished. To reflect a realistic geographic extent of a fire under assumed 

ignitions, the fire module limits the area burned with an algorithm based on a vegetation type-

specific fire return interval (FRI; Leenhouts, 1998) and the number of years since last fire. In the 

fire module each vegetation type is assigned both a maximum and minimum FRI. A more 

detailed description of MC2 is presented in Chapter 2, and a more detailed description of its fire 

module is presented in Chapter 3. 

There are several limitations with MC2. It does not account for herbivory, pests, disease, 

windthrow, or invasive species. Furthermore, reliable soils data are key to projecting accurate 
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soil water availability and drought stress (Peterman et al., 2014) but are typically not available. 

More accurate and detailed soils data would likely improve results. 

MC2 simulates potential vegetation most adapted to the climate drivers so that when 

climate (a 15-year average is used in the model) changes the model will simulate an 

instantaneous change without mortality of legacy maladapted vegetation or succession. In reality 

vegetation is long lived and endures under suboptimal conditions, preventing better-suited 

vegetation from rapidly gaining a foothold in the absence of disturbance. 

The effects of CO2 concentration on water use efficiency and plant productivity are still 

not completely understood because data only exist for a few species mostly from temperate 

latitudes and may depend on factors such as ontogeny and site conditions, especially soil nutrient 

content (Camarero et al., 2015; Fernandez-Martinez et al., 2017). MC2 assumes a moderate CO2 

fertilization effect that enhances production and fuel accumulation. CO2 effects on plant 

productivity are discussed below, and research results for MC2’s sensitivity to CO2 

concentrations are discussed in Chapter 3. 

MC2’s assumed fire ignitions, built-in thresholds for fire occurrence, and FRI limited fire 

extent can lead to simulated fire regimes that are more or less frequent, and more uniform than in 

reality, where ignition sources and ignition propagation vary. The simulated resulting vegetation 

may be more uniform than in reality. A more detailed description of MC2’s fire algorithm is 

presented in Chapter 3, as are research results for MC2 sensitivity to assumptions surrounding 

ignition sources and fire occurrence. 

A complete understanding of modeling results includes understanding the uncertainties in 

those results. The next section provides background on sources of uncertainty. 

1.7 Uncertainty in DGVM modeling 

Sources of uncertainty in DGVM projections come from both external data used to force 

DGVM simulations, such as climate and soil characteristics, and internal characteristics such as 

model structure, empirical parameter values, built-in thresholds, and inherent assumptions and 

simplifications. In this dissertation, I have addressed several aspects of uncertainty: assumptions 

about future atmospheric concentrations, variations in climate projections, assumptions about the 

effect of atmospheric CO2 concentration on water use efficiency and production, and 

assumptions about wildfire ignitions. 
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1.7.1 Climate-related uncertainty 

Uncertainties in the climate projections used to force this dissertation’s MC2 simulations 

come from two main sources. First is the uncertainty in future levels of atmospheric CO2, which 

force GCMs and ESMs. Climate models respond differently to differences in CO2 concentrations 

(e.g. Knutti and Sedlácek, 2012; Sillman et al., 2013). To deal with uncertainties in future levels 

of atmospheric CO2, suites of projected future concentrations are used. For example, the Coupled 

Model Intercomparison Project Phase 5 (CMIP5; https://cmip.llnl.gov/cmip5/) used four 

representative concentration pathways (RCPs; Van Vuuren et al., 2011) based on differing 

socioeconomic assumptions. 

A second source of climate forcing uncertainty is that, when driven by identical CO2 

concentrations, different climate models produce different results. Projects such as CMIP5 seek 

to discover the reasons for differing model responses (Taylor et al., 2012). 

Approaches to characterize and possibly reduce uncertainty introduced by variations in 

climatic drivers include taking the ensemble average of climate projections from multiple models 

(Littell et al., 2011), using a range of projections covering the range of future conditions (Littell 

et al., 2011), using only the ensemble of those results which best match historical conditions 

(Littell et al., 2011, e.g. Rupp et al., 2013), and selecting the most extreme climate projections 

(e.g. warmest, coolest, wettest, driest) in order to provide brackets for results (Littell et al., 

2011). An issue with ensemble averaging is that it likely modulates intra- and interannual climate 

variability which affects the response of the vegetation model. Bracketing extreme inputs runs 

the risk of missing variations at a fine temporal scale that may affect vegetation model behavior. 

Exposing the true uncertainty due to variations in climate projections, results must be generated 

for all candidate models or the relationship between climate inputs and model results must be 

understood in great detail. The latter possibility is unlikely or impossible due to nonlinear 

responses inherent in process-based vegetation models. 

1.7.2 Atmospheric-CO2 related uncertainty 

The CO2 fertilization effect (Amthor, 1995) is the assumed positive effect on plant 

growth due to increased water use efficiency under higher concentrations of atmospheric CO2. 

MC2 normally models a moderate CO2 fertilization effect on vegetation (detailed in Chapter 3) 
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in which production increases and evapotranspiration decreases with increasing atmospheric CO2 

concentrations. However, the effects of CO2 on water use efficiency and growth are not 

completely understood, resulting in another source of uncertainty in results. Simulations with and 

without the CO2 fertilization are analyzed in Chapter 3 to explore this assumption’s effects on 

model results. This section details research findings regarding the CO2 fertilization effect. 

It is well known that the closure of stomatal guard cells in response to elevated CO2 

increases water use efficiency (Cowan and Farquhar, 1977). For CO2 concentrations above 

current ambient levels, this response is strong in angiosperms but much less so in conifers or 

ferns (Broddribb et al., 2009). At the leaf level, elevated CO2 has been found to cause reduced 

stomatal density, reduced stomatal conductance and thus transpiration. However, other climatic 

factors, such as drought and elevated temperature, may cause reverse responses (see Xu et al., 

2016 for summary). Elevated CO2 may also enhance photosynthesis for a short time but not over 

periods of weeks to years (Way et al., 2015). In trees, general increases in productivity have been 

attributed to increases in CO2, but confidence in tree responses is lower at larger spatial and 

longer temporal scales as well as in combination with warming (Way et al., 2015). In grasses, 

both C3 and C4 grasses show similar reductions in stomatal conductance under elevated CO2, 

with C3 grasses showing a 68% increase in leaf level WUE and C4 grasses showing none 

(Ainsworth and Long, 2005). 

Free-air CO2 enrichment experiments (FACE, Hendrey et al., 1999) have been used to 

explore the effects of elevated CO2 on vegetation. In a review of FACE experiments on forests, 

Norby and Zak (2011) found that elevated CO2 can cause an increase in leaf area index (LAI) in 

closed stands with relatively low LAI but not produce a substantial increase over larger areas. It 

can increase net primary production (NPP) per unit LAI, but other factors, such as nitrogen 

availability and fine root turnover, may constrain that response over time, and increased NPP 

does not necessarily increase ecosystem carbon. 

1.7.3 Uncertainty related to fire modeling 

The relationship between fire and vegetation is complex and takes place over a range of 

spatial and temporal scales (Harris et al., 2016). Shifts in fire regime cause vegetation-altering 

feedbacks (e.g. Batllori et al., 2015; Kitzberger et al., 2016). The type and level of complexity of 
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fire models adequate for management-relevant vegetation modeling remains unclear (Hantson et 

al., 2016). Models generally are one of three types: physical and quasi-physical, based on the 

physics and chemistry of combustion and fire spread; empirical and quasi-empirical, based on 

statistical relationships between wind speed and fuel condition and the rate of spread; and 

mathematical and analog model, based on a non-physical relationship of fire spread (Sullivan, 

2009a-c). 

Disturbance modeling at the landscape scale has been described (Keane et al., 2015), and 

fire model limitations and uncertainties in global vegetation models discussed extensively 

(Hantson et al., 2016; Rabin et al., 2017). The Fire Modeling Intercomparison Project (FireMIP; 

Rabin et al., 2017) project has examined uncertainty due to assumptions about fire by comparing 

results among DGVMs with different embedded fire models. FireMIP has analyzed the 

complexity of fire models used within DGVMs. For fire behavior, these generally utilize 

algorithms for fuel moisture, fuel load, ignition causes (lightning and anthropogenic), fire 

suppression, rate of spread, and area burned, although many of them lack algorithms for one or 

more of these aspects (Hantson et al., 2016). For fire impacts, models FireMIP rates the 

complexity of fire-associated carbon dynamics and vegetation effects (Hantson et al., 2016). 

MC2’s fire algorithm falls in the middle range for overall complexity and for carbon 

dynamics and vegetation complexity. Its fire algorithm assumes ignition sources and models a 

fire whenever fuel is dense enough to carry a fire and fuel conditions exceed a vegetation type’s 

threshold. To explore how modeling ignition sources would affect MC2’s behavior, Chapter 3 

examines the effects of using stochastic ignition sources and stochastic ignition propagation 

based on fuel conditions in MC2. This approach is more parsimonious than that used by FireMIP 

as it eliminates differences in results due to non-fire modeling aspects of different DGVMs. 

1.7.4 Uncertainty related to climate future downscaling 

Downscaling methods produce different results in the climate data used to force DGVM 

runs. I did not explore results produced from different downscaling methods in this dissertation, 

but have included a brief discussion for completeness. 

GCMs and ESMs commonly produce output data at a coarser horizontal scale than that 

required for DGVM simulations. For instance, horizontal resolutions for GCM and ESM outputs 
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used in this dissertation’s modeling ranged from 0.94 to 3.75 degrees, while the MC2 

simulations utilized a 0.0417 degree grid. Climate outputs, therefore, must be downscaled for use 

with finer resolution models. 

The two main methods of downscaling are statistical and dynamical. Statistical 

downscaling involves two steps (Fowler et al., 2007). The first is bias correction, which removes 

biases in the GCM/ESM results, normally via adjustments made based on differences between 

model results and observations on a local basis (e.g., Wood et al., 2002; Fowler et al., 2007; 

Ahmed et al., 2013). The second step is to downscale the resolution of the data to the target 

resolution using synoptic-scale meteorology and local physiographic features to develop local 

predictions based on larger scale predictions. Dynamical downscaling (e.g., Abatzoglou and 

Brown, 2012) nests regional climate processes within global processes (Abatzoglou and Brown, 

2012). Statistical downscaling is more computationally efficient than dynamical downscaling 

while dynamical downscaling can resolve atmospheric processes on a smaller scale (Fowler et 

al., 2007; Abatzoglou and Brown, 2012). 

MC2 simulations in this dissertation used climate futures downscaled using Multivariate 

Adapted Constructed Analogs (MACA; Abatzoglou and Brown, 2012), a dynamical downscaling 

method that performs well in capturing fire weather danger indices across the western United 

States. Use of this dataset was mandated by Integrated Scenarios. 

For decision makers to consider the potential impacts of climate change on ecosystem 

services, they must have data in a usable form and use it appropriately. In the following section I 

review issues surrounding methods for producing usable data, how model data fit into 

management planning, and describe the modeling framework I used to reinterpret MC2 result 

data into a form intended for decision makers. 

1.8 Data for decision making 

1.8.1 Usability 

Challenges to using climate science in environmental decision making include the 

usability of the science (Dilling and Lemos, 2011; Kirchhoff et al., 2013) and uncertainty in 

projected climate and impacts (Millar et al., 2007; Littell et al., 2011; Curry and Webster, 2011). 

The push for usable climate science in the United States has been strong. For instance, 

the 1990 law establishing the United States Global Change Research Program calls for 
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information usable for policy decision making (Dilling and Lemos, 2011). Dilling and Lemos 

(2011) explored three models for science agenda setting: Push, in which scientists set the 

information agenda; Pull, in which potential users of the information set the agenda; and Co-

Production, in which scientists and users work iteratively to set the agenda. They found that 

nearly all cases of successful climate knowledge production involved iteration between the 

producers and users, underscoring the importance of user-scientist collaboration in producing 

usable results. 

Kirchhoff et al. (2013) examined two factors that affect the usability of science for 

environmental decision making. The first is motivation for research, which ranges from the 

generation of knowledge to problem solving. The second is user participation in knowledge 

production, which ranges from low to high. These two factors were used to characterize different 

modes of research in relation to producing knowledge for environmental decision making. 

Advocates for knowledge driven research with little or no user input support the separation of 

science from society to insure credibility and objectivity and to keep science value-free. 

Advocates for coproduction, at the other end of the spectrum, see collaborations between 

scientists and nonscientists as valuable. 

Coproduction has proven to be a successful means for producing knowledge that is 

accepted by some decision makers (e.g. Meadow et al., 2015; Reyers et al., 2015). Google 

Scholar searches for articles containing the word climate and either coproduction or co-

production from 2000 through 2019 returned a total of 41,800 results, indicating coproduction’s 

importance in relation to climate science. Chapter 4 presents a methodology that may prove 

valuable in coproduced projects. 

1.8.2 Adaptive management and model data 

Adaptive management (Stankey et al., 2005; Williams, 2011) is a method of managing 

resources in the face of uncertainty regarding environmental variation and the results of natural 

actions. Central to its implementation is a cycle in which goals are evaluated, decisions are made 

and implemented, resources are monitored, and results are assessed (Stankey et al., 2005; 

Williams, 2011). Environmental variability often dominates natural systems and is often the most 

dominant source of uncertainty (Williams, 2011). 
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Climate change is expected to lead to novel ecosystems (Littell et al., 2011), and 

maintaining or restoring to past conditions could lead to forests less fit for current conditions 

(Millar, 2007). While quantitative models can project trajectories of environmental change, they 

are not accurate enough to predict future conditions with the certainty managers need and, 

therefore, are best used to gain an understanding of the range of possible futures (Millar et al., 

2007; Littell et al., 2011). Within this context, the range of results presented in this dissertation 

may prove valuable for practitioners of adaptive management. 

1.8.3 Fuzzy logic modeling for decision support 

Fuzzy logic (Zadeh, 1973; Giles, 1976) is a method well suited for working in fields 

where variables are quantified verbally and imprecisely and provides a way to represent vague 

and subjective knowledge (Kasabov, 1996). Many concepts associated with environmental 

conditions are expressed vaguely, making fuzzy logic suited for use in various environmental 

fields (Sheehan and Gough, 2015) including infrastructure placement (e.g. Bojorquez-Tapia et 

al., 2002; Boclin and de Mello, 2006; Aydi et al., 2013), aquatic ecosystems (e.g. Cheung et al., 

2005; Kaplan et al., 2014; Segui et al., 2013), and soils (McBratney and Odeh, 1997; e.g. 

Rodríguez et al., 2016). 

For decision support modeling in this dissertation I used the Environmental Evaluation 

Modeling System (EEMS; Sheehan and Gough, 2016), a fuzzy logic modeling platform I 

developed, patterned after the Ecosystem Management Decision Support system (EMDS; 

Reynolds et al., 2015). Like EMDS, EEMS is designed to inform answers to management 

questions. I initially implemented EEMS as an alternative to EMDS in the ArcGIS (ESRI, 1999-

2019) ModelBuilder environment to obviate EMDS’s need for third party software. Since then, I 

have expanded EEMS to include a scripting interface for use outside of Arc ModelBuilder and 

that works with a variety of file types.  

An EEMS model is structured as a bottom-up logic tree with leaf nodes iteratively 

combined into a single root node. The bottom-most nodes in the tree represent input data layers. 

Each input layer is first normalized (0 to 1 for this study) to produce a node representing its level 

of agreement with a user-defined statement. For example, a fuel load metric might be mapped to 

the statement Simulated Live Biomass is High using user-defined thresholds to characterize High. 
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Normalized values are combined into higher level nodes using fuzzy logic operators that 

evaluate the relationship between two or more datasets to another statement. For example, data 

for Simulated Live Biomass is High might be combined with data for Vegetation Stress is High to 

create a resulting node for Mortality Risk is High. In a complete model, nodes are repeatedly 

combined to produce a final, top-level node that informs the original management question. 

Formally, each node in a fuzzy logic model corresponds to a factual statement, and the 

values for the node (the normalized values described above) are the values for the statement’s 

fuzzy truth value. Fuzzy truth values range from 0 for fully false to 1 for fully true. Values 

between 0.0 and 0.5 are considered partially false, 0.5 is neither true nor false, and values 

between 0.5 and 1.0 are partially true. Informally, values in the nodes are considered as indices 

for the attribute associated with the factual statement. For example, a fuzzy value for Vegetation 

Stress is High might be referred to simply as a metric expressing Vegetation Stress on a scale 

from low (0) to high (1). 

EEMS models allow decision makers to evaluate a landscape using a simple numerical 

scale. The model structure and data layers associated with model nodes help decision makers 

understand the drivers of the top-level metric and provide insights into which actions would help 

meet management goals. In Chapter 4, not only did I use EEMS to model biomass loss risk, but I 

expanded its functionality in order to express uncertainty in model results. I also used the data in 

layers below the top-level node to expose the drivers of biomass loss risk. 

1.9 Other studies 

Previous modeling studies in this region have used a number of approaches. Methods 

have included statistical methods such as random forests classification (e.g. Rehfeldt et al., 2006, 

2012, 2014a), linear mixed effects models (e.g. Rehfeldt et al., 2014b), the relationship between 

bioclimatic variables and species (e.g. Shafer et al., 2001), process-based dynamic global 

vegetation models (DGVMs; e.g. Rogers et al., 2011), and hybrid approaches, such as combining 

process-based model results with statistical classification tree methods (e.g. Coops and Waring, 

2011), with state and transition models (STMs; e.g. Creutzburg et al., 2014; Halofsky et al., 

2014), and with a land use model (Turner et al., 2015). Overall these models project climate-

related vegetation changes, increased fires, carbon losses, and increased beetle attacks (which 

MC2 does not simulate). Generally, these results are consistent with the findings in my 
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dissertation, potentially providing additional confidence in trends from a range of models. 

Differences, on the other hand, contribute to uncertainty that can be accounted for in planning, 

and that points to the need for model refinement. Detailed comparisons are presented in Chapters 

2-4.  

The next three chapters present my dissertation research and are followed by overall 

conclusions from the dissertation. 
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2.1 Abstract 

Climate change adaptation and mitigation require understanding of vegetation response to 

climate change. Using the MC2 dynamic global vegetation model (DGVM) we simulate 

vegetation for the Northwest United States using results from 20 different Climate Model 

Intercomparison Project Phase 5 (CMIP5) models downscaled using the MACA algorithm. 

Results were generated for representative concentration pathways (RCP) 4.5 and 8.5 under 

vegetation modeling scenarios with and without fire suppression for a total of 80 model runs for 

future projections. For analysis, results were aggregated by three subregions: the western 

Northwest (WNW), from the crest of the Cascade Mountains west; Northwest plains and plateau 

(NWPP), the non-mountainous areas east of the Cascade Mountains; and eastern Northwest 

mountains (ENWM), the mountainous areas east of the Cascade Mountains. In the WNW, mean 

fire interval (MFI) averaged over all climate projections decreases by up to 48%, and potential 

vegetation shifts from conifer to mixed forest under RCP 4.5 and 8.5 with and without fire 

suppression. In the NWPP MFI averaged over all climate projections decreases by up to 82% 

without fire suppression and increases by up to 14% with fire suppression resulting in woodier 

vegetation cover. In the ENWM, MFI averaged across all climate projections decreases by up to 

81%, subalpine communities are lost, but conifer forests continue to dominate the subregion in 

the future.  

2.2 Introduction 

Effects of warming climate have already been observed in the Pacific Northwest (PNW; 

e.g. Cayan et al. 2001; Mote et al. 2005), and projections indicate further warming throughout 

the 21st century (e.g. Mote and Salathé 2010). In some areas, impacts of climate change may lead 

to widespread ecological disruption (Rehfeldt et al. 2006). Regional efforts towards climate 

change adaptation and mitigation require some understanding of the vegetation response to 

climate change (Chmura et al. 2011) and must take into account variation in projected future 

conditions (Millar et al. 2007). 

In this context, a variety of regional studies within or including the Pacific Northwest 

(PNW) have examined potential climate-driven changes in the distribution of vegetation cover 

types and species (e.g. Rehfeldt et al. 2006; Littell et al. 2010; Rogers et al. 2011; Coops et al. 
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2011; Creutzburg et al. 2015; Rehfeldt et al. 2014a,b,c). Other studies have focused on the 

potential effects of PNW regional climate change on fire regime (Whitlock et al. 2003), insect 

population dynamics (Bentz et al. 2010), and forest productivity (Latta et al. 2009).  

Modeling approaches have included process-based dynamic global vegetation models 

(DGVMs; e.g. Rogers et al. 2011), statistical methods such as random forests classification (e.g. 

Rehfeldt et al. 2006; Rehfeldt et al. 2012; Rehfeldt et al. 2014a), linear mixed effects models 

(e.g. Rehfeldt et al. 2014b), the relationship between bioclimatic variables and species (e.g. 

Shafer et al. 2001), and hybrid approaches, such as combining process-based model results with 

statistical classification tree methods (e.g. Coops and Waring 2011) or with state and transition 

models (STMs; e.g. Creutzburg et al. 2014; Halofsky et al. 2014). 

The Integrated Scenarios of Climate, Hydrology and Vegetation project 

(http://bit.ly/104rQiB) was a collaboration between the Northwest Climate Science Center, the 

University of Idaho, Conservation Biology Institute, and the University of Washington. The goal 

was to model future changes in climate, hydrology, and vegetation over the western United 

States from the coast to the Great Plains. Results from the Climate Model Intercomparison 

Project Phase 5 (CMIP5, http://cmip-pcmdi.llnl.gov/cmip5/) were evaluated for their ability to 

simulate the climate of the Northwest. The most relevant models (Vano et al. 2015) were 

downscaled to finer grids and used in regional hydrologic and vegetation models. 

This paper presents the regional results from the vegetation modeling efforts using the 

downscaled CMIP5 projections in the Pacific Northwest and provides an example of the insights 

produced through the use of a process-based vegetation model with a large number of the most 

recent global climate projections. Our results suggest that fire plays a major role in shaping 

climate change influence on vegetation. 

2.3 Methods 

2.3.1 Study area 

For this paper we focused on the Pacific Northwest region of the conterminous United 

States (north of 42 degrees latitude and west of -111 degrees longitude). Based on topographic 

and climatological characteristics, we defined three subregions (Fig. 2.1, Table 2.1) derived from 

the full and partial EPA Level III Ecoregions (Omernik and Griffith 2014) within the study area 

(Table 2.1). The western Northwest (WNW) subregion comprises the area west of the crest of 
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the Cascade Mountains and represents 21% of the study area. It includes the Coast Range, 

Klamath Mountains/California High North Coast Range, Willamette Valley, Puget Lowlands, 

Cascades, and North Cascades Level III Ecoregions. This subregion falls under strong coastal 

climatological influence with warmer minimum temperatures and much greater precipitation 

than the other two subregions. The Northwest Plains and Plateau (NWPP) subregion comprises 

38% of the area and includes the Eastern Cascades Slopes and Foothills, Northern Basin and 

Range, Columbia Plateau, Snake River Plain, Northwest Great Plains, and Northwest Glaciated 

Plains Level III ecoregions. This subregion is lower in elevation than the Cascades and other 

Northwest mountain ranges. It is drier than the other two subregions and experiences higher 

maximum temperatures. The remaining 41% of the area is covered by the Eastern Northwest 

Mountains (ENWM) comprising the mountainous regions east of the Cascades. This subregion 

includes the Wasatch and Uinta Mountains, Wyoming Basin, Blue Mountains, Idaho Batholith, 

Middle Rockies, Northern Rockies, and Canadian Rockies Level III Ecoregions. It is the coldest 

of the subregions and has precipitation amounts intermediate to those of the other two. 

Table 2.1: PNW subregion characteristics. Climate variables are derived from PRISM data and 
averaged over the historical baseline period (1971-2000). 

