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Over the last 60 years, supplemental strength and conditioning for improving sport performance 

has gone from being nearly non-existent to a cornerstone feature of elite collegiate, amateur, and 

professional athletics. Concurrent with this profession-related evolution, technologies for 

monitoring and tracking physical performance have become more prevalent and useful. As an 

example, the Optimeye S5 from Catapult Sports is currently the most widely used sport 

performance-related inertial measurement unit (IMU) available for monitoring sport-related 

movement and is used by more than 2,500 athletic teams globally. The primary metric of interest 

quantified by this device is known as PlayerLoad™. PlayerLoad™ represents a cumulative 

summarization of changes in acceleration across three axes of measurement. Although somewhat 

similar in its formulation to commonly used physical activity-related acceleration metrics, such 

as band pass filtered Euclidean norm (BFEN) and Euclidean norm minus one (ENMO), no 

published reports have evaluated the associations between PlayerLoad™ and any of the 

aforementioned measures. We obtained two publicly available data sets (REAListic 

DISPlacement [REALDISP] and MHEALTH) containing high resolution IMU data. The 

REALDISP data set contained data from 17 participants (10 males, ages 22 to 37 years-old) 

completing 33 unique activities while wearing 9 IMUs across the body (upper-back; right and 



left side: upper-arm, lower-arm, thigh, and calf). The MHEALTH data set contained data from 

10 participants completing 11 unique activities while wearing 3 IMUs (right wrist, left pectoral, 

left ankle). Raw acceleration data collected from the IMUs was used to compute per second 

summaries of PlayerLoad™, BFEN, and ENMO. Association analyses revealed that PlayerLoad™ 

was highly correlated with BFEN and ENMO at all evaluated IMU locations (r = 0.742 to 

0.983); however, the strength of these associations did significantly vary across many locations. 

Notably, lower-body IMU measurement locations (r = 0.951 to 0.983) generally produced higher 

correlations for PlayerLoad™ with BFEN and ENMO than did upper-body locations (r = 0.742 

to 0.960). Models were also developed for predicting epoch- and summary-level PlayerLoad™ 

from BFEN and ENMO. Unbiased pseudo R2 values exceeded 0.879 in all instances indicating 

high predictive ability for all models. More research is needed to better understand PlayerLoad™ 

and its potential value for quantifying time-based dosages of human movement.
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Chapter 1. Introduction 

Background and Significance  

 Since the mid-20th century, professional and collegiate coaches have augmented 

traditional sport-based practice with supplemental aerobic, anaerobic, or resistance training 

exercise to enhance athletic performance. This supplemental exercise is intended to complement 

traditional sport-specific practices geared toward developing appropriate skill sets and 

techniques. One of the first examples of such supplemental physical training in professional 

sports was the 1963 San Diego Chargers football team which became the first professional 

program to implement a resistance training regimen and employ a strength and conditioning 

coach (George, 1993). Several years later, University of Nebraska football became the first 

collegiate program to employ a full-time strength and conditioning coach while implementing a 

comprehensive resistance training regimen (Shurley & Todd, 2012). Since the 1960s, the 

strength and conditioning profession has grown immensely such that most of today’s 

professional and collegiate athletes partake in regular supplemental exercise supervised by 

strength and conditioning professionals. 

 Presently there are a variety of tools available to the strength and conditioning 

professional for monitoring the intensity and volume of supplemental exercise. The primary 

intent of such measurement tools is to inform the strength and conditioning professional’s 

modulation of the exercise prescription while attempting to maximize desired training 

adaptations. Examples of these tools include heart rate monitors, cycling power meters, and 

rotary encoder-based power meters, among many others. The first commercially available 

wireless heart rate monitor was introduced by Polar® in 1982 (Polar, 2017). Since then, heart 

rate monitors have been used extensively in aerobic-based athletics for tracking heart rate as a 
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primary indicator of exercise intensity. Following the introduction of wireless heart rate 

monitors, the first spider-based cycling power meters for use with traditional bicycles were 

invented and developed in the mid-to-late 1980s (SRM GMBH, 2015). These power meters have 

now become commonplace and are used extensively among both professional and recreational 

cyclists for tracking cycling workload and peak power outputs (Passfield, Hopker, Jobson, Friel, 

& Zabala, 2017). Of more use to strength and power athletes, seminal research in the 1990s 

introduced rotary encoders to track implement displacement, velocity, and associated power 

during high-velocity resistance exercise (Humphries, Newton, & Wilson, 1995; Murphy, Wilson, 

Pryor, & Newton, 1995). Findings from this research informed the now widespread use of rotary 

encoder systems (e.g., TENDO units) for identifying optimal resistance training loads to 

maximize power output. 

 Over the last 10 to 15 years, wearable technologies (i.e., accelerometers, gyroscopes, 

magnetometers, Global Positioning System [GPS] devices, etc.) for measuring various aspects of 

athletic performance have become increasingly prevalent (Camomilla, Bergamini, Fantozzi, & 

Vannozzi, 2018). This trend has been fueled by the development and evolution of micro-

electromechanical systems (MEMS) technology over the last 20 to 30 years. Current MEMS 

technology allows for the manufacture of highly miniaturized and power efficient sensors (e.g., 

gyroscopes, magnetometers, accelerometers) at relatively low costs (Camomilla et al., 2018). 

When attached to the body, these individual sensors can be used to obtain information about the 

body’s movement and orientation. However, when orientation is estimated by only one type of 

sensor the measurement’s accuracy may be inadequate for some applications (Sabatini, 2011). 

As such, to improve the accuracy of orientation estimations, usage of an inertial measurement 

unit (IMU) with 2-dimensions (i.e., accelerometer and gyroscope) or 3-dimentions (i.e., 
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accelerometer, gyroscope, and magnetometer – sometimes referred to as a magnetic and inertial 

measurement unit [MIMU]) is preferred (Luinge & Veltink, 2005; Sabatini, 2005). IMU and 

MIMU units can also be integrated with other sensors such as GPS, heart rate monitors, and 

temperature sensors to assess outcomes such as energy expenditure or activity intensity. Of note, 

it is commonplace to refer to IMU and MIMU devices collectively as IMU devices. 

 Currently, the most commonly used IMU systems for assessing human movement in 

sport and athletic applications are manufactured and sold by Catapult Sports (Catapult Group 

International Ltd, Melbourne, Australia). The Optimeye S5 is the most commonly used Catapult 

IMU system and its capabilities have been previously evaluated among athletes in rugby (Hulin, 

Gabbett, Johnston, & Jenkins, 2017; Roe et al., 2017), ice hockey (Van Iterson, Fitzgerald, Dietz, 

Snyder, & Peterson, 2017), handball (Luteberget, Holme, & Spencer, 2018), and American 

football (Govus, Coutts, Duffield, Murray, & Fullagar, 2018; Li, Salata, Rambhia, Sheehan, & 

Voos, 2020; Murray, Buttfield, Simpkin, Sproule, & Tuner, 2018; Sampson et al., 2018; 

Wellman, Coad, Flynn, Siam, & McLellan, 2019), among other sports. The primary emphases of 

many of these investigations were to establish field-based validity (Delaney et al., 2019; 

Kyprianou et al., 2019; Roe et al., 2017; Roell, Roecker, Gehring, Mahler, & Gollhofer, 2018) 

and reliability (Luteberget et al., 2018; Thornton, Nelson, Delaney, Serpiello, & Duthie, 2019; 

Van Iterson et al., 2017) of several Optimeye S5 measures. The most common of these measures 

is PlayerLoad™, an accelerometer-derived variable which is calculated as a scaled vector 

magnitude representing changes in triaxial acceleration (Barrett, Midgley, & Lovell, 2014). 

PlayerLoad™ was first defined in the sports science literature approximately 10 years 

ago (Boyd, Ball, & Aughey, 2011; Montgomery, Pyne, & Minahan, 2010) and is quantified in 

terms of arbitrary units (i.e., units do not materially matter). PlayerLoad™ has been used widely 
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across a number of sports (McNamara, Gabbett, Chapman, Naughton, & Farhart, 2015; Schelling 

& Torres, 2016; Wik, Luteberget, & Spencer, 2017; Young, Gastin, Sanders, Mackey, & Dwyer, 

2016); however, the metric’s true formulation remains problematically opaque (Bredt, Chagas, 

Peixoto, Menzel, & de Andrade, 2020). Moreover, it remains unclear how PlayerLoad™ is 

associated with common IMU-based measures (e.g., vector magnitude activity counts, Euclidean 

norm minus one, etc.) for quantifying human movement more typically utilized in physical 

activity-related and biomechanical research. 

Problem Statement 

 The objective of this study was to evaluate the associations of the PlayerLoad™ metric 

with common IMU-based physical activity-related and biomechanical measures of human 

movement including vector magnitude activity counts (VM), band pass filtered Euclidean norm 

(BFEN), and the Euclidean norm minus one (ENMO). The central hypothesis was that 

PlayerLoad™ would be strongly associated with VM, BFEN, and ENMO. 

Specific Aims and Hypotheses 

Aim #1. To quantify, evaluate, and compare the associations for PlayerLoad™ with VM, 

BFEN, and ENMO under simulated free-living conditions using publicly available IMU data.  

Hypothesis specific to aim #1.  Our primary hypothesis was that the PlayerLoad™ metric 

would be strongly associated with VM, BFEN, and ENMO under a variety of simulated free-

living conditions and at multiple measurement locations on the body.  

Aim #2. To develop models for predicting PlayerLoad™ from BFEN and ENMO using 

publicly available IMU data representing human movement during numerous simulated free-

living conditions. 



5 
 

Hypothesis specific to aim #2. Our secondary hypothesis was that generalizable models 

with limited over-optimism would be developed for predicting PlayerLoad™ from BFEN and 

ENMO.   

