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Deep learning has recently revolutionized robot perception in many canonical robotic

applications, such as autonomous driving. However, a similar transformation has yet to

occur in more harsh environments including underwater and underground. This is due

in part to the difficulty in deploying robots in these environments, which lack large

real training datasets and often necessitate the use of non-traditional sensors for deep

learning (e.g. imaging sonars and lidars). In this dissertation we demonstrate that by

explicitly accounting for the sensor noise beget by challenging environments and by

incorporating synthetic data in the training process, the power of deep learning can be

leveraged for deployment in these harsh environments.

In our first contribution we develop a framework that enables the real-time 3D re-

construction of underwater environments using features from 2D sonar images. Due to



noisy and low-resolution imagery as compared with standard cameras, accurate sonar

image analysis necessitates the explicit consideration of noise. While deep learning

by using Convolutional Neural Networks (CNNs) has been leveraged on sonar images,

previous CNN-based methods do not explicitly consider the noise (from factors such

as multi-pathing or irregular surfaces) often present in the images. In this contribution

our key insight is to use atrous convolution, which has a larger field of context than

standard convolution and is thus not misled as much by localized noise. We demon-

strate that atrous convolution, as well as human-in-the-loop feature annotation, provides

real-time reconstruction capability on datasets captured onboard our underwater vehicle

while operating in a variety of environments.

In our second contribution we remove the human from the loop and develop an

approach which leverages deep learning for a fully automated 3D underwater recon-

struction algorithm using 2D sonar images as input. Our algorithm is able to produce

accurate estimates even when common physical models break down due to phenomena

such as non-diffuse reflections. Inspired by our success in the previous contribution, we

propose the utilization of CNNs as a powerful method to extract meaningful information

without being misled by noisy data. To ensure training convergence, we also introduce

a self-supervised method that uses the physics of the sonar sensor to train the network

on real data without ground-truth information for training. Our method can produce

accurate 3D estimates given only a single image. We demonstrate that our method pro-

duces 3D reconstructions with an 80% reduction in Root Mean Square Error compared

to previous approaches, both in simulation and on real data.



We then extend this approach to leverage the series of images the robot collects

as it moves through the environment. Specifically, we develop two CNNs that take as

input multiple images captured at different points in time and output a more accurate

prediction than just using a single image as input. To our knowledge this is the first

such multi-sonar-image CNN designed for the 3D underwater reconstruction task. We

validate this extension on synthetic and real data and show up to a 5% improvement over

competing methods.

Finally, we develop an improved method for incorporating synthetic data into the

training process. This takes our previous contribution a step further by more tightly

coupling synthetic and real point cloud feature extraction. We develop an adversar-

ial training technique, which along with the standard object detection loss provides a

training signal that encourages similar feature extraction from both synthetic and real

clouds. This brings the training process closer to the preferred scenario: where the syn-

thetic point clouds contain features that are very similar to those found in the real scans.

We validate our approach in the context of the data-limited DARPA Subterranean Chal-

lenge and demonstrate that our 3D adversarial training architecture improves 3D object

detection performance by up to 15% depending on the data representation.
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Chapter 1: Introduction

Robots have the potential to monitor and inspect environments often considered too

harsh or unsafe for human intervention. For example, underwater robots can be used

to drastically reduce the cost and time associated with tasks such as ship hull inspec-

tion [34, 37] and aquatic wildlife monitoring [7]. Underground, robots can search for

survivors in scenarios where fire, smoke, or unstable structures prohibit human rescuers

from safely searching the environment [1]. Oftentimes in these harsh environments,

cameras have reduced visibility as low as five meters or less. This is due to a variety of

factors such as dust in the air or sand particulates in the water, in addition to the lack

of environmental lighting. Therefore, in this thesis we develop approaches to leverage

powerful deep learning architectures with non-traditional sensors that provide increased

visibility, namely 2D underwater sonar and 3D LiDAR.

Alternative sensing modalities such as underwater sonar, radar, or LiDARs are of-

ten used for perception tasks in harsh environments [103, 104]. These sensors provide

increased visibility up to 100 meters or more; however deploying deep learning models

for such sensors has been difficult for two primary reasons: 1) large datasets do not

exist (and are often extremely difficult to obtain) for harsh environments and 2) sensor

input is typically noisy enough to demand explicit attention. This noise can take many

forms but loosely refers to the fact that multiple sensors measurements of the same ob-

ject or environment, that should theoretically be the same, can be significantly different.
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These challenges have prevented deep learning models from being deployed in harsh

environments, precluding a perception transformation similar to that recently achieved

in terrestrial applications [85].

In applications such as autonomous driving, large corporations such as Audi [27] and

Waymo [91] have supported the generation of large datasets (on the order of hundreds of

thousands or millions of examples). However, such datasets do not exist for underwater

or underground applications. This is due in part to the unique output data structures of

these alternative sensing modalities, which limit the number of people who can label

such data. Additionally, these harsh environments are difficult and expensive to access,

often requiring specific ship time or environmental permitting accommodations to be

made.

Simulated data can be used as a supplement for real data, however a sim-to-real

gap often exists which must be addressed before deployment in the real world [76]. To

combat this lack of real data, in this thesis we develop sim-to-real and self-supervised

techniques that enable the training of deep learned models in data-limited harsh envi-

ronments. We specifically focus on improving 3D reconstruction from 2D underwater

sonar images and 3D underground object detection from LiDAR point clouds.

In addition to leveraging large real datasets, many previous deep learning approaches

are able achieve accurate results while not directly considering sensor noise. However,

such approaches are limited in harsh environments. For example, underwater sonar

images of the same object can appear very different depending on the local surface

roughness of the object, surrounding reflectors such as the seafloor, or small variations

in the pose of the robot (Fig. 1.1). Similar effects can be seen in other applications using
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(a) Cinder block
imaged

(b) High-quality
image

(c) Occlusion
occurred

(d) Environmental
noise

(e) Insonification
inconsistency

Figure 1.1: Examples of difficult-to-analyze 2D sonar images. Speckle noise, such
as in (e) is extremely difficult to physically model and makes local feature extractors
unreliable. In this thesis we develop feature extractors and architectures which take a
higher-level view than traditional methods and are less likely to be affected by such
noise.

alternative sensing such as radar for autonomous driving [104]. To better leverage the

power of deep learning in harsh environments, in this thesis we develop models that are

explicitly noise-robust.

Towards improving robotic perception capabilities in harsh environments, this the-

sis presents techniques for leveraging the power of deep learning in scenarios that lack

large-scale realistic datasets and often are very difficult to model using physical mod-

els. While we investigate underwater and underground environments specifically, such

techniques could be extended for many challenging robotic perception tasks (e.g. au-

tonomous cars operating in poor weather). Specifically, our contributions are:

1. A human-in-the-loop method that leverages deep learning for reliable 3D recon-

struction of underwater environments in scenarios where traditional feature ex-

tractors fail due to insonification inconsistencies. Our approach uses atrous con-

volution to analyze the imagery which has a larger field of view than standard
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convolution. This increased context results in a more noise-robust architecture

that overfits less to the limited training data.

2. A deep-learned architecture which removes the human from the loop and enables

automatically generating 3D underwater reconstructions. Previous methods rely

on physics-based models which become unreliable as insonification inconsisten-

cies corrupt the sonar image data. In terrestrial applications, deep learning has

shown the ability to gain a higher-level context, from training with large amounts

of data and architecture design, in making accurate predictions in spite of sensor

noise. However, leveraging deep learning for underwater 3D reconstruction has

until now not been prevalent due to the lack of large underwater 3D sonar datasets.

In this contribution we propose using synthetic data intelligently in our training

data to utilize the power of deep learning.

3. An adversarial training technique to better incorporate synthetic data for 3D ob-

ject detection networks. While mixing synthetic data into the training process en-

ables deep network deployment in environments without a lot of real-world data,

our third contribution shows that explicitly reasoning about the features extracted

from the synthetic data can improve synthetic data utilization when training deep

networks. Specifically, by training the deep network to extract similar features

from both synthetic and real data, we move the training of the network closer

to the optimal scenario of having large amounts of representative data for train-

ing. We demonstrate the efficacy of this approach on the application of 3D object
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detection in subterranean environments, where the challenging environment has

inhibited the release of large-scale datasets.

Thesis Roadmap: In Chapter 2 we discuss the background for this thesis includ-

ing the sonar imaging model, LiDAR point cloud generation, and deep learning. In

Chapter 3 we present our first contribution for enabling real-time 3D underwater recon-

structions in spite of large amounts of noise. Chapter 4 contains our second contribution

for completing dense 3D reconstructions without a human in the loop while still be-

ing noise-robust. In Chapter 5 we discuss our third contribution on better utilization of

synthetic data during deep network training for the application of 3D object detection

in subterranean point clouds. We finally conclude in Chapter 6 with a summary of our

contributions and directions for future work.
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Chapter 2: Background

We will next cover the necessary prerequisite material to guide our presentation of this

thesis. We will start with the underwater sonar 2D image formation model, then cover

generating 3D point clouds using a lidar, and finally finish with an overview of deep

learning and its applications to these sensor outputs.

2.1 Underwater Sonar Imaging Model

Turbid waters often limit the range of sensing for conventional cameras and thus under-

water 2D imaging sonars are the preferred sensing modality for underwater missions.

There are many types of 2D imaging sonars including sidescan [77], multi-beam [38],

pencil beam [113], synthetic aperture [106], and mechanically scanning [97]. In general

a multi-beam sonar, unlike the other sonar types, offers the ability to generate 2D images

very fast (often on the order of tens of Hz) by sending out and receiving multiple acoustic

beams from a single static sensor. The use of a single planar array of receiver/transmitter

units (along with techniques such as beamforming [33]) leads to several advantages for

being deployed on small underwater vehicles including: low weight, small size, and rel-

atively low cost. Due to these advantages, multi-beam sonars have been used in a variety

of previous work for underwater inspection tasks and are the sensor we will use in this

thesis [38, 43, 55]. 3D sonars do exist, however their size, cost, and slow speed of op-
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eration preclude widespread use on research-class Remotely Operated Vehicles (ROVs)

such as those used in this thesis [3].

(a) Computation of range
and elevation angle

(b) The acquisition of
bearing by emitting

multiple beams

Figure 2.1: Mapping from Euclidean to polar coordinates.

Figure 2.2: Example of a sonar image of an X-shaped object.

We next describe the sonar imaging model for multi-beam sonars. Following tradi-

tional notation, a sonar transforms a 3D point (X, Y, Z) into polar coordinates (r, θ, φ)

for range, bearing angle, and elevation angle respectively. Shown in Fig. 2.1, a multi-

beam sonar images by sending out a series of acoustic waves, each at a different bearing

angle θ and measuring both the time-of-flight r and intensity of the return I of the re-
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flected wave off of environmental objects. Importantly, the elevation angle φ (seen in

Fig. 2.1) is lost in the imaging process. Multi-beam sonar images (shown in Fig. 2.1)

therefore have pixel dimensions range and bearing. In other words, every point along

the elevation arc has the same range and bearing and thus will reflect energy that is

mapped to the same pixel in image space. The collapse of this dimension is analogous

to the collapse of the depth dimension in 2D camera images. It is therefore often the

goal of underwater 3D reconstruction algorithms to recover this missing dimension. In

this thesis we use the Tritech Gemini 720i which is a common multi-beam sonar that

has 256 beams creating a swath of 120°, a max range of 120m, and ambiguity in the

elevation dimension of 20°.

2.1.1 Lambert’s Law

To fully understand the various approaches for converting 2D underwater sonar images

into 3D representations, we now describe Lambert’s Law, which is a common technique

for modeling the image formation process. Lambert’s Law for underwater sonar as-

sumes that the reflecting object is Lambertian, meaning the reflector spreads the acoustic

energy diffusely. In the experimentally validated variant of Lambert’s Law, sonar image

intensity I depends on the angle between the acoustic wave and the surface normal of

the reflector:

I = kcos2(α) (2.1)

where k is a normalization term that accounts for factors such as distance to the reflector

(farther away objects will reflect less energy back) and α is the angle between the emit-
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ted wave and the surface normal of the reflector [6]. This formulation, has been used

in many previous works [6] and while accurate in some circumstances, is sensitive to

speckle noise and multipath reflections, as noted by the authors in [3]. As an alternative

to directly modeling the low-level noise in the sonar imaging process, in this thesis we

present deep learning approaches which are a high-level estimators and therefore less

sensitive to this noise.

2.1.2 Challenges Analyzing Underwater Sonar Images

Sonar image analysis shares some challenges with standard camera images. For exam-

ple, occlusion occurs in sonar images when part of the object cannot be reached by the

emitted sonar beam (Fig. 1.1c). However, due to the insonification process, there exist

many challenges in sonar that are not prevalent in camera imagery. At the forefront of

these challenges is insonification inconsistencies which occur for a variety of reasons

including the interference of acoustic beams [63] and the large impact on image pixel

intensities from small relative changes in pose between the sonar and object being im-

aged. Speckle noise is also prevalent in sonar images and can make the same object

look different in different images. For example, in Fig. 1.1e, even though most likely

the side of the cinder block is being imaged, a solid rectangle is not created in image

space. Environmental noise can also occur when surfaces other than the object (such

as the seafloor) reflect energy back to the sonar (e.g. Fig. 1.1d). Addressing the low

signal-to-noise ratio has been the focus of many previous works [9, 40].
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Recently, CNNs have been used to analyze sonar imagery. Kim, et al. use CNNs

to analyze sonar imagery and track the trajectory of another underwater vehicle [47].

While they are able to track this vehicle accurately, we demonstrate in Chapter 3 that

by explicitly accounting for noise in our deep network, our method is more accurately

able to analyze sonar images. Williams and Dugelay address the problem of noise in

sonar imagery by fusing together multiple views of the object of interest and using a

deep network to classify images as either containing a man-made object or a naturally

occurring rock [107]. Using techniques such as atrous convolution, in this thesis we

develop methods which do not require sets of images for noise-robust analysis.

2.1.3 3D Reconstruction from 2D Sonar Images

There are three basic 3D representations utilized for underwater reconstructions: voxel

or occupancy-based maps, meshes, and 3D pointclouds. Voxel-based approaches typ-

ically build a large discretized grid of places where sonar returns have been recorded

[5, 23, 30, 93, 97]. This is analogous to voxel-based approaches in terrestrial applica-

tions [22]. Mesh-based approaches build a consistent set of 3D points, usually using

some information about surface normals [4, 34, 66]. Finally, 3D point clouds simply

represent the object or features as a set of 3D points [20, 38, 39]. In our first contribution

we use point clouds as our final 3D reconstruction output. In our second contribution we

use 3D point clouds as the output of our CNN-based elevation angle estimator. Standard

methods such as Matlab’s trimesh function are then used to generate meshes from the

point clouds, providing a richer representation for the human operator.
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While there exist methods for using multiple sonars to generate these 3D representa-

tions [67], here we focus on single sonar formulations which can be deployed on small

inspection vehicles. For this case, broadly there are three ways to obtain an underwater

3D representation: modeling the physics of generating the 2D images, using specific

motion patterns, or assuming the object is in a certain region of the environment.

The physics-based approach shape-from-shading is a well-established method for

reconstructing surfaces by observing the impact of light on the surface [35]. This

method can be used for underwater reconstruction applications if the acoustic signal

is taken as an analogy to light and is modelled using Lambert’s Law. Using this anal-

ogy, shape-from-shading approaches typically involve jointly optimizing with respect to

image intensities (which correspond to surface normals) and consistencies among esti-

mated surface normals (the surface does not change a lot quickly). For example, Aykin

and Negahdaripour [5] use shape-from-shading to generate meshes of complex under-

water objects such as rocks and Coiras et al. [15] use shape-from-shading to build 3D

pointclouds of the seafloor.

While such approaches perform well, there do exist some drawbacks. Such ap-

proaches generally do not consider the case of multiple returns along the same elevation

arc, resulting in reconstructions that only have one reflector per elevation arc. This of

course may not always be true of the object being imaged. Additionally, speckle noise

can make shape-from-shading approaches difficult to properly converge [5]. As we will

show, the hierarchical nature of deep learning and the ability to learn from previous data

allows deep-learned models to be less sensitive to the noise that often plagues physics-

based methods.
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Using less sensitive techniques to recover the missing dimension have been achieved

using certain motion sequences. As discussed in Section 2.1, the missing dimension in

2D sonar images is the elevation angle, where the ambiguity lies roughly in an arc in

the z direction. To reduce this ambiguity, motion-based approaches often rely on roll.

For example, in [5] roll is used to create a voxel-based representation of underwater

objects. Depending on the amount of roll and observation positions, on the order of

10 roll actions per 5-10 observations poses can be necessary to recover the 3D shape.

Moving in a vertical direction, almost along the exact plane of ambiguity in sonar mea-

surements, has also been shown to resolve ambiguities in underwater reconstructions

[30]. While specific maneuvers can be made in open environments, inspecting cluttered

environments or generating 3D reconstructions in a “fly-by” scenario requires a less-

constraining method. In Chapters 3 and 4, by leveraging the representative power of

deep learning, we present methods for underwater reconstruction which do not require

specific motions in order to generate accurate reconstructions.

The third and final class of reconstruction methods presented relies on the assump-

tion of the object being in a certain region of the environment. For example, [37] as-

sumes that the imaged points lie on the plane where the elevation angle φ = 0. This

works well in their ship hull inspection application, but perhaps would not work as well

in an environment with more complex objects of interest. This particular planar assump-

tion is relaxed in [38] using factor graph optimization techniques. More general planar

assumptions have also worked well when inspecting submerged structures. For exam-

ple, while inspecting a flood gate with a very regular structure, [69], fit the 3D sonar

points to a plane to complete accurate registration across frames.



13

The reconstruction of objects sitting on the seafloor, by using the object shadow has

also been explored. For example, in [4], the length of the shadow is used to estimate

the height of the object, which is used to constrain the optimization on the object mesh.

While such approaches work well, they are of course constrained to the case where the

object lays on the seafloor. Objects such as dock pilings, moored underwater devices,

and other common objects of interest to be mapped are not on the seafloor and thus do

not project shadows. As we will show, deep networks can be trained with data of ob-

jects in the water column, which enables the accurate generation of 3D reconstructions

without the objects being constrained to being on the seafloor.