Region 
Area 
(km2) 

Mean 
min. 
monthly 
temp 
(°C) 

Mean 
max 
monthly 
temp 
(°C) 

Annual 
precip 
(mm) 

Annual 
summer 
precip 
(mm) Level III ecoregions 

Full study 
area 

784,358 0.56 13.26 842 
 

95.76  

Western 
Northwest 
(WNW) 

162,620 3.66 13.97 1841 
 

139.95 Coast Range, Klamath 
Mountains/California High 
North Coast Range, Willamette 
Valley, Puget Lowlands, 
Cascades, North Cascades 

Northwest 
Plains and 
Plateau 
(NWPP) 

300,393 0.95 14.93 382 55.26 Eastern Cascades Slopes and 
Foothills, Northern Basin and 
Range, Columbia Plateau, 
Snake River Plain, Northwest 
Great Plains, Northwest 
Glaciated Plains 

Eastern 
Northwest 
Mountains 
(ENWM) 

321,345 -0.75 12.43 643 109.8 Wasatch and Uinta Mountains, 
Wyoming Basin, Blue 
Mountains, Idaho Batholith, 
Middle Rockies, Northern 
Rockies, Canadian Rockies 

(min: minimum; max: maximum; precip: precipitation) 
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Fig. 2.1: Study area. (A) Index map of study area within the contiguous United States; (B) 
subregions defined for this study: 1. western Northwest (WNW); 2. Northwest plains and plateau 
(NWPP); and 3. eastern Northwest mountains (ENWM); and (C) elevation in meters. 

2.3.2 Model Description 

We used MC2, the C++ version of the MC1 dynamic global vegetation model (DGVM; 

Bachelet et al. 2015). While the code structure of MC2 was modified from MC1 for purposes of 

performance improvement and run option specification, it uses the same algorithms as MC1 and 

was designed to be functionally equivalent. MC1 and MC2 have been widely used at global to 

regional scales to simulate potential vegetation shifts, carbon (C) fluxes, and wildfires in national 

parks (e.g. King et al. 2013), individual states (Lenihan et al. 2008), across the conterminous 

United States (Bachelet et al. 2001), North America (Drapek et al. 2015), as well as globally 

(Gonzalez et al. 2010) for a variety of climate change scenarios. The model is run at a monthly 

time step on a spatial grid in which each cell is simulated independently, with no cell-to-cell 

communication. The model can be used to simulate land use (Bachelet et al. 2015), but for this 

project, we simulated the potential vegetation that would occur without direct human 
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intervention. However, fire suppression and the influence of increasing atmospheric CO2 

concentrations due to anthropogenic emissions were explored in this study. The model includes 

three modules that simulate biogeography, biogeochemistry, and wildfire interactions. 

The biogeography module simulates shifts in vegetation types based on climate and 

biomass thresholds. The model does not simulate individual species. Woody functional types 

(trees and shrubs) are distinguished by leaf phenology (evergreen vs. deciduous) and 

morphology (needleleaf vs. broadleaf). The module uses environmental gradients of minimum 

monthly temperature and growing season precipitation to simulate the relative dominance of 

woody lifeforms. The relative dominance of C3 versus C4 grasses (including forbs, sedges, and 

other herbaceous vegetation) is simulated by calculating the potential production of pure C3 and 

pure C4 stands using soil temperature. Thresholds of carbon pool values are used to distinguish 

between forest, savanna, shrubland, and grassland classes. There are 36 vegetation types 

possible, 14 of these within the temperate zone. 

The model always simulates competition for light, water and nutrients between 

herbaceous and woody vegetation. The biogeochemistry module is a modified version of the 

CENTURY model (Metherell et al. 1993) that simulates carbon and nitrogen cycles, including 

net primary production (plant growth) and net biological production (ecosystem carbon balance), 

decomposition, and soil respiration. The model simulates the allocation of carbon and nitrogen 

among plant parts, multiple classes of litter, and three soil organic matter pools. Woody life form 

and herbaceous production is limited by temperature, soil water availability, soil nitrogen, and 

atmospheric CO2 (Bachelet et al. 2015). Decomposition is affected by substrate quality, soil 

texture and moisture, and temperature. The model also simulates actual and potential 

evapotranspiration (AET and PET), and soil water content in multiple soil layers. Grass and 

woody vegetation leaf moisture contents are calculated as functions of the ratio of available soil 

water to PET, and are interpreted as live fuel moisture contents affecting fire behavior. 

The fire module (Lenihan et al. 1998; Conklin et al. 2015) simulates fire occurrence, area 

burned, and fire impacts including mortality, consumption of aboveground biomass, and nitrogen 

volatilization. Mortality and consumption of overstory biomass are simulated as a function of fire 

behavior and the canopy vertical structure. Fire occurrence is simulated as a discrete event. The 

module runs on a daily time step by using a randomly distributed set of daily precipitation values 
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derived from monthly precipitation values. To estimate fuel characteristics, the module 

calculates the Keetch-Byram drought index (Keetch and Byram 1968) using carbon pool values, 

daily precipitation, temperature, wind, potential evapotranspiration, relative humidity, and 

snowfall. Daily estimates for fine fuel moisture content (FFMC, Van Wagner 1987), buildup 

index (BUI, Canadian Forestry Service 1984), and energy release component (ERC, Cohen and 

Deeming 1985) are also calculated. An ignition source is always assumed and a fire is simulated 

the first time the daily FFMC and BUI values exceed respective thresholds for current vegetation 

type and the fuel load is sufficiently dense to carry a fire. The model does not support more than 

one fire per year in a grid cell. 

To reflect a realistic geographic extent of a fire under assumed ignitions, the fire module 

limits the area burned with an algorithm based on fire return interval (FRI) and years since last 

fire. In the fire module each vegetation type is assigned both a maximum and minimum FRI 

(Leenhouts 1998). At each time step each grid cell’s FRI is calculated starting with the maximum 

value for its vegetation type and adjusted as a function of BUI if the cell contains less than 70% 

fine fuels, or of FFMC if it contains 70% or more fine fuels. A higher BUI or FFMC reduces the 

FRI until it reaches the minimum FRI for that vegetation type. The maximum fraction of area 

burned is calculated as follows: 

f = y/F          (1) 

where f is the maximum fraction of area burned, y is the number of years since the last fire, and F 

is the fire return interval associated with the vegetation type and the severity of fuel conditions. 

For example, if a cell with an FRI of one hundred years had a fire five years previous, the 

maximum fraction of the area that could burn would be 0.05, or 5%.  

The fire module includes a fire suppression option (Rogers et al. 2011) that limits the area 

burned to 0.06% of the cell unless the fire exceeds either an ERC of 60 or a 3.1 MW m-1 fireline 

intensity and a spread rate of 0.51 m s-1. In that case, the full fire algorithm is used. 

2.3.3 Model Calibration 

In vegetation modeling, it is common practice to adjust model parameters to obtain the 

best match possible between results using historical input data and reference datasets 

(benchmarks). For this study, we calibrated MC2 for the conterminous United States (CONUS; 
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Bachelet et al. 2015) using Kuchler’s (1975) potential vegetation map, Leenhouts' (1998) 

potential fire return intervals matched to Kuchler’s vegetation types, and the National Biomass 

and Carbon Dataset (NBCD; Kellndorfer et al. 2012). Based on expert opinion, we assigned a 

weighted difference from 0 (full match) through 3 (full mismatch) between all possible pairs of 

MC2/Kuchler vegetation types. Using visual comparisons of potential vegetation departure, 

above ground carbon differences, and fire occurrence differences, we iteratively adjusted 

biogeographic parameters for vegetation type classification and BUI and FFMC thresholds for 

ignitions. The final parameterization produced a 47% full match (weighted difference of 0) and a 

33% minimal mismatch (weighted difference of 1) between the MC2 results and Kuchler’s 

(1975) potential vegetation, a normalized root mean square error of 0.35 for MC2 mean fire 

interval (MFI) versus Leenhout’s (1998) FRI, and a normalized root mean square error of 0.11 

versus the NBCD 2000 aboveground carbon dataset. 

2.3.4 Run Protocol 

MC2 is run in three phases. In the first phase, initialization, the static biogeography 

model, MAPSS (Neilson 1995) generates a map of potential vegetation distribution for the 

average climate between 1895 and 1924. This map is used by the biogeochemistry module to 

calculate initial values for carbon and nitrogen pools associated with each vegetation type with 

their prescribed fire return intervals. The initialization phase ends when the resistant soil carbon 

pool size changes by less than 1% from one year to the next. Its duration varies across the map 

from a few decades for grasslands up to 3000 years for temperate rainforests. Spinup, the second 

phase, is run iteratively using detrended historical climate from 1895 to 1924 to allow for 

readjustments of vegetation type and carbon pool sizes in response to interannual variability and 

simulated wildfires. The spinup phase ends when the net biological production (net ecosystem 

production minus carbon consumed by wildfire) reaches a value near zero. In the third, transient 

phase, the model is run with time series of historical and future climate. 

2.3.5 Model Runs 

For the historical period (1895 to 2010) and each of the 40 climate futures (2011 to 

2100), we ran the model once with fire suppression (FS) and once with no fire suppression 

(NFS). For the historical fire suppression run, fire suppression is not started until 1950 to reflect 
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the realistic historical start of effective forest fire suppression in the United States (Pyne 1982; 

Dombeck 2001; Veblen et al. 2003). All runs used a 1/24 degree (~4 km) grid. The soils input 

dataset was originally provided by Jeff Kern for the VEMAP project (Kern 1994, 1995, 2000), 

and was rescaled to match the climate grid. It includes bulk density and depth to bedrock, as well 

as sand, clay and rock fragment content at three depths. Climate inputs for the historical data 

were upscaled to the 1/24 degree grid by taking the mean of 1/120 degree (~800 meter) PRISM 

(Daly et al. 2008) grid cells. Projected minimum and maximum temperature, precipitation, and 

mean dewpoint temperature were downscaled from 40 climate futures from 20 climate models 

(Table 2.2) run for representative concentration pathways (RCP) 4.5 and 8.5. Future climate was 

downscaled using the MACA algorithm (Abatzoglou and Brown 2012), which includes steps for 

bias correction, epoch adjustment, and constructed analogs. All told, we executed 2 historical 

(FS and NFS) and 80 future runs (RCP 4.5/RCP 8.5 x FS/NFS x 20 climate models). 

2.3.6 Analyses 

We summarized climate data and vegetation results over three thirty-year periods, late 

20th century (1971-2000), mid 21st century (2036-2065), and late 21st century (2071-2100). Fire 

results were summarized over the entire 20th and 21st centuries (1901-2000 and 2001-2100, 

respectively). For future projections, results were summarized by RCP/fire suppression scenario 

(4 separate summaries: RCP 4.5/RCP 8.5 x FS/NFS). Unless otherwise noted, for continuous 

output variables, summary results for future runs were produced by taking the mean over time, 

followed by the mean over the study area for each of the climate futures, and finally by taking 

the ensemble mean (mean over all climate futures) for each RCP/fire suppression scenario pair. 

For categorical data, we used the mode instead of the mean. Several of the climate futures used 

as inputs to the MC2 model runs provided data only through 2099. Ensemble results for the year 

2100 were calculated considering only models for which there were data. 
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Table 2.2. Climate models whose results were used as inputs to MC2 for this study. 

# GCM or ESM Origin 
Atmos res (degree lat 
x lon x vertical levels) 

1 BCC-CSM1-1 Beijing Climate Center, China Meteorological 
Administration 

2.8 x 2.8 x L26 

2 BCC-CSM1-1-M Beijing Climate Center, China Meteorological 
Administration 

1.12 x 1.12 x L26 

3 BNU-ESM College of global change and earth system science, 
Beijing Normal University, China 

2.8 x 1.4 x L26 

4 CanESM2 Canadian Center for Climate Modelling and Analysis 
(Canada) 

2.8 x 2.8 x L35 

5 CCSM4 NCAR (USA) 1.25 x 0.94 x L26 

6 CNRM-CM5 Meteo France and CNRS (France) 1.4 x 1.4 x L31 

7 CSIRO-MK3-6.0 Commonwealth Scientific and Industrial Research 
Organization, Queensland Climate Change Center of 
Excellence (Australia) 

1.8 x 1.8 x L18 

8 GFDL-ESM2G NOAA/GFDL (USA) 2.5 x 2.0 x L48 

9 GFDL-ESM2M NOAA/GFDL (USA) 2.5 x 2.0 x L48 

10 HadGEM2-CC Meteorological Office Hadley Center, UK 1.88 x 1.25 x L60 

11 HadGEM2-ES Meteorological Office Hadley Center, UK 1.88 x 1.25 x L38 

12 INM-CM4 Institute for Numerical Mathematics (Russia) 2.0 x 1.5 x L21 

13 IPSL-CM5A-LR Institut Pierre Simon Laplace (France) 3.75 x 1.8 x L39 

14 IPSL-CM5A-MR Institut Pierre Simon Laplace (France) 2.5 x 1.25 x L39 

15 IPSL-CM5B-LR Institut Pierre Simon Laplace (France) 3.75 x 1.8 x L39 

16 MIROC5 Atmosphere and Ocean Research Institute (U. Tokyo), 
National Institute for Environmental Studies, Japan 
Agency for Marine-Earth Science and Technology (Japan) 

1.4 x 1.4 x L40 

17 MIROC-ESM  Atmosphere and Ocean Research Institute (U. Tokyo), 
National Institute for Environmental Studies, Japan 
Agency for Marine-Earth Science and Technology (Japan) 

2.8 x 2.8 x L80 

18 MIROC-ESM-
CHEM 

Atmosphere and Ocean Research Institute (U. Tokyo), 
National Institute for Environmental Studies, Japan 
Agency for Marine-Earth Science and Technology (Japan) 

2.8 x 2.8 x L80 

19 MRI-CGCM3 Meteorological Research Institute (Japan) 1.1 x 1.1 x L48 

20 NorESM1-M Norwegian Climate Center 2.5 x 1.9 x L26 

(GCM: global climate model;  ESM: earth system model; Atmos: atmospheric;  res: resolution; 
lat: latitude; lon: longitude)



  

 
 

 

38 
Climate data are summarized by subregion, and monthly precipitation is displayed by 

subregion. We calculated the average number of years between fires for each grid cell and called 

it mean fire interval (MFI) to distinguish between MC2’s fire intervals and Leenhouts' FRI 

values used as boundaries in the fire model. At the subregional level, we calculated the 

maximum annual area burned and the mean annual area burned, both in terms of actual area and 

percent of total area. MC2 vegetation types were aggregated into broad vegetation classes to 

simplify the results (Table 2.3). 

Table 2.3. MC2 vegetation types comprising this study’s vegetation classes. 
Vegetation Class MC2 Vegetation Types 
Tundra Tundra 
Conifer Forest Subalpine, Maritime Evergreen Needleleaf Forest, 

Temperate Evergreen Needleleaf Forest, Cool Needleleaf 
Forest 

Cool Mixed Forest Temperate Cool Mixed Forest 
Decidous Forest Temperate Deciduous Broadleaf Forest 
Warm Mixed Forest Temperate Warm Mixed Forest, Subtropical Mixed Forest 
Woodland/Savanna Temperate Deciduous Broadleaf Woodland, Temperate 

Cool Mixed Woodland, Temperate Warm Mixed 
Woodland, Subtropical Evergreen Broadleaf Woodland, 
Subtropical Mixed Woodland 

Shrubland/Woodland Temperate Evergreen Needleleaf Woodland, Temperate 
Shrubland, Subtropical Shrubland 

Grassland Temperate Grassland, Subtropical Grassland 
 
2.4 Projected Climate Change 

For all three regions, all climate projections show rising minimum and maximum 

monthly temperatures (Tmin and Tmax, respectively) compared to the historical baseline period 

(1971-2000) with ensemble mean changes ranging from 2.18°C for mid-century average Tmin 

under the RCP 4.5 scenario for WNW to 5.87°C for late century average Tmin under RCP 8.5 

for ENWM (Table 2.4). Standard deviations for temperature change range from 0.54°C (Tmin, 

WNW, RCP 4.5 early century) to 1.19°C (Tmin and Tmax, ENWM, RCP 8.5, late century). 

Temperatures rise more under RCP 8.5 than under RCP 4.5. Rising temperatures are consistent 

across the 21st century under RCP 8.5 while under RCP 4.5 the rate of rising slows over the later 

part of the century. 

The change in mean annual precipitation from the late 20th century baseline is generally 

positive, but varies across projections (Table 2.4). Standard deviations range from 3.1% (Full 



  

 
 

 

39 
Study Area, RCP 4.5, early century) to 7.5% (NWPP, RCP 8.5, late century). Ensemble means 

indicate increases for all subregion / RCP / time period combinations ranging from 0.12% (Full 

Area, RCP 4.5, early century) to 13.18% (NWPP, RCP 8.5, late century). Increases are generally 

largest for RCP 8.5 late century. 

The change in mean summer precipitation from late 20th century is generally small but 

varies greatly across projections (Table 2.4). Standard deviations range from 8.7% (Full Study 

Area, RCP 8.5, early century) to 21.0% (NWPP, RCP 8.5, late century). Ensemble means 

indicate decreases for all subregion / RCP / time period combinations ranging from 33.14% 

(WNW, RCP 8.5, late century) to 13.82% (ENWM, RCP 4.5, early century). Increases are 

generally greatest for RCP 8.5 late century. Among all climate futures and subregions, changes 

ranged from -55.5% (WNW, RCP 8.5, early century) to 45.0% (NWPP, RCP 8.5, late century). 

Compared to the late 20th century, summer precipitation is lower under the RCP 4.5 and 

8.5 scenarios for the mid- and late 21st century, but for all climate futures the duration of the dry 

period is not longer (Fig. 2.2). During the rest of the year, especially fall (October, November, 

December) and spring months (March, April, and May) precipitation generally increases (Fig. 

2.2). 
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Table 2.4. Changes in annual means of climate variables between historical (1971-200) and future periods by subregion and 
representative concentration pathway (RCP). Ensemble means, minimums, maxiums, and standard deviations were taken across 
results of runs produced using all climate futures. 

 RCP 4.5 RCP 8.5 
2036-2065 2071-2100 2036-2065 2071-2100 
Min Max Ens. 

Mean 
SD Min Max Ens. 

Mean 
SD Min Max Ens. 

Mean 
SD Min Max Ens. 

Mean 
SD 

Full NW                 
Tmin (°C) 1.38 3.62 2.59 0.61 1.78 4.66 3.32 0.82 1.79 4.31 3.23 0.71 3.55 7.21 5.51 1.15 
Tmax (°C) 1.29 3.49 2.55 0.61 1.80 4.64 3.34 0.83 1.73 4.10 3.17 0.72 3.51 7.23 5.55 1.13 
Ann ppt (% chg) -2.13 8.25 1.76 3.11 -4.61 8.98 3.39 3.84 -5.74 7.84 2.22 3.76 0.54 18.22 8.46 4.66 
Sum ppt (% chg)  -38.97 -1.10 -17.63 8.91 -42.66 -4.83 -18.47 9.62 -36.02 -4.73 -20.36 8.70 -48.30 15.35 -21.81 13.93 
WNW                 
Tmin (°C) 1.01 2.91 2.18 0.54 1.39 3.84 2.86 0.72 1.55 3.70 2.74 0.66 2.89 6.14 4.76 1.07 
Tmax (°C) 1.05 2.94 2.21 0.54 1.66 4.10 2.93 0.70 1.56 3.68 2.77 0.64 3.09 6.24 4.84 1.01 
Ann ppt (% chg) -8.14 6.60 0.12 3.69 -4.55 7.01 1.17 3.38 -9.44 8.14 0.34 4.09 -3.00 11.53 4.77 3.80 
Sum ppt (% chg)  -38.34 -0.75 -25.14 10.08 -43.84 -4.90 -24.66 10.44 -55.45 -14.67 -27.90 11.50 -50.76 -14.97 -33.14 10.57 
NWPP                 
Tmin (°C) 1.33 3.64 2.59 0.63 1.74 4.74 3.33 0.84 1.72 4.23 3.24 0.73 3.53 7.34 5.57 1.18 
Tmax (°C) 1.34 3.69 2.61 0.65 1.92 4.92 3.43 0.88 1.73 4.28 3.25 0.75 3.61 7.65 5.71 1.17 
Ann ppt (% chg) -2.61 11.30 3.67 3.63 -3.35 13.78 5.88 5.54 -5.23 12.85 4.61 4.27 1.83 27.91 13.18 7.52 
Sum ppt (% chg) -40.81 9.81 -14.54 11.09 -47.50 6.30 -15.32 12.60 -30.23 0.53 -17.46 8.82 -49.85 45.02 -14.50 20.99 
ENWM                 
Tmin (°C) 1.58 3.98 2.81 0.66 2.03 5.05 3.57 0.87 2.00 4.71 3.50 0.75 3.75 7.67 5.87 1.19 
Tmax (°C) 1.36 3.61 2.68 0.64 1.78 4.87 3.48 0.88 1.81 4.27 3.32 0.76 3.61 7.51 5.78 1.19 
Ann ppt (% chg) -2.08 10.84 3.29 4.07 -5.42 12.24 5.44 4.89 -4.49 11.80 3.86 4.34 2.63 24.88 11.43 6.33 
Sum ppt (% chg) -39.87 10.41 -13.82 10.46 -42.70 8.58 -15.61 11.52 -28.96 6.09 -16.45 10.52 -45.83 37.44 -17.34 18.08 

(RCP: representative concentration pathway; NW: Northwest; WNW: western Northwest; NWPP: Northwest plains and plateau; 
ENWM: eastern Northwest mountains; Tmin: minimum monthly temperature; Tmax: maximum monthly temperature; Ann ppt: 
full year precipitation; Sum ppt: precipitation total for July-September; Min: minimum from the climate futures; Max: maximum 
from the climate futures; Ens Mean: mean over climate futures; SD standard deviation over climate futures.) 
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Fig. 2.2. Monthly precipitation by subregion, period, and representative concentration pathway (RCP). Heavy black line is 
ensemble mean over all climate futures, light grey lines are individual climate futures (WNW: western Northwest; NWPP: 
Northwest plains and plateau; ENWM: eastern Northwest mountains). 
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2.5 Subregional results 
2.5.1 WNW 

In the 21st century, the WNW subregion has a lower ensemble MFI, (Table 2.5), a higher 

ensemble annual percent area burned (PAB; Table 2.6), and a higher ensemble maximum annual 

PAB than in the 20th century across all emissions and fire suppression scenarios. Compared to 

results under the RCP 4.5 scenario, results under RCP 8.5 show a lower MFI, larger mean annual 

PAB, and slightly larger maximum annual PAB. Fire suppression shows a higher MFI, lower 

mean PAB, and slightly lower maximum annual PAB compared to no fire suppression. During 

the 20th century, maximum PAB exceeds 5% one time and reaches a maximum of 10% (Fig. 2.3 

B) while during the 21st century, the ensemble mean for maximum annual PAB ranges from 

13.45% (RCP 4.5 FS) to 16.96% (RCP 8.5 NFS). Results from individual future simulations 

range as high as 30% and encompass the 20th century results for maximum annual PAB (Fig. 2.3 

B).  All 21st century results for mean annual PAB (Fig. 2. 3 B) lie above those for the 20th 

century and those for MFI (Fig. 2.4 B) lie below. During the 20th century, most of the WNW 

experiences no fire regardless of whether fire suppression is applied or not (Fig. 2.5 B). Only 

southern portions of the northern Cascades and southern Klamath region experience years with 

large areas burned by wildfire. In sharp contrast, during the 21st century, most of the area 

experiences extensive wildfires with PAB approaching 100% in burned grid cells, the exceptions 

being the Klamath area, along the Pacific coastline, and at high elevations (Fig. 2.5 C). 
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Table 2.5. Simulated mean fire interval (MFI) by subregion for 20th century and 21st century by 
representative concentration pathway (RCP). Ensemble means and standard deviations were 
taken across results of runs produced using all climate futures. 