Assumptions and Limitations  

 Assumptions. The publicly available IMU data we used to evaluate the associations 

between PlayerLoad™ and VM, BFEN, and ENMO were not collected using any monitoring 

device manufactured by Catapult – the company whose products typically provide estimates of 

PlayerLoad™. As such, in order to generalize our results, we assume some level of 

comparability between measurements from the IMU sensors within the publicly available data 

we analyzed and that which can be obtained directly from Catapult devices. Available evidence 

suggests that derived metrics from different IMU sensors or accelerometers compare reasonably 

well (Rowlands et al., 2018). However, some caution regarding the interchangeability of 

predictive models using data from different IMU sensors or accelerometers should be 

considered.  

Limitations. As this investigation entailed analyses of publicly available IMU data, we 

were unable to select the specific modes and durations of activity best suited for developing 

robust and validated models for predicting PlayerLoad™. Additionally, available publications 

and presentations associated with these publicly available IMU data provide scant details 

regarding the descriptive characteristics of study participants. As such, our limited understanding 

of the participants who took part in these studies tempers our ability to strongly generalize 

beyond our sample. 

Definition of Terms 

 The following list contains operationalized definitions for numerous terms used herein: 
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• Acceleration 

o Acceleration is defined as change in velocity with respect to time. As a quantity, 

acceleration is usually standardized in terms of gravitational units (g; 1 g = 9.8 

m·s-2). Because acceleration is proportional to the net external force involved 

during movement, and as such more directly reflective of energy costs, measuring 

physical activity using acceleration is preferred to using speed (Chen & Bassett, 

2005). 

• Accelerometer  

o A sensor that measures proper acceleration along reference axes (Chen & Bassett, 

2005). When attached to a participant’s body, if the participant is at rest, the 

accelerometer measures the participant’s orientation relative to the gravitational 

vector. If the participant is moving, the accelerometer measures a combination of 

the participant’s acceleration and orientation (Xiao et al., 2016).  

• Accelerometry 

o The collection of accelerometer data for deriving velocity and displacement 

information by integrating accelerometer data with respect to a given time interval 

(Chen & Bassett, 2005). 

• Band Pass Filtered Euclidean Norm (BFEN) 

o This is a summary acceleration metric used in physical activity-related research 

created by band pass filtering triaxial acceleration signals (typically via an 

infinite-impulse response filter) and then quantifying the Euclidean norm from the 

post-filtered signals (van Hees et al., 2014). 
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• Euclidean Norm Minus One (ENMO) 

o This is a summary acceleration metric used in physical activity-related research 

created by quantifying the Euclidean norm from triaxial acceleration signals and 

subtracting 1 (van Hees et al., 2014). 

• Global Navigation Satellite System (GLONASS) 

o A global satellite and positioning system developed by the Soviet Union during 

the 1970s. Commercial navigation using GLONASS was not possible until 2007 

when the first GLONASS navigation device was introduced. Currently the system 

is powered by a constellation of 24 operational satellites (NovAtel Inc., 2020). 

• Global Navigation Satellite System (GNSS) 

o A constellation of satellites which provide space-based position and timing 

signals with global coverage. Examples of GNSS include Russia’s Global 

Navigation Satellite System (GLONASS) and the United States of America’s 

Global Positioning System (GPS; European Global Navigation Satellite Systems 

Agency, 2020). 

• Global Positioning System (GPS) 

o A global satellite-based radionavigation system belonging to the United States of 

America and operated by the United States Space Force. GPS was developed 

during the 1970s and achieved full operational capabilities in 1993. Commercial 

navigation using GPS was not possible until 1988 with the introduction of the first 

GPS navigation device. Currently the system is powered by a constellation of 31 
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operational satellites (United States Department of Defense, 2008; United States 

Space Force, 2020).  

• Gyroscope 

o A device or sensor used for maintaining or measuring angular velocity and 

orientation. Structurally, a gyroscope contains a spinning wheel or disc where the 

axis of rotation is free to assume any orientation. Due to the conservation of 

angular momentum, while rotating, the orientation of the axis of rotation is 

unaffected by tilting or rotation of the mounting (Kabai, 2007). 

• Inertial Measurement Unit (IMU)  

o A combined measurement system which integrates multiple inertial sensors. 

Typical sensors integrated into an IMU include an accelerometer, gyroscope, and 

magnetometer. In modern applications, the IMU’s inertial sensors are typically 

integrated as a micro-electromechanical system (MEMS; Starlino Electronics, 

2009). 

• Magnetometers  

o A device or sensor used to measure magnetic field intensity (magnetic induction). 

Magnetometers can be used to measure geomagnetic field vector information to 

assist in providing estimates of position and orientation (You, 2017).  

• PlayerLoad™ 

o A trademarked name associated with a proprietary measure produced by the 

Catapult series of performance assessment devices. PlayerLoad™ is generally 

defined as the sum of acceleration changes over a given epoch across all three 
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accelerometer axes. This quantity accounts for instantaneous rate of acceleration 

change and divides it by a scaling factor of 100 (Julien, 2019). 

• Proper Acceleration 

o Proper acceleration is the physical acceleration (i.e., measurable acceleration) 

experienced by an object (Taylor & Wheeler, 1992).  

• Vector Magnitude Low-Frequency Extension Activity Counts (VMLFE) 

o This is a proprietary summary measure produced by ActiGraph products and 

calculated from the combined magnitude of triaxial activity counts using the 3-

dimensional representation of the Pythagorean theorem. Low-frequency extension 

activity counts refer to those calculated using a more sensitive filtering algorithm 

and as such are typically greater in absolute magnitude than normal filter activity 

counts (Cain, Conway, Adams, Husak, & Sallis, 2013). 

• Vector Magnitude Normal Filter Activity Counts (VMNF) 

o This is a proprietary summary measure produced by ActiGraph products and 

calculated from the combined magnitude of triaxial activity counts using the 3-

dimensional representation of the Pythagorean theorem. The normal filter activity 

counts refer to those calculated using a less sensitive filtering algorithm and as 

such are typically smaller in absolute magnitude than low-frequency extension 

activity counts (Cain et al., 2013). 
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Chapter 2. Review of Literature 

Background 

Over the last 40 years, numerous wearable technologies have been introduced to quantify 

human movement. Examples of such technologies include pedometers to measure stepping 

(Bassett & Strath, 2002), cycle-based meters to measure power output (Bini, Diefenthaeler, & 

Carpes, 2014; Passfield et al., 2017), and accelerometers to measure physical activity and 

workloads (Sasaki, da Silva, Gonçalves Galdino da Costa, & John, 2016). More recently, there 

has been increasing interest in measuring and quantifying human movement in athletic contexts 

(Camomilla et al., 2018). Wearable technologies provide unique opportunities to objectively 

measure athletes and their movements. Sport-based wearable devices can measure variables such 

as top speed attained during a practice, the number of times an athlete changes direction in a 

given time frame, and total distance covered, among many other variables which could be 

quantified (Camomilla et al., 2018). For sport recruiters and scouts, data from these wearable 

technologies can be used to monitor the performance of athletes in order to facilitate peer-to-peer 

comparisons. For coaches and trainers, this data may indicate areas of performance that need 

improvement via practice adjustments or training modifications. Moreover, training adjustments 

utilizing this data may help to reduce the risk of injury (Luteberget et al., 2018). 

Despite the rapid adoption and uptake of wearable devices by sport practitioners and 

coaches, the technologies underlying the development of these devices largely emanated out of 

several public health-related fields. This review will focus on 1) the evolution of several 

common wearable technologies now used to measure athletic performance, and 2) the 

PlayerLoad™ metric, introduced by Catapult Group International Ltd., for quantifying the 

dosage of physical movement over a set time interval. 
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Common Wearable Technologies in Athletics 

 Modern wearable devices are typified by an amalgam of measurement sensors integrated 

into a single assessment system (Ainsworth, Cahalin, Buman, & Ross, 2015). Common 

technologies found in modern wearables include heart rate monitors, GPS, accelerometers, 

gyroscopes, and magnetometers. Below we will explore the evolution of the three former and 

most prevalent assessment technologies while also focusing on their typical applications. 

Heart Rate Monitors 

The relationships between heart rate and physical exercise have been extensively studied 

in the fields of kinesiology and exercise science. Heart rate, in its most simplistic sense, refers to 

the number of times the heart beats during a specified time interval. Most commonly, heart rate 

is quantified in terms of beats per minute (bpm). In general, heart rate increases as the intensity 

of physical activity increases. For steady state exercise, this increase generally follows a linear 

pattern throughout the majority of the intensity spectrum (Åstrand, Rodahl, Dahl, & Strømme, 

2003). However, during non-steady state activities the relationship between heart rate and 

oxygen uptake (i.e., energy expenditure) weakens and may not demonstrate a significant linear 

trend (Bot & Hollander, 2000). 

The primary method for measuring heart rate is via electrocardiography (ECG or EKG). 

This method measures the electrical activity of the heart. Traditionally, this electrical activity is 

mapped in time to depict the heart’s electrical wave form. The heart’s electrical wave form is 

typically divided into a series of landmarks which represent several distinct phases of the heart’s 

functioning. Examples include the P wave indicative of atrial depolarization, the QRS complex 

representing ventricular depolarization, and the T wave representing ventricular repolarization. 

In clinical settings the primary ECG measurement method is the 12 lead ECG (Jahrsdoerfer, 
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Giuliano, & Stephens, 2005). In contrast, wearable devices monitoring heart rate include chest 

straps utilizing ECG technology and wrist-based measurements utilizing an unrelated technology 

known as photophlethysmography (PPG; Zhang, Pi, & Liu, 2015).  

Embedded sensors in an ECG-based chest strap allow for detection of the heart’s 

electrical impulses (Leger & Thivierge, 1988). These impulses are then transmitted to a receiver 

unit, often worn on the wrist, which internally calculates the time-based location of each 

heartbeat. Through dimensional analysis these electrical signals are often converted into the 

metric of bpm which allows for the monitoring of physical activity intensity. ECG-based chest 

straps typically have an error rate of less than 5 bpm and are considered accurate for most 

purposes (Terbizan, Dolezal, & Albano, 2002).  