2.2 Lidar Point Cloud Generation

While cameras provide robots with a cost and weight-efficient manner to capture de-

tailed imagery, they oftentimes lack 360-degree fields of view and do not naturally out-

put 3D information. Light detection and ranging (lidar) is a sensing modality which

allows for rapid capturing of 3D environmental information on the order of hundreds of

meters.

Lidars work by sending out a set of laser beams at known angles, φi for beam i, and

measuring the time-of-flight from the sensor, to the environment, and back which gives

the range dimension r. Lidars typically spin around the upwards-facing axis giving

different bearings θ to each laser beam. This process is shown in Fig. 2.3. A typical

output of a lidar is a 3D point cloud, an example of which is shown in Fig. 2.4b.
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Figure 2.3: Lidar point cloud generation. In this example, a series of 5 laser beams (blue)
are sent out at known angles (e.g. φi) and the range to the environment is measured. The
lidar (grey) spins this set of lasers around the Z-axis to obtain 3D information about the
environment.

While point clouds generated from lidars contain detailed 3D information, the cloud

structure is very environment-dependent. Specifically, point clouds can have widely

varying local densities and number of points, depending on factors such as smoothness

of the surrounding environments and distance from the robot. These challenges, com-

bined with clouds containing 100s of thousands of points and large physical scales (on

the order of dozens of meters), motivates the need for efficient point cloud processing

algorithms.

2.3 Deep Learning

The area of deep learning has helped perception researchers achieve state-of-the-art per-

formance in a variety of robot perception tasks including object detection [48], tracking

[29], and physical interaction prediction [10] among others. Deep learning in a general

sense is the extension of neural networks by adding more layers of neurons [82]. In the

past, long training times and the lack of large open-source datasets limited the use of
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(a) Left: Forward facing image. Right: Backwards facing image with vertical brace structure
in red box, not visible due to lack of light.

(b) Side-view of point cloud data using the Velodyne VLP-16 lidar in the same environment.
Vertical brace structure (in red box) is much clearer because lidar does not rely on adequate
lighting. Robot is facing to the left in this cloud

Figure 2.4: Example of lidar providing 3D information over long ranges in visually
degraded subterranean environment.
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deep networks. Advances in GPU computing and techniques such as back-propagation

have made the training of these networks much faster. The open availability of large

datasets (e.g. KITTI [26] for autonomous driving and NYU Depth [86] for indoor map-

ping) have made the training of these networks tractable. Unlike for autonomous driving

and household scenarios, underwater and underground environments lack representative

training sets. We will show that by developing methods for intelligently utilizing simu-

lated data, deep networks can be trained and deployed in environments without a large

amount of real training data.

The simplest formulation of deep learning, the neural network, was designed as a

way to map input features to a desired output (e.g. classification or control action). The

basic building block of a neural network is a neuron. A neuron takes as input a weighted

sum of input features and applies an activation function (such as the sigmoid function)

which produces the output. In this simple formulation, a neuron can be represented as:

output = activation

(
K∑
i=1

wi ∗ xi

)
(2.2)

where K is the number of input features, w is the learned weight vector, and x is the

input feature vector. This structure is roughly inspired by neural systems in biology,

which found that certain neurons fire given certain stimuli [82].

Neural networks are layers of neurons that interact via connections where the output

of one layer is the input to the subsequent layer. These “vanilla” neural networks are

called “fully connected” because every neuron in one layer is connected to every neuron

in the subsequent layer. A single hidden-layer neural network can be defined as:
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output = Wofa(Wix+ b) (2.3)

where Wi is the input weight matrix, Wo is the output weight matrix, x is the input

feature vector, fa is the activation function, and b is the bias vector.

Intuitively, with more neurons per layer and/or more layers, more complex expres-

sions can be represented. Indeed, neural networks have been proven to be Universal

Function Approximators [36].

Learning a mapping between some input and some desired output is generally the

purpose of neural networks (also called models). Learning can be thought of as a credit

assignment problem: given some error between the desired and actual output of the net-

work, determine how much each weight contributed to this error [82]. This assignment

can be done through the well-established stochastic gradient descent (SGD) algorithm,

which approximates the gradient of the cost function and takes a small step to minimize

it. There has been significant development in devising methods for allowing computers

to utilize SGD and similar techniques effectively. For example, momentum, which dis-

courages large changes in the weight update, was developed to enable more stable con-

vergence [71]. Perhaps most important is back-propagation which leverages the chain

rule to perform gradient descent, and thus credit assignment, computationally efficiently

[79].
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2.3.1 Neural Network Models for Robot Perception

We next describe two types of neural networks widely used for robot perception, namely:

Convolutional Neural Networks (CNNs) which account for the 2D spatial nature of im-

ages and neural networks capable of handling 3D point cloud data.

2.3.1.1 Convolutional Neural Networks

In the early days of image analysis, discriminative features for tasks such as object

recognition were extracted using static hand-designed 2D filters such as Sobel filters

(which rely on image gradients) [89]. An example Sobel filter is shown in Fig. 2.5.

In the following years, perception researchers spent much time and effort designing

filters such as SIFT [58] and SURF [8] that were scale-invariant and highly descriptive.

Still, the types of features being extracted were pre-defined by the designers of these

filters. In recent years, CNNs and similar deep learning structures have provided a way

to reduce the amount of effort in feature engineering by learning filters for the extraction

of features. In a multitude of applications, this has resulted in an increase in visual task

performance [54, 90].

The atomic operation for CNNs is the sliding of a convolutional filter (or kernel) over

an input image to extract image features (such as image gradients or edges). Convolution

can be understood as the weighted sum of pixels in a region where the weights are the

coefficients in the filter. Thus, these coefficients prescribe the features to be extracted.

In this context, the output of convolution is a 2D activation image (or feature map)

containing high pixel intensities in areas where the corresponding features occur, and
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low pixel intensities where the features are absent. As an example, the filter in Fig. 2.5

will activate highly on vertical edges because the weights (positive vs. negative) are

aligned vertically. The use of 2D filters are intuitive because they exploit the inherent

2D structure present in 2D images.

The key behind a CNN is that it learns the coefficients for the filters, thus learning

the type of features to extract from an image for a given task. This learning is done very

similarly to standard neural networks discussed previously, with weight updates based

on a variant of back-propagation. Learning the coefficients on these filters provides a

concise method for training because the weights for the filters are not dependent on the

image size or location in the image (called weight-sharing). As an alternative, if we

naively vectorized the image and input it into a neural network, the number of parame-

ters to learn would grow to an intractable amount (on the order of 1 billion versus 140

million for a standard CNN).

Figure 2.5: Convolution process. The filter (center) is slid
over the original image (left) and the resulting feature map

is a sum of the element-wise products between the filter
and original image.

Figure 2.6: Max pooling
using a 2D neighborhood

In 2012, the Imagenet computer vision challenge (which includes tasks such as ob-

ject classification) was won for the first time by a CNN, named AlexNet after its creator
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Alex Krizhevsky [49]. This network is widely believed to have launched CNNs into

popularity and we will use it as a case-study in CNN architecture design.

AlexNet contains several kinds of layers including convolutional, max pooling, ac-

tivation, and normalization. Convolutional layers consist of many filters (on the order

of tens or hundreds) for sliding over the image and extracting various types of features.

Max pooling layers reduce the image size as it goes through the network by keeping

only the maximum response in a small neighborhood (typically 2x2). An example of

max pooling is shown in Fig. 2.6. This is important because smaller images, when

input into the fully connected layers at the end of these networks, reduce the number

of parameters (weight connections) to be learned. Non-linear activation layers improve

the expressibility of the network, because convolution is a linear operator. An example

activation is the Rectified Linear Unit (ReLU), which is defined as f(x) = max(0, x).

ReLU activation allows for an easy-to-compute gradient (either 0 or 1) and maintains the

attractive property of being non-linear; both of which improve training networks [49].

Finally, normalization layers such as batch normalization (developed after AlexNet but

popular today) allow for faster training by normalizing the weights in the network over

a batch of data [41].

After going through a series of convolution/pooling/activation/normalizations, the

network has a high-level representation of the image. More specifically, while the fea-

tures learned at the earlier levels may be simple edges and corners, the features learned

by the network at later levels are combinations of these edges and corners, which form

features such as eyes, mouths, or faces. In this way, such networks are considered to be
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hierarchical. Finally, at the end of AlexNet are fully connected layers. At a high level,

this allows for combinations of features to be learned.

Since AlexNet, the computer vision and deep learning communities have devised

a number of ways to improve the learning capabilities of CNNs. VGG-16 showed the

importance of a hierarchical structure by making a very deep network (16 layers) [88].

GoogLeNet introduced the Inception module which allowed for different operations

to happen to the images in parallel instead of sequentially [92]. Residual networks,

which use skip connections between early layers to later layers, have recently allowed

for networks on the order of hundreds of layers to be trained [32].

2.3.1.2 Using CNNs to Estimate the Missing Dimension

Specifically relevant to our task of 3D reconstruction underwater, CNNs have also been

used to predict the missing dimension in 2D images. To our knowledge, our method

in Chapter 4 is the first CNN used for directly estimating the missing dimension in 2D

sonar images. Therefore, we will review terrestrial applications in this section. There are

two broad groups of methods for training these CNNs: supervised and self-supervised

training schemes.

Training CNNs to predict depth from 2D RGB images in a supervised manner has

received much research attention [21, 52]. For example, Eigen et al. use a Kinect sensor

to obtain ground truth depth maps, which are used to train a CNN that achieves excellent

estimation performance [21]. Given that there is no such 3D sensor widely available for
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underwater vehicles, we are interested in methods that do not require a ground-truth

sensor to be used.

Self-supervised methods for training CNNs do not require a 3D sensor for training

[25, 110]. Instead, given an initial image, such methods estimate the pixelwise depth,

producing a predicted point cloud. A virtual image is then taken of the estimated point

cloud at a different pose. This virtual image can then be compared to an actual image at

that different pose and the pixelwise difference between the two can be used for training

[25]. To take this virtual image, bilinear sampling is used, which after defining sub-

gradients is differentiable.

Recently there have been a variety of works which use self-supervision. A distin-

guishing feature of many of these works is the manner in which the virtual image taken

in a differentiable manner (to enable training) [25, 110]. For example, Garg et al. use

a Taylor Series expansion is used to linearize around the predicted disparity and move

pixels from one image to the other [25]. 2D underwater sonar images have a different

geometry and thus such approaches cannot be used for our applications. Instead, we

develop more general methods that do not require pixel disparities to be established for

training and just use the general geometry of the sonar imaging model to train deep

networks.

2.3.1.3 Leveraging Information From Multiple Viewpoints in CNNs

While single-image CNNs have shown great promise in a variety of applications, robotics

typically gather many images in a video-like format as they traverse throughout an en-
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vironment. To leverage the potentially complementary information in these multiple

viewpoints, recent research attention has been given to multi-view CNNs, which taken

as inputs two or more images.

While there are a variety of ways to handle multi-image inputs, relevant to this thesis

are two broad techniques: early and late fusion. Early fusion involves concatenating the

set of input images in the channel dimension, creating an input that is of shape (height,

width, numimages) assuming a greyscale input [80]. While this can encode information

from multiple images with the added benefit of no structural changes to the actual CNN,

if the scene changes greatly between consecutive images, it may be difficult for a CNN

to correlate changes across images. Late fusion combats this by first extracting features

from each input image using a shared set of weights and then concatenates these features

for further processing. This has been shown to improve performance in RGB applica-

tions such as water pouring [80] and in semantic segmentation of forest environments

[95].

2.3.1.4 Processing Point Clouds Using Deep Learning

Point clouds, unlike camera images do not have a defined structure. Camera image

pixels lie on a pre-defined 2D grid while points in a point cloud can have varying local

densities which are dictated by the surrounding environment. Therefore, CNNs which

are well-suited for well-structured, dense signals, make less sense for processing point

cloud information than camera images. Specifically, the filters integral to CNNs are
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traditionally defined with respect to such a regular and 2D structure. Changing these

underlying data properties makes the use of these rigid filters much less compelling.

In spite of this, some of the first attempts to leverage the power of deep networks used

CNNs directly on point clouds [60, 56]. For example, Li used a 3D convolution to detect

cars in an autonomous driving application [56]. However, the use of such dense filters on

such a large scene limited the algorithm’s speed to 1Hz. To speed up processing while

still leveraging CNNs, methods have also been proposed which project the point cloud

into a 2D view, such as the bird’s eye view. Complex-YOLO was recently introduced

as a technique to complete object detection with orientated bounding boxes in bird’s

eye view images [87]. While such techniques work fairly well in autonomous driving

scenarios, where large objects such as cars can be seen easily from top-down views, such

methods are not appropriate for applications such as underground exploration, where

clutter and large overhangs preclude the use of a top-down projected view.

More natural than using a dense feature extractor or compressing the 3D information

is to operate directly on the points of the point clouds data. However, this precludes the

use of a traditional CNN. Instead, Qi et al. proposed an architecture called “PointNet”,

which uses series of fully connected layers operating directly on the point clouds [74,

75]. These fully connected layers along with intelligent sampling enabled a powerful

way to extract features directly from the points without compressing information or

using inefficient 3D convolutions. Recently Wu et al. proposed PointConv, a deep

network which uses fully connected networks to learn a 3D convolution operation that

is better-adapted to dealing with the varying densities of point clouds than PointNet and

PointNet++ [109].
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Armed with powerful feature extractors operating directly on 3D points, research

attention has very recently been given to completing object detection in 3D point clouds

while operating directly on the points. For our applications, the object detection problem

is: Given a set of 3D points, output a set of bounding boxes with center (x, y, z),

dimensions (length, width, height), and orientation (yaw) corresponding to the objects

of interest in the scene. To achieve this, Qi et al. proposed VoteNet [73], which uses

PointNet++ to extract feature vectors from the point cloud and uses these feature vectors

to predict an object center. Clustering around a predicted object center is then used to

predict a corresponding object bounding box.

2.3.1.5 Closing the Sim-to-Real Gap for Point Clouds

Reducing the sim-to-real gap between simulated and real point clouds has received only

a small amount of research attention. Lai and Fox demonstrated the use of synthetic

Google 3D warehouse models for detecting objects in real-world autonomous driving

scenes [51]. While they developed an accurate model, it took on the order of 80 seconds

to analyze a single scene. In this thesis we are aimed at real-time point cloud processing

on the order of 5-10 Hz. SqueezeSegV2 is an alternate approach which projects point

clouds into sets of 2D images and then learns to add realistic point intensities to synthetic

point clouds from Grand Theft Auto V [108]. While training with these added intensities

improves segmentation performance on the KITTI dataset, projecting into 2D images

may warp the input scene and inherently encourages neighboring pixels to have some

correspondence, even if they are at very different distance. In this thesis we develop
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a method for intelligently incorporating synthetic data during the training of an object

detector which operates on the raw points and is thus efficient without compressing

information.

For robot perception in harsh environments, previous work has left multiple research

gaps which we make progress towards in this dissertation. Instead of relying on spe-

cific underwater vehicle motions or relying on objects being reconstructed to be on

the seafloor, we leverage deep learning to generate accurate 3D reconstructions in more

general scenarios. We demonstrate by using the naturally hierarchical and powerful con-

struction of deep learning architectures, we are less sensitive than the previously-favored

physics-based methods for generating 3D reconstructions. We also demonstrate that by

intelligently incorporating synthetic data into the training process, deep networks can be

trained for use in harsh environments with limited amounts of training data. These ideas

cut across applications as we show the efficacy of using synthetic data both underwater

and underground.
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Chapter 3: Real-Time Underwater 3D Reconstruction Using Global

Context

In Chapter 2 we outlined the state-of-the-art in 3D underwater reconstruction from 2D

sonar images. One large research gap identified was the sensitivity of previous methods

to the noise present in sonar images. In this chapter we present a novel deep network

for analyzing noisy underwater sonar images, which leverages atrous convolution for

more noise-robust image analysis. We compare to architectures that do not build in

such noise-robust provisions and demonstrate that by explicitly considering noise, our

method is more accurate at detecting useful images for 3D reconstruction.

Because of the large amounts of noise in sonar imagery, human input is often neces-

sary to hand-select features in sonar imagery when completing environment reconstruc-

tions [38]. Specifically in this contribution we look at 3D point cloud reconstructions

of the point features from underwater sonar images. The high framerate of imaging

sonars, on the order of 20Hz, precludes such methods from generating reconstructions

in real-time. In this chapter we present a CNN which enables a framework for produc-

ing accurate and real-time reconstructions. Our key insight for the CNN is the use of

atrous convolution, which has a greater field of view than standard convolutional fil-

ters and thus makes the network better at overcoming the noise present in underwater

sonar images. We show that by leveraging the power of deep learning while explicitly
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incorporating noise-robust atrous convolution, we can generate faster and more accurate

reconstructions than previous methods in a variety of environments. 1

The 3D reconstruction of underwater environments has proven useful in a variety

of applications, including ship hull inspection and underwater surveying tasks [37, 44].

As we have seen, sonar image noise comes in a variety of forms and strains image

processing algorithms. One such example is multipath returns which occur when the

projected beam completes a sequence of reflections other than simply to the object and

back to the sonar (e.g., from the sonar to the seafloor, to the object, and then back to the

sonar). Due to the increased length of time for the reflected wave to arrive back at the

sonar, these reflections are often imaged at a range beyond the object. This can result in

an image similar to Fig. 3.1b, where the horizontal component of the X appears thicker,

due to delayed reflections from multipath reflections. Non-diffuse or specular reflection

occurs when an object is smooth and fails to reflect the beam back in the direction it was

emitted from. An example of this can be seen in Fig. 3.7i, where only the corners of the

triangle are shown and the flat top surface does not return energy back to the sonar.

The substantial amount of noise present in sonar images is problematic for two rea-

sons. First, noise will often corrupt an image so much that analyzing it further would

waste time and computational resources. Our method provides a way to spend these

resources more efficiently by only providing quality imagery to perception algorithms.

Second, noise combined with the low-resolution of sonar imagery hampers the develop-

1We note that this work was published in a paper co-authored with A. Nicolai in R. DeBortoli, A.
Nicolai, F. Li, and G. Hollinger, ”Realtime underwater 3D reconstruction using global context and active
labeling,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Aus-
tralia, May 2018, pp. 6204-6211. This thesis is concerned mainly with the image processing and atrous
convolution aspect of the work.
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(a) Frame with well-defined features (infor-
mative)

(b) Frame with object lacking well-defined
features (non-informative)

Figure 3.1: Examples of informative (a human can confidently identify features) and
non-informative frames while inspecting a target in the shape of an X. The sub-image
in both figures is a camera image of the X shaped target that is insonified. In (a) fea-
ture correspondences (red) can be made between the camera image and sonar features
(green). In our experiments we found on average only about 39% of the captured frames
to be informative.

ment of an automatic feature extractor for sonar images. For example, feature extractors

that use image gradients would incorrectly attempt to extract features from the gradients

present in Fig. 3.1b.

