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A variety of stakeholders require information about marine systems. In the open

ocean, pilots of marine vessels require knowledge about environmental conditions

for safe passage and route planning. On the coastline, communities rely on infor-

mation about nearshore dynamics to increase safety from coastal hazards such as

nearshore pollutants, coastal erosion, or dangerous recreational conditions (e.g.,

rip currents). Models provide information for environmental health and safety in

the form of forecasts or general knowledge of the marine science systems.

Large volumes of data from a variety of marine sensors are now available thanks

to progress in computer processing and data storage. These data should be lever-

aged to advance the boundaries of marine science knowledge. Herein, Machine

Learning (ML) techniques are applied to improve different types of marine science

models and increase the knowledge of marine science systems. Two different types

of ML techniques are considered; traditional machine learning and deep learning.

The techniques are applied in a transparent way, ensuring that the ML routine has

made predictions with appropriate reasoning. Also, the transferability of the ML

routines is assessed to determine the limits of ML routine generalizability. The

thesis is organized in a manuscript format, where the first and last chapters serve

as overall Introduction and Conclusions, respectively. The central three chapters

are individual manuscripts.



The second chapter applies a traditional ML technique called a decision tree

to numerical wave model output. The decision tree predicts corrections of 24-hour

time horizon significant wave height forecasts generated by a numerical wave model.

The wave model output was located at buoy locations offshore of the United States

Pacific Northwest coastline. The application of the decision tree increased wave

model skill more for winter than for summer. The decision tree also made accurate

predictions in a geospatial transfer experiment, where the decision tree predicted

error for a location that was not used in training data. However, the decision

tree predictions were less accurate when it was applied to a different time period.

The transparent nature of the algorithm allowed for inspection of the algorithm’s

architecture, finding consistent underestimations of significant wave height for data

points associated with mid wave periods (6-12s).

The third chapter develops an automated technique to recognize morphologi-

cal shapes within coastal imagery using a Convolutional Neural Network (CNN).

The morphological shapes are morphological patterns that occur frequently in the

nearshore called beach states. The input to the CNN was coastal imagery from

two different study sites and the output was beach state labels. The two different

study sites were Narrabeen, Sydney, Australia and Duck, North Carolina, United

States. Three ensembles of CNNs were trained; two single-site CNNs (trained at

individual locations) and one multi-site CNN (trained at both locations). The

CNNs were applied to both locations to determine skill at the location it was

trained (the original location) in a self-test and skill at the location where it was

not trained (the alternate location) in a transfer-test. For the self-tests, the CNN

skill was comparable to inter-labeller agreement, with skill at Duck higher than

skill at Narrabeen (F-scores of 0.8 for Duck and 0.59 for Narrabeen). The CNN

skill was reduced in the transfer tests. However, if at least 25% of the training

data came from the alternate location, the skill increased to within 10% of the

skill at the original location. A visualization technique (Guided Grad-CAM) re-

vealed areas of importance within input images for CNN decision making, and

confirmed that the CNN identified the appropriate morphological characteristics



(e.g., terraces or rip currents) for each classification.

The fourth chapter builds off the third, and applies a CNN to a long (>20

years) dataset to detect alongshore variability of beach state quantified as a beach

probability simplex, thereby advancing the beach state framework from discrete

space to continuous space. The approach from the third chapter is modified to de-

tect alongshore differences in beach state using a windowing technique. The CNN

produced beach probability simplices from a 28-year dataset of images from Duck,

NC, and results showed that most (67%) of the resulting beach probability sim-

plices encompassed more than one state. The 28-year time series was dominated

by an annual cycle, where simplices that encompassed onshore states occurred in

summer, offshore states in winter, and intermediate states in fall or spring. The

mean value of the beach probability simplex exhibited a strong relationship with

significant wave height (28-year daily average R=0.77) and mean wave direction

(28-year daily average R=0.84). The simplices that encompassed the highest num-

ber of states (three) were most likely to occur in fall, specifically the month of

September.
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Chapter 1: General Introduction

Coastal zones provide ecological habitat and resources, recreational opportunity,

and are home to a third of the US population. Nearshore physical dynamics

directly influence coastal hazards such as coastal erosion or recreational safety and

coastal environmental health such as the relative abundance of ecological fauna and

transport and fate of pollutants (Benedet, Finkl, & Klein, 2006; Hughes, Aagaard,

Baldock, & Power, 2014; Shanks et al., 2018; Winckler, Liu, & Mei, 2013). Coastal

scientists seek to to increase our predictive power and understanding of nearshore

systems, ultimately contributing to society’s well-being.

The digital era has changed the way we live our lives. Powerful pattern recog-

nition technologies aid decisions about travel, media consumption, or product pur-

chasing. New technologies should not be confined to the commercial sector, but

should also be applied towards scientific discovery in that they can uncover pat-

terns within data that are otherwise seemingly unextractable. The following dis-

sertation encompasses three examples of applying cutting-edge pattern recognition

techniques to improve marine science models.

The scientific method requires the development and testing of models. Mod-

els that encapsulate the most up-to-date theory can take on physical, conceptual,

theoretical, or numerical forms, and are either derived from or validated by obser-

vations. Observations were first made by visually noting processes or other natural

phenomena. In the modern era, scientists are often removed from their object of

study, as digital sensors, such as optical imagery, wave buoys, LiDar, or radar,

are used in place of or to augment visual observations Malde, Handegard, Eikvil,

and Salberg (2020). Thanks to a global network of digital sensors, marine data

are growing by the petrabytes. The nature of the data, both in terms of volume

and form (raw data from sensors are not interpretable) are no longer interpreted

with computational programming languages such as FORTRAN or MATLAB. The
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acquisition of the massive amounts of data has ushered in the “fourth paradigm”

of science, wherein protocols for data management, sharing and accessibility are

necessary to fuel data-derived scientific discovery (Hey, Tansley, Tolle, et al., 2009).

With advances in computational resources and open source software, scientists can

now leverage powerful pattern recognition tools to uncover relationships within

data and expand the boundaries of scientific knowledge (Bergen, Johnson, Hoop,

& Beroza, 2019).

Pattern recognition tools, including Machine Learning (ML) algorithms were

born from a cross-fertilization of ideas between computer science and statistics

and have been applied in a variety of ways within marine science. As a few ex-

amples, ML has been used to determine relevant components of nearshore sys-

temic dynamics (Beuzen et al., 2018b; Biel, Hacker, & Ruggiero, 2019; Bulteau

et al., 2015; Eadi Stringari, 2020), make predictions of morphology or runup

statistics (S.-T. Chen, 2019; Nieves, Radin, & Camps-Valls, 2021; Pape, Plant, &

Ruessink, 2010), or emulate flooding, storm surge or wave models (James, Zhang,

& O’Donncha, 2018; Kyprioti, Taflanidis, Nadal-Caraballo, & Campbell, 2021;

Parker, Ruggiero, Serafin, & Hill, 2019).

The marine science community may be reluctant to adopt ML techniques due

the opaque nature of ML algorithms and a resulting lack of trust in ML algorithm

predictions. Marine scientists often use theoretical models based on first principles

(e.g., Roelvink, McCall, Mehvar, Nederhoff, and Dastgheib (2018); Tolman and

Chalikov (1996)), where cause and effect are readily seen. In contrast, ML models

are often “black box” techniques. Therefore, in order to adopt an ML technique, it

is desirable to develop trust in the proposed ML algorithm by ascertaining that the

ML predictions are made in accordance with the established theory or at least with

sound reason. Techniques to improve the transparency of artificial intelligence are

generally called “explainable AI” (Doran, Schulz, & Besold, 2017; Goebel et al.,

2018; Holzinger, 2018). Herein, the ML techniques are queried to determine how

the ML predictions were made to increase the transparency of the ML technique.

An additional benefit of increasing the transparency of ML decision making
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is leveraging the information about ML decision making for Knowledge Discov-

ery (KD) about marine systems. In a KD process, knowledge about the system

is learned by interpreting the results of data mining techniques (Cios, Pedrycz,

& Swiniarski, 1998). Blind interpretation of ML results, however, could lead to

incorrect conclusions since the ML technique might find unimportant correlations

(Wadoux, Samuel-Rosa, Poggio, & Mulder, 2020). Therefore, a robust ML KD

process is a hybrid approach which combines established domain knowledge with

the pattern recognition ability of an ML technique to lead to new conclusions

about a system. An additional limitation in using ML KD is that, while corre-

lations are revealed, the details about the causation of phenomena might remain

unknown (Goldstein, Coco, & Plant, 2019). Beuzen et al. (2018a) illustrates a

KD example (called a “descriptive” ML application) within coastal geomorphol-

ogy using Bayesian Networks, where a specialized Bayesian Network is inspected

to determine the combination shoreline factors correlated with coastal flooding.

Herein, MLKD is performed using hybrid approaches in two ways: in chapter two,

an ML routine is coupled with an established numerical model to determine areas

of model bias and corrections to wave forecasts; in chapters three and four, the

ML technique expands the identification of nearshore morphology based off a well

established conceptual model.

A powerful aspect of scientific discovery through ML is increasing the temporal

and spatial scales of data analysis. In order to resolve these scales, ML algorithms

must be generalizable enough to transfer between locations or time periods. The

challenge in applying a ML technique to marine science arises in that each marine

ecosystem and landscape is unique; two locations might exhibit similar patterns,

but still be subject to phenomena that differentiate the two sufficiently well such

that ML trained at one location cannot be applied to a different location. Tem-

porally, forecasting variables faces the challenge of non-stationarity in the time

series. If the trend of a time series changes over time, an ML technique trained

on a previous time period might make inaccurate predictions for a different time

period. Herein, the ML techniques are applied at different geographical locations
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or time periods to determine transferability skill.

Advancements in traditional research ML has led to more complex and pow-

erful algorithms called deep ML (LeCun, Bengio, & Hinton, 2015). In traditional

machine learning, the raw data are used as input features to an ML task such as

classification. In deep ML, the raw data is transformed into representations by

several layers of transformations, which are then used as input features to the ML

task. This dissertation encompasses the two types; traditional ML in chapter 2

and deep in chapter 3. In this dissertation, the traditional ML technique has the

advantage of being more readily transparent and interpretable than the deep ML

technique.

The data types, model types, ML routines and domain of the two chapters are

distinct. The second chapter focuses on off-shore waves, the model is numerical,

and the data type are observations of continuous variables. Wave models, currently

providing operational forecasts globally, are numerical models that solve an energy

balance equation to predict a wave spectrum (Tolman & Chalikov, 1996). They

are subject to ongoing research and improvement, and are validated by observa-

tions of wave spectra or bulk parameters made by remote sensors such as offshore

buoys or satellites (Björkqvist, Vähä-Piikkiö, Alari, Kuznetsova, & Tuomi, 2020;

A. Ellenson & Özkan-Haller, 2018; Ortiz-Royero & Mercado-Irizarry, 2008; Stopa,

Ardhuin, Babanin, & Zieger, 2016b). A transparent ML technique, a decision tree,

was applied to improve the accuracy of wave model predictions. A decision tree

is distinct from other ML tools, such as neural nets, in that it can be visually in-

spected to determine the parameter combinations used to optimize its predictions

(Etemad-Shahidi & Mahjoobi, 2009). The objectives of chapter 2 are to increase

the skill of the numerical model, determine areas where wave model improvements

can be made by investigating the ML technique decision making, and also to de-

termine the transferability constraints of the technique with respect to different

geospatial locations and time periods.

The second and third chapters focus on coastal geomorphology, the model is

conceptual, and the data type are images. The dynamics and theory comprising
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nearshore geomorphology, in contrast with wave models, include feedback dynam-

ics between solid and aqueous phases (Roelvink et al., 2018). As a result, the

governing equations require resolution of complex interactions between sediment

transport and hydrodynamics that might be parameterized empirically. The model

in consideration, beach state classification, views nearshore morphology on a tem-

poral and spatial scale wherein the aforementioned small-scale dynamics are not

resolved.

Beach state classification is a qualitative conceptual model that establishes a

categorization system for frequently occurring morphological patterns and a the-

ory on morphological pattern evolution (Lippmann & Holman, 1990; L. D. Wright

& Short, 1984). Beach states encompass a description of the nearshore surf zone

bathymetric shape and associated physical dynamics. For example, one category

might be associated with rhythmicity and a high prevalence of rip currents. Ob-

servational studies have found that the beach state affects hydrodynamics at the

shoreline (Gomes da Silva, Coco, Garnier, & Klein, 2020) and therefore changes

in beach state can alter the shoreline. Quantification of instantaneous and fu-

ture beach state has been used to model shoreline change (Davidson, Splinter,

& Turner, 2013). While the beach state framework is useful in that it simplifies

complex morphological patterns into readily understood categories, the qualitative

nature of the framework results in a degree of subjectivity in beach state labelling.

A Convolutional Neural Network (CNN) is applied to detect beach states from

imagery at two locations. The imagery used is Argus daytime exposure imagery,

which is an average of video frames of wave breaking (Holland, Holman, Lippmann,

Stanley, & Plant, 1997). Waves generally break on a sandbar, and so morphology

can be inferred from wave breaking patterns. The detection technique is applied

at two different locations. The objectives of this chapter are to determine the

appropriateness of applying a CNN to detect a beach state and to determine its

transferability between locations. Given the subjectivity in labelling a beach state,

the CNN skill is determined adequate by comparing its predictions with the la-

belling agreement between the authors. Finally, to determine appropriate decision
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making, the CNN was queried to confirm that it was indeed identifying the right

characteristics associated with each class.

The simplification of the nearshore morphology into discrete beach states re-

sults in a decrease in descriptive accuracy and a mis-perception of the reality that

the nearshore morphology exists in more complicated shapes. Nearshore mor-

phologies can exhibit alongshore variability of beach state, and therefore might

not be readily categorized into a discrete shape. The fourth chapter builds off the

third in that it uses a CNN to detect morphological characteristics. However, the

fourth chapter expands the beach state framework to encompass alongshore vari-

able beach states. There are two goals in this chapter: the first is to increase the

generalizability of the beach state framework such that the automated technique

can be applied to high volume datasets of Argus imagery and maximize the amount

of information extracted; the second is to characterize the temporal variability and

distribution of beach simplices from a 28 year dataset of Argus imagery.
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ABSTRACT: This study uses a machine learning algorithm, the bagged regres-

sion tree, to detect error patterns within 24-hour forecasts of significant wave

height time series. The input to the machine learning algorithm were bulk param-

eter outputs of the numerical wave model (WaveWatch III) and wind information

from the Global Forecast System at buoy locations along the California-Oregon

border in the United States. The output of the algorithm are predictions of hourly

deviations between numerical model output and buoy observations of significant

wave height. When these deviations were applied as corrections to the forecasts,

error metrics root-mean-squared-error, bias, percent error, and scatter index were

reduced in several different experiments, confirming that the error pattern was suc-

cessfully detected by the machine learning algorithm. Furthermore, the detected

error pattern was consistent between buoys at different locations, as presented in

a geo-spatial application of the machine learning algorithm. As a descriptive tool,

the algorithm delineated regions of similar error within the context of model phase

space (significant wave height and mean wave period). Specifically, the algorithm

detected significant wave height overestimations for significant wave heights greater

than 3.4 m, wave period greater than 9.1 s, and waves coming from the W-NW

quadrant. Also, for significant wave heights greater than the 95th percentile value

(5.4 m), the algorithm detected differences in mean error patterns.

2.1 Introduction

Forecasts or hindcasts of ocean wave conditions provide hazard warnings for resi-

dential coastal communities, information about environmental conditions for recre-

ational and commercial coastal populations, and information about historical wave

conditions in areas where observations of significant wave height do not exist Ap-

pendini, Torres-Freyermuth, Salles, López-González, and Mendoza (2014); Garćıa-

Medina, Özkan-Haller, and Ruggiero (2014); Guedes Soares, Rusu, Bernardino,

and Pilar (2011). Coastal development involving structures or marine renewable

energy rely on this information to make design decisions.

Ocean wave predictions are products of physics-based numerical wave models
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that are governed by equations which describe the physical processes involved

in the generation, propagation, and dissipation of wave energy represented by a

wave energy density spectrum. Generally, these models require two main inputs,

bathymetry and wind fields, and produce a variety of output products, most often

in the form of maps or time series of bulk wave parameters such as significant wave

height, mean wave direction, and mean wave period. These models are prone to

errors which can be due to inaccurate input information or imperfections in the

governing equations and parameterizations that are used in the wave model.

Machine learning techniques use statistics to determine patterns between in-

puts and outputs. One application of these techniques within wave forecasting

has been to generate significant wave height forecasts statistically, i.e., without

reference to a physics-based model. Environmental information at a specific lo-

cation, such as time-lagged wind or significant wave height observations are often

the primary input, and significant wave height predictions are the primary output.

Studies have used time-lagged wind or wave information as input to the machine

learning techniques to predict significant wave height into the future Mudronja,

Matić, and Katalinić (2017). Machine learning techniques includeArtifical Neu-

ral Networks (ANNs), adapative neuro-fuzzy inference systems (ANFIS), support

vector machines (SVM), and Bayesian networks (BN). The ability for different

machine learning techniques to predict significant wave height given previously

observed wind data was studied in Malekmohamadi, Bazargan-Lari, Kerachian,

Nikoo, and Fallahnia (2011). They found that ANNs, ANFIS, and SVMs work

well, whereas BNs resulted in less accurate results. In Berbić, Ocvirk, Carević,

and Lončar (2017), they used SVMs and ANNs to predict significant wave height

up to 6 hours into the future using time-lagged wind information as input. In Za-

mani, Solomatine, Azimian, and Heemink (2008), they use three different ANNs

to predict significant wave heights 1, 3, and 6 hours into the future, and contrast

these ANNs with an Instance Based Learning technique wherein they included

spatial information for significant wave height predictions. In Nikoo, Kerachian,

and Alizadeh (2018), they compare bayesian networks, regression tree, fuzzy k-
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nearest neighbor, and support vector regression techniques to forecast significant

wave height given wind data, including wind direction as well as wind speed. They

recommended finding a method that also can predict the spatial structure of the

wave field.

Other studies have used neighboring spatial information (wind or significant

wave height error) to predict significant wave height at a location of interest Peres,

Iuppa, Cavallaro, Cancelliere, and Foti (2015). Another application has involved

the generation of data at locations where information was missing. For example,

data from neighboring buoys can be used as input to a statistical technique to

generate time series for a buoy with a data gap (Kalra & Deo, 2007; Tsai, Lin, &

Shen, 2002).

The studies discussed above primarily concerned the ability for machine learn-

ing algorithms to produce accurate wave forecasts, without explicit reference to

wave physics. In contrast, this study leverages the strengths of both physics-

based and machine learning methods in a hybrid approach wherein a variation of

the decision tree is used to correct a physics-based model. This hybrid approach

can improve predictions, yielding more accurate results than either methods alone

(Berbić et al., 2017; Reikard, Pinson, & Bidlot, 2011; Woodcock & Engel, 2005;

Woodcock & Greenslade, 2007). In particular, neural networks have been used

as a post-processing routine to correct the original wave model predictions of

wave parameters (Deshmukh, Deo, Bhaskaran, Nair, & Sandhya, 2016; Hadad-

pour, Moshfeghi, Jabbari, & Kamranzad, 2013; Moeini, Etemad-Shahidi, Chegini,

& Rahmani, 2012; Moeini, Etemad-Shahidi, Chegini, Rahmani, & Moghaddam,

2014; Zhang, Li, Li, & Qi, 2006).

The machine learning algorithm of interest in this study is the bagged decision

tree, an ensemble method of the decision tree, which has been applied in a variety

of disciplines. Specific to wave forecasting, Mahjoobi and Etemad-Shahidi (2008)

and Jain, Deo, Latha, and Rajendran (2011), regression trees were compared with

ANNs to predict significant wave height in Lake Superior in Etemad-Shahidi and

Mahjoobi (2009), and their performance was marginally better. In Etemad-Shahidi
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and Bonakdar (2009), the decision tree was used to predict wave run up. Its

predictions were more accurate than an established engineering empirical formula.

As noted in other studies, the advantage to decision tree over other machine

learning techniques such as ANNs is that its logic is transparent and can be read-

ily understood through visual inspection or by extracting the decision rules in

a post-processing routine Etemad-Shahidi and Bonakdar (2009); Etemad-Shahidi

and Mahjoobi (2009). Because of this, the decision tree offers an opportunity to

learn about patterns within the data being studied. The decision tree is both pre-

dictive and descriptive, since the architecture of the algorithm reveals relationships

within the data. Other machine learning algorithms, such as Bayesian networks

or fuzzy-logic based systems, share this quality and can be used to infer informa-

tion about large data sets. In Beuzen et al. (2018a); Gutierrez, Plant, Thieler,

and Turecek (2015), the rules of Bayesian networks were interpreted to determine

the relevant physical drivers in shoreline change processes. In Cornejo-Bueno,

Rodŕıguez-Mier, Mucientes, Nieto-Borge, and Salcedo-Sanz (2018), a fuzzy logic

system was used to predict significant wave height and energy flux. The algorithm

was able to capture relevant predictors for the different physical regimes. Sea state

was better predicted by local meteorological values (i.e., air temperature, water

temperature and wind speed), and swell was better predicted by surrounding spa-

tial information as well as meteorological values (i.e., significant wave height values

from surrounding buoys, mean wave direction and atmospheric pressure).

In this study, decision tree is used in both descriptive and predictive senses.

It is trained to predict wave model error, and the construction of the algorithm

delineates regions of model phase space in which systematic model biases occur.

For example, if physics-based model predictions consistently underestimate large

significant wave height for a certain wave direction and significant wave height

combination, this approach detects this significant wave height/wave direction

combination and determines a mean underestimation value. This can provide

information to model developers about areas of model inadequacies and potential

areas of wave model improvement. This algorithm also shows potential in deter-
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mining geo-spatial error patterns, since it can generate accurate error predictions

at neighboring locations where data has not been provided. This could be used for

correcting gridded wave model output, where measurements are not available.

