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The interactions between microbial taxa have been under great research interest in the sci-

ence community given the microbiome data deluge. Several methods have been proposed

to model and estimate the conditional dependency between microbial taxa for their interac-

tions, in order to eliminate spurious correlation detections. However, these methods either

do not account for the compositional count nature of microbiome data (such as graphi-

cal lasso), or are built upon the central log-ratio transformation (such as SPIEC-EASI)

that results in a degenerate covariance matrix and thus an undefined precision matrix to

present the underlying network. In addition, most existing methods ignore the potential

consequence of the heterogeneity nature of microbiome data that the sum of the counts

within each sample, termed “sequencing depth”, can vary drastically across samples. To

address these issues, we propose a novel method called “compositional graphical lasso”

to identify the microbial interactions by adopting a logistic normal multinomial model



which explicitly incorporates the sequencing depths. Different from most existing meth-

ods, compositional graphical lasso is based on the additive log-ratio transformation, which

first selects a reference taxon and then computes the log ratios of the abundances of all

the other taxa with respect to that of the reference. One natural concern about the additive

log-ratio transformation would be whether the estimated network is invariant with respect

to the choice of the reference. To further address this concern, we establish the reference-

invariance property of a subnetwork of interest based on the additive log-ratio transformed

data, and propose a reference-invariant version of the compositional graphical lasso by

modifying the penalty term in its objective function to penalize only the invariant subnet-

work. We illustrate the advantages of the proposed methods over the existing ones under

a variety of simulation scenarios and also demonstrate their efficacy by applying them to

an oceanic microbiome data set.



c©Copyright by Chuan Tian
June 12, 2020

All Rights Reserved



Microbial Network Recovery by Compositional Graphical Lasso Under
Additive Log-Ratio Transformation

by

Chuan Tian

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 12, 2020 
Commencement June 2021



Doctor of Philosophy dissertation of Chuan Tian presented on June 12, 2020.

APPROVED:

Major Professor, representing Statistics

Chair of the Department of Statistics

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my dissertation to
any reader upon request.

Chuan Tian, Author



ACKNOWLEDGEMENTS

First and foremost, my deepest gratitude goes to my PhD advisor and the P.I. (Principle

Investigator) of my research group, Dr. Yuan Jiang, for the tremendous time and efforts he

invested in my growth. Being one of the most intelligent people that I know, Yuan respects

me as his fellow researcher from day 1, encouraging me to generate my own research

ideas, and is very open-minded about different opinions. Yuan is so generous with his

time, that I could often get a short meeting with him by stopping by his open door (before

the pandemic takes place, of course). Moreover, Yuan cares about his students more than

professionally as colleagues, but also as people in his life. I feel comfortable talking about

not only research but also school and life in general in front of Yuan, and receive helpful

suggestions from him all the time. I feel blessed to have been working with him throughout

my PhD program, and to have him as a friend that I look up to.

Secondly, my great appreciation of the two co-P.I.’s in my research group, Dr. Duo

Jiang and Dr. Tom Sharpton, for the inspiring discussions in our group meetings, and the

experiences to work together on research papers. I learned so much from them on both

statistics and biology, and even more importantly, how to communicate and collaborate

with people from a different academic background.

Also, I want to acknowledge Dr. Rebecca Hutchinson, Dr. Charlotte Wickham and Dr.

Harold Bae for their time and contributions as members of my committee. I would like

to thank them for being incredibly responsive and flexible, especially under these unusual

circumstances of a pandemic. Charlotte is probably the professor I took most courseworks

(Regression, Time Series, and Data Visualization) from at Oregon State University, and



Data Visualization is one of the coolest classes I have ever had in my life! I cannot ex-

press enough how much I’m indebted to her for teaching me to use tidyverse since my

second year, which turns out to be so helpful in both presenting research works and in job

interviews.

Department of Statistics at Oregon State University has been my second home in the

past six years, nurturing me with the great education and the freedom to pursue my inter-

ests in addition to the required curriculum. I would like to thank both Prof. Virginia Lesser

and Dr. Lisa Ganio for their leadership and genuine interest in their students’ safety and

success, during their time as the chair of our department. I’m also grateful to Prof. Lan

Xue for her dedicated service as associate chair, which involves accommodating the com-

plex preference requests of TA assignments from both faculty and students. Thank Maggie

Neel and Mary Gardner for their extraordinary services when they were in the Statistics

Main Office. Their professionalism, kindness and creativity made our great department

an even warmer place. Especially, I would like to thank Dr. Lisa Madsen, who arranged

my recruitment as a PhD student, and guided me through my first a couple of years in the

program. I cannot remember how many times our conversations in her basement office

had helped me carry through.

I was so fortunate for the friends I have made, from both Statistics and Computer

Science departments. Thank you for sharing your knowledge, your enthusiasm and your

wisdom with me. Even years later, I shall reflect in fond of the coffee time downtown with

Chris Comiskey, the walks to Bald Hill with Chris Wolf, the hours-long conversations at

KEC atrium with Anurag Koul, and so many other good times. Most of those endearing

memories are shared with my best friend Zheng Liu, who stands by me in good and hard



times, and is confident in me when I struggle.

Last but not least, this dissertation wouldn’t exist without my parents’ unlimited sup-

port and unreserved love. Looking forward to the day that we all get through this pandemic

and see each other, once again in person.



TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Challenges in Recovering Microbial Interactions . . . . . . . . . . . . . . . 1
1.1.1 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Finite and Heterogeneous Sequencing Depth . . . . . . . . . . . . 3
1.1.3 High-dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Previous Work on Microbial Interaction Networks . . . . . . . . . . . . . . 5
1.2.1 Marginal Correlation Networks . . . . . . . . . . . . . . . . . . . 5
1.2.2 Conditional Dependence Networks . . . . . . . . . . . . . . . . . 7

1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Microbial Network Recovery by Compositional Graphical Lasso 11

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Compositional Graphical Lasso . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Logistic Normal Multinomial Model . . . . . . . . . . . . . . . . 14
2.3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Computational Algorithm . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Theoretical Convergence . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Tuning Parameter Selection . . . . . . . . . . . . . . . . . . . . . 24

2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Reference-Invariance Property of Inverse Covariance Matrix Estimation Under

Additive Log-Ratio Transformation and Its Application to Microbial Network Re-

covery 42

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



TABLE OF CONTENTS (Continued)

Page

3.3.1 Reference-Invariance Property . . . . . . . . . . . . . . . . . . . 46
3.3.2 Logistic Normal Multinomial Model . . . . . . . . . . . . . . . . 48
3.3.3 Reference-Invariant Objective Function . . . . . . . . . . . . . . 50

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2.1 Normalized Manhattan Similarity . . . . . . . . . . . . . 56
3.4.2.2 Jaccard Index and Normalized Hamming Similarity . . . 59
3.4.2.3 ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Summary and Discussion 70

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 The advantage of the ALR Transformation . . . . . . . . . . . . . 72
4.2.3 Alternative Approach . . . . . . . . . . . . . . . . . . . . . . . . 72



LIST OF FIGURES

Figure Page

2.1 ROC curves for compositional graphical lasso (Comp-gLASSO), graphi-
cal lasso (gLASSO) and neighborhood selection (MB). Solid blue: Comp-
gLASSO; dashed red: gLASSO; dotted black: MB. h,h: high sequencing
depth and high compositional variation; h, l: high sequencing depth and
low compositional variation; l,h: low sequencing depth and high compo-
sitional variation; l, l: low sequencing depth and low compositional variation. 30

2.2 Recall, precision and F1 score for the network selected by StARS for com-
positional graphical lasso (Comp-gLASSO), graphical lasso (gLASSO)
and neighborhood selection (MB). Red (left): Comp-gLASSO; green (mid-
dle): gLASSO; blue (right): MB. h,h: high sequencing depth and high
compositional variation; h, l: high sequencing depth and low composi-
tional variation; l,h: low sequencing depth and high compositional varia-
tion; l, l: low sequencing depth and low compositional variation. . . . . . 31

2.3 (a): Number of identified literature interactions versus number of edges of
the estimated network from the TARA dataset. (b): The degree distribu-
tion of vertices from the networks selected by StARS. Solid red: composi-
tional graphical lasso; dashed green: graphical lasso; dashed dotted blue:
neighbor hood selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Inferred networks from each method with edges filtered by selection prob-
ability and ranked by edge weight, in comparison with the 91 interactions
reported in literature. In each network, darker blue implies stronger (larger
in absolute value) edge weight. . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Normalized Manhattan similarity between the two estimated inverse co-
variance matrices with true and false references. Solid blue: Inv-Comp-
gLASSO; dashed red: Inv-gLASSO. h,h: high sequencing depth, high
compositional variation; h, l: high sequencing depth, low compositional
variation; l,h: low sequencing depth, high compositional variation; l, l:
low sequencing depth, low compositional variation. . . . . . . . . . . . . 57

3.2 Jaccard index between the two networks with true and false references.
Solid blue: Inv-Comp-gLASSO; dashed red: Inv-gLASSO. h,h: high se-
quencing depth, high compositional variation; h, l: high sequencing depth,
low compositional variation; l,h: low sequencing depth, high composi-
tional variation; l, l: low sequencing depth, low compositional variation. . 60



LIST OF FIGURES (Continued)

Figure Page

3.3 Normalized Hamming similarity between the two networks with true and
false references. Solid blue: Inv-Comp-gLASSO; dashed red: Inv-gLASSO.
h,h: high sequencing depth, high compositional variation; h, l: high se-
quencing depth, low compositional variation; l,h: low sequencing depth,
high compositional variation; l, l: low sequencing depth, low composi-
tional variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 ROC curves for Inv-Comp-gLASSO and Inv-gLASSO with true and false
references. Long-dashed blue: Inv-Comp-gLASSO with true reference;
dashed red: Inv-Comp-gLASSO with false reference; dashed-dotted pur-
ple: Inv-Comp-gLASSO with true reference; dotted black: Inv-Comp-
gLASSO with false reference. h,h: high sequencing depth and high com-
positional variation; h, l: high sequencing depth and low compositional
variation; l,h: low sequencing depth and high compositional variation;
l, l: low sequencing depth and low compositional variation. . . . . . . . . 63

3.5 Normalized Manhattan similarity between the two estimated inverse co-
variance matrices with the the two choices of reference, Acrosphaera and
Collosphaera, from the TARA data. Solid blue: Inv-Comp-gLASSO;
dashed red: Inv-gLASSO. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Jaccard index and normalized Hamming similarity between the two esti-
mated networks with the the two choices of reference, Acrosphaera and
Collosphaera, from the TARA data. Solid blue: Inv-Comp-gLASSO;
dashed red: Inv-gLASSO. . . . . . . . . . . . . . . . . . . . . . . . . . . 67



LIST OF TABLES

Table Page

2.1 For the hub genera, their rank in the degree distributions (in descending or-
der) from the literature, compositional graphical lasso (Comp-gLASSO),
graphical lasso (gLASSO) and neighborhood selection (MB). The num-
bers in the parentheses are the corresponding degrees of the genera. . . . 37

2.2 Top 15 genus pairs that were commonly predicted by compositional graph-
ical lasso, graphical lasso, and neighborhood selection, and were not in
the literature list. All genus pairs have selection probability 1, and are thus
ranked by the sum of the absolute values of estimated partial correlations
from the three methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



Microbial Network Recovery by Compositional Graphical Lasso Under

Additive Log-Ratio Transformation

1 Introduction

1.1 Challenges in Recovering Microbial Interactions

Microbiome, which is the collection of micro-organisms in an ecological system, is of

great research interest in the science community. The advancement of the high-throughput

sequencing technologies such as 16S rRNA profiling has enabled researchers to analyze

the microbial compositions in uncultivated samples. By coupling the high-throughput se-

quencing procedures with bioinformatic and data analytic approaches, scientists have be-

gun to disentangle the composition, diversity, and function of microbiomes, such as in the

Human Microbiome Project (Huttenhower et al., 2012), the TARA Oceans Project (Suna-

gawa et al., 2015), and the Earth Microbiome Project (Thompson et al., 2017). Recent

research has shown that microbiome could play an important role in influencing its host or

living environment. For instance, it is found that intervening the gut microbiota of African

turquoise killifish could result in delay of their aging process (Smith et al., 2017). Addi-

tionally, free-living microbes, such as those associated with soil and water, play central

roles in modulating their environmental conditions (Clarholm, 1985; Paerl and Pinckney,

1996; Cotner and Biddanda, 2002; Bardgett et al., 2008; Wieder et al., 2013).

One common goal in microbiome data analysis is to understand how microbes inter-

act with each other. The interactions may be beneficial or adverse, and are frequently
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important to the community and the environment (Faust and Raes, 2012). A profound

understanding of the underlying mechanisms of those interactions as well as the means

that disturb these interactions, is critical to the advancement of technologies in regulat-

ing microbiomes towards a favorable state, e.g., probiotic administration and microbiome

transplantations (Sonnenburg and Fischbach, 2011; Nicholson et al., 2012). However, the

nature of microbiome data imposed by the technicalities of the sequencing procedures has

imposed various challenges in recovering the microbial interactions. We present these

challenges as follows.

1.1.1 Compositionality

Microbiome data entangle with the “compositionality”, which is a technicality im-

posed by the sequencing procedures. For instance, in 16S rRNA profiling, a specific se-

quence of marker genes which serves as the identifier of the Operational Taxonomic Units

(OTU’s, the surrogate of bacteria species) is sequenced and then counted as the proxy of

the abundances of the corresponding OTU’s in a sample. The total count of sequences

in a sample, also known as the “sequencing depth”, is pre-determined on the sequencing

instrument and is usually not on the same scale from sample to sample. This implies that

the counts for each OTU in a sample carry only the information about their relative abun-

dances instead of their absolute abundance. We refer to this type of data as “compositional

count data” to indicate both the compositional and discrete nature of microbiome data.