The lack of an automatic feature extractor for sonar images has often necessitated

human annotation of the features for 3D reconstructions [38]. Due to the high data rate

of imaging sonars (on the order of 20 Hz) humans cannot annotate the frames in real-

time. Additionally, we show that naively sub-sampling the data (to allow for real-time

annotation) does not result in high-quality reconstructions because noise corrupts many

of the images sampled.

The need for human annotation creates a long delay between data collection and en-

vironment reconstruction. To eliminate this delay and enable real-time reconstruction,

we develop a method to recognize and propose only informative frames to the human
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(a) Dilation rate of 1 (b) Dilation rate of 4

Figure 3.2: Example of traditional 3x3 filter (left) and a 3x3 dilated filter (right). The
dilated filter uses a larger neighborhood, which compensates for the lack of strong local
features in sonar imagery.

for annotation. We define an informative image as one that contains a set of clear and

distinguishing features for environment reconstruction (as seen in Fig. 3.1a). This au-

tomatic identification, which is done in real-time, allows for a small set of frames to be

presented to the operator. This set is small enough to be annotated in real-time.

To identify informative images in noisy and low-resolution sonar imagery we use

dilated filters (e.g. Fig. 3.2b) in the atrous convolution architecture, previously used

in the computer vision community for image segmentation tasks [13, 114]. Such filters

use a large neighborhood of context in analyzing low-resolution and noise-filled sonar

images.

We also focus on an approach that is flexible. Given the difficulty in obtaining and

labeling sonar imagery, we pay special attention to not overfitting to the objects we train

with. This is done by using the context afforded by dilated filters. To demonstrate this,

we conduct experiments on imagery of objects not seen in the training set. We thus

show that our approach is useful in the mapping or inspecting of objects not recorded in

sonar previously.
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In summary, for this first contribution we present a novel framework for underwater

3D reconstruction that:

• Automatically selects informative frames for an operator to annotate features, en-

abling the real-time reconstruction of underwater environments where the features

must be manually selected.

• Utilizes the atrous convolution architecture to classify sonar images where fea-

tures are often not well-defined or well-localized.

• Identifies objects not seen in the training set with a higher average precision than

previous approaches.

We validate this framework on real sonar imagery containing a variety of objects in

different environments.

The remainder of this chapter is organized as follows. We first discuss related work

in underwater Structure From Motion in Section 3.1. We then discuss the reconstruction

formulation in Section 3.2 and our method in Section 3.3. Next, we present our exper-

iments and their results in Section 3.4. We conclude and propose areas for future work

in Section 3.5. We note that this work appeared previously in [19], [20], and [53].
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3.1 Background

3.1.1 Underwater Acoustic Structure From Motion

There has been much previous work in the area of using an imaging sonar for under-

water 3D environment reconstruction. One popular approach in solving the underwater

SLAM problem involves feature correspondence between pairs of sonar images. Hover

et al. extract features from sonar images by clustering points in the image with large gra-

dients [37]. A Normal Distribution Transform (NDT) is used for image registration, and

the vehicle trajectory is optimized using a pose-graph. However, due to the unknown

elevation angle of sonar image features, a planar assumption is used and the points are

projected into the same plane as the vehicle. While this may work well for environments

with large objects (e.g., sea floor, ship hull), this assumption is broken in more complex

and unstructured environments.

The Acoustic Structure From Motion (ASFM) method proposed by Huang and Kaess

provides two main advantages over other approaches [38]. First, ASFM relaxes the pla-

nar assumption for projecting sonar features into 3D. Second, their approach is capable

of utilizing more than single pairs of sonar images to reconstruct 3D points. They for-

mulate the reconstruction as a factor graph optimization problem. With the assumption

of Gaussian noise, this can be formulated as a nonlinear least-squares problem. The fac-

tor graph is initialized by setting the sonar feature’s unknown elevation angle to 0. Their

proposed algorithm searches over a tree of potential feature correspondences, similar

to Joint Compatibility Branch and Bound [64]. We leverage this work here to perform

automatic feature correspondence and 3D reconstructions from hand annotated images.
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We contribute a complementary framework for analyzing incoming imagery to allow for

the human to select the features in real-time.

3.2 Reconstruction Formulation

We formulate the Acoustic Structure From Motion (ASFM) problem using a factor

graph as proposed by Huang and Kaess [38]. An overview of the process is provided

here, with a graphical representation shown in Fig. 3.3. For full details, please refer to

[38, 45].

In formulating the reconstruction objective, we seek to find the maximal probability

set of poses, Θ = {bi, lj}, and observations, Z = {ui,mk}, where bi is a robot pose,

lj is a landmark, ui is a navigation measurement, and mk is a landmark measurement.

Assuming Gaussian noise, this can be formulated as a nonlinear least-squares problem:

Θ∗ = argmin
Θ,Z

[ ‖b0‖2
Λ +

M∑
k=1

‖h(bi, lj)−mk‖2
Ξk

+
N∑
i=1

‖g(bi, bi−1)− ui‖2
Λi

] ,

(3.1)

where ‖b‖2
Σ = bTΣ−1b is the Mahalanobis distance squared and M and N are the num-

ber of sensor and odometry measurements respectively. The sensor model is defined

as h(bi, lj) + N (0,Ξk) and the odometry model is defined as g(bi, bi−1) + N (0,Λi),

where Ξk is the variance of sensor measurement k and Λi is the variance in odometry

measurement i.
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Figure 3.3: Factor graph representation. l, m, b, and u are the landmark positions,
landmark measurements, robot pose, and navigation measurements respectively. The
landmarks are hand-labeled features in sonar images (green dots in Fig. 3.1a).

In this formulation, there are six unknowns (x, y, z, α, β, γ) for every pose and three

unknowns (x, y, z) for every landmark where α, β, and γ are the roll, pitch, and yaw

respectively. With all landmarks visible from every pose, fixing the first frame yields a

fully constrained system iff: 6(n − 1) + 3m ≤ 2mn, where n is the number of robot

poses andm is the number of landmarks in the factor graph. Rearranging this, we derive

n, the number of frames necessary for reconstruction, to be

n ≥ 3m− 6

2m− 6
. (3.2)

While this formulation is well-suited to the reconstruction process, it does not di-

rectly support performing these reconstructions in real time. In developing such a solu-

tion, we introduce an image proposal system which gives a human operator a small set

of frames containing information useful for reconstruction.
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3.3 Method

3.3.1 Proposing Informative Frames

To select informative frames automatically we leverage the atrous convolution architec-

ture. We motivate and briefly summarize our approach here, which first appeared in our

prior workshop paper [19].

Due to the lack of strong local features in sonar images, the CNN method of an-

alyzing sonar imagery can be greatly improved by using dilated filters (shown in Fig.

3.2b). Dilated filters use the same number of pixels as a standard filter; however because

they are distributed, they can alleviate the effects of noise and low-resolution in sonar

images.

The ability to ignore and not overfit to local features also improves the transfer learn-

ing capabilities in identifying informative sonar images. That is, given an image of an

object not seen in training data, the atrous CNN is able to classify informative images

with a higher average precision than a standard CNN or frequency-component based

method. This ability is particularly attractive when using an underwater sonar, where

there is a lack of training data as compared with terrestrial environments, and various

sources of noise make similar looking objects appear different in sonar imagery.

3.3.2 Architecture Choice

To determine the appropriate architecture for configuring these dilated filters for use

in analyzing sonar imagery, we test multiple architecture configurations and parameter
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choices. Full details of our selection process can be found in our workshop paper; a

summary is below [19].

For the general architecture choice we evaluated three approaches. The first is simi-

lar to a normal CNN except the convolutional layers beyond the first have dilated filters

instead of standard filters. This is inspired by Yu and Koltun, who use this configuration

of dilated filters for dense prediction in image segmentation tasks [114]. The second

pretrains two networks: one a standard CNN, the other an atrous network. The dense

layers are then popped off of each and combined into a single dense layer for training

again. This is meant to capture the expressibility of CNNs with the generalization capa-

bilities of atrous networks. Finally, we test an architecture that uses filters of different

dilation rates in the same layer. This is inspired by Chen, et al. who use this configu-

ration for semantic image segmentation [13]. We complete a full parameter sweep on

each architecture, including number of layers, number of filters, kernel size, dilation

rate, and dense layer size. Average precision was used as the metric for comparing each

architecture and parameter configuration, defined as:

AP =
∑
n

(Rn −Rn−1)Pn (3.3)

where Pn and Rn are the precision and recall respectively at the nth detection threshold.

To implement this metric computation, we use the scikit-learn average precision score

function [70]. To account for variability in initialization, the results for each were aver-

aged over 20 runs. We found the architecture in Fig. 3.4 to achieve the highest average

precision. Due to the large dilation rate, this network starts to extract non-local features
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as early as the second convolutional layer. We note that when describing features that

the network extracts these are not necessarily the same as what a human would extract

(e.g. points) but rather features the CNN derives based on the data it is given. The use

of atrous filters allows the chosen network to avoid overfitting to local patterns in the

training set and has better generalization capabilities.

Figure 3.4: The atrous convolutional network used. The parameters and filter configu-
ration were tuned by testing discrete options.

3.3.3 Frame Proposal Process

We treat the real-time frame proposal problem as a single-shot information-greedy se-

lection. That is, every time a frame is proposed to the human operator, the most in-

formative frame is selected from the set of candidate frames, max(ninfo) ∈ N . The

informativeness, ninfo, of a frame is determined directly from the sigmoid output of our

atrous convolution based deep network [19].

The set of candidate frames at any given time, N , is determined by two factors:

ninfo and the time since the last frame proposal, tmotion. Frame ni is added to the set of
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candidate frames, N ∪ {ni} if:

ninfo ≥ Tinfo

tmotion ≥ Tmotion.

(3.4)

The threshold Tinfo allows for the tradeoff between frame information quality and

frame quantity. The threshold Tmotion is tuned to allow for view diversity while consid-

ering potential vehicle motion and sonar field-of-view.

Frames are proposed to the human operator sequentially as soon as the labeling of the

previous frame is complete. When a frame is proposed, the set of candidate frames, N ,

is cleared. Frame proposal stops when either an appropriate number of frames, Nthresh,

have been labeled or the data stream ends (e.g., the deployment concludes).

Once a frame is proposed, the human operator selects the features to be reconstructed

by simply clicking on the image. We found this usually involved a small number of

features (3-6), which allowed for fast feature selection and reconstruction. An example

of selected features for the “X” shaped object are shown as green dots in Fig. 3.1a. An

interesting avenue for future work is the investigation of the effects of the experience or

training of the human labeler. We note that given the simplicity of the task, we do not

expect large variations across annotators.

3.3.4 Threshold Tuning

We set the threshold for proposal, Tinfo at 0.99. As demonstrated in Eq. 3.2, with

objects having on the order of five features, often less than ten frames are needed to
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Figure 3.5: Selection of the appropriate number of frames to use for reconstructions. For
both validation data (blue line) as well as test data (red line) five frames is at a “knee”
point as increasing to six frames gives only a marginal benefit.

complete reconstructions. In these cases it is more beneficial to be selective in choosing

frames (high threshold) rather than finding many informative frames. Experimentally

this threshold provided more than enough frames to complete the reconstruction.

To determine Nthresh, we evaluated the reconstruction error for annotated set sizes

of n (the minimum number of frames for reconstruction) to 2n + 1. To obtain the

average and variance on the sum squared reconstruction error (SSE) we use a set of data

containing 7 proposed frames. From this set we test all of the combinations of frames

for each annotated set size. These combinations are given by
(

2n+1
k

)
where 2n + 1 = 7

and k = {3, 4, 5, 6}. The same validation data used in completing the parameter sweep

for the atrous network was used. As seen in Fig. 3.5, we find Nthresh = 5 to provide

enough frames for a low reconstruction error/variance, with minor benefits increasing

the set size to 6.
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For the experiments we set Tmotion = 2 sec. This threshold provided view diversity

while allowing the objects of interest to remain in the sonar field-of-view. It also allowed

the human operator to annotate each frame in real-time.

3.3.5 Reconstruction Process

Inspired by Huang and Kaess, initial landmark locations in the factor graph are calcu-

lated by setting the elevation angle φ to 0. The nonlinear least-squares problem is then

optimized via iterative linearization using the Levenberg-Marquardt (LM) algorithm.

3.4 Experiments and Results

To demonstrate the capability of our framework to complete accurate reconstructions

in real-time, we ran three experiments on real sonar data played back offline. The first

shows the transfer learning capabilities of our atrous network when tested on imagery

of objects not seen in training. In the second experiment, we show that we select an

appropriate number of frames for our reconstruction. That is, we choose enough to fully

constrain the optimization but do not propose many superfluous frames. Finally, the

third experiment shows that our proposal method chooses a subset of frames that enable

real-time reconstructions with errors lower than comparison methods.

Throughout each test we maintain a real-time property by ensuring that at the end

of a given experiment, our algorithm has output the reconstructed shape. Experiments

1 and 2 are used only for analyzing components of our process and are thus not timed.
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Figure 3.6: The Seabotix vLBV300 and Gemini 720i imaging sonar (designated by the
white rectangle in the lower right).

Experiment 3 mimics a deployment and thus in Section 3.4.3.3 we provide runtime from

start to finish of our process. For completeness we provide average numbers for each

component of our system. Our CNN processes images in 18.1±0.8 ms (55.2±2.41 Hz).

We found that a human operator annotated images of the X object in 2.63 ± 0.231 sec.

Finally, the factor graph bundle adjustment process took on average 77.1± 9.4 ms.

3.4.1 System Overview

For our experiments we use a Tritech Gemini 720i multi-beam sonar onboard a tethered

Seabotix vLBV300 Remotely Operated Vehicle (shown in Fig. 3.6).

The Gemini 720i is a standard multi-beam imaging sonar with similar parameters

to the SoundMetrics DIDSON, BlueView M900-90, and the Aris Explorer 3000, all of

which have been used in previous work [38, 55, 43]. It operates at 720kHz, images a

120° swath horizontally, has a maximum range of 120 m, and produces images at 20Hz.
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This data rate, combined with noise from a variety of sources, creates a situation in

which the human operator is presented with a large number of frames, many of which

will not be useful.

Our vehicle is also equipped with a Doppler Velocity Log and Inertial Navigation

System which we use for pose estimates in the factor graph mapping scheme. The ve-

hicle’s tether provides continual power as well as data transmission back to an offboard

computer which can be used to analyze sonar imagery in real-time. The use of standard

underwater sensors demonstrates our approach can be deployed on a variety of platforms

for real-time underwater reconstructions.

3.4.2 Dataset Overview

In this work we use four datasets captured onboard our vehicle while it operated in a

variety of environments. Each dataset was collected in a passive manner, meaning each

dataset is a single contiguous video stream captured while our vehicle moved through

underwater environments. The content and number of informative frames varied across

datasets and is summarized in Table 3.1.

In dataset X1 we collect a set of 5000 frames of the X shaped object (Fig. 3.7a) in

the Oregon State University pool. In dataset X2 we collect 1107 frames of the same X

object in the same environment on a different date. In dataset Multi we collect a set

of 5000 frames containing insonified imagery of the X, Square, Triangle, and T-shaped

objects (Figs. 3.7a-3.7d) in the pool. This dataset contains images with just a single

object in addition to images containing multiple objects. Finally, in dataset Cinder we
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Table 3.1: Summary of the datasets

Dataset Total number of frames Percent informative frames
X1 5000 36%
X2 1107 56%

Multi 5000 39%
Cinder 1470 42%

Note: An informative frame is one in which a human operator can
clearly identify an object and its features in the sonar image.

capture 1470 frames of a cinder block target (Fig. 3.7e) in Yaquina Bay, Newport, OR.

While in this work we use representative shapes for the underwater domain (resembling

objects such as underwater moorings) an interesting avenue for future work involves the

use of our architecture on more complex shapes.

The binary ground truth label (informative or non-informative) is obtained by having

an expert evaluate if each image contains enough well-defined features to clearly identify

the object. For example, simply seeing two lines intersect does not identify one of

the five targets; however observing three well defined lines that each meet in an acute

fashion clearly defines the triangle object seen in Fig. 3.7d.

Throughout the three experiments we train primarily using datasetsX1 andX2 (both

only containing data of the X target in Fig. 3.7a). 1000 frames of the Multi dataset are

used as validation data for the tuning of parameters.

3.4.3 Experiments

We conduct three experiments to demonstrate that our framework selects informative

subsets of images thus enabling real-time reconstructions. In the first experiment we test
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(a) X target (b) Square target (c) T target (d) Triangle target (e) Cinder block
target

(f) X in sonar (g) Square in
sonar

(h) T in sonar (i) Triangle in
sonar

(j) Cinder block
in sonar

Figure 3.7: Each target and its representation in sonar image space. (a)-(d) are images
taken from the vehicle underwater. As a note, in Fig. 3.7j the second long side of the
cinder block has been occluded.

using 4000 frames of the Multi dataset (the remaining 1000 frames were used as vali-

dation data). In Experiment 2 we use these same frames as well as the Cinder dataset.

In Experiment 3, we only use data from the Cinder dataset. Unless stated otherwise,

test data for each experiment contains imagery of objects not trained on, thus demon-

strating the flexibility or lack thereof of each approach examined. This also serves to

demonstrate the performance of our approach when trained prior to deployments.

3.4.3.1 Validating the transfer learning capabilities of our atrous network

In the first experiment we show that our model is able to identify objects not in the

training set with a higher average precision than baseline methods. We are able to do

this while also classifying objects seen in the training set with precision comparable
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to baseline methods. This ability is a result of our atrous network, which balances the

power of standard convolutional architectures with the more global context afforded by

dilated filters.