Region and Fire 
Suppression 

20th Century RCP 4.5 21st Century RCP 8.5 21st Century 

 
Ensemble 
Mean 

Standard 
Deviation 

Ensemble 
Mean 

Standard 
Deviation 

Full NW FS 42.36 25.87 6.72 20.81 6.69 
Full NW NFS 36.66 14.60 5.65 9.35 4.99 
WNW FS 81.34 47.27 11.17 37.40 10.93 
WNW NFS 79.93 40.92 11.37 27.15 9.75 
NWPP FS 18.56 21.10 3.77 20.01 4.70 
NWPP NFS 11.39 2.84 0.98 2.05 0.69 
ENWM FS 44.88 19.49 9.48 13.16 8.37 
ENWM NFS 38.39 12.28 8.66 7.17 7.00 

(RCP: representative concentration pathway; NW: Northwest; WNW: western Northwest; 
NWPP: Northwest plains and plateau; ENWM: eastern Northwest mountains; FS: fire 
suppression; NFS: no fire suppression.) 
Table 2.6. Simulated annual percent area burned (PAB) by subregion for 20th century and 21st 
century by representative concentration pathway (RCP). Ensemble means and standard 
deviations were taken across results of runs produced using all climate futures. 

Region and Fire 
Suppression 

20th Century RCP 4.5 21st Century RCP 8.5 21st Century 

 
Ensemble 
Mean 

Standard 
Deviation 

Ensemble 
Mean 

Standard 
Deviation 

Full NW FS 1.99 2.31 0.20 2.36 0.22 
Full NW NFS 3.06 3.85 0.23 3.91 0.22 
WNW FS 0.53 1.12 0.19 1.27 0.17 
WNW NFS 0.58 1.32 0.23 1.52 0.19 
NWPP FS 2.90 2.75 0.21 2.74 0.29 
NWPP NFS 4.89 5.52 0.12 5.48 0.12 
ENWM FS 1.88 2.50 0.28 2.55 0.26 
ENWM NFS 2.61 3.58 0.38 3.66 0.35 

(RCP: representative concentration pathway; NW: Northwest; WNW: western Northwest; 
NWPP: Northwest plains and plateau; ENWM: eastern Northwest mountains; FS: fire 
suppression; NFS: no fire suppression.) 
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Fig. 2.3. Spread across model runs for mean annual area burned over time period (MOP) and 
maximum annual area burned (1YM) for 20th century and 21st century for two representative 
concentration pathways (RCPs). (A) full study area, (B) WNW (western Northwest), (C) NWPP 
(Northwest plains and plateau), and (D) ENWM (eastern Northwest mountains). Whiskers 
extend to a maximum of 1.5 x interquartile range (Q3 – Q1) (FS: fire suppression; NFS: no fire 
suppression). 
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Fig. 2.4. Spread across model runs for simulated mean fire interval (MFI) for 20th century 
(Historical) and 21st century for two representative concentration pathways (RCPs). (A) full 
study area, (B) WNW (western Northwest), (C) NWPP (Northwest plains and plateau), and (D) 
ENWM (eastern Northwest mountains). Whiskers extend to a maximum of 1.5 x interquartile 
range (Q3 – Q1) (FS: fire suppression; NFS: no fire suppression). 
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Fig. 2.5. Simulated fire results for 20th century and 21st century for two representative 
concentration pathways (RCPs). (A) mean fire interval (MFI), (B) mean annual percent area 
burned (PAB), and (C) maximum annual percent of area burned (PAB). Means and maximums 
taken across results of runs produced using all climate futures (Pct: percent; FS: fire suppression; 
NFS: no fire suppression).
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Vegetation shifts from predominantly conifer to mixed forests as temperatures warm 

during the 21st century (Fig. 2.6, Table 2.8). The shift starts in the south, expands along the coast, 

and spreads northward and upslope over the Coast range and into the middle reaches of the 

Cascades. This shift is earlier and more extensive under the warmer RCP 8.5 scenario than under 

the cooler RCP 4.5 scenario. In the late 21st century under RCP 8.5, remnant conifer forests 

occur only in the northern Oregon Coast Range, the higher elevations of the Olympic Peninsula, 

and the higher elevations of the Cascades. Following the shift from conifer to mixed vegetation, 

warm mixed forests replace cool mixed forests, starting in the southwest, spreading north along 

the coast, and then inland and north into the foothills of the Cascades. This trend is most 

extensive under the RCP 8.5 scenario in the late 21st century. 

 
Fig. 2.6. Simulated modal vegetation classes for historical time period and across 20 climate 
futures for two representative concentration pathways (RCPs). Modes taken across results of 
runs produced using all climate futures (FS: fire suppression; NFS: no fire suppression). 

2.5.2 NWPP 

In the NWPP subregion, RCP scenarios have little effect on fire results (Figures 3 C, 4 C, 

Tables 5, 6, 7), while fire suppression has a marked effect. Even though its effect during the 20th 
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century is limited because suppression is not applied until 1950, fire suppression produces a 

longer MFI (18.56 vs 11.39 years), a lower annual mean PAB (2.90 vs 4.89%), and a lower 

maximum annual PAB (11.95 vs 14.18%) than no fire suppression. During the 21st century fire 

suppression results in a MFI up to ten times as long (~20 vs ~2 to 3 years), a mean PAB half as 

large (~2.75 vs ~5.5%), and a maximum annual PAB of just over half as large (6.79 vs 11.50% 

for RCP 4.5, 5.59 vs 10.80% for RCP 8.5) as those without fire suppression. 

Table 2.7. Simulated maximum single year percent area burned (PAB) by subregion for 20th 
century and 21st century by representative concentration pathway (RCP). Ensemble means and 
standard deviations were taken across results of runs produced using all climate futures. 

Region and Fire 
Suppression 

20th Century RCP 4.5 21st Century RCP 8.5 21st Century 

 
Ensemble 
Mean 

Standard 
Deviation 

Ensemble 
Mean 

Standard 
Deviation 

Full NW FS 10.85 9.47 1.69985 8.98 2.05752 
Full NW NFS 15.97 13.25 2.24275 12.66 2.42619 
WNW FS 9.55 13.45 6.33449 15.93 6.37986 
WNW NFS 9.97 14.20 6.60039 16.96 6.79137 
NWPP FS 11.95 6.79 1.39409 5.59 0.764454 
NWPP NFS 14.18 11.50 1.40379 10.80 0.96752 
ENWM FS 14.29 14.82 3.79227 13.52 3.63536 
ENWM NFS 20.69 19.43 4.65294 17.88 4.58403 

(RCP: representative concentration pathway; NW: Northwest; WNW: western Northwest; 
NWPP: Northwest plains and plateau; ENWM: eastern Northwest mountains; FS: fire 
suppression; NFS: no fire suppression.) 
Table 2.8. Dominant simulated vegetation types and percent coverage for historical and future 
time periods by representative concentration pathway (RCP). Results are from modes across 
results of runs produced using all climate futures. 

Region and Fire 
Suppression 

Historical RCP 4.5 RCP 8.5 
1971-2000 2036-2065 2070-2100 2036-2065 2070-2100 

Full NW FS CON 47.70 CON 49.06 CON 47.52 CON 47.55 CON 49.18 
Full NW NFS CON 46.10 CON 44.05 CON 42.96 CON 42.27 CON 44.34 
WNW FS CON 85.90 CON 71.07 MIX 49.61 MIX 60.69 MIX 64.60 
WNW NFS CON 85.42 CON 70.93 MIX 49.17 MIX 60.35 MIX 64.48 
NWPP FS FSH 89.51 FSH 97.08 FSH 98.57 FSH 97.16 FSH 98.53 
NWPP NFS FSH 80.00 FSH 84.94 FSH 87.10 FSH 84.74 FSH 88.08 
ENWM FS CON 60.50 CON 66.89 CON 70.96 CON 67.60 CON 77.18 
ENWM NFS CON 58.23 CON 58.45 CON 62.75 CON 58.72 CON 68.56 

(RCP: representative concentration pathway; NW: Northwest; WNW: western Northwest; 
NWPP: Northwest plains and plateau; ENWM: eastern Northwest mountains; FS: fire 
suppression; NFS: no fire suppression; CON: conifer forest; MIX: warm mixed forest + cool 
mixed forest; FSH = forest + shrubs.) 
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Without fire suppression, during both historical and future periods, frequent fires reduce 

the dominance of woody vegetation (forests and shrubs) by 9.5 to 12.4% (Fig. 2.6, Table 2.8) 

compared to results with fire suppression. This trend is most apparent at lower elevations in the 

western and southern portions of the subregion where, without fire suppression, grasslands are 

more extensive and shrublands less. Both with and without fire suppression, the dominance of 

woody vegetation increases between 4.7 and 9.1% in the future period. 

2.5.3 ENWM 

Over the entire ENWM subregion, MFI (7.2 to 19.5 years 21st century vs 38.4 to 44.9 

years 20th century) decreases, mean annual PAB (2.7 to 3.7% 21st century vs 1.9 to 2.6% 20th 

century) increases, and maximum annual PAB (13.5 to 19.4% 21st century vs 14.3 to 20.7% 20th 

century) is nearly unchanged during the 21st century as compared to the 20th century (Tables 5, 6, 

7, Figures 3 D, 4 D). MFI is lower, mean annual PAB higher, and maximum annual PAB higher 

without fire suppression. Results differ little between RCP 4.5 and 8.5 scenarios. Lower 

elevation valleys and slopes within the ENWM (Fig. 2.5) show similar responses to emission 

scenarios and fire suppression to comparable areas in the NWPP. 

Fire in the Blue Mountains (area of generally lower elevation stretching westward from 

the southern portion of the subregion) differs from that in the eastern portion of the subregion, 

with generally more frequent, smaller fires (Figures 5 A-B) resulting in a mean annual PAB 

similar to that of the rest of the subregion. Fire suppression effects are consistent with those 

across the ENWM subregion, reducing both mean annual and maximum annual PAB, and 

increasing MFI. In the 21st century fires are somewhat more frequent and have a somewhat 

higher mean annual and maximum annual PAB than those in the rest of the NWPP. 

The eastern portion of the ENWM subregion exhibits different fire responses based on 

elevation (Fig. 2.5). Higher elevations have a higher MFI, lower mean annual PAB, and lower 

maximum annual PAB during the 20th century than lower elevations. During the 21st century, 

MFI decreases across this part of the subregion. Lower elevations have a higher MFI and a 

higher maximum annual PAB than higher elevations, but mean annual PAB similar to that of the 

rest of the subregion. 
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Conifer forests dominate the subregion for all historical and future simulations (Table 

2.8, Fig. 2.6). Conifer dominance is greater with fire suppression than without and under RCP 

8.5 versus RCP 4.5. It increases through time for all future simulations. During the late 20th 

century, with and without fire suppression, subalpine vegetation (not shown here, part of the 

conifer forest vegetation type) is present at high elevation and comprises 30% of the subregion 

area. By the late 21st century it is nearly absent, comprising 2% and 0.3% of the subregion area 

for RCP 4.5 and RCP 8.5 respectively. Other vegetation type changes are limited to shifts 

between more or less woody types at lower elevations with conifer forest supplanting 

shrubland/woodland, and shrubland/woodland supplanting grassland when fire suppression is 

implemented.  

2.6 Discussion 
In the WNW subregion, the prevalence of large fires and the change of the dominant 

vegetation from conifer to mixed forest are both associated with projected increases in 

temperature and take place under warmer, drier summer conditions. Large fires in the WNW 

subregion are currently limited by fuel moisture rather than fuel amount, requiring climate 

conditions such as drought or extreme fire weather that have rarely occurred historically (Meyn 

et al. 2007). These fire-conducive conditions – warmer temperatures and drier summers – 

become common in the future and cause large fires. Along the trajectory from historical to future 

climate conditions, vegetation shifts from conifer to mixed forests are facilitated by increased 

wildfire occurrence in much of the subregion. However, climate, rather than fire is the driving 

force behind the vegetation shift. Historically droughts have led to large fires in this subregion 

(Agee 1991), and the model simulated such large fires in several areas over the 20th century. In 

the case of either actual or simulated historical fires, conifer forests returned. Increased future 

temperatures and longer, dryer summers cause the vegetation to shift from the current conifer to 

less dense, more drought-tolerant mixed forest. This vegetation shift takes place even along the 

coast where moister conditions prevent fires in the future period (Fig. 2.6). 

In MC2, the longer the period between fires, the higher the fraction of grid cell available 

to burn when a fire occurs. When a group of grid cells experiences a long period without burning 

followed by a year in which fire thresholds are exceeded, as occurs in some areas of the WNW 

under most climate futures, the entire area experiences a uniquely high PAB. The model is likely 
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overestimating the annual maximum area burned in the WNW subregion. Results are best 

interpreted as an indication that conditions will be conducive to large fires and that if such 

conditions become frequent, as they are projected to under a climate with hotter, drier summers 

in the WNW, then large fires are likely. 

In the NWPP, the use of a fixed range of FRI for each vegetation type to limit the area 

burned has a very strong effect on fire behavior, in turn strongly influencing the vegetation. 

Without fire suppression, the assumption of unlimited ignition coupled with fixed FRI leads to 

very frequent, small fires in grass/shrub dominated areas. This maintains grasslands by denying 

woody vegetation the fire-free years needed to establish. Fire suppression in the model prevents 

large fire occurrence even when conditions exceed fire suppression thresholds thus limiting 

mortality and consumption of woody vegetation and amplifying woody encroachment. The 

model likely overestimates fire suppression effectiveness and underestimates the frequency of 

shifts between grassland and shrubland with and without fire suppression. Limiting as opposed to 

assuming ignitions would likely lead to greater spatial variability in fire frequency, extent, and 

intensity. This in turn would likely result in greater spatial and temporal variation in woody 

versus grass vegetation dominance (Ratajczak et al. 2014). 

The more frequent fire and greater mean area burned in the ENWM subregion are 

primarily due to rising temperatures. Although summer precipitation is reduced, the summer dry 

period is not longer than during the historical period (Fig. 2.2). Consequently, the effect of the 

decrease in precipitation on the length of the fire season is minimal. Warmer temperatures and 

increased precipitation during fall, winter, and spring are not great enough to shift vegetation 

from conifer to mixed forest. However, along with a moderate increase in water use efficiency 

due to increased CO2, these conditions result in greater conifer growth. Increased growth exceeds 

losses through increased fire, resulting in an overall increase in forested area. As with the WNW, 

assumed ignitions have led to large annual PAB in the ENWM and should be viewed in a similar 

manner. 

Rogers et al. (2011) ran MC1 using climate data from 3 climate model projections under 

SRES A2 scenarios and presented results of fire suppression over the western 2/3 of the states of 

Oregon and Washington. For their western forest domain, which corresponds closely to our 

WNW subregion, the ensemble mean of their mean annual PAB (0.14%) over the historical 
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period (1971-2000) was lower than ours over the entire 20th century (Table 2.6; 0.58% for NFS 

and 0.53% for FS). The mean of their future period (2070-2099) mean annual PAB (0.71%) was 

lower than ours for the 100 years of the 21st century (range of 1.12% for RCP 4.5 FS to 1.52% 

for RCP8.5 NFS). From the Cascades west, their results show a similar trend with mixed forests 

in the Willamette Valley under the MIROC future, however they simulate a smaller extent of 

mixed forest in the historical and future periods than we did. Elsewhere in their study area, they 

generally simulated woodier vegetation than we did with more forest and less grassland and 

shrubland/woodland. They simulated woody vegetation increases over time, as we did with fire 

suppression. 

More recently, using three downscaled CMIP5 climate futures representing low, 

moderate and high levels of climate change, Turner et al. (2015) simulated vegetation and land 

use changes in the Willamette watershed of Oregon. They found shifts in potential vegetation 

similar to ours for this portion of the study region, with warmer mixed forests dominating lower 

elevations, cooler mixed forests at intermediate elevations, and conifers remaining at high 

elevations. They found, as we did, that shifts to mixed and warmer mixed forest types were more 

extensive with the warmer drier climate scenarios. Their annual PAB for recent decades was 

0.2% and they observed a 3 to 9-fold increase in annual area burned for their moderate to severe 

climate scenarios. We found that for the 20th century PAB in the WNW subregion was between 

0.5% and 0.6% with a 2 to 3-fold increase in mean 21st century PAB. These differences are likely 

due to different parameterization, since they adjusted MC2 fire thresholds for each of their runs 

to match local historical records, while ours was adjusted once to match CONUS reference 

datasets using PRISM historical data. 

Differences between our results and those of Rogers et al. (2011) may be due to 

differences in climate futures, parameterizations, or both. Given the similarity between our 

results and Turner et al.’s (2015) despite independent parameterizations, it is likely that the 

differences are attributable to differences in the future climates used to drive the model. 

West of the Cascades, Rehfeldt et al. (2006) simulated the range of Oregon coastal 

conifer forests shrinking to the north and west of its original range. Most of the Douglas-fir 

forests they mapped in late 21st century were exposed to novel climate conditions. Similarly, we 
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simulated the near complete conversion of conifer forests to mixed forests over the same region. 

They also mapped a larger extent of grasslands in the NWPP than we did. 

Using Rehfeldt et al.’s (2006) results for Douglas-fir as well as a similar, statistics-driven 

analysis for three pine species, Littell et al. (2010) projected Douglas-fir vulnerability and 

species richness gains and losses within Washington state and northern Oregon. They included 

vulnerability to pine beetle outbreaks (which we did not simulate) and fire in their analysis. 

There is general concurrence between their projections of Douglas-fir being at risk (present in 

<50% of models) or not at risk (present in ≥50% of models) by the 2060s and MC2 projections 

of conifer forests converting to mixed or remaining as conifer. However, they projected 

unforested areas on some Cascade peaks as well as at lower elevations on the east side of Puget 

Sound and in lower elevation areas in the northern Willamette Valley and southern Puget 

Trough, while MC2 simulated forests in these areas. Overall, they projected a doubling or 

tripling of annual area burned by the 2080s. This is lower than what MC2 simulated for the entire 

region, but is consistent with MC2 projections for the WNW.  

Shafer et al. (2001) projected species range shifts using 3 CMIP3 futures. In the WNW, 

they simulated decreases in the range of Douglas-fir (Pseudotsuga menziesii), Pacific silver fir 

(Abies amabilis), Oregon white oak (Quercus garryana), and red alder (Alnus rubra) with 

increases in the ranges of valley oak (Quercus lobata) and ponderosa pine (Pinus ponderosa). 

This is consistent with our simulated shifts from conifer forest under cooler historical conditions 

to warmer mixed forests in the 21st century. They simulated the expansion of ponderosa pine 

within the ENWM which agrees with our simulated shifts from subalpine to warmer types at 

high elevations. 

On a state-by-state basis for western states, McKenzie et al. (2004) used multiple 

regression analysis to determine the area burned as a function of summer temperature and 

precipitation and projected how climate change may affect area burned. Projections with the mild 

PCM-B2 climate projection showed increases in area burned by a factor of approximately 1.3 

(Idaho) to approximately 3 (Washington) compared to the current mean. Their results are 

generally 20-30% greater than ours, likely as a result of their use of static vegetation while MC2 

simulate shifts to more fuel-limited mixed forests over much of the study area. 
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Due to different modeling techniques, climate futures, and model calibrations, our results 

differ in specifics from those of other studies. However, they closely agree in trends towards 

increased fire occurrence and intensity as well as vegetation shifts. Given the uncertainties 

inherent in climate inputs, biogeography rules, and fire modeling, our results should be 

considered in the broader context of other impacts modeling work just as each general circulation 

model provides another projection of future climate. 

2.7 Limitations 
 Climate projections generally agree on warmer future conditions, however, 

precipitation projections are more variable (e.g. Meehl et al. 2007). Seasonality, quantity, and 

interannual variability of precipitation have large effects on factors influencing fire occurrence 

and behavior. Years with greater precipitation can lead to increases in both dead and live fuels, in 

turn producing greater fire in fuel-limited areas. Dry years – or longer intraannual dry periods – 

can result in more fire in moisture-limited areas. Reliable soils data are key to projecting accurate 

soil water availability and drought stress (Peterman et al. 2014). Accurate vapor pressure deficit 

data are also important for producing meaningful vegetation modeling results. 

MC2 simulates potential vegetation most adapted to the climate drivers. However, in 

reality vegetation is long lived and endures under suboptimal conditions, preventing better-suited 

vegetation from gaining a foothold. Vegetation can remain in a metastable state until disturbance 

or natural mortality removes this legacy vegetation.  

Modeling fire also presents challenges as fire occurrence, spread, and intensity depend on 

inherently unpredictable factors including seasonal weather extremes, immediate weather 

conditions, ignition occurrence, and other factors that may affect fuel load and condition. A fire 

model will always be a simplification of dynamic processes and must strike a balance between 

realism, ease of implementation, and computational performance. 

The effects of CO2 concentration on water use efficiency and plant productivity are still 

not completely understood and may depend on factors such as ontogeny and site conditions 

(Camarero et al. 2015). While the CO2 fertilization effect in MC2 is moderate, it does lead to 

greater woody plant production and fuel accumulation. Improved understanding of the CO2 

fertilization effects will undoubtedly lead to improvements in vegetation modeling. 
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The addition of insect attacks, disease, and invasive species to the model would allow the 

model to better reflect the effects of these influences on vegetation dynamics. However, these 

additions were beyond the scope of this project. 

2.8 Conclusions 
Vegetation dynamics and wildfire are inextricably linked, yet MC2 is one of the few 

DGVMs to include a dynamic fire model. Using MC2, we modeled future vegetation and fire for 

the PNW using 40 different climate futures, each with and without fire suppression. Results 

illustrate the range of likely future fire frequency and extent as well as the pattern of possible 

vegetation changes throughout the 21st century. Fire and vegetation trends were distinctly 

different geographically and to facilitate interpretation we summarized the results using three 

subregions as follows. 

In the WNW, the predominant conifer forest is replaced by mixed forest under future 

climate scenarios. While fire is absent in most of the subregion during the 20th century, large 

fires are simulated during the 21st century. The metastable state of the vegetation and the 

potential for widespread fire indicate that this region could undergo a rapid ecological change in 

the coming decades. Managers will have to consider how to maintain continuity of ecosystem 

services and provide refugia for threatened species and communities. 

Fire suppression has a significant effect in the NWPP, leading to an expansion of woody 

vegetation, primarily shrubs. However, the potential for periodic large fires under fire 

suppression is probably more likely than indicated by our results, and would likely dampen the 

woody expansion and possibly lead to spatial and temporal variation in grass/shrub composition. 

Since we do not model invasive species, their importance in changing fire regimes across the 

intermountain West is missing from our analysis. Managing this diverse region where invasive 

species and locally accumulated fuels could pose threats to existing communities presents 

managers with a difficult challenge. 

In the ENWM, the predominant vegetation type remains conifer forest under all future 

climate scenarios. However, subalpine forests are supplanted by warmer forest types. The 

occurrence of large fires in the 21st century, especially in subalpine areas, points to the potential 

for sudden vegetation shifts. The possibility of rapid ecological change facilitated by sudden 
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large fires and other disturbances is real and might affect the effectiveness of management 

strategies designed to maintain ecosystem resilience and future ecosystem health. 

The Pacific Northwest is an ecologically diverse region that provides many ecosystem 

services including timber, carbon sequestration, grazing, wildlife habitat, and recreation. In 

addition, it is home to a number of ecosystems under pressure from landuse, invasive species, 

and changing climate. There is little doubt that the last of these pressures will have an increasing 

influence as climate change effects increase into the future. Because of this, it is important that 

land managers – from national leaders to regional planners – utilize the best available projections 

for future climate, vegetation, and landuse. This study provides one example of actionable 

projections and provides a platform for further enhancements to best address ecological issues 

into the future. 
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3.1 Abstract 

To develop effective long-term strategies, natural resource managers need to account for 

the projected effects of climate change as well as the uncertainty inherent in those projections. 