Interaction analysis disregarding the compositionality in the data, e.g., marginal corre-

lation analysis of the OTUs’ relative abundances, could result in spurious correlations as
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pointed out by Pearson (1897). A common approach to addressing this problem is to con-

duct a log-ratio transformation before analyzing the data (Aitchison, 1986). In particular,

Aitchison proposed two types of log-ratio transformations: the centered log-ratio (CLR)

transformation and the additive log-ratio (ALR) transformation. The CLR transformation

centralizes the logarithms of the relative abundances, which results in a rank-deficient co-

variance matrix of the transformed vector and thus an undefined inverse covariance matrix.

The ALR transformation takes the logarithm of the ratio of the relative abundances of the

remaining entries against a preselected entry as the reference, which results in a trans-

formed vector with one dimension lower. However, this transformed vector has a full-rank

covariance matrix and thus a well-defined inverse covariance matrix. Currently, there are

more interaction analysis methods based on the CLR transformation than the ALR trans-

formation because the consequence regarding the different choices of the reference to the

interaction analysis is still unclear.

1.1.2 Finite and Heterogeneous Sequencing Depth

One unique heterogeneity between studies or between samples in microbiome data

is the variation of sequencing depths. As discussed above, sequencing depth, the total

count of sequences generated across all taxa for a biological sample, is an experimental

technicality and often varies considerably across samples in a microbiome sequencing ex-

periment. The observed relative abundance of a taxon in a sample serves as an unbiased

estimator of its true relative abundance, however, the variance of such an estimator depends

on the sample-specific sequencing depth. For example, two equal relative abundances of
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an OTU in two samples can have unequal variances due to the different sequencing depths

between the two samples. This problem of unequal variances is called “heteroscedastic-

ity”.

Many interaction analyses simply treat the observed relative abundances as the true

relative abundances without considering the estimation uncertainty and heteroscedasticity.

An alternative approach is to normalize the count data before applying any analysis, with

the most popular normalization method called “rarefaction”. By rarefying the data, this

normalization method randomly subsamples the sequences without replacement until all

sequencing depths equal to a “rarefaction level” after subsampling. The rarefaction level is

usually set to the minimum sequencing depth in all samples. However, rarefaction is ineffi-

cient as it drops valuable data and introduces additional variation from subsampling. Nei-

ther ignoring heteroscedasticity nor trying to mitigate this problem by rarefaction works

well in downstream analyses such as differential abundance analysis, where they both in-

flate the false positive rate (McMurdie and Holmes, 2014). In this dissertation, we will

show that the estimation uncertainty in relative abundances and heteroscedasticity also af-

fects the construction of microbial networks, which is indeed one of the major motivations

of this work.

1.1.3 High-dimensionality

In addition to compositionality and heteroscedasticity, the microbiome data are often

high-dimensional in nature. With the resolution at the OTU level, it is likely that the num-

ber of OTU’s is far more than the number of samples. In a typical microbiome dataset with
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decent sequencing depths, we have observed the number of OTU’s in tens of thousands

while the number of samples ranges from hundreds to thousands. The high-dimensionality

feature imposes additional challenges on the interaction analysis of microbiome data. For

example, the sample covariance (correlation) matrix computed from the abundances of the

OTU’s is rank-deficient, no matter how the abundances are normalized or transformed be-

forehand. In the high-dimensional setting, the classical estimators (such as the maximum

likelihood estimator) of the covariance matrix or the inverse covariance matrix underper-

form more recently developed estimators such as those relying on regularization methods

(Meinshausen et al., 2006; Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al.,

2008).

1.2 Previous Work on Microbial Interaction Networks

Existing work that focused on recovering the interaction network among microbes can

be categorized into two main types: the ones that model the marginal correlations, and

the others that model the conditional dependences. We are going to review both types of

methods as follows.

1.2.1 Marginal Correlation Networks

After one obtains the abundance data for the microbial species, marginal correlation

analysis could be used to infer the interactions among microbes (Faust and Raes, 2012).

However, naive approaches that ignore the compositionality of the data, e.g., simply cal-

culating the Pearson’s or Spearman’s correlations from the abundances or relative abun-
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dances would lead to spurious correlations (Pearson, 1897). More specifically, two taxa

that are indeed independent with each other could seem to be negatively correlated under

this approach, due to the compositional constraint.

Over the years, several methods have been developed to address the compositionality

issue in the construction of correlation networks for microbiome data, such as SparCC

(Friedman and Alm, 2012) , CCLasso (Fang et al., 2015), and REBECCA (Ban et al.,

2015). All these methods aimed to construct a covariance (correlation) matrix or net-

work of the unknown absolute abundances (the positive, unconstrained true abundances of

taxa). In particular, SparCC iteratively selects the most highly correlated pairs of taxa un-

til reaching certain correlation threshold or violating certain sparsity assumption. On the

other hand, both CCLasso and REBECCA have an explicit objective function and obtain

the estimate of the covariance matrix by solving the optimization problem. It is note-

worthy that the high-dimensionality in microbiome data is tackled by imposing a sparsity

constraint in the above three methods, with a correlation threshold for SparCC and an

L1-norm penalty for CCLasso and REBECCA.

However, none of the three methods took the finite and heterogeneous sequencing

depth into account. All three methods applied a log-ratio transformation of the count data

as their first step, thus ignored the estimation uncertainty and heteroscedasticity issues as

mentioned in Section 1.1.2.
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1.2.2 Conditional Dependence Networks

The edges in a marginal correlation network include indirect microbial interactions.

For example, two taxa that do not have a direct dependence between each other could have

a non-zero correlation because they both directly interact with a third taxon. Conditional

dependence networks, which only capture the conditional dependence between two taxa

conditioning on all the other taxa, are therefore often more desirable.

Many existing methods for conditional dependence networks are based on graphical

models. For example, in a Gaussian graphical model with the multivariate normal distri-

bution, two variables are conditionally independent given all the others if and only if the

entry corresponding to those two variables in the inverse covariance matrix is zero. There-

fore, a conditional dependence network can be inferred through an estimation problem of

the inverse covariance matrix, a.k.a., concentration matrix or precision matrix. However,

in the high-dimensional setting, i.e. when the number of variables is larger than the num-

ber of samples, the maximum likelihood estimate of the covariance matrix is degenerate,

and its inverse is thus unavailable. Under the assumption that the true inverse covariance

matrix is sparse, the graphical lasso (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman

et al., 2008) and neighborhood selection (Meinshausen et al., 2006) solve this problem by

imposing an L1-norm penalty. Although graphical lasso and neighborhood selection are

useful, they are however not customized for microbiome data analysis—the microbiome

data are compositional counts that are discrete along with a fixed total in each sample, thus

clearly not following the multivariate Gaussian distribution.

Several methods have been proposed to infer microbial conditional dependence net-

works based on Gaussian graphical models, such as SPIEC-EASI (Kurtz et al., 2015),
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gCoda (Fang et al., 2017), CD-trace (Yuan et al., 2019), and SPRING (Yoon et al., 2019).

In order to transform the discrete counts to continuous variables and to remove the com-

positionality constraint, all these methods take the CLR transformation as their first step.

However, the CLR transformation suffers from an undefined inverse covariance matrix of

the transformed data (see Section 1.1.1) . All methods resolve this problem by imposing

a sparsity assumption on the inverse covariance matrix and adding an L1-norm penalty to

their objective functions. Unfortunately, all these methods ignore the finite and hetero-

geneous sequencing depth as they simply treat the observed relative abundances as the

truth. As mentioned in Section 1.1.2, this is essentially ignoring the uncertainty and het-

eroscedasticity in the estimation of relative abundances, which could impact downstream

analysis.

To the best of our knowledge, MLDM (Yang et al., 2016) is one of the few methods

that address the finite and heterogeneous sequencing depth issue by explicitly modeling the

compositional counts in a Dirichlet-multinomial distribution. However, their hierarchical

model is three-leveled with numerous ancillary parameters (including the regression co-

efficients of the environmental covariates, which are not always needed for the purpose

of estimating a microbial interaction network), rendering an algorithm lack of computa-

tional efficiency and scalability. Besides, theoretical property on the convergence of the

algorithm is not available, raising additional concerns on its applicability.

Although most of the existing methods are based on graphical models, FlashWeave

(Tackmann et al., 2019), completely built on hypothesis testing, has also been proposed

to infer conditional dependences for microbiome data. For each taxon, FlashWeave first

selects its “neighborhood”, such as taxa that are marginally correlated with it, as the “can-
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didates of conditionally dependent taxa”. Then, it conducts a series of conditional testing

similar to the “forward selection” procedure in model selection. Unlike forward selection

that only tests the significance of a new variable conditioning on the whole previously

selected set, it tests the significance of a new variable conditioning on all the subsets of

the previously selected variables, leading to a high computational complexity. To reduce

the runtime, it has to limit the size of the candidate set and rely on an early stopping rule,

introducing considerable false positives and false negatives in its result. Moreover, it also

takes the CLR transformation as its first step and thus ignores the finite and heterogeneous

sequencing depth issue like most other methods that we have reviewed so far.

1.3 Our Contribution

In Chapter 2 of this dissertation, we first propose a novel method called “compositional

graphical lasso” that estimates the conditional dependence network from the microbiome

data through a hierarchical model called logistic normal multinomial model, accounting

for all three features as reviewed in Section 1.1: compositionality, finite and heterogeneous

sequencing depth, and high-dimensionality. The method is based on the ALR transforma-

tion, in which a reference taxon needs to be selected as a first step. One natural concern

would be whether the different choices of the reference taxon affects the subsequent net-

work analysis. To address this concern, we establish in Chapter 3 the reference-invariance

property of a subnetwork corresponding to the non-candidate-reference taxa. Moreover,

we propose a reference-invariant version of compositional graphical lasso by a simple

modification on the penalty function in the compositional graphical lasso objective func-
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tion. It is noteworthy that similar modifications can be potentially applied to other methods

for conditional dependence networks that are based on the ALR-transformed data. Hope-

fully, this work can stimulate the research interest on network analysis methods based on

the ALR transformation of the microbial abundance data. Some relevant further discussion

can be found in Chapter 4 of the dissertation.
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2 Microbial Network Recovery by Compositional Graphical Lasso

2.1 Abstract

Network models such as graphical models have become a useful approach to study-

ing the interactions between microbial taxa given the microbiome data deluge. Recently,

various methods for sparse inverse covariance estimation have been proposed to estimate

graphical models in the high-dimensional setting, including graphical lasso. However,

current methods do not address the compositional count nature of microbiome data, where

abundances of microbial taxa are not directly measured but are presented by error-prone

counts. Adding to the challenge is that the sum of the counts within each sample, termed

“sequencing depth”, can vary drastically across samples. To address these issues, we adopt

a logistic normal multinomial model explicitly incorporating the sequencing depth and de-

velop an algorithm iterated between Newton-Raphson and graphical lasso for model esti-

mation. We call this new approach “compositional graphical lasso”. We have established

the convergence of the algorithm. Additionally, we illustrate the advantage of compo-

sitional graphical lasso in comparison to current methods under a variety of simulation

scenarios and also demonstrate the applicability of compositional graphical lasso to a real

microbiome data set.
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2.2 Introduction

Microorganisms are ubiquitous in nature and responsible for managing key ecosystem

services (Arrigo, 2004). For example, microbes that colonize the human gut play an im-

portant role in homeostasis and disease (Mazmanian et al., 2008; Kamada et al., 2013;

Kohl et al., 2014). To better reveal the underlying role microorganisms play in human dis-

eases requires a thorough understanding of how microbes interact with one another. The

study of microbiome interactions frequently relies on DNA sequences of taxonomically

diagnostic genetic markers (e.g., 16S rRNA), the count of which can then be used to rep-

resent the abundance of Operational Taxonomic Units (OTUs, a surrogate for microbial

species) in a sample.

The OTU abundance data possess a few important features in nature. First, the data are

represented as discrete counts of the 16S rRNA sequences. Second, the data are composi-

tional because the total count of sequences per sample is predetermined by how deeply the

sequencing is conducted, a concept named sequencing depth. The OTU counts only carry

information about the relative abundances of the taxa instead of their absolute abundances.

Third, the data are high-dimensional in nature. It is likely that the number of OTUs are far

more than the number of samples in any biological experiment.

When such abundance data are available, interactions among microbiota can be in-

ferred through correlation analysis (Faust and Raes, 2012). Specifically, if the relative

abundances of two microbial taxa are statistically correlated, then it is inferred that they

interact on some level. More recent statistical developments have started to take the com-

positional feature into account and aim to construct sparse networks for the absolute abun-

dances instead of relative abundances. For example, SparCC (Friedman and Alm, 2012),
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CCLasso (Fang et al., 2015), and REBACCA (Ban et al., 2015) use either an iterative algo-

rithm or a global optimization procedure to estimate the correlation network of all species’

absolute abundances while imposing a sparsity constraint on the network.

All the above methods are built upon the marginal correlations between two microbial

taxa, and they could lead to spurious correlations that are caused by confounding factors

such as other taxa in the same community. Alternatively, interactions among taxa can

be modeled through their conditional dependencies given the other taxa, which can elim-

inate the detection of spurious correlations. In an ideal setting, the Gaussian graphical

models are a useful approach to study the conditional dependency, in which the data are

modeled through a multivariate normal distribution and the conditional dependency is de-

termined by the nonzero entries of its inverse covariance matrix. Graphical lasso (Yuan

and Lin, 2007; Banerjee et al., 2008; Friedman et al., 2008) and neighborhood selection

(Meinshausen et al., 2006) are two commonly used methods to estimate sparse inverse

covariance matrix for high-dimensional data under the Gaussian graphical models . How-

ever, both the counting and the compositional features of the microbiome abundance data

have violated the multivariate normality assumption.

