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Converting energy from ocean waves is a challenging area for control theory appli-

cation because of the nonlinear dynamics in various time scales. Generally, wave

energy converter (WEC) control is applied in order to maximize power absorption, in

the most common wave conditions, and subject to the devices’ physical constraints.

Commonly, researchers and designers prescribe the type of control algorithm based

on the WEC archetype and its actuators. However, due to the nonlinear response

to the constantly varying ocean waves, a single controller is unlikely to fit all oper-

ating conditions. This dissertation presents a global hierarchically controlled park of

floating oscillating water column (OWC) spar-buoy type WECs for grid-scale power

production. The controller is composed of a hierarchical controller and a subset of

local controllers. The supervisory controller, which is based on the discrete event

systems dynamics, ensures a safe and power-improving behavior, by enabling dif-



ferent local controllers depending on the current operating regime. The knowledge

incorporated in the supervisor is based on a detailed state-space model of a park of

seven OWCs, developed from scratch. This control-oriented wave-to-wire model con-

siders hydrodynamic interactions, nonlinear forces, air compressibility, and a shared

mooring configuration in six degrees of freedom. The novel local controllers include a

robust second-order sliding mode controller, for reference following between a server

and client WEC array and an algorithm for power shedding when needed. The results

show good potential for the application of the standard supervisory control approach

in Wave Energy, due to its adaptability to different WEC types and incorporation of

safety mechanisms.
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Convention

Most quantities in this work are time varying. Therefore, the time dependency no-

tation (t) is omitted in most cases, except when confusion with constant quantities

could arise, or when the time dependency needs to be emphasized. Generally, vectors



are denoted with bold lowercase letters, e.g. x. There are three main categories

denoted by capital letters. First, variables that are commonly denoted with capi-

tal letter in the literature, for example volume V . Second, forces F , which are also

found in vectorized form F . Third, matrices, e.g. the state space system matri-

ces, A,B,C and D. Concatenated matrices and forces, i.e. matrices and forces with

multiple previously introduces matrices and force as their entries, respectively, are

denoted by bold, script, capital letters, such as the park inertia matrix M and the

generalized park force vector F . The dot accent denotes the time derivative of the

respective variable, for example ẋ. The lowercase f() illustrates the dependency of a

variable, on other variables, but the actual function is not necessarily specified, e.g.

ẋ = f(x,u). The notation of dependency is not limited to f(), but can be used for

all variables to emphasize their explicit dependency on other variables, such as the

frequency dependency, or the dependency on the turbine pressure head.



PREFACE

Converting energy from ocean waves is a challenging area for control theory appli-

cation because of the nonlinear dynamics in various time scales. Generally, wave

energy converter (WEC) control is applied in order to maximize power absorption, in

the most common wave conditions, and subject to the devices’ physical constraints.

Commonly, researchers and designers prescribe the type of control algorithm based

on the WEC archetype and its actuators. However, due to the nonlinear response

to the constantly varying ocean waves, a single controller is unlikely to fit all oper-

ating conditions. This dissertation presents a global hierarchically controlled park of

floating oscillating water column (OWC) spar-buoy type WECs for grid-scale power

production. The controller is composed of a hierarchical controller and a subset of

local controllers. The supervisory controller, which is based on the discrete event

systems dynamics, ensures a safe and power-improving behavior, by enabling dif-

ferent local controllers depending on the current operating regime. The knowledge

incorporated in the supervisor is based on a detailed state-space model of a park of

seven OWCs, developed from scratch. This control-oriented wave-to-wire model con-

siders hydrodynamic interactions, nonlinear forces, air compressibility, and a shared

mooring configuration in six degrees of freedom. The novel local controllers include a

robust second-order sliding mode controller, for reference following between a server

and client WEC array and an algorithm for power shedding when needed. The results

show good potential for the application of the standard supervisory control approach

in Wave Energy, due to its adaptability to different WEC types and incorporation of



Chapter 1 Introduction

Oceans will play a big role in the mitigation of climate change. One of the many

ways that they will do so is by offering a vast, currently untapped renewable energy

source. This is where this work comes in as a small component. Converting energy

from ocean waves is a challenge for control engineers who are tasked to make the wave

energy capturing devices more efficient and more robust with less cost compared to

mechanical solutions. One popular method of control design is modelling. The model

should simplify a real world process just enough to reproduce it’s essential dynamics,

without making it unnecessarily complex. Designers can use such a model to test and

evaluate new concepts quicker and cheaper when compared to physical experiments.