Vegetation models are one important source of projected climate effects. We explore results and 

associated uncertainties from the MC2 Dynamic Global Vegetation Model for the Pacific 

Northwest west of the Cascade crest. We compare model results for vegetation cover and carbon 

dynamics over the period 1895-2100 assuming: 1) unlimited wildfire ignitions versus stochastic 

ignitions, 2) no fire, and 3) a moderate CO2 fertilization effect versus no CO2 fertilization effect. 

Carbon stocks decline in all scenarios, except without fire and with a moderate CO2 fertilization 

effect. The greatest carbon stock loss, approximately 23% of historical levels, occurs with 

unlimited ignitions and no CO2 fertilization effect. With stochastic ignitions and a CO2 

fertilization effect, carbon stocks are more stable than with unlimited ignitions. For all scenarios, 

the dominant vegetation type shifts from pure conifer to mixed forest, indicating that vegetation 

cover change is driven solely by climate and that significant mortality and vegetation shifts are 

likely through the 21st century regardless of fire regime changes.  

3.2 Introduction 
Expected ecosystem responses to climate change include altered fire regimes (e.g., 

Sheehan et al., 2015; Rogers et al., 2011;  Westerling et al., 2006), insect outbreaks (e.g., Kurz et 

al., 2008), hydrologic changes (e.g., Mote PW et al., 2003), altered nutrient cycling (e.g., Fowler 

et al., 2015), species range shifts (e.g., Chen et al., 2011; Rehfeldt et al., 2009;  Rehfeldt et al., 

2006), and novel species assemblages (e.g., Lurgi et al., 2012;  Williams and Jackson, 2007). 

Vegetation models have been used to simulate such changes and provide resource managers 

projections to help their decision process (Littell et al., 2011). Estimating associated uncertainty 

allows managers to modulate their strategies (Littell et al., 2011). 

Dynamic Global Vegetation Models (DGVMs) are process-based models that simulate 

vegetation, carbon, nutrient, and hydrological dynamics. They are driven by historical climate 

data and climate projections from General Circulation Models (GCMs; e.g., Cramer et al., 2001) 

or Earth System Models (ESMs; Turner et al., 2015). Sources of uncertainty in DGVM 

projections come from both external drivers such as climate and soil characteristics, and internal 
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characteristics such as model structure, empirical parameter values, built-in thresholds, and 

inherent assumptions and simplifications. 

Another source of uncertainty is the complex relationship between fire and vegetation, 

which takes place over a range of spatial and temporal scales (Harris et al., 2016). Shifts in fire 

regime cause vegetation-altering feedbacks (e.g., Batllori et al., 2015;  Kitzberger et al., 2016). 

The type and level of complexity of fire models adequate for management-relevant vegetation 

modeling remains unclear (Hantson et al., 2016). Researchers have implemented a variety of 

models (Sullivan 2009a-c) which may or may not include fuel types, fuel moisture, ignitions 

sources, fire suppression, rate of spread, and energy release component calculation (Hantson et 

al., 2016; Rabin et al., 2017). Disturbance modeling at the landscape scale is discussed in Keane 

et al. (2015), and fire model limitations and uncertainties in global vegetation models are 

described in Hantson et al. (2016) and Rabin et al. (2017). While comparing results among 

DGVMs using different fire models provides one way to characterize uncertainty, modifying the 

assumptions within a single DGVM’s fire model is another method for sensitivity analysis and 

the exploration of fire-related uncertainty. 

An additional source of uncertainty is the assumptions of CO2 effects on plant 

productivity. CO2 concentration effects on the water use efficiency and productivity of many 

species is not well known (e.g., Norby and Zak 2011). Increased productivity has been attributed 

to the CO2 fertilization effect, but plant responses at large scales, with complex species 

assemblages, and combined with concurrent warming are uncertain (Way and Kroner, 2015). 

Free-air CO2 enrichment experimental results (FACE; Hendrey et al., 1999) have shown that 

increased CO2 can cause an increase in water use efficiency (WUE), leaf area index (LAI) and 

net primary productivity (NPP), but other factors, such as nutrient availability, may constrain 

responses over time (e.g., Ainsworth and Long, 2005). Species-specific response can modulate 

plant responses (e.g., Ainsworth and Long, 2005; Brodribb et al., 2009) and increased NPP may 

not increase C stocks (Norby and Zak 2011) just as increased WUE may not always lead to 

increased growth (Van Der Sleen et al., 2015). Uncertainties in the CO2 fertilization effect 

underscore the importance of testing different assumptions with DGVMs to explore vegetation 

response. 
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A previous study simulated climate change effects on fire and vegetation in the Pacific 

Northwest using the MC2 DGVM (Sheehan et al., 2015). That study characterized the 

uncertainty due to different atmospheric CO2 concentrations, climate drivers, and anthropogenic 

fire suppression actions. Fire occurrence and effects were driven by fuel condition thresholds and 

unlimited ignition sources. That study used a modest CO2 fertilization effect proportional to 

atmospheric CO2 concentration. 

In this study, we evaluate uncertainty due to model assumptions regarding fire occurrence 

and CO2-driven WUE. We compare results from unlimited ignitions and fixed fuel thresholds to 

those with stochastic ignition occurrence and ignition propagation based on fuel conditions. We 

also compare results obtained with and without CO2 fertilization effect. We address the 

following research questions concerning vegetation and carbon dynamics in the MC2 DGVM: 

1. What are the consequences of model assumptions about wildfire ignitions on spatial and 

temporal fire effects, carbon dynamics, and vegetation dynamics? 

2. What are the consequences of model assumptions about CO2 fertilization effects on 

carbon and vegetation dynamics? 

3.3 Methods 
3.3.1 Study area 

The study area (Fig. 3.1) consists of portions of Oregon and Washington west of the 

Cascade Mountain Range crest that include Coast Range, Klamath Mountains/California High 

North Coast Range, Willamette Valley, Puget Lowlands, Cascades, and North Cascades Level III 

Ecoregions (Omernik and Griffith, 2014). This area falls under strong coastal influence with 

mild, wet winters and dry summers. 
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Fig. 3.1. Study area. Portions of Oregon and Washington west of the Cascade Mountain Range 
crest. 
3.3.2 Model Description 

We used the MC2 dynamic global vegetation model (DGVM; Bachelet et al., 2015) to 

simulate potential vegetation shifts, carbon fluxes, and wildfires. We simulated potential 

vegetation without land use effects, and with previously defined model parameterization and 

protocol for the conterminous United States (detailed in Bachelet et al., 2015).  

MC2 does not simulate species, but instead simulates combinations of life forms in 

functional vegetation types. Woody lifeforms (trees and shrubs) are distinguished by leaf 

phenology (evergreen vs. deciduous) and morphology (needleleaf vs. broadleaf). The woody 

lifeforms and the relative dominance of C3 versus C4 grasses (including sedges and forbs) are 

simulated using climate thresholds. Carbon thresholds are used to distinguish broad vegetation 

types ranging from forest to grassland. 

The fire module simulates fire occurrence and fire effects including area burned, 

mortality, consumption of aboveground biomass, carbon emissions, and nitrogen volatilization. 

Fire occurrence is simulated as a discrete event. The module runs on a pseudo-daily time step 

and derives a randomly distributed set of daily precipitation amounts from monthly precipitation 

values. Fuel types are derived from carbon stocks, and their characteristics are determined by 

weather effects on their moisture content (see Sheehan et al., 2015 for a detailed description). Per 

vegetation type fire return intervals (FRIs) and time since last fire are used to limit the maximum 
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portion of a grid cell burned. Fire occurrence is based on fuel condition thresholds and assumed 

unlimited ignitions. Fire suppression is simulated by assuming fires below empirical fuel 

condition thresholds can be extinguished while those above cannot. 

For this study, we added an optional, three-stage stochastic ignition algorithm to MC2. 

Stage one uses a per-day ignition source probability and a Monte Carlo draw to determine 

whether a grid cell is exposed to an ignition source. Stage two checks fuel conditions for fine 

fuels moisture code (FFMC; Van Wagner and Forest 1987) and buildup index (BUI; Canadian 

Forestry Service, 1984). With unlimited ignitions, both FFMC and BUI must exceed a cell’s 

vegetation type’s threshold for a fire to be simulated. With the stochastic algorithm, they must 

both exceed a specified fraction of their respective thresholds. The third stage uses a Monte 

Carlo method to determine whether or not an ignition source initiates a fire. The probability of 

fire initiation is determined using the Chapman-Richards function: 

# = (1 −	(()*∗,,-._012341_,25.))7      (1) 

where ffmc_thresh_frac is defined as the fraction of the FFMC threshold, adjusted to offset the 

curve so that values below the minimum threshold produce an initiation probability of zero, and 

values near the maximum threshold produce a initiation probability near 1.0. It is calculated as: 

889:_;ℎ=(#ℎ_8=>:	 = 	max((889:_9BC_8=>:	– 	889:_9>E_8=>:),0)  (2) 

  

k in (2) is the Chapman-Richards constant and is calculated as: 

 H = )IJ	(K)√M.OO)
,,-._-5P_,25.	–	,,-._-QR_,25.

     (3) 

where ffmc_min_frac is the fraction of the FFMC threshold below which fire initiation 

approaches 0, and ffmc_max_frac is the fraction of the FFMC threshold where it approaches 1. 

 For this study, the daily ignition source probability was 0.001, the threshold_fraction 

was 0.6 and ffmc_min_frac and ffmc_max_frac were 0.6 and 0.99 respectively (Fig. 3.2). 
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Fig. 3.2. Example fire initiation probability curve. This example is for a vegetation type with a 
fine fuel moisture code (FFMC) threshold of 86, an FFMC and buildup index (BUI) minimum 
threshold fraction of 0.6 and an FFMC maximum threshold fraction of 1.0. 

To implement the CO2 fertilization effect on WUE, MC2 uses a multiplier applied 

directly to production and transpiration. It is calculated as: 

9ST;BUTB(= = 1 + W(88(:;X525- − 1Y ∗ 	TZ[7
.\223R0_.]7_.]R.
^543_QR3_.]7_.]R.

 (4) 

where multiplier is the value used to modify production, effect_param specifies the degree of the 

effect, current_co2_conc is the CO2 concentration for the current model year, and 

baseline_co2_conc is the CO2 concentration at which the multiplier is equal to 1.0 (350 ppm in 

this study). CO2 concentrations above 350 ppm yield a positive effect and values below 350 yield 

a negative effect. The default CO2 fertilization effect used in this study is 1.25 (Fig. 3.3). 



  

 
 

 

69 

 
Fig. 3.3. CO2 fertilization effect scalar. The scalar used in MC2 to calculate production and 
potential evapotranspiration vs (A) atmospheric CO2 concentration and (B) year. 

3.3.3 Model Runs 

We ran MC2 on a 1/24 degree (~4 km) grid using PRISM (Daly et al., 2008) data for the 

historical period (1895-2010) and CCSM4 (National Center for Atmospheric Research) climate 

projections for 2011-2100 downscaled using the MACA (Abatzoglou and Brown 2012) 

algorithm which performs well in capturing fire danger indices across the western US. We used 

the CO2 concentrations associated with RCP 8.5 (“business as usual”). We used the same CMIP5 

climate, CO2 projections, and soil data as in Sheehan et al. (2015). 

3.3.4 Run Protocol 

For this study, we ran the model with different combinations of fire and CO2 fertilization 

effects (Table 3.1). To run without the CO2 fertilization effect, atmospheric CO2 concentration 

was held at its preindustrial value. 
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Table 3.1. Fire and CO2 fertilization scenarios used for this study’s MC2 runs 

 With CO2 fertilization effect 
(WCE for with CO2 
fertilization effect) 

Without CO2 fertilization effect 
(NCE for no CO2 fertilization 
effect) 

Assumed ignitions, without fire 
suppression (FF for full fire) 

FF-WCE FF-NCE 

Assumed ignitions with fire 
suppression (FS) 

FS-WCE Not modeled 

Stochastic fire (SF) SF-WCE Not modeled 
No fire (NF) NF-WCE NF-NCE 

 
3.3.5 Validation and comparison with other studies  

For the FF-WCE and SF-WCE scenarios, we compared simulated results with the 

observed area burned from the Monitoring Trends in Burn Severity (MTBS; Eidenshink et al., 

2009) fire perimeter dataset (https://www.mtbs.gov/) dataset. We also compared simulated 

results for aboveground live woody biomass (AGB), aboveground dead woody carbon (AGD), 

and total aboveground woody carbon (AGT) densities and pools with published modeled results 

based on observed Forest Inventory and Analysis (FIA) National Program 

(https://www.fia.fs.fed.us/) data (Hudiburg et al., 2009, hereafter, Hudiburg, available on Data 

Basin, http://bit.ly/2CcZ7wK; Turner et al., 2004; Turner et al., 2015;  Law et al., 2004). To 

reflect the influence of land use, we limited our results to non human-affected (NHA) based on 

the LandFire US 140 EVT dataset (landfire.gov; 30m x 30m).  

In the Hudiburg datasets, we set densities of carbon in human-affected (HA) cells to 0 

before resampling to the 1/24 degree grid used in our simulation. We adjusted carbon densities 

from our simulation results by multiplying the results by the ratio of NHA area to the total grid 

cell area. We similarly adjusted results for validation against the MTBS (Eidenshink et al., 2009) 

dataset. 

3.3.6 Analyses 

We compared fire results, carbon dynamics, and vegetation change among modeled 

scenarios. For fire, we compared three results: 1) area with fire (AWF) – the total area of grid 

cells burned; 2) fraction area burned (FAB) – fraction of area burned in grid cells with fire; and 

3) total area burned (TAB), the sum of (AWF * FAB) over all grid cells. 

For carbon, we compared live and dead carbon (C) pools, total ecosystem C stocks, net 

primary production (NPP), net ecosystem production (NEP), net biome production (NBP), and C 
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consumed and emitted by fire (consumed C). Results for C pools and fluxes were summarized by 

taking mean values over the study area for five 30-year periods: early 20th c. (1895-1924), mid 

20th c. (1936-1965), late 20th c. (1971-2000), mid 21st c. (2036-2065), and late 21st c. (2071-

2100). 

To more easily compare vegetation cover, we reclassified vegetation types into four 

categories: conifer forest; temperate mixed conifer/broadleaf forest; subtropical mixed 

conifer/broadleaf forest; and other which includes vegetation types dominated by grasses, forbs, 

and shrubs (Table S3.1). We then calculated the mode of the vegetation category for each grid 

cell for each time period and calculated the area-weighted distribution for each category. 

3.3.7 Background climate description 

Climate projections used for the future period (2011-2100) are overall hotter with 

decreasing summer precipitation towards the late 21st c. and increasing PET. Maximum annual 

and April-September average temperatures are relatively constant over the 20th c. (Fig. S3.1 A, 

S2 Table), with 30-year means varying by 0.2°C or less. During the 21st c. temperatures increase 

sharply with maximum annual temperatures 4.4°C higher, and April-September average 

temperatures 4.8°C higher than during the late 20th c. Annual precipitation increases by 4% from 

the early to late 20th c. and an additional 6% from the late 20th c. to the late 21st c. (Fig. S3.1 B, 

S2 Table). April-September precipitation increases 6% over the 20th c. but compared to the late 

20th c., decreases by 15% during the mid 21st c. and again during the late 21st c. (Fig. S3.1 B, 

Table S3.2). PET (calculated by MC2) increases by 3% from the early to the late 20th c., 

increases by 29% from the late 20th c. to the mid 21st c. and by 52% from the early 20th c. to the 

late 21st c. (Fig. S3.1 C, Table S3.2). 

3.4 Results 
3.4.1 Validation and comparison with other studies  

For simulations with fire, TAB (total area burned) is 2.3 to 2.8 times observed (Table 

3.2). Burned areas for both observed and FF-WCE are concentrated across the southeastern 

corner of the study area, the central east edge, and the northeastern corner (Fig. 3.4 B-C). 

However, for FF-WCE, fire is simulated in the northernmost central portion of the area (northern 

Cascades) where it is not observed, and in the southeast fire is less concentrated than observed. 
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For SF-WCE, fire occurrence is also concentrated in the southeastern and northeast (Fig. 3.4 D), 

but also occurs more frequently throughout non-human-influenced areas than either for observed 

or FF-WCE, most commonly in the Cascade Mountains, southern Coast Range, and Puget 

Trough (Fig. 3.4 B-D). 

Table 3.2. Area burned over the period 1985-2012 for MTBS and TAB (total area burned, AWF 
(area with fire) * FAB (fraction burned)) for with-fire simulations. 
Scenario Area Burned (km2) 
MTBS (km2) 10,753 
FF-WCE (km2) 28,205 
FS-WCE (km2) 24,828 
SF-WCE (km2) 24,603 
FF-NCE (km2) 29,211 

(FF-WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire suppression, with CO2 
fertilization effect; SF-WCE: with stochastic ignitions, with CO2 fertilization effect; and FF-
NCE: full fire, with no fertilization effect) 

Table 3.3. Carbon values for Hudiburg and MC2 results. 

Scenario 

AGB 
Total 
(Pg) 

AGD 
Total 
(Pg) 

AGT 
Total 
(Pg) 

AGB Densitiy 
(gCm-2) 
(maximum) 

AGD Density 
(gCm-2) 
(maximum) 

AGT Density 
(gCm-2) 
(maximum) 

Hudiburg 1.84 0.58 2.42 
26900-44200   
(~50000-~70000) 

2600-9500       
(~8000-~1700) 

38100-46800 
(~58000-~84000) 

FF-WCE 2.31 1.11 3.43 14205 6826 21092 
FS-WCE 2.32 1.12 3.44 14266 6887 21154 
SF-WCE 2.05 1.04 3.09 12606 6395 19001 
NF-WCE 2.89 1.19 4.07 17772 7318 25028 
FF-NCE 2.26 1.09 3.35 13897 6703 20600 
NF-NCE 2.82 1.17 3.99 17341 7195 24536 

NHA (non-human affected) AGB (above ground live woody biomass), AGD (above ground dead 
woody carbon), and AGT (above ground total woody carbon). (For Hudiburg values, absolute 
values were calculated from Oregon and Washington maps published in Data Basin 
(http://bit.ly/2CcZ7wK), density values are maxima of mean trends (maxima of maximum trends 
in parentheses) from (Hudiburg et al., 2009) for ecoregions included in the current study; FF-
WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire suppression, with CO2 
fertilization effect; SF-WCE: with stochastic ignitions, with CO2 fertilization effect; NF-WCE: 
no fire, with CO2 fertilization effect; FF-NCE: full fire, with no fertilization effect; and NF-NCE: 
no fire, with no CO2 fertilization effect) 
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Fig. 3.4. Measures of fire on the landscape. (A) Natural and human-affected areas as determined 
by reclassifying LandFire vegetation classes; (B) MTBS fire perimeters for 1985-2015; (C) Total 
NHA (non-human affected) area burned over 1985-2015 (sum of FAB weighted by grid cells’ 
NHA fraction over 1985-2015) for FF-WCE (full fire, with CO2 fertilization effect); and (D) 
Total NHA area burned over 1985-2015 for SF-WCE (no fire suppression, with CO2 fertilization 
effect). 

Our simulated AGB ranges from 11 to 57% higher than that modeled by Hudiburg (Table 

3.3). AGD carbon also ranges from 79 to 105% higher, and AGT carbon ranges from 28 to 68% 

higher. Among our simulations, AGB, AGD, and AGT are highest for NF-WCE, and lowest for 

SF-WCE (Table 3.3). AGB, AGD, and AGT densities are generally higher and more flatly 

distributed than Hudiburg’s (Fig. 3.5). AGB, AGD, and AGT density distributions are flattest for 

SF-WCE. 
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Fig. 3.5. Simulated carbon density distributions by the MC2 vegetation model for natural areas 
as a fraction of the entire study area. (A) AGB (above ground live woody biomass), (B) AGD 
(above ground dead woody carbon), and (C) AGT (above ground total woody carbon). 

Our simulated AGB and AGT values fall below Hudiburg’s mean trend maxima for those 

ecoregions in our study area (Coast Range, West Cascades, and Klamath mountains; Table 3.3). 

Our simulated AGD values fall between Hudiburg’s lowest and highest mean trend maxima and 

below their largest mean trend maxima (Table 3.3). 

Our simulated AGT carbon density (Fig. 3.6 C-E) is lowest in highly human affected 

(HA) areas (Fig. 3.6 A) such as in the Willamette Valley and surrounding Puget Sound. In these 

areas, there is little difference among values for our simulations or between our simulations and 

Hudiburg’s (Fig. 3.6 B). 
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Fig. 3.6. Human affected areas and carbon measures over the study area. (A) Density of NHA 
(non-human-affected) area used to calculate carbon densities. (B) AGT (aboveground total 
woody biomass) densities derived from (Hudiburg et al., 2009) for 1991-1999. (C-E) Differences 
in carbon densities calculated by subtracting Hudiburg’s results from simulation results for 1991-
1999: (C) NF-WCE (no fire, with CO2 fertilization effect); (D) FF-WCE (full fire, with CO2 
fertilization effect) (D) SF-WCE (stochastic fire, with CO2 fertilization effect). 

For NF-WCE (Fig. 3.6 C) our simulated AGT carbon density is higher than Hudiburg’s 

over most of the study area. For FF-WCE (Fig. 3.6 D) our simulated AGT carbon density is 

generally lower in areas that have experienced fire and higher in areas that have not. Similarly, 

for SF-WCE, our simulated carbon density is lower in areas having experienced fire, but those 

areas are greater due to the spatially broader simulated fire occurrence (Fig. 3.6 D). 

Compared to other studies (Turner et al., 2004; Turner et al., 2015; Law et al., 2004) in the same 

region, our values for NPP, NEP, and NBP are generally lower, while our values for carbon 

stocks are higher (Table 3.4). 

3.4.2 Fire 

AWF is identical for FF-NCE and FF-WCE throughout the simulation (Fig. 3.7 A, Table 

3.5). FAB for FF-NCE is very similar to that for FF-WCE during the early 20th c. but is higher 

through the rest of the simulation with a peak difference of 1.08 % of cell area during the late 

21st c. (Fig. 3.7 B, Table 3.5).  TAB for FF-NCE is similar to that for FF-WCE through the 
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20th c., but is higher during the 21st c. with a maximum difference of 0.28 % during the late 

21st c. (Fig. 3.7 C, Table 3.5). 

AWF for FS-WCE is virtually identical to that for FF-WCE during the early 20th c. but is 

less during the remainder of the simulation with the largest difference (11.28% of area) during 

the mid 21st c. (Fig. 3.7 A, Table 3.5). FAB for FS-WCE is similar to that for FF-WCE through 

the 20th c., but is greater during the 21st c, with the largest difference (2.79% of cell area) during 

the mid 21st c. (Fig. 3.7 B, Table 3.5). TAB for FS-WCE is identical to that for FF-WCE during 

the early 20th c., but lower during all other periods, with the largest difference (0.29% of area) 

during the mid 21st c. (Fig. 3.7 C, Table 3.5). 

AWF is consistently lower for SF-WCE than for FF-WCE during the entire simulation 

with the greatest difference (24.34% of area) during the late 21st c. (Fig. 3.7 A, Table 3.5).  FAB 

is consistently higher for SF-WCE than for FF-WCE throughout the simulation with the greatest 

difference (49.71% of area) occurring in the early 20th c. (Fig. 3.7 B, Table 3.5).  TAB is initially 

higher for SF-WCE than for FF-WCE during the early and mid 20th c. (largest difference of 

0.28% of area during mid 20th c.) but is lower for the remainder of the simulation (largest 

difference of 0.60% of area during the mid 21st c.; Fig. 3.7 B, Table 3.5). 