SPIEC-EASI was probably the first method that was proposed to estimate sparse mi-

crobial network based on conditional dependency (Kurtz et al., 2015). It first performs a

central log-ratio transformation on the observed counts (Aitchison, 1986), and then apply

graphical lasso to the transformed data. SPIEC-EASI avoided the violation of the distribu-

tional assumption by transforming counts into continuous log ratios but it did not address

the compositional feature of the data. Recently, mLDM was proposed as a three-level hi-

erarchical model (Yang et al., 2016), which hierarchically models the OTU counts by a
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multinomial distribution, the multinomial probabilities by a Dirichlet distribution, and the

Dirichlet parameters by a lognormal distribution. While mLDM have taken into account

the compositional count nature, its algorithm and resultant estimators lack theoretical jus-

tifications. Moreover, the model is very complex so its interpretability is rather limited.

In this paper, we adopt the logistic normal multinomial distribution to model the com-

positional count data (Aitchison, 1986; Billheimer et al., 2001; Xia et al., 2013). Com-

pared to the three-level hierarchical model, this model only has two levels, thus is more

interpretable. We further develop an algorithm iterated between Newton-Raphson and

graphical lasso for model estimation. We call this new approach “compositional graphical

lasso”. We have further established the theoretical convergence of the algorithm, which

was not available for either SPIEC-EASI or mLDM. Additionally, we illustrate the advan-

tage of compositional graphical lasso in comparison to current methods under a variety

of simulation scenarios and also demonstrate the applicability of compositional graphical

lasso to an oceanic microbiome data set.

2.3 Compositional Graphical Lasso

2.3.1 Logistic Normal Multinomial Model

Consider an OTU abundance data set with n independent samples, each of which com-

poses observed counts of K+1 taxa, denoted by xi = (xi,1, . . . ,xi,K+1)
′ for the i-th sample,

i = 1, . . . ,n. Due to the compositional property of the data, the total count of all taxa for

each sample i is a fixed number, denoted by Mi. Naturally, a multinomial distribution is
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imposed on the observed counts:

xi|pi ∼Multinomial(Mi; pi,1, . . . , pi,K+1), (2.1)

where pi = (pi,1, . . . , pi,K+1)
′ are the multinomial probabilities for all taxa and ∑

K+1
k=1 pi,k =

1.

In addition, we choose one taxon, without loss of generality, the (K +1)-th taxon as a

reference for all the others and then apply the additive log-ratio transformation (Aitchison,

1986) on the multinomial probabilities:

zi,k = log
(

pi,k

pi,K+1

)
, i = 1, . . . ,n, k = 1, . . . ,K. (2.2)

Let zi = (zi,1, . . . ,zi,K)
′ for i = 1, . . . ,n, and further assume that they follow an i.i.d. multi-

variate normal distribution

z1, . . . ,zn
iid∼ N(µ,Σ), (2.3)

where µ is the mean, Σ is the covariance matrix, and Ω = Σ
−1 is the inverse covariance

matrix or the precision matrix.

The above model in (2.1)–(2.3) is often referred to as the logistic normal multino-

mial model. In this model, the multinomial distribution is imposed on the compositional

counts, which is the distribution of the observed data given the multinomial probabilities.

In addition, the logistic normal distribution is imposed on the multinomial probabilities

as a prior distribution. Therefore, the logistic normal multinomial model is a hierarchical

model with two levels.
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The logistic normal multinomial model has a long history in modeling compositional

count data and it has also been applied to analyze the microbiome abundance data. For

example, Xia et al. (2013) proposed a penalized regression under this model to identify

a subset of covariates that are associated with the taxon composition. Our objective is

different from Xia et al. (2013) as we aim to reveal the microbial interaction network by

finding a sparse estimator of the inverse covariance matrix Ω in (2.3). It is also noteworthy

that Jiang et al. (2020) has the same objective as ours. However, Jiang et al. (2020) did

not make full use of the logistic normal multinomial model as it focused on correcting the

bias of a naive estimator of the Σ that does not require the logistic normal assumption. By

contrast, we aim to find an estimator of Ω directly based on the logistic normal multinomial

model.

2.3.2 Objective Function

From the logistic normal multinomial model in (2.1)–(2.3), we can write the logarithm

of the posterior distribution of zi given the data xi, ignoring a term that only depends on

xi,

log[ fµ,Ω(zi|xi)] ∝ log[ fµ,Ω(xi,zi)]

∝

K+1

∑
k=1

xi,k log pi,k +
1
2

log[det(Ω)]− 1
2
(zi−µ)′Ω(zi−µ)

=
K

∑
k=1

xi,kzi,k−Mi log

(
K

∑
k=1

ezi,k +1

)
+

1
2

log[det(Ω)]− 1
2
(zi−µ)′Ω(zi−µ).

By independence between all the samples, the logarithm of the posterior distribution
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of (z1, . . . ,zn) given the data (x1, . . . ,xn) can be written as

log[ fµ,Ω(z1, . . . ,zn|x1, . . . ,xn)] ∝

n

∑
i=1

log[ fµ,Ω(xi,zi)]

∝

n

∑
i=1

[
K

∑
k=1

xi,kzi,k−Mi log

(
K

∑
k=1

ezi,k +1

)]
+

n
2

log[det(Ω)]− 1
2

n

∑
i=1

(zi−µ)′Ω(zi−µ).

Given the multivariate normal parameters µ and Ω, one can maximize the posterior

distribution with respect to (z1, . . . ,zn). This leads to the posterior mode (ẑ1, . . . , ẑn) and

returns the logarithm of the maximum posterior distribution as

log[ fµ,Ω(ẑ1, . . . , ẑn|x1, . . . ,xn)] = max
z1,...,zn

log[ fµ,Ω(z1, . . . ,zn|x1, . . . ,xn)].

Since our objective is to find a sparse estimator of the inverse covariance matrix Ω,

we further maximizes the above maximum posterior distribution over µ and Ω with a L1

penalty on Ω, or equivalently,

min
µ,Ω
−1

n
log[ fµ,Ω(ẑ1, . . . , ẑn|x1, . . . ,xn)]+λ‖Ω‖1

= min
µ,Ω

min
z1,...,zn

−1
n

log[ fµ,Ω(z1, . . . ,zn|x1, . . . ,xn)]+λ‖Ω‖1. (2.4)

The above derivations suggest that we can minimize the following objective function
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with respect to both z1, . . . ,zn and µ,Ω,

`(z1, . . . ,zn,µ,Ω) = − 1
n

n

∑
i=1

[
K

∑
k=1

xi,kzi,k−Mi log

(
K

∑
k=1

ezi,k +1

)]

− 1
2

log[det(Ω)]+
1

2n

n

∑
i=1

(zi−µ)′Ω(zi−µ)+λ‖Ω‖1. (2.5)

In other words, z1, . . . ,zn, µ , and Ω are all treated as unknown parameters for minimization

in the objective function (2.5).

The objective function (2.5) was introduced as profiling out the parameters (z1, . . . ,zn)

and then minimizing the posterior distribution over µ and Ω. However, there is a Bayesian

interpretation as well. Notice that we have set up a logistic normal multinomial model as

in (2.1)–(2.3). If we treat µ and Ω as random and impose a hyperprior distribution on them

as

µ ∼ Lebesgue(−∞,∞) and Ω∼ Laplace(0,1/(nλ )),

then, (2.5) becomes the negative logarithm of the posterior distribution of z1, . . . ,zn,µ,Ω

given x1, . . . ,xn. Therefore, minimizing (2.5) is equivalent to finding the maximum a

posteriori (MAP) estimator of z1, . . . ,zn,µ,Ω given the data x1, . . . ,xn.

2.3.3 Computational Algorithm

The objective function (2.5) includes naturally three sets of parameters (z1, . . . ,zn),

µ , and Ω, which motivates us to apply a block coordinate descent algorithm. A block

coordinate descent algorithm minimizes the objective function iteratively for each set of

parameters given the other sets. Given the initial values (z(0)1 , . . . ,z(0)n ), µ(0), and Ω
(0), a
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block coordinate algorithm repeats the following steps cyclically for iteration t = 0,1,2, . . .

until the algorithm converges.

1. Given µ(t) and Ω
(t), find (z(t+1)

1 , . . . ,z(t+1)
n ) that maximizes (2.5).

2. Given (z(t+1)
1 , . . . ,z(t+1)

n ) and Ω
(t), find µ(t+1) that maximizes (2.5).

3. Given (z(t+1)
1 , . . . ,z(t+1)

n ) and µ(t+1), find Ω
(t+1) that maximizes (2.5).

As follows, we will present the details of this algorithm in each iteration. For the initial

values (z(0)1 , . . . ,z(0)n ), we use their maximum likelihood estimators from the multinomial

distribution, i.e.,

z(0)i,k = log
(

xi,k

xi,K+1

)
, i = 1, . . . ,n, k = 1, . . . ,K.

If xi,K+1 = 0 for some i, we add a small constant to the denominator in the logarithm func-

tion. For the initial values µ(0), notice that we have a closed form minimizer of µ for (2.5)

given the values of (z1, . . . ,zn), which is µ = z̄ = 1
n ∑

n
i=1 zi. Therefore, we set the initial

value as µ(0) = 1
n ∑

n
i=1 z(0)i . Finally, for the initial value Ω

(0), we use the estimate of the

graphical lasso algorithm taking the sample covariance matrix computed from z(0)1 , . . . ,z(0)n

as input.

In step 1, given µ(t) and Ω
(t), minimizing the objective function (2.5) with respect to

(z1, . . . ,zn) is equivalent to minimizing the following objective function with respect to

each zi separately, for i = 1, . . . ,n:

`
(t)
i (zi) =

1
2
(zi−µ

(t))′Ω(t)(zi−µ
(t))−

[
K

∑
k=1

xi,kzi,k−Mi log

(
K

∑
k=1

ezi,k +1

)]
. (2.6)
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The above objective function is a smooth and convex function in zi and its Hessian matrix

is positive definite. Therefore, we apply the Newton-Raphson algorithm to find the min-

imizer numerically. In addition, we implement a line search procedure in each Newton-

Raphson iteration following the Armijo rule (Armijo, 1966). This procedure ensures suf-

ficient decrease in the objective function at each iteration to prevent possible divergence

of the algorithm.

Step 2 is similar to the initialization step, in which µ has a closed-form solution and is

updated as z̄(t+1) = 1
n ∑

n
i=1 z(t+1)

i from the current numerical values of (z(t+1)
1 , . . . ,z(t+1)

n )

that are computed from the Newton-Raphson algorithm in step 1.

In step 3, given (z(t+1)
1 , . . . ,z(t+1)

n ) and µ(t+1) = z̄(t+1), the objective function for Ω can

be simplified as

`(t)(Ω) =−1
2

log[det(Ω)]+
1

2n

n

∑
i=1

(z(t+1)
i −µ

(t+1))′Ω(z(t+1)
i −µ

(t+1))+λ‖Ω‖1,

=−1
2

log[det(Ω)]+
1
2

tr(S(t+1)
Ω)+λ‖Ω‖1, (2.7)

where S(t+1) = 1
n ∑

n
i=1(z

(t+1)
i − z̄(t+1))(z(t+1)

i − z̄(t+1))′. It is obvious that minimizing the

objective function (2.7) becomes a graphical lasso problem (Yuan and Lin, 2007; Banerjee

et al., 2008; Friedman et al., 2008). It is well known that the graphical lasso objective func-

tion is a convex function in Ω (Banerjee et al., 2008) and efficient algorithms have been

developed for its optimization (Friedman et al., 2008). In this paper, we implement this

step using the graphical lasso algorithm included in the huge (Zhao et al., 2012) package

in R.

The above block coordinate descent algorithm iterates between Newton-Raphson and
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graphical lasso and is designed specifically to optimize the logistic normal multinomial

model for compositional count data. Therefore, we name this algorithm the compo-

sitional graphical lasso algorithm, and the entire approach the compositional graphical

lasso method including both the logistic normal multinomial model and the compositional

graphical lasso algorithm for the analysis of compositional count data such as microbiome

abundance data.

2.3.4 Theoretical Convergence

Unfortunately, the objective function (2.5) is not necessarily a convex function jointly

in (z1, . . . ,zn), µ , and Ω. However, we have shown that it is actually convex in each subset

of its parameters (see Section 2.3.3). The convergence properties of such an optimization

problem has been extensively studied in the literature. For example, Tseng (2001) studied

the convergence properties of a block coordinate descent method applied to minimize a

nonconvex function with certain separability and regularity properties. We will establish

the convergence properties of the compositional graphical lasso algorithm following Tseng

(2001).

Recall that our algorithm treats the three sets of parameters (z1, . . . ,zn), µ , and Ω as

three blocks and optimize for each block iteratively. In addition, as in Tseng (2001), the

objective function (2.5) can be regarded as the sum of two parts, the first of which is an

inseparable but differentiable function as

`0(z1, . . . ,zn,µ,Ω) =
1

2n

n

∑
i=1

(zi−µ)′Ω(zi−µ), (2.8)
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and the second of which is a sum of separable and differentiable functions as `1(z1, . . . ,zn)+

`2(Ω), where

`1(z1, . . . ,zn) =−
1
n

n

∑
i=1

[
K

∑
k=1

xi,kzi,k−Mi log

(
K

∑
k=1

ezi,k +1

)]
, (2.9)

`2(Ω) =−1
2

log[det(Ω)]+λ‖Ω‖1. (2.10)

Tseng (2001) established the convergence properties of a block coordinate descent algo-

rithm under regularity conditions on `0, `1, and `2.