The technique is applied to several months long 24-hour significant wave height

forecasts generated for buoy locations within the Northeast Pacific region, as shown

in Figure 2.4. Results are presented for two different wave climates: high and low

energy (winter and summer, respectively). The input features are comprised of 24-

hour predicted time series of significant wave height, mean wave direction, mean

wave period, wind direction, and wind magnitude. The potential for the technique

to be extrapolated to other locations is also demonstrated.

2.2 Methods

2.2.1 Bagged Regression Tree

The goal of a machine learning algorithm is to relate a vector of inputs (or “input

features,” x) and their associated output values (or “targets,” y). Input feature-

target pairs ((x1, y1), ..., (xN , yN)) are called instances. The algorithm learns pat-

terns during a training phase, which are then used as a basis upon which to make

predictions during the testing phase.

Machine learning algorithms, or “learners,” have different strengths and weak-

nesses depending on base logic used to learn patterns. In order to generate a

stronger learner, several different learners or multiple realizations of the same

learner can be combined in an ensemble technique. The ensemble technique dic-

tates how the learners are combined. The method used in this study is an ensemble

method where many realizations of the same base learner are used. (Dietterich,

2000).

The base learner used in this study is a regression tree, and belongs to a broader

class of methods known as Classification and Regression Tree (CART) (Breiman,

Friedman, Stone, & Olshen, 1984). The algorithm used by regression tree is to map

input features to a predicted target value by splitting the instances into disjoint
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sets, or partitions. In the entire data set, T , each partition, t, encompasses a

sub-set of instances ((xi, yi) ∈ t) and is associated with a target value prediction.

The elements of the hourly input feature vectors (xi) are modelled environmental

parameters associated with the forecast for that hour, i. These include significant

wave height, Hs, mean wave direction, MWD, mean wave period Tm01, wind

magnitude, wndmag, and wind direction winddir. See A.2 for definitions of the

bulk wave parameters. The output target (yi) for this study is the difference

between the significant wave height observations, Hs,obs, and modelled significant

wave height, Hs,WW3 for a particular hour, i:

yi = Hs,obs −Hs,WW3 (2.1)

A negative (positive) target value indicate a significant wave height overestimation

(underestimation). In Figure 2.1, the 2012-2013 target values, yi, are shown within

the feature space of the input parameters Hs, Tm01 and MWD. The target values

are the WW3 Hs prediction errors for the 2012-2013 winter seasons (defined by

Equation 2.1). This feature space, T , is the space that the decision tree will divide

into partitions.
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Figure 2.1: The 2012-2013 winter target values (colored points) plotted as a feature

space with respect to the input features. The target values are the WaveWatch

III Hs prediction error (Equation 2.1), and the three input feature elements are

WaveWatch III Hs, MWD and Tm01.

The objective is to find the partitions wherein the mean target value of that

partition (y(t)) is most similar to the rest of the target values encompassed within

that partition. Specifically, the algorithm seeks the partitions, t, in the entire

dataset, T , that minimize the sum of variances in yi across all the partitions:

1

N

∑
t∈T

∑
xi∈t

(yi − y(t))2 (2.2)

These partitions are constructed by splitting the target values (yi) with respect

to values of the input features (xi). The input features can be used more than one

time in determining final partitions. During the training phase, the regression tree

establishes partitions by determining the maximum variance reduction within the

entire data set according to Equation 2.2.1. See Figure 2.2 for an example of how

the data is successively split on threshold values of input features, establishing a
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tree structure. At each level of the tree, decisions are made to split the data set

based on a threshold value of an input feature to minimize the variance of the entire

dataset, thus establishing ‘branches.’ In the final partitions, the mean target value

is determined for the data associated with that partition (y(t)). During testing,

each instance is categorized into a partition due to the values of the input features,

xi, that correspond with the thresholds determined during training. Each partition

is associated with a mean target value (y(t), established during training) which is

the prediction for the instances which fall into the associated partition. See Figure

2.3 for an illustration of the final partitions, t, made relative to the entire dataset

T .

Through partitioning the data space by minimizing Equation (2), the decision

tree finds clusters of points with similar over- or under- estimations and associated

with the same environmental context. The environmental context, defined by the

tree structure, is readily understood through visual interpretation and extraction

of the decisions made to establish the partitions (see Section 2.4.2 for examples).

The decision tree structure can therefore be used as a diagnostic tool for model

developers to find systematic errors within wave model output. This makes the

decision tree method more transparent than other “black box” machine learning

algorithms, such as artificial neural networks. The interpretation of the decision

making process for artificial neural networks is a subject of ongoing research (Koh

& Liang, 2017).
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Figure 2.2: Representative tree structure of the splits made between the input

features during training on the training data set. The input features which the de-

cision tree splits on are indicated within each node with a threshold value. Branches

to the left (right) represent the division of data points less than (greater than) the

threshold value. In the final partitions, MSE is the mean squared error between the

member target values within the partition and the mean target value associated

with that partition. y(t) is the mean target value associated with that partition.
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Figure 2.3: An example of three final partitions determined after the decision tree

split the entire dataset with respect to values of bulk wave parameters. These

partitions correspond with partitions 61 and 62 that are represented in the tree

structure in Figure 2.2.

The ensemble technique, wherein many trees are trained, is called bagging

(short for bootstrap aggregation). In this technique, each tree is trained on unique

subsets of the entire learning dataset. The subsets are comprised of instances that

are chosen with replacement. The subset of samples are chosen in such a way that

an instance can be found within a subset several times or not at all, according to

Breiman (1996). The final prediction is an average of the predictions made by all

of the base learners within the bagging scheme. The base learner, the regression

tree, combined with the ensemble technique, bagging, is referred to as a “bagged

regression tree.”

The number of splits made on a learning data set is referred to as the depth

of a tree, and the ensemble size used to make the final prediction in the bagged

regression tree is referred to as the number of trees. The depth and number of trees

of each bagged regression tree is determined during the training phase through
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cross validation, as described by Breiman and Spector (1992), and in the following

section. Also, the data might be split with respect to one feature more often than

another, indicating that the feature is important in its decision making rules.

2.2.2 Parameter Selection

During the cross-validation portion of training optimal tree depths and number of

trees were selected by comparing performance on a validation set via root-mean-

squared-error. The tree depths tested were 2, 3, 4, 5, 10, 15, 20, 30. The number

of trees tested were 10, 30, 50, 100, 150, 200, 250 trees. To determine the optimal

forest parameters, five-fold cross validation was implemented during the training

phase Breiman and Spector (1992). This consisted of first shuffling the data using

a Fisher-Yates shuffling routine, then dividing the learning data into five subsets,

or folds. Four folds served as a training set and the fifth fold served as a validation

set. Each combination of depth and number of trees was trained on four folds, and

tested on the last validation fold. The performances of each bagged regression tree

was assessed by the root-mean-squared-error of the predictions of the validation

fold. This process was repeated five times, where each fold served as a validation

set at least once. The bagged regression tree that resulted in the lowest average

RMSE between the five validation runs was the one used for post-processing the

wave forecasts.

Each run (where a run consists of a train/test cycle) is associated with one

bagged regression tree. The output of a run is stochastic in nature due to the

randomness associated with the bagging method as well as shuffling the time series.

Therefore, each run was performed thirty times, and the mean value of the thirty

runs is reported here as the final value for each experiment.

2.2.3 Experiments

Experiments were designed to determine the performance of the bagged regression

tree for different wave climates and different input feature combinations. The data
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was divided into summer and winter seasons to test the bagged regression tree on

different wave climates. In the Eastern North Pacific, the winter (October-March,

inclusively) is characterized by a more energetic wave climate and is associated with

larger significant wave heights and longer periods as compared with summer (April-

September, inclusively). The winter data set was characterized by an average

significant wave height of 3.1 meters and an average mean wave period (Tm01)

of 9.3 seconds. The summer data set was characterized by an average significant

wave height of 1.8 meters and average mean wave period of 7.2 seconds. The

seasonal data was further divided into training and testing sets. The training set

consisted of the years 2012-2013 and the testing set consisted of the year 2014.

This corresponds to training sets comprised of 6,228 and 6,303 instances (input

feature/target pairs), and a testing set of 3,864 and 3,855 instances, for winter and

summer, respectively.

The characteristics of these experiments are presented in Table 2.1. The first

two experiments were single-buoy experiments, and used training data from buoy

46050. In the first experiment, input features included only the forecasted bulk

parameters (Hs, Tm01 and MWD) as provided by the wave model, and will be

called “Waves Only.” In the second experiment, input features also included wind

information wind direction (winddir) and wind magnitude (wndmag) in addition

to wave information and will be called “With Wind.” These first two experiments

were performed for summer and winter. The input feature/season combination

which resulted in the best performance (“Winter - With Wind”) was then selected

for the third experiment, whose purpose was to test the ability for the algorithm

to be extrapolated to different points in geographical space. The algorithm was

trained on the data from four other buoys in the region in different water depths

(see Figure 2.4), excluding buoy 46050. The algorithm was then tested on this

excluded buoy. Because it was trained on four different buoys, this test will be

called “Multiple Buoys.”
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Table 2.1: The experiment titles, their respective input features, and training and
testing data sources.

Experiment
Name

Input Features
2012-2013

Training Data
Source

2014 Testing
Data Source

Waves Only
Hs, MWD,

Tm01
Buoy 46050 Buoy 46050

With Wind

Hs, MWD,
Tm01, wind

direction, wind
magnitude

Buoy 46050 Buoy 46050

Multiple Buoys
(Winter Season,
“With Wind”)

Hs, MWD,
Tm01, wind

direction, wind
magnitude

Buoys 46211,
46243, 46029,

46027
Buoy 46050

2.2.4 Data Sources

This study uses wave model output, wind model output, and observations of sig-

nificant wave height. The wave model output are 24-hour time horizon forecasts

of bulk parameters significant wave height, mean wave period (Tm01) and mean

wave direction, as provided by WaveWatch III (WW3) from the years 2012-2015

(Garćıa-Medina, Özkan-Haller, Ruggiero, & Oskamp, 2013). The wave model was

developed as an operational forecasting tool for the Pacific Northwest Coast of the

US. A validation of the model by Garćıa-Medina et al. (2013) using two three-

month hindcasts showed a normalized root-mean-squared-error of 0.2 m for signif-

icant wave height and 0.15 s for mean wave period (Tm01). The wind model input

to the wave model are 24-hour time horizon wind forecasts of wind direction and

wind magnitude provided by the Global Forecasting System (GFS). These wind

data were interpolated into the wave model longitudinal and latitudinal gridpoints

and output by the wave model. This forecasting model configuration uses a mosaic

of nested grids of increasing resolution, following Tolman (2008). The outer-most

grid has a resolution of 1.25 ◦ longitude by 1.00◦ latitude and spans from 77◦S
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to 77◦N. The intermediate grid spans the Eastern North Pacific (5◦ to 60.25◦N in

latitude and 170◦W to 177◦ in longitude) with a resolution of 15 arc-minute. The

third grid, the outer shelf grid, spans a region of 41.45◦ to 47.50◦N and 127◦ to

123.75◦W with a resolution of 3 arc-minute. The model is forced by Tolman and

Chalikov ST2 physics Tolman and Chalikov (1996) and 24-hour lead time GFS

3-hour 10 meter winds and air-sea temperature differences at a resolution of 0.5◦.

Significant wave height observations were taken from National Data Buoy Center

(NDBC) buoys along the Oregon-California coast and are shown in Figure 2.4. The

single-buoy experiments used data from buoy 46050. Additional buoy data from

buoys 46027, 46029, 46211 and 46243 were used in the experiment labelled “Mul-

tiple Buoys.” These locations were included in training because they were likely to

be subject to similar environmental conditions (i.e., wave events and atmospheric

patterns) due to their proximity. Table 2.2 lists the buoy label, depth, latitude,

longitude, type of buoy and distance from test buoy 46050. For all experiments,

the bagged regression tree was tested on data from buoy 46050.

Table 2.2: Depth, latitude, and longitude for each buoy used in the Multiple Buoys
experiment

Buoy
Depth
[m]

Latitude
[◦N]

Longitude
[◦W]

Distance
from 46050

[km]
Buoy Type

46050 140 44.677 124.515 0
3m directional

discus

46027 46 41.850 124.386 314
3m directional

discus

46029 134 46.143 124.485 163
3m directional

discus

46211 40 46.858 124.244 243
Directional
Waverider

46243 24 46.216 124.128 174
Directional
Waverider
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Figure 2.4: The locations and water depths of the buoys implemented in this

study. Predictions and error metrics were computed using buoy 46050 (red dot).

In the geospatial application, the bagged regression tree was trained with data from

the other locations. Inset shows the geographic location of the domain (dashed

rectangle) on the U.S. west coast.
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2.3 Results

2.3.1 Bagged Regression Tree Structure

The parameters controlling the bagged tree structure (tree depth and number of

trees), were determined using cross validation, as explained in section 2.2.2. The

tree depths for each respective season were less than five for each of the single-

buoy experiments. For summer, the optimal trees tended to have larger depths

for the With Wind experiment (average tree depth of 4.0) compared to the Waves

Only experiment (average tree depth of 3.6). For winter, the average optimal tree

depth was the same (4.9) for both experiments. The number of trees required for

the experiments ranged between 109 and 127, where the With Wind experiments

required more trees than the Waves Only experiments (127 versus 121 for winter,

and 127 versus 109 for summer). For the multiple buoy experiment, the optimal

trees had a depth of 10 and the number of trees was 173.

2.3.2 Application to Wave Forecasts

The application of bagged regression tree corrections to the original numerical

model output time series resulted in more accurate significant wave height predic-

tions for both summer and winter seasons. See Table 2.3 for error metrics between

each modelled and corrected time series and the observed data. Representative

portions of each season’s time series are presented in Figure 2.5. The improve-

ment in significant wave height predictions due to the application of the bagged

regression tree indicates that in the majority of cases the bagged regression tree

successfully detected over- and under- estimations in wave model output within the

wave model phase space. The experiment wherein the input features included wind

information wind magnitude and wind direction (With Wind) resulted in slightly

greater accuracy of significant wave height predictions (within one one-hundredth

of each error metric, see Table 2) than the experiment that did not include the

wind input feature information (the Waves Only experiment). The results of the
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With Wind experiment are reported below.

Figure 2.5: Representative time series of significant wave height for summer and

winter. Gaps in the data exist due to wave model restarts or gaps in observations.

The original model significant wave height output is colored blue, the observations

(from NDBC buoy 46050) are colored black, and the corrected significant wave

height time series is colored green. Note the y-axis for winter is greater than

for summer. The bottom panels show the error as the difference between the

observations and the model significant wave height output (blue), and the corrected

time series from the With Wind experiment (green). The majority of the time,

the application of the corrections resulted in more accurate Hs predictions, but

sometimes resulted in less accurate Hs predictions, such as the underestimations

in the summer of late June.
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Figure 2.6: Density scatter plots (colors represent histogram counts) of predicted

versus observed significant wave height. The data shown comprise all data from the

With Wind experiments, separated into summer (top panels) and winter (bottom

panels) testing periods. Left-hand panels show results from the original WW3

model, and right-hand panels show results after applying corrections from the

bagged decision tree. To create the histograms, data were binned in equally spaced

increments of 0.1 m for summer and 0.2 m for winter.

Figure 6 shows density scatter plot comparisons of the significant wave height

data before and after applying the bagged regression tree corrections. For both

summer and winter, the bagged regression tree reduced the number of overesti-

mated significant wave heights, but increased the number of underestimated sig-

nificant wave heights. Overall, for both seasons, the application of the significant

wave height corrections resulted in an increase in accuracy. The improvement of

bias for the corrected time series was statistically significant for winter but not for

summer, with a confidence level of 95% (p-values of 0.00 and 0.54 for winter and

summer, respectively).

Table 2.3 shows that error metrics root-mean-squared-error (RMSE), bias, scat-



26

ter index (SI) and percent error (PE) of the significant wave height time series were

reduced for both seasons after the application of the bagged regression tree cor-

rections (see A for definitions of error statistics). The application of the bagged

regression tree corrections resulted in more accurate predictions of significant wave

height error for winter than for summer. For winter, RMSE, bias and SI were re-

duced by 16%, 92% and 19%, and for summer, RMSE, bias and SI were reduced

by 12%, 0% and 12%.

Table 2.3: Error metrics calculated between the original model output and the
observations (labelled WW3), and the error metrics calculated between the various
bagged regression tree experiments and the observations (labelled Waves Only and
With Wind for the Summer and Winter).

Test RMSE [m] Bias [m] PE [%] SI [–]
Summer WW3 0.33 -0.01 18 0.19

Summer Waves Only 0.29 -0.01 17 0.17
Summer With Wind 0.29 -0.01 17 0.17

Winter WW3 0.58 0.24 23 0.21
Winter Waves Only 0.49 0.02 18 0.18
Winter With Wind 0.48 0.03 17 0.17

Winter Multiple Buoys With Wind 0.48 0.03 17 0.17

For both seasons, the results show that the bagged decision tree had more skill

at correcting errors for data associated with wave periods greater than 6 s than

the data associated with wave periods less than 6 s. To determine this, the two

significant wave height time series (the original and the bagged regression tree)

were binned with respect to the observed mean wave period, and error metrics

were calculated (see Figure 2.7). The bins consist of very short period (0-6s),

short period (6-8s), mid-period (8-12s) and long period (12-18s). For winter, most

of the data points (N = 1094 points) were within the middle mean wave period

(Tm01) bin. For summer, most of the data points (N = 2077) were within the

short mean wave period bin (6-8s) and no data points were associated with long
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mean wave periods. For summer and winter, Figure 2.7 shows that the application

of the bagged regression tree corrections reduced error for the significant wave

heights associated with middle mean wave periods, and increased error (i.e., had

negative skill) for the significant wave heights associated with short mean wave

periods. Similar to the overall bulk parameters, the absolute bias was reduced

more than RMSE.

Figure 2.7: Error metrics binned by mean wave period Tm01 for summer (left) and

winter (right). The WW3 error is colored black and the With Wind experiment

is colored green. Note that no data points are associated with the longest period

bin for summer. The greatest error reductions are achieved for significant wave

heights associated with mean periods greater than 8s.
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2.3.3 Results: Geo-spatial Application

The bagged regression tree corrections were also applied in such a way as to ex-

plore the potential for a geo-spatial application. In this experiment, the bagged

regression tree was applied at a location where no prior training information was

provided; instead, the bagged regression tree was trained on four other buoys in the

region, and tested at the original location (buoy 46050, see Figure 2.4. Additional

geo-spatial information in the form of longitude, latitude and water depth were

included as input features. The output target remained the same (significant wave

height error). The best performing experiment, the With Wind - Winter season

was chosen as the input feature/season set-up. The results presented in Table 2.3

show that inclusion of data from other buoys resulted in similar accuracy of the

bagged regression tree corrections as compared with the original Waves Only -

Winter experiment. The improvement in significant wave height predictions shows

the potential to apply the bagged regression tree to correct wave forecast output

at neighboring geographical locations within a modelled region, where the absence

of training information at a specific location would be analogous.

2.4 Discussion

2.4.1 Bagged Regression Tree as a Diagnostic Tool of Model Error

The fact that the decision tree is able to detect (and correct) errors in the WW3

model shows that such errors are predictable (i.e., not purely stochastic), and hence

may be associated with times when an incomplete understanding of physical pro-

cesses results in errors within the model parameterizations which represent these

physical processes. As a primary example, in the following, we will analyze the

instances associated with the most populated partition (partition 31) and where

the bagged regression tree skill was highest (data associated with observed mean

wave periods (Tm01) between 8-12s). Note, the intent of this analysis is to use the

decision tree outputs to search for clear patterns in the wave model error, which is
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the reason for isolating the data for which the decision tree predictions were most

accurate; that is, the algorithm is used here as a “diagnostic” tool rather than a

predictive one in order to observe its diagnostic ability (Beuzen et al., 2018a). The

2012-2013 training data from partition 31 are plotted in Figure 2.8. The partition

encompasses data associated with GFS winds that are less than 15.6 m/s, mod-

elled significant wave heights that are greater than 3.4 m, modelled mean wave

periods (Tm01) that are greater than 9.1 s, and modelled mean wave directions

are from the W-NW quadrant (greater than 245◦ and less than 360◦). The correc-

tion for this partition is -0.57 m, indicating an overestimation of significant wave

height. The instances within this partition are also associated with mean wave

period overestimations for the lower mean wave periods. The bias at mean wave

periods 8-9s was 1.55 +/- 1.00 s, while the bias for mean wave periods greater

than 10s was small and negative, on average. The mean wave period overesti-

mation suggests that the distribution of the variance density across frequencies

of the wave model was different than those of the observations. One possibility

is that the low frequency wave energy was over-estimated by this physics package

(Tolman & Chalikov, 1996) which is consistent with the conclusions of Stopa, Ard-

huin, Babanin, and Zieger (2016a), although the present analysis using bulk wave

parameters cannot directly confirm this. Further analysis of wave spectral data

would be required to confirm this hypothesis, and is suggested as future work.



30

Figure 2.8: Data points of the most populated partition, partition 31. The left

panels show the instances of NDBC buoy 46050 observations (black), WW3 (blue),

and corrected (green) Hss. The top right panel shows the original WW3 (black)

and corrected (green) instances as a scatter plot. The bottom left panel shows

the instances of observed (black) and WW3 (blue) Tm01. The bottom right panel

shows the Tm01 instances as a scatter plot.

Special attention was given to the bagged regression tree treatment of data

for extreme wave heights, due to the interest given to extremes within the wave

modeling community (Ruggiero, Komar, & Allan, 2010). To do so, an analysis was

performed on the subset of data where the significant wave height exceeded the

95th percentile value, Hs > 5.39m. The bagged regression tree detected clusters

of different error character (i.e., more or less error) within the data that had these

large significant wave heights, as shown in Figure 2.9 and explained in the following.