Unlike ECG-based methods, PPG uses a light source to illuminate bodily tissues at or 

very near the skin’s surface (Tamura, Maeda, Sekine, & Yoshida, 2014). A paired photodetector 

measures variation in the reflected light intensity which is associated with changes in the blood 

flow volume of local tissue. The changes in light intensity measured by the photodetector can 

then be mapped over time with peaks typically succeeding QRS complexes from a traditional 

ECG. Although this measurement method is primarily employed at the wrist, there are PPG 

devices available for measuring heart rate at alternative locations (e.g., forearm). Current 

evidence suggests that PPG-based devices are less accurate than ECG-based chest straps with 

error rates approaching 10 bpm (or higher) for some activities (Benedetto et al., 2018; Wallen, 

Gomersall, Keating, Wisloff, & Coombes, 2016).  

  For both ECG- and PPG-based heart rate monitors, the most typical usage is to track 

heart rate for monitoring intensity of activity during aerobic exercise. Commonly, heart rate is 

tracked using these devices to ensure training conforms to preidentified ranges of heart rate 
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maximum or heart rate reserve (American College of Sports Medicine, 2018). Additionally, 

other techniques exist to directly translate measured heart rate to additional outcomes such as 

energy expenditure (e.g., kcals/min; Keytel et al., 2005).  

GPS  

GPS technology was developed by the United States’ Department of Defense in 1973 

with the entirety of the original 24-satellite system operational in 1993. GPS represents one of 

the specific geo-spatial positioning systems referred to as a Global Navigation Satellite System 

(GNSS). Another prominent example of a GNSS is Russia’s Global Navigation Satellite System 

(GLONASS). In both cases, these satellites (GPS and GLONASS) are able to determine location 

by way of trilateration between three or more of the rotating satellites (Rahman, 2012). Since 

GPS was made fully available to the public in 2000, the technology has been embedded in many 

commercial and household devices. One of the first studies to investigate GPS technology for 

potential future use in athletics was published in 1997 and found that the system could be used to 

monitor and evaluate human ambulation (Schutz & Chambaz, 1997). Within the next 10 to 15 

years, more studies were conducted evaluating the reliability and validity of GPS technology 

(Coutts & Duffield, 2010; Jennings, Cormack, Coutts, Boyd, & Aughey, 2010). Expanding on 

this work, further published studies have monitored athletes in a variety of sports assessing 

variables such as speed or distance while also seeking to integrate GPS technology with data 

from other measurement devices such as accelerometers (Beato, Devereux, & Stiff, 2018; 

Buchheit, Gray, & Morin, 2015; Colby, Dawson, Heasman, Rogalski, & Gabbett, 2014).  

 As with any assessment technology, there are several limitations to GPS for measuring 

sport performance and free-living behavior. It is well understood that GPS capabilities are less 

reliable indoors away from a clear line of sight to the satellite(s) (Kuusniemi, Lachapelle, & 
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Takala, 2004). Moreover, since the majority of athletic events, practices, and free-living time is 

spent inside, the potential for GPS signal loss may be quite high in some circumstances. 

Initial interest in using GPS to monitor physical activity centered around identifying 

locations where physical activity occurred (Troped, Wilson, Matthews, Cromley, & Melly, 

2010). Concurrent with monitoring general physical activity, interest has grown in mapping 

routes of sport-related physical activity and exercise (Duncan, Badland, & Mummery, 2009; 

Jennings et al., 2010; Zhihua, 2008). Additionally, GPS technology is currently used to quantify 

speed of motion for activities such as running and cycling (Rampinini et al., 2015; Witte & 

Wilson, 2004). 

Accelerometers 

Accelerometry refers to a collection of assessment techniques attempting to measure 

acceleration most typically via electromechanical devices called accelerometers. Acceleration in 

this case is defined as change in velocity divided by change in time (ΔVelocity / ΔTime). Initial 

interest in monitoring human movement with accelerometers began in the middle of the 20th 

century with research evaluating the biomechanics of human movement (Cavagna, Saibene, & 

Margaria, 1961; Contini, Gage, & Drillis, 1965). Later during the 1970s and early 1980s, several 

studies attempting to distinguish between sleeping and wakefulness while wearing a wrist-based 

accelerometer were published (Kripke, Mullaney, Messin, & Wyborney, 1978; Mullaney, 

Kripke, & Messin, 1980). Shortly thereafter, a number of published reports began to examine 

using accelerometers as a physical activity measurement tool (Montoye et al., 1983; Servais, 

Webster, & Montoye, 1984; Wong, Webster, Montoye, & Washburn, 1981). Since this time, 

accelerometry as a means to assess physical activity has become commonplace, as evidenced by 
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the more than 70 PubMed articles containing the title words “physical activity” and 

“accelerometer” published during 2019. 

Currently, most accelerometers used to quantify human movement are piezoelectric or 

capacitive devices which can detect acceleration along three orthogonal axes (vertical, 

mediolateral, and anteroposterior; John & Freedson, 2012). Acceleration is typically quantified 

in gravitational units by most devices whereby 1 g is equivalent to the acceleration due to gravity 

(9.81 m/s2). Although speed or velocity as a measure of human performance may be more 

interpretable for describing bodily motion, it is less useful than acceleration when attempting to 

quantify the energy costs associated with activity (Chen & Bassett, 2005). This is because 

acceleration is proportional to the net external force involved and therefore more reflective of the 

energy costs associated with human movement.   

Contemporary methods for utilizing an accelerometer to measure bodily acceleration 

include 1) calculation of so-called “activity counts” to quantify the total volume of physical 

activity over a user-specified time interval (Wolff-Hughes, Troiano, Boyer, Fitzhugh, & 

McClain, 2016), 2) estimation of time spent in various intensities of activity (e.g., sedentary, 

light, moderate, and vigorous) using threshold methods (Watson, Carlson, Carroll, & Fulton, 

2014), and 3) prediction of physical activity type and energy expenditure using machine 

learning/artificial intelligence approaches (Staudenmayer, Pober, Crouter, Bassett, & Freedson, 

2009). Common acceleration-based metrics utilized within the aforementioned methods for 

quantifying the dosage of physical movement over a specified time interval include activity 

counts, BFEN, and ENMO. 

Accelerometer-determined activity counts is the most prevalent metric used to quantify 

time-based intensity of human movement via objective means in physical activity research. 



16 
 

There are a number of research-grade accelerometers which produce this metric (Straker & 

Campbell, 2012); however, activity counts are typically not comparable across different branded 

devices. Activity counts produced using ActiGraph products (ActiGraph, LLC., Pensacola, 

Florida) are most common as ActiGraph accelerometers are the most widely used research-grade 

devices within the published literature base (Leinonen et al., 2017). Activity counts are expressed 

as dimensionless units (Stone, Rowlands, & Eston, 2009); however, higher absolute values of 

activity counts within a given time interval are indicative of higher intensities of physical activity 

or movement (Freedson, Melanson, & Sirard, 1998). Activity counts measured at various body 

locations consistently demonstrate positive associations with energy expenditure (Freedson et al., 

1998; Swartz et al., 2000). However, ActiGraph activity counts specifically come in two 

different varieties 1) low-frequency extension (LFE) activity counts, and 2) normal filter (NF) 

activity counts. Generally speaking, for a given time interval with the same absolute level of 

physical activity intensity, the absolute magnitude of LFE activity counts will almost always be 

greater than NF activity counts (Cain et al., 2013). Activity counts are typically generated for all 

accelerometer axes (most typically triaxial today) as well for the combined VM. 

 In contrast to proprietary activity counts, common non-proprietary accelerometer 

measures for quantifying time-based human movement are BFEN and ENMO (van Hees et al., 

2014; van Hees et al., 2013). BFEN is calculated by first band pass filtering each axis of raw 

acceleration data in g-units from a triaxial accelerometer using an infinite-impulse response 

filter. These filters are typically 4th order Butterworth prototypes with -3 dB high pass cutoffs of 

0.2-0.5 Hz and a low pass cutoff of 15 Hz (van Hees et al., 2014; van Loo et al., 2018). The post-

filtered triaxial signals are then combined as the Euclidean norm via the 3-dimensional 

generalization of Pythagoras’s theorem. This band pass filtering approach attenuates the power 
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spectrum of the underlying signal beyond the edges of the cutoff frequencies. In short, very low 

and high frequency components of the signal, indicative of non-human movement, are 

significantly attenuated. This also produces an estimated gravity-subtracted signal as the 

acceleration due to gravity is convolved with signal elements in the lower frequency range (van 

Hees et al., 2013). Unlike BFEN, ENMO does not require any filtering of the underlying 

acceleration signal. Instead, ENMO is calculated by combining the raw triaxial signals as the 

Euclidean norm and subtracting 1 (van Hees et al., 2013). As the Euclidean norm of an object 

equals 1 g (acceleration due to gravity) when at rest, it assumed that ENMO will equal 0 when an 

accelerometer is at rest. Unfortunately, it is rather common for research-grade physical activity 

accelerometers to drift slightly out of calibration over time (e.g., an accelerometer at rest will 

measure < or > 1 g), in which case the ENMO metric may yield negative estimates in some 

instances (van Hees et al., 2014). Units of measurement for BFEN and ENMO are typically 

expressed in milligravity units per second (mg/s) and both metrics are positively associated with 

energy expenditure when used to quantify human movement (Hibbing, Lamunion, Kaplan, & 

Crouter, 2018; Migueles et al., 2019).  