To present the major convergence property of the compositional graphical lasso algo-

rithm, let’s review the definition of a cluster point in real analysis. A cluster point of a set

A ⊂Rn is a real vector a ∈Rn such that for every δ > 0, there exists a point x in A \{a}

such that ‖x−a‖2 < δ . Obviously, any limit point of the set A is a cluster point.

Furthermore, define a cluster point of the compositional graphical lasso algorithm to be

a cluster point of the set {(z(t)1 , . . . ,z(t)n ,µ(t),Ω(t)) : t = 0,1,2, . . .}, which are minimizers

found at each iteration t. Then, the following theorem presents a theoretical property for

every cluster point of our algorithm as follows.

Theorem 1. Consider a bounded and open parameter space of (z1, . . . ,zn,µ,Ω). Then,

any cluster point of the compositional graphical lasso algorithm in this parameter space

is a stationary point of the objective function (2.5).

Proof. The conclusion in Theorem 1 is directly implied by Theorem 4.1(c) in Tseng

(2001), for which we need to verify a few regularity conditions as follows.

First, `0(z1, . . . ,zn,µ,Ω) in (2.8) is regular at each point in its domain. This is true

because dom(`0) is open and `0 is differentiable and all its partial derivatives exists.
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Second, the level set {(z1, . . . ,zn,µ,Ω) : `(z1, . . . ,zn,µ,Ω)≤ `(z(0)1 , . . . ,z(0)n ,µ(0),Ω(0))}

is compact and that ` in (2.5) is continuous on this level set. The continuity part is obvious

and we just need to argue the compactness of the level set. Let’s argue this by first proving

that ` in (2.5) is bounded below.

`=− 1
n

n

∑
i=1

[
K

∑
k=1

xi,kzi,k−Mi log

(
K

∑
k=1

ezi,k +1

)]

− 1
2

log[det(Ω)]+
1

2n

n

∑
i=1

(zi−µ)′Ω(zi−µ)+λ‖Ω‖1

≥−1
2

log[det(Ω)]+
1

2n

n

∑
i=1

(zi−µ)′Ω(zi−µ)+λ‖Ω‖1

≥−1
2

log[det
(
Ω̂
)
]+

1
2n

n

∑
i=1

(zi−µ)′Ω̂(zi−µ)+λ‖Ω̂‖1

≥−1
2

log[det
(
Ω̂
)
]

≥−1
2

K log
K
λ
,

where

Ω̂ = argmin
Ω

−1
2

log[det
(
Ω̂
)
]+

1
2n

n

∑
i=1

(zi−µ)′Ω̂(zi−µ)+λ‖Ω̂‖1,

and the last inequality follows because Ω̂ is unique and has positive eigenvalues bounded

above by K
λ

(Banerjee et al., 2008). Therefore, the level set can be written as {(z1, . . . ,zn,µ,Ω) :

c1 ≤ `(z1, . . . ,zn,µ,Ω)≤ c2} for some constant c1 and c2, thus is close as it is a preimage

of a close set under a continuous function. Furthermore, since we consider a bounded

parameter space of (z1, . . . ,zn,µ,Ω), the level set is also compact.

Third, `(z1, . . . ,zn,µ,Ω) has at most one minimum in its second block of parameters,
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i.e., µ . This is true given that the Hessian matrix for µ is Ω which is positive definite.

The conclusion of Theorem 1 is proved as we have verified all regularity conditions in

Theorem 4.1(c) in Tseng (2001).

It is also noteworthy that the values of the objective function at each iteration, i.e.,

{`(z(t)1 , . . . ,z(t)n ,µ(t),Ω(t)) : t = 0,1,2, . . .} will always converge. This is because that the

objective function is bounded below and our algorithm results in non-increasing objective

function values between two iterations. Therefore, the values of objective function will

always converge to a limit point. However, this does not guarantee the convergence of the

minimizers, i.e., {(z(t)1 , . . . ,z(t)n ,µ(t),Ω(t)) : t = 0,1,2, . . .}. Instead, Theorem 1 provides

some theoretical guarantees about the convergence of the minimizers, which states that

any cluster point of the algorithm in the considered parameter space is a stationary point.

In practice, we have always observed the numerical convergence of the minimizers

after a certain number of iterations. Therefore, Theorem 1 guarantees that the solution

from the algorithm is at least a stationary point. To achieve global optimization, one can

run the algorithm multiple times starting with different initial values and choose the one

solution that yields the smallest objective function among the multiple ones.

2.3.5 Tuning Parameter Selection

There is a large body of literature on the selection of a tuning parameter in the vari-

able selection framework. Parameter selection approaches include criterion-based meth-

ods such as Akaike information criterion (AIC) (Akaike, 1974) and Bayesian information

criteria (BIC) (Schwarz et al., 1978) that balance the model complexity and the goodness
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of fit, prediction-based methods such as cross validation (Larson, 1931; Mosteller and

Wallace, 1963; Mosteller and Tukey, 1968; Stone, 1974; Geisser, 1975) and generalized

cross validation (Golub et al., 1979) that aim to minimize the expected prediction error of

the selected model on independent datasets, and stability-based methods such as stability

selection (Meinshausen and Bühlmann, 2010) and Stability Approach to Regularization

Selection (StARS) (Liu et al., 2010) that select a model with high stability under subsam-

pling or bootstapping the original data.

In this work, we apply StARS to select the tuning parameter λ in our objective func-

tion (2.5). In StARS, we draw N subsamples without replacement from the original dataset

with n observations, each of size b. For each tuning parameter λ , we obtain an estimate

of Ω, i.e., a network for each subsample. Then, we measure the total instability of these

resultant networks across the N subsamples. The total instability of these networks is de-

fined by averaging the instabilities of each edge across the N subsamples over all possible

edges, where the instability of each edge is estimated as the twice the sample variance of

the Bernoulli indicator of whether this edge is selected or not in these N subsamples.

Starting from a large penalty which corresponds to the empty network, the instability

of networks increases as λ decreases. StARS stops and selects the tuning parameter to

be the minimum value of λ ’s with which the instability of the resultant networks is less

than a threshold β > 0. In principle, StARS selects a tuning parameter so that the resultant

network is the densest among networks with a total instability less than a threshold β

without violate some sparsity assumption. The selected network is the “densest on the

sparse side”, as it starts with the empty network and stops when the instability first across

the threshold. When λ becomes really small and eventually estimates dense and even
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fully-connected networks (though StARS stops way before this happens in reality), the

instability could decrease and drop below the threshold again, since every edge is always

selected with small enough λ .

2.4 Simulation Study

2.4.1 Settings

To evaluate the performance of compositional graphical lasso, we conduct a simula-

tion study and compare it with other network estimation methods such as neighborhood

selection and graphical lasso.

Given our goal is to estimate the true network, i.e., Ω in (2.3), we consider three

types of precision matrix Ω = (ωkl)1≤k,l≤K , which are different in the pattern of edge

distributions as well as the degree of connectedness.

1. Chain: ωkk = 1.5, ωkl = 0.5 if |k− l| = 1, and ωkl = 0 if |k− l| > 1. A node is

designed to be connected to its adjacent nodes, and the connectedness of nodes is

balanced.

2. Random: ωkl = 1 with probability 3/K for k 6= l. A node is connected to all other

nodes randomly with a fixed probability. Similar to the chain structure, the connect-

edness of nodes is balanced.

3. Hub: All nodes are randomly split into dK/20e disjoint groups, and a hub node k

is selected from each group. For any other node l in the same group, ωkl = 1. All

the remaining entries of Ω are zero. Here, nodes are partitioned into the same group
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at random, but is then designated to be connected to the hub node at certain. The

degree of connectedness among nodes is extremely unbalanced in this case: the hub

nodes are connected to all the other nodes in its group (around 20 nodes) and all the

other nodes are only connected to the hub node in its group, i.e., just one node.

In addition to the true network, we also consider two other factors that are expected

to influence the result. The first factor is the sequencing depth, Mi, in the multinomial

distribution (2.1). We simulate Mi from two uniform distributions, Unif(20K,40K) and

Unif(100K,200K), and call the two settings low and high sequencing depth, respectively.

The second factor is the variation included in the logistic normal distribution (2.3). Al-

though we consider three types of precision matrices, we consider an additional factor by

multiplying a positive constant c to Ω so that the true precision matrix is cΩ. We choose

c= 1 and c= 1/5 separately and call the two setting low and high compositional variation,

respectively.

The data are simulated following the logistic normal multinomial model in (2.1)–(2.3).

We first simulate zi ∼ N(µ,Σ) independently for i = 1, . . . ,n; then, we perform the inverse

log-ratio transformation (also know as the softmax transformation, the inverse transforma-

tion of (2.2)) to obtain the multinomial probabilities pi for i = 1, . . . ,n; last, we simulate

multinomial counts xi from a multinomial distribution with sequencing depth Mi and prob-

abilities pi. Throughout this simulation study, we fix n = 100 and K = 200.

The simulation results are based on 100 replicates of simulated data. On each repli-

cate, we apply compositional graphical lasso, neighborhood selection, and graphical lasso

separately to obtain a sparse estimator of Ω. For neighborhood selection and graphical
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lasso, we first obtain an estimate of z1, . . . ,zn from the multinomial distribution as

z̃i,k = log
(

xi,k

xi,K+1

)
, i = 1, . . . ,n, k = 1, . . . ,K, (2.11)

and then apply neighborhood selection and graphical lasso directly on the estimates z̃1, . . . , z̃n

by treating them as surrogates for their true counterparts, i.e., z1, . . . ,zn.

To compare the performance of the three methods in terms of network recovery, all

three methods are applied with a sequence of tuning parameter values, and their true posi-

tive rates (TPR) and false positive rates (FPR) in terms of edge selection are recorded for

each value of λ . An ROC curve is plotted from the average TPR and the average FPR over

the 100 replicates at each position of the tuning parameter sequence.

In addition, we apply StARS to select an optimal tuning parameter λ . Following the

recommendation in Liu et al. (2010), we set the threshold for the total instability to be β =

0.05, the size of each subsample b = 7
√

n, and the number of subsamples N = 50. Once

the optimal tuning parameter is determined by StARS, we fit the whole dataset with the

selected tuning parameter and evaluate the resultant network using three criteria: precision,

recall, and F1 score, which are defined as

Precision =
TP

TP+FP
, Recall =

TP
TP+FN

, F1 =
2×Precision×Recall

Precision+Recall
,

where TP, FP, and FN are numbers of true positives, false positives, and false negatives,

respectively.
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2.4.2 Results

Figure 2.1 presents the ROC curves for compositional graphical lasso (Comp-gLASSO),

neighborhood selection (MB), and graphical lasso (gLASSO), from which we can see that

compositional graphical lasso dominates its competitors in terms of edge selection in all

settings. In particular, the advantage of the compositional graphical lasso over neighbor-

hood selection, and graphical lasso is the most obvious when the compositional variation

is high and the sequencing depth is low, no matter which type of network structure is

considered. On the contrary, the three methods perform very similarly for all types of net-

work structures when the compositional variation is low and the sequencing depth is high.

The difference between compositional graphical lasso and the rest is intermediate for the

other two settings when both compositional variation and sequencing depth are high or

low. Comparing graphical lasso and neighborhood selection, they tend to perform more

similarly although graphical lasso seems to outperform neighborhood selection in some

settings with a small margin.

The above observations agree with our expectation about how the two factors, compo-

sitional variation and sequencing depth, affect the simulation results. Recall that neigh-

borhood selection and graphical lasso replace the true values of z1, . . . ,zn by their esti-

mates/surrogates z̃1, . . . , z̃n as in (2.11) without taking into account the estimation accu-

racy or uncertainty of these surrogates. On the one hand, a higher sequencing depth leads

to more accurate surrogates z̃1, . . . , z̃n; therefore, it is not surprising to see that all three

methods perform more similarly when the sequencing depth is high. On the other hand, a

higher compositional variation results in a higher variation in zi’s and further in pi’s that

are multinomial probabilities. Since neighborhood selection and graphical lasso ignore the
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Figure 2.1: ROC curves for compositional graphical lasso (Comp-gLASSO), graphical
lasso (gLASSO) and neighborhood selection (MB). Solid blue: Comp-gLASSO; dashed
red: gLASSO; dotted black: MB. h,h: high sequencing depth and high compositional vari-
ation; h, l: high sequencing depth and low compositional variation; l,h: low sequencing
depth and high compositional variation; l, l: low sequencing depth and low compositional
variation.
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Figure 2.2: Recall, precision and F1 score for the network selected by StARS for compo-
sitional graphical lasso (Comp-gLASSO), graphical lasso (gLASSO) and neighborhood
selection (MB). Red (left): Comp-gLASSO; green (middle): gLASSO; blue (right): MB.
h,h: high sequencing depth and high compositional variation; h, l: high sequencing depth
and low compositional variation; l,h: low sequencing depth and high compositional vari-
ation; l, l: low sequencing depth and low compositional variation.
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multinomial component in the model, it is also not surprising to see that their performances

are deteriorated by a high compositional variation.