There are a total of 342 points with Hs > 5.39m in the training data, and these

were categorized into 23 different partitions by the bagged regression tree. The

partitions that have the greatest number of data points associated with these

significant wave heights are partitions 31 and 44 (encompassing 173 and 45 points,

respectively; see Figure 2.9). Note that the 173 data points are a subset of data

within partition 31, the entirety of which is illustrated in Figure 2.8. By definition
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the correction value applied to the data in partition 31 reduced the bias from 0.57m

to 0.00m for the data in this partition. However, when this bias correction value

of -0.57m is applied to the large wave heights only, it results in a decrease of skill

for this cluster of points (original bias of 0.24 m to -0.33 m). This decrease in skill

is primarily a result of the three data points where NDBC 46050 Hs > 8m; when

these data points are removed, the application of the bias correction value results

in similar skill (albeit bias reverses from 0.27 to -0.29). If the decision tree had

applied the same bias to all other points Hs > 5.39m, it would have resulted in a

decrease in skill. Instead, it differentiated other clusters of points and resulted in

an overall increase in skill for these data (bias of -0.64 m to -0.34 m). We now focus

on one such partition, partition 44, to determine which environmental context is

associated with the cluster of points encompassed within this partition. See Table

2.4 for the respective rules made on the data within each of the partitions.

Table 2.4: Decision rules made to separate the data associated with partitions 31
and 44. The first column displays the specific input feature, and the second and
third columns show the rule for the partition specific to that column. ‘–’ indicates
that no rule was made on that input feature.

Input Feature Rule for Partition 31 Rule for Partition 44

Hs > 3.44 m > 5.39 m
Tm01 > 9.06 s > 8.32 s
MWD > 245◦,≤ 360◦ –
wndmag ≤ 15 m/s > 15 m/s
wnddir – > 0◦,≤ 215◦

Error Correction Value -0.57 m 2.15 m

The mean wind direction for instances in partition 44 and Hs > 5.39 was

187◦, with a standard deviation of 7◦. Therefore, partition 44 predicts that large

wave heights ( Hs > 5.39m) are strongly under-predicted (bias of -2.15 m) during

times when the regional wind is strong (> 15m/s) and from the south. Inter-

estingly, this pattern is consistent with a previous study which showed that sig-
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H

Figure 2.9: Data points greater than the 95th percentile significant wave height (5.4
m) in the 2012-2013 training data. Data from partitions 31 and 44 are colored blue
and orange, respectively. The left panel is Hs scatter plot of the original model
output, and the right panel is the Hs after the bagged decision tree corrections.

nificant wave height under-estimations consistently occurred during times when

a strong southerly wind was present in the region A. Ellenson and Özkan-Haller

(2018). Further, the instances within this partition were also associated with mean

wave period underestimations (Tm01 bias of -0.5 s, not shown). In A. Ellenson

and Özkan-Haller (2018), it was found that the southerly wave energy generated

by the low-level southerly wind was under-estimated for this model configuration

(ST2-GFS) resulting in both Tm01 and Hs under-estimations. Hence the error

correction patterns detected by the bagged regression tree method are found to be

consistent with known deficiencies in WW3 physics during certain environmental

conditions, rather than statistical patterns present in the data alone.

2.4.2 Bagged Regression Tree Structure

The complexity of the bagged regression tree (i.e., the number of trees and tree

depth) increased with as the number of input features (see Section 2.3.1). The Mul-

tiple Buoys experiment had the greatest complexity, followed by the With Wind

and then the Waves Only experiments. A possible explanation for the increase

in complexity is that each new feature introduces one more possible split of the

feature space. Therefore, the tree complexity increased according to the size of the
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input feature space.

For both summer and winter, mean wave period (Tm01) provided the most

information to the bagged regression tree for the Waves Only and With Wind ex-

periments, and is therefore ranked with the highest feature importance value (see

Figure 2.10). Feature importances rank features that provide more information

higher than the features that provide less information. This is calculated by sum-

ming the total amount of variance reduction by each input feature xi within one

tree, and averaging this value throughout the ensemble, which is further described

in Breiman et al. (1984). The feature importance measures are normalized by the

greatest feature importance value to sum to 1. A high feature importance value

indicates that the pattern of error was best revealed when partitioning the data

by that input feature. As shown in Figure 10, for winter, the most informative

input features were Tm01 and wind magnitude (with feature importances of 0.38

and 0.35, respectively), whereas for summer, the most informative input feature

was Tm01 (with a feature importance of 0.59).

The bagged regression tree improved the accuracy of the winter dataset more

than the summer dataset. Generally, higher significant wave heights are simulated

with higher error, and therefore lend themselves more readily to an error correcting

technique Hanson, Tracy, Tolman, and Scott (2009); Moeini et al. (2014). Another

interpretation for the better winter performance as opposed to summer was that

the specific input features used in this study better discriminated between regions

of higher or lower target values for winter than for summer. For an example of

how an input feature can discriminate a region of high target value, see Figure

2.11, where wind magnitudes > 15m/s delineates a region of greater negative bias

in the training data. A possible avenue of future work would be to identify other

input variables (beyond those used in this study) that would be more informative

for summer data. Specifically, one could follow the approach of Cornejo-Bueno et

al. (2018), where corrections were applied differently for regions of wind sea and

swell. In this approach, input features are determined for each sea state regime,

and reflect physical processes relevant to each sea state regime.
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Figure 2.10: Feature importances for the two single buoy experiments for summer,

winter, and the multiple buoys experiments at NDBC buoy 46050.

2.4.2.1 Input Features: Multiple-Buoy Experiments

When multiple buoys were considered in the training, mean wave period (Tm01)

provided the most information, and the geospatial features lat, lon, and depth

were also used (feature importances < 0.02) (see Figure 2.10). The nonzero fea-

ture importances for these variables indicates that the algorithm detected a spatial

dependence in the data set that, when incorporated into the tree structure, resulted

in a better fit to the data than without the inclusion of the information from these

variables. One bagged regression tree is examined in the following as an example

to show how the geo-spatial input features were used. The decision tree split most

often on latitudes of 43.998◦N and 46.537◦N (six times each), which partitioned

data associated with model output point located at buoy 46027 (northern Califor-

nia) from the other output points, and model output point located at buoy 46211

(Washington) from the other output points. It split most often on a longitude

of 124.186◦W (ten times), which partitioned data associated with model output

point located at buoy 46243 (closest to Astoria canyon in northern Oregon) from

the other output points. It split most often on depths of 33 and 43 m (four times

each), which partitioned data associated with model output point located at buoys

46243 and 46211 from model output located at buoys 46027 and 46029.
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An analysis of the decision tree structure was performed to determine whether

it made a distinction between the error for different buoys, according to their lo-

cation and depth. The ability to make such distinctions would be a prerequisite

to applying the tree in a geospatial application, where predictions are required at

locations and depths not included in training. Recall, by definition, data points en-

compassed within the same final partition had similar input features (i.e., modelled

environmental conditions) and mean target values (i.e., significant wave height er-

ror). During training, the model output locations that were closest and in the most

similar water depths (output locations at buoys 46243 in Washington and 46211

in northern Oregon) had the highest number of data points within the same par-

titions (4,456 data points out of 12,552 combined data points). The model output

locations that were furthest from each other (output points at 46211 in Washing-

ton and 46027 in northern California) had the lowest number of data points within

the same partitions (2,824 error corrections out of a combined 12,582 data points).

During testing, the output location (buoy 46050) had the highest number of data

points (2,953 out of 3,864 data points) within the same partitions as model output

point at 46029, which was closest (163 km away) . It had the lowest number of data

points (2,237 out of 3,864 data points) within the same partitions as model output

point 46243, which was second closest (174 km away) but at the shallowest water

depth (140 m versus 24 m water depths for buoys 46050 and 46243, respectively).

When considering which locations to include in training, locations that experience

similar environmental condition and wave transformation processes as the testing

location would be the best candidates.
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Figure 2.11: Comparisons of the wind magnitude input feature versus the target

value (significant wave height error) for summer and winter. Training data from

years 2012-2013 are colored black, testing data from 2014 and 2015 are colored

green and purple, respectively. The data is binned in 1.25 m/s bins and the

average is plotted here. The y-errorbar indicates the standard deviation within

each bin.

2.4.3 Generalizability

Recall that the experiments shown in Section 3 used training data from years

2012-2013, and were tested on data from 2014. An additional experiment was

performed in which data from 2015 were instead used to assess the degree to

which the results were generalizable across multiple years. Interestingly, the 2015

experiment resulted in poor performance, for reasons explained next. When the

With Wind bagged regression tree, trained on 2012-2013, was applied to 2015, Hs

error increased for both seasons. For winter, SI increased from 0.21 to 0.26, and

for summer, SI increased from 0.15 to 0.16 from the original WW3 to the applied

bagged regression tree Hs time series (not shown).

To understand the poor performance with 2015 data, we first note that the

wind magnitude was the second-most informative feature for the decision tree in
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both winter and (to a lesser extent) summer (See Figure 2.10). For winter, the first

decision of the majority (> 90%) of trees within its ensemble separated regions of

wind magnitude greater than or less than 15 m/s. For summer, when the bagged

regression tree split the feature space on wind magnitude, the thresholds ranged

between 10-20 m/s. When the wind magnitude is plotted against the target (Hs

error), differences between the trends during the training years (2012-2013) and

the testing years (2014, 2015) are apparent (see Figure 2.11). The trends of the

testing data of 2015 can be seen to be different from that of the 2012-2013 training

data, specifically for the wind magnitude values greater than 15 m/s, which is the

threshold at which the bagged regression tree made a decision for winter. At these

higher wind values, the 2014 data follows the same trend of increasing negative

bias for wind speeds > 15m/s. In contrast, the 2015 data shows no such trend, and

a slight positive bias for wind speeds > 15m/s. Therefore, the error corrections

of the partitions established during training would overestimate error corrections

required for the 2015 testing year.

Climatological differences between the years 2012-2014 and 2015 might explain

why the wave model error trends were different for the different years. The years

2012-2014 were correlated with negative Pacific Decadal Oscillation (PDO) indices,

and neutral El-Niño (ENSO) indices. During late 2014, PDO and ENSO values

shifted to become positive. It is possible that the decrease in wave model error

for high wind speeds between the years 2012-14 and 2015 is associated with the

changing climate conditions. The results suggest that climatic differences can

affect the statistical relationships between environmental conditions and WW3

model error, which in turn can have negative implications for the results. Future

methods could account for this by adding a temporal aspect to the feature space

(e.g., including time-dependent climate indices as input features), but the present

data set is not long enough to investigate such an approach..

Machine learning algorithms cannot be used to extrapolate beyond the infor-

mation provided to them; if the training input feature/target patterns do not exist

in the testing data, the test predictions could be erroneous. The bagged regres-
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sion tree is trained to find the patterns between input features and target values

for the training data. During testing, the predictions remain consistent with the

relationships found within the training data. This becomes a challenge for re-

searchers applying machine learning techniques to environmental contexts where

regime shifts occur, as shown in this study. Therefore, if this technique were to be

applied in a hindcasting sense, one should carefully consider whether the training

and testing time periods are comparable to one another. In particular, results

from this study suggest that the training and testing data should be sampled from

years that share a similar climatology (in this case PDO/ENSO), although further

testing is recommended to confirm this. In a forecasting sense, one would try to

ensure that input feature/target relationships within the testing data would be

similar to the input feature/target relationships within training data.

2.5 Conclusions

This study demonstrated how a machine learning algorithm, a bagged regression

tree, can be used to predict and describe systematic error of model forecasts of

significant wave height. The bagged regression tree was used to analyze the errors

in 24-hour time horizon significant wave height prediction time series made by

a numerical model. In this hybrid approach, numerical model output is used as

input features, and the target is the error between the modelled and observed

values of significant wave height. The accuracy of the error detection method

was confirmed when error metrics of wave model output were reduced after the

application of bagged regression tree-based corrections to significant wave height

forecasts. The algorithm improved significant wave height predictions more for

winter than for summer. For this season, the corrections reduce the winter error

metric SI by 19% (from 0.21 to 0.17).

In a descriptive sense, this method can act as a diagnostic tool for finding

regions where a wave model improvement is necessary. During training, it isolates

hours of similar environmental conditions and consistent over or underestimations.

The bagged regression tree successfully differentiated between wave events greater
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than the top 95th percentile of significant wave height (Hs > 5.4m) that were

associated with different background wind conditions (wind mag ≥ 15m/s or wind

mag < 15m/s). These two partitions of large Hs values required different error

correction values (-0.57m and 2.15m). The bulk parameter mean wave period

(Tm01) provided the most information for the bagged regression tree to determine

these patterns, meaning that wave model error can be most readily detected when

the output is delineated by mean wave period. In this study, the bagged regression

tree best detected the error for mid wave periods (6-12s), indicating that the error

signal is strongest for waves associated with these periods.

A geospatial application was demonstrated in which the bagged decision tree

was trained on data from several other locations and predicted values at the original

location. Additional geospatial information (latitude, longitude and water depth)

was provided as a basis for extrapolation to other locations. The results showed

the same reduction in SI (19%, from 0.21 to 0.17) for winter as the localized

application, signifying that the pattern of error within the wave model output is

consistent between different locations in a region. In future work, the technique

could be applied to correct gridded model output.

The decision tree makes an implicit assumption that the relationships between

the input features and target are similar for the training and testing data. When

the bagged regression tree was applied to a different testing year (2015), the error

associated with the significant wave height predictions increased. This is because

the correlations between the input features and target for the training (2012-2013)

years and testing year (2015) differed. In applications, a practitioner should try

to ensure that the input feature/target relationships for the training and testing

data are similar.
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ABSTRACT: Nearshore morphology is a key driver in wave breaking and the

resulting nearshore circulation, recreational safety, and nutrient dispersion. Mor-

phology persists within the nearshore in specific shapes that can be classified

into equilibrium states. Equilibrium states convey qualitative information about

bathymetry and relevant physical processes. While nearshore bathymetry is a

challenge to collect, much information about the underlying bathymetry can be

gained from remote sensing of the surfzone. This study presents a new method to

automatically classify beach state from Argus daytimexposure imagery using a ma-

chine learning technique called convolutional neural networks (CNNs). The CNN

processed imagery from two locations: Narrabeen, New South Wales, Australia

and Duck, North Carolina, USA. Three different CNN models are examined, one

trained at Narrabeen, one at Duck, and one trained at both locations. Each model

was tested at the location where it was trained in a self-test, and the single-beach

models were tested at the location where it was not trained in a transfer-test. For

the self-tests, skill (as measured by the F-score) was comparable to expert agree-

ment (CNN F-values at Duck = 0.80 and Narrabeen = 0.59). For the transfer-tests,

the CNN model skill was reduced by 24-48%, suggesting the algorithm requires

additional local data to improve transferability performance. Transferability tests

showed that comparable F-scores (within 10%) to the self-trained cases can be

achieved at both locations when at least 25% of the training data is from each

site. This suggests that if applied to additional locations, a CNN model trained at

one location may be skillful at new sites with limited new imagery data needed.

Finally, a CNN visualization technique (Guided-Grad-CAM) confirmed that the

CNN determined classifications using image regions (e.g., incised rip channels, ter-

races) that were consistent with beach state labelling rules.

3.1 Introduction

The temporal evolution of nearshore morphology is a key area of active research

within the coastal community. Nearshore morphology dictates wave breaking pat-

terns and nearshore circulation, which is important in understanding nutrient
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transport and determining recreational safety and erosion risk (R. A. Holman,

Symonds, Thornton, & Ranasinghe, 2006; Turner, Whyte, Ruessink, & Ranas-

inghe, 2007; Wilson, Özkan-Haller, & Holman, 2010). For example, urban beaches

may experience high levels of pollutants entering the surfzone during storms from

run-off and pose a health risk to swimmers as well as the local ecosystem. The nearshore

morphology affects the generation of bores and nearshore currents that ultimately

influence the time and length scales of pollutant mixing, dispersal and advec-

tion (Grant et al., 2005; Inman & Brush, 1973). Similarly, rip currents are the

leading cause of death at beaches globally and pose a significant risk to swimmer

safety (Austin, Scott, Russell, & Masselink, 2013). Bathymetric rip currents are

more likely to develop when undulating morphological features are present and

are common in the Rhythmic Bar Beach (RBB) and Transverse Bar Rip (TBR)

beach states (Austin et al., 2013; Castelle, Scott, Brander, & McCarroll, 2016;

L. D. Wright & Short, 1984). Lastly, coastal erosion impacts coastal communi-

ties via loss of usable beach amenity and property (Helderop & Grubesic, 2019;

Leatherman, 2018). Nearshore morphology preceding a storm has been shown to

influence the levels of shoreline and dune erosion (Castelle et al., 2015; Thornton,

MacMahan, & Sallenger, 2007).



43

Figure 3.1: Examples of rectified Argus imagery from Duck (left) and Narrabeen

(right), illustrating the Wright and Short classification scheme used for labelling.

Note that the Duck imagery (left) is merged from multiple cameras.

Nearshore morphology can be detected in the surf zone remotely using video

cameras. Time-averaged images of the nearshore surf zone, for example from Ar-

gus cameras, can be used to detect the shape of sandbars because of the tendency

of waves to preferentially break over these higher topographic features (R. A. Hol-

man & Stanley, 2007). Nearshore morphology is generally considered to exist in

consistently-occurring patterns known as beach states (Lippmann & Holman, 1990;

L. D. Wright & Short, 1984), and the occurrence of these states has been found

to correlate with incident wave conditions and sediment grain size (L. Wright,

Short, & Green, 1985). Time series of beach state observations have been used to

qualitatively validate modelling studies of sandbar evolution (Dubarbier, Castelle,

Ruessink, & Marieu, 2017; Plant, Holland, & Holman, 2006; Ranasinghe, Symonds,

Black, & Holman, 2004; Siegle, Huntley, & Davidson, 2007; K. D. Splinter, Hol-

man, & Plant, 2011; Strauss, Tomlinson, & Hughes, 2006), to gain a general un-
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derstanding of the behavior of a specific beach system (Armaroli & Ciavola, 2011;

Castelle, Bonneton, Dupuis, & Sénéchal, 2007; De Santiago et al., 2013; Lipp-

mann & Holman, 1990; Ojeda, Guillén, & Ribas, 2011; van Enckevort & Ruessink,

2003; ?), and to determine the level of recreational hazard that exists within the

nearshore system (A. Short & Hogan, 1994a). A widely-used beach state classifica-

tion scheme is that of Wright and Short (L. D. Wright & Short, 1984), who defined

five distinct sandbar morphology states illustrated in Figure 3.1. The modal beach

state at a given beach depends on the dominant incident wave energy, tidal range,

and local sediment size (Loureiro, Ferreira, & Cooper, 2013; Masselink & Short,

1993). The reflective (Ref) state is the lowest energy state, characterized primarily

by waves breaking at the shoreline and an absence of offshore sandbar features.

The Low Tide Terrace (LTT) state represents intermediate to low wave energy,

with bar welding to the shoreline and the potential for weak rips to be present.

The Transverse Bar Rip (TBR) state represents intermediate wave energy with rip

circulations. The Rhythmic Bar Beach (RBB) state represents intermediate-high

energy, and has a contiguous trough separating the bar from the shoreline, and a

bar exhibiting rhythmic crescentic patterns due to offshore-directed rip currents.

Lastly, the Longshore Bar Trough (LBT) state represents intermediate to high

wave energy, with a contiguous trough; however, rip currents are not as strong as

in the RBB state, so the sandbar lacks rhythmicity and extends linearly alongshore.

In Argus time exposure (timex) products, sustained breaking over topographic

features (sandbars) appears as bright white bands, and the resulting spatial pat-

tern can be categorized into a beach state (Browne, Strauss, Tomlinson, & Blu-

menstein, 2006; Lippmann & Holman, 1989; Price & Ruessink, 2011a; Ranasinghe

et al., 2004). Specific morphological features, such as the position of the sand-

bar, shoreline or rip locations have been previously derived from Argus timex

imagery (Armaroli & Ciavola, 2011; Plant et al., 2006; K. D. Splinter et al., 2011;

van Enckevort & Ruessink, 2001). While these previous methods are successful

in identifying specific morphological features of interest, they require a number of

pre-processing steps to extract features (e.g., quasi-linear features such as sand-
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bar crests or shoreline position). Also, the methods are calibrated for specific

sites, and may not transfer successfully to other locations (Contardo & Symonds,

2015). Nearshore optical remote sensing data should be exploited in a scalable and

generic way, thereby advancing our understanding of coastal processes at differ-

ent sites (R. Holman & Haller, 2013; Smit et al., 2007; K. D. Splinter, Harley, &

Turner, 2018). Our current mathematical formulations cannot extract meaningful

physical information (such as depth limited wave breaking) from remotely sensed

imagery. Machine learning techniques may offer a potential path forward, how-

ever, because their underlying extremely flexible mathematical formulations can

be adapted to detect physically relevant patterns in imagery.

Machine learning techniques have been previously used in a variety of coastal ap-

plications (A. Ellenson, Pei, Wilson, Özkan-Haller, & Fern, 2020; Molines, Herrera,

Gómez-Mart́ın, & Medina, 2019; Peres et al., 2015). In contrast with previous stud-

ies, the input to the machine learning alogrithm in this study is imagery. Other

machine learning/coastal imaging studies have used machine learning as a mea-

surement technique for hydrodynamic quantities such as significant wave height

in laboratory settings (den Bieman, de Ridder, & van Gent, 2020) and in the

field (Buscombe, Carini, Harrison, Chickadel, & Warrick, 2020), and for morpho-

logical properties such as grain size (Buscombe, 2020) and laboratory bed level (den

Bieman, van Gent, & Hoonhout, 2019). Machine learning has also been used

for segmenting and classifying coastal images (Hoonhout, Radermacher, Baart, &

van der Maaten, 2015), improving shoreline detection (Vos, Splinter, Harley, Sim-

mons, & Turner, 2019), classifying wave breaking type (Buscombe & Carini, 2019),

and predicting wave run-up (Beuzen, Goldstein, & Splinter, 2019).