Multi-Sensor Sport Performance Devices 

 Assessment systems for physical activity and exercise combining multiple measurement 

sensors are by no means novel. Early work in this research area focused on improving physical 

activity energy expenditure predictions using multiple sensor inputs. One early approach for 

improving physical activity energy expenditure estimates using wearable technology was 

realized with the Actiheart device (Brage, Brage, Franks, Ekelund, & Wareham, 2005). The 

Actiheart combines a small mobile ECG unit and accelerometer, both worn on the chest, and has 

been demonstrated to provide reasonably accurate (mean error = 0.005 kcals ∙ kg-1 ∙ min-1)  and 
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reliable estimates of physical activity energy expenditure across a range of activities (Crouter, 

Churilla, & Bassett, 2008). Subsequent to the Actiheart’s introduction, another multi-sensor 

device, specifically designed for estimating minute-by-minute energy expenditure, was the now 

defunct SenseWear Armband (SWA). The SWA combined an accelerometer along with heat 

flux, skin temperature, and galvanic skin response sensors (Johannsen et al., 2010). Using a 

proprietary algorithm, the SWA combined data from each of the sensor inputs to estimate real-

time energy expenditure and was extensively studied at the time (Calabro, Welk, & Eisenmann, 

2009; Drenowatz & Eisenmann, 2011; Johannsen et al., 2010; Unick et al., 2012). 

 More recently, several commercial entities have developed new lines of sport 

performance-oriented multi-sensor devices. Prominent examples are the line of multi-sensor 

systems developed and marketed by gpexe, STATSports, and Catapult Sports. The primary 

measurement sensors for each one of these devices are triaxial acceleromters, gyroscopes, and 

magnetometers with all three sensors integrated into a single IMU. 

In respect to Catapult’s primary contemporary measurement device, the Optimeye S5, 

parameters that can be measured include maximum and average speed, collisions, changes in 

direction, and left-right gait imbalances (Camomilla et al., 2018). Additionally, the Optimeye S5 

also provides estimates of what Catapult has called PlayerLoad™. The PlayerLoad™ metric 

represents the total cumulative change of acceleration experienced by a participant over a 

specified time interval (Camomilla et al., 2018). When tracked by coaches and trainers, the 

PlayerLoad™ metric can assist the coach or trainer in monitoring practice and training sessions 

to ensure training volume and intensity can be modified quickly to suit the individual needs of 

each athlete. This data can be stored locally using Catapult AMS software and viewed at a later 

date to compare training sessions on a daily, monthly, or annual basis.  



19 
 

Currently, Catapult claims that more than 2,500 sport teams around the world employ 

their technologies to measure athletic performance (Catapult, 2019). Several multi-sensor 

devices are offered by Catapult including the Optimeye S5, Vector, ClearSky, and PlayerTek. 

The latter three devices have just been brought to market and not extensively evaluated or 

studied. The former device represents Catapult’s most popular human movement measurement 

system capable of providing estimates for a whole variety of sport performance-related 

parameters. Enclosed in one catapult device, is a GPS unit, an accelerometer, a gyroscope, and a 

magnetometer. The catapult device can also interface with a standard chest strap heart rate 

monitor. The Optimeye S5 has been previously evaluated among athletes in rugby (Hulin et al., 

2017; Roe et al., 2017), ice hockey (Van Iterson et al., 2017), handball (Luteberget et al., 2018), 

and American football (Govus et al., 2018; Li et al., 2020; Murray et al., 2018; Sampson et al., 

2018; Wellman et al., 2019), among other sports. Primary emphases in many of these 

investigations have sought to establish field-based validity (Delaney et al., 2019; Kyprianou et 

al., 2019; Roe et al., 2017; Roell et al., 2018) and reliability (Luteberget et al., 2018; Thornton et 

al., 2019; Van Iterson et al., 2017) of several Optimeye S5 measures. 

Of particular scientific interest in the area of sport performance, Catapult’s PlayerLoad™ 

metric has been extensively studied (Barrett et al., 2016; Barron, Atkins, Edmundson, & 

Fewtrell, 2014; Bullock et al., 2019; McNamara et al., 2015; Nicolella, Torres-Ronda, Saylor, & 

Schelling, 2018; Wik et al., 2017). PlayerLoad™ is defined in terms of change of triaxial 

acceleration with respect to time and has previously been demonstrated to have excellent 

reliability (Intra-Class Correlations = 0.80 to 0.97) and is highly correlated with average heart 

rate and oxygen uptake (r = 0.92 to 0.98; Barrett et al., 2014). PlayerLoad™ is another metric 

similar to activity counts, BFEN, and ENMO intending to quantify the dosage of physical 
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movement over a specified time interval (i.e., the higher the PlayerLoad™ value in a given time 

interval the more movement that occurred). 

Despite similarities between PlayerLoad™ and activity counts, BFEN, and ENMO – all 

acceleration-derived metrics used to describe human movement – no published investigations 

have examined the associations between these metrics. As these metrics represent the most 

accepted methods for quantifying dosage of physical movement over a specified time interval for 

sport performance (PlayerLoad™) and physical activity applications (activity counts, BFEN, and 

ENMO) using wearable devices, evaluating the associations between these measures is a logical 

starting point to better understand their interchangeability and comparative strengths and 

weaknesses.  
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Chapter 3. Methods 

Data Source  

 To address this study’s aims, we used publicly available secondary data from the 

REAListic sensor DISPlacement (REALDISP) and Mobile Health (MHEALTH) studies (Banos 

et al., 2012; Banos, Garcia, et al., 2014; Banos, Toth, Damas, Pomares, & Rojas, 2014; Banos et 

al., 2015). Prior to any data analysis, we submitted a protocol application to the Oregon State 

University Institutional Review Board (IRB) seeking to determine whether this study required 

IRB review. As this investigation utilized de-identified and non-sensitive secondary data, the 

IRB rendered a determination that the study did not qualify as human subjects research. 

Therefore, the IRB concluded that formal review of the proposed study and its protocol was not 

required (Appendix A).  

Datasets  

REALDISP. The REALDISP study originally intended to evaluate different sensor 

placements on the body and the associated effects of such placements on activity recognition 

(Banos et al., 2012; Banos, Toth, et al., 2014). This was accomplished by comparing three 

different methods of device placement on the body. First, the standardized or “ideal placement” 

represented device placement in a location that was deemed optimal by the research team. 

Second, self-device placement (“self-placement”) was performed by the participant while 

intending to represent real-world applications where individuals potentially lack specific 

knowledge regarding optimal placement locations for wearable sensors. Lastly, a “mutual-

displacement” or intentional displacement was introduced to better understand how intentional 

mispositioning of sensors may degrade the usefulness of activity recognition when compared to 
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“ideal” sensor placement. For consistency in our proposed analyses, we only used sensor data 

collected using the standardized or “ideal” placements.  

 Seventeen participants (10 males, ages 22 to 37 years-old) took part in the study (Banos, 

Toth, et al., 2014). Participants were asked to complete 33 exercises in a cardio-fitness room. 

Exercises ranged from movements involving interaction with machines and equipment such as 

running or rowing which were performed for 1 minute each to jumping rope and lateral arm 

raises consisting of 20 consecutive repetitions. Research staff demonstrated each exercise 

immediately prior to when participants performed them; however, participants were instructed to 

freely perform the activities to the best of their ability. The entire sequence of exercises took 

approximately 15 to 20 minutes to complete and was preceded by a 30-minute preparation phase 

to ensure proper placement of the sensors and participant familiarization with the protocol. 

 During all activities, participants were outfitted with a set of nine Xsens IMUs (Xsens 

Technologies, Enschede, Netherlands) placed at the 1) back – secured between the scapulae, 2) 

left calf – secured on the tibia halfway between the ankle and knee, 3) left lower-arm – secured 

at the mid-point of the forearm, 4) left thigh – secured on the anterior of the thigh at the midpoint 

of the femur, 5) left upper-arm – secured at the midpoint of the humerus, 6) right calf, 7) right 

lower-arm, 8) right thigh, and 9) right upper-arm (Banos, Toth, et al., 2014). Each IMU was 

hard-wired to an Xsens Master processing unit which streamed data wirelessly via Bluetooth in 

real-time to a dedicated laptop. The laptop was simultaneously used to associate timestamps with 

the performed activities and a redundant video recording was reviewed post-testing to correct 

any timestamp labeling mistakes. All IMUs collected triaxial acceleration, magnetometer, and 

gyroscope data at a sampling frequency of 50 Hz. For the “ideal” placement data, the average 

participant provided 13.0 ± 5.3 minutes of activity-related data. 
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MHEALTH. The MHEALTH study collected data from vital sign recordings and body 

motion-related movement sensors during a discrete set of physical activities (Banos, Garcia, et 

al., 2014; Banos et al., 2015). More broadly, the MHEALTH study aimed to develop an open-

source Android-based implementation framework to facilitate rapid development of mHealth 

applications.  

Ten participants of a diverse profile (no further descriptive information regarding the 

participants is presented in any published materials related to this study) performed a series of 12 

physical activities including standing still, lying down, walking, jogging, and jumping front and 

back, among other activities (Banos et al., 2015). All activities were performed outside of a 

formal laboratory and no constraints were placed on the manner in which activities were to be 

executed; however, participants were encouraged to try their best when performing the activities. 

 During all activities, participants’ bodily motion was captured in real-time using 

Shimmer2 (Shimmer Research Ltd., Dublin, Ireland) IMUs which were attached to the body via 

elastic straps and positioned at the 1) chest – over left pectoral muscle, 2) right wrist, and 3) left 

ankle. The IMUs collected triaxial acceleration, gyroscope, and magnetometer data. The chest-

based IMU also had an integrated 2-lead ECG system for capturing electrical activity from the 

heart during all activities. All sensor data were collected at a sampling frequency of 50 Hz. All 

activity sessions were video-recorded and these recordings were used to complete post-protocol 

timestamp labeling of sensor data. 