Figure 2.2 presents recall, precision, and F1 score from 50 replicates of the estimated

network resulted from the tuning parameter selected by StARS. The first observation

would be that the precisions of both compositional graphical lasso and graphical lasso

are much worse than their recalls, whereas the precisions and recalls are more comparable

for neighborhood selection. Interestingly, StARS results in a much more sparse network

for neighborhood selection than the other methods under the same stability threshold, sug-

gesting that fewer edges selected by neighborhood selection are stable enough (within

the instability threshold). When it comes to method comparison, compositional graphical

lasso has much higher recall than neighborhood selection in most settings, but have com-

parable or lower precision in most of the settings with high sequencing depth. The network

from compositional graphical lasso has higher F1 score than the ones from neighborhood

selection in most settings, except when sequencing depth is high and compositional vari-

ation is low for chain and hub networks. In addition, the network from compositional

graphical lasso has higher or comparable precision, recall, and F1 score than the ones

from graphical lasso in all settings. Similar to the observations from the ROC curves, the

advantage of compositional graphical lasso is more obvious with a low sequencing depth

or a high compositional variation.
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2.5 Real Data

To better understand the ocean, the largest ecosystem on the earth, the Tara Oceans

consortium sampled both plankton and environmental data in 210 sites from the world

oceans, using the 110-foot research schooner Tara during the Tara Oceans expedition

(2009-2013). The data collected was later analyzed using sequencing and imaging tech-

niques. As part of the TARA Oceans project, Lima-Mendez et al. (2015) analyzed the

interactions between oceanic microbes, and provided a list of 91 gold-standard genus-

level marine planktonic interactions that are described in the literature. Though this list

only comprises interactions between a small fraction of the total marine eukaryotic di-

versity and is therefore far from complete, it could serve as partial ground truth to evalu-

ate the interactions identified by different methods. We downloaded the taxonomic data

and the literature interactions from the TARA Ocean Project data repository (https:

//doi.pangaea.de/10.1594/PANGAEA.843018).

As the partial ground truth is a list of genus-level interactions, we choose to analyze the

genus-level abundance data, which are aggregated from the original OTU abundance data.

To reduce the computational complexity, we only include the 81 genera that are involved

in the list of gold-standard interactions in our analysis. In addition, we discard the samples

with too few sequence reads (less than 100), resulting in 324 samples left in our analysis.

Therefore, the final genus abundance data in our analysis has 324 samples and 81 genera.

Similar to the simulation study, we apply compositional graphical lasso, graphical

lasso, and neighborhood selection to estimate the interaction network among the 81 gen-

era. To this end, we first pick the genus Acrosphaera, which has the largest average relative

abundance among those genera not involved in the gold-standard list, and use this genus as

https://doi.pangaea.de/10.1594/PANGAEA.843018
https://doi.pangaea.de/10.1594/PANGAEA.843018
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the reference taxon for all three methods. Then, we apply each method with a sequence of

70 decreasing tuning parameter values, resulting a sequence of interaction networks start-

ing from an empty network, to compare the performance of compositional graphical lasso,

graphical lasso, and neighborhood selection. Finally, we apply StARS to find the optimal

tuning parameter, in which the parameters β , b, and N are set the same as in the simulation

study. We reported the final interaction networks estimated by the three algorithms fitting

on the whole dataset with the optimal tuning parameters selected by StARS.
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Figure 2.3: (a): Number of identified literature interactions versus number of edges of the
estimated network from the TARA dataset. (b): The degree distribution of vertices from
the networks selected by StARS. Solid red: compositional graphical lasso; dashed green:
graphical lasso; dashed dotted blue: neighbor hood selection.

First, to compare the three methods in terms of their ability to reconstruct the literature

interactions, we apply each of them with the decreasing sequence of penalty parameters

and report the number of literature interactions selected by each method among the top
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ranked edges. In detail, we start with a large tuning parameter that results in an empty

network, then decrease the tuning parameter so that the network becomes denser, and stop

until the network has about 200 edges (out of a total of 3240 possible edges). At each

tuning parameter, we plot the number of literature interactions included in the network

versus the total number of edges of the network, resulting in a step-function shaped curve

for each method as in Figure 2.3a.

From Figure 2.3a, we can observe that compositional graphical lasso identifies slightly

more literature interactions than graphical lasso until the total number of edges arrives 175

and graphical lasso identifies one more literature interaction afterwards. Neighborhood se-

lection selects much fewer literature interactions than either compositional graphical lasso

or graphical lasso. These observations imply that compositional graphical lasso slightly

outperforms graphical lasso in reconstructing the literature interactions, while its advan-

tage over neighborhood selection is much more obvious.

Second, for the final interaction networks with the optimal tuning parameters selected

by StARS, we find that compositional graphical lasso, graphical lasso, and neighborhood

selection identify 749, 921 and 190 edges, respectively, with the same instability threshold

used in StARS. This agrees with our observation in the simulation study that the network

from neighborhood selection is much sparser than those from compositional graphical

lasso and graphical lasso. The degree distributions from the networks estimated by the

three methods are shown in Figure 2.3b. It looks like the degree distribution of the net-

work from neighborhood selection is highly right-skewed, the one from graphical lasso

is quite left-skewed, and the one from compositional graphical lasso is relatively sym-

metric, though still slightly left-skewed. The center of the three degree distributions are
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ranked as neighborhood selection, compositional graphical lasso, and graphical lasso in

the ascending order, which also reflects that the densities of the final networks are in this

order.

It is observed that there are a few hub genera that have an excessive number of inter-

actions with other genera reported in the literature, such as Amoebophrya, Blastodinium,

and Parvilucifera. Although the literature-reported interactions are rather incomplete, it is

still of interest to evaluate how well the three methods pick up those hub genera. Since

the density of networks from the three methods are rather different, it is hard to compare

the degrees of the hub genera from the three networks directly, but it is reasonable to com-

pare the rank of those degrees within each degree distributions. The method that generates

lower ranks (degree of genera ranked in descending order) for those hubs in their degree

distribution are believed to pick up the hub genera better. A list of 7 hubs (which has

degree ≥ 5) along with their degrees from the incomplete graph constructed from the lit-

erature is shown in Table 2.1, followed by the corresponding ranks of those genera in the

degree distributions from each of the three methods and their corresponding degrees in the

three estimated networks in the parentheses. We can see that compositional graphical lasso

generates lower ranks than graphical lasso for all 7 genera, while neighborhood selection

generates lower ranks than compositional graphical lasso for 3 genera, and the opposite

for the other 4 genera. Overall, compositional graphical lasso performs the best in picking

up the literature reported hub genera among the three methods.

To further compare these networks with the literature interactions, we visualize these

networks in accompany with the network of the literature interactions. For better visu-

alization, we only keep the top 100 edges that are ranked by the following two criteria:
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Literature Comp-gLASSO gLASSO MB
Amoebophrya 1 (21) 31 (19) 47 (21) 2 (9)
Blastodinium 2 (12) 13 (23) 26 (24) 30 (5)
Parvilucifera 2 (12) 46 (17) 67 (19) 58 (3)
Syndinium 4 (7) 14 (23) 27 (24) 19 (6)
Vampyrophrya 4 (7) 34 (19) 60 (20) 6 (8)
Phaeocystis 6 (6) 1 (31) 3 (29) 17 (6)
Pirsonia 7 (5) 64 (15) 68 (19) 33 (5)

Table 2.1: For the hub genera, their rank in the degree distributions (in descending or-
der) from the literature, compositional graphical lasso (Comp-gLASSO), graphical lasso
(gLASSO) and neighborhood selection (MB). The numbers in the parentheses are the cor-
responding degrees of the genera.

(a) selection probability, the proportion of times that an edge is selected from the N sub-

samples in StARS and (b) edge weight, the absolute value of the partial correlation that is

defined as |ω̂ i j|/
√

ω̂ iiω̂ j j where ω̂ i j is the (i, j) entry of the estimated inverse covariance

matrix Ω̂. Specifically, the edges are first ranked by selection probability, and the edges

with the same selection probabilities are further ranked by edge weight. For the networks

from all three methods, darker blue implies higher magnitude in the absolute value of

partial correlation.

We can see from Figure 2.4 that, though still different, the networks estimated by the

three algorithms have apparent similarity in the predicted edges and their edge weights,

e.g., the genus pairs “Centropages - Thalassicolla” and “Acanthometra - Hexaconus” are

in dark blue for all three methods. On the other hand, there are very few overlaps be-

tween those top 100 edges and the known interactions from literature. Since our current

knowledge of the genus-level interactions are still limited, the edges that have not been

reported from literature but enjoys higher selection probability and larger weight might

suggest promising new eukaryotic interactions that deserve biological validations. There
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are actually 39 common edges from the top 100 edges from the three estimated networks.

We further ranked them by (a) the sum of selection probabilities from the three networks

and (b) the sum of edge weights estimated from the three methods, and provided the list

of the top 15 genus pairs in the Appendix for the interested readers.
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Figure 2.4: Inferred networks from each method with edges filtered by selection prob-
ability and ranked by edge weight, in comparison with the 91 interactions reported in
literature. In each network, darker blue implies stronger (larger in absolute value) edge
weight.
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2.6 Discussion

In this work, we proposed compositional graphical lasso as a tool to estimate sparse

interaction network for compositional count data based on a hierarchical model. In ad-

dition, we have established the theoretical convergence of the algorithm. However, the

theoretical property of the estimator from the algorithm still needs to be investigated. We

also demonstrated the advantage of our method over other methods in multiple simulation

scenarios, and applied our method to a dataset from TARA Oceans Project.

Also, though enjoying the benefits of having a full-rank precision matrix in our model,

compositional graphical lasso does require one to choose a reference taxon in the first step.

As a general recommendation, we suggest the readers to choose the taxon which has the

highest average relative abundance among the ones they’re not investigating (in reality, the

number of taxa available in datasets is often far more beyond the scope that the researchers

are interested about at a particular time). Since the counts of the reference taxon serve as

the common denominator in the log-ratio transformation, one could be less susceptible

to the problem caused by the sparsity in the denominator this way (though the undefined

ratio problem could be safeguard against by adding an offset, e.g. Laplace smoothing to

the data).

Readers may also wonder how much the different choices of reference taxon may

change the nature of the estimated network, and if some robustness could be guaranteed

across the choices of the reference. This is actually an important aspect of our current

work, and a series of invariance properties regardless of the choices of references have

been established. We believe that a report with theoretical investigations and the analyses

of synthetic and real data will come up soon.
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2.7 Appendix

Genus Pair

1 Gonyaulax - Alexandrium

2 Hexaconus - Acanthometra

3 Thalassicolla - Centropages

4 Sphaerozoum - Collozoum

5 Pedinomonas - Karenia

6 Phagomyxa - Noctiluca

7 Orbulina - Globigerinoides

8 Temora - Centropages

9 Paracineta - Euchaeta

10 Eucampia - Coscinodiscus

11 Scrippsiella - Gyrodinium

12 Vampyrophrya - Syndinium

13 Tintinnophagus - Rhynchopus

14 Prorocentrum - Hexaconus

15 Prorocentrum - Euduboscquella

Table 2.2: Top 15 genus pairs that were commonly predicted by compositional graphical
lasso, graphical lasso, and neighborhood selection, and were not in the literature list. All
genus pairs have selection probability 1, and are thus ranked by the sum of the absolute
values of estimated partial correlations from the three methods.
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3 Reference-Invariance Property of Inverse Covariance Matrix Estimation

Under Additive Log-Ratio Transformation and Its Application to Microbial

Network Recovery

3.1 Abstract

The interactions between microbial taxa in microbiome data has been under great re-

search interest in the science community. In particular, several methods such as SPIEC-

EASI, gCoda, and CD-trace have been proposed to model the conditional dependency be-

tween microbial taxa, in order to eliminate the detection of spurious correlations. However,

all those methods are built upon the central log-ratio (CLR) transformation, which results

in a degenerate covariance matrix and thus an undefined inverse covariance matrix as the

estimation of the underlying network. Jiang et al. (2020) and Tian et al. (2020) proposed

bias-corrected graphical lasso and compositional graphical lasso based on the additive log-

ratio (ALR) transformation, which first selects a reference taxon and then computes the log

ratios of the abundances of all the other taxa with respect to that of the reference. One

concern of the ALR transformation would be the invariance of the estimated network with

respect to the choice of reference. In this paper, we first establish the reference-invariance

property of a subnetwork of interest based on the ALR transformed data. Then, we pro-

pose a reference-invariant version of the compositional graphical lasso by modifying the

penalty in its objective function, penalizing only the invariant subnetwork. We validate
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the reference-invariance property of the proposed method under a variety of simulation

scenarios as well as through the application to an oceanic microbiome data set.

3.2 Introduction

Microbiome, which is the collection of micro-organisms in an ecological system, is of

great research interest in the science community and has been shown to play an important

role in influencing its host or living environment. For instance, it is found that intervening

the gut microbiota of African turquoise killifish could result in delay of their aging process

(Smith et al., 2017). The advancement of the high-throughput sequencing technologies

such as 16S rRNA profiling that replicates a specific sequence of marker genes which is

counted and serves as the proxy of the abundance of the Operational Taxonomic Units

(OTU’s, the surrogate of bacteria species) in a sample, has enabled researchers to analyze

the microbial compositions in uncultivated samples.

One common goal in microbiome data analysis is to understand how microbes interact

with each other. However, the nature of microbiome data determined by the technicalities

of the sequencing procedures has imposed various challenges in recovering the microbial

interactions. Firstly, the data is composed of discrete counts. Secondly, microbiome data

entangles with the “compositionality”, which is a technicality imposed by the sequencing

procedures. For instance, in 16S rRNA profiling, the “sequencing depth”, i.e. the total

count of sequences in a sample, is pre-determined on the sequencing instrument, and is

usually not on the same scale from sample to sample. This implies that the counts for each

OTU in a sample carry only the information about their relative abundances instead of
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their absolute abundances. Thirdly, the microbiome data possesses “high-dimensionality”

in nature. With the resolution at the OTU level, it is likely that the number of OTU’s is far

more than the number of samples in a biological experiment.

After one obtains the abundance data for the microbial species, marginal correlation

analysis could be used to infer the interactions among microbes (Faust and Raes, 2012).

Over the years, several methods have been developed to address the compositionality issue

in the construction of correlation networks for microbiome data, such as SparCC (Fried-

man and Alm, 2012) , CCLasso (Fang et al., 2015), and REBECCA (Ban et al., 2015). All

of those methods aimed to construct a covariance (correlation) matrix or network of the

unknown absolute abundances (the positive, unconstrained true abundance of taxa). The

high-dimensionality in microbiome data is tackled by imposing a sparsity constraint in the

above three methods, with a correlation threshold for SparCC and an L1-norm penalty for

CCLasso and REBECCA.