We compare against three baselines. The first is the Discrete Cosine Transform

(DCT) method of global analysis. Defined for pixels m,n of an image A of size M ×N

as:

Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Amncos
π(2m+ 1)p

2M
cos

π(2n+ 1)q

2N
, (3.5)

where

αp =

{
1√
M
, p = 0√

2
M
, 1 ≤ p ≤M − 1

(3.6)

αq =

{
1√
N
, q = 0√

2
N
, 1 ≤ q ≤ N − 1 ,

(3.7)

and Bpq is the coefficient on the basis cosine function defined by the constant p and q

[59]. The resulting coefficients represent the frequency components contained in the

image, which can be used to separate noisy images from those with more complex ge-

ometries. We complete this classification with the use of a Support Vector Machine

using the frequency components as the input data. This method is natural for sonar im-

agery because it takes a global image analysis approach to imagery with poorly-defined

features. The second baseline is the approach taken by Kim, et al. (called “two-layer

CNN”) [47]. The third and final baseline is a network we developed inspired by Kim,

et. al that contains an additional convolutional layer (called “three-layer CNN”).
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We compare the four approaches in three scenarios, the results of which are shown

in Table 3.2. The first scenario allows each classifier to train with 600 frames of multi-

object data (called “seeding”). The test data contains imagery of each of the four objects

in Figs. 3.7a-3.7d (including the X). These results show that the DCT method of global

analysis is not expressive enough to capture the features present in both the training and

test data. The two and three-layer CNNs, as well as our method, all perform similarly.

The second scenario still seeds the training of the models, but the test data no longer

contains imagery of the X object. We find that our model outperforms the others, which

is expected because dilated filters capture a larger neighborhood of influence than local-

ized filters.

Finally, in the third scenario, true transfer learning is evaluated. The models are not

given imagery of any object but the X to train on and the test set only contains imagery

of the Triangle, Square, and T shaped objects. In this scenario we find that our model

significantly outperforms other methods, which is intuitive as dilated filters give a nice

balance between the power of deep learning based methods and the larger context of

global evaluation methods. As demonstrated in the first scenario, this does not come at

the cost of performing worse than baselines in the case where the test data is similar to

the training data.

3.4.3.2 Choosing the appropriate number of frames to propose

In the second experiment, we show that our method proposes an appropriate number of

frames. That is, our method achieves lower reconstruction error than using the minimum
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Table 3.2: Average precision for baselines and our method

Avg. Precision
Method Seeding Seeding No Seeding

X present No X No X
DCT [59] 0.57±0.01 0.55±0.02 0.48±0.02

Two-layer CNN [47] 0.69±0.04 0.58±0.05 0.42±0.04
Three-layer CNN 0.70±0.05 0.64±0.04 0.42±0.03

Atrous Convolution (ours) 0.72±0.02 0.68±0.03 0.54±0.04

number of frames to fully constrain the reconstruction (n) as well as achieving compa-

rable performance to reconstructions that use a large number of frames (2n). Given the

lack of global ground truth coordinates, known object dimensions are used to compute

the reconstruction error.

The results of this experiment can be seen in Fig. 3.5. As expected, increasing the

number of frames used in the reconstruction decreases the reconstruction error. When

only using the minimum number of frames required, n, we can see that on average

the reconstruction has both the highest sum squared error (SSE) as well as the highest

variance. At five frames in both plots we observe a “knee” point, where increasing the

size to six gives only marginal benefit.

3.4.3.3 Demonstrating the ability of our network to select informative

subsets

In the third experiment, we demonstrate the ability for our method to select informative

frames and operate more efficiently than standard baselines. For this experiment we use

a subset of 400 contiguous frames. The results of this experiment can be seen in Table



48

3.3. Statistical bounds have been provided for the comparison to [39] due to the random

nature of frame proposals in this baseline. These bounds were found averaging over 5

runs.

The first baseline we compare against is naively presenting the user with every frame

for annotation. We note that this method requires the human operator to annotate every

frame and thus cannot be completed in real-time. The large amount of error is due

to the fact that many poor quality frames are annotated by the user. Such large error

demonstrates the low-quality of many of the images, which do not contain enough clear

features to be annotated by the human.

The second baseline we test is proposing every informative frame to the user for

annotation. The informativeness of a frame is determined by the sigmoid output of our

atrous CNN. This baseline achieves a reconstruction error similar to that of our method;

however we note that it cannot be run in real-time. The low reconstruction error is

expected because the labeled images are all informative frames.

In the third baseline, we naively subsample all frames at an even interval to only

present the human operator with the same number of frames as our method. This is

equivalent to naively reducing the data rate to allow for real-time labeling. While this

allows for real-time performance, we can see that the reconstruction error achieved is

poor. This is due to the fact that without first assessing a frame’s informativeness, poor

quality frames are still presented to the user.

The fourth baseline allows us to compare against a method inspired by the state-

of-the-art in underwater reconstruction [39]. In this previous work, Huang and Kaess

perform automatic data association between annotated frames to determine whether or
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Table 3.3: Evaluation of our reconstruction framework

Method Number of
frames proposed

Reconstruction
SSE (cm2)

Every frame 400 8761.9
Every informative frame 167 16.37

Naive subsampling 5 71.239
Huang and Kaess [39] 6.93±1.91 18.42±6.47

Atrous proposal system (ours) 5 13.12±3.72

not all annotated feature points can be associated. If they cannot, the frame is rejected

and not used for reconstruction purposes. To extend this approach and enable real-time

reconstructions, we randomly select frames to propose to the human operator. If an

association exists between the annotated feature points, the frame is used in the recon-

struction. If not, it is discarded and another is proposed. The proposal process runs until

the minimum number of frames required, n, have been successfully annotated. While

this method is able to achieve high quality reconstructions, the reconstruction error is

both higher and more variable than our method. This is due to the fact that only the min-

imum number of frames required are used in the reconstruction process. We also note

that since frames are not evaluated before proposal, this baseline typically proposes a

larger number of frames than our method.

The last row of the table presents the results of our method. We note that we achieve

the lowest average reconstruction error and variability, while simultaneously proposing

the lowest number of sonar frames to the user. This low reconstruction error is achieved

while using Nthresh = 5 frames. We also maintain real-time performance during the

20 second experiment. Our method, from start to finish, took on average 14.88 ± 0.49

seconds to complete.
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Figure 3.8: The vehicle and reconstruction of the cinder block in the RViz simulation
environment. Our method outputs the red dots (chosen as features by the operator) and
the gray section was extrapolated.

3.5 Conclusion

In this chapter, we presented a novel framework that enables accurate underwater 3D

reconstructions to be generated in real-time and overcome the large amounts of noise

present in sonar imagery. We achieve this functionality by identifying a small subset

of informative frames for the human to annotate. Through experiments on real sonar

images we show our atrous network outperformed other classifiers in identifying infor-

mative frames for proposal. We also experimentally validate the ability of our network

to derive non-local features to complete transfer learning.

By validating the benefits of atrous convolution for sonar image analysis, we demon-

strated that to perform perception tasks in harsh environments, it is beneficial to ex-

plicitly account for the sensor noise present in alternative sensing modalities. We also

demonstrated that the speed of deep learning can enable real-time 3D underwater recon-
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structions. In the next chapter we will develop techniques for removing the human from

the loop and allowing them to focus on more high-level mission objectives.
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Chapter 4: Fully Automated Real-Time Underwater 3D Reconstruction

In our first contribution we demonstrated the power of deep learning in being a noise-

robust image analysis tool for 3D underwater reconstruction with a human-in-the-loop.

In our next contribution, we propose an alternative approach that enables the human

to be removed from the reconstruction process and focus on higher-level mission objec-

tives. We propose the use of a deep network as a powerful and noise-robust estimator for

completing 3D reconstructions. Specifically in this contribution we address the problem

of dense 3D reconstruction, that is, for every pixel in the 2D underwater sonar image,

output an estimate of its location in the 3D world. Our approach generates estimates at a

pixel level and thus avoids the use of shape priors or explicitly detecting the shape. We

note that our approach does not dismiss the benefits of atrous convolution demonstrated

in the next section, but rather provides an alternative solution to being noise robust. An

interesting future research direction would be to combine atrous filters with our dense

reconstruction approach presented in this chapter.

Removing the human from the loop forces the deep network to complete more of the

reconstruction task, which consequently requires more data for training convergence.

Unlike in terrestrial applications, such as autonomous driving, training data for under-

water reconstructions is extremely scarce. Therefore in this contribution, our key insight
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is to intelligently incorporate synthetic data and the physics of the sonar sensor into the

training process. 1

4.1 Background

In spite of the advantages of 2D imaging sonars, including long-range visibility, low

weight, and fast data capture, the use of such sensors for 3D reconstruction has been

limited due to difficulties in recovering the missing dimension, the elevation angle, from

2D sonar images. These difficulties often stem from the poor signal-to-noise ratio in

these images, which is often much lower than standard camera imagery. This makes

the development of an inverse sensor model and tasks such as feature association very

difficult [3, 102]. There has been a variety of previous work attempting to estimate the

elevation angle from these images, including using priors in the environment such as the

shadow of the object on the seafloor [6] or moving the vehicle in specific ways around

the object to reduce ambiguity in the elevation angle dimension [5, 30]. While these

methods provide high-quality reconstructions in specific applications, they do not cover

the case where the object is in the water column (and no shadow is produced) and the

vehicle can only traverse around the object in a constrained manner, as would be the

case in a cluttered environment.

These drawbacks constrain the speed of producing 3D maps and thus limit the use-

fulness of sonar-equipped underwater vehicles. Our method is a first step towards a

1This work initially appeared in our prior conference paper: R. DeBortoli, L. Fuxin, and G. Hollinger,
”ElevateNet: A convolutional neural network for estimating the missing dimension in 2D underwater
sonar images,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau,
China, Nov. 2019.
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Figure 4.1: Inputs and outputs for ElevateNet. ElevateNet takes in 2D sonar images
(left) and produces pixelwise estimates of the elevation angle. The network can be
trained in a fully supervised manner when ground truth information is available, as is
the case with synthetic data. Our method can also train in a self-supervised manner on
real sonar images, where ground truth information is not available.

more flexible approach to providing dense reconstructions, to enable “fly-through” mis-

sions where a robot only has to traverse quickly through the environment to construct a

3D map.

In contrast to the difficulties in underwater applications, terrestrial applications have

seen an abundance of methods for obtaining the missing depth dimension from 2D RGB

images [21, 25]. In many recent works, CNNs have proven to be a powerful method

to obtain high-quality depth estimates. These methods can even be trained in a self-

supervised manner, meaning they do not require a ground truth estimate of depth in

order to be trained [25]. This is an attractive property for our application, where ground

truth information is often unavailable. Self-supervision in terrestrial applications is done

by using one image of a scene to generate a depth estimate. This estimate is then used

to produce an image of the scene from a different viewpoint [25]. An actual image of

that scene from that different viewpoint can then be used to compute an error and train
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the network. The intuition is that if the depth estimate from the first frame is accurate,

the predicted image will also be accurate, and vice-versa.

To enable self-supervision, many RGB-based methods rely on well-established the-

ory, such as pixel disparities and the stereo vision model, to stabilize the training of the

network. Such theory does not exist in a general form for underwater sonar images, and

thus we propose an approach that does not require these sensor properties for model

training.

In this work, we propose a self-supervised CNN for generating estimates of the

elevation angle in 2D sonar images. We first propose a method which takes as input

a single sonar image and produces and elevation angle estimate. We then propose an

extension that can leverage the information contained in multiple input images taken at

different viewpoints to produce more accurate elevation angle estimates. In contrast to

previous approaches for estimating the elevation angle, which rely on sensitive physical

models or many views taken at specific poses, we use a CNN as the backbone for this

work to obtain a higher-level representation of the image and avoid being misled by

large amounts of noise.

To train our network, we present a self-supervised method that uses real sonar data.

To do this, we leverage the physics of the sensor to predict the next frame and thus

enable the training process. Before training on real data we pre-train the model using

synthetic data, which provides two benefits. First, it allows us to train a network using

only a small amount of real data, which is often scarce for underwater sonar imagery.

Second, because this is an under-constrained problem (multiple estimates can lead to
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the same image), training on synthetic data puts the CNN in an appropriate part of the

parameter space. Fine tuning is then done using real data.

To our knowledge, ours is the first method for training a network on real underwater

sonar data to predict the pixelwise elevation angle. As we show, by allowing the net-

work to train on real data, it is able to better account for the noise in real imagery, thus

improving 3D reconstruction ability in the real world. Fig. 4.1 shows an overview of

our method named “ElevateNet”.

In short, in this contribution we develop:

• A novel CNN for generating dense reconstructions of underwater environments

from a single sonar image. Our approach does not require the object to be in a

specific part of the environment or specific traversals around the object.

• A self-supervised training scheme that uses the physics of the sonar sensor to

enable training on real data without ground truth elevation angle information.

• Two multi-view extensions to ElevateNet each leveraging the additional informa-

tion provided by multi-image inputs to produce more accurate elevation angle

estimates than its single-view counterpart.

4.2 Elevation Angle Estimates from a Single Viewpoint

We first describe our single-view approach, called ElevateNet, for estimating the missing

elevation angle given a single 2D underwater sonar image. In this section we develop a
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CNN and training architecture which produces accurate 3D reconstructions and which

becomes the basis for our multi-view approach described in Section 4.3.

4.2.1 Methods

We now discuss our architecture, describe how we train on synthetic data, and finally

outline an extension for training with real data. For notation, we denote the learned part

of the CNN (Fig. 4.2a) as the model and the process by which to incorporate real data

(Fig. 4.2b) as the architecture.

4.2.1.1 Model

We first discuss the model, shown in Fig. 4.2a. Our network takes in a 2D sonar image

and outputs an elevation angle estimate for every pixel in the image. To facilitate train-

ing, we treat the estimation as a classification and not a regression problem. Thus, we

discretize the elevation angle into 20 bins over the range from −10°to 10°. Because we

are completing a pixelwise classification, we adopt a network architecture similar to the

U-Net CNN for pixelwise prediction tasks [78].

At this point, the model can be trained on synthetic data where we have ground truth

information. However, because synthetic data does not capture all sources of noise, it

would be beneficial to train using real sonar images as well.
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(a) Learned part of ElevateNet. C = Convolution/Batch normalization/ReLU layer. DC = De-
convolutional layers. C(a,b,c) are number of filters, output image width, output image height
respectively for a convolutional layer.

ElevateNetLClass

Synthetic Training Real Training
Synthetic

sonar

image

Ground

truth

elev. map

Real input

sonar 

image (I1)

Next sonar

image (I2)

Output elev. 

map Elevpred

Predicted next

image (I2')

LPhoto

W
ar

p

(b) Training methods for ElevateNet. Training on synthetic data (left loop) can be done by
directly comparing the output with the ground truth elevation map. Training on real data (right
loop) uses the output to predict the next image and a photometric loss is applied between the
prediction and the actual next sonar image.

Figure 4.2: Our overall model architecture. (a) shows detailed model parameters of
ElevateNet which can be used directly on synthetic data. (b) presents the two training
methods used (on synthetic and real data, respectively). Note that the dotted box in both
Fig. (a) and (b) represents the same model.
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4.2.1.2 Architecture

To incorporate real data into the training process, we present a method that predicts the

next frame given the current frame and the estimated elevation map. This process is

shown in the right loop of Fig. 4.2b. To start, the output elevation map from the model

(Elevpred) is a polar point cloud with coordinates (R, θ, φ) or range, bearing, elevation

angle respectively. We convert this into Cartesian coordinates using the transformation

for a polar point (R, θ, φ):

Xc = R cosφ sin θ, (4.1)

Yc = R cosφ cos θ, (4.2)

Zc = R sinφ, (4.3)

where (Xc, Yc, Zc) are the Cartesian coordinates of the point, R is the range to the point

from the sonar, φ is the elevation angle to the point, and θ is the bearing to the point.

We denote the resulting point cloud as Pest. We then take a simulated sonar im-

age of Pest from the reference frame of the next image I2 (also called image warping).

This produces a predicted image I ′2. To produce the simulated sonar image we use the

differentiable bilinear sampling module by Jaderberg et al. [42].

This predicted image can then be compared pixelwise to the actual image I2. This

difference is called the photometric loss and can be used to train the model. The intuition

behind this is that an accurate estimate of the elevation angle will lead to an accurate
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estimate of the next frame and vice versa. In this manner we embed the physics of the

sonar sensor into the training process.

4.2.1.3 Training with Synthetic Data

We first train our model with synthetic data because we have the ability to generate large

amounts of training data, and the ground truth elevation maps provide a clear training

signal. We used a weighted cross entropy loss function (as implemented in PyTorch

[68]) where we weight pixels with sonar returns 5x more than those without returns. We

term this the LClass loss. Because the ground truth elevation map is such a strong signal,

we did not find self-supervision to help when training on synthetic data.

To choose the best model based on synthetic data, we complete a parameter sweep

over the number of layers, filter size, number of filters, learning rate, and batch size. We

found the number of elevation bins did not affect performance greatly. We trained each

model in the sweep for 120 epochs. We found a batch size of 9, a filter size of 5x5, and

a learning rate of 1E-03 to achieve the lowest validation loss. The final model and its

parameters can be seen in Fig. 4.2a.

4.2.1.4 Training with Real Data

After training with synthetic data, the model can be fine-tuned on real data, which im-

proves its performance by adjusting to realistic noise. By integrating the physics of the
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sonar sensor into the training process, we are able to train without ground truth elevation

maps.

For training on real data, we use a photometric loss, defined as:

Lossphotometric =
Y∑
i=0

X∑
j=0

M |I ′2[i, j]− I2[i, j]| , (4.4)

where M is a scaling coefficient (to be on the same order as the synthetic loss) and

X and Y are the image width and height respectively. We found M = 14 to bring the

reconstruction loss to the same order as the synthetic loss. This loss function allows for

training in a self-supervised manner, which is necessary for real data where we do not

have ground truth elevation angle information.

4.2.2 Experiments and Results

In this section we first demonstrate that our approach produces more accurate elevation

angle estimates and 3D reconstructions than baseline methods in simulation. Finally,

we demonstrate that training on real-world underwater data enables more accurate 3D

reconstructions on real data. In this contribution’s experiments we use the same Seabotix

vLBV300 vehicle as our first contribution; an overview of which can be found in Chapter

3.4.1.

In all of our experiments we test the approaches in runs where only part of the object

is visible. This is motivated by applications where the vehicle must operate in a cluttered

environment, or is only completing a “fly-through” mapping mission. Therefore, the
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reconstructions estimated are over the part of the object actually seen, not the entire

object.

4.2.2.1 Performance on Synthetic Data

We first describe the generation of our synthetic dataset and then show that we estimate

the pixelwise elevation angle accurately. We then validate that these accurate estimations

lead to more accurate 3D reconstructions.