Control engineers use systems and control theory to design algorithms which change

the systems time behaviour based on the model by closing the loop and making de-

cisions based on the instantaneous system state. These algorithms make up what

is known as a controller. Commonly, researchers and engineers prescribe the type

of control algorithm based on the wave energy converter (WEC) archetype and its

actuators to optimize the hydrodynamic interactions. However, due to the nonlinear

response to the constantly varying ocean waves, a single controller is unlikely to fit

all operating conditions and WEC types. This dissertation presents a global hierar-

chically controlled park of multiple identical floating oscillating water column (OWC)

Spar-buoy type WECs for grid-scale power production. The controller is composed
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of a hierarchical controller and a subset of local controllers, specifically designed for

this type of WEC. The underlying model is a state-space model of seven OWCs,

developed from scratch based on first principles. This control-oriented wave-to-wire

model considers hydrodynamic interactions, nonlinear forces, air compressibility, and

a DC-link network between the WECs in the park.

1.1 Outline

This work starts with an assessment of the global wave energy resource in Sec. 1.2

followed by the mathematical description of regular and irregular waves in Sec. 1.2.1.

To convert energy from waves a device called a wave energy converter (WEC) needs

to be placed in the wave field. The interactions between waves and small bodies are

addressed in Sec. 1.2.2 followed by the mathematical description of the fundamen-

tal interactions in Sec. 1.2.3. After this theory section, the history of wave energy

conversion is discussed in Sec. 1.3 and an overview of different devices is given in

Sec. 1.3.1. Controls research for ocean wave energy converters began concurrently

with the first fundamental research in the field in the 70s and a summary of the

development and common strategies are presented in Sec. 1.3.2. The thesis will deal

with a specific kind of promising WEC, a floating Oscillating Water column (OWC)

of the Marmok-A-5 type introduced in Sec. 1.4. This Spar-buoy type WEC requires

a rectifying air turbine to convert alternating air flow into kinetic energy. Types and

working principles of rectifying air turbines are introduced in Sec. 1.4.1. The next

steps in the energy conversion chain, namely the electro-magnetic and the electric
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energy conversion, are first mentioned in Sec. 1.5 within the discussion of wave to

wire models. Those models enable the emulation of the real world, and further the

assessment of new ideas and concepts without the cost and risk of physical experi-

ments. One popular theoretical concept is the deployment of multiple identical WECs

in a WEC park to save cost associated with maintenance and mooring systems, in-

troduced in Sec. 1.5.1. However, there are two challenges which stand in the way of

developing successful Spar-buoy OWC parks. First, hydrodynamic interactions and

shared mooring systems complicate the modeling process of WEC parks and second,

the common WEC control strategies are not applicable to floating OWC WECs due

to the physics of their actuators.

The main body of this work starts with the development of a dynamic model

of a park of seven hydro-dynamically interacting Marmok-A-5 floating OWC WECs

with shared mooring system, in all degrees of freedom (DoFs) in Chap. 2. The con-

cept of energy conserving physical quantities in a single OWC WEC, the relation to

the widely used State Space Representation, and the corresponding state vector for

the OWC WEC park are presented in Sec. 2.1.1, Sec. 2.1.2 and Sec. 2.1.3, respec-

tively. The state dynamics are governed by equations representing the physical forces

(Sec. 2.2) and control inputs that are identified. The considered individual forces are

modeled in detail in the ensuing sections. Namely, the linear hydrostatic restoring

force (Sec. 2.2.2), the nonlinear mooring force resulting from a quasi-static approach

to model a shared mooring system (Sec 2.2.3), the irregular excitation forces based

on linear hydrodynamic coefficients (Sec. 2.2.4), the radiation force approximated

with linear state space systems including interactions with other WECs in the park



4

(Sec. 2.2.5), the force due to the pressure in the air chamber connecting the WEC, the

water column and the biradial turbine (Sec. 2.2.6) and finally, the linear viscous drag

force (Sec. 2.2.7). The electric power flow is modeled by considering the conversion

losses from the AC generators over a DC link, including a storage unit to the grid

connection in Sec.2.3. All the modeled components are connected in Sec. 2.4 with the

full vectorized and concatenated state space representation of the entire WEC park.