All the above methods are built upon the marginal correlations between two microbial

taxa, and they could lead to spurious correlations that are caused by confounding factors

such as other taxa in the same community. Alternatively, interactions among taxa can be

modeled through their conditional dependencies given the other taxa, which can eliminate

the detection of spurious correlations. SPIEC-EASI was probably the first method that was

proposed to estimate sparse microbial network based on conditional dependency (Kurtz

et al., 2015). It first performs a central log-ratio (CLR) transformation on the observed

counts (Aitchison, 1986), and then apply graphical lasso (Yuan and Lin, 2007; Banerjee

et al., 2008; Friedman et al., 2008) to find the inverse covariance matrix of the transformed

data. More recently, gCoda and CD-trace were developed to improve SPIEC-EASI by



45

accounting for the compositionality property of microbiome data (Fang et al., 2017; Yuan

et al., 2019), both of which have been shown to possess better performance in terms of

recovering the sparse microbial network than SPIEC-EASI.

It is worth noting that SPIEC-EASI, gCoda, and CD-trace are all built upon the CLR

transformation of the observed counts. Meanwhile, Jiang et al. (2020) and Tian et al.

(2020) proposed bias-corrected graphical lasso and compositional graphical lasso based on

the additive log-ratio (ALR) transformed data. In ALR transformation, one needs to select

a reference taxon and compute the log relative abundance of all other taxa with respect to

the reference. One of the major concerns for the ALR transformation is the robustness or

invariance of the proposed method with respect to the choice of the reference taxon, which

is not well studied in the literature.

In this paper, we first establish the reference-invariance property of estimating the

sparse microbial network based on the ALR transformed data. It shows that a submatrix of

the inverse covariance matrix that correspond to the non-candidate-of-reference taxa is in-

variant with respect to the choice of the reference. Then, we propose a reference-invariant

version of the compositional graphical lasso by modifying the penalty in its objective

function, which only penalizes the invariant submatrix mentioned above. Additionally,

we illustrate the reference-invariance property of the proposed method under a variety of

simulation scenarios and also demonstrate its applicability and advantages by applying it

to an oceanic microbiome data set.
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3.3 Methodology

3.3.1 Reference-Invariance Property

Let p = (p1, . . . , pK+2)
′ denote a vector of compositional probabilities satisfying that

p1 + · · ·+ pK+2 = 1. The additive log-ratio (ALR) transformation picks an entry of this

vector as the reference and transforms the compositional vector using log ratios of each

entry to the reference. Without loss of generality, suppose we pick the last entry as the

reference, then the ALR transformed vector becomes

z =
[

log
(

p1

pK+2

)
, . . . , log

(
pK

pK+2

)
, log

(
pK+1

pK+2

)]′
.

The transformed vector z is often assumed to follow a multivariate continuous distribution

with a mean vector µ and a covariance matrix Σ. For example, z∼N(µ,Σ). Denote further

the inverse covariance matrix Ω = Σ
−1.

Similarly, if we pick another entry as the reference, we can define another ALR-

transformed vector. For simplicity of illustration, suppose we choose the second last entry

to be the reference and consider the following ALR transformation

zp =

[
log
(

p1

pK+1

)
, . . . , log

(
pK

pK+1

)
, log

(
pK+2

pK+1

)]′
,

where the subscript p denotes the “permuted” version of z. Similarly, define the mean

vector of zp by µ p, the covariance matrix by Σp, and the inverse covariance matrix by

Ωp = Σ
−1
p .
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A simple derivation implies that zp is a linear transformation of z as zp = Qpz, where

Qp =

IK+1 −1

0′ −1


with IK+1 denoting the identity matrix, and 0 and −1 denoting the column vectors with

all 0’s and all −1’s, respectively. It follows that µ p = Qpµ , Σp = QpΣQ′p, and Ωp =

(Q′p)−1ΩQ−1
p . It is also worth noting that Qp is an involutory matrix, i.e., Q−1

p = Qp.

The following theorem states the reference-invariance property of the inverse covari-

ance matrix Ω under the ALR transformation.

Theorem 2. Ω1:K,1:K = Ωp,1:K,1:K , i.e. the K ×K upper-left sub-matrix of the inverse

covariance matrix of the ALR transformed vector is invariant with respect to the choices

of the (K +2)-th entry or the (K +1)-th entry as the reference.

Theorem 2 regards the reference-invariance property of the true value of the inverse

covariance matrix Ω. It can also be extended to a class of estimators of Ω. Suppose we

have i.i.d. observations of the compositional vectors p1, . . . ,pn, and consequently, their

ALR transformed counterparts z1, . . . ,zn. Then, we can construct an estimator of Σ, de-

noted by Σ̂, based on the i.i.d. observations z1, . . . ,zn. Furthermore, we can construct an

estimator of Ω, denoted by Ω̂, by taking its inverse or generalized inverse. The following

corollary presents the reference-invariance property for a class of such estimators.

Corollary 1. Suppose Σ̂p = QpΣ̂Q′p and both Σ̂p and Σ̂ are invertible. Let Ω̂ = Σ̂
−1

and

Ω̂p = Σ̂
−1
p be their inverse matrices. Then, Ω̂1:K,1:K = Ω̂p,1:K,1:K , i.e. the K×K upper-left

sub-matrix of the estimated inverse covariance matrix of the ALR transformed vector is
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invariant with respect to the choices of the (K + 2)-entry or the (K + 1)-th entry as the

reference.

The above results imply an important property for the additive log-ratio transformation

in the compositional data analysis. It can be extended to a more general situation as fol-

lows. In general, suppose we have selected a set of entries pR as “candidate references” in

a compositional vector p and write p = (p′Rc ,p′R)′. Then, for any ALR transformed vector

z based on a reference in the set of candidate references pR , the |Rc| × |Rc| upper-left

sub-matrix of the (estimated) inverse covariance matrix of z is invariant with respect to the

choice of the reference.

In the following subsections, we will incorporate the reference-invariance property into

the estimation of a sparse inverse covariance matrix for compositional count data, such as

the OTU abundance data in microbiome research.

3.3.2 Logistic Normal Multinomial Model

Consider an OTU abundance data set with n independent samples, each of which com-

poses observed counts of K+2 taxa, denoted by xi = (xi,1, . . . ,xi,K+2)
′ for the i-th sample,

i = 1, . . . ,n. Due to the compositional property of the data, the sum of all counts for each

sample i is a fixed number, denoted by Mi. Naturally, a multinomial distribution is imposed

on the observed counts as

xi|pi ∼Multinomial(Mi,pi), (3.1)

where pi = (pi,1, . . . , pi,K+2)
′ are the multinomial probabilities with ∑

K+2
k=1 pi,k = 1.
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In addition, we choose one taxon, without loss of generality, the (K + 2)-th taxon as

the reference and then apply the ALR transformation (Aitchison, 1986) on the multinomial

probabilities as follows

zi =

[
log
(

pi,1

pi,K+2

)
, . . . , log

(
pi,K

pi,K+2

)
, log

(
pi,K+1

pi,K+2

)]′
, i = 1, . . . ,n. (3.2)

Further assume that zi’s follow an i.i.d. multivariate normal distribution

zi
iid∼ N(µ,Σ), i = 1, . . . ,n, (3.3)

where µ is the mean, Σ is the covariance matrix, and Ω = Σ
−1 is the inverse covariance

matrix. The above model in (3.1)–(3.3) is called a logistic normal multinomial model and

has been applied to analyze the microbiome abundance data (Xia et al., 2013).

Tian et al. (2020) proposed a method called compositional graphical lasso that aims to

find a sparse estimator of the inverse covariance matrix Ω, in which the following objective

function is minimized

`(z1, . . . ,zn,µ,Ω) = − 1
n

n

∑
i=1

[
x′i,−(K+2)zi−Mi log{1′ exp(zi)+1}

]
− 1

2
log[det(Ω)]+

1
2n

n

∑
i=1

(zi−µ)′Ω(zi−µ)+λ‖Ω‖1, (3.4)

where xi,−(K+2) = (xi,1, . . . ,xi,K+1)
′ and 1 = (1, . . . ,1)′. The above objective function has

two parts: The first term in (3.4) is the negative log-likelihood of the multinomial distribu-

tion in (3.1) and the remaining terms are the regular objective function of graphical lasso

for the multivariate normal distribution in (3.3) regarding z1, . . . ,zn as known quantities.
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3.3.3 Reference-Invariant Objective Function

Similar to 3.3.1, if we choose another taxon, for simplicity of illustration, the (K +1)-

th taxon as the reference, then the ALR transformation in (3.2) becomes

zi,p =

[
log
(

pi,1

pi,K+1

)
, . . . , log

(
pi,K

pi,K+1

)
, log

(
pi,K+2

pi,K+1

)]′
.

As in Sections 3.3.1, zi,p = Qpzi. Therefore, zi,p
iid∼ N(µ p,Σp), i = 1, . . . ,n, where µ p =

Qpµ , Σp = QpΣQ′p, and Ωp = (Q′p)−1ΩQ−1
p . The reference-invariance property in 3.3.1

implies that Ω1:K,1:K = Ωp,1:K,1:K .

The different choice of the reference also leads to a different objective function for the

compositional graphical lasso method (Comp-gLASSO) as follows

`p(z1,p, . . . ,zn,p,µ p,Ωp) = −
1
n

n

∑
i=1

[
x′i,−(K+1)zi,p−Mi log{1′ exp(zi,p)+1}

]
− 1

2
log[det(Ωp)]+

1
2n

n

∑
i=1

(zi,p−µ p)
′
Ωp(zi,p−µ p)+λ‖Ωp‖1,

(3.5)

where xi,−(K+1) = (xi,1, . . . ,xi,K,xi,K+2)
′ and 1 = (1, . . . ,1)′. Comparing (3.4) and (3.5),

their first terms are the same as they are both equal to the negative log-likelihood of the

multinomial distribution: −1
n ∑

n
i=1 ∑

K+2
k=1 xi,k log pi,k. In addition, from Aitchison (1986),

det(Ω) = det(Ωp) and ∑
n
i=1(zi−µ)′Ω(zi−µ) = ∑

n
i=1(zi,p−µ p)

′Ωp(zi,p−µ p) as known

properties of the ALR transformation. However, the L1 penalties in (3.4) and (3.5) are

different because Ω is not necessarily equal to Ωp. The reference-invariance property only

implies that Ω1:K,1:K = Ωp,1:K,1:K .
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Motivated by the reference-invariance property, we can impose the L1 penalties only

on the invariant entries of Ω instead of all entries of Ω as in (3.4), which leads to

`inv(z1, . . . ,zn,µ,Ω) = − 1
n

n

∑
i=1

[
x′i,−(K+2)zi−Mi log{1′ exp(zi)+1}

]
− 1

2
log[det(Ω)]+

1
2n

n

∑
i=1

(zi−µ)′Ω(zi−µ)+λ‖Ω1:K,1:K‖1.

(3.6)

With the previous arguments, we showed that `inv(z1, . . . ,zn,µ,Ω) is reference-invariant;

in other words, the objective function `inv stays the same regardless of whether the (K+1)-

th or the (K +2)-th taxa is selected as the reference. This is summarized in the following

theorem.

Theorem 3. If zi,p = Qpzi for i = 1, . . . ,n, µ p = Qpµ , and Ωp = (Q′p)−1ΩQ−1
p , then

`inv(z1, . . . ,zn,µ,Ω) = `inv,p(z1,p, . . . ,zn,p,µ p,Ωp).

We call `inv(z1, . . . ,zn,µ,Ω) in (3.6) the reference-invariant compositional graphical

lasso objective function. To obtain a sparse estimator of Ω, we minimize the objective

function `inv(z1, . . . ,zn,µ,Ω) with respect to z1, . . . ,zn, µ , and Ω. We call this estima-

tion approach the reference-invariant compositional graphical lasso (Inv-Comp-gLASSO)

method.

In general, suppose we have selected a set of taxa xR as “candidate references” and
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write x = (x′Rc,x′R)′. Then, the reference-invariant objective function becomes

`inv(z1, . . . ,zn,µ,Ω) = − 1
n

n

∑
i=1

[
x′i,Rczi−Mi log{1′ exp(zi)+1}

]
− 1

2
log[det(Ω)]+

1
2n

n

∑
i=1

(zi−µ)′Ω(zi−µ)+λ‖ΩRc,Rc‖1.

(3.7)

In other words, (3.7) is invariant regardless of which reference is selected in the set of

candidate references, and so is the invariant part of its minimizer.

It is noteworthy that the trick we played in defining the reference-invariant version of

Comp-gLASSO is to revise the penalty term from the regular lasso penalty on the whole

inverse covariance matrix to that only on the invariant part of the inverse covariance ma-

trix. Using the same trick, we can define the reference-invariant version of other methods

such as reference-invariant graphical lasso (Inv-gLASSO). The objective function of Inv-

gLASSO is defined as follows when z1, . . . ,zn are observed instead of x1, . . . ,xn:

`inv(µ,Ω) =−1
2

log[det(Ω)]+
1
2n

n

∑
i=1

(zi−µ)′Ω(zi−µ)+λ‖ΩRc,Rc‖1. (3.8)

The objective function (3.7) includes naturally three sets of parameters (z1, . . . ,zn),

µ , and Ω, which motivates us to apply a block coordinate descent algorithm. A block

coordinate descent algorithm minimizes the objective function iteratively for each set of

parameters given the other sets. Given the initial values (z(0)1 , . . . ,z(0)n ), µ(0), and Ω
(0), a

block coordinate algorithm repeats the following steps cyclically for iteration t = 0,1,2, . . .

until the algorithm converges.
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1. Given µ(t) and Ω
(t), find (z(t+1)

1 , . . . ,z(t+1)
n ) that maximizes (3.7).