Synthetic dataset We generate synthetic data using the simulator by Cerqueira et al.

which models the same Tritech Gemini 720i sonar on our vehicle [11]. We generate a

dataset of 8454 synthetic images of spheres, cylinders, and cubes which are often the

shapes of underwater objects of interest (e.g. mines, pipes, etc.) [61, 105]. The sphere

has a radius of 19 cm, the cylinder has a radius of 5 cm and height 10 cm, and the cube

a side length of 30 cm.

We take care to avoid overfitting in our training set by imaging objects at a variety of

poses and from a variety of ranges. We also take images with varying maximum ranges

(from 1-5 meters).

From the simulator we get images of size 600x256 pixels. Images are downsam-

pled to 304x128 pixels and normalized before being fed into the network. Images are

normalized according to:

In = (I − µ)/σ, (4.5)
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where In is the normalized image, I is the original image and µ and σ are the mean and

standard deviation of the dataset respectively.

We break up the dataset into 75% for training, 15% for validation and 10% for test.

We ensure that the test data contains images of all three shapes (sphere, cylinder, cube).

The network is then trained according to the procedure described in Section 4.2.1.3.

Evaluating pixelwise error We first show that our method can produce more accurate

elevation maps than competing methods. We compare against two baselines. The first,

Predrandom predicts a random elevation angle for every pixel. This baseline gives a

sense of the overall amount of ambiguity in the elevation dimension. The next baseline

is Predzero, which predicts an elevation angle equal to zero for all of the pixels in the

image. We do not compare against physics-based methods because oftentimes they

require an environmental prior (such as the shadow of an object lying on the seafloor)

and thus are not applicable to the general case of an object in the water column [6].

For our performance metric we use the Mean Absolute Error (MAE) in elevation

angle estimation. To give context to this error, we convert the error into meters, thus

resulting in the final reported metric, defined as:

MAE =
1

|N |
∑
n∈N

|rn sin(φp,n − φt,n)|, (4.6)

where N is the set of pixels whose elevation angles are estimated and rn, φp,n, and φt,n

are the range, predicted elevation angle, and ground truth elevation angle to point n.

To give insight towards the ability for our method to extend to views unseen, we

compare each method across subsets of data, each with vehicle poses at varying amounts
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Table 4.1: Synthetic Pixelwise Elevation Angle MAE (m)

Entire test set Sphere
Min. dist. to

training ex. (cm) <10 10-20 20-30 <10 10-20 20-30

Predrandom 0.160 0.170 0.180 0.200 0.190 0.183
Predzero 0.114 0.112 0.120 0.140 0.120 0.114

CNN (ours) 0.087 0.105 0.120 0.100 0.110 0.126

Cube Cylinder
Min. dist. to

training ex. (cm) <10 10-20 20-30 <10 10-20 20-30

Predrandom 0.213 0.211 0.206 0.0673 0.068 0.187
Predzero 0.145 0.135 0.135 0.0527 0.0545 0.146

CNN (ours) 0.105 0.109 0.105 0.0635 0.0657 0.186

of distance away from the training set. Specifically, for each shape we generate 3 sub-

sets: one with poses greater than 0 and < 0.1 m away from the closest training example,

one with poses in the range 0.1-0.2 m to the closest training example, and finally a set

with poses 0.2-0.3 m away from the closest training example.

The results can be seen in Table 4.1. Over the entire test set, our method performs

well, reaching errors below 0.1 m when the poses are near training data. Naturally, as

the poses become increasingly further away from the training set, our method performs

worse, but still achieves results competitive with or better than baselines.

For the sphere, our method performs well when the test poses are close to the training

data. Interestingly, it maintains its performance even up to 0.2 m away from any training

pose. As the test data gets far away from the training data, Predzero performs better,

suggesting that we are starting to observe the object closer to the φ = 0 plane.
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Our low error on the cube demonstrates the ability for our method to perform well

on simple objects. Even as we move into test views that are far away from any given

training view (up to 0.3 m difference), our method still outperforms competing methods

by a large margin.

Finally, we find that our method is unable to beat the Predzero baseline on the cylin-

der. Further analysis suggests that the network appears to confuse the cylinder with a

cube and thus predicts a plane instead of a curved surface. The reasoning for this could

be that the cylinder and cube objects (Figs. 4.3e and 4.3f) look very similar in image

space.

Synthetic 3D Reconstruction Results We next demonstrate that our method can pro-

duce high-quality reconstructions using the estimated elevation maps. We compare our

method and the Predzero baseline on their 3D reconstruction abilities in a manner simi-

lar to previous work [5]. For brevity, we do not include results from Predrandom.

In this experiment we also add the aforementioned state-of-the-art space carving

method proposed by Aykin and Negahdaripour [5]. While this method relies on multi-

ple views, it is to our knowledge the only method for dense reconstruction that does not

require an environmental prior (e.g. shadow on the seafloor) to compute a reconstruc-

tion. To ensure this method is working on our data, we test it on images of the sphere

taken from a variety of views and roll angles, to ensure convergence. We note that this

set of viewpoints is not indicative of the rapid mapping scenario targeted in our exper-

iments. We achieve an RMSE of 0.021 m which is the same order of magnitude as the

results presented in the original paper and is thus representative of a working method.
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(a) Sphere target (b) Cube target (c) Cylinder target

(d) Sphere image (e) Cube image (f) Cylinder image

(g) Reconstruction
of sphere [5]

(h) Reconstruction
of cube [5]

(i) Reconstruction
of cylinder [5]

(j) Reconstruction
of sphere (zero)

(k) Reconstruction
of cube (zero)

(l) Reconstruction
of cylinder (zero)

(m) Reconstruction
of sphere (ours)

(n) Reconstruction
of cube (ours)

(o) Reconstruction
of cylinder (ours)

Figure 4.3: The synthetic sonar targets (a)-(c), their respective synthetic sonar
images(d)-(f), and the reconstructed meshes (g)-(o) from a small subset of images. For
Figs. 4.3g-4.3o, the ground truth meshes are blue and the predicted meshes are red. The
predicted mesh in Fig. 4.3k is small, but is in the upper right corner of the image. In
these experiments, only part of the ground truth objects are seen and thus the predicted
meshes should only cover one part of the object. For the sphere and cube, our method is
uniquely able to capture the shape of the object being imaged. The CNN confuses the
cylinder for a cube and thus predicts a vertical plane.
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Because a single view does not offer much coverage over the entire object, we use

20 views of the object to generate a mesh for each method. We note generated meshes

are for visualization purposes only and quantitative metrics for comparing methods are

computed over point cloud representations only. From these limited viewpoints entire

coverage of the object may not still be attained and thus the generated meshes are only

over a portion of the ground truth objects. This highlights the ability of our method to

generate estimates even when a diverse set of views are not possible.

We first compare the methods qualitatively. The output of Predzero and our approach

is a 3D pointcloud with dimensions range, bearing, elevation. To generate meshes from

pixel based estimates we use the standard Matlab trimesh function. The results can be

seen in Figs. 4.3g-4.3o. Across all three shapes, the space carving method is unable to

see the entire object, and thus there is a lot of ambiguity in the region behind the ob-

ject (which is un-observable from a limited number of views). Predzero is only able to

predict planar meshes and thus for the sphere and cube especially, the resulting recon-

structions bear no resemblance to the ground truth shape. For the cylinder, some views

may have been at different z-coordinates and thus the mesh produced by Predzero was

built over planes of varying height.

Our method does well on the sphere and cube estimation, producing meshes that lie

on the ground truth surface. For the cylinder, we see results that agree with the elevation

angle prediction results previously mentioned. Due to the similarity of the cube and

cylinder in image space, the CNN most likely predicts the cylinder to be a cube and thus

predicts a vertical plane.
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Table 4.2: Synthetic Reconstruction RMSE Results (m)

Sphere Cube Cylinder
Space carving method [5] 1.09 1.05 0.815

Predrandom 0.115 0.160 0.070
CNN (ours) 0.022 0.020 0.068

To compare each method quantitatively, we use the Root Mean Square Error (RMSE)

between the two point clouds. To generate a ground truth point cloud we sample the

surface of the ground truth CAD model uniformly. To compute point correspondences

nearest-neighbor search is used. Because we have the ground truth object pose, we do

not apply any affine transformation to any point cloud in this section. Our results can

be seen in Table 4.2. As can be seen in Figs. 4.3j-4.3l, Predzero only is able to produce

planar estimations and does not generate accurate estimations. Therefore, we do not

include it in the quantitative comparisons.

Intuitively, because our method can predict the shapes of the sphere and cube well,

it scores best on that object. The space carving method is unable to see the object

from many viewpoints, and thus a large amount of ambiguity in its estimation remains.

For the cylinder, the results agree with the qualitative analysis, with our method likely

confusing the cylinder for the cube and thus producing a planar object.

4.2.2.2 Performance on Real Data

Finally, we demonstrate that our self-supervised method of training produces more ac-

curate 3D reconstructions than just training on synthetic data or doing space carving. We

first describe the dataset generated. Then, we describe how fine tuning on real data not
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only allows our method to predict the next frame better, but also generate more accurate

3D reconstructions than competing methods.

Real Dataset For this experiment we use underwater sonar imagery captured in Yaquina

Bay, Newport, OR. We constructed concrete sonar targets to be imaged for dataset gen-

eration (Figs. 4.4a-4.4b) using Quikrete concrete mix. The sphere has radius 19 cm, the

cylinder radius 5 cm and height 10 cm, and the cube side length of 29 cm. We note that

variations in size between the simulated and real datasets were due to the mold sizes

available for constructing the real targets. To capture the images, we drove around the

objects at varying poses and ranges (on the order of 2-5 m) and captured images with

different maximum ranges.

A human expert first hand-labels captured images as high or low-quality, and we

use the high-quality images in our dataset. An automatic method, such as our previous

contribution using a CNN, could be incorporated in the future [20]. We then resize im-

ages to 304x128 pixels and normalize according to Eq. 4.5. The final dataset contained

4,667 images with a 40% /30% /30% split for concrete spheres, cylinders, and cubes

respectively. Real image examples can be seen in Figs. 4.4d-4.4e.

For training and final testing, we break up the dataset into 70% for training, 15%

for validation and 15% for test. To ensure independence between validation and testing,

the test set contains data from a separate deployment (same day) as the training and

validation data.

During training on real data, we investigated the effects of the training schedule

(what epochs to train with real or synthetic data). We found that training for 15 epochs
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(a) Real sphere target (b) Real cube target (c) Real cylinder target

(d) Real sphere image (e) Real cube image (f) Real cylinder image

(g) Reconstruction of
sphere Aykin [5]

(h) Reconstruction of
cube Aykin [5]

(i) Reconstruction of
cylinder Aykin [5]

(j) Reconstruction of
sphere (ourssyn)

(k)
Reconstruction of cube
(ourssyn)

(l) Reconstruction of
cylinder (ourssyn)

(m) Reconstruction of
sphere (oursreal)

(n) Reconstruction of
cube (oursreal)

(o) Reconstruction of
cylinder (oursreal)

Figure 4.4: The real sonar targets (a)-(c), their respective sonar images (d)-(f), and the
reconstructed meshes using Aykin [5] (g)-(i), our model without real training (j)-(l) and
with real training (m)-(o). For the meshes, ground truth is in blue and estimated meshes
are in red. Because we only see part of the object, our estimated reconstructions are
over only a part of the ground truth object. For the sphere and cube our model is able to
capture the shape of the object given only a limited number of views.
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of synthetic data was enough to start pre-training, and then alternated between 5 epochs

of real training and 2 epochs of synthetic training for the remainder of the process (total

of 120 epochs). To choose the best model for performance on real data, we complete a

parameter sweep over the parameters listed previously in Section 4.2.1.3 for synthetic

data, as well as the step size (temporal difference between I2 and I ′2) and the training

schedule. We chose the final model based on evaluation of the photometric loss on real

validation data. The final model had all of the same parameters as the synthetic model

(Fig. 4.2a) except for the filter size, which was 3x3 for this case. The step size found to

perform the best on validation data was 15 frames. The network was then trained using

an initial learning rate of 1E-05 which halved every 50 epochs, the Adam optimizer, and

a batch size of 9. Training was done using the procedure described in Section 4.2.1.4.

Evaluating Next Frame Prediction We first tested our architecture’s ability to predict

the next frame. We compare with the same two baselines as before: Predrandom and

Predzero. Intuitively, as we learn to produce elevation maps more accurately, from both

synthetic and real data, our ability to predict the next frame improves. Table 4.3 shows

our results. As shown in Eq. 4.4, we scale the photometric loss to be roughly the same

as the synthetic loss; consequently the photometric loss is unitless.

Real 3D Reconstruction Results Finally, we demonstrate that our CNN-based ap-

proaches produce more accurate reconstructions than competing methods and training

on real data produces better 3D reconstruction estimates. For each shape we gener-

ate reconstructions from 10 random subsets of 2 images. Because we do not know the
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Table 4.3: Evaluation of predicting the next frame

Photometric loss (unitless)
Predrandom 1.92
Predzero 2.01

CNN (oursreal) 1.80

Table 4.4: 3D reconstruction accuracy on real data

RMSE (cm)
Sphere Cube Cylinder

Space carving [5] 14.8±0.25 17.96±0.18 42.2±0.42
CNN (ourssyn) 3.57±0.23 3.26±0.10 6.53±0.91
CNN (oursreal) 3.14±0.29∗ 3.09±0.23∗ 6.64±0.87

* = Statistically significant with p-value <0.05

ground truth location of the real object, point clouds are first manually hand-aligned

to a ground truth model using a rigid transform. Then Iterative Closest Point (ICP) is

run and the RMSE is computed using the MATLAB pcregrigid library. We note that

because we do not know the ground truth location of the object being imaged, metrics

comparing position/orientation estimates are not appropriate for our task. We increased

the MaximumIterations parameter from 25 to 500 and left all other parameters default.

In addition to the space carving baseline [5] from before, we also wanted to examine

the benefit of fine tuning the network by training with real data. Thus, we compare our

method only trained on synthetic data (ourssyn) to our method trained on synthetic data

and then fine tuned with real images (oursreal).

We present the mean and standard deviations from the 10 subsets for each shape in

Table 4.4. For each shape, we run a t-test to compute the statistical significance of a
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difference existing between the means of ourssyn and oursreal. Our CNN approaches

reduce the ambiguity given only a limited number of views when compared to the space

carving baseline. Fine-tuning with real data produces more accurate meshes than just

training with synthetic data for the sphere and cube because the network can adjust to

the difference between real and synthetic data. For the cylinder, both CNN methods

predict a vertical plane, suggesting that the confusion between the cube and cylinder

from the synthetic training remains.

Qualitative reconstruction results are shown in Fig. 4.4. Similar to the synthetic

case, our CNN-based approaches allow us to capture the shape of the sphere and cube

much more accurately than the space carving baseline. For the cylinder, our results

mirror the synthetic case where the CNNs likely get confused between the cylinder and

cube and produce more planar surfaces than the cylinders being imaged.

There are interesting qualitative differences between ourssyn and oursreal. For the

sphere, oursreal better captures the curved shape of the sphere. While estimating the

cube surface, ourssyn produces a variety of surface shapes. Shown here is what would

be expected from training on the synthetic data: a vertical surface. Interestingly, oursreal

produces many “corner” shaped objects shown in Fig. 4.4n. This makes sense because

many of the real images of the cube, including Fig. 4.4e, are of the corner of the cube.

This is indicated by the horizontal band in the middle of the image, where no reflections

come back to the sensor.
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4.3 Elevation Angle Estimates from Multiple Viewpoints

While we demonstrated that a single-image input to ElevateNet could produce accurate

reconstructions, as the robot traverses the environment, it is collecting images continu-

ously that could potentially have complementary information. In other robotic applica-

tions, incorporating multiple frames as input into deep learning models has been shown

to improve estimation abilities over just using a single frame. For example, Schenck

and Fox use a multi-frame RGB CNN to improve liquid detection performance during a

robotic liquid pouring task [80].

Underwater, we find a similar high-level scenario: as the robot traverses the envi-

ronment and collects information, different images can provide complementary infor-

mation. For example, in Fig. 4.5 we can see that different images taken at different

poses have different overall pixel intensities, suggesting the object being imaged is at

a certain location in the environment. However, different than applications using RGB

images, there is a distinct lack of training data available for 2D underwater sonar images.

Therefore, in this section we leverage the ElevateNet architecture for training and

develop approaches to leverage the additional information contained in multi-view in-

puts to produce more accurate 3D underwater reconstructions. We first describe our two

approaches, the training approach for each, and finally our results on simulated and real

sonar data.
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(a) Image of sphere
object

(b) Sphere away from
center of elevation arc

(c) Sphere close to
center of elevation arc

Figure 4.5: Intuition for leveraging multiple frames. In Fig. 4.5b the sphere does have
strong returns in the image, indicating that the object is not near the center of elevation
angle arc. In Fig. 4.5c the sphere shows up very strong in the image, indicating that that
object is near the center of the elevation arc. Known poses between these images can
help to reduce ambiguities in the elevation angle estimation.

4.3.1 Methods

In this section we first describe an extension to ElevateNet called Multi-View Multi-

Channel (MVMC) ElevateNet which only adapts the model input format and keeps the

overall model structure very similar. We then describe an extension called Multi-View

Late-Fusion (MV-LateFusion) ElevateNet which adapts both the input data format and

the actual model architecture.

4.3.1.1 Multi-View Multi-Channel Inputs

Given the success of the ElevateNet model architecture on 3D reconstructions, we first

present a method that keeps the overall model structure the same and augments the only

the input data format. To incorporate the information from multiple images, we take

the images from different times and viewpoints and stack them together into a multi-

channel input. Thus, while ElevateNet takes inputs of shape (height, width, 1), our
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MVMC approach takes inputs of shape (height, width, num images) where num images

is a parameter that can be tuned during training. We note that each image is spaced

evenly step size timesteps apart, where 1 timestep is 1/20 seconds.

An overview of our MVMC approach can be seen in Fig. 4.6a. This approach only

requires the concatenation of input images, making it simple to implement and avoids

complex model structures which may be difficult to implement or may overfit.

4.3.1.2 Multi-View Late-Fusion Network

Previous work has demonstrated that in applications working primarily with RGB im-

ages, late-fusion, or extracting images features from individual images before combin-

ing the feature, achieves better performance than just channel stacking the images. In-

spired by these benefits shown in ther applications, we develop a Multi-View Late-

Fusion (MV-LateFusion) adaptation of ElevateNet.