Data Processing  

REALDISP and MHEALTH data were downloaded freely from the publicly accessible 

University of California, Irvine – Machine Learning Repository (http://archive.ics.uci.edu). 

Downloaded raw triaxial acceleration data (50 Hz) from the REALDISP and MHEALTH studies 

http://archive.ics.uci.edu/
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were resampled to 100 Hz to ensure greater compatibility in quantification methods for VMLFE, 

VMNF, BFEN, ENMO, and PlayerLoad™ metrics (Nicolella et al., 2018; van Hees et al., 2013). 

Resampling was accomplished by direct linear interpolation. 

As acceleration data was collected in units of m/s2, all data points were divided by 9.81 

m/s2 to yield additional data vectors in units of gravity (g). ActiLife software (version 6.13.4, 

ActiGraph, LLC., Pensacola, Florida) was used to create 1-second epochs of VMLFE and 

VMNF from the 100 Hz raw triaxial accelerometer data. Open-source metrics BFEN and 

ENMO, as well as PlayerLoad™, were computed using the raw 100 Hz triaxial accelerometer 

data and integrated to 1-second epochs.  

On a sample-by-sample basis, BFEN was calculated by first band pass filtering the raw 

triaxial acceleration data (x, y, z) at 100 Hz using a 4th order Butterworth band pass filter with -3 

dB cutoff frequencies of 0.2 and 15 Hz to yield filtered triaxial acceleration data (xf, yf, zf). 

BFEN, in units of mg, was then calculated from the filtered triaxial accelerometer data as shown 

in Equation 1. In contrast to BFEN, ENMO does not require filtering of the input raw 

                                                 𝐵𝐹𝐸𝑁 =  1000 × √𝑥𝑓
2 + 𝑦𝑓

2 +  𝑧𝑓
2                              (Equation 1) 

acceleration signals. ENMO combines the three triaxial vectors into a single measure in mg 

using the method displayed in Equation 2. Unlike BFEN and ENMO, PlayerLoad™ is calculated  

                                          𝐸𝑁𝑀𝑂 =  1000 × (√𝑥2 +  𝑦2 +  𝑧2 − 1)     (Equation 2) 

from the absolute changes in raw triaxial acceleration from one sample (t-1) to the next sample 

(t). PlayerLoad™ was calculated in arbitrary units using the method displayed in Equation 3.   

                                    𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑™ =  √
(𝑥𝑡− 𝑥𝑡−1)2+ (𝑦𝑡− 𝑦𝑡−1)2+ (𝑧𝑡− 𝑧𝑡−1)2

100
               (Equation 3) 
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All completed activities from the REALDISP data set were included in final analyses. 

However, we excluded all cycling-related data from the MHEALTH study resulting in an 

analytic data set containing acceleration information from only 11 activities. This was done 

because acceleration measures from the wrist are known to perform quite poorly in representing 

gross bodily movement during cycling (Welch et al., 2013). As such, we chose to eliminate 

cycling to prevent the activity from exerting disproportionate influence on subsequent 

association analyses and predictive modelling methods. 

Two final analytic data files (.csv – one each for REALDISP and MHEALTH studies) 

containing time matched VMLFE, VMNF, BFEN, ENMO, and PlayerLoad™, with 

corresponding identifiers for participant, IMU location, and activity were created. 

Statistical Power 

  As this was a secondary data analysis, potential statistical power for analytics were 

constrained to the structure and characteristics of the underlying data. We did, however, estimate 

post-hoc power for our primary analytic endpoints (i.e., PlayerLoad™ predictive models) using 

the smallest analytic sample of interest (110 observations) while accounting for the data’s nested 

structure (multiple observations nested within 10 participants). Assuming a standard mixed-

effects regression model with PlayerLoad™ regressed on another summary acceleration metric, 

an α level of 0.05, and a random intercept for participant, our least powerful analysis was able to 

achieve > 95% power to detect R2 values ≥ 0.11 – equivalent to a “medium” standardized effect 

size (Cohen, 1988).    

Statistical Analyses 

All analyses were conducted using R (version 3.6.2, R Foundation for Statistical 

Computing, Vienna, Austria) and the level of significance α was set at 0.05. 
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REALDISP Analyses. Means and standard deviations for VMLFE, VMNF, BFEN, 

ENMO, and PlayerLoad™ were initially computed for each combination of study participant, 

IMU location, and activity. Five separate two-way (IMU location × activity) linear mixed-effects 

models (equivalent to two-way within subjects repeated measures ANOVA) were fitted to 

evaluate mean differences in VMLFE, VMNF, BFEN, ENMO, and PlayerLoad™ across IMU 

locations (9 locations), performed activities (33 activities), and their interaction. 

Trellis plots were then constructed to depict the bivariate relationships of PlayerLoad™ 

with VMLFE, VMNF, BFEN, and ENMO across the nine different IMU locations (Cleveland, 

1993). To account for multiple observations per participant, repeated measures correlation 

coefficients were quantified using an ANCOVA framework (Bakdash & Marusich, 2017) for 

PlayerLoad™ vs. VMLFE, PlayerLoad™ vs. VMNF, PlayerLoad™ vs. BFEN, and 

PlayerLoad™ vs. ENMO across each of the nine IMU locations. Computed correlations within 

each of the four pairings were averaged across IMU locations using Fisher’s z-transformation 

and its inverse to yield total average correlation coefficients. Correlation magnitudes between the 

nine IMU locations were compared using z-tests within the framework proposed by Silver, 

Hittner, and May (2004) for dependent nonoverlapping correlations. To control the familywise 

error rate among the 36 statistical comparisons within each correlation pairing, we employed a 

Bonferroni-correction by dividing our a priori α by 36 (0.05 / 36 → α = 0.0014). We also 

compared correlation magnitudes between the four pairings within each IMU location using 

Meng’s z-test for dependent overlapping correlations (Meng, Rosenthal, & Rubin, 1992). A 

Bonferonni-correction was again used to control the familywise error rate among the 6 

comparisons within each IMU location (0.05 / 6 → α = 0.0083). 
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Separate calibration models were then developed for predicting PlayerLoad™ estimated 

at the back IMU location using either BFEN or ENMO. To simplify model building, we used 

Tukey’s Ladder of Powers method (Tukey, 1977) to perform two iterative searches identifying 

specific power transformations (-5 to 5 in 0.001 increments) for PlayerLoad™ that maximized 

linearity (i.e., maximized the correlation coefficient) with BFEN and ENMO. Linear mixed-

effects models were then used to develop prediction equations for regressing power-transformed 

PlayerLoad™ separately on BFEN and ENMO. Model fit was assessed by quantifying pseudo 

R2, root mean squared error (RMSE), and mean absolute error (MAE). Harrell’s optimism 

bootstrap for predictive indices (Harrell, Lee, & Mark, 1996) was used to validate each model by 

estimating unbiased pseudo R2, RMSE, and MAE using 10,000 bootstrap replicates. 

MHEALTH Analyses. Means and standard deviations for BFEN, ENMO, and 

PlayerLoad™ were initially computed for each combination of study participant and activity. 

Three separate one-way (activity) linear mixed-effects models (equivalent to one-way within 

subjects repeated measures ANOVA) were fitted to evaluate mean differences in BFEN, ENMO, 

and PlayerLoad™ across performed activities (11 activities). 

Scatterplots were then constructed to depict the bivariate relationships of PlayerLoad™ 

with BFEN and ENMO. To account for multiple observations per participant, repeated measures 

correlation coefficients were quantified for PlayerLoad™ vs. BFEN and PlayerLoad™ vs. 

ENMO. Correlation magnitudes between the two pairings were compared using Meng’s z-test 

for dependent overlapping correlations. 

Separate calibration models were then developed for predicting PlayerLoad™ estimated 

at the wrist using either BFEN or ENMO. To simplify model building, we used Tukey’s Ladder 

of Powers method to perform two iterative searches identifying specific power transformations (-
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5 to 5 in 0.001 increments) for PlayerLoad™ that maximized linearity (i.e., maximized the 

correlation coefficient) with BFEN and ENMO. Linear mixed-effects models were then used to 

develop prediction equations for regressing power-transformed PlayerLoad™ separately on 

BFEN and ENMO. Model fit was assessed by quantifying pseudo R2, root mean squared error 

(RMSE), and mean absolute error (MAE). Harrell’s optimism bootstrap for predictive indices 

was used to validate each model by estimating unbiased pseudo R2, RMSE, and MAE using 

10,000 bootstrap replicates.
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Chapter 4. Results 

REALDISP Analyses 

In total, 2,451.5 minutes (147,090 seconds) of IMU data was collected from the study’s 

17 participants. When summarized to mean values for combinations of activity and IMU 

location, there was a total of 594 data points. Means, standard deviations, and ranges for 

VMLFE, VMNF, BFEN, ENMO, and PlayerLoad™ across all 594 combinations can be 

accessed online (shorturl.at/pIU45). A subset of these summary acceleration data illustrating 

several common activities as measured from the back-positioned IMU are depicted in Table 1. 

 

Table 1. Acceleration values of selected activities measured via the back-positioned IMU. 