The mathematical model developed after first principles is not helpful without nu-

merical parameters quantifying the dynamics. The main drivers of the OWC WEC

park are its hydrodynamic properties, which are obtained in Chap. 3. The linear hy-

drodynamic coefficients result from boundary element (BEM) solver ANSYS AQWA

(Sec. 3.1). Due to limitations of the BEM software two different BEM simulations

had to be conducted. First, a detailed simulation of three Marmok-A-5 WECs with

imaginary rigid body, representing the full internal water column in Sec. 3.1 and sec-

ond a simulation of the seven physical buoys in the WEC park configuration, without

the internal imaginary body representing the water column. The first model is used

for detailed radiation properties inside single WEC and with the nearby WECs and

the second model for the diffraction and excitation properties of the park layout.

The order of theoretical hydrodynamic interactions between the distinct WECs in

all DoFs is enormous. Therefore, several interactions need to be neglected as part

of the post processing of hydrodynamic results, which discussed in the section of the

respective hydrodynamic coefficient, namely, the added mass Sec. 3.3, the radiation

damping in Sec. 3.4 and the excitation force and the corresponding phase coefficient

in Sec. 2.2.4.
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A direct validation of the model with experimental data is not possible, since

floating OWC WEC parks are still a theoretical concepts. However, numeric exper-

iments with predictable outcome are conducted and evaluated in Chap. 4. As first

step, the model is simulated without ocean waves under varying initial conditions

and the decaying behavior is observed in Sec. 4.2. Next, the behavior in irregular

wave fields, with varying sea states and angles of arrival is observed and discussed in

Sec. 4.3.

One main finding is that the kinetic energy transferred to the WEC (in terms of

it’s heave oscillation) strongly varies over the time scale of a few minutes, although

exposed to the same sea climate, due to the highly nonlinear system response. This

motivates to regard the WEC parks as a system with different operating regimes,

e.g. a low energetic response and a near resonance response resulting in high energy

transfer and potentially the need for shedding power to protect system components.

This class of systems is generally known as discrete event systems and addressed in

Chap. 5. An event can randomly occur and change the systems discrete state. The

time continuous dynamics between events are irrelevant for the transition between

different states of the OWC WEC park. The possible behavior together with the

desired behavior and the necessary control actions are modeled in terms of a discrete

events Automaton in Sec.5.1. This results in a hybrid system modelling of the global

state of the WEC park.

Although the control inputs have been identified in the dynamic model and are

respected in the discrete event model, their design is first addressed in Chap. 6. The

first section introduces local controllers (Sec. 6.1), such as a feedback control law
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for generator torque based on the turbine angular speed and the maximization of

the turbine aerodynamic efficiency (Sec. 6.1.1). Next a novel second-order sliding

mode control approach is designed for turbine reference speed following (Sec. 6.1.2).

The reference velocity is dynamically computed in a server-client manner between

different WECs in the park. A simple power shedding valve control is suggested

based on limiting the turbine rotational subject to an efficient electro-magnetic energy

conversion in Sec. 6.1.4. Finally, for completeness, a trivial grid load control algorithm

is proposed in Sec. 6.1.5. On a hierarchically higher level than the local controller

sits a supervisory controller (Sec. 6.3). The supervisor is designed with the standard

supervisory control using the supervisor formal language (Sec. 6.3.1) to keep the WEC

park running with its desired behavior whenever possible. Protection mechanisms

have to be enabled once the standard behaviour is not possible. The discrete events

state observer, which connects the continuous time model with the discrete event

model is presented in Sec. 6.3.2. The decision maker, which translates the supervisory

decisions into the selection of a local controller is presented in Sec. 6.3.3.