This study uses a convolution neural network (CNN) to automate the classi-

fication of beach state from images with limited pre-processing steps. The paper

is organized as follows. Section 3.2 describes the dataset in this study that is de-

rived from two different sites: Narrabeen, New South Wales, Australia; and Duck,

North Carolina, United States. Section 3.3 describes the methods, including the

general CNN model and the specific implementation used for the present study.
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The suitability of a CNN to classify beach state at each location is explored in

Section 3.4, followed by a discussion of the results in Section 3.5 and conclusions

in Section 3.6 .

3.2 Field Sites And Data

3.2.1 Field Sites

Figure 3.2 shows the location of the two study sites. The first site is a sandy barrier

beach located at the U.S. Army Engineer Research and Development Center Field

Research Facility (FRF) in Duck, North Carolina. The wave climate at Duck is

seasonal, with higher incident wave energy in the winter, and lower incident wave

energy in the summer (Birkemeier, DeWall, Gorbics, & Miller, 1981). The an-

nual average significant wave height is 1.1 m, with waves tending to come from

the south during spring and summer, and from the north during winter. Win-

ter storms consist of both extra-tropical (north-easters) and tropical (hurricanes)

cyclones. The mean spring tide range is microtidal at 1.2 m. The beach slope

averages 0.108 at the foreshore, and decreases with distance offshore to 0.006 at 8

m depth (Horrillo-Caraballo & Reeve, 2008). The sediment is comprised primarily

of medium to fine grain quartz with finer sands further offshore (Stauble, 1992).

The median grain size between the bar and the shoreline is approximately 0.5 mm,

with 20% carbonate material, while offshore of the bar the median grain size be-

comes 0.2 mm (Birkemeier et al., 1981). This beach generally is classified as an

intermediate beach (Lippmann & Holman, 1990) and can frequently have at least

one or two sandbars present (Alexander & Holman, 2004).
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Figure 3.2: Maps illustrating the location of the two study sites, Duck (left panel),

and Narrabeen (right panel). Dots show the camera locations and dashed boxes

denote imagery location.

The second study site, Narrabeen-Collaroy (herein refered to as Narrabeen) is

an embayed beach located in Sydney, Australia (Figure 3.2, right panel). The av-

erage annual wave climate is of moderate to high energy (average significant wave

height of 1.6 m) (Turner et al., 2016). There is generally a background SSE swell

generated by mid-latitude cyclones crossing the Tasman sea, south of Australia.

Similar to Duck, Narrabeen sees higher wave energy in winter, and lower wave en-

ergy in summer. The summer waves have shorter periods than in winter, and are a

combination of both SE swell and local north-easterly sea breeze waves. The winter

waves have longer periods, and are generated by storms that consist of mid-latitude

cyclones from the south, east-coast lows generated near the NSW coast, and trop-

ical cyclones from the northeast. The mean spring tide range is microtidal at

1.3 m (Turner et al., 2016). The sediment is comprised of fine to medium quartz

sand with a median grain size of 0.3 mm, and 30% carbonate fragments. Due

to the embayed nature of this beach and the predominant SSE swell, there is an

alongshore gradient in wave energy and in beach state caused by wave refraction

and headland-induced diffraction effects. As a result the more exposed sections of
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the beach in the north of the embayment are commonly dissipative-intermediate

beach states, whereas the more sheltered southern end of the embayment (the lo-

cation of the present study) is typically classified as reflective-intermediate beach

states (Harley, Turner, Short, & Ranasinghe, 2011).

3.2.2 Dataset

The dataset in this study is comprised of orthorectified time exposure (timex)

grayscale imagery collected hourly from Argus stations (R. A. Holman & Stanley,

2007), over a period 1987–2014 for Duck, and 2004–2018 for Narrabeen. At Duck

the images were combined from one to three different camera views (depending

on the year and how many cameras were installed at the time) spanning the area

of the beach north of the FRF pier, while at Narrabeen the images were from a

single camera view looking north towards the stretch of beach in the center of the

embayment (see Figure 3.2). Effects of poor lighting (due to sun angle or cloud

cover), or a lack of wave-breaking signal (due to low waves or a high tide), were

reduced by averaging all hourly timex images taken throughout the day into a single

daytimex image for each day. The oblique daytimex images were then orthorectified

onto a domain of 900 m alongshore by 300 m cross-shore, with a ground resolution

of 2.5 × 2.5 m grid (same for both sites). In the case of Duck, multiple camera

views were merged following (Holland et al., 1997). The orthorectified daytimex

images were then bilinearily interpolated to 512 × 512 pixels, following standard

machine learning practices where images are reshaped to be square before being

input to convolutional neural networks (Ghosh, Das, & Nasipuri, 2019).

Figure 3.1 shows example imagery from Duck and Narrabeen, which highlight

several notable differences between the two sites. At Narrabeen, areas outside of

the camera field of view are marked in black, resulting in two black triangular

spaces in the left side (south side) of the image at this site. At Duck, artifacts

of the camera merging result in a diagonal seam separating the images from the

three cameras. Additionally, the three cameras at Duck do not always share the

same intensity histogram, which can result in non-uniform shading throughout the
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merged image. Finally, the Narabeen beach exhibits a noticeable curvature in its

shape, which is in contrast to the straight coastline at Duck.

3.3 Methods

Machine learning is based on learning patterns within data by learning correla-

tions between input and a specified output (also called a ‘target’). The branch of

machine learning applied in this study is called classification, whereby the targets

are discrete classes rather than continuous variables. The Convolutional Neural

Network (CNN) technique used here (see Section 3.3.2 for technique details) is a

specific deep learning classification technique that uses supervised learning, mean-

ing the outputs are known a-priori for a set of pre-defined training cases (see Sec-

tion 3.3.1 for the explanation of the targets). Once the relationships between input

and output are learned from the training data, the CNN is then tested on data

from outside the training set to determine its out of sample accuracy. The code for

this project is available online at https://github.com/anellenson/DeepBeachState,

and the data is available upon request.

3.3.1 Dataset Preparation: Manual Labelling And Augmentation

Supervised learning requires a set of manually-classified images used for training

and testing. In this study, the target is one of five beach state classes described in

Section 3.1 and the input is an Argus time exposure image. From the 10+ years of

daytimex images available from the two sites, 125 images per class (per beach state)

per site were selected that were consistent with the description from (L. D. Wright

& Short, 1984). Of these, 100 were reserved for training (per class per site, so 1000

total), and 25 for testing (per class per site, so 250 total). The images were labelled

by a single person (the first author) in order to minimize labelling inconsistencies

that might occur among different labellers. The labelling considered the visible

wave breaking patterns, with each image considered independently from the others

and in a randomized order. The labeller selected the images wherein only one beach
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state was visible (no longshore variability of beach states or shape ambiguity, see

Section 3.5.1 for further discussion on beach state labelling challenges). The test

dataset was also labelled by the four co-authors independently, for the purposes of

benchmarking the CNN model skill in comparison to inter-labeller agreement (see

Section 3.4.1 for further explanation and results).

Deep learning requires large (on the order of thousands of images) amounts of

input data for training, and performance can usually be improved by the addition

of more training data (Goodfellow, Bengio, & Courville, 2016). In this study,

the amount of data was limited by the number of times each state occurred over

the time period spanned by the dataset, and the number of images which clearly

exhibited only one beach state (see Section 3.5.1). CNN performance typically

benefits from larger dataset sizes than available for this study. As such, image

augmentation (Perez & Wang, 2017) was used to increase the number of images

in the dataset. Five total augmentations were applied, increasing the number of

images to 3000 images per site, or 6000 images total. The augmentations included:

(1) simultaneous horizontal and vertical flip, (2) random rotation up to 15 degrees,

(3) random erasing of 2–8% of the image, (4) random horizontal and vertical

translations to a maximum of 15% in the horizontal and 20% in the vertical,

and (5) image darkening by gamma correction (power law transform) with a gain

of 1 and gamma of 1.5.

3.3.2 Convolutional Neural Network

This study uses the CNN architecture Resnet-50 (He et al., 2015); see Appendix

B.1 for detailed information about the architecture. The CNN predicts a beach

state label (y) based on an input Argus image (x). The algorithm learns this

relationship in the form of parameters of a function (f) that maps the input image

to the beach state label; y = f(x). Figure B.1 shows the details of this function,

which has here been represented as an operator, f . In the case of the CNN,

the function f comprises two key steps: (1) feature extraction, in which important

spatial structures from the input are extracted (e.g., linear or rhythmic features);
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and (2) class prediction, in which a neural network is used to map the extracted

features from step 1 into a predicted beach state based on learned relationships

between the spatial features found in step 1 and the associated targets (Goodfellow

et al., 2016). Historically, when machine learning techniques are applied to imagery,

Steps (1) and (2) are performed separately, and so each are separately optimized.

In contrast, the deep learning CNN algorithm combines steps (1) and (2) into the

same optimization. For each input image, the model outputs a vector of (k × 1)

probabilities, where k is equal to the total number of beach states (5). The entry

with highest probability is chosen as the CNN label prediction.

Figure 3.3: The work flow for one training epoch and testing cycle. Each epoch of

the training process results in an update of the CNN parameters.

During the supervised training, the performance of the model is optimized

by minimization of a cross-entropy cost function with respect to the CNN free

parameters. Figure 3.3 shows a schematic of the iterative training procedure.

For many CNN studies, a pre-trained CNN is used, meaning that the parame-

ters (the convolutional filter weights) of the CNN have already been optimized to

identify objects (e.g., animals, faces, buildings), in a different dataset, such as Im-
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ageNet (Simon, Rodner, & Denzler, 2016). Pre-trained models were considered in

this study, where the final neural network (classification step) was retrained. How-

ever, the pre-trained models failed to focus on the bathymetric regions relevant to

beach state classification. Therefore, the entire Resnet-50 CNN was trained ‘end-

to-end’, meaning that all of the parameters of the entire base model were altered,

similar to (Buscombe et al., 2020).

During one training epoch, the CNN was fed the entire augmented data set

(3000 images) in batches of four randomly-selected images at a time; batch sizes

of eight, 12 and 36 images were also tested, but four was found to be the optimal

batch size, where training loss was lowest. The training of the CNN is stochastic

due to the random seeding of the original parameters, the optimization routine

used during training, and the random batches of data selected as input in an

epoch. The effects of this randomness on the reported accuracy of each model was

assessed by training an ensemble of 10 CNNs for each experiment.

3.3.3 Visualization: Saliency Maps

Model visualization refers to techniques for inspecting a trained CNN model to

determine how its predictions are made. Visualization can be used to confirm that

a model’s classifications are based on appropriate qualitative features of beach

states, as opposed to other non-relevant features contained in the training data.

The model visualization technique used in this study, Guided Grad-CAM, high-

lights which pixels are most important in the CNN’s final prediction by incorpo-

rating information from the two steps of the deep learning process: (1) feature

extraction and (2) classification (Selvaraju et al., 2017). Guided Grad-CAM is a

combination of two visualization techniques that extract information from images:

(1) Guided back propagation (GBP) extracts information from the feature extrac-

tion step; and (2) class activation maps (CAMs) extract information from the

classification step. GBP identifies specific pixels associated with relevant spatial

structures (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2015; Zeiler & Fergus,

2014), which in the present study might include linear or curved sandbar shapes or
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shorelines. The pixels identified by GBP are those that provided the strongest sig-

nals to the optimization routine during cost function minimization (Springenberg

et al., 2015). On the other hand, CAMs identify the pixels which have the largest

contribution to classifying an image as a specific class (Zhou, Khosla, Lapedriza,

Oliva, & Torralba, 2016). Guided Grad-CAMs combine both GBP and CAM

techniques by multiplying their outputs together, resulting in visualizations called

“saliency maps” that are both spatially detailed and class-specific. Specific to

this study, if the CNN has been trained successfully, the pixels highlighted by the

Guided Grad-CAM should correspond to the regions showing patterns of wave

breaking associated with each beach state class.

Example saliency maps for Duck and Narrabeen for each state are shown in

Figure 3.7 (discussed further in Section 3.5.1). Visual inspection of the saliency

maps showed that approximately 70% had highlighted areas of specific relevance

to beach states (e.g., incised rip channels for TBR, swash and off-shore bar for

LBT), as in the examples shown.

3.3.4 Experiments

Three 10-member ensembles of CNNs were trained. The first two ensembles were

single-location ensembles, meaning that the training data came from one location

(Duck or Narrabeen). The CNN ensemble trained at Duck is hereafter referred to

as Duck-CNN, and the CNN ensemble trained at Narrabeen is hereafter referred to

as Nbn-CNN. The third ensemble was a combined-location ensemble, meaning that

training data came equally from both Narrabeen and Duck, hereafter referred to

as combined-CNN. Each CNN was fed 3000 training images (including augmented

images), with the combined-CNN using 1500 images from each location, where the

images were chosen randomly.

Each single-location ensemble was tested at both locations in self and trans-

fer tests. As the combined-location ensemble was trained with data from both

locations, it did not have a transfer test. Overall performance metrics F1, nor-

malized mutual information, and Matthews correlation coefficient were evaluated
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following (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000). However, the con-

clusions drawn from the three metrics were similar, so only the F-score is reported

herein. The F-score (See Appendix B.2 for a definition) ranges between 0 and 1

with a higher F-score value indicating better performance. Per-state accuracy is

also reported to assess state-specific performance of the CNN, and similarly con-

fusion matrices were calculated to determine if biases were present where two or

more states were consistently confused with each other. The F-scores and accura-

cies presented are the average of the 10 CNNs for each ensemble.

Finally, experiments were performed to assess transfer skill as a function of

training data composition, and is presented in Section 3.5.3. Specifically, the goal

was to determine the percentage of data required from each site to reach skill com-

parable to the single-location tests. In these experiments, data was incrementally

added from the transfer site as percentages of the total. For example, if the CNN

was originally trained at Duck, then data from Narrabeen were added. Eight to-

tal experiments were performed, with ratios of Duck to Narabeen training data

ranging from 0:100 to 100:0 in 5% increments keeping the total number of train-

ing data constant (3000 images). The F-score was assessed at each increment to

determine the percentage of data required from each location in order to reach

skillful performance.

3.4 Results

3.4.1 Inter-Labeller Agreement

Human performance is commonly used as a benchmark for machine learning skill

quantification (L. Chen, Wang, Fan, Sun, & Naoi, 2015). In this study, the ”true”

label is defined as the label chosen by the primary labeller (the first author).

However, it is acknowledged that the same label may not be chosen by another la-

beller, even among domain experts, owing to the inherently ”fuzzy” nature of beach

state classification (discussed further in Section 3.5.1). A human-performance skill

benchmark was therefore defined by comparing the true labels to ones chosen by
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alternative labellers (the co-authors). Figure 3.4 shows the results of the confusion

table and per-state accuracy for the labeller agreement on the validation set.

Figure 3.4: Confusion table plotted as truth vs. other labellers, where ”Truth” is

defined as the labels chosen by the primary labeller.

Specific recurring errors were noted in the inter-labeller comparisons when con-

sidering individual beach states. For both locations tested here, the lowest per-

state agreement was the LTT state (57%); for Narrabeen, 24% of LTT images

were mislabelled as the lower-energy adjacent Reflective state, while for Duck, 21%

of LTT images were mislabelled as the adjacent, but higher energy, TBR state.

These two cases illustrate the most common reason for misclassification: confusion

between adjacent states that belong to a similar energy regime and therefore have

similar morphology. Confusion also existed between non-adjacent states, however,

that had similar morphological characteristics. For example, at Narrabeen, LBT

was confused with either LTT (17% of LBT images) or Reflective (13% of LBT

images). LBT and LTT states are similar in that both are linear sandbars, however

LBT is found further offshore and is always associated with a trough. LTT is a
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lower energy sandbar configuration with bar welding to the shoreline, and can have

a trough during high tide when the terrace is flooded. The confusion at Narrabeen

may be due to the relatively narrow surfzone width, and so the distance between

the shoreline and the sandbar was small in many images. This confusion was also

reported in another study (Ranasinghe et al., 2004) at nearby Palm Beach, NSW,

a site that displays similar nearshore morphology to Narrabeen.

3.4.2 CNN Skill

Figure 3.5 summarizes the F-scores obtained by the CNN. In general, the skill was

highest when the training and testing data were from the same location, in which

case, CNN F-scores were comparable to inter-labeller agreement as reported in

Section 3.4.1. Duck-CNN F-score was 0.80 compared with 0.79 for manual agree-

ment, and Nbn-CNN F-score was 0.59 compared with 0.57 for manual agreement.

The CNN trained on the combined training dataset (combined-CNN) predicted

beach state more accurately on the combined test dataset (test data from both

locations, black boxes Figure 3.5) than either of the single-site CNNs. Specif-

ically on the combined dataset, the combined-CNN reached an F-score of 0.68,

compared with Duck-CNN F-score of 0.61 and Nbn-CNN F-score of 0.53. Interest-

ingly, the combined-CNN also slightly outperformed the Nbn-CNN at Narrabeen

(F-Score = 0.61), although the two were equally skillful to within the variability

of their respective CNN ensembles.

The transfer skill of the CNN, defined as the skill when trained at one location

and then tested at another location, varied depending on the training data set.

The Nbn-CNN skill was reduced by 24% when transferred to Duck, which was less

than the 48% reduction in skill for the Duck-CNN when transferred to Narrabeen.

This suggests that the correlations between sandbar characteristics and beach state

learned at Narrabeen were more informative when predicting beach state at Duck

than vice versa. It is speculated this could be due to the relatively smaller length

scales at Narrabeen, and therefore the requirement that the CNN learn relatively

finer sandbar features at Narrabeen compared to Duck. That is, the finer features
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learned by Nbn-CNN may have remained applicable when predicting beach states

at Duck, while larger features learned by Duck-CNN were less applicable when

predicting beach states at Narrabeen. See Section 3.5.2 for further discussion and

quantification of length scales at the two sites.

Figure 3.5: F-score performance values from tests at individual and combined

datasets. The x-axis shows the location of training data. The boxes show the

quartiles of the F-scores from the ensembles and the whiskers the rest of the distri-

bution within 1.5× the interquartile range. The horizontal dashed lines correspond

to the inter-labeller agreement F-scores.



58

Figure 3.6: Confusion table results from the Nbn-CNN, Duck-CNN and combined-

CNN (panels a, b and c, respectively). Top panel (red) shows results for tests at

Nbn, and bottom panel (blue) shows results from tests at Duck. For each matrix,

the label provided by the CNN is counted in the columns, and the true label is

counted in the rows. Per-state accuracies are within the diagonal.
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Figure 3.6 shows the confusion tables from each of the six tests. Overall, for all

self-tests, the CNN outperformed random choice (accuracy >20%) and the accu-

racy was comparable to inter-labeller agreement (Figure 3.4). The self tests (i.e.,

trained and tested at the same locations) resulted in slightly higher per-state ac-

curacy at Duck (68–90%) than at Narrabeen (36–69%). For both sites, the highest

accuracy was in the classification of the low-energy Ref state, while the lowest ac-

curacy of the CNN was in classifying the rhythmic states of RBB (Nbn) and TBR

(Duck). The Nbn-CNN confused the RBB state most often with LBT, with 47%

of the RBB images misclassified as LBT. Note that the RBB and LBT states both

correspond to an offshore sand bar with a distinct trough, with the differentiating

factor being the degree of bar curvature. Also at Narrabeen, 27% of LBT images

were confused for LTT, an error that also occurred in the manual classification

experiment (17% of LBT images confused for LTT). The Duck-CNN confused the

TBR state most often with LTT, with 28% of the TBR images classified as LTT.

The TBR and LTT states both correspond with bar welding, and both may include

rip currents, with the differentiating factor being a larger number and size of rip

currents present in TBR.

For the transfer tests, the per-state accuracy decreased for the majority of states

compared to the self tests. Per-state accuracy ranged between 35–68% (Nbn-CNN

at Duck) and 16–60% (Duck-CNN at Nbn). Similar to the overall skill trends (see

Figure 3.5), Nbn-CNN transferred better than the Duck-CNN when assessed with

per-state accuracy. The per-state transfer accuracy for Nbn-CNN was highest for

LBT (68%), and lowest for the Ref, TBR and RBB states (accuracies of 38%, 35%

and 38%, respectively) when tested at Duck. The confusion for these states was

primarily adjacent and up-state (Ref confused as LTT, TBR confused as RBB,

and RBB confused as LBT). Additionally, the LTT images were confused as LBT

48% of the time. For the Duck-CNN transfer test, the bar states characterized by

rhythmic features (TBR and RBB) were mainly labelled as TBR (44% percent of

RBB images were classified as TBR), and the linear states (Ref, LTT, LBT) were

labelled as LTT. Overall, the Nbn-CNN had higher per-state accuracy at Duck than
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the Duck-CNN had at Narrabeen. The main confusion for Nbn-CNN at Duck was

up-state, adjacent-state confusion, whereas the Duck-CNN at Nbn had an LTT

bias. Possible explanations for state confusions are detailed in Section 3.5.2.

The combined-CNN that was trained equally with data from Narrabeen and

Duck showed overall good skill and per-state accuracy at both beaches (42–82% at

Nbn and 66–81% at Duck). Compared to the Nbn-CNN at Narrabeen, it exhibited

less confusion for the Ref class, and similar confusion for RBB (34% for combined-

CNN versus 47% for Nbn-CNN of RBB images were confused for LBT) and LBT

(38% for combined-CNN versus 27% for Nbn-CNN of LBT images were confused

for LTT). Compared to the Duck-CNN at Duck, it exhibited similar confusion for

TBR (16% for combined-CNN versus 28% for Duck-CNN of images were confused

for LTT). The combined-CNN also resulted in slightly lower per-state accuracy for

Ref, LTT and RBB states (accuracy reductions of 9%, 5%, and 11% for each state,

respectively) at Duck.