For WCE scenarios, NPP increases by approximately 5% over the 20th c. and an 

additional 18% over the 21st c. (Fig. 3.8 A, Table 3.6). NPP varies by less than 3% across all 

WCE scenarios within any time period. For FF-NCE, NPP does not vary over the 20th c. but 

decreases by 10% over the 21st c. (Fig. 3.8 A, Table 3.6). NPP for NF-NCE increases by 1% over 

the 20th c. and decreases by 8% over the 21st c. (Fig. 3.8 A, Table 3.6). 



  

 
 

 

77 
Table 3.4. Carbon flux and pool values from other studies and the current study. 

Source Period Method 
NPP 
(gCm-2yr-1) 

NEP 
(gCm-2yr-1) 

NBP or NECB 
(gCm-2yr-1) C stocks (gCm-2) Comments 

(Turner et 
al., 2004)1 

1986-2010 Biome BGC 
informed by field 
and remote sensing 
observations 

 ~100 to ~200   Includes harvest, fire, and land 
cover 

(Turner et 
al., 2015)2 

1986-2010 Biome BGC 
informed by field 
and remote sensing 
observations 

~600 to 
~800 

~0 to ~-600 ~22 to ~67  West Cascades ecoregion only; 
study includes fire, timber 
harvest, land use, and pests 

(Law et al., 
2004)3 

1980-1997 Biome BGC 
informed by field 
and remote sensing 
observations 

640 to 700 190 to 226 1684 32810 to 38810 Forested areas within western 
OR; includes fire and harvest 

(Hudiburg 
et al., 
2009)5 

1991-1999 Biome BGC 
informed by field 
observations 

540 to 820 
(~1200 to 
~1500) 

  32810 to 46800 
(~58000 to 84000) 

OR and Northern CA, C Stocks 
are for above ground live and 
dead carbon including only trees 
and shrubs. 

FF-WCE 1971-2000  1198 52 19 54400  
FS-WCE 1971-2000  1198 52 21 54500  
SF-WCE 1971-2000  1199 65 20 50900  
NF-WCE 1971-2000  1214 29 29 59700  
FF-NCE 1971-2000  1136 19 -13 53300  
NF-NCE 1971-2000  1152 -2 -3 58500  

(FF-WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire suppression, with CO2 fertilization effect; SF-WCE: with 
stochastic ignitions, with CO2 fertilization effect; NF-WCE: no fire, with CO2 fertilization effect; FF-NCE: full fire, with no 
fertilization effect; and NF-NCE: no fire, with no CO2 fertilization effect. 1NEP values included for only for those ecoregions 
within our study area; 2NECB listed in table, calculated as NEP minus fire emissions minus simulated harvest removals; 3Values 
included for only forested lands in areas falling within our study area; 4Value is for all of forested western Oregon, reported as 
NBP; 5Oregon and northern California, values are the maximum versus stand age, values are from central trend line of data with 
maximum values in parentheses.) 
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Fig. 3.7. Fire results by scenario as a percentage of total area. (A) AWF (Area with fire; the area 
of all grid cells experiencing any fire); (B) FAB (Fraction area burned; the fraction of are burned 
in grid cells with fire); and (C) TAB (Total area burned; the sum of (AWF * FAB) over all grid 
cells). (FF-WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire suppression, with 
CO2 fertilization effect; SF-WCE: with stochastic ignitions, with CO2 fertilization effect; and FF-
NCE: full fire, with no fertilization effect. Results smoothed using triangle smoothing +/- 8 
years.) 
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Table 3.5. Summaries of fire characteristics over the study area. 

1895-1924 AWF 
(%) 

FAB 
(%) 

TAB 
(%) 

FF-WCE 5.31 8.95 0.48 
FS-WCE 5.31 8.95 0.48 
SF-WCE 1.25 58.66 0.73 
FF-NCE 5.31 8.95 0.48 

1936-1965 AWF 
(%) 

FAB 
(%) 

TAB 
(%) 

FF-WCE 4.62 8.12 0.38 
FS-WCE 4.27 7.99 0.34 
SF-WCE 1.21 49.44 0.60 
FF-NCE 4.62 8.19 0.38 

1971-2000 AWF 
(%) 

FAB 
(%) 

TAB 
(%) 

FF-WCE 5.94 9.43 0.56 
FS-WCE 4.88 9.70 0.47 
SF-WCE 1.08 49.46 0.53 
FF-NCE 5.94 9.64 0.57 

2036-2065 AWF 
(%) 

FAB 
(%) 

TAB 
(%) 

FF-WCE 26.93 6.47 1.74 
FS-WCE 15.65 9.26 1.45 
SF-WCE 2.97 38.26 1.14 
FF-NCE 26.93 7.38 1.99 

2071-2100 AWF 
(%) 

FAB 
(%) 

TAB 
(%) 

FF-WCE 26.36 5.03 1.33 
FS-WCE 19.90 6.37 1.27 
SF-WCE 2.02 43.88 0.89 
FF-NCE 26.36 6.11 1.61 

Mean annual percentage of AWF (area with fire; area of gridcells in which fire occurred); FAB 
(fraction area burned; area weighted mean of the fraction of burning in burned grid cells); and 
TAB (total area burned; AWF * FAB). (FF-WCE: full fire, with CO2 fertilization effect; FS-
WCE: with fire suppression, with CO2 fertilization effect; SF-WCE: with stochastic ignitions, 
with CO2 fertilization effect; and FF-NCE: full fire, with no fertilization effect) 
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3.4.3 Carbon fluxes 

 
Fig. 3.8. Carbon fluxes simulated by the MC2 vegetation model. (A) NPP (net primary 
production), (B) NEP (net ecosystem production), (C) C consumed by fire, and (D) NBP (net 
biome production). (FF-WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire 
suppression, with CO2 fertilization effect; SF-WCE: with stochastic ignitions, with CO2 
fertilization effect; NF-WCE: no fire, with CO2 fertilization effect; FF-NCE: full fire, with no 
fertilization effect; and NF-NCE: no fire, with no CO2 fertilization effect. Results smoothed 
using triangle smoothing +/- 8 years.) 
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Table 3.6. Mean (standard deviation in parentheses) carbon fluxes by time period for simulation 
scenarios. 

NPP (g C m-2 yr-1) 
 1895 - 1924 1936-1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 1143 (79) 1173 (94) 1198 (87) 1315 (132) 1422 (136) 
FS-WCE 1143 (79) 1173 (94) 1198 (87) 1307 (130) 1413 (134) 
SF-WCE 1131 (79) 1156 (92) 1199 (87) 1329 (133) 1420 (133) 
NF-WCE 1150 (80) 1179 (94) 1214 (87) 1344 (131) 1430 (130) 
FF-NCE 1136 (80) 1149 (93) 1136 (81) 1072 (122) 1024 (109) 
NF-NCE 1143 (80) 1155 (93) 1152 (81) 1111 (126) 1060 (114) 
NEP (g C m-2 yr-1) 
 1895 - 1924 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 37 (46) 55 (50) 52 (49) 99 (66) 136 (100) 
FS-WCE 37 (46) 55 (50) 52 (49) 82 (63) 121 (97) 
SF-WCE 27 (46) 48 (49) 65 (50) 115 (67) 126 (96) 
NF-WCE 10 (46) 27 (49) 29 (49) 62 (62) 54 (92) 
FF-NCE 32 (46) 42 (49) 19 (44) -12 (61) -19 (76) 
NF-NCE 5 (46) 14 (48) -3 (44) -40 (63) -82 (80) 
Consumed (g C m-2 yr-1) 
 1895 - 1924 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 20 (32) 15 (19) 34 (55) 177 (217) 145 (139) 
FS-WCE 20 (32) 15 (18) 31 (52) 155 (199) 139 (132) 
SF-WCE 71 (51) 53 (36) 45 (30) 112 (72) 92 (48) 
NF-WCE 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
FF-NCE 20 (32) 15 (18) 33 (54) 169 (200) 126 (124) 
NF-NCE 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
NBP (g C m-2 yr-1) 
 1895 - 1924 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 17 (61) 40 (56) 19 (87) -77 (257) -7.9 (214) 
FS-WCE 17 (61) 40 (56) 21 (85) -73 (238) -18 (207) 
SF-WCE -44 (71) -5 (70) 20 (64) 3 (126) 34 (122) 
NF-WCE 10 (46) 27 (49) 29 (49) 62 (62) 54 (92) 
FF-NCE 12 (61) 27 (55) -13 (81) -181 (233) -144 (174) 
NF-NCE 5 (46) 14 (48) -3 (43) -40 (63) -82 (80) 

(NPP: net primary production; NEP: net ecosystem production; NBP: net biome production; FF-
WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire suppression, with CO2 
fertilization effect; SF-WCE: with stochastic ignitions, with CO2 fertilization effect; NF-WCE: 
no fire, with CO2 fertilization effect; FF-NCE: full fire, with no fertilization effect; and NF-NCE: 
no fire, with no CO2 fertilization effect) 

Over the simulation period, NEP increases for WCE scenarios and decreases for both 

NCE scenarios (Fig. 3.8 B, Table 3.6). Throughout the simulation period, for FF-WCE and FF-

NCE, NEP increases more than for their no-fire counterparts (Fig. 3.8 B, Table 3.6). 
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Consumed C for with-fire scenarios (FF-WCE, FS-WCE, FF-NCE) is nearly identical 

during the 20th c. (Fig. 3.8 C, Table 3.6). For these scenarios, consumed C triples from the late 

20th c. to the late 21st c. The pattern of consumed C is similar among these scenarios throughout 

the 21st c., but the range of values increases by the end of the 21st c. For SF-WCE, consumed C is 

higher than that for FF-WCE over the 20th c. but lower during the 21st c. The standard deviation 

of SF-WCE consumed C is higher than that for FF-WCE during the early and mid 20th c. but 

lower during the late 20th c. and the mid 21st c. (Table 3.6). 

During the early and mid 20th c. NBP is lower for SF-WCE than that for all other 

scenarios but becomes higher than that for all scenarios except NF-WCE by the end of the 21st c. 

(Fig. 3.8 D, Table 3.6). NBP for SF-WCE shows much less variability than FF-WCE in the mid 

and late 21st c. NBP for FF-WCE and FS-WCE falls sharply from the late 20th c. to the mid 

21st c. but rises during the late 21st c. NBP for FF-NCE decreases more abruptly from the late 

20th c. to the mid 21st c. and increases less during the late 21st c. NBP for NF-WCE increases 

from the late 20th to the mid 21st c. then decreases during the late 21st c. NBP for NF-NCE 

decreases from the late 20th c. through the mid and late 21st c. 

3.4.4 Carbon pools 

Live C (C in live plants), dead C (standing dead trees, litter, and soil C), and total 

ecosystem C (ecosystem C hereafter) for NF-WCE increase throughout the simulation by 4, 6, 

and 10% respectively, with the live to dead C ratio decreasing from 0.65 to 0.61 (Fig. 3.9 A-D, 

Table 3.7). For FF-WCE and FS-WCE live C decreases 7.5% from the late 20th c. to the late 

21st c. (Fig. 3.9 A, Table 3.7). Over the same period dead C pools increase 4 and 6% for FF-

WCE and FS-WCE respectively, and ecosystem C decreases 7% for both scenarios, and live to 

dead ratios decrease from 0.56 to 0.39 and 0.56 to 0.38 for FF-WCE and NF-WCE respectively 

(Fig. 3.9 A-D, Table 3.7). For FF-NCE, live, dead C, and ecosystem C decrease by 41, 12, and 

22% respectively from the late 20th c. through the late 21st c. and the live to dead C ratio 

decreases (from 0.56 to 0.38; Fig. 3.9 A-D, Table 3.7).  

For SF-WCE, live C decreases by 16% from the early 20th c. to the mid 20th c., dead C 

increases 7% from the late 20th to the late 21st c., and ecosystem C decreases by 2% from the 
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early 20th to the late 21st c. (Fig. 3.9 A-C, Table 3.7). Over the same period, the live to dead C 

ratio decreases from 0.55 to 0.42 (Fig. 3.9 D, Table 3.7). 

 

 
Fig. 3.9. Carbon pools and live/dead ratios. (A) live C, (B) dead C, (C) ecosystem C, and (d) 
ratio of live C to dead C. (FF-WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire 
suppression, with CO2 fertilization effect; SF-WCE: with stochastic ignitions, with CO2 
fertilization effect; NF-WCE: no fire, with CO2 fertilization effect; FF-NCE: full fire, with no 
fertilization effect; and NF-NCE: no fire, with no CO2 fertilization effect. Results smoothed 
using triangle smoothing +/- 8 years.) 
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Table 3.7. Mean (standard deviation in parentheses) carbon pool values and live to dead C ratios 
by time period. 

Live Carbon (Pg) 
 1895 - 1924 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 3.24 (0.025) 3.32 (0.033) 3.18 (0.032) 2.60 (0.149) 2.30 (0.059) 
FS-WCE 3.24 (0.025) 3.32 (0.033) 3.18 (0.032) 2.60 (0.151) 2.28 (0.058) 
SF-WCE 3.03 (0.104) 2.66 (0.017) 2.72 (0.037) 2.59 (0.053) 2.52 (0.048) 
NF-WCE 3.72 (0.014) 3.75 (0.019) 3.79 (0.020) 3.93 (0.025) 4.00 (0.024) 
FF-NCE 3.23 (0.024) 3.29 (0.027) 3.12 (0.036) 2.33 (0.186) 1.83 (0.078) 
NF-NCE 3.72 (0.014) 3.72 (0.014) 3.72 (0.011) 3.61 (0.037) 3.43 (0.053) 
Dead Carbon (Pg) 
 1895 - 1924 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 5.47 (0.015) 5.56 (0.019) 5.67 (0.024) 5.95 (0.037) 5.91 (0.024) 
FS-WCE 5.47 (0.015) 5.56 (0.019) 5.68 (0.026) 6.04 (0.050) 6.00 (0.033) 
SF-WCE 5.54 (0.042) 5.62 (0.022) 5.56 (0.015) 5.81 (0.049) 5.92 (0.015) 
NF-WCE 5.75 (0.014) 5.85 (0.018) 5.92 (0.027) 6.24 (0.063) 6.46 (0.052) 
FF-NCE 5.47 (0.012) 5.52 (0.009) 5.55 (0.020) 5.38 (0.100) 4.87 (0.150) 
NF-NCE 5.75 (0.011) 5.80 (0.008) 5.79 (0.010) 5.67 (0.030) 5.48 (0.069) 
Total Ecosystem Carbon (Pg) 
 1895 - 1924 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 8.70 (0.028) 8.88 (0.049) 8.85 (0.026) 8.54 (0.124) 8.21 (0.052) 
FS-WCE 8.71 (0.028) 8.88 (0.050) 8.87 (0.027) 8.64 (0.110) 8.28 (0.052) 
SF-WCE 8.57 (0.064) 8.29 (0.016) 8.28 (0.032) 8.40 (0.017) 8.44 (0.054) 
NF-WCE 9.47 (0.017) 9.60 (0.033) 9.71 (0.042) 10.2 (0.083) 10.5 (0.072) 
FF-NCE 8.70 (0.023) 8.81 (0.032) 8.67 (0.033) 7.71 (0.263) 6.69 (0.213) 
NF-NCE 9.46 (0.013) 9.52 (0.016) 9.51 (0.007) 9.30 (0.063) 8.91 (0.120) 
Live / Dead (ratio) 
 1895 - 1924 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
FF-WCE 0.59 (0.005) 0.60 (0.004) 0.56 (0.007) 0.44 (0.027) 0.39 (0.011) 
FS-WCE 0.59 (0.005) 0.60 (0.004) 0.56 (0.008) 0.43 (0.028) 0.38 (0.011) 
SF-WCE 0.55 (0.023) 0.48 (0.005) 0.49 (0.008) 0.45 (0.013) 0.42 (0.008) 
NF-WCE 0.65 (0.003) 0.64 (0.003) 0.64 (0.003) 0.63 (0.004) 0.61 (0.003) 
FF-NCE 0.59 (0.005) 0.60 (0.005) 0.56 (0.007) 0.43 (0.030) 0.38 (0.011) 
NF-NCE 0.65 (0.003) 0.64 (0.003) 0.64 (0.003) 0.64 (0.005) 0.63 (0.003) 

(Pg: petagram; FF-WCE: full fire, with CO2 fertilization effect; FS-WCE: with fire suppression, 
with CO2 fertilization effect; SF-WCE: with stochastic ignitions, with CO2 fertilization effect; 
NF-WCE: no fire, with CO2 fertilization effect; FF-NCE: full fire, with no fertilization effect; 
and NF-NCE: no fire, with no CO2 fertilization effect) 

3.4.5 Vegetation 

Vegetation composition is consistent across all scenarios, with the differences of 3% or 

less for all categories in each time period (Fig. 3.10, Table 3.8). The other category (non-forest) 

comprises two percent or less of the area from the early 20th c. through the late 21st c. Through 

the 20th c., conifer covers between 88% to 94% of the area with temperate mixed forest 
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accounting for the remainder of the forested area. From the late 20th to mid 21st c. conifer forest 

extent decreases to 53 to 55% of the area, temperate mixed forest increases to 39 to 40%, and 

subtropical mixed forest increases to 5% of the area. During the late 21st c. conifer forest extent 

decreases to 34 to 35%, temperate mixed forest decreases to 32%, and subtropical mixed forest 

increases to 33% of the area. 

 
Fig. 3.10. Vegetation class mix over time for FF-WCE (full fire with CO2 fertilization) scenario. 
All other scenarios yield virtually identical results. 
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Table 3.8. Simulated vegetation composition (%) of study area. 

1895-1924 Con T Mix S Mix Oth 
FF-WCE 92 6 0 2 
FS-WCE 92 6 0 2 
SF-WCE 92 6 0 2 
NF-WCE 94 6 0 0 
FF-NCE 92 6 0 2 
NF-NCE 94 6 0 0 
1936-1965 Con T Mix S Mix Oth 
FF-WCE 93 5 0 2 
FS-WCE 93 5 0 1 
SF-WCE 92 5 0 2 
NF-WCE 94 5 0 0 
FF-NCE 93 5 0 2 
NF-NCE 94 5 0 0 
1971-2000 Con T Mix S Mix Oth 
FF-WCE 88 10 0 2 
FS-WCE 88 10 0 2 
SF-WCE 88 10 0 2 
NF-WCE 90 10 0 0 
FF-NCE 87 10 0 3 
NF-NCE 90 10 0 0 
2036-2065 Con T Mix S Mix Oth 
FF-WCE 54 40 5 2 
FS-WCE 53 40 5 3 
SF-WCE 53 40 5 2 
NF-WCE 55 40 5 0 
FF-NCE 53 39 5 3 
NF-NCE 55 40 5 0 
2071-2100 Con T Mix S Mix Oth 
FF-WCE 35 32 33 0 
FS-WCE 34 32 33 1 
SF-WCE 34 32 33 1 
NF-WCE 35 32 33 0 
FF-NCE 34 32 33 1 
NF-NCE 35 32 33 0 

(Con: conifer; T Mix: temperate mixed conifer and broadleaf; S Mix: subtropical mixed conifer 
and broadleaf; Oth: other; Veg: vegetation; FF-WCE: full fire, with CO2 fertilization effect; FS-
WCE: with fire suppression, with CO2 fertilization effect; SF-WCE: with stochastic ignitions, 
with CO2 fertilization effect; NF-WCE: no fire, with CO2 fertilization effect; FF-NCE: full fire, 
with no fertilization effect; and NF-NCE: no fire, with no CO2 fertilization effect) 
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3.5 Discussion 
3.5.1 Validation, comparison with other studies, and limitations 

For unlimited ignition scenarios versus observed fires there is general agreement between 

areas where area burned is greatest. The lack of concentrated modeled TAB in the southwest 

corner of the region versus observed (Fig. 3.4 C vs 3.4 B) may be due to the use of a dataset with 

deeper soils than are actually present. In the model, shallower soils retain less water, potentially 

leading to drier fuel conditions and greater fire. In this part of the study area, the STATSGO 

dataset used in the simulation has soil depths two to four times as deep as the more recent 

SSURGO dataset (Peterman et al., 2014). 

The overall higher simulated TAB and the higher simulated TAB east of Puget Sound – 

primarily due to simulated fires in 1987 and 2003 – underscore the importance of modeling 

wildfire ignition limitations in addition to fuel limitations. Stochastic fire (SF) mitigates the 

overall higher TAB, but simulates more fires than observed in areas that are commonly fuel 

limited (Cascades and Coast range). The stochastic ignitions algorithm used in the SF-WCE 

scenario was implemented as a proof of concept with a random algorithm to locate ignition 

sources. An algorithm using a probability surface based on factors affecting ignition sources such 

as human presence and infrastructure (e.g., Pew and Larsen, 2001;  Syphard et al., 2007) and 

lightning strikes (e.g., Rorig and Ferguson, 1999;  Dorado et al., 2011) would likely produce 

more realistic results but this kind of data is lacking both for the beginning of 20th century and 

for the 21st century. Secondly, informing the algorithm with known relationships between fuel 

conditions and fire initiation would likely also improve results. Additionally, considering 

conditions more or less conducive to fire initiation, such as slope and other topographic 

characteristics could also contribute to higher quality fire modeling. Multiple model runs with 

stochastic ignition sources and success should also be considered to generate a statistics-based 

projection of fire on the landscape. 

Differences between our results and those of other studies (Table 3.4) are due to a 

number of factors. First, observation-based models generally only consider aboveground stocks, 

while MC2 models above- and belowground carbon, including soils and litter. Second, other 

studies include disturbances that MC2 does not, for example logging, insect infestations, and 

disease, which would account for some of the higher carbon stock value in our results. Third, the 
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mapping of human-affected (HA) areas reduces differences due to land use, but HA areas can 

only be considered a first approximation of human influences on the landscape, including 

historical logging in areas now recovering and fires not accounted for in the simulation, (e.g., the 

Tillamook fire; Rienstra et al., 1991). 

Our results contrast with (Law et al., 2018), which projects increasing forest carbon 

stocks in Oregon forests through the 21st c. That study assumes a CO2 fertilization effect. 

However, unlike ours, that study includes mortality from forest harvest and beetles and also 

assumes the same vegetation that is lost regrows at its maximum potential. 

MC2 simulates potential vegetation most adapted to climate inputs. However, vegetation 

can endure under suboptimal conditions, slowing the replacement of one vegetation type by 

another, remaining until a sudden disturbance or mortality due to crossing a physiological 

threshold allows for rapid change. Moreover, MC2 does not simulate seed production, seedling 

establishment, or natural succession. These factors should be accounted for when using model 

projections for management decisions. 

Land use, insects, pathogens, and invasive species are important disturbances that may be 

amplified or mitigated by climate change (e.g., Dale, 1997; Dale et al., 2001; Bentz et al., 2010). 

Including them in the DGVM is desirable, but would require a better understanding of a wide 

variety of pests’ and invasive species’ response to climate change as well as calibration datasets 

that are still often lacking. 

Soil data are critical for projecting accurate soil water availability and drought stress 

(Peterman et al., 2014). More accurate soil data would improve the reliability of growth, 

mortality, and fire simulation results. More recent MC2 simulations have used SSURGO data but 

at the time of this project, the dataset was still incomplete for large portions of our study area. 

3.5.2 Effects of model assumptions on vegetation 

The simulated transition from conifer to temperate mixed conifer/broadleaf to subtropical 

mixed conifer/broadleaf takes place at a similar rate and with a similar pattern regardless of fire 

and CO2 fertilization and can be attributed solely to climate change. Other studies using MC2 

and its predecessor, MC1, project vegetation shifts in this region towards warmer and mixed 

forests (Sheehan et al., 2015; Rogers et al., 2011; Turner et al., 2015; Gonzalez et al., 2010), 
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however, to our knowledge, ours is the first study to show that this shift is purely climate driven. 