Activity 

VMLFE VMNF BFEN ENMO PlayerLoad™ 

M ± SD 

Min - Max 

M ± SD 

Min - Max 

M ± SD 

Min - Max 

M ± SD 

Min - Max 

M ± SD 

Min - Max 
                

Walking 
51.2 ± 14.3 47.6 ± 15.3 164.6 ± 24.3 44.8 ± 8.1 35.8 ± 10.7 

32.9 - 85.1 27.1 - 83.4 122.9 - 206.8 30.7 - 66.4 23.2 - 67.4 
                

Running 
156.7 ± 22.4 154.6 ± 22.5 839.5 ± 70.0 418.2 ± 45.6 268.5 ± 36.9 

121.5 - 203.6 119.2 - 201.8 727.3 - 932.4 350.1 - 496.3 224.2 - 370.1 
                

Jumping 

Rope 

328.9 ± 32.1 328.0 ± 32.2 1118.0 ± 66.6 600.2 ± 42.0 257.8 ± 55.0 

266.6 - 382.6 265.3 - 381.9 1033.8 - 1288.2 548.3 - 720.9 187.5 - 400.0 
                

Forward 

Stretching 

214.6 ± 56.9 213.3 ± 57.1 439.9 ± 109.1 158.5 ± 52.9 43.1 ± 13.3 

129.4 - 357.6 127.7 - 356.5 290.8 - 716.1 117.9 - 312.7 31.5 - 79.1 
                

Heels to  

Butt 

225.7 ± 27.6 224.1 ± 27.7 1132.9 ± 82.8 572.9 ± 40.6 281.1 ± 60.5 

182.4 - 274.0 180.7 - 273.1 1032.0 - 1364.5 511.7 - 681.3 191.4 - 395.3 
                

Rowing 
246.1 ± 45.8 245.1 ± 46.0 377.1 ± 77.6 66.8 ± 17.4 41.3 ± 11.3 

156.4 - 312.7 155.1 - 312.0 240.5 - 497.3 44.7 - 105.9 25.1 - 69.5 
                

Cycling 
13.5 ± 13.7 9.6 ± 13.1 166.2 ± 84.0 52.4 ± 36.4 42.0 ± 24.6 

1.9 - 50.8 0.3 - 46.2 58.8 - 375.5 19.4 - 149.8 11.2 - 102.3 
                

Note. VMLFE = vector magnitude low-frequency extension; VMNF = vector magnitude normal 

filter; BFEN = band pass filtered Euclidean norm; ENMO = Euclidean norm minus one. Units 

are in 1) activity counts/s for VMLFE and VMNF, 2) mg/s for BFEN and ENMO, and 3) PL/s × 

100 for PlayerLoad™. 

file:///C:/Users/johns/Box%20Sync/Dakota_Dailey_MS_Materials/Thesis_Defense/shorturl.at/pIU45
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Two-way (location × activity) within-subjects linear mixed-effects models for VMLFE, VMNF, 

BFEN, ENMO, and PlayerLoad™ indicated highly significant effects for location, activity, and 

their interaction (location × activity; all p < 0.001). 

Graphical depictions of the bivariate relationships of PlayerLoad™ with VMLFE and 

VMNF are depicted using Trellis plots in Figure 1. Both x- and y-axis scales are fixed across the 

 

 

Figure 1. Trellis plots of relationships for PlayerLoad™ with Vector Magnitude Low-Frequency 

Extension (VMLFE) and Vector Magnitude Normal Filter (VMNF). 

 

 

two figures and the general pattern of associations was similar for both VMLFE and VMNF. 

Linearity between PlayerLoad™ with VMLFE and VMNF was present with some heterogeneity 

in the shape of these relationships across IMU locations. Graphical depictions of the bivariate 

relationships of PlayerLoad™ with BFEN and ENMO are depicted using Trellis plots in Figure 

2. Despite differences in the underlying quantifications of BFEN and ENMO, their visual 

relationships with PlayerLoad™ across IMU locations was similar. Again, linearity between  
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Figure 2. Trellis plots of relationships for PlayerLoad™ with Band Pass Filtered Euclidean 

Norm (BFEN) and Euclidean Norm Minus One (ENMO). 

 

 

PlayerLoad™ with BFEN and ENMO was visibly evident with some heterogeneity in the 

depicted relationships across IMU locations. BFEN and ENMO appeared to visibly exhibit 

higher degrees of linearity with PlayerLoad™ than did either VMLFE or VMNF. 

 Correlation coefficients quantifying the magnitude of association for PlayerLoad™ with 

VMLFE, VMNF, BFEN, and ENMO are detailed in Table 2. Correlations for VMLFE and 

VMNF were nearly identical and always smaller than correlations associated with BFEN and 

ENMO. Across all nine IMU locations, BFEN and ENMO were strongly associated with 

PlayerLoad™ with nearly all correlations exceeding 0.80. For all evaluated metrics, 

measurements taken at lower-body IMU locations tended to be more strongly associated with 

PlayerLoad™ than did those taken on the upper-body. Average correlations across all nine IMU  
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Table. 2 Correlation coefficients between summary acceleration metrics. 

IMU 

Location 

VMLFE v. 

PlayerLoad™ 

VMNF v. 

PlayerLoad™ 

BFEN v. 

PlayerLoad™ 

ENMO v. 

PlayerLoad™ 

     

Back 0.557a,1 0.556a,1 0.921ab,2 0.955a,3 

     

LC 0.840b,1 0.840b,1 0.958c,2 0.951a,2 

     

LLA 0.539a,1 0.539c,1 0.879d,2 0.742b,3 

     

LT 0.827b,1 0.827b,1 0.974e,2 0.983c,3 

     

LUA 0.569a,1 0.569a,2 0.936af,3 0.926d,4 

     

RC 0.838b,1 0.838b,1 0.958c,2 0.951a,2 

     

RLA 0.567a,1 0.567a,1 0.893b,2 0.764e,3 

     

RT 0.830b,1 0.830b,1 0.975e,2 0.982c,3 

     

RUA 0.580a,1 0.580a,2 0.939f,3 0.924d.4 

     

     

Total 0.7101 0.7101 0.9452 0.9382 

     

Note. Values with different superscript letters within the same column are significantly different 

at 0.05/36 comparisons → p < 0.0014. Values with different superscript numbers within the 

same row are significantly different at 0.05/6 comparisons → p < 0.0083. VMLFE = Vector 

Magnitude Low Frequency Extension; VMNF = Vector Magnitude Normal Filter; BFEN = Band 

Pass Filtered Euclidean Norm; ENMO = Euclidean Norm Minus One. LC = left calf; LLA = left 

lower-arm; LT = left thigh; LUA = left upper-arm; RC = right calf; RLA = right lower-arm; RT 

= right thigh; RUA = right upper-arm. 

 

locations for VMLFE and VMNF were not significantly different from each other (both r = 

0.710, p = 0.361) nor were average correlations for BFEN and ENMO (r = 0.945 vs. r = 0.938, 

respectively, p = 0.051). However, PlayerLoad™ correlations with BFEN and ENMO were 

significantly higher than correlations with VMLFE and VMNF (all p < 0.001). 
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As ENMO and BFEN were more strongly associated with PlayerLoad™, additional 

analyses were performed to build models for predicting PlayerLoad™ from BFEN and ENMO 

using IMU data collected from the back – the primary location where PlayerLoad™ would be 

measured in sport performance applications using devices from Catapult. To this end, we first 

conducted two iterative searches to identify exponent transformation values for PlayerLoad™ 

which maximized the correlation with BFEN and ENMO (Figure 3). Exponent values which 

 

Figure 3. Plots depicting various PlayerLoad™ transformations and associated correlation 

coefficients for transformed PlayerLoad™ with Band Pass Filtered Euclidean Norm (BFEN; left) 

and Euclidean Norm Minus One (ENMO; right).  

 

 

maximized correlation coefficients between PlayerLoad™ and BFEN (x =  0.484) and ENMO (x 

= 0.698) correspond to the peaks in the respective graphs within Figure 3. 

Model calibration then followed by fitting linear-mixed effects models with transformed 

values of PlayerLoad™ regressed on BFEN and ENMO separately, and a random effect for 

participant. For BFEN and ENMO, models that included both random intercepts and slopes 
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performed better than intercept only models. As such, final models were fit with random 

intercepts and slopes. The final fixed-effects portions from the two models are depicted below in 

equations 4 and 5. Pseudo R2 values were high (BFEN: R2 = 0.881; ENMO: R2 = 0.930) for both 

                                 𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.484  = 𝐵𝐹𝐸𝑁 ×  0.0011 + 0.3411                      (Equation 4) 

                                 𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.698  = 𝐸𝑁𝑀𝑂 ×  0.0029 + 0.3170                     (Equation 5) 

models. Algebraic rearrangements of these two equations for predicting BFEN and ENMO from 

PlayerLoad™ can be found in Appendix B. Visual inspection of residual plots and histograms of 

residuals did not indicate clear evidence of heterogeneous variance or non-normality for BFEN 

or ENMO models. Bootstrap model validation results for BFEN and ENMO as sole fixed-effects 

predictors are depicted in Table 3. For PlayerLoad™ predicted by BFEN, optimism estimates 

were relatively small and in all instances the 95% confidence interval contained 0. Unbiased 

estimates (corrected index) for pseudo R2, RMSE, and MAE deviated only slightly from the 

original model indices and do not indicate evidence of overfitting. Similarly, the model 

predicting PlayerLoad™ from ENMO yielded small optimism estimates with 95% confidence 

intervals for pseudo R2 and MAE containing 0; however, some evidence of model over-optimism 

for RMSE estimates was observed as the 95% confidence interval did not contain 0. Still, 

unbiased estimates for pseudo R2, RMSE, and MAE were only slightly higher than original 

model indices and are not suggestive of substantial model overfitting. 

MHEALTH Analyses 

In total, 405 minutes (24,300 seconds) of data was collected from the study’s 10 

participants wearing a wrist-mounted IMU. Means, standard deviations, and ranges for BFEN, 

ENMO, and PlayerLoad™ across 11 activities are presented in Table 4. One-way within-subjects  
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Table 3. Bootstrap validation results for REALDISP models predicting PlayerLoad™. 