3.5 Discussion

3.5.1 Beach State Classification

It is notable that many of the misclassifications made by the CNN (Figure 3.6)

and the disagreement between labellers (Figure 3.4) can mostly be attributed to

states that are adjacent to one another in the ordered list defined by Wright &

Short (L. D. Wright & Short, 1984). This implies that, as expected, adjacent states

have similar morphology and may be easily mistaken for one another. The use of

the classification system of Wright and Short (L. D. Wright & Short, 1984) in this

study implicitly assumes that instantaneous beach morphologies, as observed by

Argus imagery, can be categorized into discrete states. This is an approximation,

however, as sandbars exhibit a continuum of shapes as they evolve between con-

figurations (Armaroli & Ciavola, 2011; Price & Ruessink, 2011a; L. Wright et al.,

1985), and may never reach a true equilibrium state. This is especially true during

the slower, down-state evolution of sandbar configuration (i.e., RBB to TBR to
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LTT) as described by (Lippmann & Holman, 1990). During the labelling process,

the most dominant state was used as the classification, but in practice ‘pure’ beach

states are not present in all images. Therefore, achieving 100% accuracy for an

ambiguous beach state is impossible. Three predominant issues were identified

by the authors as challenges in determining beach state: (1) labeller perception,

(2) alongshore variability of bar state and (3) sandbar state ambiguity due to the

nearshore evolving between states.

Since there are no rigorous, quantifiable rules which delineate each beach state,

a state identification for a specific image could vary due to labeller perception.

Differences in labeller perception can occur either because the labeller is different

(a different person), or the labeller might have a different perception on a different

day. While the labels used to train and test the CNN in this study were made

solely by the first author to limit labeller perception bias within the model training,

the co-author labelling experiments (see Figure 3.4) highlight the challenges with

labeller perception and the overall complexity in classifying unique beach states.

Specifically, the co-authors did not achieve 100% agreement on any one state. Most

notably, there was more confusion among the different labellers for Narrabeen than

Duck, suggesting this beach may exhibit more complex or ambiguous beach states

(discussed further in Section 3.5.2).

Alongshore gradients and irregularities in hydrodynamic forcing might impose

alongshore variability of sediment transport and resultant sandbar patterns in one

image. Therefore, one image might clearly exhibit more than one beach state in

the alongshore (for examples, see Figure 3.7). For the two test sites presented here,

the pier at Duck can affect sediment transport at a distance of up to 500 m (Pianca,

Holman, & Siegle, 2015) and at Narrabeen strong alongshore gradient of breaking

wave height due to wave sheltering from the adjacent headland results in alongshore

variability in the dominant beach states (Harley et al., 2011). Additionally, as the

morphology evolves between states, the sandbar shape can exhibit characteristics

of adjacent classes in one image and therefore have an ambiguous classification.

In either of these cases (i.e., alongshore variability or shape ambiguity), a more
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accurate classification would be a mixture of classes. However, since the CNN in

this study is a single-label classification tool, only a single discrete target class can

be given for training, potentially causing model and labeller disagreement.

Saliency maps can be used to troubleshoot model/labeller disagreement (see

Section 3.3.3 for a discussion on saliency maps). The representative saliency maps

in Figure 3.7 illuminate which regions of the image were chosen by the CNN to be

important for classification. Specifically, they show that the CNN can differentiate

between states due to physical characteristics such as sandbar welding or rhyth-

micity. For images labelled as Ref, salient (warm color) areas are focused on the

breakers at the shoreline or dark areas just offshore that indicate a conspicuous

absence of breaking. Salient areas for images labelled as LTT are also focused on

shorebreak, which can be associated with few rips and bar welding that character-

ize the LTT state. The curved wave breaking patterns connected to the shoreline

that can be associated with rip currents and intermittent welded sandbars which

characterize the TBR state are the salient areas for the TBR state. For images

labelled RBB salient areas are focused on rhythmic features. Salient areas are

focused on an offshore bar and the shoreline, which indicates the existence of a

trough for images labelled LBT.
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Figure 3.7: Saliency maps showing the pixels most relevant for classification de-

cisions for Duck in subfigure (a), and Narrabeen in subfigure (b). The original

image fed into the CNN, the first classification choice, and the second classifica-

tion choice are in the first, second and third columns, respectively. The saliency

maps are generated by the single-location CNNs.

Despite the CNN being a discrete classification tool, the saliency maps suggest

it can also detect the presence of multiple beach states within one image, and/or

beach state ambiguity. For example, the LTT image at Duck (Figure 3.7a, second

row) could plausibly be labelled as either LTT or TBR, depending on which side

of the image the labeller focuses. Incised rip channels, characteristic of the TBR

state, exist in the left side of the image, while a terrace, characteristic of the LTT

state, exists on the right side of the image. The resulting first and second choice
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saliency maps for this image highlight the LTT and TBR features, respectively.

Both of these choices have validity, but as currently implemented the CNN only

reports the first choice as its output. The use of saliency maps to develop a multi-

output classification or a non-discrete labelling system (Armaroli & Ciavola, 2011)

are possible improvements to the present model. For example, object localiza-

tion, a deep learning technique developed by (Zhou, Khosla, Lapedriza, Oliva, &

Torralba, 2015), is a technique wherein the CNN identifies the location of objects

within a picture using class activation maps. Object localization could potentially

be adapted as a way to identify and quantify alongshore variable bar states.

3.5.2 Site Imagery Differences Affecting State Identification

The lower skill at beach state identification at Narrabeen by both the CNN and

by the co-authors suggests that classifying beach state at Narrabeen is a more am-

biguous problem than at Duck. Similarly, the probabilistic output of the CNN (the

step before the final maximum-likelihood selection step) showed that the average

probability assigned to its classification was 85% and 76% at Duck and Narrabeen,

respectively. The different choice probabilities imply that the CNN had slightly less

confidence in its predictions at Narrabeen, which is consistent with the relatively

lower skill that was obtained. The ambiguity of beach state at Narrabeen was

possibly due to two reasons: (1) difficulty in consistently identifying the shoreline;

and (2) smaller length scales at Narrabeen.

As shown in the saliency maps (Figure 3.7), the CNN typically identifies the

shoreline and offshore features when classifying the states. However, the optical

signature of the shoreline at these sites can be quite different. The shoreline at

Narrabeen can be identified in time exposure imagery in two ways: by the higher

image intensities associated with swash motions or, more frequently, by lower in-

tensities associated with wet, dark sand. In contrast, the shoreline at Duck is

consistently identifiable by higher image intensities due to swash motions (Madsen

& Plant, 2001; Pianca et al., 2015; Plant & Holman, 1997). The lack of consistency

of shoreline intensity at Narrabeen results in greater difficulty in identifying the
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shoreline, thus making beach state labelling more difficult. Specifically, the key

difference between LTT/Ref classes and LBT is the distance between the shore-

line and the sandbar. At Narrabeen, however, the separation between shoreline

and sandbar is less obvious than at Duck, due to the former’s lack of a consistent

optical signature of the shoreline.

As described in Section 3.2.1, the modal bar states at Narrabeen and Duck

differ, with Duck existing in a slightly higher (intermediate) energy state more

consistently than Narrabeen (intermediate-reflective). Narabeen generally has a

morphology that is contained closer to the shoreline, consistent with it being a

generally more reflective beach than Duck due to a larger grain size and lower-

energy wave climate. A variogram analysis (Balaguer, Ruiz, Hermosilla, & Recio,

2010; Bohling, 2005; Wu, Peng, Shan, & Cui, 2015) was performed in the cross-

shore and the mean length scales were quantified as the average range of the

variograms for the test dataset. The mean length scales of sandbar features at

Narrabeen were smaller than at Duck by 5%, 22%, 24%, 13%, and 16% for states

Ref, LTT, TBR, RBB and LBT, respectively. This suggests that the cross-shore

position of the sandbar is generally further offshore at Duck than at Narrabeen,

and so the physical sandbar features, such as rhythmicity or welding, can be more

exaggerated at Duck than at Narrabeen. Furthermore, individual beach states at

Narrabeen have length scales (as defined by the average range of the variograms)

that are more similar to one another (range between 607–627 m), compared to

at Duck (range between 664–805 m). Overall, the differences in inter-state length

scale variability and overall length scales magnitudes could contribute to the rel-

ative clarity of beach state at Duck compared with Narrabeen, leading to higher

CNN performance and inter-labeller agreement.

3.5.3 Data Requirements for Skillful Transfer of the CNN to New Sites

Section 3.4 presents results from experiments where the composition of training

data from each beach was even or completely from one beach. A third set of

experiments were performed wherein the percentage of data from each beach in
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the training set differed. The intention of the experiments was to determine how

much data from a different (or new) location was necessary to obtain adequate

test skill. This is important when considering the use of such a CNN on new sites

where limited training data may be available. Figure 3.8 shows the F-scores for

different ratios of data added to the training set and then tested on each of the

three single-location test data sets (Nbn, Duck, Combined).

For the training set ratios which consisted of at least 5% of data from either

location, when the CNN was tested on the combined data set the F-score remained

within 15% of the max skill (F-score = 0.69) suggesting the model was relatively

insensitive to training data composition when presented with a range of diverse

images from both sites. In contrast, when the CNN was tested on the individual

sites (Duck or Nbn) F-scores decreased if the percentage of images from one lo-

cation dropped under a certain threshold. At Duck and Narrabeen (blue line in

Figure 3.8), skill became lower than 10% of its maximum value (maximum values

of ∼0.8 and ∼0.64 at Narrabeen, respectively) if fewer than 25% of than training

data was from Duck. Overall, this suggests for reasonable transferability of the

model, a minimum of 25% of the data should come from any new sites proposed.
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Figure 3.8: F-scores for CNN ensembles trained with varying ratios of training data

and tested at Narrabeen (red), Duck (blue) and the combined data set (black).

The shading represents the 95% confidence interval for the ensembles for each test.

The x-axis shows the number of training images per class per location.

3.6 Conclusions

This study applied a convolutional neural network (CNN) to recognize beach states

from daytime exposure (daytimex) Argus imagery at two contrasting beaches,

Duck, NC, USA and Narrabeen, NSW, Australia. Three CNNs were considered:

two trained with data from each of the sites individually, and one trained with

data from both sites. The trained models were then tested on images from each

site that were not included in the training data. The model results were com-

pared with each other and to the agreement between four domain experts who

manually labelled the dataset. The results showed that CNN ensembles that were

trained and tested at the same site had skill that was comparable to inter-labeller

agreement of the same test data set, and that the overall skill was higher at Duck
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(F-score = 0.80) than at Narrabeen (F-score = 0.61). CNN per-state accuracy

was comparable to inter-labeller per-state agreement for Duck and slightly lower

for Narrabeen. For both sites, the highest accuracy was in the classification of the

low-energy Ref and LTT states, while the lowest skill of the CNN was in classi-

fying the rhythmic states of RBB (Nbn) and TBR (Duck). The combined-CNN

had the highest skill on the combined test dataset (F-score = 0.68, versus F-score

= 0.59 and 0.53 for Duck-CNN and Nbn-CNN, respectively). Compared with the

self-trained CNNs, it similarly confused RBB with LBT at Narrabeen, and TBR

with LTT at Duck, with slightly lower per-state accuracy for Ref, LTT and RBB

states at Duck.

When the single-site trained CNN was transferred to the other site, the F-

scores dropped by 20% (Nbn-CNN tested at Duck), and 58% (Duck-CNN tested

at Narrabeen). In additional transferability tests, the composition of the training

dataset was altered to contain different proportions of training images from each

of the two locations. Overall, comparable skill (10% of the maximum skill) to the

self-trained CNN tests was achieved when at least 25% of the data came from the

transfer site. Further,

Saliency maps were used to identify the specific image regions that were used

for CNN decision making. They showed that relevant regions were highlighted

for determining beach state classification (e.g., the swash region for the Reflective

state, or the offshore bar and shoreline for Longshore Bar Trough), suggesting

that the CNN had accurately identified key features that distinguish beach states

at these two contrasting sites.

Additionally, the alongshore variability of beach state should be considered in

beach state detection in order to extract the most information available from the

image. Ultimately, a globally applicable CNN that would be able to detect beach

state for all locations could be developed by using labelled data from sites around

the world.
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Chapter 4: From Beach State to Breach Probability Simplex with a

Convolutional Neural Network and Argus Imagery

Ashley N. Ellenson, Greg W. Wilson, Joshua A. Simmons, Tyler J. Hesser,

Kristen D. Splinter

In preparation for JGR Earth Surface
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ABSTRACT: Nearshore hydrodynamics govern the dynamics of nearshore ecol-

ogy, surf zone pollutant transport, recreational safety, and coastal erosion. Beach

morphology and incident wave conditions drive nearshore dynamics and can be

qualitatively described using a categorization system called beach states. Beach

states encompass discrete shapes frequently observed nearshore patterns. How-

ever, beach morphologies can exhibit alongshore variability of dominant state, and

are not always accurately described by a single beach state. This study expands

beach state framework of (L. D. Wright & Short, 1984) to acknowledge morphologic

complexity by quantifying the alongshore variability of beach state within a proba-

bilistic framework called a beach probability simplex. A beach probability simplex

is a five dimensional vector where each entry corresponds to the planform area of a

unique state from (L. D. Wright & Short, 1984) relative to the total area of a given

section of beach. A convolutional neural network (CNN) is used to detect the beach

probability simplex from a 28-year time series of remotely sensed morphology from

Duck, North Carolina, USA. Properties of the beach probability simplex include

entropy (E) and mean simplex value (S) and a simplex label. Entropy quantifies

the spread of states within a probability beach simplex, and S is the weighted

mean value of the entries of the probability simplex. A majority (67%) of the

28-year dataset of remotely sensed morphologies exhibited alongshore variability

of beach state, either with two states present as bi-modal simplices, or three states

present as tri-modal simplices. The simplices that encompassed the most off-shore

beach states (e.g., Longshore Bar Trough) corresponded to higher significant wave

heights and northerly wave angles (average Hs > 1.20, average MWD > 0◦), and

the simplices that encompassed the most on-shore beach states (e.g., Low Tide

Terrace) corresponded to lower significant wave heights and southerly wave angles

(on average, Hs < 1.00, −3.47◦ > MWD > −12.61◦). A spectral analysis of S

showed that the variability was dominated by an annual peak, and a slightly lower

four year peak that did not rise above the 95% confidence level. Mean simplex

values and entropy were partitioned by unique day of year, and averaged over the

28 years. Twenty-eight year daily averaged mean simplex value correlated with
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significant wave height and mean wave direction (R=0.77 and 0.85, respectively).

In contrast, 28 year daily averaged entropy correlated slightly with significant wave

height (R=0.44), and did not correlate with mean wave direction (R=0.24). The

most complex morphologies were found in fall and spring (average entropy was

0.67 and 0.61 for fall and spring, respectively, versus 0.51 and 0.56 for summer and

winter).

4.1 Introduction

Knowledge of nearshore morphology and associated hydrodynamics is crucial for

coastal environmental health and safety. Recrational hazards can be determined

by morphological configurations; accreted versus erosive morphological configura-

tions determine hazard to beach users (Benedet et al., 2006; A. Short & Hogan,

1994b). Nearshore ecology is affected by surf zone width (Morgan et al., 2017;

Shanks, Morgan, MacMahan, & Reniers, 2017; Talbot & Bate, 1987) and rip cur-

rents (Shanks et al., 2018). Pollutant fate and transport is partially governed by

the relative degree of alongshore versus rip current circulation patterns (Boehm,

2003; Boehm, Keymer, & Shellenbarger, 2005; Grant et al., 2005; Winckler et al.,

2013). Beach erosion, a hazard for coastal communities, is affected by sub-aqueous

morphology affects total water levels (Gomes da Silva et al., 2020; Hughes et al.,

2014; Ruggiero, Komar, McDougal, Marra, & Beach, 2001).

Surf zone morphologies have been observed to generally exist in similar patterns

called beach states (Chappell & Eliot, 1979; Greenwood & Davidson-Arnott, 1979;

Lippmann & Holman, 1990; Price & Ruessink, 2011b; Ranasinghe et al., 2004;

L. D. Wright & Short, 1984). Beach states rely on spatial patterns and associated

hydrodynamics of surf zone morphology to delineate beach states, grouping bars

into categories based on specific combinations of morphological characteristics (e.g.,

rhythmicity or trough continuity). Beach states have been used within the coastal

community to qualitatively describe the beach and associated hazards (Benedet

et al., 2006; Scott, Russell, Masselink, Wooler, & Short, 2007; A. Short & Hogan,

1994b) validate models (Dubarbier et al., 2017) or as a driving force in shoreline
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change modeling (Davidson et al., 2013).

A four year observational study by (L. D. Wright & Short, 1984) in southeastern

Australia, hereafter referred to as WS84, established the most commonly used

beach state framework. WS84 observed six beach states, and ordered them with

respect to incident dimensionless fall velocities:

Ω =
Hb

wsTp
(4.1)

Hb is wave height at breaking, ws is sediment fall velocity and Tp is peak wave

period. On the two ends of the beach state continuum are dissipative (where the

bar is most offshore, Ω ≥ 6) and reflective states (where the bar is most onshore,

Ω ∼ 1). Dissipative configurations mainly occur in the winter, and reflective

configurations in summer. The nearshore morphology evolves between dissipative

and reflective states through intermediate states that exhibit various degrees of

rip currents and welding (1< Ω <6). Herein, higher energy beach states will

be referred to as “offshore” and lower energy beach states will be referred to as

“onshore.”

Lippmann and Holman (1990), hereafter LH90, expanded the WS84 classifi-

cation system to consider the degree of longshore rhythmicity in categorizing the

nearshore morphology shapes. LH90 analyzed a two year time series of beach

states from remotely sensed nearshore morphology at Duck NC, also the study

site in this work. The LH90 classification rules consider the following attributes

of sandbar spatial structure: 1) existence or absence of a bar; 2) location of the

sandbar relative to the shoreline, specifically if the cross-shore location had was

close (∼ O(10m)) or relatively further away (∼ O(102m, 103m)); 3) the longshore

structure of the sandbar, specifically the degree of linearity or rhythmicity; and 4)

the existence of trough, specifically whether the trough was continuous or discon-

tinuous. Like WS84, LH90 also arranged the beach states in a specific order, but

arranged the beach states with respect to average incident significant wave height

(Hs) instead of Ω, finding that both Ω and Hs parameterized the continuum
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equivalently.

In reality, surfzone bathymetry can exhibit complexity that are not described

with the beach state framework (Armaroli & Ciavola, 2011; Price & Ruessink,

2011b), because the beach state framework uses a prescribed assembly of morpho-

logical attributes for each individual beach state. However, the attributes from the

beach state framework can be applied to complex shapes in an alongshore variable

way, thus framing the morphology as a non-uniform beach state. Morphologies

that have alongshore non-uniform beach state can emerge due to alongshore vari-

ability of incident forcing conditions (e.g., due to physical structures or shoreline

curvature) (Pianca et al., 2015; Thornton et al., 2007), and can cause a high de-

gree of alongshore variability in wave breaking patterns and associated nearshore

hydrodynamics (Gomes, Mulligan, Brodie, & McNinch, 2016; Mulligan, Gomes,

Miselis, & McNinch, 2019; Quartel, Kroon, & Ruessink, 2008). Additionally, the

over-simplification of the morphology into a discrete beach state results in labelling

subjectivity; two people might notice different characteristics of the morphology

and assign a beach state differently (Lippmann & Holman, 1990; Price & Ruessink,

2011b; Ranasinghe et al., 2004)

Herein, we extend the qualitative beach state framework to a quantitative beach

probability simplex in order to represent “mixed-state” morphology types that are

otherwise not included in the LH90 and WS84 systems. Generally, a probability

simplex is an n-dimensional vector, where each entry corresponds to a probability,

and the vector sums to one (Aitchison, 1982). For example, in geologic applica-

tions, a sediment sample might be described by different percentages of silt, sand,

or clay. In the present study, the overall morphology is described by different

percentages of individual beach states. A beach probability simplex is therefore

flexible enough to represent an alongshore variable beach-state, and can encom-

pass discrete beach states as an endmember case. The level of complexity, or the

relative degree of disparate states, of the beach probability simplex is quantified

with Shannon’s entropy (Shannon, 1948). Shannon’s entropy originally quantified

the level of information within a telecommunication, where a diversity of signals
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will provide the most information and have the highest entropy. Herein, a diver-

sity of characteristics from different states results in higher entropy. For example,

morphology with a uniform length scale of rhythmicity (exhibiting features of one

state) is less complex than morphology that exhibits linearity, a trough, and rip

currents in the alongshore (exhibiting features of three states).

This study builds off (A. N. Ellenson, Simmons, Wilson, Hesser, & Splinter,

2020), hereafter referred to as E20, wherein a machine learning algorithm, a Con-

volutional Neural Network (CNN) was applied to identify single beach states from

remotely sensed wave breaking patterns. Given the high volume of data avail-

able to the coastal community (R. Holman & Haller, 2013; K. Splinter, Harley, &

Turner, 2018), it is important to develop methods that can extract useful informa-

tion from these data. More information can be extracted from a single image by

using a probability simplex representation of the beach configuration, as it lever-

ages the CNN’s ability to detect a variety of morphological characteristics within

an image. Additionally, the flexible and automated nature of this method reduces

the subjective nature of beach state labelling due to state oversimplification and

inter-labeller biases.

This contribution first describes the field site and dataset, the windowing rou-

tine used to generate the beach probability simplex, and then applies the detection

technique to a 28-year dataset of remotely sensed morphology from Duck, NC.