This result stands in contrast to the simulated fire regime-driven vegetation shifts in other regions 

found in other studies using MC2 (e.g., Sheehan et al., 2015; Bachelet et al., 2015) 

3.5.3 Effects of model assumptions on fire 

With or without fire suppression, unlimited ignitions cause a sharp increase in AWF as 

climate conditions drive fuel conditions over ignition thresholds on a yearly basis during the 

early and mid 21st c. This is consistent with recent observed increases in wildfire across the 

western US, including the PNW, due to warming climate (Westerling et al., 2006; Westerling, 

2016) and specifically in the Western Cascades due to decreased May through September 

precipitation (Turner et al., 2015). The initial decrease in FAB and TAB as AWF remains high is 

due to the dependency of FAB on the combination of time since last fire and fire return interval 

(FRI) in addition to fuel conditions. The longer a cell does not burn, the greater the fraction of 

that cell that can burn. With the initial transition to more frequent fires, the first fire in a cell 

burns a greater cell portion than subsequent fires in the same cell. The vegetation shift to 

subtropical mixed forest, which has a higher ignition threshold, contributes to decreased AWF, 

FAB, and TAB towards the end of the 21st c. The higher fuel thresholds of fire suppression 

reduce AWF and TAB due to fuel conditions reaching ignition thresholds less frequently. Less 

frequent fires, however, account for the greater TAB under fire suppression. 

Stochastic fire responds to the same drivers as the unlimited ignitions but in different 

ways. First, the use of an ignition probability function instead of a single fuel threshold allows 

fires to occur even under fuel conditions less severe than those at unlimited ignition threshold 

levels. Thus, during the early 20th c. some cells not experiencing fire under unlimited ignitions 

do experience fire under stochastic ignitions leading to a greater TAB under stochastic fire. 

Second, the probabilistic nature of ignition sources and fire initiation limits fire occurrence under 

fuel conditions exceeding thresholds, as during the early to late 21st c. when fire occurrence is 

more common across the entire study area under unlimited ignitions than under stochastic fire.  

During this period, TAB is lower under stochastic fire than under unlimited ignitions scenarios 

due to less frequent fire occurrence. The overall less frequent fires due to stochastic fire result in 

a lower AWF and higher FAB. Stochastic fire occurring below the thresholds set for unlimited 
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ignitions accounts for the higher FAB at the end of the 21st c., when stochastic fire initiates fires 

in subtropical mixed forest while unlimited ignitions does not. 

Fire effects due to CO2 fertilization assumptions are generally small. However, even 

though AWF is identical for FF-NCE and FF-WCE, FAB and TAB are slightly higher for FF-

NCE. We attribute this to dryer fuel conditions as a result of lower water use efficiency (WUE) 

for FF-NCE. 

3.5.4 Effects of model assumptions on carbon 

Separate from fire, CO2 fertilization under climate change increases productivity and C in 

all pools through time. Conversely the lack of CO2 fertilization under climate change decreases 

productivity C in all pools. The smooth changes in C pools and ratio of live to dead C for both 

no-fire scenarios indicate little change in carbon dynamics. The continuing increases in all C 

pools for NF-WCE and decreases for NF-NCE indicate that climate continues to influence 

production through the end of the 21st c. 

CO2 fertilization is the strongest driver of NPP as shown by the similar increases in NPP 

across all scenarios with CO2 fertilization versus the similar decrease for scenarios without CO2 

fertilization. Consumed C is very similar for all scenarios with unlimited ignitions. Increased 

carbon storage in young forests recovering from fire as well as to the reduction of dead material 

available for decomposition due to burning drive higher NEP for all scenarios with CO2 

fertilization and unlimited ignitions. However, for FF-NCE, NEP decreases due to decreasing 

NPP. 

For scenarios with unlimited ignitions, consumed C directly reflects TAB increasing 

sharply in the mid 20th c. and then decreasing. This pattern is further reflected in NBP which 

decreases and increases with TAB. By the end of the 21st c., NBP is close to 0 g C m-2 yr-1 for 

scenarios with unlimited ignitions and with CO2 fertilization, indicating a possible equilibrium in 

carbon dynamics. However, for FF-NCE, NBP remains negative, indicating further C losses. For 

SF-WCE, consumed C and NBP also reflect TAB, with consumed C greater than that for 

unlimited-ignitions scenarios in the early 20th c. and less during the mid and late 21st c. 

More live C is lost due to fire than is added due to CO2 fertilization. For unlimited 

ignitions, losses are greatest during the mid to late 21st c. when fuel thresholds are exceeded. For 
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stochastic fire, the greatest losses are in the early 20th c. due to fires occurring where they cannot 

under unlimited ignitions. CO2 fertilization, however, may provide enough productivity to 

maintain a new equilibrium with increased dead C and limited decreases in ecosystem C. For all 

with-CO2 fertilization, with-fire scenarios, at the end of the 21st c., the steady values of all C 

stocks and live to dead C ratios indicate the possibility of a new equilibrium. This is consistent 

with the near 0 g C m-2 yr-1 NBP for these scenarios at the end of the 21st c. 

The largest decreases in all C stocks are for the with-fire, without-CO2 fertilization. In 

addition, while live vegetation C becomes steady for this scenario at the end of the 21st c., dead 

C, and ecosystem C continue to decrease, indicating that equilibrium has not been reached. This 

is consistent with the negative NBP for this scenario at the end of the 21st c. 

3.5.5 Implications 

The sharp, climate-driven increases in area with fire and total area burned during the first 

half of the 21st suggest this region will be susceptible to climate-driven trend towards “large,” 

“very large,” or “extreme” wildfire events or fires (Tedim et al., 2018) observed in the United 

States (Barbero et al., 2015; Dennison et al., 2014), Europe (Parente et al., 2018; Senf and Seidl, 

2018), and globally (Sommerfeld et al., 2018). The increases also indicate that this region will 

experience the associated increases in infrastructure loss, suppression costs, and natural resource 

loss (Thomas et al., 2017), and underscore the importance of understanding the effects of 

alternative management scenarios in fire-prone landscapes (Spies et al., 2017). 

The live C lost in all with-fire scenarios indicates fire will cause mortality through the 

21st c. Another indication of future vegetation mortality is the climate-driven transition from 

needleleaf to temperate mixed to warm mixed forest. MC2 does not simulate mortality, seeding, 

sprouting, recruitment, and succession associated with forest type change driven by climate 

alone. So, for example, under a warming climate, the model could shift a forest dominated by 

needleleaf lifeforms to one dominated by mixed conifer and hardwood lifeforms without 

simulating mortality and succession. Thus, model results should be interpreted as a suggestion 

that vegetation will come under stress due to a changing climate. Mortality and vegetation type 

change would not necessarily be sudden. However, stressed vegetation would be more 

susceptible to disturbances (Dale et al., 2001) such as drought, fire, insects (Bentz BJ et al., 
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2010; Preisler et al., 2012), and disease, with the resulting mortality providing opportunity for 

vegetation to change from legacy to a more suited type. 

Shorter FRIs combined with reduced recruitment due to changed climate conditions has 

the potential to extirpate species locally (Enright et al., 2015). Furthermore, climate change 

velocity, especially in combination with pest outbreaks, could outpace species’ migration rates 

(Malcolm et al., 2002), leaving portions of the area depauperate. The subtropical mixed forests 

projected to occupy much of the area by the end of the 21st c. are characterized by both 

needleleaf and broadleaf evergreens and would be similar to northern Californian forests which 

contain evergreen California live oaks (Quercus agrifolia). However, the decline of oak 

populations due to sudden oak death syndrome (Phytophthora ramorum) in California and 

Oregon (Gruenwald et al., 2008) challenges any assumption of a northward migration of this 

evergreen broadleaf species. 

Ecosystem C decreases in all with-fire scenarios indicate that this region will become a 

carbon source in the future. Decreases may be more pronounced beyond 2100 if the increased C 

in the dead pool decays at a greater rate than dead C is produced. This is possible as the 

simulated increase in dead C is due to a sudden increase in fire in forests that had been highly 

productive, and the live to dead C ratios increase towards previous equilibrium values at the end 

of the simulation. If the CO2 effect is lower than projected or is temporary, with plants adapting 

to the new CO2 concentrations, carbon losses may be higher than projected under the WCE 

scenarios, for example, 1.69 Pg C (20%) greater for the FF-NCE than for the FF-WCE. However 

black carbon accumulation from more frequent fire and the possible slowing of decomposition 

due to higher evaporative demand in soils may mitigate losses of soil C. 

Under our projections, a variety of ecosystem services could be impacted. As previously 

stated, carbon sequestration could be reduced. Widespread mortality would reduce timber 

available for harvest, and rapid change of vegetation types could result in a lack of mature trees 

for harvest. The implied negative impacts on forests could affect fresh water supplies (Neary et 

al., 2009), wildlife habitat quality, and recreation. 

3.6 Conclusions 
For the area west of the Cascade Crest in Oregon and Washington, we found assumptions 

about CO2 fertilization effects and fire occurrence in the MC2 DVGM have substantial effects on 
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simulated carbon dynamics. Without fire, CO2 fertilization increases C stocks, while the lack of 

CO2 fertilization leads to decreases in C stocks. For scenarios with fire, CO2 fertilization 

mitigates projected C losses due to fire, limiting decreases over the 20th and 21st centuries by a 

factor of 4 versus scenarios without CO2 fertilization. 

Stochastic fire occurrence dampens the sudden increases in area with fire, and total area 

burned simulated under unlimited ignitions. As a result, C pools are more stable through time 

under stochastic fire occurrence than under unlimited ignitions. The stark differences between 

results for unlimited ignitions and those for stochastic fire occurrence point to the need for 

further research regarding fire occurrence algorithms in DGVMs. Areas for further research 

include: the addition of ignition source probabilities to guide the location of fire occurrence; fire 

spread which would allow modeling large fires across grid cells; inclusion of land use and land 

cover to shape both the occurrence and spread of fire; and the elimination of fire return intervals 

from fire algorithms in order to model fire occurrence and extent from physical parameters and 

stochastic events without imposed limitations. 

Vegetation is projected to change from predominantly conifer to predominantly mixed 

conifer and hardwood forests, regardless of CO2 fertilization and fire effects. With climate, not 

fire, driving vegetation change, much of the current vegetation can be expected to experience 

mortality. It is reasonable to anticipate that climate stress will make forests more susceptible 

disease and pests, which are not modeled by MC2. 

These projections underscore ongoing challenges for resource managers who must 

balance the possibly competing concerns of wildfire, forest condition, wildlife management, 

carbon sequestration, high potential for vegetation change, and a variety of ecosystem services 

including clean water and air. Nonetheless, this study and its conclusions should be taken in a 

broader context. MC2 is one of many models suitable to explore the possible futures of this 

region. Given the region’s ecological and economic importance, extensive monitoring is 

warranted to provide insight into the state of the forests, possibly confirming or refuting signs of 

stress, vegetation change, and ecological threshold exceedance. 
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3.9 Supporting information 
Table S3.1. Reclassifications of MC2 vegetation types. 

Reclassified vegetation type MC2 vegetation types 
Conifer forest Subalpine, Maritime Evergreen Needleleaf Forest, Temperate Evergreen 

Needleleaf Forest, Temperate Evergreen Needleleaf Woodland, Subtropical 
Evergreen Needleleaf Forest, Cool Needleleaf Forest 

Temperate mixed forest Temperate Cool Mixed Forest, Temperate Warm Mixed Forest, Temperate Cool 
Mixed Woodland, Temperate Warm Mixed Woodland 

Subtropical mixed forest Subtropical Mixed Forest, Subtropical Mixed Woodland 
Other Temperate Grassland, Subtropical Grassland, Temperate Shrubland, Subtropical 

Shrubland 
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Fig. S3.1. Selected climate results for this study. (A) CCSM4 RCP 8.5 annual and April-
September maximum temperature, (B) CCSM4 RCP 8.5 annual and April-September 
precipitation, and (C) Annual PET calculated by MC2. All results smoothed using triangle 
smoothing +/- 8 years. 

  

Table S3.2. Mean (standard deviation in parentheses) over study region for selected climate 
variables by time period. 

 1895 - 2024 1936 - 1965 1971 - 2000 2036 - 2065 2071 - 2100 
Annual Tmax (degC) 13.8 (0.45) 14.0 (0.70) 14.0 (0.54) 16.7 (0.57) 18.4 (0.52) 
Apr.-Sep. Tmax (degC) 19.4 (0.68) 19.6 (0.93) 19.5 (0.66) 22.4 (0.78) 24.3 (0.59) 
Annual Tmin (degC) 3.1 (0.45) 3.3 (0.56) 3.5 (0.50) 6.0 (0.56) 7.5 (0.56) 
Apr.-Sep. Tmin (degC) 6.2 (0.42) 6.5 (0.50) 6.8 (0.51) 9.0 (0.62) 10.7 (0.65) 
Annual Ppt (mm) 1795 (208) 1838 (275) 1874 (307) 1906 (304) 1978 (343) 
April-Sep. ppt(mm) 418 (83) 410 (95) 445 (86) 378 (114) 377 (84) 
Annual PET (cm) 832 (47) 85 (72) 855 (56) 1107 (66) 1305 (57) 

Temperature and precipitation are from PRISM and CCSM4 results used to drive the MC2 
simulation, potential evapotranspiration was calculated by MC2. (Tmax: mean of monthly 
maximum temperature; Ppt: total precipitation; PET: potential evapotranspiration) 
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4 A fuzzy logic decision support model for climate-driven biomass loss risk in western 

Oregon and Washington 

4.1 Abstract 
Managing wildlands to protect species and ecosystem services in response to climate 

change is challenging. Future projections from dynamic global vegetation models (DGVMs) are 

often put forth as valuable data to aid resource managers in decision making. However, 

interpreting model results in a meaningful way to support landscape level and policy decisions 

can be difficult. Uncertainty in results may come from factors including embedded assumptions 

about atmospheric CO2 levels, uncertain climate projections driving DGVMs, and DGVM 

algorithm selection. 

We created a decision support model to interpret results from MC2 DGVM results and 

express them in a straightforward manner more suitable for decision makers. For western Oregon 

and Washington, we implemented an Environmental Evaluation Modeling System (EEMS) 

decision support model using MC2 DGVM results to characterize biomass loss risk, defined as 

the combination of likelihood of a factor leading to biomass loss and a high concentration of 

biomass. MC2 results were driven by climate projections from 20 global climate models (GCMs) 

and earth system models (ESMs), under representative concentration pathways (RCPs) 4.5 and 

8.5, with and without assumed fire suppression, for three different time periods. We produced 

maps of mean, minimum, and maximum biomass loss risk and uncertainty for each RCP / +/- 

fire suppression / time period. We characterized the uncertainty due to RCP, fire suppression, 

and climate projection choice. Finally, we evaluated whether fire or climate maladaptation 

mortality was the dominant driver of risk for each model run. 

The risk of biomass loss generally increases in current high biomass areas within the 

study region through time. The pattern of increased risk is generally south to north and upslope 

into the Coast and Cascade mountain ranges and along the coast. Uncertainty from climate future 

choice is greater than that attributable to RCP or +/- fire suppression. Fire dominates as the 

driving factor for biomass loss risk in more model runs than mortality. 

This method of interpreting DGVM results and the associated uncertainty provides data 

in a clear format and may be directly applicable to adaptive management planning. 



  

 
 

 

102 
4.2 Introduction 

Anthropogenic emissions have caused oceanic and atmospheric warming, diminished 

snow and ice, and rising sea level (Pachauri et al., 2014). The effects of climate change vary 

regionally (Pachauri et al., 2014) and have already affected crop yields (e.g., Urban et al., 2012), 

biodiversity (e.g., Thom et al., 2017), and wildfire risk (Jolly et al., 2015). In the Pacific 

Northwest of the conterminous United States (PNW), anthropogenic influences are the leading 

contributor to observed warming (May et al., 2018; Abatzoglou et al., 2014), with impacts 

including lower winter snowpack and increased wildfire risk (May et al., 2018). Expected future 

warming in the PNW is projected to cause continued snowpack loss, increased risk of insect 

infestations (Kolb et al., 2016), increased risk of wildfires, and changes in vegetation (May et al., 

2018; Sheehan et al., 2015). 

Numerous studies within or including the PNW have projected climate-driven changes in 

vegetation, fire regime, pests, and forest productivity (Sheehan et al., 2015; Rehfeldt et al., 2006; 

Rehfeldt et al., 2014a; Rehfeldt et al., 2014b; Rehfeldt et al., 2014c; Littell et al., 2010; Rogers et 

al., 2011; Coops et al., 2011; Creutzburg et al., 2014; Whitlock et al., 2003; Latta et al., 2009; 

Sheehan et al., 2019). These studies have used a variety of methods and models, including 

Dynamic Global Vegetation Models (DGVMs; Sheehan et al., 2015; Rogers et al., 2011; 

Sheehan et al., 2019), statistical models (Rehfeldt et al., 2006; Rehfeldt et al., 2014a-c; Littell et 

al., 2010), reconstruction of relationships between past climate, fire, and vegetation (Whitlock et 

al., 2003), observation and imputation (Latta et al., 2009), hybrid process and statistical models 

(Coops et al., 2011), and hybrid state and transition models (Creutzburg et al., 2014). While 

these studies present both spatial and regional model results, and in many cases, uncertainty 

associated with those results, the implications for higher level management decisions require 

interpretation. 

Climate impacts have been a steadily growing research topic for over thirty years, and the 

focus on climate adaptation has seen a marked increase over the last decade (Keenan, 2015). 

Uncertainty in future climate includes the unknown trend of CO2 concentrations, which in turn 

depend on political and economic decisions, and the wide range of future projections from 

GCMs and ESMs (Pachauri et al., 2014; Pianosi et al., 2016; Littell et al., 2011). The uncertainty 

in vegetation modeling results is due to the range of climate futures driving them (Pianosi et al., 
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2016; Littell et al., 2011), soil representation (Luo et al., 2016), parameter values based on 20th 

century records (Pianosi et al., 2016; Littell et al., 2011), and model choice (Littell et al., 2011). 

A common solution for resource managers faced with uncertainty is adaptive management 

(Williams, 2011; Millar et al., 2007), the “flexible decision making that can be adjusted in the 

face of uncertainties as outcomes from management actions and other events become better 

understood (National Research Council, 2004 in Williams, 2011).” Accounting for and 

characterizing uncertainty are important aspects of adaptive management (Littell et al., 2011; 

Williams, 2011; Millar et al., 2007). 

In this study we report on a fuzzy logic model for assessing the risk of biomass loss due 

to climate change in western Oregon and Washington. We evaluate the ability of our model to: 

1) interpret vegetation modeling results and express risk over time in a format quantified on a 0 

to 1 scale; 2) provide upper and lower bounds of that risk; 3) quantify uncertainty in a 

straightforward manner; 4) attribute uncertainty to its source; and 5) attribute risk to its 

underlying drivers. 

4.3 Methods 
4.3.1 Introduction 

We focused our modeling effort on the region west of the Cascade Mountain Range crest 

in Oregon and Washington (Fig. 4.1). We created a decision support model (DSM) to evaluate 

the risk of losing biomass under climate change projections. In the DSM we included results 

from 80 runs of the MC2 Dynamic Global Vegetation Model (DGVM; Bachelet et al., 2015) as 

well as carbon stocks from Hudiburg et al. (2009). We characterized uncertainty due to the 

diverse climate futures driving MC2 runs, and MC2 assumptions about fire suppression. 

4.3.2 Study area 

The study area (Fig. 4.1) consists of the region of Oregon and Washington west of the 

Cascade Mountain Range crest that includes Coast Range, Klamath Mountains/California High 

North Coast Range, Willamette Valley, Puget Lowlands, Cascades, and North Cascades Level III 

Ecoregions (Omernik and Griffith, 2014). This region is subject to strong coastal influence with 

mild, wet winters and warm dry summers. 
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Fig. 4.1. Study area. Portions of Oregon and Washington west of the Cascade Mountain Range 
crest. 

4.3.3 MC2 results used in this study 

The protocol used to generate the MC2 results presented here was designed for an earlier 

project (Sheehan et al., 2015). In this case, MC2 did not account for historical or future land use, 

nor past disturbances (pest outbreaks, diseases, or windthrow). Historical results (1895-2010) 

were obtained using PRISM (Daily et al., 2008) data and observed atmospheric CO2 

concentrations as drivers. Our baseline period was 1971-2000. The vegetation model was run 

twice, once with fire suppression (FS) and once without (NFS - no fire suppression). 

Our future scenarios included either FS or NFS, with either Representative Concentration 

Pathway (RCP) 4.5 or 8.5 CO2 concentrations. For each of those scenarios, MC2 was run with 20 

different climate futures from different CMIP5 General Circulation Models (GCMs) or Earth 

System Models (ESMs; Fig. 4.2). MC2 results were summarized over three time periods: early 

21st c. (2011-2030), mid 21st c. (2036-2065), and late 21st c. (2071-2099). We refer to one set of 

20 MC2 results for one scenario and one future time period as an ensemble of results. 
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Fig. 4.2. Model scenarios. Schematic of scenario and GCM/ESM climate driver combinations 
used to produce MC2 results used in this study. 

4.3.4 EEMS fuzzy logic modeling 

The Environmental Evaluation Modeling System (EEMS; Sheehan and Gough, 2016) is a 

fuzzy logic (Zadeh, 1973; Giles, 1976) modeling platform designed to inform answers to 

management questions. A model is represented by a logic tree (e.g. Fig. 4.3), with each node 

corresponding to a displayable spatial layer or map. The bottom-most nodes in the tree represent 

input data layers. Each input layer is first normalized (0 to 1 for this study) to produce a node 

representing its level of agreement with a user-defined statement. For example, a fuel load metric 

might be mapped to the statement Simulated Live Biomass is High using user-defined thresholds 

to characterize High. Normalized values are combined into higher level nodes using fuzzy logic 

operators that evaluate the relationship between two or more datasets to another statement. For 

example, data for Simulated Live Biomass is High might be combined with data for Vegetation 

Stress is High to create a resulting node for Mortality Risk is High. In a complete model, nodes 

are repeatedly combined to produce a final, top-level node that informs the original management 

question. 
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Fig. 4.3. Logic tree for Biomass Loss Risk (formally Risk of Biomass Loss is High) EEMS model. 
Each model node (box) represents a spatial data layer (map). Unshaded nodes represent input 
data layers. Shaded nodes represent data layers with normalized variable values. Labels are 
formal fuzzy logic statements with informal index labels in parentheses. 

Formally, each node in a fuzzy logic model corresponds to a factual statement, and the 

values for the node (the normalized values described above) are the values for the statement’s 

fuzzy truth. Fuzzy truths range from 0 for fully false to 1 for fully true. Values between 0.0 and 

0.5 are considered partially false, 0.5 is neither true nor false, and values between 0.5 and 1.0 

are partially true. Informally, values in the nodes are considered as indices for the attribute 

associated with the factual statement. For example, a fuzzy value for Vegetation Stress is High 

might be referred to simply as the level of Vegetation Stress from low (0) to high (1). We use the 

informal node labels hereafter. 

The spatial datasets used in an EEMS model must share the same extent, projection, and 

reporting units (normally either polygons, or grid cells as in this study). Operations are 

performed using corresponding reporting units from different data layers (Fig. 4.4 A). Reporting 
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units within layers are treated independently of one another and do not influence each other’s 

values. 

 
Fig. 4.4. Operations in EEMS. (A) Reporting units (grid cells in this example) in all data layers 
must correspond to one another. Fuzzy logic operators use the content of matching reporting 
units in different layers, but not between reporting units within the same layer. (B) Two methods 
of applying fuzzy logic operations in the extended version of EEMS. Three-dimensional 
variables 1 and 2 are combined by operator 1 to produce the three-dimensional variable 3. 
Operator 2 uses values across the Z dimension of variable 3 to produce two-dimensional variable 
4. In this study, the Z dimension corresponds to the 20 members of an ensemble. 