An overview of our MV-LateFusion approach is shown in Fig, 4.6b. Each input

image is first passed through a series input convolution blocks after which the features

are concatenated, processed further by convolutional block, and finally upsampled to

produce an elevation angle estimation.

4.3.2 Multi-View Training Process

We next describe the overall training process for both the MVMC and MV-LateFusion

models on synthetic and real data. We note that at a high-level the overall training
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(a) MVMC model. C = Convolution/Batch normalization/ReLU layer. DC = Deconvolutional
layers. C(a,b,c) are number of filters, output image width, output image height respectively for
a convolutional layer.

(b) Multi-View Late Fusion Model. C = Convolution/Batch normalization/ReLU layer. DC
= Deconvolutional layers. C(a,b,c) are number of filters, output image width, output image
height respectively for a convolutional layer.

Figure 4.6: Our two proposed multi-view models. In the top figure, the overall MVMC
model structure is very similar to ElevateNet, with the only large difference being the
input data being a 3-channel image. In the bottom figure one can see the structural dif-
ferences between MV-LateFusion as compared with the standard ElevateNet approach.
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process is similar to that of ElevateNet (Sections 4.2.1.3 and 4.2.1.4) and therefore we

focus mostly on the differences between the single and multi-view training processes.

4.3.2.1 Training with Synthetic Data

We start the training process by using synthetic data which has ground truth elevation

angle information available, which provides a strong training signal. To compute a

loss function and enable training, we designate one of the ground truth images from

the set of input image/ground truth elevation map pairs to be used as the goal of the

final prediction. We denote this ground truth elevation map Elevk where 0 ≤ k ≤

num images. In practice we used k = num images/2 so there is image information

both before and after the time of estimation. For both the MVMC and MV-LateFusion

loss functions we use the L1 difference between the predicted and real elevation maps,

defined as

Losssyn =
Y∑
i=0

X∑
j=0

|Elev′k[i, j]− Elevk[i, j]| , (4.7)

whereElevk is the ground truth elevation map andElev′k is the predicted elevation map,

and X and Y are the image height and width respectively. We note that we found the L1

loss function to achieve better validation accuracy than the cross entropy loss function

used in SV-ElevateNet.

For both MVMC and MV-LateFusion we completed a parameter sweep over the

batch size, learning rate, filter size, number of convolutional layers, pooling method,

input image size, number of layers and num images values. For both MVMC and
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MV-LateFusion we found a learning rate of 5E-4, filter size of 3x3, batch size of 128,

num images of 3, stepsize of 5, input image size of 304x256 and 2x2 average pooling to

work best on validation data. It is interesting to note that we experimented with larger

and deeper networks, but this did not improve performance, which is intuitive given

the low resolution of underwater sonar images. The final parameter choices for model

structure are presented in Fig. 4.6.

4.3.2.2 Training with Real Data

Due to the high-levels of noise present in real underwater sonar imagery, we also train

with real data. We follow the same overall training architecture as in ElevateNet (Fig.

4.2b) where we first use synthetic data for num syn only epochs to bring the model into

an appropriate part of the parameter space, and then alternate real and synthetic training.

While training with real data there is no ground truth elevation angle information and

therefore we once again use the L1 difference between the predicted next image (I ′2) and

the actual next image (I2) where I2 is an image step size real timesteps away from the

current input.

Once again we completed a parameter sweep over the batch size, learning rate, filter

size, number of convolutional layers, pooling method, step size real and num images

values. We trained each model for 300 epochs or until convergence, whichever came

later. For MVMCreal (i.e. the MVMC architecture trained with synthetic and real data)

we found a step size real value of 9 and a num syn only value of 20 to work best and

all other major parameter choices matching that of MVMCsyn. For MV-LateFusion we
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found all major parameter choices to be the same as MVMC except for the weight decay

term which we set to 0.2. This high value was required due to the high-potential for

overfitting by this model. As with ElevateNet, we multiplied the real loss by a constant

to bring it to the same scale as the synthetic loss, in this case that value was 8.

4.3.3 Experiments and Results

We next validate our proposed multi-view approaches on real and synthetic data. We

note that we use and model the same Seabotix vLBV300 system with a Tritech Gemini

720i that was described in the single-view ElevateNet section (Section 3.4.1).

4.3.3.1 Performance on Synthetic Data

We first discuss the generation of our synthetic data, which differs from our earlier

single-view work. We then demonstrate that our multi-view approaches are capable

of generating more accurate pixel-level elevation angle estimations and resulting 3D

reconstructions in simulation.

Simulated dataset Different than our earlier single-view work, for this extension we

use a new Gazebo-based simulator by Choi et al. [14]2 which is capable of modeling

acoustic signal transmission, different object surface properties, and signal loss through

reflections and multi-pathing. We chose this package because unlike the previous Rock-

based simulator, the integration with Gazebo and ROS enabled us to more easily see the

2https://github.com/Field-Robotics-Lab/dave/wiki/Multibeam-Forward-Looking-Sonar
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trajectories taken by the robot in simulation, thus allowing us to more easily develop a

dataset of diverse viewpoints and trajectories. The use of such a ubiquitous framework

will also allow others to more easily utilize or improve on our synthetic dataset in the

future.

Other than the simulator choice, the high-level dataset details are similar to our ear-

lier work. We model three shapes: a sphere of radius of 19 cm, a cylinder with a radius of

5 cm and height 10 cm, and a cube a side length of 30 cm. We generated data by taking

diverse trajectories around the object and imaging at different poses at different ranges

from 1-5 m. In total we generated 7284, 7636, and 6036 images for the sphere, cube,

and cylinder respectively. These sets were split roughly 50/20/30 for the train/val/test

sets. Examples of the simulated objects and their respective simulated sonar images can

be found in Figs. 4.7a - 4.7f.

Pixelwise Elevation Angle Estimation We next evaluate the use of incorporating the

information from multiple viewpoints in the elevation angle estimation process. We

compare against three baselines: Predrandom predicts a random elevation angle for every

pixel which gives an overall idea of the ambiguity of the space, Predzero predicts the

mean (zero) elevation angle for every pixel, and our previous ElevateNet work (SV-

ElevateNet) which only uses a single input image [18] .

We follow a similar evaluation process as in Section 4.2.2.1: differences between the

predicted and ground truth elevation angle are converted to a height difference to give

more context to the metric and each method is evaluated in terms of Mean Absolute

Error (MAE) between the predicted and ground truth heights in a pixel-wise manner.
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Table 4.5: Synthetic Pixelwise Elevation Angle MAE (cm)

Sphere Cube Cylinder All
Predrandom 15.5 15.8 14.7 15.6
Predzero 9.5 10.5 8.5 9.9

SV-ElevateNet [18] 9.13 8.65 8.50 8.81
MV-LateFusion (proposed) 8.56 8.92 6.85 8.59

MVMC (proposed) 8.56 8.79 6.75 8.52

The results are shown in Table 4.5 and overall are intuitive. Predrandom and Predzero

are unable to achieve a low error due to their inability to leverage contextual informa-

tion to make an informed estimate. SV-ElevateNet achieves a much lower error than

the previous two approaches, but is not able to beat the multi-view methods in any cate-

gory except for the cube, which has the simplest geometry. It is interesting to note that

MVMC beats or is competitive with MV-LateFusion for all of the objects. This is possi-

bly due to the increased complexity of MV-LateFusion leading to worse generalization

ability on the test set. Overall, MVMC is the best performing method, validating that

the additional information contained in multiple images is useful for the elevation angle

prediction task.

Synthetic 3D Reconstruction Results Next, we evaluate our proposed approach on

its ability to generate 3D reconstructions of the object being imaged. We compare with

two baselines including SV-ElevateNet and a more recent work by Wang et al. called

Acoustic to Front-View Network (A2FNet) [101]. A2FNet takes a different approach

than estimating the missing elevation angle and instead attempts to train a CNN to trans-

form the 2D sonar image into the front depth-view of the object being imaged. The ben-

efit of this approach is that it is not affected by the non-bijective nature of the elevation



83

angle estimation (i.e. multiple reflectors can reflect energy to the same pixel in sonar

image space).

To compare against this approach we utilize the open-source version of this model 3

which we tuned to perform well on our dataset. One key difference in our tuning was to

add a weight decay term of 0.05 to help alleviate overfitting. We also found just using

the L1 difference for a training loss did not work very well because much of the desired

output image consistns of pixels with value 0 and therefore the network output did not

contain any pixels besides those of depth 0. To avoid this we weighted pixels that should

have a non-zero depth 100x higher than those that should have depth equal to 0.

To generate depth data for training this network in simulation, we used the depth

cameras from the same simulator described previously. To generate more realistic data

we used the CycleGAN network4 used for style transfer in the original A2FNet paper. To

verify that our version of A2FNet was well-tuned, we tested our model on their dataset

and achieved a Mean Average Error of 2.7 cm which is even less than their reported

3.3 cm.

To compute quantitative metrics we generate a single 3D reconstruction for every

simulated deployment. For each object we have 5 simulated deployments which involve

trajectories around the object of interest at various ranges (between 1 and 5 m.) and

poses. Similar to our ElevateNet work earlier, we compute the Root Mean Squared Error

(RMSE) between the generated point cloud and a ground truth CAD model. Results for

every shape are then averaged over the 5 simulated deployments.

3https://github.com/sollynoay/A2FNet
4https://github.com/junyanz/CycleGAN
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Table 4.6: Synthetic Reconstruction RMSE (cm)

Sphere Cube Cylinder
A2FNet [101] 11.88±3.63 12.11±3.27 16.49±3.82

SV-ElevateNet [18] 5.47±1.64 4.60±1.73 5.76±1.85
MV-LateFusion (proposed) 5.07±2.09 4.52±1.67 4.15±1.81

MVMC (proposed) 5.05±1.97 4.45±1.53 3.69±1.89

The results for our multi-view methods and the comparison methods are shown in

Table 4.6. It is interesting to note that A2FNet achieves the highest error of all methods

being evaluated. This could be due to the fact that it is completing a much more com-

plex task (image prediction) as compared to our ElevateNet-based approaches (pixelwise

classification) and thus is more susceptible to overfitting. Once again our MVMC is the

most accurate, producing reconstructions with the lowest RMSE. This is intuitive given

the extra information it can leverage over the single-view and the relative simplicity over

the MV-LateFusion method, which may be more prone to overfitting.

Qualitative results showing 3D reconstructions from every method are shown in Fig.

4.7. The generated meshes are from a single “deployment” or traversal around the shape

and thus we may not see every part of the object and are aiming for a partial reconstruc-

tion. Meshes are generated using the open3d library function

create from point cloud alpha shape with alpha parameter equal to 0.08.

In Figs. 4.7g - 4.7i we can see that A2FNet can reconstruct the general shape, but

the depth prediction is off, resulting in reconstructions with a high error. Our previous

method, SV-ElevateNet [18], is able to reduce the error greatly by directly estimating the

elevation angle. Our proposed multi-view methods, MV-LateFusion and MVMC, lever-

age the information from multiple views and achieve the most accurate reconstructions.
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We note MVMC produces less outliers due to its simplified network structure which is

less prone to overfitting.

4.3.3.2 Performance on Real Data

We next discuss the generation our real-world dataset and the 3D reconstruction capa-

bility of our multi-view approaches on real data.

Real Dataset For this work we use data from the same Yaquina Bay, OR deployment

as our earlier SV-ElevateNet work (described in Section 4.2.2.2). However, instead of

having an expert select high-quality images for reconstruction we take a more program-

matic approach to selecting images. From the set of images that contain an object, we

first blur the sonar images using a (9, 9) Gaussian filter to reduce the effects of speckle

noise and then select images that have at least 30 pixels of intensity greater than or equal

to 50. These parameters were tuned on validation data to select images where the object

of interest was prominently displayed.

To evaluate the effectiveness of our approach we use the same objects as before: a

sphere of radius of 19 cm, a cylinder with a radius of 5 cm and height 10 cm, and a

cube a side length of 29 cm. In total we generated 7679, 10586, and 7575 images for

the sphere, cube, and cylinder respectively. While it may seem counter-intuitive that

we actually have more real data than synthetic data, we note that due to the lack of

ground truth information, the real data does not provide as strong a training signal as the

synthetic data. These sets were split roughly 55/25/20 for the train/val/test sets.
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(a) Sphere target (b) Cube target (c) Cyl. target

(d) Sphere image (e) Cube image (f) Cyl. image

(g) A2FNet
sphere [101]

(h) A2FNet
cube [101]

(i) A2FNet
cylinder [101]

(j)
SV-ElevateNet

sphere [18]

(k)
SV-ElevateNet

cube [18]

(l)
SV-ElevateNet
cylinder [18]

(m) MV-
LateFusion
sphere (ours)

(n) MV-
LateFusion
cube (ours)

(o) MV-
LateFusion

cylinder (ours)

(p) MVMC
sphere (ours)

(q) MVMC
cube (ours)

(r) MVMC
cylinder (ours)

Figure 4.7: Synthetic sonar targets (a)-(c), respective synthetic sonar images (d)-(f),
and reconstructed meshes (g)-(r). Ground truth point clouds are blue and predicted
meshes are pink. Incorporating information from multiple viewpoints (MVMC and MV-
LateFusion) enables predictions with less outliers that fit the ground truth models (blue)
better. Additional results can be found at: https://youtu.be/QhcHExXDQtY
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Real 3D Reconstruction Results To evaluate the performance of our multi-view ap-

proach on real data, we take a similar approach to our earlier work (Section 4.2.2.2) and

generate 10 reconstructions from sets of 3 images taken from various viewpoints. This

approach demonstrates the ability of our method to generate reconstructions in “fly-

through” scenarios or in cluttered environments where obtaining diverse viewpoints is

challenging.

Due to the more diverse and potentially lower image quality of the real dataset, for

this extension we filter the outputs of our multi-view CNNs. Specifically, we use the

open3d library’s remove statistical outlier function with number of neighbors equal

to 150 and standard deviation ratio of 2.0 to remove 3D outliers most often generated

by bright pixels in the image that were not the object.

Due to the lack of ground truth elevation angle information for the real data, we

once again hand-align the predicted point clouds to their respective ground truth model

and complete ICP to rigidly align the point clouds. To complete ICP we use open3d’s

registration icp function with a maximum points-pair distance of 5 cm.

The results averaged over the 10 reconstructions are shown in Table 4.7. The col-

umn contains an average over the averages for each shape, representing one number to

compare each method. As one can see, leveraging multiple frames (e.g. MVMC vs.

SV-ElevateNet) achieves better performance than architectures trained only with single-

image inputs. As expected, training with real data also enables more accurate recon-

structions for all of the architectures. A2FNet also struggles on the real data, probably

due to the fact that the network is required to do much more than ElevateNet and thus

cannot properly converge during training. It is interesting to note that the SV-ElevateNet



88

Table 4.7: Multi-view Real Reconstruction RMSE (cm)

Train Data Sphere Cube Cylinder Avg.
A2FNet [101] Syn 12.96±8.01 18.0±9.57 29.06±4.29 20.0

SV-ElevateNet [18] Syn 3.21±1.06 1.90±0.63 2.39±0.50 2.50
MV-LateFusion (ours) Syn 3.31±0.93 1.94±0.71 2.69±0.45 2.65

MVMC (ours) Syn 3.38±0.83 1.53±0.59 2.31±0.40 2.41
A2FNet [101] Syn + Real 12.17±9.2 16.35±9.5 29.36±9.7 19.3

SV-ElevateNet [18] Syn + Real 2.96±1.11 1.84±0.55 2.48±0.46 2.43
MV-LateFusion (ours) Syn + Real 3.32±1.12 1.73±0.63 2.49±0.48 2.51

MVMC- (ours) Syn + Real 3.26±0.83 1.40±0.50 2.28±0.41 2.31

method achieves the best performance on the sphere object, which could indicate that

the multi-view methods overfit slightly on the more complex object. In any case, our

MVMC method trained with synthetic and real data achieves the lowest error overall

and on the cube and cylinder shapes specifically.

We present qualitative results in Fig 4.8. Once again, we see more accurate re-

constructions generated when architectures train with real data and are able to adapt to

the noise present in the real imagery. We also note that MVMC and MV-LateFusion are

able to leverage the additional information present in their multi-image inputs to achieve

reconstruction that better match the shape of the ground truth models. One particular

example of this is comparing the reconstructions SV-ElevateNet (Figs. 4.8j, 4.8r, 4.8ab)

with the reconstructions of MVMC (Figs. 4.8h, 4.8t, 4.8ad) with the latter reconstruc-

tions more closely aligning to the surfaces being imaged.
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4.4 Conclusion

In this chapter we proposed a novel CNN architecture for producing dense 3D recon-

structions. We utilize large amounts of synthetic data, where ground truth information

is known, to pre-train the network. To train on real data we present a self-supervised

training method which utilizes the physics of the sonar sensor to enable training without

ground truth information. We show by fine tuning, the network adjusts to the real data

and produce more accurate 3D reconstructions.

Additionally, we proposed an extension of this single-view architecture which can

accommodate multiple input images, thus reducing the effects of noise and allowing

the architecture to leverage more information for its estimation. We demonstrated that

utilizing multi-view inputs, MVMC and MV-LateFusion can generate more accurate 3D

reconstructions that their single-view counterpart.

In conclusion, in this chapter ElevateNet removed the need for a human to be in-

volved a low-level with the underwater 3D reconstruction loop. This could enable them

to focus on higher-level tasks, such as mission planning or vehicle monitoring. While

we demonstrated that mixing the synthetic and real data produced more accurate recon-

structions on real-world data, in this next chapter we’ll take the sim-to-real process a

step further by explicitly forcing the feature extractor to focus on features relevant to

both synthetic and real data.
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Chapter 5: Bridging the Sim-to-Real Gap for 3D Object Detection from

Point Clouds

5.1 Background

In our second contribution we showed that intelligently mixing synthetic data into the

training process helped to train deep networks when there was a lack of available real

training data. However, an improved scenario is one in which the learned features in

synthetic data would be directly applicable on real data. Therefore, in this contribution

we take the incorporation of synthetic data a step further by explicitly tying the training

of the network to extract similar features from synthetic and real data. In this contri-

bution we use the exploration of subterranean environments as a motivating application

where the lack of real labeled datasets prompts the use of synthetic data when training

deep networks.