Variables 
Original 

Index 
Training Test Optimism 

Corrected 

Index 

      

BFEN      

     R2 0.881 0.883 0.881 
0.002 

0.879 
(-0.012 – 0.015) 

     RMSE 0.157 0.153 0.164 
-0.011 

0.168 
(-0.026 – 0.003) 

     MAE 0.118 0.115 0.125 
-0.010 

0.128 
(-0.023 – 0.003) 

      

ENMO      

     R2 0.930 0.933 0.932 
0.001 

0.929 
(-0.007 – 0.009) 

     RMSE 0.175 0.169 0.192 
-0.023 

0.198 
(-0.045 – -0.004) 

     MAE 0.127 0.122 0.136 
-0.014 

0.140 
(-0.028 – 0.001) 

      

Note. All values are presented as index estimates except for optimism which is presented as an 

index estimate and 95% confidence interval (obtained via percentile bootstrap). R2 = pseudo r-

squared; RMSE = root mean squared error; MAE = mean absolute error. 

 

linear mixed-effects models for BFEN, ENMO, and PlayerLoad™ indicated highly significant 

main effects for activity in each model (all p < 0.001). 

 Graphical depictions of the bivariate relationships of PlayerLoad™ with BFEN and 

ENMO are presented using scatterplots in Figure 4. Relationships for PlayerLoad™ with BFEN 

and ENMO demonstrated similar patterns of linearity. Correlations for PlayerLoad™ with BFEN 

(r = 0.955) and ENMO (r = 0.960) were strong and not significantly different (p = 0.560). 

 To inform model development, two iterative searches were conducted to identify 

exponent transformation values for PlayerLoad™ which maximized the correlation coefficients 

with BFEN and ENMO when measured at the wrist (Figure 5). Exponent values which 

maximized correlation coefficients for PlayerLoad™ with BFEN (x = 0.590) and ENMO (x =  
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Table 4. Acceleration values of various activities measured via a wrist-positioned IMU. 

Activity 

BFEN ENMO PlayerLoad™ 

M ± SD 

Min - Max 

M ± SD 

Min - Max 

M ± SD 

Min - Max 
          

Standing 

Still 

16.5 ± 4.0 2.5 ± 1.8 12.3 ± 0.9 

13.2 - 26.3 0.6 - 6.0 11.1 - 13.8 
          

Sitting and 

Relaxing 

13.4 ± 1.0 1.2 ± 0.7 12.4 ± 0.9 

11.9 - 15.7 0.0 - 2.4 11.4 - 14.0 
          

Lying 

Down 

13.7 ± 1.9 5.4 ± 5.3 12.3 ± 0.9 

11.8 - 17.1 0.4 - 14.8 11.3 - 14.2 
          

Walking 
242.0 ± 36.8 111.8 ± 29.1 47.2 ± 11.0 

184.0 - 315.3 72.5 - 170.9 34.5 - 68.9 
          

Climbing 

Stairs 

246.2 ± 52.8 85.3 ± 22.1 35.2 ± 6.9 

178.5 - 334.6 58.0 - 128.1 24.8 - 48.7 
          

Waist Bends 

Forward 

267.7 ± 56.9 92.7 ± 30.3 39.1 ± 11.3 

192.8 - 344.5 53.8 - 148.3 24.4 - 61.6 
          

Front Arm 

Elevations 

755.2 ± 94.1 130.0 ± 34.8 48.8 ± 14.2 

633.0 - 905.5 73.7 - 207.3 33.1 - 76.2 
          

Crouching 

Knee Bends 

256.8 ± 49.2 90.9 ± 24.6 41.9 ± 10.7 

192.7 - 334.3 67.1 - 133.6 27.8 - 61.5 
          

Jogging 
1237.1 ± 156.1 539.8 ± 109.6 209.5 ± 24.9 

976.9 - 1540.1 382.3 - 746.2 174.1 - 248.2 
          

Running 
1651.1 ± 198.4 900.0 ± 202.7 274.7 ± 26.3 

1307.8 - 2048.2 557.2 - 1288.6 238.8 - 316.1 
          

Jumping 

Front/Back 

1188.8 ± 165.8 505.0 ± 125.7 238.6 ± 39.6 

950.8 - 1476.5 321.3 - 755.4 179.7 - 296.5 
          

Note. BFEN = Band pass filtered Euclidean norm; ENMO = Euclidean norm minus one. Units 

are in 1) mg/sec for BFEN and ENMO, and 2) cg/sec for PlayerLoad™. 

 

1.636) correspond to the peaks in the respective graphs within Figure 5. Model calibration then 

followed by fitting linear-mixed effects models with transformed values of PlayerLoad™ 

regressed on BFEN and ENMO separately, and a random effect for participant. For BFEN, the 

model that included both a random intercept and slope did not perform better than the intercept  
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Figure 4. Scatterplots of relationships for PlayerLoad™ with Band Pass Filtered Euclidean 

Norm (BFEN) and Euclidean Norm Minus One (ENMO). 

 

 

Figure 5. Plots depicting various PlayerLoad™ transformations and associated correlation 

coefficients for transformed PlayerLoad™ with Band Pass Filtered Euclidean Norm (BFEN; left) 

and Euclidean Norm Minus One (ENMO; right). 
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only model. For ENMO, the model that included both a random intercept and slope performed 

best. As such, final models were fit with a random intercept only for BFEN and a random 

intercept and slope for ENMO. The final fixed-effects portions from the models are depicted in 

equations 5 and 6. Pseudo R2 values were high (BFEN: R2 = 0.921; ENMO R2 = 0.932).  

                                𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.590  = 𝐵𝐹𝐸𝑁 ×  0.0010 + 0.2969                       (Equation 5) 

                                𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑1.636  = 𝐸𝑁𝑀𝑂 ×  0.0065 − 0.1561                      (Equation 6) 

Algebraic rearrangements of these two equations for predicting BFEN and ENMO from 

PlayerLoad™ can be found in Appendix B. Visual inspection of residual plots and histograms of 

residuals did not indicate clear evidence of heterogeneous variance or non-normality for BFEN 

or ENMO models. Bootstrap model validation results for BFEN and ENMO as the sole predictor 

are depicted in Table 5. For PlayerLoad™ predicted by BFEN, optimism estimates were 

relatively small and in all instances the 95% confidence interval contained 0. Unbiased estimates 

for pseudo R2, RMSE, and MAE deviated only slightly from the original model indices and do 

not indicate evidence of overfitting. Similarly, the model predicting PlayerLoad™ from ENMO 

yielded small optimism estimates with 95% confidence intervals for pseudo R2, RMSE, and 

MAE all containing 0. Unbiased estimates for pseudo R2, RMSE, and MAE were only slightly 

higher than original model indices and are not suggestive of substantial model overfitting. 
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Table 5. Bootstrap validation results for MHEALTH models predicting PlayerLoad™. 

Variables 
Original 

Index 
Training Test Optimism 

Corrected 

Index 

      

BFEN      

     R2 0.921 0.921 0.923 
-0.002 

0.923 
(-0.023 – 0.015) 

     RMSE 0.155 0.151 0.157 
-0.006 

0.161 
(-0.041 – 0.025) 

     MAE 0.102 0.099 0.103 
-0.004 

0.106 
(-0.028 – 0.021) 

      

ENMO      

     R2 0.932 0.943 0.931 
0.012 

0.920 
(-0.012 – 0.039) 

     RMSE 0.470 0.439 0.528 
-0.089 

0.558 
(-0.226 – 0.033) 

     MAE 0.314 0.296 0.353 
-0.058 

0.372 
(-0.133 – 0.025) 

      

Note. All values are presented as index estimates except for optimism which is presented as an 

index estimate and 95% confidence interval (obtained via percentile bootstrap). R2 = pseudo r-

squared; RMSE = root mean squared error; MAE = mean absolute error. 
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Chapter 5. Discussion 

 The primary aim of this study was to quantify, evaluate, and compare the associations for 

PlayerLoad™ with VM activity counts (VMLFE and VMNF), BFEN, and ENMO under 

simulated free-living conditions using publicly available IMU data. We also developed a series 

of models for predicting PlayerLoad™ from BFEN and ENMO (and vice-versa) again using 

publicly available IMU data corresponding to a variety of simulated free-living activities.  

 Summary estimates of mean values significantly differed across IMU locations and 

activities in all analyses. Notable scale differences were evident as well between metrics with 

BFEN estimates exceeding 1,000 mg/sec while associated PlayerLoad™ estimates were often 

less than 50 PL/s × 100. Pertaining to the primary aim, our analyses supported our hypothesis as 

PlayerLoad™ was strongly associated with VMLFE, VMNF, BFEN, and ENMO. However, 

observed associations did statistically differ across IMU measurement locations. Additionally, 

associations between acceleration metrics computed from IMU sensors placed on the lower-body 

generally were of a greater magnitude than those placed on the upper-body. Additionally, 

PlayerLoad™ associations with BFEN and ENMO were consistently of a significantly greater 

magnitude than associations with VMLFE and VMNF. 

 In reference to the secondary aim, we were able to develop generalizable models for 

quantifying PlayerLoad™ from back- and wrist-positioned IMUs using BFEN and ENMO as 

sole predictors. We also algebraically rearranged each of these models to predict BFEN and 

ENMO from PlayerLoad™ when measured at both the back and wrist. Unbiased estimates of 

pseudo R2 were > 0.878 for all models predicting PlayerLoad™ demonstrating strong predictive 

ability. Model validation analyses using the bootstrap did not indicate large over-optimism 

(suggestive of model overfitting) for pseudo R2, RMSE, or MAE in any evaluated model. 
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 ActiGraph activity counts-based metrics including VMLFE and VMNF demonstrated 

lower magnitudes of association with PlayerLoad™ (r = 0.539 to 0.840) than the other evaluated 

metrics. This may be due to the aggressive band pass filtering used when generating ActiGraph 

activity accounts (John, Miller, Kozey-Keadle, Caldwell, & Freedson, 2012). The band pass 

filter used by ActiGraph has -3 dB cutoffs of approximately 0.13-0.29 Hz and 1.63-2.73 Hz 

(Brønd, Andersen, & Arvidsson, 2017; John et al., 2012; Peach, Van Hoomissen, & Callender, 

2014). Raw acceleration signal power at each of these cutoffs will be attenuated 50% with 

dramatically greater attenuation occurring beyond this frequency range. In comparison, the same 

acceleration signal was used to produce PlayerLoad™; however, no filtering of the raw triaxial 

data occurred with this method. 