2. Given (z(t+1)
1 , . . . ,z(t+1)

n ) and Ω
(t), find µ(t+1) that maximizes (3.7).

3. Given (z(t+1)
1 , . . . ,z(t+1)

n ) and µ(t+1), find Ω
(t+1) that maximizes (3.7).

Except for the mild modification on the objective function, the details of the algorithm

is essentially the same as the one described in Tian et al. (2020).

3.4 Simulation Study

3.4.1 Settings

To illustrate the reference-invariance property under the aforementioned framework,

we conduct a simulation study and evaluated the performance of Inv-Comp-gLASSO as

well as Inv-gLASSO.

Following Tian et al. (2020), we generate three types of inverse covariance matrices

Ω = (ωkl)1≤k,l≤K+1 as follows:

1. Chain: ωkk = 1.5, ωkl = 0.5 if |k− l| = 1, and Ωkl = 0 if |k− l| > 1. Every node

is connected to the adjacent node(s), and therefore the degree is 2 for all but two

nodes.

2. Random: ωkl = 1 with probability 3/(K + 1) for k 6= l. Every two nodes are con-

nected with a fixed probability, and the expected degree is the same for all nodes.

3. Hub: Nodes are randomly partitioned into d(K + 1)/20e groups, and there’s one

“hub node” in each group. For the other nodes in the group, they are only connected
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to the hub node but not each other. There’s no connection among groups. The degree

of connectedness is much higher for the hub nodes , and is 1 for the rest of the nodes.

In the simulations, we also vary two other factors that play a crucial role in the perfor-

mances of the methods:

1. Sequencing depth. Mi’s are simulated from Uniform(20K,40K) or Uniform(100K,200K),

denoted by “low” and “high” sequencing depth.

2. Compositional variation. For each aforementioned inverse covariance matrix Ω

(“low” compositional variation), we also divide each of them by a factor of 5 to

obtain another set of inverse covariance matrices, i.e., Ω/5 (“high” compositional

variation).

The data are simulated from the logistic normal multinomial distribution in (3.1)–(3.3).

In detail, zi ∼ N(µ,Σ) are first generated independently for i = 1, . . . ,n; then, the softmax

transformation (the inverse of the ALR transformation) was applied to get the multinomial

probabilities pi with the (K+2)-th entry serving as the true reference; last, the multinomial

random variables xi were simulated from Multinomial(Mi;pi), for i = 1, . . . ,n. We set

n = 100 and K = 49 throughout the simulations.

The simulation results are based on 100 replicates of the simulated data. Both Inv-

Comp-gLASSO and Inv-gLASSO are applied with two choices of reference, the (K +1)-

th entry serving as the false reference and the (K + 2)-th entry serving as the true ref-

erence. and only the reference-invariant sub-network Ω1:K,1:K is used in the evaluations.

For Inv-gLASSO, we estimate p1, . . . ,pn with x1/M1, . . . ,xn/Mn, and performe the ALR

transformation to get the estimates of z1, . . . ,zn, which are denoted by z̃1, . . . , z̃n. We then
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apply Inv-gLASSO to z̃1, . . . , z̃n directly to find the inverse covariance matrix Ω, which

also serves as the starting value for Inv-Comp-gLASSO. For both methods, we implement

them with a common sequence of 70 tuning parameters of λ .

We empirically validate the invariance property of Inv-Comp-gLASSO and Inv-gLASSO

by comparing the estimators of the two sub-networks Ω1:K,1:K resulted from choosing the

true and false reference separately in each method, which have been shown to be theoreti-

cally invariant in Section 3.3. The comparison is assessed under four criteria as follows.

1. Normalized Manhattan Similarity

For two matrices A and B, we define the normalized Manhattan similarity (NMS) as

NMS(A,B) = 1− ‖A−B‖1
‖A‖1 +‖B‖1

,

where ‖·‖1 represents the entrywise L1 norm of a matrix. Note that 0 ≤ NMS ≤ 1

due to the non-negativity of norms and the triangle inequality.

2. Jaccard Index

For two networks with the same nodes, denote their set of edges by A and B. Then

the Jaccard Index (Jaccard, 1901) is defined as follows:

J(A ,B) =
|A ∩B|
|A ∪B|

.

Obviously, it also holds that 0≤ J(A ,B)≤ 1.

3. Normalized Hamming Similarity

In the context of network comparison, the normalized Hamming similarity for two
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adjacency matrices A and B with the same N nodes are defined as follows (Ham-

ming, 1950)

H(A,B) = 1− ‖A−B‖1
N(N−1)

,

where ‖·‖1 denotes the entrywise L1 norm of a matrix. Since there are at most

N(N−1) 1’s in an adjacency matrix with N nodes, this metric is also between 0 and

1.

4. ROC Curve

The ROC curves on which true positive rate (TPR) and false positive rate (FPR) are

plotted and also compared between the choices of true and false reference.

3.4.2 Results

3.4.2.1 Normalized Manhattan Similarity

The normalized Manhattan similarity serves as a direct measure of the similarity be-

tween the two estimated inverse covariance matrices with different choices of the refer-

ence. On a sequence of 70 tuning parameter λ ’s, we calculated the normalized Manhattan

similarity between the two estimated inverse covariance matrices with the true and false

references separately. Figure 3.1 shows the average normalized Manhattan similarity over

100 replicates along with standard error bars.

We can see from Figure 3.1 that, the normalized Manhattan similarity for Inv-gLASSO

stays close to 1 in all settings, throughout the whole sequence of tuning parameters. On

the other hand, there are some fluctuations in the same metric from Inv-Comp-gLASSO,
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Figure 3.1: Normalized Manhattan similarity between the two estimated inverse covari-
ance matrices with true and false references. Solid blue: Inv-Comp-gLASSO; dashed
red: Inv-gLASSO. h,h: high sequencing depth, high compositional variation; h, l: high
sequencing depth, low compositional variation; l,h: low sequencing depth, high composi-
tional variation; l, l: low sequencing depth, low compositional variation.
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although most values stay higher than 0.9. Empirically, the two estimated matrices are nu-

merically identical for Inv-gLASSO and close for Inv-Comp-gLASSO. A potential reason

why the invariance of Inv-gLASSO is numerically more evident than that of Inv-Comp-

gLASSO is that Inv-gLASSO is a convex optimization while Inv-Comp-gLASSO is not

necessarily convex (Tian et al., 2020). With different starting points (as we choose differ-

ent references), Inv-Comp-gLASSO might result in different solutions as the algorithm is

only guaranteed to converge to a stationary point. We refer to Tian et al. (2020) for more

detailed discussion about the convexity and the convergence of the algorithm.

In addition, it is consistently observed that the normalized Manhattan similarity for

Inv-Comp-gLASSO starts close to 1 when λ is very large and gradually decreases with

some fluctuations as λ decreases. This is because the Inv-Comp-gLASSO objective func-

tion in (3.6) is solved by an iterative algorithm between graphical lasso to estimate (µ,Ω)

and Newton-Raphson to estimate z1, . . . ,zn, which can lead to more numerical errors de-

pending on the number of iterations. Furthermore, the algorithm is implemented with

warm start for a sequence of decreasing λ ’s, i.e., the solution for the previous λ value

is used as the starting point for the current λ value. With the accumulation of numerical

errors, the numerical difference between the two estimated matrices becomes larger.

Among the simulation settings, we find the invariance property for Inv-Comp-gLASSO

is most evidently supported by the numerical results in the “high sequencing depth, low

compositional variation” setting, regardless of the network types. The normalized Manhat-

tan similarity is very close to 1 for Inv-Comp-gLASSO throughout the sequence of tuning

parameters. This is because the compositional probabilities pi’s and thus the zi’s are esti-

mated accurately with high sequencing depth and low compositional variation in the first
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iteration of the Inv-Comp-gLASSO algorithm, which implies fewer iterations for the al-

gorithm to converge and less numeric error accumulated during this process. On the other

hand, the normalized Manhattan similarity is the lowest in the “low sequencing depth, high

compositional variation” setting. It is due to a similar reason that it takes more iterations

for the Inv-Comp-gLASSO algorithm to converge, accumulating more numerical errors.

However, it is noteworthy that this is exactly the setting in which Inv-Comp-gLASSO has

the most advantage over Inv-gLASSO in recovering the true network (see Section 3.4.2.3

for their ROC curves).

3.4.2.2 Jaccard Index and Normalized Hamming Similarity

Compared to normalized Manhattan similarity that measures directly the similarity be-

tween two inverse covariane matrices, both Jaccard index and normalized Hamming sim-

ilarity measure the similarity between two networks represented by the matrices because

they only compared the adjacency matrices or the edges of the two networks. Again, on a

sequence of 70 tuning parameter λ ’s, we computed the Jaccard index and the normalized

Hamming similarity between the two networks with true and false references separately.

Figures 3.2 and 3.3 plot the average Jaccard index and the normalized Hamming similarity

over 100 replicates along with standard error bars.

The results of normalized Hamming similarity in Figure 3.3 have a fairly similar pat-

tern to those of normalized Manhattan similarity in Figure 3.1 and thus can be similarly

interpreted. We only focus on the results of Jaccard index in Figure 3.2 here. The Jaccard

index stays close to 1 for Inv-gLASSO, implying the identity between the two networks.
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Figure 3.2: Jaccard index between the two networks with true and false references. Solid
blue: Inv-Comp-gLASSO; dashed red: Inv-gLASSO. h,h: high sequencing depth, high
compositional variation; h, l: high sequencing depth, low compositional variation; l,h:
low sequencing depth, high compositional variation; l, l: low sequencing depth, low com-
positional variation.
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Figure 3.3: Normalized Hamming similarity between the two networks with true and
false references. Solid blue: Inv-Comp-gLASSO; dashed red: Inv-gLASSO. h,h: high
sequencing depth, high compositional variation; h, l: high sequencing depth, low com-
positional variation; l,h: low sequencing depth, high compositional variation; l, l: low
sequencing depth, low compositional variation.
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Although the results of the Jaccard index for Inv-Comp-gLASSO look quite different from

the other measures at the first glance, it actually implies a similar conclusion. First, we no-

tice that there is no Jaccard index for the first few tuning parameters that are large enough.

This is because the resultant network is empty with either true or false reference. Although

two empty networks agree with each other perfectly, the Jaccard index is not well defined.

Then, as Inv-Comp-gLASSO starts to pick up edges when λ decreases, the Jaccard index

is quite low in some settings, suggesting that the two networks are dissimilar. However,

this is due to the fact the Jaccard index is a much more “strict” similarity measure than the

Hamming similarity. For example, for two networks with 100 possible total edges, if both

networks only have one but a different edge, then the Jaccard index is 0 while the nor-

malized Hamming similarity is 0.98. Finally, as the networks become denser, the Jaccard

index increases quickly and stabilizes at a quite high value in most settings.

It is also notable that both the Jaccard index and the normalized Hamming similarity

are relatively high in the “high sequencing depth, low compositional variation” setting and

relatively low in the “low sequencing depth, high compositional variation” setting, which

is consistent with the finding for the normalized Manhattan similarity.

3.4.2.3 ROC Curves

An ROC curve is plotted from the average of true positive rates and the average of false

positive rates over 100 replicates. An ROC curve can be regarded as an indirect measure

of the invariance (two networks possessing similar ROC curves is a necessary but not

sufficient condition for the two networks to be similar). However, it is crucial to evaluate
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the algorithms with this criterion, since it answers the question: “Does the performance of

the algorithm depends on the choice of reference?”
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Figure 3.4: ROC curves for Inv-Comp-gLASSO and Inv-gLASSO with true and false
references. Long-dashed blue: Inv-Comp-gLASSO with true reference; dashed red: Inv-
Comp-gLASSO with false reference; dashed-dotted purple: Inv-Comp-gLASSO with true
reference; dotted black: Inv-Comp-gLASSO with false reference. h,h: high sequencing
depth and high compositional variation; h, l: high sequencing depth and low compositional
variation; l,h: low sequencing depth and high compositional variation; l, l: low sequencing
depth and low compositional variation.
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We could see that the ROC curves from Inv-Comp-gLASSO, regardless of the choice

of the reference, dominate the ones from Inv-gLASSO in all settings. The two ROC curves

from Inv-gLASSO lay perfectly on top of each other, while the curves from Inv-Comp-

gLASSO are also fairly close to each other. These empirical results validate the theoretical

reference-invariance property for both methods. In addition, Inv-Comp-gLASSO has the

most obvious advantage over Inv-gLASSO in the “low sequencing depth, high composi-

tional variation” setting and they perform almost identically in the “low sequencing depth,

high compositional variation” setting. Although the similarity measures are lower in the

“most favorable” setting for Inv-Comp-gLASSO (see Sections 3.4.2.1 and 3.4.2.2), the

ROC curves of the two networks from the method do not deviate too much from each

other in this setting.

3.5 Real Data

To further validate the theoretical reference-invariance properties of Inv-Comp-gLASSO

and Inv-gLASSO, we applied them to a dataset from the TARA Ocean project, in which the

Tara Oceans consortium sampled both plankton and environmental data in 210 sites from

the world oceans. The data collected was later analyzed using sequencing and imaging

techniques. We downloaded the taxonomic data and the literature interactions from the

TARA Ocean Project data repository (https://doi.pangaea.de/10.1594/PANGAEA.

843018). As part of the TARA Oceans project, Lima-Mendez et al. (2015) investigated

the impact of both biotic and abiotic interactions in oceanic ecosystem. In this article, a

literature-curated list of genus-level marine eukaryotic plankton interactions was gener-

https://doi.pangaea.de/10.1594/PANGAEA.843018
https://doi.pangaea.de/10.1594/PANGAEA.843018
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ated by a panel of experts.