Each probability simplex is associated with a categorical representation, a mean

simplex value, and a measure of entropy. The simplex distribution and dynamics

are presented with associated wave conditions, followed by a seasonal analysis of

the mean simplex value.

4.2 Data and Field Site

The field site is a sandy barrier beach located at the U.S. Army Engineer Research

and Development Center Field Research Facility (FRF) in Duck, NC. The mean

spring tide range is microtidal at 1.2 m. The beach slope ranges between 0.108 (at

the foreshore) and 0.006 (8 m depth) (Stauble, 1992). The medium to fine grain
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quartz sediment has a median grain size of 0.5 mm between the bar and the shore-

line (20% carbonate material) and an offshore grain size of 0.2 mm (Birkemeier et

al., 1981).

Wave data (significant wave height, Hs, mean wave direction MWD, peak

wave period, Tp) were taken from the 8-m array at the Field Research Facility in

Duck NC. Any gaps within the 8-m array time series were filled with data from

the former linear array (before it was upgraded in 1990), or by a 17-m or 24-m

waverider buoy (29 months out of 336), where these wave data were shoaled to

8m depth using linear wave theory and assuming an alongshore-uniform coastline.

Mean wave direction was calculated following Kuik, Van Vledder, and Holthuijsen

(1988), and converted to the angle from shore-normal (north positive and south

negative) accounting for the 72◦ shoreline orientation relative to north. The di-

mensionless fall velocity was calculated as in equation 4.1. In this formulation,

Hb was approximated following Komar (1998) as Hb = 0.39g
1
5 (TpH0)

2
5 , g is the

acceleration due to gravity of 9.8m/s2 and H0 is the deep water significant wave

height, where the observed Hs was back-shoaled to deep water. The sediment fall

velocity, ws, dependent on d50 (taken to be 0.3mm), was 0.04m/s.
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Figure 4.1: Daily averaged wave conditions at Duck, NC for 1987-2015. Total

points in summer is 4943 and winter is 4848. Each bin on the radial axis represents

314 data points for summer plots (top panel), and 333 data points for winter

(bottom panel). Directional bin widths are 15◦. East is 0◦, north is 90◦, and south

is −90◦.

Wave data were taken between October 1, 1987 to December 31, 2015, resam-

pled to daily averages, and cleaned to remove measurement errors. Mean period,

Tm, was used in the place of erroneous Tp values. The cleaned data are presented

as a wave rose in Figure 4.1, totalling 4848 points for winter and 4943 points for

summer. The 28-year average Hs is 0.84 m, Tp is 9.04s, and MWD is -4.84◦. Win-

ter (months September-February, inclusive) waves have an average Hs of 0.95m,

Tp of 9.5s, and generally come from the east. Summer (March-August, inclusive)

waves have a lower than winter average Hs of 0.74m, similar to winter Tp of 9.4s,

and come from the E/ESE. In winter, higher wave heights coming from the NE

are due to extra-tropical cyclones (north-easters). Distant tropical cyclones (hur-
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ricanes) can generate higher wave heights associated with long periods (Tp > 16s)

during late summer and fall.

4.2.1 Imagery Dataset and Cleaning: Argus Daily Time Exposure

Images

The data is comprised of ortho-rectified, grayscale, daytime exposure images from

the Argus station at the Army Corps Engineering Field Research Facility in Duck,

North Carolina. The data set spans from January 1, 1987 to December 30, 2015,

totalling 9531 images. Argus images capture wave breaking patterns in the surf

zone, from which morphology can be inferred (Holland et al., 1997). The images

are evenly distributed across the 28-year time span, with approximately 700-840

images per month, and a median number of 810 images per month.

The data were quality controlled to remove images where the bar shape was

not visible due to a variety of reasons: image distortion due to drops on the

camera lens; images where the data was never received from the camera; and

high Hs conditions, where wave dissipation saturated the surf zone and bar shape

was obscured. These occurrences were automatically detected using a purpose-

made convolutional neural network (called a data quality CNN), trained following

E20. The data quality CNN was trained with seven classes, where the training

dataset numbered 100 images per class; the classes comprised the five WS84 beach

states, a no visibility class, and a fully dissipative (storm) class. The data quality

CNN identified a total of 7% (658) of images as low-quality and removed from the

entire dataset, although it was possible some poor quality images remained due to

imperfections in the classifier. The number of poor quality images remaining are

thought to be small enough in number to not affect the final results of this study; a

sample of 100 non-removed images were inspected and of those only six were found

to be false negatives. The number of images removed were not distributed evenly

throughout the seasons. Storms that rendered images low quality occurred more

frequently during winter months. Specifically, the the highest proportion of images
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removed was in the months February, March and April. On average, ∼ 9% of data

were removed from these months. The lowest proportion of images removed was

in August (∼ 4% of data were removed from this month).

Steps were also taken to remove images that were: 1) misclassified by the CNN;

and 2) exhibited only partial visual signature of the nearshore morphology due to

waves breaking preferentially on shallow bar areas due to low Hs. Simplices (see

Section 4.3.4) that encompassed states from either end of the WS84 beach state

order (e.g., RBB and LTT), called “non-adjacent simplices,” were usually due

to preferential wave breaking or CNN mis-classification and were removed from

analysis. For an example, see Figure 4.6, purple box. A manual inspection of 268

non-adjacent simplex LBT-LTT images showed that 30% were correctly labelled,

20% were due to low incident wave energy and 50% were labelled incorrectly.

Also, weak wave breaking by definition was also the main feature of simplices

encompassing the Reflective state. Therefore, simplices encompassing the reflective

state as well as non-adjacent simplices (N=2592) were removed, resulting in a total

of 6370 data points for analysis.

4.3 Methods

4.3.1 Convolutional Neural Network

Machine learning algorithms generate a prediction given an input after learning

relationships between the input and desired predictions in a process called training.

The study herein uses a subset of machine learning called deep learning. In E20, a

deep learning CNN called ResNet-50 (He et al., 2015) was trained to predict beach

states given an Argus daytimex image of nearshore wave breaking patterns.
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Figure 4.2: Training examples for the “full” dataset and the cropped images that

were fed into the windowing routine.

The CNN architecture, described in more detail in E20, Appendeix A, consists

of the following: 1) a convolutional layer; 2) a max-pooling layer; 3) four con-

volutional blocks/ReLU combination; 4) global average pooling layer; 5) a fully

connected layer; and 6) a softmax layer. The convolutional blocks are connected

through residual connections and consist of: 1) 1x1 convolution operation/batch

normalization; 2) 3x3 convolution operation/batch normalization; and 3) 1x1 con-

volution operation/batch normalization. The final output of the CNN is a 5x1

probability vector produced by the softmax layer, where each entry corresponds

to the likelihood that the CNN detects the beach state in an image. For most

machine learning applications, the entry with the highest probability is taken as

the prediction of the image. However, this study used the full softmax output (the

probability vector) to allow for the potential of more than one state within the

CNN’s field of view (see section 4.3.3).

This model was trained ‘end-to-end’, meaning all of the parameters of the al-

gorithm were trained with supervised learning. The process of supervised learning

requires two datasets (training and validation) and assessing model skill requires

a third (testing). The datasets used herein are described in Section 4.3.2. The
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training dataset provides the information for the CNN to learn relationships be-

tween the inputs and desired output. The skill on the validation dataset is used

to determine if the CNN parameters need to be altered; as long as the validation

skill increases, the CNN is learning, and the learning continues. If the validation

skill plateaus, the CNN has finished learning, and training ends in a process called

“early stopping.” In E20, the CNN was optimized on the training dataset (not the

validation dataset). Herein, the CNN was optimized over the validation dataset.

The hyperparameters (batch size, learning rate, early stopping) for the supervised

learning routine are the same as in E20.

4.3.2 Training and Validation Datasets

In E20, the machine learning routine was provided full images of the beach and

predicted a single discrete label, such as the examples provided in Figure 4.2a. In

contrast, the present study seeks to capture the alongshore variability of a beach

state. To do so, the full image is cropped in the alongshore into sub-images as

in Figure 4.2d, and provided as input to the CNN in a process called a “win-

dowing routine” as described in Section 4.3.3. The CNN was trained to recognize

charactreistics of beach states as detailed in Table 4.1.

In order to keep the training and test datasets consistent (i.e., cropped images),

the training dataset from E20 (100 images per class) were cropped for training in

the present study, such as in Figure 4.2, right panel. In E20, each full image was

considered a “pure” (i.e., alongshore uniform) beach state. The crops were made

manually such that the characteristics of each beach state, as detailed in Table 4.1,

were apparent in the cropped image. Since the identifying characteristics for each

class can have different length scales (e.g., TBR rhythmic cross-sectional lengths

can vary in the alongshore) or more than one characteristic (e.g., LTT contains

small rhythmic features and linearity), the training dataset encompassed variety

of morphological length scales and and identifying attributes for each state that

are detailed in Table 4.1, “Variation” column. The training dataset also encom-

passed a variety of window sizes in the sub-images. Each training image from E20
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was cropped at least once and maybe twice, depending on if the characteristics

described in Table 4.1 could be seen in one the full image more than once. Addi-

tionally, cropping increased the number of images available for use, so this study

included a validation set in addition to the training and test sets. The CNN used

in this study had the same architecture but different internal parameters than the

one in E20 due to the different training images and the optimization of the CNN

on the validation set.

Each cropped image was overlaid onto a black background in a composite image

such as in Figure 4.2d. The training dataset totalled 100 composite images per

beach state, the validation set totalled 20 composite images per beach state. The

training and validation images were augmented with the four augmentations that

were used in E20, specifically: 1) random horizontal or vertical flips; 2) horizontal

or vertical translations; 3) random rotation up 45 degrees; 4) random erasing and

5) gamma darkening. With the augmentations, there were 500 training images per

class and 100 validation images per class. In total, there were 2500 training images

and 500 validation images.

4.3.3 Simplex Detection: Image Windowing Routine

In the windowing routine, alongshore sections of the image are fed to the CNN

serially, and the CNN therefore makes alongshore variable predictions. The process

is illustrated in Figure 4.3.3. The images were first cropped by alongshore windows

that spanned the entire cross-shore, with an alongshore window length of 320m (128

pixels) and at a series of alongshore lags spaced 56m (32 pixels) apart (cyan square,

Figure 4.3.3a). The window length was chosen such that it would be larger than

the smallest alongshore length scales in a typical image. Observations have found

that the smallest alongshore distance of a a rip current is ∼50 m (MacMahan, n.d.).

The image crops were then overlaid onto a black background to make a “composite

image,” (Figure 4.3.3d). The composite images were necessary to make the total

input size of the image consistent with the image size in the training dataset

(512x512 pixels); since the CNN was trained on images that are 512x512 pixels,
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the predictions should also be made on 512x512 images.

Figure 4.3: Example of CNN detecting the beach state simplex; panel (a) is an

example full image overlaid with a cropping window size 320m at a lag of 56m; (b)

is the longshore simplex after smoothing; (c) the overall simplex; (d) shows the

composite images fed into the CNN (i.e., the cropped sub-images from (a)); and

(e) is the CNN output for each composite image shown in (d).

The composite images of Figure 4.3.3d were fed to the CNN to produce proba-

bilistic output as in Figure 4.3.3e. The final output from the CNN totalled thirteen

5x1 probability vectors (twelve of which are shown in Figure 4.3.3e). As a result of

the lags being shorter than the windows, the windows would overlap in the along-

shore, and so the CNN would produce approximately five outputs for each location

alongshore. For example, in Figure 4.3.3e, the welded region of the shoreline at

the right side of lag 56m composite image can also be seen on the right side of lag

0m, right center of lag 112m, left center of lag 168m and slightly on the left of lag

280m. In order to aggregate the overlapping predictions, the CNN output for each
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window and lag combination were averaged to produce an alongshore detection

as in Figure 4.3.3b, where each alongshore position was associated with a beach

probability simplex.

The original alongshore detection at times had noisy results, therefore it was

smoothed with respect to alongshore position in such a way that the beach prob-

ability simplex in each position summed to one. Specifically, only the highest

95th percentile estimations were chosen for each alongshore position. If one of

the cameras was missing when the data was collected, a triangular black region

would result from the rectification routine, cutting off informative sections of the

bar signal in the cross-shore (not shown); such estimations were removed from

further analysis. The final, smoothed version of the alongshore detection is shown

in Figure 4.3.3b. The smoothed alongshore detection was then averaged over the

alongshore to produce a beach probability simplex for the entire image, shown in

Figure 4.3.3c.

In summary, the steps of the image windowing routine were the following:

1. Crop images with window 320m at lags of 56 m (Figure 4.3.3a) to make

composite images (Figure 4.3.3d).

2. Generate CNN probabilistic output for composite images (Figure 4.3.3e).

3. Average CNN probabilistic output with respect to lags to produce alongshore

detection, and smooth alongshore detection with respect to each alongshore

position (Figure 4.3.3b).

4. Average alongshore detection to produce beach probability simplex (Figure

4.3.3c).

4.3.4 Definitions and Terms: Probability Simplex, Simplex Label,

Entropy and Mean Simplex Value

A beach state probability simplex,
−→
S , is a probability mass function that repre-

sents the overall beach state as the relative contribution each state. Each entry
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corresponds to a probability, and the simplex entries sum to one:

−→
S = {(S0, .., S4) : Si > 0(i = 0, ..., 4), S0 + ...+ S4 < 1} (4.2)

The probability simplex is built off the characteristics of five of the original six

states in WS84. Duck is primarily characterized by one bar, and therefore dissi-

pative conditions often coincide with storm conditions and saturated surf zones,

obscuring the bar shape. Each entry within the simplex represents the relative

alongshore length of a certain WS84 state within an entire given span of beach

alongshore length. The identification of a beach state was defined as the identi-

fication of the characteristics listed in Table 4.1. The WS84 states were used, as

opposed to the LH90 states, due to their being more commonly used in coastal

studies in comparison to LH90 (Garnier, Calvete, Falqués, & Dodd, 2008; Mas-

selink & Short, 1993; Price & Ruessink, 2011b; Ranasinghe et al., 2004). The

alongshore length of all detections of a given beach state in the image, as produced

by the windowing routine (Section 4.3.3) are summed to give a total length, Li.

The simplex entry was calculated by dividing Li by the total length of the beach

in the image:

Si =
Li
Ltotal

(4.3)

Several useful products can be derived from the beach probability simplex: the

simplex label, the mean simplex value S, and entropy E, which are described in

Table 4.2.

The simplex can be represented with a categorical representation, which is use-

ful in the following ways: conveying which attributes are present in the image

colloquially; for categorizing the frequently emerging shapes; and directly compar-

ing the results here with previous state studies. The categorical representation,

referred to as the label, is the combination of the nonzero entries associated with

the states that make up the simplex. For example, if an off-shore barline is both

rhythmic (RBB) and linear (LBT) in the alongshore, its probability simplex may

read [0, 0, 0, 0.3, 0.7], and in that case its label would be LBT-RBB. Labels that
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Class
#

WS84 Beach
State

LH90
Beach
State

Characteristic Variability

0 Reflective (Ref) A Lack of wave breaking,
no offshore bar

Alongshore uniform

1 Low Tide Ter-
race (LTT)

B Terracing, small rhyth-
mic features within the
terrace

Cross-shore distance of ter-
race, number and size of
rhythmic features

2 Transverse Bar
Rip (TBR)

C,
D

Attachment to the shore-
line and rhythmic fea-
tures that exit the surf
zone

Rhythmic length scales,
number of rhythmic fea-
tures

3 Rhythmic Bar
Beach (RBB)

E Trough, rhythmic bar
line

Cross shore distance be-
tween shoreline and barline,
length scales of rhythmic
features, extent of curvature

4 Longshore Bar
Trough (LBT)

F,
G

Trough, linear bar line Cross-shore distance be-
tween shoreline and bar
line, strength of breaking
signal on bar

Table 4.1: Class numbers, WS84 Beach state, LH90 beach state, characteristics
and the variability thereof associated with each state. Note that LH90 further
subdivided the WS84 categories, and so more than one state might correspond
with an WS84 state.

encompass one state are called “uni-modal”, two states called “bi-modal” and three

states called “tri-modal.”

The mean simplex value is a simplified representation of the five dimensional

vector that represents the entries within the simplex. The mean simplex value is

useful in that it is more readily plotted and used in models than a five dimensional

vector (
−→
S ). The mean simplex value is defined as a weighted sum of the entries
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Term Definition Use
Probability sim-
plex (

−→
S )

Probability vector
where each entry
corresponds to WS84
beach state, eqn. 4.2,
eqn. 4.3

Flexible framework that repre-
sents nuances in morphological
characteristics

Label (e.g.,
LBT-RBB)

Combination of state
names of non-zero
entries in probability
simplex

Categorical representation of the
probability simplex; colloquially
useful since simplex characteris-
tics are readily identifiable by
name; directly comparable to pre-
vious studies

Mean simplex
value (S)

Weighted mean of
simplex, eqn. 4.4

Continuous representation of sim-
plex, readily modelled

Entropy (E) Shannon’s entropy of
probability simplex,
eqn. 4.5

Quantification of probability sim-
plex complexity

Table 4.2: Glossary of terms specific to the simplex, its derived quantities, and
how each are used

within the simplex.

S =
4∑
i=0

iSi (4.4)

Where i is the state value number, defined in Table 4.1, and Si is the simplex

entry associated with that state (equation 4.3). The mean simplex value is only

calculated for the probability simplices that have entries adjacent to each other;

if the entries are not adjacent to each other, the mean simplex value would repre-

sent a simplex that encompasses two end member beach states as an intermediate

beach simplex. The diversity of states within the simplex can be measured with

Shannon’s entropy:

E =
4∑
i=0

Silog2
1

Si
(4.5)
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Entropy is different from other definitions that relate the physical alongshore and

cross-shore variability of morphologies in that entropy represents the level of state

mixing.

The mean simplex value is a more stable measurement than the entropy mea-

surement. While the mean simplex value represents the average state represented

in an image, entropy describes the spread of states within a simplex. Since the

entropy is calculated by taking the logarithm of the state probability (Si < 1),

slight changes in the values within the probability simplex are amplified in the

calculation of entropy. Therefore the entropy measurement is also sensitive to the

CNN detection of each state which can potentially be a noisy measurement.

4.4 Results and Discussion

4.4.1 Simplex Distribution

Uni-modal states, the original WS84 states, comprised 32% of the adjacent states.

Simplices that encompassed two states, bi-model simplices, were most prevalent,

comprising 51% of the data, and tri-modal simplices comprised 16% of the data.

Overall, the majority (79%) of the simplices were comprised of states that were

adjacent to each other on the WS84 beach state continuum (e.g., RBB combined

with TBR to form RBB-TBR). The remaining 21% of the simplices were made up

of non-adjacent states (e.g., RBB combining with low energy state LTT to form

LBT-LTT) and were removed from the analysis as described in Section 4.2. Figure

4.4 shows the simplex “family tree,” illustrating how the states combined to form

simplices and the associated proportion of the dataset. Two of the four bi-modal

simplices were also identified in LH90 (indicated in Figure 4.4). The states original

to this study include the two tri-modal simplices and one bi-modal simplex.

The simplex labels were grouped into sub-groups called “families” for descrip-

tive purposes, indicated by the font color in Figure 4.4. The physical attributes

from the LH90 framework, outlined in Section 4.1, provided an initial basis for

the families, except for the designation of the RBB simplex. Based on LH90’s
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Figure 4.4: Simplex “family tree” illustrating how the WS84 states were most
likely to combine to form simplices. WS84 and LH90 states are indicated in black
boldface below the simplex name. The font color corresponds to state family; LBT
is red, TBR is green, LTT blue, and Ref purple. The horizontal lines indicate the
morphological characteristics (e.g., degree of linearity) differentiating the families,
where the line weight corresponds with degree within the family.
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classification, the RBB simplex would be grouped with the LBT family since the

simplices in the LBT family were furthest away from the shoreline with a contin-

uous trough. However, in this study the RBB simplex was designated within the

TBR family. The RBB simplex was more similar to TBR simplices than to the

LBT simplices in that the RBB simplex, similar to the rest of the simplices within

the TBR family, coincided with, on average, a decrease in significant wave height

from background conditions and average shore-normal wave height. In contrast,

the simplices in the LBT family were associated with an increase in dimensionless

fall velocity, and slightly northern wave directions. See Figure C.1c in Appendix

C.1 for further detail).

The physical attributes of the first family, LBT (20% of the entire dataset),

had varying degrees of linearity, was furthest away from the shoreline and had

a pronounced trough. The second family, TBR (24% of the dataset) had a high

degree of rhythmicity, intermediate in distance to the shoreline, and varying degrees

of welding. The third family, LTT (22%), had a high degree of linearity, the closest

proximity to the shoreline, and a high degree of shoreline attachment. The final

family, Ref (∼ 11% of the dataset), was characterized by a lack of wave breaking.

LH90 found that states within the TBR family occurred most often, followed

by states in the LBT family, and that LTT states occurred least often. This

study found that the simplices of the TBR and LTT families occurred with similar

frequency (30% and 29% of the dataset were TBR and LTT simplices, respectively),

followed by LBT simplices (25%). The high occurrence of the uni-modal LTT

simplex could be due to the fact that low wave breaking images remained in the

dataset despite data cleaning (see Section 4.2), resulting in the detection of the

LTT state.