The EEMS fuzzy logic operators used in this project are And (minimum value of the 

inputs), Or (maximum value of the inputs), and Union (mean value of the inputs). With the And 

and Or operators a reporting unit’s result value comes from only of the input values (unless 

multiple input values yield the same minimum value (for And) or maximum value (for Or)). For 

example, if corresponding cells from nodes A and B have values of 0.3 and 0.5, and these nodes 

are inputs to the And operator to produce node C, C’s value for the corresponding cell would be 

0.3 and would come from only the cell in node A. A result of this is that the values in cells of a 

node produced by And or Or can be attributed to their source node. 
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4.3.5 Decision support modeling 

We created an EEMS decision support model (Fig. 4.3) to evaluate the combined 

Biomass Loss Risk (formally, Risk of Biomass Loss is High) from fire and climate maladaptation 

using MC2 ensemble results and aboveground biomass simulated by Hudiburg et al. (2009) 

(hereafter, Hudiburg). For modeled risk to be considered high, the threat to a cell’s biomass – 

either from fire or modeled vegetation type departure from baseline vegetation type – must be 

high, and the biomass in the cell must also be high. High modeled biomass is insured by input 

variables in the MC2 Biomass Loss Risk branch of the model. Hudiburg’s biomass values are 

based on observed biomass measurements and their inclusion in the EEMS model serves to 

adjust Biomass Loss Risk down due to the legacy effects of disturbance and harvest. 

Normalization of the datasets to obtain fuzzy values was done by establishing minimum 

(fully false) and maximum (fully true) thresholds and applying linear interpolation between 

thresholds, such that 

"#$$%&'( = 0 

where inputval < minthresh        (1) 

"#$$%&'( = 	 (-./#0&'( −2-.0ℎ456ℎ)(2'80ℎ456ℎ − 2-.0ℎ456ℎ) 

where minthresh <= inputval <= maxthresh      (2) 

"#$$%&'( = 1 

where inputval > maxthresh        (3) 

where fuzzyval is the normalized fuzzy value, inputval is the input (raw) data value, minthresh is 

the minimum threshold corresponding to the formal node statement, and maxthresh is the 

maximum threshold. 

To normalize MC2 biomass and fire frequency values, we used the distribution of each 

variable over the study area during the baseline period. The 10th percentile value for each 

variable was used as the minimum threshold and the 90th percentile was used for the maximum 

threshold (Table 4.1). Similarly, we normalized Hudiburg’s biomass values and used the 10th and 

90th percentile values from that data set. We calculated MC2 vegetation departure (a shift from 

the original modeled vegetation type to a new type) by comparing the cell’s modal vegetation 

type for a future period to its vegetation type for the baseline period. A departure value 
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quantifying the level of disparity between past and future vegetation types was obtained from a 

lookup table based on expert opinion (Table S4.1). To normalize the departure values and 

produce a data layer representing the overall vegetation stress level (MC2 Vegetation Stress) we 

used departure values of 0 and 3 for minimum and maximum thresholds respectively. 

Table 4.1. EEMS conversion thresholds. Conversion thresholds used in the EEMS model to 
evaluate Biomass Loss Risk. Threshold values are based on the distribution of each variable 
except for vegetation type departures. 

Variable 

Fully false or 
minimum 
threshold 

Fully true or 
maximum 
threshold Comments 

MC2 Biomass 
Burned 0 (g C m-2) 110 (g C m-2) 

Threshold values from historical period 
distribution. False threshold 10th 
percentile, True threshold 90th percentile.  

MC2 Fire 
Frequency 

0.0 (decimal 
fraction) 

1.0 (decimal 
fraction) 

Fraction of years with fire. False 
threshold 10th percentile, True threshold 
90th percentile. 

MC2 Biomass 31572 (g C m-2) 73148 (g C m-2) 
Threshold values from historical period 
distribution. False threshold 10th 
percentile, True threshold 90th percentile. 

MC2 Live 
Biomass 5839 (g C m-2) 29387 (g C m-2) 

Threshold values from historical period 
distribution. False threshold 10th 
percentile, True threshold 90th percentile.  

Hudiburg 
Biomass 4053 (g C m-2) 21844 (g C m-2) False threshold 10th percentile, True 

threshold 90th percentile. 
MC2 
Vegetation 
Stress 

0 (departure 
value) 

3 (departure 
value) 

Level of vegetation departure from 
historical based on expert opinion (Table 
S4.1). 

(g: gram; C: carbon; m: meter) 
4.3.6 Uncertainty Analysis 

We characterized uncertainty by first calculating the variability of Biomass Loss Risk 

values spatially across each ensemble of results. Results from each ensemble of 20 MC2 runs 

were combined into 3-dimensional datasets with ensemble members comprising the third 

dimension (Fig. 4.4 B). Biomass Loss Risk was calculated independently for each ensemble 

member. An extended version of EEMS was used to produce a data layer for each of the 

minimum, maximum, and mean fuzzy values (Fig. 4.4 B), bracketing the variability. The fuzzy 

value High Variability (formally, Variability is High) was calculated for each cell in each 

ensemble by converting standard deviations into fuzzy space using the minimum possible 
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standard deviation (0) as the false threshold and the maximum possible standard deviation (0.5) 

as the true threshold. 

We characterized the non-spatial uncertainty between members of each ensemble using 

box and whisker plots of their area-weighted means for Biomass Loss Risk. Plots for all scenarios 

within a time period are displayed together for inter-scenario comparison. 

To determine whether climate futures’ annual temperature and/or precipitation are tightly 

coupled with MC2 Biomass Loss Risk, we evaluated the relationships between those 3 variables. 

First, we compared each ensemble member’s area-weighted mean change in temperature from 

the baseline period against its change in precipitation. Secondly, we compared each ensemble 

member’s contribution to an ensemble’s fraction of area matching the maximum MC2 Biomass 

Loss Risk vs its fraction of area matching the minimum. A visual comparison of an ensemble 

member’s position in the first graph to its position in the second graph illustrates the strength of 

relationship between these two measures. 

4.3.7 Drivers of Biomass Loss Risk 

The Or operator in the model node MC2 Biomass Loss Risk (Fig. 4.3) takes the maximum 

values of the two inputs, one corresponding to the simulated biomass lost by fire from the MC2 

model, the other corresponding to the risk of mortality due to vegetation shift (not due to fire) as 

simulated by MC2. For each ensemble, we took the ensemble mean for each of MC2 Fire Loss 

Risk, MC2 Mortality Risk, and MC2 Fire Loss Risk minus MC2 Mortality Risk to show which 

factor most strongly drives MC2 Biomass Loss Risk. Absolute difference values are greatest 

where one factor produces a high risk and the other produces a low risk. These results reflect the 

contribution to Biomass Loss Risk from MC2 results without the contribution from Hudiburg 

Biomass. 

We characterized the influence of fire versus that of vegetation shift over the study area. 

For each ensemble member, we compared the fraction of the area for which mortality due to 

vegetation shift was the dominant driver of the risk to lose biomass vs the fraction of area where 

fire was the main driver of risk. Grid cells with a zero risk value were not considered. 
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4.3.8 Results presented 

In this manuscript, we present detailed results for the RCP 8.5 / NFS / 2071-2099 time 

period ensemble and summary results from other ensembles. Detailed results from other 

ensembles are in supplemental materials.  

4.4 Results 
4.4.1 Decision support modeling 

We used normalized biomass values from Hudiburg (Fig. 4.5) for all our EEMS model 

runs. Biomass is highest in the Cascade Mountains and in the Olympic Peninsula, and lowest 

around Puget Sound, on the east side of the Northern Cascades, throughout the Willamette 

Valley, and in southern Oregon around the cities of Roseburg, Medford, and Ashland. Eleven 

percent of the study area is assumed to have zero biomass. 

 
Fig. 4.5. Hudiburg Biomass. 11% of the area has a value of 0. 

Biomass Loss Risk is low in areas where Hudiburg Biomass is low (Fig. 4.5-4.6, S4.1-

4.3). For RCP 8.5 with or without fire suppression, mean and minimum values of Biomass Loss 

Risk are highest during the mid 21st c. in the southern portion of the study area (Fig. 4.6, S4.3. A, 

B, E, F, I, J). For RCP 4.5, the trend is similar, but less pronounced (Fig. S4.1-4.2 A, B, E, F, I, 

J), and less apparent or absent for maximum values across all scenarios (Fig. 4.6, S4.1-4.3 C, E, 
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K). Overall, the risk of biomass loss is higher in the southern portion of the study area and the 

Coast Range than in the Cascade Range (Fig. 4.6, S4.1-4.3 A, B, C, E, F, G, I, J, K). 

 
Fig. 4.6. Maps of Biomass Loss Risk from EEMS model for the RCP 8.5 NFS scenario. Figure 
rows include the mean, minimum, maximum, and uncertainty representation for one time period. 
(min: minimum; max: maximum; uncert: uncertainty) 

The area weighted mean of Biomass Loss Risk increases with time, is lower for RCP 4.5 

than for RCP 8.5, and is slightly higher for NFS scenarios than for FS (Fig. 4.7, Table 4.2). The 

range of values increases for all scenarios through time (Fig. 4.7, Table 4.2).  
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Fig. 4.7. Distribution of area weighted mean values Biomass Loss Risk from EEMS model. Each 
point represents the area weighted mean of one ensemble member. 
Table 4.2. Regional values for Biomass Loss Risk. Mean, minimum, maximum, and uncertainty 
for area weighted mean of Biomass Loss Risk EEMS model. 

 2011-2030 2036-2065 2071-2099 
 

Mean 
Range 
(min-max) Uncert Mean 

Range 
(min-max) Uncert Mean 

Range 
(min-max) Uncert 

RCP 4.5, FS 0.13 0.05-0.22 0.11 0.21 0.07-0.36 0.19 0.26 0.09-0.43 0.21 
RCP 4.5, NFS 0.13 0.05-0.23 0.11 0.23 0.07-0.38 0.20 0.28 0.09-0.45 0.22 
RCP 8.5, FS 0.14 0.05-0.24 0.12 0.23 0.08-0.39 0.19 0.32 0.12-0.51 0.22 
RCP 8.5 NFS 0.15 0.06-0.27 0.14 0.27 0.09-0.42 0.20 0.34 0.14-0.53 0.23 

(min: minimum; max: maximum; Uncert: Uncertainty) 
4.4.2 Uncertainty 

Uncertainty is 0 where Hudiburg Biomass is 0, and is generally lower or higher 

corresponding to lower and higher values for Biomass Loss Risk (Fig. 4.6, S4.1-4.3 D, H, L). In 

the Olympic Peninsula, uncertainty is generally higher overall except near the end of the century 
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for the RCP 8.5 scenarios. In the southeastern portion of the study area, uncertainty is low across 

all scenarios. Area weighted mean uncertainty is similar overall and increases with time (Table 

4.2). 

Between RCP 4.5 and RCP 8.5, uncertainty ranges from 0.01 to 0.09, increasing through 

time (Table 4.3). Between FS and NFS, uncertainty ranges from 0.00 to 0.03, with the lowest 

values for the early 21st c. (Table 4.3). 

Table 4.3. Area weighted mean of uncertainty for RCP 4.5 vs RCP 8.5 and FS vs NFS. 
 2011-2030 2036-2065 2071-2099 
RCP 4.5 vs RCP 8.5, FS 0.02 0.04 0.09 
RCP 4.5 vs RCP 8.5, NFS 0.02 0.05 0.10 
FS vs NFS, RCP 4.5 0.00 0.02 0.02 
FS vs NFS, RCP 8.5 0.01 0.03 0.03 

 
4.4.3 Drivers of results 

MC2 Fire Loss Risk (Fig. 4.8, S4.4-4.6 A, D, F) is greatest in the southern portion of the 

study region and generally expands through time north through the Willamette Valley and Puget 

Trough in the center of the region, east and west from the center into the foothills of the Coast 

and Cascade mountain ranges, and also on the northeast edge of the study region. The expansion 

into the Coast and Cascade ranges is greater under NFS than FS and markedly greater under RCP 

8.5 than under RCP 4.5, with expansion towards the Cascade crest in the late 21st c. (Fig. 4.8, 

S4.6. G). MC2 Fire Loss Risk falls in the southern and eastern portions of the study area under 

RCP 8.5 in the late 21st c. (Fig. 4.8, S4.6. G). 

MC2 Mortality Risk (Fig. 4.8, S4.4-4.6 B, E, H) is greatest along the coast, somewhat 

high in the Olympic Peninsula of northwestern Washington, and expands into the foothills of the 

Cascades and the central portion of the study region through time. It is greater under RCP 8.5 

than RCP 4.5, and is virtually unaffected by +/- fire suppression. 

The general spatial separation of high MC2 Fire Loss Risk from high MC2 Mortality Risk 

(Fig. 4.8, S4.4-4.6 A, B, D, E, G, H) is reflected in the driver difference maps (Fig. 4.8, S4.4-4.6 

C, F, I). The southern portion and northeastern corner of the study area are driven by fire, 

whereas the coast and Olympic Peninsula are driven by mortality. Under RCP 4.5, mortality 

drives MC2 Biomass Loss Risk more strongly in the Cascades (Fig. S4.4-4.5 C, F, I). However, 
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under RCP 8.5, the stronger driver shifts from mortality to fire in the Cascades in the late 21st c. 

(Fig. 4.8, S4.6 C, F, I). 

 
Fig. 4.8. Drivers of MC2 Mortality Risk. Maps of MC2 Fire Loss Risk (A, D, G), MC2 Mortality 
Risk (B, E, H), and MC2 Fire Loss Risk minus MC2 Mortality Risk (C, F, I) from the EEMS 
model for the RCP 8.5 NFS scenario. Figure rows represent time periods. 

The fraction of area with 0 MC2 Biomass Loss Risk is somewhat greater for RCP 4.5 

scenarios than for RCP 8.5, and declines through time, with a minimum of 11% for any 

ensemble member (Table 4.4). Fire (MC2 Fire Loss Risk) contributes more to the risk of losing 

biomass (Biomass Loss Risk) than does vegetation shift (Mortality Risk) for all ensembles with 

the exception of RCP 8.5, FS, 2071-2099 (Table 4.5, Fig. 4.9). The difference is generally 

smaller for FS scenarios than for NFS scenarios. 
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Table 4.4. Area-weighted summary of MC2 Biomass Loss Risk drivers. Fraction of area with no risk of losing biomass, risk driven 
by either fire (MC2 Fire Loss Risk) or vegetation shift (MC2 Mortality Risk) in the EEMS MC2 Biomass Loss Risk model node. 

 2011-2030 2036-2065 2071-2099 
 

Zero risk 
(min-max 
(mean)) 

Fire-
dominated 
(min-max 
(mean)) 

Mortality-
dominated 
(min-max 
(mean)) 

Zero risk 
(min-max 
(mean)) 

Fire-
dominated 
(min-max 
(mean)) 

Mortality-
dominated 
(min-max 
(mean)) 

Zero risk 
(min-max 
(mean)) 

Fire-
dominated 
(min-max 
(mean)) 

Mortality-
dominated 
(min-max 
(mean)) 

RCP 4.5 FS 0.43-0.69 
(0.58) 

0.15-0.40 
(0.24) 

0.15-0.24 
(0.18) 

0.13-0.57 
(0.30) 

0.19-0.47 
(0.36) 

0.24-0.47 
(0.34) 

0.11-0.42 
(0.20) 

0.27-0.57 
(0.43) 

0.28-0.49 
(0.37) 

RCP 4.5 NFS 0.42-0.69 
(0.58) 

0.15-0.40 
(0.24) 

0.15-0.23 
(0.18) 

0.13-0.57 
(0.29) 

0.19-0.52 
(0.38) 

0.23-0.45 
(0.32) 

0.11-0.42 
(0.20) 

0.28-0.58 
(0.46) 

0.27-0.46 
(0.34) 

RCP 8.5 FS 0.40-0.67 
(0.54) 

0.14-0.38 
(0.25) 

0.16-0.27 
(0.20) 

0.11-0.45 
(0.21) 

0.22-0.64 
(0.42) 

0.21-0.48 
(0.36) 

0.10-0.18 
(0.12) 

0.28-0.63 
(0.45) 

0.26-0.62 
(0.43) 

RCP 8.5 NFS 0.40-0.67 
(0.54) 

0.15-0.38 
(0.26) 

0.16-0.26 
(0.20) 

0.11-0.45 
(0.21) 

0.24-0.65 
(0.47) 

0.21-0.41 
(0.32) 

0.10-0.18 
(0.12) 

0.31-0.67 
(0.50) 

0.23-0.58 
(0.39) 

(min: minimum; max: maximum) 
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Table 4.5. Per ensemble drivers of MC2 Biomass Loss Risk. Driving factor of the risk of losing 
biomass illustrated by the number of ensemble members for which either fire (MC2 Fire Loss 
Risk ) or simulated vegetation shifts (MC2 Mortality Risk) drive the risk of biomass loss for MC2 
Biomass Loss Risk.  

 2011-2030 2036-2065 2071-2099 
Fire 
dominated 
(count) 

Mortality 
dominated 
(count) 

Fire 
dominated 
(count) 

Mortality 
dominated 
(count) 

Fire 
dominated 
(count) 

Mortality 
dominated 
(count) 

RCP 4.5 FS 16 4 11 9 13 7 
RCP 4.5 NFS 17 3 13 7 15 5 
RCP 8.5 FS 13 7 11 9 9 11 
RCP 8.5 NFS 13 7 17 3 13 7 
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Fig. 4.9. Drivers of MC2 Biomass Loss Risk. Fraction of the study area at risk driven by 
vegetation shifts (MC2 Mortality Risk) versus driven by fire (MC2 Fire Loss Risk) in the EEMS 
node MC2 Biomass Loss Risk.  

Ensemble members with the greatest (or least) change in annual temperature generally do 

not correspond to climate futures responsible for the largest area of maximum (minimum) risk of 

biomass loss (Fig. 4.10, S4.7.). One exception is under HadGEM2-ES365 (model 9) which 

drives the greatest change in temperature for 2071-2099 under both RCP 4.5 and RCP 8.5 and 

causes the greatest simulated area at risk in the node Maximum Biomass Loss Risk. Over time, 

the ratio of the number of climate models causing the largest vs the smallest areas at risk of 

losing biomass (Biomass Loss Risk) increases substantially (2-5 models for 2011-2030 to 17-19 

models for 2071-2099). 
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4.5 Discussion 

4.5.1 Context 

We compared our method of expressing results with those from seven studies covering 

our study area using inputs from climate models. Climate-based uncertainty was handled in a 

variety of ways. Rehfeldt et al. (2006) used the average results from two GCMs, predicating their 

results on the correctness of those GCMs and the CO2 projections driving them. Rehfeldt et al. 

(2014a) used an ensemble mean of results from 17 GCMs as a means of defining a consensus 

future climate before using that climate in their model. Many studies presented graphs and/or 

tables of region-summarized values of selected drivers and results (Sheehan et al., 2015; Littell et 

al., 2010; Rogers et al., 2011; Creutzburg et al., 2014; Sheehan et al., 2019; Bachelet et al., 

2015). Several presented sets of maps allowing visual comparisons of result variation (Sheehan 

et al., 2015; Littell et al., 2010; Rogers et al., 2011; Sheehan et al., 2019; Bachelet et al., 2015), 

but only two presented spatial uncertainty. Littell et al. (2010) classified risk to Douglas-fir in 

terms of the percentage of models agreeing or disagreeing on its occurrence, and Rogers et al. 

(2011) mapped the number of models agreeing on the direction of change in ecosystem carbon, 

burn area, and vegetation type. To our knowledge, ours is the first study in this region to provide 

a detailed, quantified, spatial measure of climate-based uncertainty for modeled future 

vegetation. With the simplified manner of expressing risk and uncertainty, our results could be 

more suitable for adaptive management scenario planning. 
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Fig. 4.10. Relationship between climate change summary and MC2 Biomass Loss Risk. Change 
(1971-2000 vs future time period) in average maximum temperature vs change in average annual 
precipitation for each of the 20 RCP 8.5 climate futures (A-C), and fraction of the simulated area 
with maximum and minimum values MC2 Biomass Loss Risk for the RCP 8.5 FS scenario (D-F) 
and the NFS scenario (G-I). In graphs D-I, a point above the 45° line indicates that the results of 
the MC2 run driven by that climate future showed a greater number of high vs low values of 
MC2 Biomass Loss Risk over more of the study area. Points below the 45° line indicate that MC2 
results showed a greater number of low vs high values over more of the area. (mm: millimeters) 
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4.5.2 Limitations 

An ensemble mean provides a single measure of risk for the ensemble, however climate 

models driving the results may not be completely independent of one another (Masson and 

Knutti, 2011). Weighting results based on the similarities of the underlying climate models could 

adjust for this but understanding the provenance of many climate models can be onerous. 

We did not account for the uncertainty resulting from assumed ignitions or the built-in CO2 

fertilization effect in MC2. The consequences of these assumptions on MC2 fire and carbon 

dynamics results were found to be substantial (Sheehan et al., 2019), but including those 

uncertainties was beyond the goal of this study. Likewise, we did not incorporate the uncertainty 

in Hudiburg’s (Hudiburg et al., 2009) data due to the study’s limited scope. 

4.5.3 General Implications 

Our results show the risk of biomass loss generally increasing with time in current high 

biomass areas within the study region. The pattern of increased fire-driven risk through time is 

generally south to north and upslope as fires become more frequent due to increasing 

temperatures. Mortality-driven risk increases along the coast where vegetation becomes 

maladapted to warming and where coastal climate influences reduce fire risk. 

Changes in biomass are directly related to ecosystem services such as timber production, 

carbon sequestration, wildlife habitat provision, recreational opportunities, and fresh water 

quality (Neary et al., 2009). Thinning, prescribed fire, and suppression can mitigate fire risk, 

however each of these actions has associated economic and other costs (Hurteau et al., 2008; 

Fischer et al., 2016). Thinning may increase forest resistance and resilience to drought, however, 

it may make forests less resistant and resilient as forests age (D’Amato et al., 2013). When 

physiological processes cannot be buffered against environmental variability, maladaptation 

leads to mortality (Rehfeldt et al., 2014c). Maintaining biomass in forested areas under climate 

change-induced maladaptation may depend on management strategies such as sourcing seeds and 

species from better climatically suited sources (i.e. assisted migration; Bradley St. Clair and 

Howe, 2007; Chmura et al., 2011). Tools to help mangers implement such strategies have been 

developed (e.g. Seedlot Selection Tool, https://seedlotselectiontool.org/sst/). 
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4.5.4 Management and planning 

Our results provide managers with spatial datasets representing three aspects of the 

Biomass Loss Risk metric. The mean value of biomass lost across all climate futures provides an 

overall idea of potential magnitude of loss, while minimum and maximum values bracket the 

range, suggesting limits for management alternatives. Uncertainty quantifies the variability of the 

model results. Land management takes place at multiple scales, with planning and assessment at 

the national or regional level and implementation at more local levels (Hann and Bunnell, 2001). 

Using terminology appropriate for managers such as risk and uncertainty, as well as using a 

spatial scale appropriate for local information makes our results appropriate for local planning. 

Environmental models are often found to be insufficiently accurate to use as forecasts 

(Millar et al., 2007). However, they provide insights and scenarios useful for scenario planning 

(Millar et al., 2007) and are useful for decreasing uncertainty rather than making predictions 

(Littell et al., 2011). Our work is intended to be viewed within this context, providing one set of 

results with as much clarity as possible regarding uncertainty, sources of uncertainty, and drivers 

of risk. 

Process-based models, such as MC2, are considered more limited than empirical models 

in quantifying uncertainty (Littell et al., 2011), thus limiting their usefulness in management 

planning. Our method, which quantifies uncertainty in MC2 results, alleviates this limitation, 

likely making it easier for managers to use process-based models in their decision making. 