Scenarios such as search and rescue in poorly-lit underground environments [99]

and autonomous driving applications in poor weather or at night [72] can cause the

same object or environment to appear differently in camera imagery depending on the

conditions. This adversely affects the performance of algorithms extracting information,

such as object location, from these images [72]. Light detection and ranging (lidars) are

increasingly being used as a complementary sensor to cameras because of their ability

to better capture clear sensor data in such low-light or poor weather conditions. In this
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chapter we address the problem of object detection in point clouds from a lidar. Specif-

ically, given a set of 3D points we develop an approach which outputs a set of bounding

boxes with center (x, y, z), dimensions (length, width, height), and orientation (yaw).

Recently, deep learning has achieved state-of-the-art performance for object detec-

tion from point clouds [73]. Oftentimes these results are demonstrated in scenarios

where a large corpus of training data in the same domain as the test data can be lever-

aged. In this contribution we target applications where such a large amount of training

data does not exist; such as those motivating the DARPA Subterranean (SubT) Chal-

lenge. Even after expensive robot deployments in representative environments, anno-

tating objects in point clouds is difficult due to the relatively small number of humans

who are familiar with point cloud data. In addition to all of the challenges of labeling

2D images (time, expertise, and possibly poor annotation quality), 3D point clouds have

another dimension thus making object annotation even more difficult than labeling 2D

camera images.

Simulators can be used to generate large amounts of training data, however, as shown

in Fig. 5.1, a sim-to-real gap often exists. This gap limits the performance of networks

that naively incorporate simulated data for training [24, 94].

Addressing the sim-to-real gap for point clouds has received limited research atten-

tion, often focusing on enforcing similarity constraints between real and synthetic fea-

ture extraction. For example, SqueezeSegV2 is a feature comparison approach which

uses a geodesic distance function between real and synthetic feature vectors [108]. How-

ever, in [108] point clouds were compressed into 2D first which can cause the loss of

detailed 3D information [76]. While fully 3D methods exist, these approaches often fo-
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(a) Real survivor in point cloud (pink points)
and inset image.

(b) Synthetic survivor in point cloud (pink
points) and inset image.

Figure 5.1: Example of the sim-to-real gap for point cloud object detection. The real
point cloud (top) has rough walls and features as well as objects such as the genera-
tor that are not found in simulation. The synthetic point cloud (bottom) has relatively
smooth surfaces. Points are colored for visualization purposes only and are not used for
object detection.

cus on small-scale applications such as single-object classification, which we will show

is not always scalable to larger robotic scenes [76].

Adversarial training is an alternative method for feature comparison which has seen

success for comparing features from 2D camera images. For example, Ganin et al. [24]

used adversarial training with synthetic road signs to assist with training a network that

classifies real road signs. This is accomplished by using an adversarial discriminator to

promote extraction of similar features from real and synthetic data.

While such approaches are effective for 2D images, we note that 3D point cloud data

is quite different than images particularly with respect to the highly-unstructured nature

of point cloud data. Towards developing effective solutions for real-world point cloud

object detection, we develop a fully 3D adversarial discriminator which does not com-

press information into 2D, and is lightweight enough to scale to large robotics scenes.

Our adversarial discriminator is not specific to a fixed 3D representation and we ana-
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lyze its performance with both point and voxel-based detectors [73, 85]. Additionally,

for point-based backbones we develop an adaptive sampling module which maintains

important data throughout the discriminator.

In summary, in this contribution we:

• Develop a flexible and lightweight 3D adversarial training scheme that leverages

an adaptive sampling module to reason over large robotic scenes.

• Demonstrate the utility of this scheme across voxelized and point-based 3D object

detection architectures.

• Release our 3D object detection dataset and code as a training resource and bench-

mark for future work.1

We validate our approach on real data collected in a variety of environments as part

of the DARPA Subterranean Challenge and demonstrate that our approach increases

performance by up to 15%. We note this work also appeared in a journal paper [17].

5.1.1 3D Object Detection in Point Clouds

3D object detection from point clouds has received increasing attention from the re-

search community [73, 87]. For example, Qi et al. [73] demonstrated accurate 3D

object detection in indoor environments from only point clouds. Methods such as Com-

plexYOLO have also been proposed which project the point cloud into a 2D view and

1https://github.com/debortoli/AdvNet3D
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complete object detection from that view [87]. Such techniques work fairly well in au-

tonomous driving scenarios, where large objects such as cars can be seen easily from

top-down views. However, they are not appropriate for applications such as underground

exploration, where clutter and large overhangs preclude the use of a top-down projec-

tion. Additionally, a 2D projection inherently loses valuable 3D information that could

be used in downstream tasks and thus many state-of-the-art detectors do not compress

clouds [76, 85].

5.1.2 Closing the Sim-to-Real Gap With Point Clouds

Reducing the domain shift between simulated and real point clouds has received increas-

ing research attention. Wu et al. proposed SqueezeSegV2 which projects point clouds

into 2D and uses a geodesic distance function to compare synthetic and real features

[108]. This geodesic distance function works well in 2D, however we show it does not

scale as well as our adversarial approach to fully 3D processing. Alternatively, Point-

DAN is a method that operates in 3D: by using attention networks on low-level features

it improves 3D object classification performance between different domains [76]. We

will show that focusing on local features cannot reason over large 3D scenes as well as

our adversarial discriminator.

Recently, much work on reducing the domain shift for point cloud processing has

focused on autonomous driving. For example, Wang et al. demonstrated that by leverag-

ing knowledge of test dataset car sizes, great improvements could be made in detection

performance when testing on a dataset different than training dataset [100]. This method
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works well for autonomous driving scenarios, however the size of our objects of inter-

est varied considerably less than cars across different continents. Targeting applications

without target domain labels, Yang et al. developed a pseudo-labeling scheme for un-

supervised domain adaptation and while they achieved great results, we are targeting

applications where some target domain labels exist and can be directly leveraged for

training [112]. This is especially important in the SubT application, where the domain

gap is very large, leading to difficulties for detectors trained on just source data to pro-

duce accurate detections or pseudo-labels.

5.1.3 Adaptive Sampling for 3D Point Clouds

Due to the increased dimensionality of 3D point clouds, uniform sampling techniques

can remove useful information too early in the processing pipeline [65]. For the point

clouds found in SubT a very small number of points represent the object of interest

and a large amount of the points represent the walls and floors and therefore a uniform

sampling method may not preserve useful object information.

One example of adaptive sampling for point clouds is PointASNL which uses a

learned adaptive sampling module to improve sampling of local neighborhoods [111].

However, because this module is learned, it potentially will require a lot of data to train.

Alternatively, Nezhadarya et al. propose an adaptive global sampling technique, similar

to global max pooling, that does not require any additional training [65]. However,

standard architectures such as VoteNet require a fixed number of points after each layer.
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To address this [65] copies the downsampled set, which works well for their object

classification application, but may destroy too much information in large robotic scenes.

Our method starts similar to [65] and generates a downsampled set based on the

maximally activated features from the previous layer. However, this downsampled set

may be too small and sparse for entry into the next layer, and therefore we next upsample

using nearest neighbor upsampling around the downsampled set. This allows for struc-

tural information to be kept and does not require any additional training, an attractive

feature in our data-limited application.

5.2 Methods

In this section we first describe the 3D object detection problem and our overall ad-

versarial training architecture. Next, we describe our point-based adversarial training

architecture and our adaptive sampling module. Finally, we discuss our voxel-based

adversarial training architecture.

5.2.1 Problem Description

Given a raw 3D point cloud, in this work we seek to train a 3D object detector that

outputs 3D bounding boxes with center (x, y, z), size (length, width, height), and yaw

(θ).

We validate our approach on an application with a particular lack of data: the subter-

ranean environments which motivate the DARPA Subterranean Challenge [1]. Competi-
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Figure 5.2: Overview of our 3D adversarial training architecture. The top gray pipeline
is the backbone network, which can be any standard model for point-based or voxel-
based representations. Inside of the dashed box is our adversarial discriminator which
leverages intelligent adaptive sampling layers (red) to maintain detailed information
throughout the pipeline. By flipping the gradient (“Gradient Flip” in orange above) the
feature extractor is encouraged to fool the discriminator by extracting similar features
shared across synthetic and real data.

tors in this challenge must develop a robotic system to venture into unexplored under-

ground environments and detect certain objects of interest. In this work we target three

object classes that are large enough to appear in point cloud data: survivor, backpack,

and fire extinguisher. Examples of these objects and their point cloud representations

are shown in Fig. 5.5.

Due to the limited availability of real data, Microsoft’s AirSim robot simulator is

used to generate large amounts of labeled real data [83]. While the simulator provides

a myriad of data, there still exists a sim-to-real gap. Our adversarial training approach

reduces the effect of this gap by better leveraging the synthetic data during training.
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5.2.2 Training Overview

Algorithm 1 Training algorithm for point-based adversarial discriminator architecture
Input: Gradient penalty coefficient λ, ratio of discriminator to backbone updates
ncritic, dataset S of real and synthetic data, learning rate l, pretrained backbone
parameters θ0, and initial discriminator parameters w0.

1: while θ not converged do
2: for j = 0,1, .... ncritic do
3: freal, fsyn, fmixed ← GetFeatures()

4: . D is discriminator
5: LD ← Dw(freal)−Dw(fsyn)+

λ(||∇fmixed
Dw(fmixed)||2 − 1)2

6: . Update only discriminator
7: w ← Adam(∇wLD, w, l)

8: . Now focus on backbone
9: freal, fsyn, fmixed ← GetFeatures()

10: Lbboxreal ← Lbbox(bboxesreal, targetreal)
11: Lbboxsyn ← Lbbox(bboxessyn, targetsyn)
12: Lbboxmixed ← Lbboxreal + Lbboxsyn
13: LD ← Dw(freal)−Dw(fsyn)+

λ(||∇fmixed
Dw(fmixed)||2 − 1)2

14: θ ← Adam(∇θLbboxmixed − LD, w, l)
15: function GETFEATURES

16: inpreal ← SampleRealBatch(S)

17: . freal is output of FE4 in Fig. 5.2
18: bboxesreal, freal ← Backbone(inpreal)
19: inpsyn ← SampleSynBatch(S)
20: bboxessyn, fsyn ← Backbone(inpsyn)
21: fmixed ← εfreal + (1− ε)fsyn
22: return freal, fsyn, fmixed

An overview of our training approach can be found in Fig. 5.2 and Algorithm 1; we

first start by training the discriminator. We feed input data into the backbone network,
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take the feature encoding produced and use it as input into our adversarial discriminator

which completes a binary classification, either synthetic or real. The Wasserstein-GAN

Gradient Penalty Loss (WGAN-GP)2 is then computed on this output:

LD = Dw(freal) − Dw(fsyn) + λ(||∇fmixed
Dw(fmixed)||2 − 1)2, (5.1)

whereD andw are the discriminator and its weights, freal and fsyn are feature encodings

from real and synthetic data respectively, and fmixed is defined as:

fmixed = εfreal + (1− ε)fsyn, (5.2)

where ε is a random number between 0 and 1 [31].

We note that using the WGAN-GP loss function is a departure from the standard

adversarial training paradigm [24]. WGAN-GP leverages a gradient penalty term to

provide a more stable loss signal than standard distance measures and has typically

been used for applications that generate data such as 2D images or small single-object

3D point clouds [62]. Towards deployment on large 3D robotic scenes, in this work, we

adapt this loss function to the application of adversarial training on point clouds, thereby

enabling stable training on high-dimensional and unstructured point clouds.

Next, the weights of the discriminator are updated according to LD. This loop is run

ncritic times to ensure the discriminator is trained enough with respect to the backbone.

Next, we update the weights of the backbone network. Once again, data is input and

now training utilizes both the output bounding boxes as well as the output of the dis-

2https://github.com/caogang/wgan-gp
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Figure 5.3: Our novel point-based adversarial discriminator which leverages an adap-
tive sampling layer to maintain object information throughout the processing pipeline.
SA(x,y) = VoteNet Set Abstraction layer with x points and y radius. AS(x) = adaptive
sampling to x number of points. Average pooling is used to avoid destroying detailed
information.

criminator. To compute the bounding box loss, LBBox, we use the standard loss function

found in [73] which balances objectness, bounding box location, and bounding box size

compared to the ground truth bounding box parameters. During this phase we again

compute the discriminator loss LD, however we now pass the gradients through the dis-

criminator. After the gradients get through the discriminator, they are flipped, which

trains the feature extractor layers in the backbone to maximize LD. The final loss for

the backbone is thus:

LBackbone = LBBox − αLD, (5.3)

where α is a balancing parameter between the two losses.

By training the backbone network to predict accurate bounding boxes and maximize

the loss of the discriminator, we enforce similar feature extraction from synthetic and

real data, thereby enabling better usage of synthetic data during training. At inference

time, the adversarial discriminator is removed and the backbone architecture produces

3D bounding boxes.
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Figure 5.4: Our novel adversarial discriminator used for voxel-based experiments. This
discriminator works with the PartA2 backbone which leverages sparse convolutions to
operate over voxelized inputs. SpConv(x,y) is a sparse convolution layer with x number
of filters and y stride.

5.2.3 Point-Based Architecture

We next discuss our point-based adversarial architecture and our adaptive sampling

module. The VoteNet model is used as a backbone for feature extraction and bounding-

box generation [73]. VoteNet operates on the raw point clouds without compression

into 2D or discretization by voxelization and is a top approach for 3D object detection

on the ScanNetV2 dataset [16]. It is thus well-suited for dense environments such as

tight underground tunnels.

5.2.4 Dataset Overview

An overview of our point-based discriminator can be seen in Fig. 5.3. For feature ex-

traction, we leverage 3D Set Abstraction layers for seamless integration with VoteNet

as well as to support a powerful 3D-aware discriminator. Additionally, we develop

an adaptive sampling module that maintains important information throughout the dis-

criminator. This module is a drop-in replacement for the Farthest Point Sampling used
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in vanilla Set Abstraction layers. To start, similar to [65], we downsample to the set of

features that are maximally activated. This downsampled set may be too small for input

into the next layer, so to bring it up to the fixed size required by VoteNet, we sample the

nearest neighbors of the points in the downsampled set. This is distinctly different than

[65] which copies points in the downsampled set to upsample, potentially losing out on

valuable neighborhood information which could be leveraged by the discriminator later

on for classification.

5.2.5 Voxel-Based Architecture

To demonstrate the flexibility of our 3D adversarial training approach, we also develop a

voxel-based adversarial training architecture. For our backbone we leverage the PartA2

architecture; a 3D voxelized model which uses sparse convolution to efficiently extract

features [85]. PartA2 has shown high-quality 3D object detection capabilities in outdoor

scenes and is one of the best publicly available methods for pedestrian and cyclist de-

tection on the KITTI dataset [26]. PartA2 is thus appropriate for cavernous open-spaces

underground such as natural caves.

To integrate effectively with the PartA2 backbone, we use the same type of sparse

convolutional feature extractors in our discriminator as in the backbone. Once again, we

leverage 3D-aware layers to enable a powerful discriminator which can reason about the

incoming features fully in 3D. The discriminator is shown in Fig. 5.4.

For training the voxel-based architecture we use the same overall training structure

as the point-based architecture in Algorithm 1. Due to the voxelization process, differ-
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ent batches had different amounts of voxels which made the computation of a gradient

penalty term between synthetic and real feature vectors difficult in PyTorch. Therefore,

we used the WGAN optimization technique which is similar to WGAN-GP, but does not

include the gradient penalty term (i.e. (||∇fmixed
Dw(fmixed)||2 − 1)2 in Equation 5.1)

[2].

5.3 Experiments and Results

In this section, we start with a description of our robot system and point cloud dataset.

Next, we demonstrate the benefits of our adversarial training approach on real-world

detection datasets. Finally, we explore the effects of feature encoding levels as input to

our adversarial discriminator.

5.3.1 System Overview

Real data used for training and testing was captured by Team Explorer’s custom-built

ground vehicles designed for the DARPA SubT Competition. These vehicles typically

travel with speed up to 2 m/s and have a variety of onboard sensors including RGB and

thermal cameras as well as a Velodyne VLP-16 used to generate the point clouds for this

work. We spin our Velodyne at 10 Hz and use the LOAM SLAM system to concatenate

sets of about 5 individual scans for generating high-resolution inputs to our model [115].

To generate synthetic data, we use Microsoft AirSim with a synthetic underground

tunnel environment rendered in the Unreal engine [83]. High-resolution surface meshes
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Table 5.1: Real dataset composition (# clouds)

Backpack Fire Ext. Survivor No object
Train 49 88 67 1522

Validation 78 29 26 125
Test 54 53 16 568

Table 5.2: Synthetic dataset composition (# clouds)

Backpack Fire Ext. Survivor No object
Train 185 225 383 5434

Validation 354 454 180 5229
Test 118 30 163 7069

enable accurate lidar simulation. The simulated vehicle has realistic size, physical ca-

pabilities, and lidar parameters.

Fig. 5.5a - 5.5f and Table 5.1 contain an overview of our real dataset. Training data

was captured during the DARPA SubT STIX event at the Edgar Experimental Mine,

CO, the SubT Tunnel Circuit at the NIOSH Mine, PA, and on the Carnegie Mellon

University (CMU) Campus, PA in representative urban environments such as a parking

garage. Validation data was captured at Tour-Ed mine, PA. Test data is from the Edgar

Mine, the Tour-Ed mine, and the CMU campus in parts of the environments different

than those used for capturing training/validation data. After collection, the data was

hand-labeled by a human expert.

Fig. 5.5g - 5.5l and Table 5.2 contain an overview of our synthetic dataset. Data

was gathered by randomly moving the robot around, collecting scans, and using Air-

Sim’s automatic label generation which enabled a large amount of data to be generated

cheaply. Training, validation, and test sets were all gathered from different locations in
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the simulation. Additionally, due to the realistic nature of the SubT Challenge, often

only 10-15% of the clouds in the dataset contain objects.

5.3.2 3D Object Detection Performance

We next discuss pre-processing and comparison methods for both the point and voxel-

based experiments. We then present point and voxel-based object detection results.

5.3.2.1 Point Cloud Preprocessing

Before point clouds are input to the model, there are a number of preprocessing steps.

Clouds are first downsampled about 20% to 80,000 points to make training and inference

faster. Keeping the original number of points did not significantly improve performance.