4.4.2 Simplex Shapes, Entropy and Mean Simplex Values

Each simplex is associated with a mean simplex value, S, and entropy quantity,

E, as defined in equations 4.4 and 4.5. Mean simplex value and entropy were

not calculated for simplices encompassing the Reflective state due to their removal
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Figure 4.5: Simplices ordered by average mean simplex values and their associated
entropy ranges. The vertical lines in the boxes represent the median, and the
whiskers the 5th and 95th percentile values.

from further analysis (see Section 4.2). As shown in Figure 4.5, as the number

of states in the probability simplices increased from two (bi-modal) to three (tri-

modal), the range of their mean values also increased, due to the varying portion

of each image that may be classified as a specific state. Entropy, the measurement

of probability simplex diversity, by definition increases with the number of states

in a simplex. The median entropy for tri-modal simplices is 1.3, bi-modal is 0.86

and uni-modal, by definition, is zero. The mean simplex value by definition scaled

between the families. LBT, TBR and LTT families had a mean S values of 3.44,

2.44 and 1.06. Mean entropy was higher for LBT and TBR families (0.86, 0.81,

respectively) than for the LTT family (0.33). Both the LBT and TBR families

encompassed tri-modal simplices that contributed to their high entropy values,

while the LTT family only encompassed bi- and uni-modal simplices.

The LBT family (red box, Figure 4.6) was characterized mainly by the existence

of a trough and was the furthest off-shore from the shoreline amongst all the

families. The bi-modal simplex occurred most frequently within this family. The

three simplices with the LBT state and their proportion of the entire dataset

were: 1)LBT-RBB (14%) pronounced trough, rhythmic and linear bar; 2) LBT-

RBB-TBR (6%) some welding, rhythmic and linear offshore bar; and 3) LBT

(5%) pronounced trough, straight and linear offshore bar. Figure 4.6, panel A

(red outline) shows examples of the LBT simplices. Generally, the wave breaking
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patterns of the LBT-RBB-TBR had long O(∼ 900m) length scales of rhythmicity

(such as RBB-LBT-TBR in Figure 4.6), and the bar would be attached only in

one region in the alongshore.

The TBR family (green box, Figure 4.6) was characterized mainly by rhyth-

micity and with varying degrees of welding, and was of intermediate distance to

the shoreline (relative to the other families). It encompassed the highest number

(four) of simplices among the families, two bi-modal, one uni-modal, and one tri-

modal: 1) RBB-TBR (11% of the dataset) rhythmic, alternating sections of trough

or welding; 2) RBB (9%) rhythmic, pronounced trough; 3)RBB-TBR-LTT (6%)

rhythmic sections had alternating sections of trough and welding, linear sections

attached to the shoreline; and 4) TBR (4%) rhythmic and welding. Often, oblique

transverse bars were included in RBB-TBR-LTT, as the bar would detach from

the shoreline in the alongshore, thus forming a trough and identified as the RBB

state by the CNN.

The LTT family (blue box, Figure 4.6) was characterized mainly by varying

degrees of shoreline attachment and was closest to the shoreline. The LTT family

encompassed the least number (two) of simplices among the families. The two

simplices and proportion of the dataset were TBR-LTT (15%) alternating rhythmic

and linear sections entirely welded to the shoreline and LTT (14%) linear welded

to the shoreline.

Any simplex that had the Ref state was categorized in the Ref family, so it

encompassed many non-adjacent simplices, two adjacent-member simplices (TBR-

LTT-Ref, LTT-Ref), one uni-modal simplex (Ref) The existence of the Reflective

state within a simplex usually indicated that there were low wave heights that

resulted in preferential wave breaking in the alongshore. For example, in Figure

4.6d, offshore breaking occurred within several spots throughout the image, but

the wave signal is not visual along the entire barline. The section of visible barline

was labelled RBB, and the other sections were labelled LTT and Ref.
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Figure 4.6: Examples of each adjacent simplex used in the analysis. Within each
image, horizontal colored boxes indicate which state was detected in the alongshore.
The simplex distribution is plotted in the top right corner. Each box outline
indicates a family: red corresponds to the LBT family; green to TBR; blue to
LTT; and purple to Ref.
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4.4.3 Simplex Dynamics

The simplices were ordered with respect to mean S that corresponded with each

simplex (centerline of boxes, Figure 4.5), following how WS84 ordered states. Sim-

plices evolved between each other along the mean S order. The transition table in

Figure 4.7 shows the probability of the simplex evolving from one to another, and

the number of times the evolution occurred is shown in parantheses. The proba-

bility of moving to a simplex from a specific one can be calculated by dividing the

number of movements to a simplex by the total number of movements from the

first simplex:

Pi,j =
Ci,j∑N
i=1Cj

(4.6)

In this equation, the simplex transitioned to would be the i, j entry in the table, C is

the number of occurrences that corresponds to that entry, and N is the total number

of evolutions in the jth row. A relative stability of each simplex is calculated as

the probability of the simplex evolving to itself (i.e., the diagonal of Figure 4.7).

The entries in the off diagonal reflect the probability of a simplex evolving to a

different one. Transitions that occurred less than 1% (45 times) of the total number

of transitions were removed from the analysis.
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Figure 4.7: Simplex transition table. Top number in cells is the transition proba-

bility, bottom number in parantheses in cell is the number of times the transition

occurred.

Previous studies, including LH90 and (Price & Ruessink, 2011b; Ranasinghe

et al., 2004) used mean residence time as a measure of stability. Mean residence

time was measured the average number of consecutive days that a morphology

remained in a state. In this study, the probability of self-transitioning, not mean

residence time, is a more appropriate measure of stability due to the approach;

slight changes in the alongshore, which happens on shorter time scales than full

state transitions, might lead to an observation of a different simplex. Therefore,

relative stabilities between simplex shapes, as opposed to direct comparisons of

mean residence time, are compared to previous literature in the following.

The simplices were more likely to remain stable than evolve to another, as

66% of the total evolutions were to the same simplex (self-evolutions). Overall,

bi-modal simplices were equally stable as their uni-modal counterparts, and the

most ephemeral simplex was the tri-modal simplex RBB-TBR-LTT (50% likelihood

for self evolution). Price and Ruessink (2011b); Ranasinghe et al. (2004) and

LH90 found that simplex stability generally decreased from LTT to LBT. The

results herein are in agreement with respect to the two end-members; the uni-modal

LTT simplex had the highest stability (76%) and LBT had lower stability (58%).
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However, the other simplices in the LBT family had relatively higher stabilities

(average of 62%) than the simplices in the TBR family (average of 58%). The low

stability of the TBR family was mainly due to the RBB-TBR-LTT, which had the

lowest stability at 51%.

Both down and up simplex evolution occurred mainly through adjacent or “one

over” simplices. Down simplex evolution mostly occurred through bi-modal sim-

plices with the exception of RBB-TBR-LTT, and generally followed the accepted

accretive behavior introduced by WS84. Starting from the highest energy config-

uration, the configuration LBT was likely to increase in rhythmicity to evolve into

a bi-modal simplex RBB-LBT before evolving to RBB. Thereafter, down simplex

movement was most likely to occur through bi- and tri-modal states (RBB-TBR to

RBB-TBR-LTT to TBR-LTT) to reach the lowest energy configuration, LTT. Up

simplex evolution mainly (89%) occurred between adjacent simplices or skipped

one simplex during “slow” up-simplex evolution, in contrast with the generally

accepted “fast” reset events as in LH90 and in (Ranasinghe et al., 2004). However,

fast (skipping 7 simplices) up-simplex evolutions (LTT to LBT-RBB) did occur

50 times. Observational studies (Price & Ruessink, 2011b) and laboratory stud-

ies (Michallet, Castelle, Barthélemy, Berni, & Bonneton, 2013) have also observed

erosional sequences coinciding with an increase in rhythmicity and trough conti-

nuity, and the physical dynamics of the process has been described in detail by

A. D. Short (1979). During slow up-simplex transitions, the lowest energy con-

figuration, LTT, increased in rhythmicity to TBR-LTT. The TBR-LTT simplex

was most likely to evolve to the tri-modal to RBB-TBR-LTT, further increase in

rhythmicity to RBB-TBR, and then move off-shore to LBT-RBB-TBR. The LBT-

RBB-TBR state did transition to a fully offshore position, LBT-RBB 38 times,

but it is not reported in Figure 4.7 since it occurred slightly less than 1% of the

total transitions (45 occurrences).
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4.4.4 Temporal Variability of Mean Simplex Value

The 28-year record of daily mean simplex values was dominated by an annual

signal. Figure 4.8 shows the power spectrum of the 28-year record of daily mean

simplex values S. The time series was first interpolated to a daily time series

(N=9531) and detrended with a linear fit. The spectrum was calculated using

Welch’s method, using 2555 point segments with 638 overlapping points using

a Hann window. The most energetic peak that rose above the 95% confidence

interval was the annual peak, and the second harmonic of the annual peak at two

cycles per year was also found. Consistent with Pianca et al. (2015), spectra of the

wave forcing parameters Hs, Tp and MWD also had annual peaks (not shown),

suggesting a forced annual oscillation of beach state.

One interannual at peak at 4.2 years was also found. While not significant at

the 95% confidence level in this data set, it is notable that a 4.2 year oscillation was

also observed in shoreline observations at this field site by Pianca et al. (2015);

hence it is plausible that a related 4.2-year process is being weakly reflected in

beach states. Inter-annual peaks were not evident in the wave forcing (Hs, Tp and

MWD).

Figure 4.8: Power spectrum of mean simplex value time series.
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4.4.5 Annual Variability of Simplex Shapes

The time series exhibited an annual seasonal cycle between the families as the

simplices move onshore in the summer to the LTT family through the TBR family

and offshore in the winter to the LBT family also through the TBR family. Figure

4.9, top panel, shows the full simplex, mean simplex value and entropy time series

averaged over each unique day of year for the 28-year dataset. Simplex entropy

was highest for the fall months during the offshore transition.

Figure 4.9: (Upper panel) Mean simplex values (black line), full simplex, averaged

by day for the 28 year dataset. (Lower panel) daily-averaged entropy, where bold

line is 30-day rolling average and the shaded areas represent a 90% confidence

interval of data from the 28 years.

During the winter months (December, January, February), the simplices were
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mostly offshore in the LBT family (44% of winter simplices were from the LBT

family, 31% within the TBR family and 25% in the LTT family), and resulted in

highest seasonal mean simplex values (S = 2.7 for winter), albeit somewhat lower

than the average S value for the LBT family (3.4). Specifically, LBT-RBB and

LBT simplices comprised 30% and 10% of the winter dataset, respectively. Low

wave days lead the CNN to detect the LTT simplex. As a result, the winter months,

the mean simplex jumps between 4 or 5 (RBB or LBT) and 0 (LTT), resulting

in a monthly average mean simplex value for the time series of ∼3. During the

summer months (June, July, August), the simplices were the most onshore of the

entire year in the LTT and TBR families (summer simplices were comprised of 4%

LBT family, 36% TBR family and 62% LTT family), with the lowest average mean

simplex value of the year (S = 1.7). Specifically, TBR-LTT and LTT simplices

comprised 33% and 29% of the summer dataset, respectively.

During the transition seasons (spring and fall), the simplices evolved mainly

through the TBR family, and the distribution of simplices was skewed towards

LTT in spring (spring simplices 29% LTT and fall simplices 14% LTT) and slightly

towards LBT in fall (spring simplices 24% LBT and fall simplices 28% LBT). As

a result, the spring months had a lower average mean simplex value than in fall

(S = 2.5 for fall versus S = 2.3 in spring). For spring, bi-modal simplices from

each family made up the highest proportion of the dataset: LBT-RBB (14%);

RBB-TBR (19%); and TBR-LTT (17%). For fall, a bi-modal simplex from the

LBT, one bi-modal and one tri-modal from the TBR family made up the highest

proportion of the dataset: LBT-RBB (15%); RBB-TBR (19%); RBB-TBR-LTT

(14%).

The entropy measurement had a slight annual signal, although exhibited high

variability through the 28 years, as shown in the bottom panel of Figure 4.9.

During the winter months, when S was at its highest values, entropy was lower

than average (28-year winter average E = 0.56 versus an overall average of 0.58).

During spring, entropy rose slowly as S fell, reaching the highest value of spring

(28-year monthly average E = 0.66) in April. As S continued to decrease after
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April and into the summer months, E decreased as well, reaching the lowest values

in the summer months (28-year summer average E = 0.51 for summer). As S

increased in the fall months, E increased the most quickly to the highest values of

the year in September (28-year monthly average E = 0.72).

Overall, entropy reached higher values in spring and fall months and lower

values in winter and summer (28-year winter average E = 0.67, 0.61 for fall and

spring, respectively, and E = 0.51, 0.56 for summer and winter). The elevated

entropy values for fall and spring were due to the occurrence of tri-modal simplices

(35% and 28% of all tri-modal configurations occurred in fall and spring, respec-

tively, compared with 20% and 16% in winter and summer, respectively). During

the fall, the further off-shore tri-modal simplex, LBT-RBB-TBR, was more likely

to occur than in spring (38% for fall versus 30% in spring). The forces driving

entropy are not clear (no high correlations were found with wave forcing param-

eters), but it is hypothesized that a combination of factors interact to contribute

to higher entropy. Specifically, the development of high entropy simplices in fall

months is likely due to an alongshore variable migration of the bar off-shore (off-

shore migration through up-simplex movements as described in Section 4.4.3) due

to higher background wave heights, longer incident wave periods, and a greater

likelihood of high wave events.

4.4.6 Environmental Conditions associated with Simplices

The incident environmental conditions (Ω,MWD,Hs, Tp) corresponding with the

simplex families overlapped but were distinct in their mean values (p=0.00 between

all populations of parameters Ω,MWD,Hs associated with families). Figure 4.10

shows the histograms of environmental parameters for each family. The mean

values of Hs,MWD and Ω were more distinct between the families (average p

value between the families was 0.00) than the mean Tp values (average p value

between the populations was 0.04). Differences in Ω populations between the

families were largely due to differences in Hs populations between the families

rather than differences in Tp populations between the families, except for a region
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of the highest Ω values for LBT family simplices (driven by smaller Tp values).

Between the three families, the simplices with mostly offshore states (LBT

family) corresponded with the highest wave heights (average Hs = 1.15+/−0.15m)

and dimensionless fall velocities (average Ω = 5.21 + / − 1.86), and the most

northern to shore-normal wave directions (average MWD = 4.88 + / − 16.62◦).

The simplices with mostly intermediate states (TBR family) corresponded with

intermediate wave heights (average Hs = 0.84 + / − 0.38m) and dimensionless

fall velocities (average Ω = 3.93 + / − 1.58), and shore-normal to southern wave

directions (average MWD = −2.87 + / − 16.40◦). The simplices with mostly

onshore states (LTT family) corresponded with the lowest wave heights (average

Hs = 0.62 + /− 0.37m) and dimensionless fall velocities (average Ω = 3.17 + /−
1.65), and southern wave directions (average MWD = −10.95 + /− 17◦).

The 28-year daily averaged S was correlated with the 28-year daily averaged

forcing parameters Hs,MWD and Ω, while entropy was not. Figure 4.11 shows

scatterplots between the 28 year daily averaged S,E and 28 year daily averaged

environmental parameters. Mean simplex value correlated highest with mean wave

direction (R=0.85), equally with Hs and Ω (R=0.77) and lowest with Tp (R=0.04).

The relationship between S and Ω is generally in agreement with WS84, who

showed that Ω ranged between 2-6 for intermediate states. Values for Ω overlapped

for each state, with the mean Ω values progressively increasing (LTT to TBR to

RBB). However, in contrast with WS84, the highest Ω values are for slightly lower S

values (i.e., not the most offshore simplices). The LBT-RBB-TBR simplex (average

S = 3) was associated with highest Hs and Tp values, resulting in higher Ω values

overall. Entropy correlated slightly with Hs and Ω (R=0.44, 0.38, respectively),

and had low correlation (R < 0.4) with MWD,Tp and Ω.

The correspondence between Ω and beach configuration is well established in

the literature (Lippmann & Holman, 1990; Ranasinghe et al., 2004; L. D. Wright &

Short, 1984), however some studies have found Ω does not alone explain beach state

(Jiménez, Guillén, & Falqués, 2008; Masselink & Pattiaratchi, 2001). Mean wave

direction has been observed to cause changes in sandbar rhythmicity, with oblique
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Figure 4.10: Histogram and kernel density estimates of Hs, Tp, MWD and Ω with
respect to each simplex family.
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Figure 4.11: Twenty-eight year daily averaged S and E values with respect to
forcing parameters Hs,MWD,Tp and Ω. Number of data points is 365.

waves causing sandbar straightening Contardo and Symonds (2015) and normally

incident waves causing rip currents, or rhythmicity in the bar line Thornton et al.

(2007). Within the LBT and LTT families, the simplices with the most linear states

(LBT, LTT) were on average associated with the most oblique average mean wave

directions of all the simplices (MWD = 4.18◦ for LBT and MWD = −12.61◦

for LTT). Within the TBR family, the simplices with the most rhythmic states

(RBB-TBR and TBR) were on average associated with the most shore normal

mean wave direction (MWD ∼ 2◦) of the simplex family. Price and Ruessink

(2011b) also found that incident wave angle corresponded to beach state, however,

found that oblique wave angles did not necessarily correspond with more linear

bar configurations, but rather more upstate bar configurations.

4.5 Conclusions

This study derives a beach probability simplex to represent surf zone morphologies

that exhibit alongshore variability of dominant beach state. The beach probability
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simplex is a probability mass function where each entry corresponds to relative

contribution (quantified as total length within the alongshore) of one of the beach

states defined by L. D. Wright and Short (1984). Additionally, the beach proba-

bility simplex was detected with a low level of subjectivity and in an automated

way, where a convolutional neural network (CNN) quantified beach probability

simplices from morphology inferred from remotely sensed wave breaking patterns

(Argus daytimexposure images). Useful properties of the simplex included: a cat-

egorical representation of the simplex (the state names of the non-zero values of

the simplex); a mean simplex value (S, a scalar representation of the simplex);

and simplex entropy (E) (Shannon’s entropy that quantified the diversity of states

within a beach probability simplex).

A 28-year dataset of daily beach simplices from Duck, NC was presented. The

majority (79%) of the simplices were comprised of states mutually adjacent to each

other in the ordering of states defined by L. D. Wright and Short (1984). Of the

adjacent states, the majority (67%) encompassed two or three states. The simplices

were grouped into families (Longshore Bar Trough, LBT, family, Transverse Bar

Rip, TBR, family and Low Tide Terrace, LTT family), mainly following Lippmann

and Holman (1990), where the families were differentiated from each other based

on morphological factors: degree of shoreline proximity; shoreline attachment; and

linearity versus rhythmicity of the barline.

A spectral analysis of the 28-years of daily mean beach state (S) showed a

statistically significant annual signal and a weaker 4.3 year signal which, while

not significant at the 95% confidence level, was consistent with past observations

of shoreline motion at the field site (Pianca et al., 2015). An annual oscillation

between the simplex configurations occurred the simplices transitioned between

onshore, summer LTT configurations and offshore, winter LBT configurations,

and travelled through TBR in both spring and fall. The simplices in fall and

spring showed higher levels of entropy (greater amounts of complexity), due to

a greater occurrence of tri-modal simplices. The tri-modal simplices in fall were

more offshore than in spring.
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On average, the daily significant wave height was highest for simplices within

the LBT family, lowest for simplices within the LTT family, and intermediate for

simplices within the TBR family. These findings are consistent with LH90, WS84,

Ranasinghe et al. (2004) that found beach state is largely driven by wave height,

often parameterized by the non-dimensional fall velocity Ω = Hs/wTp. A strong

relationship between beach state and wave angle (R = 0.85) was also observed. The

average associated mean wave direction was most oblique for simplices dominated

by linear states and shore-normal for simplices dominated by rhythmic states. A

different long term (9 year) observational study found that incident wave angle

corresponded with beach state (Price & Ruessink, 2011b), however, that oblique

wave angle caused upstate bar migration. Further research is recommended to

investigate the mechanisms by which oblique waves drive beaches to higher-energy

states (e.g., (Ranasinghe et al., 2004)), and to confirm the observation using long-

term data sets from additional beaches.

Mean simplex value correlated with Hs and MWD (R = 0.77, 0.85, respec-

tively), while entropy showed slight correlation with Hs (R = 0.44), but no clear

relationship with forcing parameters. Mean simplex value conveys information

about the proximity of the bar to the shoreline, which both LH90 and WS84 have

shown to be related to incident wave conditions. In contrast, entropy conveys in-

formation about alongshore variability in beach state, which did not seem to have

a direct relationship with any of the measured wave parameters (Hs, MWD, or

Tp). The emergence of morphologies with high entropy is more likely due to a

combination of factors (e.g., alongshore variability of wave breaking patterns, the

emergence and development of rip currents, storm sequencing) which should be

explored in future work.
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Chapter 5: Conclusions

The dissertation has demonstrated how pattern recognition technology and large

volumes of data can assist in knowledge discovery within marine science. Machine

learning algorithms were applied in three applications. In the applications, the

ML algorithm was applied with transparency, the limits of its transferability were

determined, and knowledge about the marine system or model was gained.

5.1 Chapter Conclusions

In the second chapter, a decision tree was applied to correct the output of hourly

24-hour time horizon predictions of significant wave height made by a numerical

wave model by detecting areas of wave model bias. The application of the de-

cision tree corrections improved numerical model skill more for winter than for

summer. Upon inspection of the decision tree decision making, consistent model

over-estimations for data points associated with mid wave periods (6-10s) and

model under-estimations for high wave heights (Hs > 5.4m) associated with high

wind speeds (wind speed > 15m/s) were found. Geospatially, the decision tree

algorithm improved model skill at a location that was witheld from training, after

being trained on neighboring buoys. Temporally, the decision tree algorithm did

not improve model skill when applied to make predictions for a different year.

In the third chapter, an image processing ML algorithm, a Convolutional Neu-

ral Network (CNN) was applied to detect beach state from remotely sensed wave

breaking patterns in Argus imagery for Narrabeen, Sydney, Australia and Duck,

North Carolina, USA. Three CNNs were trained, two with data from a single loca-

tion, and one with data from both locations. The CNNs accurately predicted beach

state at the location where it was trained. Transferability skill varied, depending

on where the CNN was trained; the Narrabeen-trained CNN made more accu-
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rate predictions of beach state when applied to Duck than when the Duck-trained

CNN was applied to Narrabeen. Additionally, the study used Gradient-Class Acti-

vation Maps to confirm that the CNN was detecting morphological characteristics

appropriate to each beach state.