It has been suggested that when a range of future possibilities is needed for planning, 

selecting the most extreme climate projections (e.g. warmest, coolest, wettest, driest) as inputs to 

ecological models provides brackets for the needed answers (Littell et al., 2011). The lack of 

correspondence we found between the most extreme climate futures and their influence on 

minimum or maximum risk indicates that simple metrics for climate extremes are not sufficient 

for bracketing our model results. In a process-based model such as MC2, seasonal patterns and 

extreme events that are not reflected in annual values or averages over multi-year time periods 

have the potential to strongly affect fire and vegetation trajectories. Finding climate metrics that 

predict the most extreme results would be challenging, if not impossible, due to complex 

interactions within the model. While culling input datasets from GCMs and ESMs that perform 



  

 
 

 

123 
poorly in the region may be required to reduce uncertainty (Rupp et al., 2013), culling less 

extreme climate futures may inadvertently reduce the desired range of results. 

4.5.5 Further opportunities and challenges 

Fuzzy logic modeling has been used in a variety of ecological modeling applications 

(Adriaenssens et al., 2004), including species distribution (e.g., Barbosa and Real 201), habitat 

mapping (e.g., Petrou et al., 2014), water quality (e.g., Forio et al., 2017), wildfire risk (e.g., 

Soto, 2012), and the human valuation of natural elements (e.g., Smith et al., 2016). Managing 

forests in light of climate change requires understanding climate’s potential effects on not only 

forests, but also industries and communities (Keenan, 2015).  

Our model may prove useful to managers by itself, but it has the potential to provide 

greater utility when combined with other metrics reflecting landscape condition, status, and 

value. The modular nature of the EEMS framework would allow our model to be easily 

combined into new models. Ignition probabilities, fire spread probabilities, and fire refugia data 

(Meigs et al., 2018; Meddens et al., 2018; Krawchuk et al., 2016) could be added to provide 

greater detail for fire risk. Submodels of climate refugia related to microclimate and enduring 

landscape features (Morelli et al., 2016; Theobald et al., 2015) could provide more realism for 

mortality-based risk. Combining our risk model with submodels for current habitat quality (e.g., 

Zabihi et al., 2017), connectivity corridors (Krosby et al., 2015), and species presence or absence 

could help guide management conservation decisions. Similarly, incorporating risk with 

submodels for economic, social, and cultural values could help managers with biocultural 

approaches to conservation (Gavin et al., 2015). Stakeholder input and expert opinion can be 

used to parameterize these models so that they precisely reflect management concerns. It is our 

hope that this model and this methodology can contribute to sound decision making for a wide 

variety of purposes in our study region and beyond. 
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4.8 Supporting Information 

Table S4.1. Lookup table for vegetation type differences. 

 0 1 2 3  4  5  6  7  8 9 
 

1 0 1 1 1 2 1 3 1 4 1 5 
 

1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4  2 5  2 6 2 7 2 8  2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6  3 7 

0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
1 5 0 1 2 5 4 5 5 5 5 5 5 4 4 4 4 3 2 1 5 5 5 5 5 4 4 4 3 2 1 5 5 3 3 2 1 5 5 
2 5 1 0 1 3 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
3 5 2 1 0 2 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 
4 5 5 3 2 0 2 1 2 2 4 3 4 2 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 5 
5 5 4 2 1 2 0 2 4 3 3 2 3 2 2 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5 
6 5 5 4 3 1 2 0 1 1 3 2 3 2 4 2 3 2 3 4 2 4 4 5 3 5 5 4 5 5 5 5 5 5 5 5 5 4 5 
7 5 5 5 5 2 4 1 0 1 3 2 2 2 4 2 3 4 5 5 2 4 4 3 2 4 4 3 4 5 5 5 5 5 5 5 5 1 5 
8 5 5 5 5 2 3 1 1 0 2 1 1 1 2 2 2 3 4 5 1 3 3 2 2 4 4 3 4 5 5 5 5 5 5 5 5 1 5 
9 5 5 5 5 4 3 3 3 2 0 1 1 2 1 2 2 3 4 5 3 2 3 2 3 1 2 3 4 5 5 5 5 5 5 5 5 3 5 
10 5 5 5 5 3 2 2 2 1 1 0 1 2 2 1 2 3 4 5 2 2 3 1 3 3 4 2 4 5 5 5 5 5 5 5 5 1 5 
11 5 5 5 5 4 3 3 2 1 1 1 0 2 2 2 1 3 4 5 2 2 3 1 3 3 4 2 4 5 5 5 5 5 5 5 5 2 5 
12 5 4 5 5 2 2 2 2 1 2 2 2 0 2 1 1 1 2 3 2 3 4 3 1 3 4 2 2 3 4 5 5 5 5 5 5 2 5 
13 5 4 5 5 4 2 4 4 2 1 2 2 2 0 1 1 1 2 3 4 2 4 3 3 1 3 2 2 3 4 5 5 5 5 5 5 4 5 
14 5 4 5 5 3 1 2 2 2 2 1 2 1 1 0 1 1 2 3 3 3 3 2 2 2 3 1 2 3 4 5 5 5 5 5 5 3 5 
15 5 4 5 5 5 2 3 3 2 2 2 1 1 1 1 0 1 2 3 3 3 3 2 2 2 3 1 2 3 4 5 5 5 5 5 5 4 5 
16 5 3 5 5 5 3 2 4 3 3 3 3 1 1 1 1 0 1 2 3 3 3 3 2 2 2 2 1 2 3 5 5 5 5 5 5 5 5 
17 5 2 5 5 5 4 3 5 4 4 4 4 2 2 2 2 1 0 1 4 4 4 4 3 3 3 3 2 1 2 5 5 5 5 5 5 5 5 
18 5 1 5 5 5 5 4 5 5 5 5 5 3 3 3 3 2 1 0 5 5 5 5 4 4 4 4 3 2 1 5 5 5 5 5 5 5 5 
19 5 5 5 5 5 5 2 2 1 3 2 2 2 4 3 3 3 4 5 0 2 2 1 1 3 3 2 3 4 5 2 3 4 4 5 5 1 5 
20 5 5 5 5 5 5 4 4 3 2 2 2 3 2 3 3 3 4 5 2 0 1 1 3 2 3 2 3 4 5 2 2 3 4 5 5 3 5 
21 5 5 5 5 5 5 4 4 3 3 3 3 4 4 3 3 3 4 5 2 1 0 1 2 2 1 2 3 4 5 1 3 3 4 5 5 3 5 
22 5 5 5 5 5 5 5 3 2 2 1 1 3 3 2 2 3 4 5 1 1 1 0 2 2 2 1 3 4 5 2 3 4 4 5 5 5 5 
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Table S4.1, continued. 

 0  1 2 3 4 5 6  7  8  9 
 

1 0  1 1 1 2 1 3 1 4  1 5 
 

1 6 1 7  1 8  1 9 2 0 2 1  2 2 2 3 2 4  2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 

23 5 5 5 5 5 5 3 2 2 3 3 3 1 3 2 2 2 3 4 1 3 2 2 0 2 2 1 1 2 3 3 4 5 5 5 5 4 5 
24 5 4 5 5 5 5 5 4 4 1 3 3 3 1 2 2 2 3 4 3 2 2 2 2 0 1 2 1 2 3 2 3 4 4 5 5 2 5 
25 5 4 5 5 5 5 5 4 4 2 4 4 4 3 3 3 2 3 4 3 3 1 2 2 1 0 1 2 3 4 2 1 2 2 3 4 4 5 
26 5 4 5 5 5 5 4 3 3 3 2 2 2 2 1 1 2 3 4 2 2 2 1 1 2 1 0 1 2 3 3 2 2 2 3 4 4 5 
27 5 3 5 5 5 5 5 4 4 4 4 4 2 2 2 2 1 2 3 3 3 3 3 1 1 2 1 0 1 2 4 3 2 1 2 3 5 5 
28 5 2 5 5 5 5 5 5 5 5 5 5 3 3 3 3 2 1 2 4 4 4 4 2 2 3 2 1 0 1 4 3 2 2 1 2 5 5 
29 5 1 5 5 5 5 5 5 5 5 5 5 4 4 4 4 3 2 1 5 5 5 5 3 3 4 3 2 1 0 5 4 3 3 2 1 5 5 
30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 1 2 3 2 2 3 4 4 5 0 1 2 2 3 4 5 5 
31 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 2 3 3 4 3 1 2 3 3 4 1 0 1 1 2 3 5 5 
32 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 3 3 4 5 4 2 2 2 2 3 2 1 0 1 1 2 5 5 
33 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 5 4 2 2 1 2 3 2 1 1 0 1 2 5 5 
34 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 2 1 2 3 2 1 1 0 1 5 5 
35 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 3 2 1 4 3 2 2 1 0 5 5 
36 5 5 5 5 2 3 4 1 1 3 1 2 2 4 3 4 5 5 5 1 3 3 5 4 2 4 4 5 5 5 5 5 5 5 5 5 0 5 
37 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 

(0: Undefined; 1: Barren; 2: Tundra; 3: Taiga Tundra; 4: Boreal Evergreen Needleleaf Forest; 5: Boreal Mixed Woodland; 6: 
Subalpine; 7: Maritime Evergreen Needleleaf Forest; 8: Temperate Evergreen Needleleaf Forest; 9: Temperate Deciduous 
Broadleaf Forest; 10: Temperate Cool Mixed Forest; 11: Temperate Warm Mixed Forest; 12: Temperate Evergreen Needleleaf 
Woodland; 13: Temperate Deciduous Broadleaf Woodland; 14: Temperate Cool Mixed Woodland; 15: Temperate Warm Mixed 
Woodland; 16: Temperate Shrubland; 17: Temperate Grassland; 18: Temperate Desert; 19: Subtropical Evergreen Needleleaf 
Forest; 20: Subtropical Deciduous Broadleaf Forest; 21: Subtropical Evergreen Broadleaf Forest; 22: Subtropical Mixed Forest; 23: 
Subtropical Evergreen Needleleaf Woodland; 24: Subtropical Deciduous Broadleaf Woodland; 25: Subtropical Evergreen 
Broadleaf Woodland; 26: Subtropical Mixed Woodland; 27: Subtropical Shrubland; 28: Subtropical Grassland; 29: Subtropical 
Desert; 30: Tropical Evergreen Broadleaf Forest; 31: Tropical Deciduous Woodland; 32: Tropical Savanna; 33: Tropical 
Shrubland; 34: Tropical Grassland; 35: Tropical Desert; 36: Cool Needleleaf Forest; 37: Agriculture and Grazing)
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Fig. S4.1. Maps of Biomass Loss Risk from EEMS model for the RCP 4.5 FS scenario. Figure 
rows include the mean, minimum, maximum, and uncertainty representation for one time period. 
(min: minimum; max: maximum; uncert: uncertainty) 
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Fig. S4.2. Maps of Biomass Loss Risk from EEMS model for the RCP 4.5 NFS scenario. Figure 
rows include the mean, minimum, maximum, and uncertainty representation for one time period. 
(min: minimum; max: maximum; uncert: uncertainty) 
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Fig. S4.3. Maps of Biomass Loss Risk from EEMS model for the RCP 8.5 FS scenario. Figure 
rows include the mean, minimum, maximum, and uncertainty representation for one time period. 
(min: minimum; max: maximum; uncert: uncertainty) 



  

 
 

 

134 

 
Fig. S4.4. Drivers of MC2 Mortality Risk. Maps of MC2 Fire Loss Risk (A, D, G), MC2 
Mortality Risk (B, E, H), and MC2 Fire Loss Risk minus MC2 Mortality Risk (C, F, I) from 
EEMS model for the RCP 4.5 FS scenario. Figure rows represent time periods. 
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Fig. S4.5. Drivers of MC2 Mortality Risk. Maps of MC2 Fire Loss Risk (A, D, G), MC2 
Mortality Risk (B, E, H), and MC2 Fire Loss Risk minus MC2 Mortality Risk (C, F, I) from 
EEMS model for the RCP 4.5 NFS scenario. Figure rows represent time periods. 
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Fig. S4.6. Drivers of MC2 Mortality Risk. Maps of MC2 Fire Loss Risk (A, D, G), MC2 
Mortality Risk (B, E, H), and MC2 Fire Loss Risk minus MC2 Mortality Risk (C, F, I) from 
EEMS model for the RCP 8.5 FS scenario. Figure rows represent time periods. 
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Fig. S4.7. Relationship between climate change summary and MC2 Biomass Loss Risk. Change 
(1971-2000 vs future period) in average maximum temperature vs change in average annual 
precipitation for each of the 20 RCP 4.5 climate futures (A-C), and fraction of the simulated area 
with maximum and minimum values MC2 Biomass Loss Risk for the RCP 4.5 FS scenario (D-F) 
and the NFS scenario (G-I). In graphs D-I, a point above the 45° line indicates that the results of 
the MC2 run driven by that climate future showed a greater number of high vs low values of 
biomass loss over more of the study area. Points below the 45° line indicate that MC2 results 
showed a greater number of low vs high values over more of the area. (mm: millimeters) 
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5 Conclusions 

5.1 Study and findings 

I have used the most recent downscaled climate futures to simulate vegetation dynamics, 

carbon dynamics, and fire in the Pacific Northwest of the conterminous United States. The bulk 

of my work focused on Oregon and Washington west of the Cascade Mountain Range crest. In 

order to characterize overall uncertainty in MC2 results and explore avenues for model 

improvements, I performed uncertainty and sensitivity analyses with the model. Chapter 2 

examined the effects of fire suppression and emission scenarios with climate futures from 20 

different global climate models (GCMs) and earth system models (ESMs). Chapter 3 examined 

the effects of embedded assumptions about fire and CO2 fertilization in the MC2 dynamic global 

vegetation model (DGVM). Chapter 4 quantified the risk of biomass loss, identified the drivers 

of that risk, and evaluated the sources of uncertainty associated with that risk. 

In Chapter 2, I described major findings for each of the three regions I studied. In the 

eastern Northwest mountains (ENWM), conifer forests persist under all scenarios. However 

subalpine forests are replaced by warmer forest types. Sudden vegetation shifts could be 

triggered by large fires as modeled, or other disturbances the model does not simulate. In the 

Northwest plains and plateau (NWPP), simulated fire suppression leads to the expansion of 

woody vegetation indicating the importance of fire in shaping local vegetation. Invasive species 

(such as medusahead and cheatgrass; Davies et al., 2011), which were not simulated, have a 

strong influence in this region and may change fire regime and vegetation succession trajectory. 

Finally, in the western Northwest (WNW), the model projects that most conifer forests are 

replaced by mixed forests, and large fires occur in the 21st c. over much of the region. A 

combination of maladapted vegetation with large fires indicates the potential for sudden, large-

scale vegetation change.  

In Chapter 3, assumptions about both CO2 fertilization and fire occurrence had strong 

effects on simulated C dynamics. The CO2 fertilization effect is not sufficient to overcome C 

losses due to fire in the 21st c., and the only scenario where C losses were minimal was the case 

with CO2 fertilization effect and no fire. One implication is that the WNW region will become a 

C source during the 21st c. When ignitions were assumed to be unlimited, fire suppression had 

little effect on fire occurrence or carbon dynamics. However simulating stochastic ignitions and 
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ignition propagation resulted in less variable carbon fluxes and carbon pools. This points to the 

importance of considering ignition source probabilities in modeling fire occurrence in this 

region. Modifying the effects of raising atmospheric CO2 on plant production and the frequency 

of fire occurrence had virtually no effect on vegetation change in the region, indicating that 

vegetation change in the model is entirely climate driven. 

Chapter 4 introduces a novel method and results. I built an Environmental Evaluation 

Modeling System (EEMS) logic model to quantify the risk of biomass loss and its drivers. My 

EEMS model provides a transparent, useable model for evaluating risk as well as enabling data 

exploration to discover what the drivers are. Mortality generally drives Biomass Loss Risk along 

the coast while fire is a stronger driver inland. The differences between the projections of various 

climate models for the same emission and fire suppression scenario contributed more to 

uncertainty than the choice of emission (RCP) or +/- fire suppression.  

5.2 Dissertation context 

Research is carried out for many purposes and in different ways. At one end of the 

spectrum is the pursuit of science disconnected from the influence of society or decision making; 

on the other end is coproduction in which scientists work interactively with those who will use 

the science in decision making (Kirchhoff et al., 2013). As mentioned in the introduction, 

examples of coproduction in climate science are common. 

While the research performed in this dissertation was not part of a coproduction project, 

it was at least partially motivated by a desire to provide the best available science to other 

scientists and decision makers. The only outside funding contribution to this dissertation came 

from the Northwest Climate Science Center’s Integrated Scenarios of climate, hydrology and 

vegetation for the Northwest project, whose goals included “a series of freely available datasets 

that can be used to address specific management questions” and supporting “a range of 

management activities to increase the resilience of Northwest ecosystems, agricultural systems, 

and built environments” 

(https://www.sciencebase.gov/catalog/item/55db7caae4b0518e35470be5). Data from runs used 

in Chapter 1 are available as part of that project. A measure of the early success of this 

dissertation’s research is the 34 references Chapter 2 has amassed since its 2015 publication 
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(scholar.google.com). As an example, MC2 model results from that chapter have been used to 

model Canada lynx habitat suitability (Robbins, 2017). 

EEMS was created to produce decision support models (Sheehan and Gough, 2016). In 

addition to the implementations of EEMS for creating models within ArcGIS or using the EEMS 

scripting language, its online version (www.eemsonline.org) allows users to upload, share, 

explore, modify, and save models and data layers. Data Basin’s (www.databasin.org) EEMS 

explorer allows users to explore models and data layers within Data Basin. EEMS has been used 

in a variety of coproduced projects resulting in online tools such as the California Climate 

Console (http://climateconsole.org/). A motivation to use EEMS in Chapter 4 was to produce 

results suitable for environmental decision support. One section in that chapter outlines how the 

model and results could be used in the future for a variety of management questions and 

implicitly makes the case for EEMS as a platform for use in coproduction. 

5.3 Opportunities for future study and contributions 

Using MC2 or other climate-driven models with a broad range of climate futures is one 

way to explore future vegetation, climate, and fire trajectories. Differences in results, however, 

are tied to specific climate futures. An alternative would be to run the vegetation model under a 

set of synthetic climates in order to discover what climatic changes would contribute to crossing 

tipping points in the model and lead to alternative future states. 

The difference in MC2 results using stochastic ignition occurrences and ignition 

propagation point to a rich area of research in DGVM fire dynamics under realistic conditions. 

The use of ignition source probability surfaces along with a rigorous fuel condition/ignition 

propagation model would likely enhance the realism of fire occurrence and effects. Cell-to-cell 

fire propagation would likely allow for larger fires to develop in a more realistic way. Such 

improvements would allow for fire and its effects to become an emergent property of the model, 

obviating the need for the currently embedded FRI-limited burning. Some preliminary work has 

been done with MC2’s fire algorithm (Sheehan et al., 2015) that could be an important first step 

towards improvement in modeling mega-fires (Stephens et al., 2014). 

MC2 is implemented in a combination of C++ and Fortran. Program flow is intricately 

linked with functionality. Algorithms are commonly spread among modules and source files in 

ways that are not readily apparent. The mapping of data and variable names between the C++ 
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code and the Fortran code is neither straightforward nor well-documented. Initialization of 

computational and control variables is complicated, involving a combination of initialization 

files and code modifications in multiple C++ methods. In short, MC2 is neither easy to use, easy 

to understand, nor easy to modify. For MC2 to be a productive research tool into the future, it 

should be rewritten in a modular format, using a modern programming language. Separating the 

higher-level logic of module execution from the implementation of modules would allow users 

to easily update or replace modules in order to experiment with alternative modules and 

combinations of modules. It would also allow for different timesteps for different modules. Some 

early work was started on a new version of MC2, appropriately called MC3. However funding 

was unavailable to do more than preliminary design work. 

EEMS is a platform with great potential as both a research tool and an instrument to 

inform management decisions. Its ability to easily integrate different types of data from disparate 

sources makes it suitable for integrating results from multiple models, as was done in Chapter 4. 

Whether using EEMS’ drag-and-drop interface in ArcGIS or its scripting language, EEMS’ ease 

of use gives modelers a system with a small learning curve. EEMS has been integrated with an 

evolutionary algorithm to find the best fit operators and parameters for an EEMS model to 

simulate fire resistance in the Sierra Nevada (Sheehan et al., 2017). This technique opens up the 

possibility for EEMS to be used as a statistical tool in a decision support setting. 

With the combination of remotely sensed time series data, cloud data storage, and cloud 

computing, we have entered an era of more democratic environmental modeling. Google Earth 

Engine (GEE; https://earthengine.google.com/) has become very popular for GIS processing. For 

interactive use, GEE requires scripting in JavaScript, which is a constraint for many users. An 

EEMS-like graphical and/or scripting interface to GEE would make using it and sharing models 

easier, opening the power of the platform to a wider audience. 

5.4 Future personal research stream 

As I complete this dissertation, I find myself in an atypical position for a finishing Ph. D. 

student. My body of work consists not only of what I have done for this dissertation, but also 

what I have done over a multi-decade research and professional career and a multi-graduate 

degree academic career. While working on this degree I have worked full time for an 

environmental nonprofit best characterized as a bridging organization. I have contributed to a 
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large number of projects in roles including software architect, software developer, system 

analyst, vegetation modeler, carbon cycle modeler, decision support modeler, data analyst, and 

supervisor. I am fortunate that my background has allowed me to switch roles depending on 

funded project requirements. 

However, the ability to perform many roles can lead to a lack of direction. One of the 

reasons I chose to get a Ph. D. was to pursue a research path with depth rather than just breadth. 

In some ways I succeeded by focusing on modeling climate effects for a specific region. In some 

ways, perhaps, I did not succeed. During the course of the dissertation I broadened my focus by 

delving deeply into modeling uncertainty and then tying the results together with decision 

support modeling. Fortunately, though, my dissertation leaves me with multiple possible research 

avenues. 

All that said, as I look to the future, my hope is to pursue research weighted towards 

decision support modeling. It is in this area I have made my most singular contribution to 

research methods. With EEMS, I have created a platform that I and others have used for myriad 

environmental modeling projects. While published results from EEMS models are still few, 

environmental projects using EEMS are manifold and include terrestrial and aquatic intactness 

models for the Utah and the Colorado Plateau 

(https://databasin.org/maps/2e6d671d25414d47b2e21072665eefb1, 

https://databasin.org/maps/2c11057b154c4158b0ee875447e6a48b); site sensitivity (to climate), 

climate exposure, and potential climate impacts models for California; climate exposure for the 

western conterminous United States; conservation targets in the Mojave and Modoc regions of 

California; and models related to the PNW Coastal Landscape Conservation Design project (all 

available at www.eemsonline.org). 

As a follow-on to EEMS, I have created a software architecture, called MPilot, to 

construct hierarchical modeling frameworks. The current version of EEMS is built using this 

architecture, and I have also used it to build a set of tools for processing netCDF datasets (the 

standard format for climate data). With MPilot, programmers can build tool sets that allow users 

to easily construct workflows for GIS and statistical processing of large datasets. I have outlined 

an architecture and development plans for an interactive, MPilot-based modeling system for 
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Google Earth Engine. Called GEODE (Global Environmental Online Decision Engine), this 

system will blend EEMS’ ease of use with the power of GEE. 

My goal, however, is not simply to develop software. If possible, I would like to 

supervise or collaborate with colleagues on software development projects. The software is 

simply the means to the end of doing my own environmental research from local to global scales. 

I would like to develop a global intactness model and global risk models based on current 

landscape conditions, current landscape values, such as biodiversity, and future climate 

protections. These models would be available to other projects as starting points for regional 

models for any number of purposes. 

Additionally, I would like to continue regional modeling work, collaborating with 

researchers in fields of environmental sciences including ecology, fire, and climate. I am well 

positioned to work with ecologists, sociologists, resource managers, and other stakeholders to 

develop models for valuing landscapes using different criteria and finding areas of conflict and 

least potential impact. Doing this work will require the right funded position. Procuring that is 

my next challenge. 
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