 In contrast to activity counts, BFEN and ENMO were more strongly associated with 

PlayerLoad™ (r = 0.742 to 0.983) than VMLFE or VMNF. This is likely due to the smaller 

degree of signal processing used to generate BFEN and ENMO (van Hees et al., 2013; van Loo 

et al., 2018). The triaxial acceleration signals used to compute BFEN are band pass filtered 

before calculation of the Euclidean norm; however, the passband defined by the -3 dB cutoff 

frequencies is much larger with high pass cutoffs of 0.2-0.5 Hz and low pass cutoffs of 15 Hz. 

The post-filtered signal then maintains more signal power from the raw signal than does the post-

filtered signal produced when computing VMLFE or VMNF in most instances. Conversely, 

ENMO uses no filtering process and simply calculates the Euclidean norm from triaxial 

accelerometer signals and subtracts 1 g associated with gravity (van Hees et al., 2013). ENMO is 

sensitive to the calibration status of the accelerometer (van Hees et al., 2014). A reliable post-hoc 

method is available to calibrate triaxial acceleration data prior to the calculation of ENMO; 

however, multiple days of free-living accelerometer data are typically required to use this 
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method. Ultimately, ENMO-based accelerometer measurements do have the potential to suffer 

from additional measurement error and reduced reliability due to the devices being out of 

calibration.    

 Pertaining to our analytical methods, the iterative linearization method we used to 

identify power-based transformations for PlayerLoad™ that maximized correlations with BFEN 

and ENMO allowed us to develop linear prediction models with a single fixed-effects predictor. 

We did explore using polynomial and piecewise regression methods to initially model the 

available data. However, practically speaking, the linearization transformation method was more 

straightforward, yielded less complex fitted models, and would generally make overfitting less of 

a concern. 

 In terms of real-world application, the models we have developed can be used to predict 

PlayerLoad™ from BFEN and ENMO estimates. Additionally, when considering the relative 

strength of association between metrics, the algebraic rearrangements we present make it 

possible to predict BFEN and ENMO from PlayerLoad™ as well. In either case, these prediction 

methods will be of use when only epoch or summary level data are available (i.e., no raw 

acceleration data available to recompute the actual variables). Still, care must be taken to ensure 

the appropriate prediction models are being used as the associations for PlayerLoad™ with 

BFEN and ENMO did differ across measurement locations. Put another way, we do not 

recommend using our prediction models for estimating acceleration metrics obtained from IMUs 

or accelerometers positioned at other locations on the body (i.e., above right hip in-line with mid-

axillary line, ankle, chest, etc.). 

 Several studies present cut-point ranges of BFEN (Schaefer, Nigg, Hill, Brink, & 

Browning, 2014; van Loo et al., 2018) and ENMO (Hildebrand, VT, Hansen, & Ekelund, 2014; 
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van Loo et al., 2018) that correspond to different intensities of physical activity. As a single 

illustrative example, using the BFEN wrist cut-points of 314 mg and 998 mg (lower-bounds for 

moderate- and vigorous-intensity activity, respectively) from Schaefer et al. (2014), estimated 

PlayerLoad™ predictions consistent with these cut-point values would be 41.7 and 145.8 PL/s × 

100, respectively. Although not ideal, the approach we just presented can be used to translate 

across the metrics we have provided and serve as a potential viable option until needed studies 

using gold-standard measures of energy expenditure (e.g., indirect calorimetry) can be completed 

to properly calibrate PlayerLoad™ as a predictor of time-based absolute physical activity 

intensity. Indeed, PlayerLoad™ may be a desirable measure to use for quantifying time-based 

physical activity intensity as the most common definition of PlayerLoad™ is defined simply as 

the vector magnitude of changes in triaxial acceleration divided by 100 (Boyd et al., 2011). 

Unlike VMLFE, VMNF, or BFEN, PlayerLoad™ does not rely on any signal filtering and is 

likely more robust to accelerometer calibration errors than ENMO, both of which are desirable 

measurement properties that may prove to be fruitful. 

 Despite optimism regarding the usefulness of our PlayerLoad™ prediction models, a 

growing chorus of sports scientists remain skeptical of this metric’s usefulness for quantifying 

time-based human movement (Bredt et al., 2020; Staunton, Wundersitz, Gordon, & Kingsley, 

2017). Most of this skepticism centers around the trade named and proprietary nature of 

PlayerLoad™. Limited details pertaining to the actual computation of PlayerLoad™ has been 

provided to the public by Catapult Sports. This is perhaps why PlayerLoad™ has four distinct 

acceleration-related definitions within the sports performance literature (Aguiar, Botelho, 

Gonçalves, & Sampaio, 2013; Boyd et al., 2011; Casamichana, Castellano, & Dellal, 2013; 

Randers, Nielsen, Bangsbo, & Krustrup, 2014). That aside, research by Nicolella et al. (2018) 
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has demonstrated that the traditional PlayerLoad™ definition from Boyd et al. (2011) produces 

estimates yielding correlations > 0.999 and comparable mean estimates with proprietary Catapult 

PlayerLoad™ values generated from AMS software. 

 As will all studies, this study is not without limitations. The study detailed herein was a 

secondary analysis of publicly available IMU data from two separate studies. For both studies, 

details pertaining to demographics and anthropometrics of the study sample were scant. 

Moreover, we had no control in choosing the specific sets of activities completed by the 

participants nor did we have any control over the delivery of these activities for this protocol. It 

would have been beneficial to have larger participant samples that completed more activities for 

longer durations. However, although the REALDISP and MHEALTH data sets we used only 

contained data from 27 participants collectively, it did contain a robust set of time synchronized 

IMU recordings from 12 body locations and more than 30 different activities.  

 As we have acknowledged earlier, the publicly available data we evaluated in this study 

emanated from two previously conducted studies using IMUs not developed, sold, or marketed 

by Catapult. Therefore, we do not have a clear picture of PlayerLoad™’s reliability across 

different brands of IMUs or accelerometers. Unfortunately, the proprietary nature of some 

aspects of the PlayerLoad™ metric (e.g., why is the Euclidean norm of change in acceleration 

reduced by one order of magnitude?) detracts from its potential usefulness. ActiGraph activity 

counts share some similarities in this sense with PlayerLoad™ as it too is a proprietary metric 

whose formulation was not well understood until more recently (Brønd et al., 2017; Peach et al., 

2014). A greater understanding of the exact methods and calculation of Catapult’s proprietary 

PlayerLoad™ would allow researchers in human movement assessment to evaluate the 
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usefulness of the metric more aptly and potentially offer different routes to improve the usability 

and generalizability of the metric.  
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Chapter 6. Conclusion 

In summary, this study utilized two different publicly available wearable monitor data 

sets (REALDISP and MHEALTH) to quantify, evaluate, and compare associations between 

Catapult’s PlayerLoad™ metric and several other common acceleration metrics typically used in 

physical activity research (e.g., VMLFE, VMNF, BFEN, ENMO). Observed data supported our 

primary hypothesis that PlayerLoad™ would be strongly associated with these measures. Of 

note, associations for PlayerLoad™ with BFEN and ENMO were quite strong (r = 0.742 to 

0.983) and of a significantly greater magnitude than PlayerLoad™ associations with VMLFE 

and VMNF (r = 0.539 - 0.840) in all instances evaluated herein. 

Using back- and wrist-positioned IMU data from the REALDISP and MHEALTH 

studies, respectively, we developed models for predicting PlayerLoad™ from the common 

BFEN and ENMO metrics used extensively in physical activity research. Moreover, as the 

associations between these metrics were quite strong, we algebraically rearranged the prediction 

equations to predict BFEN or ENMO from PlayerLoad™. Model validation using Harrell’s 

optimism bootstrap (Harrell et al., 1996) for predictive indices provided greater evidence of the 

robustness of our fitted models. Unbiased pseudo R2 values were high for all models and never 

dropped below 0.879. However, these models were calibrated on epoch level data and as such 

are only generalizable for epoch- or summary-level predictions. When working with raw triaxial 

acceleration data it would still be preferable to compute desired metrics using the appropriate 

formulation as opposed to relying on a prediction equation. 

More research is needed to better understand PlayerLoad™ and its potential value for 

quantifying time-based dosages of human movement. A logical next step would be to compare 

energy expenditure-related associations between PlayerLoad™, VMLFE, VMNF, BFEN, and 



47 
 

ENMO. The metric(s) demonstrating the strongest associations with energy expenditure would 

likely prove most useful for tracking dosage of activity in both sport and public health-related 

contexts. 
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Appendix B. Prediction Equations 

Data Set Location Predict PlayerLoadTM, BFEN, or ENMO 

REALDISP Back 𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.484  = 𝐵𝐹𝐸𝑁 ×  0.0011 + 0.3411 

REALDISP Back 𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.698  = 𝐸𝑁𝑀𝑂 ×  0.0029 + 0.3170                      

MHEALTH Wrist 𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.590  = 𝐵𝐹𝐸𝑁 ×  0.0010 + 0.2969                        

MHEALTH Wrist 𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑1.636  = 𝐸𝑁𝑀𝑂 ×  0.0065 − 0.1561                      

    

REALDISP Back BFEN =(𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.484 − 0.3411) × (1/0.0011) 

REALDISP Back ENMO = (𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.698 −0.3170) × (1/ 0.0029) 

MHEALTH Wrist BFEN = (𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑0.590 − 0.2969) × (1/0.0010) 

MHEALTH Wrist ENMO = (𝑃𝑙𝑎𝑦𝑒𝑟𝐿𝑜𝑎𝑑1.636 + 0.1561) × (1/0.0065) 

 