Because of the sparsity of objects to be detected in the environment, clouds are first

cropped to 5 meter cubes to make learning easier. We note that this brings our clouds

to about the same physical size as other point cloud datasets like ScanNet [16] and

that cropping has been used in previous works [50]. To ensure objects were actually

observable in the clouds, we did not label objects that did not meet certain size and

number of point constraints: The backpack had a minimum (length, height, width) of

(10, 10, 10) cm and a minimum of 40 points, fire extinguishers had a minimum size of

(5, 20, 5) cm and 60 points, and the survivor had a minimum size of (25, 25, 25) cm and

minimum of 80 points.
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5.3.2.2 Comparison Methods

We compare our adversarial approach against a number of baselines. The first three

methods only use the VoteNet architecture (for point-based experiments) or the PartA2

architecture (for voxel-based experiments) and are dataset composition approaches:

• OnlySyn uses only synthetic data for training/validation.

• OnlyReal uses only the small amount of real data.

• SynAndReal mixes the synthetic and real data for training/validation. To ensure

real data is emphasized during learning, it is sampled at a 2:1 rate with synthetic

data.

The remaining methods, including our adversarial training approach, all have access

to synthetic and real data.

• GeodesicLoss (GeoLoss) is based on the work by [108] which utilizes the geodesic

distance between the covariance matrices of the real and synthetic feature vectors

from 2D point cloud images3. While this method is similar to ours in that it en-

courages synthetic and real feature vectors to be similar, our learned adversarial

discriminator is able to scale better to 3D environments.

• PointDAN uses Maximum Mean Discrepancy to align local features for point

cloud object classification4 [76]. Focusing on fine-grained features works well

3https://github.com/pmorerio/minimal-entropy-correlation-alignment
4https://github.com/canqin001/PointDAN
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for object classification, however we show it does not scale as well as adversarial

training to large scenes.

• Adversarial architecture (AT) is our proposed approach which uses a lightweight

and powerful 3D adversarial discriminator to encourage similar feature extraction

from real and synthetic data in a fully 3D manner.

• Adversarial architecture with adaptive sampling (AT-AS) uses the same architec-

ture as AT but leverages our adaptive sampling module in the discriminator to

avoid removing important object information before completing classification.

Given the small amount of real training data available, it is relevant to explore if non-

deep learning methods could outperform deep learned methods. For example, Wang et

al. propose a method which extracts shape-factor features from point clouds and uses

an SVM to classify these features as an object of interest or not [96]. While their code

is proprietary, we implemented this method, ran it on our SubT data, and found it was

unable to achieve higher than 0.01 average precision on the test set survivor. We hypoth-

esize this is due to the shape-factor features not being powerful enough to detect objects

with high appearance change, as is the case in our application. Specifically, the objects

for SubT are significantly smaller than other applications such as the KITTI dataset and

therefore common challenges with point clouds such as occlusions and varying point

densities can be much more degrading to our objects of interest.
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Table 5.3: Point-based 3D object detection results

Average precision on real test data
Train method Backpack Survivor Fire Ext. mAP

OnlySyn 0.29±0.14 0.04±0.07 0.00±0.01 0.11±0.03
OnlyReal 0.56±0.02 0.49±0.09 0.05±0.01 0.37±0.04

SynAndReal 0.56±0.03 0.61±0.13 0.03±0.03 0.40±0.02
GeoLoss [108] 0.61±0.02 0.54±0.05 0.07±0.02 0.41±0.03
PointDAN [76] 0.57±0.03 0.45±0.10 0.04±0.03 0.35±0.03

AT (Ours) 0.62±0.04* 0.64±0.06* 0.04±0.01 0.43±0.04
AT-AS (Ours) 0.63±0.02* 0.71±0.04* 0.07±0.04 0.47±0.01

* = Statistically significant with p-value <0.05
when compared with next-best approach

5.3.2.3 Point-Based Object Detection

To train our adversarial discriminator for point-based object detection, we used a learn-

ing rate of 0.0005, weight decay of 0.1, batch size of 8, and class sampling weightings

of 1, 2, and 2 for the backpack, fire extinguisher and survivor respectively. We used an

ncritic of 2 because the discriminator trained quickly and a λ value of 10. To emphasize

useful feature extraction early on, we varied the α balancing term in a linear manner

from 0 to 1 starting at epoch 0 until epoch 300.

All methods were trained to convergence based on validation mAP (defined as the

average across object classes). Therefore training usually lasted up to 200 epochs and

takes 13 hours on a single GTX 1080 GPU. For the point-based object detection ex-

periment, all methods used a VoteNet backbone pretrained on the ScanNet dataset5. For

data augmentation we rotated/translated the clouds, scaled the clouds by± 10%, applied

± 2 cm of jitter, and moved objects between clouds.

5https://github.com/facebookresearch/votenet
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Methods are evaluated using the VoteNet evaluation pipeline and average precision

metrics are computed at 0.25 3D IOU. We note that the average precision is a single

metric that captures both the precision and recall of the detector across all detection

thresholds [70]. The mean and standard deviation results averaged over three training

runs are shown in Table 5.3. To compute statistical significance, for each object we

run a t-test with N = 691 and compare both the AT-AS and AT methods with the next-

highest-performing method. At a high-level, the results are intuitive: many methods

do the best on the large survivor and perform relatively poorly on the fire extinguisher.

Given the rough walls and overhangs that often accompanied the fire extinguisher, this

was a particularly challenging environment for such detections.

Investigating the results in detail, the performance difference between OnlySyn and

OnlyReal demonstrates the sim-to-real-gap. The difference between OnlyReal and SynAn-

dReal demonstrates the utility of using the synthetic data for increasing the amount of

data we have. Due to the use of attention on low-level features, PointDAN struggles to

scale to larger 3D scenes. The GeodesicLoss provides improvement over SynAndReal,

but due to the inflexible nature of its loss function, it is not able to beat our adversarial

approach in many cases. Our adversarial architecture (AT) improves performance on the

backpack, survivor, and on the Mean Average Precision (mAP) metric by not compress-

ing information and learning the discriminator while training. Finally, our adversarial

architecture with adaptive sampling (AT-AS) achieves the best performance on all three

objects by maintaining important information throughout the discriminator.

Qualitative results for our point-based adversarial architecture on real test data from

Edgar Mine, CO are shown in Fig. 5.6. Overall, we are able to detect objects well in this
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Table 5.4: Voxel-based 3D object detection results

Average precision on real test data
Train method Backpack Survivor Fire Ext. mAP

OnlySyn 0.31±0.06 0.0±0.01 0.07±0.05 0.13±0.01
OnlyReal 0.39±0.06 0.13±0.06 0.18±0.08 0.23±0.01

SynAndReal 0.57±0.05* 0.09±0.03 0.13±0.08 0.26±0.02
GeoLoss [108] 0.52±0.08 0.16±0.07* 0.12±0.01 0.27±0.04
PointDAN [76] 0.44±0.07 0.15±0.02 0.15±0.08 0.25±0.01

AT (Ours) 0.46±0.12 0.15±0.03 0.24±0.03 0.28±0.05*

* = Statistically significant with p-value <0.05
when compared with next-best approach

challenging real environment. However, one area for future improvement is the angular

estimation of the bounding boxes. In Fig. 5.6c it is interesting to note that on the right

side of the scene we have a number of false positives which were caused by the DARPA

organizers covering up another fire extinguisher with a large form-fitting covering. This

was not labeled as a ground truth object location in our dataset, and is demonstrative of

the difficulty of our task. We also found thin objects such as support poles to be a source

of false positives from our detector.

5.3.2.4 Voxel-Based Object Detection

For the voxel-based architecture experiments, data pre-processing and data augmen-

tation techniques were all similar to the point-based architecture. All methods use a

PartA2 anchor-free backbone6 pretrained on the KITTI dataset and are trained to con-

vergence based on validation set mAP.

6https://github.com/open-mmlab/OpenPCDet
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We use a learning rate of 0.0005, weight decay of 0.1, and class sampling weightings

of 1, 2, and 2 for the backpack, fire extinguisher and survivor respectively. The same

ncritic and linear increase to α from the point-based experiment are used. Due to the

dense cluttered environments in our dataset we set a very small voxel size of 1.8 cm

which allowed clouds to fit onto the GPU. Due to the computational expense of these

small voxels, the model took 25 hours to train on 4 Tesla K80 GPUs. We only changed

two significant model parameters. To reduce pooling in these dense environments we

increased the output pool size from 12 to 20. To encourage the detection of the sparse

objects, we decreased the foreground threshold from 0.65 to 0.25.

Voxel-based methods are evaluated in the same manner as the point-based experi-

ment. The results averaged over 3 training runs are shown in Table 5.4. To compute

statistical significance, for each object we run a t-test with N = 691 and compare each

of the best performing methods (in bold) with the the next-highest-performing method.

Overall, the results are intuitive and follow the same trend as the point-based methods:

SynAndReal is able to leverage the quantity of the synthetic data and the small amount of

real data to perform better than OnlySyn and OnlyReal. PointDAN is unable to provide

much improvement due to its focus on small fine-grained features. Different than for the

point-based methods, our adversarial approach performs similarly to the GeodesicLoss

approach. This could be because a structured voxelized representation does not require

the increased flexibility of the adversarial discriminator. Additionally, due to difficulties

implementing the WGAN-GP loss function for our voxel-based architecture, the use of

a less-stable WGAN loss function could be to blame. In spite of this, our method still
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Table 5.5: Effect of feature encoding level on detection performance

Mean Average Precision (mAP)
Architecture Level2 Level3 Level4
Point-based 0.38 0.41 0.47
Voxel-based 0.25 0.31 0.21

does the best at detecting the fire extinguisher, and in terms of Mean Average Precision,

if only by a small margin.

While the trends between the voxel-based and point-based architectures are similar,

the performance of the voxel-based architecture is not as high overall. This could be

because the dense environments VoteNet was designed for, more closely resemble the

tight underground tunnels in our dataset.

Qualitative results for our voxel-based architecture can be found in Fig. 5.7. Overall,

the detector once again is adept at detecting objects in this challenging environment. It

is interesting to note that in Fig. 5.7a that there are few points on the survivor’s legs and

even though the label does not extend over the legs, the detector is able to use contextual

information to extend outward in that direction.

5.3.3 Utility of Leveraging Feature Vector Across Encoding Levels

Fig. 5.2 shows the adversarial discriminator taking input from the fourth level of feature

encoding (called “Level4”). In this experiment, for both the point and voxel-based ar-

chitectures, we examine the effect of taking the feature vector input from different levels

of the encoding pipeline.
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The results are shown in Table 5.5. For the point-based architecture, the results

are fairly intuitive: as the hierarchy of features are built up, the encoded feature vector

is more useful to the adversarial discriminator. For the voxel-based architecture it is

interesting to note that the performance goes down by using the most-encoded feature

vector, Level4. This could be due to the more aggressive pooling that occurs with the

PartA2 feature extraction pipeline.

5.4 Conclusion

In this contribution we developed a 3D adversarial training architecture for point cloud

object detection in robotic environments where real data is extremely limited. To our

knowledge this is the first 3D adversarial approach targeting 3D robotic scenes. Our

approach does not compress information into 2D and is lightweight enough to scale

to 3D robotics scenes. Additionally, we developed an adaptive sampling module to

maintain important 3D information throughout the discriminator. These characteristics

offered large performance benefits for unstructured point-based representations.

In this chapter we improved on the data mixing sim-to-real-process from our un-

derwater sonar work by explicitly encoding the extraction of similar features from real

and synthetic data into the training process. This brings the resulting model closer to

a preferable scenario where the synthetic training is directly applicable to models de-

ployed in the real-world.
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(a) Real survivor (b) Real backpack (c) Real fire ext.

(d) Real survivor point
cloud (pink)

(e) Real backpack point
cloud (pink)

(f) Real fire ext. point
cloud (pink)

(g) Synthetic survivor (h) Synthetic backpack (i) Synthetic fire
extinguisher

(j) Synthetic survivor
point cloud (pink)

(k) Synthetic backpack
point cloud (pink)

(l) Synthetic fire ext.
point cloud (pink)

Figure 5.5: Dataset overview. (a)-(c) are the objects in camera images taken from the
robot. Notice the motion blur that can occur in camera imagery underground. (d)-(f)
are the objects in point cloud form. (g)-(i) and (j)-(l) show the camera images and point
clouds from AirSim. Note that while the real and synthetic point cloud representations
are similar, the simulated clouds are often cleaner and more regularly sampled.
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(a) Survivor detection (b) Backpack detection (c) Fire extinguisher detection

Figure 5.6: Qualitative results for our point-based adversarial architecture. Green
boxes are ground truth, red boxes are predicted bounding boxes. The pink inset im-
ages are zoomed in on the detection shown in the larger scene. All clouds were cap-
tured in the Edgar Experimental Mine, CO as part of the DARPA SubT STIX Integra-
tion Exercise. Additional results with 3D manipulation of detections can be found at:
https://youtu.be/oXk88gmsx8g

(a) Survivor detection (b) Backpack detection (c) Fire extinguisher detection

Figure 5.7: Qualitative results for our voxel-based adversarial architecture. Green
boxes are ground truth, red boxes are predicted bounding boxes. All clouds were cap-
tured in the Edgar Experimental Mine, CO as part of the DARPA SubT STIX Integra-
tion Exercise. Additional results with 3D manipulation of detections can be found at:
https://youtu.be/oXk88gmsx8g
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Chapter 6: Conclusion

6.1 Conclusion and Future Work

In this thesis we make progress towards leveraging the power of deep learning in target

environments that lack sufficient training data. We also demonstrate that by developing

architectures which handle noise more explicitly, deep networks can be deployed that

are less affected by the noise which often corrupts sensor data in harsh environments.

Specifically:

• Our first contribution was a deep-learned method leveraging atrous convolution

for generating real-time 3D reconstructions underwater. By using atrous convo-

lution and the natural hierarchical structure of deep learning, we gain a larger

context for sonar image analysis than previous works. We demonstrated that this

larger context results in an architecture that is more noise-robust and overfits less

to limited training data than competing methods. We then showed that using our

image selection approach enabled human-in-the-loop real-time 3D reconstruction

capabilities. This work resulted in a workshop and conference paper [19, 20] as

well as code released for processing Tritech Gemini 720i sonar data 1.

• Our second contribution relieved the human from the reconstruction process by

promoting a fully automatic method for generating 3D underwater reconstruction
1https://github.com/osurdml/GeminiECD Decoder
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methods without environmental priors. We achieved this by intelligently incor-

porating synthetic data into our training set and proposing a self-supervised ap-

proach for training a deep network on real 2D underwater sonar images where

ground truth information is not available. To our knowledge, this is the first time

such a network has been trained using real 2D underwater sonar imagery. We ex-

tended this into an approach which could take as input multiple images collected

naturally as the robot moves around the world. We demonstrated that by leverag-

ing the information from multiple images, even more accurate 3D reconstructions

could be generated. This contribution lead to a conference paper [18].

• For our third contribution we took the incorporation of synthetic data a step further

by developing a method for enforcing similar features extraction from real and

synthetic data. Specifically, we developed an adversarial training approach to

encourage similar feature extraction from real and synthetic point clouds on the

3D object detection in subterranean environments task. We demonstrated that by

using our adversarial training architecture and incorporating an adaptive sampling

module in the adversarial discriminator we could achieve a higher mean average

precision on the 3D object detection task. This contribution lead to a journal paper

[17] and the open-sourcing of the code/dataset2 developed for the paper. This

work was inspired by and developed in conjunction with a journal paper [81].

Overall, in this thesis we developed models and training approaches for leveraging

the power of deep learning for perception tasks in harsh environments. Underwater

2https://github.com/debortoli/AdvNet3D
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this enabled accurate 3D reconstructions to be generated without a human in the loop or

without explicitly requiring environmental priors to hold true. Underground this enabled

the more accurate detection of objects of interest, even in scenarios with very limited

real-world data. These contributions should provide a basis for deploying powerful

perception models even in scenarios where cameras have very limited visibility.

6.1.1 Future Work

There are a number of interesting directions for future work, particularly in the areas of

leveraging multi-image inputs for underwater reconstruction, underwater sonar image

dataset generation, and investigating low-level data representations for 3D point cloud

analysis.

6.1.1.1 Explicitly Leveraging Additional Information in Multi-Sonar-Frame

CNNs

One interesting future research direction from this thesis is more explicitly encoding the

different types of information for our multi-frame sonar image CNNs. For example, to

more explicitly encode pixel correspondences across images, a cost-volume approach

could be taken where the cost for pixels at different elevation angles could be built into

a 3D volume which is then fed into the network for further analysis [98]. This could

reduce the amount that a multi-frame CNN is required to learn, thus enabling better

training convergence.
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It would also be interesting to investigate the use of Convolutional LSTMs as a

framework that is less-affected by the noise in a single image. By utilizing the different

gates (e.g. forget gates) particularly poor images could be ignored or down-weighted to

reduce its effect on the final elevation angle estimation.

6.1.1.2 Generation of a Large-Scale 3D Ground-Truthed Sonar Dataset

Fueled by large corporations and great research interest, terrestrial domains have seen a

recent explosion of large-scale labeled datasets for the purpose of training deep learning

networks. Examples of this include the KITTI [26], Audi [27] and Waymo [91] datasets

all for the autonomous driving application. However, the same explosion of labeled

datasets has yet to take place underwater.

While there does exist some datasets for RGB imagery underwater [57], the sonar

3D reconstruction task is particularly lacking large ground-truthed datasets. The gener-

ation of such a dataset is non-trivial and would involve determining the correspondence

between a point in sonar image space with a 3D point in the world. Using the lessons

learned from underwater RGB dataset generation such as [28] would be great place to

start.

6.1.1.3 Investigating Point Cloud Data At a Lower-Level

In this thesis we explored the use of purely point-based or purely voxel-based data repre-

sentations for 3D point cloud object detection. We found that each representation had its
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advantages: with point-based methods better at detecting backpacks and survivors and

voxel-based approaches better at detecting the fire extinguisher object. In the future, it

would be interesting to explore different data representations such as point-voxel based

approaches which can potentially leverage the benefits of both representations [84].

It would also be interesting to explore leveraging the intensity information from the

lidar. In this thesis we used a custom SLAM solution [115] which did not natively output

this information in the generated point clouds, however intensity information has been

shown to be useful in a variety of scenarios including object detection [12]. Finally, it

would be interesting to more explicitly address challenges in lidar data integrity, such as

saturation or blooming, which can occur with objects very close or very far away from

the sensor respectively [46].
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