The fourth chapter builds off the third by applying the CNN to a long (28

year) record of Argus imagery, but first expands the beach state framework from

discrete to continuous by developing a beach probability simplex. The beach prob-

ability simplex is a probability mass function that quantifies the relative degree of

alongshore variability of beach state. The majority (67%) of the resulting beach

probability simplices encompassed at least two or more beach states, suggesting

that a beach probability simplex is more appropriate in describing nearshore mor-

phology than discrete beach states. A spectral analysis of the time series showed

that the beach morphology had the highest peak at an annual cycle, and a less

energetic at a four year cycle that did not rise above the 95% confidence interval.

The simplices with the greatest alongshore variability occurred in the fall time.

Transferability skill depended on the relationship between the training data

used in ML development and the data to which the ML model was transferred.

In the wave model application, the decision tree’s geospatial transferability skill

was higher than the temporal transferability skill. In the geospatial transfer experi-

ment, relationships between the input and desired output in the training data from

neighboring buoys held when the decision tree made predictions at a buoy omitted

from training. However, when transferred temporally, the relationships learned

during training did not hold. In the beach state application, the degree to which

a CNN could detect beach state at a different location depended on where the

CNN was trained. The reasons for the different transferability skill were unclear.

Transferability skill increased as images from the alternative site were included in

the training dataset, demonstrating that the CNN became more generalizable as

a variety of training data is presented, which is generally accepted within the ML

community. As a guideline, transferability skill of an ML technique must be tested

for each application, and a variety of training data will increase the generalizability
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of an ML technique.

5.2 General Conclusions and Future Work

The ML applications simultaneously improved the marine models and increased

the understanding of each system in a knowledge discovery process. In the first

application (chapter two) the ML algorithm improved the numerical wave model

skill. Additionally, the ML algorithm identified consistent wave model bias with re-

spect to model phase space, pointing to areas of potential model improvement with

respect to modeled environmental conditions. In the second application (chapters

three and four) the ML algorithm increased the accuracy of the beach state concep-

tual model by detecting alongshore variability of beach state, progressing the beach

state representation from discrete to continuous, therefore creating a more flexi-

ble framework that captures the continuous nature of morphological evolution and

appearance. Application of the flexible framework resulted in higher resolution

of morphological evolution, in that the most likely transitions between complex

morphological shapes were quantified.

The ML algorithms were applied with transparency, which is important for

adoption of ML algorithms, and also a method to discover knowledge about the

system. In the first application, the transparency of the decision tree lies in the

architecture itself. The decision making of the decision tree can be understood

with manual inspection of its architecture, which was performed to find the areas

of wave model bias. In the second application, an outside technique, Guided Grad-

CAM, was required to determine areas of input images that were relevant for CNN

decision making. The Guided Grad-CAMs confirmed that the CNN identified the

morphological characteristics appropriate to its associated label prediction.

Knowledge Discovery (KD) can be a powerful outcome when ML is applied

to large datasets. However, a limitation arises; while ML techniques can provide

information about potential correlations in the data, mathematical or physical

models are more useful in providing information about causation since the un-

derlying forcing can be directly observed and controlled. Additionally, domain
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knowledge is required to ensuring that the interpretation of ML results is in accor-

dance with reason. Therefore, hybrid approaches are most robust in discovering

knowledge about a system. In chapter two, the ML routine post-processes the out-

put of a well established numerical model in a hybrid method. In chapters three

and four, the ML routine advances a well established conceptual model, but does

not replace it. Finally, as a limitation in chapter four, the causation of system

dynamics was not determined. This was because the method was unable to isolate

and directly observe the simultaneous contributions of physical forcings and feed-

backs within the system, therefore making it difficult to ascertain which variable

or combination of variables were responsible for alongshore variable bar evolution.

Future research could explore the causes of the dynamics of system evolution by

simulating the observed phenomena and querying the underlying processes.

A powerful way that data science techniques can aid in marine science research

is to increase the spatial and temporal scales at which observations can be ana-

lyzed. Future work could increase the transferability skill of the algorithms, and

then apply the algorithms to larger volumes of data for inter-site or temporal com-

parisons. In the first application, the decision tree could be trained at additional

locations using satellites and other buoys, and applied to predict errors on grid-

ded model output. This would increase the accuracy of significant wave height

predictions with respect to spatial resolution, and also could reveal if any spatial

parameters correspond to model bias (e.g., specific locations see consistent model

over or under estimations for certain environmental conditions). In the second

application, the CNN could be trained with and applied to imagery from other

Argus sites around the world that have different beach characteristics. This would

increase both the temporal and spatial variability of beach morphology records,

allowing for the comparison of nearshore bathymetry dynamics on a potentially

global scale.
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Cornejo-Bueno, L., Rodŕıguez-Mier, P., Mucientes, M., Nieto-Borge, J., & Salcedo-

Sanz, S. (2018). Significant wave height and energy flux estimation with a
genetic fuzzy system for regression. Ocean Engineering , 160 , 33–44.

Davidson, M. A., Splinter, K. D., & Turner, I. L. (2013, March).
A simple equilibrium model for predicting shoreline change.
Coastal Engineering , 73 , 191–202. Retrieved 2020-12-07, from
http://www.sciencedirect.com/science/article/pii/S0378383912001676

doi: 10.1016/j.coastaleng.2012.11.002
den Bieman, J. P., de Ridder, M. P., & van Gent, M. R. A. (2020, June).

Deep learning video analysis as measurement technique in physical
models. Coastal Engineering , 158 , 103689. Retrieved 2020-06-25, from
http://www.sciencedirect.com/science/article/pii/S037838391930612X

doi: 10.1016/j.coastaleng.2020.103689
den Bieman, J. P., van Gent, M. R. A., & Hoonhout, B. M. (2019, De-

cember). Physical model of scour at the toe of rock armoured struc-
tures. Coastal Engineering , 154 , 103572. Retrieved 2020-06-29, from
http://www.sciencedirect.com/science/article/pii/S0378383919300651

doi: 10.1016/j.coastaleng.2019.103572
De Santiago, I., Morichon, D., Abadie, S., Castelle, B., Liria, P., &

Epelde, I. (2013, January). Video monitoring nearshore sand-



114

bar morphodynamics on a partially engineered embayed beach. Jour-
nal of Coastal Research, 65 , 458–463. Retrieved 2020-06-25, from
http://www.bioone.org/doi/10.2112/SI65-078.1 doi: 10.2112/SI65-
078.1

Deshmukh, A. N., Deo, M., Bhaskaran, P. K., Nair, T. B., & Sandhya, K. (2016).
Neural-network-based data assimilation to improve numerical ocean wave
forecast. IEEE Journal of Oceanic Engineering , 41 (4), 944–953.

Dietterich, T. G. (2000). An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomization.
Machine Learning , 40 (2), 139–157.

Doran, D., Schulz, S., & Besold, T. R. (2017). What does explainable ai
really mean? a new conceptualization of perspectives. arXiv preprint
arXiv:1710.00794 .

Dubarbier, B., Castelle, B., Ruessink, G., & Marieu, V. (2017). Mechanisms
controlling the complete accretionary beach state sequence. Geophys-
ical Research Letters , 44 (11), 5645–5654. Retrieved 2020-06-25, from
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073094

( eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL073094)
doi: 10.1002/2017GL073094

Eadi Stringari, C. (2020). Data driven Investigations of Broken Wave Behaviour
in the Surf and Swash Zones (Unpublished doctoral dissertation).
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Ellenson, A., Pei, Y., Wilson, G., Özkan-Haller, H. T., & Fern, X. (2020). An
application of a machine learning algorithm to determine and describe error
patterns within wave model output. Coastal Engineering , 157 , 103595.

Ellenson, A. N., Simmons, J. A., Wilson, G. W., Hesser, T. J., & Splinter,
K. D. (2020, January). Beach State Recognition Using Argus Imagery
and Convolutional Neural Networks. Remote Sensing , 12 (23), 3953. Re-
trieved 2021-01-03, from https://www.mdpi.com/2072-4292/12/23/3953

(Number: 23 Publisher: Multidisciplinary Digital Publishing Institute) doi:
10.3390/rs12233953

Etemad-Shahidi, A., & Bonakdar, L. (2009). Design of rubble-mound breakwaters
using M5 machine learning method. Applied Ocean Research, 31 (3), 197–
201.

Etemad-Shahidi, A., & Mahjoobi, J. (2009). Comparison between M5 model
tree and neural networks for prediction of significant wave height in Lake



115

Superior. Ocean Engineering , 36 (15-16), 1175–1181.
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Appendix A: Wave Model Decision Tree

A.1 Errors

In the following definitions, N is the number of samples, ŷ is the estimated value,
and y is the true value. Root mean squared error (RMSE) is defined as

RMSE =

√∑N
i (yi − ŷi)2

N
; (A.1)

the percent error (PE) as

PE = 100

√√√√ 1

N

N∑
i

(
yi − ŷi
yi

)2

(A.2)

the scatter index (SI) as

SI =
RMSE

y
(A.3)

and bias as

Bias =
1

N

N∑
i

ŷi − yi (A.4)

.
Lower error values indicate greater model skill.

A.2 Wave Parameter Definitions

The bulk parameter MWD is defined as the vectorial mean of the directional spec-
trum as in Kuik et al. (1988). Splitting on wave direction poses a logical problem
in that the variable is periodic, such that partitions can only be logically defined
after an initial split into sectors. Mean wave direction is defined using a nautical
convention in the range 0-360 degrees. This could have a minor (unavoidable)
effect on the overall partition structure; partitions abutting the zero degree line
cannot be joined together, hence the data in these partitions will be considered as
separate branches of the tree. In our case, MWD values ranged from 220-360 for
the entire dataset, so this problem did not arise. The bulk parameters Hs and
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Tm01 are defined as follows.

Hs = 4
√

(m0) (A.5)

Tm01 =
m0

m1

(A.6)

where the nth moment, mn, is defined as

mn =
∫
θ

∫
f
fnF (f, θ) dfdθ for n = 0, 1, 2... (A.7)

In this formulation, f is frequency and θ is direction. The integration limits for
frequency are 0.03-0.4Hz for the observations, and 0.041-0.411Hz for the wave
model.

A.3 Computational Library

The methods described here were implemented using python’s scikit-learn library.
This library includes the base decision tree, the bagged regression tree, a bagging
regressor ensemble method, and a grid-search cross validation routine. Cross-
validation was executed first, in order to find the parameters that resulted in the
most accurate bagged regression tree. The optimal parameters were then used in
training and testing. This cross validation, train and test phases were executed 30
times, as explained in section 2.2.2. The algorithm can be run on one core, and the
run time is approximately 6000 seconds for one validation, train and test phase.
The majority of the computations occurred during cross-validation.
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Appendix B: Chapter 3 Appendix

B.1 Convolutional Neural Network Theory

This study uses a pre-defined CNN called Resnet-50 He et al. (2015), shown
schematically in Figure B.1. The CNN begins with a feature extraction step,
consisting of a convolutional layer followed by convolutional blocks. The con-
volutional layer includes kernel of weights (treated as free parameters) that are
convolved over the image intensity values, resulting in a representation of the im-
age into a new feature space called a feature map. For example, a kernel might
act to find edges within the image, resulting in a feature map that contains only
the edges of high contrast from the original image. The first convolutional layer in
Resnet-50 has 64 kernels that span 7x7 pixels, and are applied sequentially to the
image with a stride (or lag) of two pixels. The output from the convolutional layer
is then fed into a batch normalization layer. The batch normalization step acts
to redistribute the values of the feature maps to a Gaussian distribution, which
aids in optimization Ioffe and Szegedy (2015). Next, an activation function (here a
ReLU function, ReLU(x) = max{0, x}) is applied to the batch-normalized values
to filter only the positive values output from the convolution step. This allows for
the convolutional neural network to calculate non-linear relationships between the
input and output. The ReLU output is then fed into an max pooling layer, which
reduces the dimensions of the feature map by providing summary statistics of the
salient portions of the feature maps. Specifically, the max pooling layer consists
of convolving a filter over the image. The filter outputs the maximum value of a
feature map within a neighborhood of 3x3 pixels and with a stride of two pixels.

The output of the first convolutional layer is then passed to a series of “bot-
tleneck” convolutional blocks, Figure B.1. As the information passes through the
CNN, the original 3x512x512 block of data (the image) increases in the first dimen-
sion due to the number of kernels used, and decreases in the two spatial dimensions
due to the use of the 3x3 kernels with a stride of two in the convolutional steps.
In addition to the sequential connections between each block, the blocks are also
connected via skip, or “residual” connections (hence the name ResNet). These
residual connections occur through an identity mapping (y = F (x) + x), 0); mean-
ing that the information from an earlier block (x) is directly passed to a later
block, skipping the transformations made within the blocks along the way (F (x)).
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Figure B.1: ResNet architecture (adapted from Table 1 and Figure 3 of He et al.
(2015)). The modules with learnable parameters are boldface.

The residual connections help the algorithm to reduce training error quicker, since
they enable information to flow more efficiently and directly through the network
to allow better adjustment of the kernel weights in the first layers. The output
from the final convolutional block is fed to a global average pooling layer. Similar
to the max pooling layer, it serves to reduce the dimensions of the feature maps
by providing summary statistics about the feature maps. It outputs the average
of each feature map, resulting in a (k × 1 × 1) vector, where k is the number of
feature maps (2048 in ResNet50).

After the feature extraction step comes the classification step. This is performed
with a traditional machine learning (i.e., not deep learning) technique: a neural
network. The output of the global average pooling layer, the flattened vector, is fed
into a fully connected neural network that has one layer of neurons. The output
of the neural network is in turn passed to a softmax function (softmax = exp(zc)∑

c
(zc)

),

which outputs a probability mass vector corresponding to the predicted probability
for each class, ŷ. The entry with the highest probability is taken as the class
prediction.
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Maximum likelihood estimation of the CNN parameters is performed during
training by minimization of a cost function calculated over the training data set.
For one training example (image, n) with a total of five classes, the cost function
is the cross entropy function:

Jn(Θ) = −
5∑
c=1

yclog(ŷc) (B.1)

In this function, the CNN prediction (defined as the entry with the maximum value
of the softmax output) is ŷc, and the true value is yc. The softmax output can
be thought of as a modelled probability distribution, where the model is defined
by the free parameters of the CNN. The target can be thought of as a Dirac
delta function with a ‘1’ entered in the position of the true class. Maximum
likelihood estimation is used to determine the free parameters of the CNN that
are most likely to predict the true distribution Goodfellow et al. (2016). The
maximum likelihood estimation is made by minimizing the cost function with an
iterative scheme called stochastic gradient descent (SGD) with momentum. At
each iteration step of SGD, the parameters are adjusted according to the value
of the gradient of the cost function with respect to those parameters. In this
study, mini-batch gradient descent is used, so the parameters are updated with
a gradient value that is averaged from four training examples: 1

4

∑4
n=1∇ΘJn(Θ).

Momentum is used to achieve minimization more efficiently, by adding a weighted
estimate of the gradient from the previous batch to the adjustment. The specific
SGD parameters used in this study were a learning rate of 0.01, and a momentum
weight of 0.9. The learning rate was reduced by a factor of 10 if the training loss
did not improve (decrease) after 8 epochs. The training was run for 120 epochs,
and generally converged after approximately 40 epochs.

B.2 Skill Metrics

For a multi-class classification problem, a confusion matrix provides information
about which classes were categorized correctly and incorrectly. A confusion matrix
Z, is a KxK matrix where K is the number of classes considered in the multi-class
problem. The entry in the confusion table zij represents how many images of class
i were classified as class j . The total number of images belonging to a certain
class i is defined as xi =

∑
i zij, while the total number of images classified (by the

CNN) as a certain class i is defined as yi =
∑
j zji. The specificity, or precision

(P), is defined as the number of images that were labelled correctly divided by the
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number of images labelled as that category:

P =
zii
yi

(B.2)

The per-class accuracy, or recall (R), is defined as the number of images that were
labelled correctly divided by the total number of images with that label in the
dataset:

R =
zii
xi

(B.3)

The F-score is defined as the harmonic mean between precision and recall:

F = 2
P ∗R
P +R

(B.4)

See references Sokolova and Lapalme (2009) and Baldi et al. (2000) for further
information on accuracy measures for multi-class classification problems.
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Appendix C: Chapter 4 Appendix

C.1 Wave Conditions Corresponding with Simplex Dynamics

L. D. Wright and Short (1984) (WS84) observed that the current morphology is
dependent upon the historical environmental conditions, called “equilibrium con-
ditions.” Specifically, equilibrium dimensionless fall velocity (Ω) corresponds to
which state the beach was currently in. This study calculates equilibrium condi-
tions following L. Wright et al. (1985):

Ω = [
D∑
i=1

10
−i
φ ]−1

D∑
i=1

[Ωi10
−i
φ ] (C.1)

In this formulation, D=30 and φ=5. Equilibrium conditions are exponentially
weighted in such a way that the values φ days ago had a weighting factor of 10%,
and the conditions from the last thirty days are taken into account.

Studies have observed that changes in the hydrodynamics induce a lagged re-
sponse of the morphology (Stokes, Russell, & Davidson, 2016; L. Wright et al.,
1985). Therefore, prediction of beach state can be undertaken using an equi-
librium approach, whereby the next beach state is a function of the equilibrium
conditions and the difference between instantaneous conditions and equilibrium
conditions (Davidson et al., 2013), called “disequilibrium.”

∆Ω = Ω− Ω (C.2)

The simplices were arranged in order of average S (centerline of boxes, Figure
4.5) and the corresponding equilibrium and disequilibrium wave conditions were
calculated and presented in Figure C.1.

The simplices corresponded with Ω and MWD, as defined in equation C.1.
Figure 4.7b and c show Ω and MWD when the evolution occurred. Generally,
the time averaged wave conditions corresponded to the simplex from the previous
day (i.e., the rows in Figure 4.7). WS84 observed that intermediate beach states
generally correspond with Ω values between 1-6, and the values herein correspond
with that range (Ω values between 2.97-5.03), with LTT simplices corresponding
to lower Ω and LBT simplices corresponding higher Ω. However, in contrast with
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Figure C.1: Wave conditions corresponding to the simplex transitions. (Top pan-
els) Time averaged dimensionless fall velocity in (a) and mean wave direction in
(b). (Bottom panels) The difference between the time-averaged and instantaneous
fall velocity in (c) and mean wave direction in (d).

WS84, the highest dimensionless fall velocity also corresponded with slightly more
onshore, rhythmic and even terraced shapes, specifically LBT-RBB and LBT-RBB-
TBR (average Ω = 5.05 and 5.03, respectively). The LBT-RBB-TBR simplex was
found to occur on average for the highest wave heights and longest wave periods
(average Hs = 1.15m,Tp = 9.12s) within the LBT family, suggesting that low
steepness, high wave events permit rhythmic barlines. This observation is consis-
tent with Price and Ruessink (2011b), who observed an erosive TBR state (eTBR),
a state encompassing rip currents that coincided with offshore bar movement.

The simplex ordering also corresponded with MWD. Specifically, slightly
northern wave directions (4.18 > MWD > 2.13◦) correspond with the LBT sim-
plices, slightly southern (−4.45◦ < MWD < −0.24◦) with TBR simplices, and
southern (−12.61 < MWD < −9.19◦) with LTT simplices.

Simplex stability (i.e., the diagonal of the tables in Figure C.1) corresponded
to the smallest disequilibrium values (equation C.2). Higher levels of disequilibria
have been hypothesized to induce a greater response in the morphology Davidson et
al. (2013); L. Wright et al. (1985), which is generally confirmed herein; on average,
∆Ω = 0.26,∆MWD = 1.60◦ when the simplex remained in the same configuration
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versus ∆Ω = 0.58,∆MWD = 4.33◦ when the simplex evolved to a different one.
Down-simplex evolutions occurred for reductions in dimensionless fall veloc-

ity and increasingly southern incident wave angles. The greatest reduction in
dimensionless fall velocity among all the transitions (∆Ω = −0.78) occurred as
RBB-LBT evolved to RBB. The up simplex evolutions corresponded to increas-
ing dimensioness fall velocities and wave angles becoming more northerly. The
highest increase in dimensionless fall velocity and mean wave direction (∆Ω =
1.99,∆MWD = 15.49◦) coincided in the evolution between LTT to LBT-RBB,
which occurred 50 times. This transition was likely due to storm events arriving
after an extended period of lower wave heights associated with the LTT configu-
ration.

The transition between TBR-LTT to RBB-TBR-LTT occurred for slight re-
ductions in dimensionless fall velocity and wave angle (∆Ω = −0.08,∆MWD =
−0.24◦). This transition occurred most often in the month of August (20% of all
TBR-LTT to RBB-TBR-LTT evolutions occurred in this month, with the rest dis-
tributed equally through the months), and contributed to annual entropy growth.
During this month, the barline was evolving offshore from its most onshore po-
sition in summer. At times, the bar moved offshore at a a small distance such
that the CNN labelled the configuration LTT, but acted dynamically as an LBT
in that onshore migration occurred. Therefore, the evolution between TBR-LTT
and RBB-TBR-LTT was often a slight onshore movement as the barline became
more rhythmic and accreted. Note that the differences between LTT and LBT
are shoreline proximity, and based scaling bar distance to shoreline with incident
infragravity waves. However, undertow is now considered to be the main drive
of offshore bar migration Zheng, Zhang, Demirbilek, and Lin (2014), and so the
differentiation between LTT and LBT being shoreline proximity, following LH90,
is likely outdated. An improvement to beach state theory could potentially be the
inclusion of a linear state with intermediate proximity to the shoreline.