Similar to Tian et al. (2020), we focused the analysis on genus level and only kept the

81 genus involved in the literature-reported interactions. For computational simplicity, we

removed the samples with too small reads (< 100). As a result, it leaves with 324 samples

in the final preprocessed data. From the genera that were not reported in the literature, we

chose two of them, Acrosphaera and Collosphaera, with the largest average relative abun-

dances as the references. We then applied both Inv-Comp-gLASSO and Inv-gLASSO to

the ALR-transformed data with those two references, with a common sequence of tuning

parameters. For each combination of a method and a reference, we also selected a tuning

parameter that corresponds to the “asymptotically sparsistent” (the sparsest estimated net-

work in the path that contains the true network asymptotically) network by StARS (Liu

et al., 2010).

Figures 3.5 presents the normalized Manhattan similarity between two estimated in-

verse covariance matrices with the two choices of reference. Figures 3.6 plotted the Jac-

card index and the normalized Hamming similarity between the two networks represented

by the two estimated inverse covariance matrices. We can see from Figure 3.5 and Figure

3.6 that, all three similarity metrics stay steadily around 1 for Inv-gLASSO throughout

the sequence of λ ’s. This agrees with our observation in simulations where Inv-gLASSO

produced numerically identical inverse covariance matrices.

For Inv-Comp-gLASSO, the similarity scores start around 1 (for normalized Manhat-

tan similarity and normalized Hamming similarity) or non-existent (for Jaccard index)

when the estimated networks are empty. Then, as λ decreases, the estimated networks

become denser, and the measures start to fluctuate and decline slightly at the end. In spite
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Figure 3.5: Normalized Manhattan similarity between the two estimated inverse covari-
ance matrices with the the two choices of reference, Acrosphaera and Collosphaera, from
the TARA data. Solid blue: Inv-Comp-gLASSO; dashed red: Inv-gLASSO.
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Figure 3.6: Jaccard index and normalized Hamming similarity between the two estimated
networks with the the two choices of reference, Acrosphaera and Collosphaera, from the
TARA data. Solid blue: Inv-Comp-gLASSO; dashed red: Inv-gLASSO.
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of the fluctuations, both normalized Manhattan similarity and normalized Hamming sim-

ilarity stay above 0.9, while the lowest Jaccard index is about 0.64. As discussed earlier,

Jaccard index is a stricter measure than normalized Hamming similarity.

Within each method, StARS picked the same tuning parameter λ regardless of the

choice of the reference, as denoted by the red dot for Inv-gLASSO and the blue dot for

Inv-Comp-gLASSO in Figures 3.5 and 3.6. In other words, the red and blue dots rep-

resent the tuning parameters corresponding to the final estimated networks selected by

StARS. Again, the three similarity measures for the two final inverse covariance matrices

or networks from Inv-gLASSO is almost 1, while the normalized Manhattan similarity,

Jaccard index, and normalized Hamming similarity are 0.98, 0.96 and 0.99 for Inv-Comp-

gLASSO. All these high similarity scores imply the empirical invariance for Inv-gLASSO

and Inv-Comp-gLASSO. Both methods result in invariant inverse covariance matrices

and thus the corresponding networks with respect to the choices of the reference genus

(Acrosphaera or Collosphaera) when applied to the TARA Ocean eukaryotic dataset.

3.6 Discussion

In this work, we established the reference-invariance property in sparse inverse co-

variance matrix estimation and network construction based on the ALR transformed data.

Then, we proposed the reference-invariant versions of the compositional graphical lasso

and graphical lasso by modifying the penalty in their respective objective functions. In ad-

dition, we validated the reference-invariance property of the proposed methods empirically

by applying them to various scenarios of simulations and a real TARA Ocean eukaryotic



69

dataset.

It is noteworthy that the reference-invariance property is a general property for esti-

mating the inverse covariance matrix based on the ALR transformed data. We proposed

reference-invariant versions of compositional graphical lasso and graphical lasso based on

this property, however, one may revise other existing methods for inverse covariance ma-

trix estimation based on the ALR transformed data. The trick is to revise the objective func-

tion so that it becomes invariant with respect to the choice of the reference. Subsequently,

the resultant inverse covariance matrix and network are expected to be reference-invariant

both theoretically and empirically, the latter of which may depend on the algorithm that is

used to optimize the reference-invariant objective function.



70

4 Summary and Discussion

4.1 Summary

Our contribution is mainly twofold. We proposed a novel method called composi-

tional graphical lasso to estimate the conditional dependence among microbes while ac-

counting for the compositionality, finite and heterogeneous sequencing depth, and high-

dimensionality of the microbiome data. Compositional graphical lasso is based on a hi-

erarchical model called logistic normal multinomial model and the microbial interaction

network is recovered by estimating a sparse inverse covariance matrix in the logistic nor-

mal distribution. Additionally, the algorithm to optimize the objective function under

this model iterates between a Newton-Raphson algorithm and the graphical lasso. We

established the theoretical convergence of the algorithm and showed that compositional

graphical lasso outperforms its competitors under various simulation settings and in an

application to the TARA Ocean eukaryotic data (Lima-Mendez et al., 2015).

Although compositional graphical lasso performs well in recovering the microbial in-

teraction network, it remains unclear how different choices of the reference taxon would

affect its resultant network. Some robustness or ideally, invariance, with respect to the

choice of the reference taxon is crucial under this framework. To this end, we further es-

tablished the reference-invariance property of a sub-network that corresponds to the non-

candidate-reference taxa. We also proposed a reference-invariant version of compositional

graphical lasso via a simple modification to the penalty in its objective function. In fact,



71

similar modifications could be applied to other graphical model based methods such as

graphical lasso. We validated the reference-invariance property of the proposed methods

through simulations and an application to the same TARA Ocean eukaryotic data.

4.2 Discussion

There are a couple of topics we’d like to discuss with respect to our proposed methods

and the directions that could be worth pursuing in the future.

4.2.1 Computation Time

Though we didn’t evaluate the runtime of compositional graphical lasso explicitly, it

is apparent that compositional graphical lasso takes more time than graphical lasso, since

it incorporates the latter as an iteration step. As mentioned in Chapter 2, we also observed

in simulations that it takes more iterations to converge in the settings that is more advan-

tageous for compositional graphical lasso than the settings where compositional graphical

lasso and graphical lasso share similar performance. However, in our experience, even

with one iteration of compositional graphical lasso, there was already significant improve-

ment in ROC curves compared to graphical lasso and neighborhood selection. In other

words, strict convergence criterion doesn’t seem to be necessary based on our experience.

On the other hand, the algorithm takes more iterations to converge when the tuning pa-

rameter is small and fewer iterations to converge when the tuning parameter is reasonably

large. In practice, a reasonably sparse network is of more interest corresponding to a rea-

sonably large tuning parameter (e.g. the tuning parameter selected by StARS). Besides,
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the Newton-Raphson part, which is in addition to graphical lasso in compositional graph-

ical lasso, is easily parallelizable. In summary, the computation time of compositional

graphical lasso doesn’t seem to be of a big concern.

4.2.2 The advantage of the ALR Transformation

One of the major differences between our work and many existing methods in the

estimation of the conditional dependence microbial networks is that we used the ALR

transformation instead of the CLR transformation, with the advantage of having a full-rank

covariance matrix and a well-defined inverse covariance matrix in the model. Most of

the previous methods get around this by imposing an L1-norm penalty to account for the

additional unknown absolute abundance parameters, while the ALR-based methods doesn’t

have such a burden. Major concerns regarding the ALR transformation lie in the robustness

of downstream analysis with different choices of the reference taxon. We hope that our

finding of the reference-invariance property has alleviated such concerns.

4.2.3 Alternative Approach

In compositional graphical lasso, we maximized the penalized joint log-likelihood

function of the latent vectors zi’s and the inverse-covariance matrix Ω, or equivalently,

the posterior distribution of zi’s given the observed data xi’s. Unfortunately, we couldn’t

establish the asymptotic property of the resulting estimator, due to the complexity of the

parameter space induced by the the latent vectors.

A possible alternative approach could be to maximize the marginal likelihood function
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of the observed data xi’s only. Such optimization may be realized by an Monte Carlo EM

(MCEM) algorithm similar to the idea described in Xia et al. (2013), which iteratively

updates the expectation of Σ given the current estimate of Ω, and then calculates Ω from

a graphical lasso step which takes the expectation of Σ as input. In reality, this proce-

dure could encounter certain difficulty, as the approximation error might be dominated by

the Monte Carlo (MC) error (Jiang, 2007). One possible rescue would be the automated

method (Booth and Hobert, 1999) that computes the suitable MC size at each iteration

of the MCEM. If the aforementioned attempt were a success, then this approach strives

to empirically compute the maximum penalized likelihood estimator. One could poten-

tially adapt the well-established asymptotic theory of maximum likelihood estimators to

investigate the theoretical properties for this estimator.
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Meinshausen, N., Bühlmann, P., et al. (2006). High-dimensional graphs and variable
selection with the lasso. The annals of statistics, 34(3):1436–1462.

Mosteller, F. and Tukey, J. W. (1968). Data analysis, including statistics. Handbook of
social psychology, 2:80–203.

Mosteller, F. and Wallace, D. L. (1963). Inference in an authorship problem: A
comparative study of discrimination methods applied to the authorship of the disputed
federalist papers. Journal of the American Statistical Association, 58(302):275–309.



77

Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., and
Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science,
336(6086):1262–1267.

Paerl, H. and Pinckney, J. (1996). A mini-review of microbial consortia: their roles in
aquatic production and biogeochemical cycling. Microbial Ecology, 31(3):225–247.

Pearson, K. (1897). On a form of spurious correlation which may arise when indices are
useed in the measurement of organs. In Royal Soc., London, Proc., volume 60, pages
489–502.

Roager, H. M., Licht, T. R., Poulsen, S. K., Larsen, T. M., and Bahl, M. I. (2014).
Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable
during a 6-month randomized controlled diet intervention with the new nordic diet.
Appl. Environ. Microbiol., 80(3):1142–1149.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics,
6(2):461–464.

Smith, P., Willemsen, D., Popkes, M., Metge, F., Gandiwa, E., Reichard, M., and
Valenzano, D. R. (2017). Regulation of life span by the gut microbiota in the
short-lived african turquoise killifish. elife, 6:e27014.

Sonnenburg, J. L. and Fischbach, M. A. (2011). Community health care: therapeutic
opportunities in the human microbiome. Science translational medicine,
3(78):78ps12–78ps12.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society: Series B (Methodological), 36(2):111–133.

Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G.,
Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A., et al. (2015). Structure and
function of the global ocean microbiome. Science, 348(6237):1261359.

Tackmann, J., Rodrigues, J. F. M., and von Mering, C. (2019). Rapid inference of direct
interactions in large-scale ecological networks from heterogeneous microbial
sequencing data. Cell systems, 9(3):286–296.

Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill,
R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., et al. (2017). A communal
catalogue reveals earth’s multiscale microbial diversity. Nature, 551(7681):457–463.



78

Tian, C., Jiang, D., and Jiang, Y. (2020). Microbial network recovery by compositional
graphical lasso. Manuscript in preparation.

Tseng, P. (2001). Convergence of a block coordinate descent method for
nondifferentiable minimization. Journal of optimization theory and applications,
109(3):475–494.

Wieder, W. R., Bonan, G. B., and Allison, S. D. (2013). Global soil carbon projections are
improved by modelling microbial processes. Nature Climate Change, 3(10):909–912.

Xia, F., Chen, J., Fung, W. K., and Li, H. (2013). A logistic normal multinomial
regression model for microbiome compositional data analysis. Biometrics,
69(4):1053–1063.

Yang, Y., Chen, N., and Chen, T. (2016). mldm: a new hierarchical bayesian statistical
model for sparse microbioal association discovery. bioRxiv, page 042630.

Yoon, G., Gaynanova, I., and Müller, C. L. (2019). Microbial networks in
spring-semi-parametric rank-based correlation and partial correlation estimation for
quantitative microbiome data. Frontiers in genetics, 10:516.

Yuan, H., He, S., and Deng, M. (2019). Compositional data network analysis via lasso
penalized d-trace loss. Bioinformatics, 35(18):3404–3411.

Yuan, M. and Lin, Y. (2007). Model selection and estimation in the gaussian graphical
model. Biometrika, 94(1):19–35.

Zhao, T., Liu, H., Roeder, K., Lafferty, J., and Wasserman, L. (2012). The huge package
for high-dimensional undirected graph estimation in r. Journal of Machine Learning
Research, 13(Apr):1059–1062.




	Introduction
	Challenges in Recovering Microbial Interactions
	Compositionality
	Finite and Heterogeneous Sequencing Depth
	High-dimensionality

	Previous Work on Microbial Interaction Networks
	Marginal Correlation Networks
	Conditional Dependence Networks

	Our Contribution

	Microbial Network Recovery by Compositional Graphical Lasso
	Abstract
	Introduction
	Compositional Graphical Lasso
	Logistic Normal Multinomial Model
	Objective Function
	Computational Algorithm
	Theoretical Convergence
	Tuning Parameter Selection

	Simulation Study
	Settings
	Results

	Real Data
	Discussion
	Appendix

	Reference-Invariance Property of Inverse Covariance Matrix Estimation Under Additive Log-Ratio Transformation and Its Application to Microbial Network Recovery
	Abstract
	Introduction
	Methodology
	Reference-Invariance Property
	Logistic Normal Multinomial Model
	Reference-Invariant Objective Function

	Simulation Study
	Settings
	Results
	Normalized Manhattan Similarity
	Jaccard Index and Normalized Hamming Similarity
	ROC Curves


	Real Data
	Discussion

	Summary and Discussion
	Summary
	Discussion
	Computation Time
	The advantage of the alr Transformation
	Alternative Approach