Finally, the performance of the six DoF together with the proposed control algo-

rithms is evaluated and discussed in Chap. 7
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1.2 Ocean Wave Energy

Most of the available energy on earth comes from the sun, including the energy that

creates ocean waves. The bodies of water on earth function as large thermal solar

panels, releasing heat on the air-water interface, generating wind and consequently

waves. The bigger the water surface is, the longer the distance over which the wind can

accelerate the water. This distance is known as fetch and explains why the waves in

the oceans are larger than waves in lakes. The waves can travel long distances without

significant energy loss, therefore the energy density increases compared to underlying

wind and solar sources. The mean wave power density Pw becomes a function of the

wave energy period Te and the significant wave height Hs [50], namely,

Pw =
ρwg

2

64π
TeH

2
s (1.1)

where ρw is the (sea) water density and g is the earth acceleration. The denotations

of Te and Hs already imply that for a real ocean wave there is no sole wave height or

period, which will be discussed in Sec. 1.2.1. Assuming a commonly found ocean wave

with Hs = 2 m and Tp = 10 s results in Pw ≈ 20 kW/m. By entirely capturing only

one meter of this wave energy flux, approximately 20 average US households could be

powered. In [11], the authors divide the global wave climate into classes based on dif-

ferent ocean characteristics for device design. Their most basic classification in terms

of Hs and Te shows a distribution of Pw around the world, which is illustrated in Fig.

1.1. The grey contour indicates the 15 kW/m boundary for viable device deployment.

The well-known wave energy researcher, António F. de O. Falcão, accesses a ”good”
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Figure 1.1: World map with classified wave energy resources [11].

offshore location if the annual average power ranges from 20 kW/m to 70 kW/m [14],

which would be classes 4-6 in the figure. The estimated global theoretical potential is

about 3365 GW [36]. If an overall efficiency of 30% could be achieved the theoretical

potential would be 1000 GW electrical power. This is in the magnitude of the total

installed wind turbine capacity will likely reach soon. (Installed wind capacity: 2019:

650 GW [22], 2020: 743 GW [23]). Most wave energy research is conducted in coun-

tries like USA, Canada, Portugal, Denmark, Norway and the UK, due to the higher

power density on the west coasts compared to the east costs, as Figure 1.1 illustrates.

This can be attributed to the westerlies, prevailing winds in rotation direction of the
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earth from west to east, in the middle latitudes, based on the atmospheric pressure

gradient between the subtropical high pressure belt and the polar front [34].

The US west coast has an additional difference to its east coast. The continental

shelf is almost nonexisting as illustrated in Fig. 1.2 after the model of [41]. The

waves experience less frictional losses with the sea floor when advancing the shore

line, resulting in high ocean wave activity. The excellent wave resources among the

Wind Wind

Off-shore Near-shore On-shore

West Coast East Coast
 

Continental Shelf

Figure 1.2: Wave formation and coastal division.

Pacific Northwest are one explanation for the high research effort conducted by higher

education institutions like Oregon State University (OSU).

1.2.1 Description of Ocean Waves

An ocean wave is an unique structure and very complex compared to waves generated

in a wave tank. There are different ways to classify and describe them in a more or less

simplified fashion. A very comprehensive presentation can be found in the book from
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Johannes Falnes [16], often referred to as the bible of ocean wave energy conversion.

A swell is a set of surface gravity waves, generated far outside in the ocean due to a

finished fetch. After leaving the area of generation those waves have time to structure

themselves and approximately arrange to harmonic, so called regular waves, which

should not be swayed by local winds, to attain a human-readable period.

1.2.1.1 Regular Waves

The period of a regular wave can either be expressed spatially, called wavelength λ,

or time-wise and in the following referred to with T . The wave number can now be

stated as

k =
2π

λ
(1.2)

and in an analog manner the definition of the angular frequency is given by

ω =
2π

T
. (1.3)

Most ocean waves are still considered as surface waves, where the water is sufficiently

deep to not influence the waves. By defining a water depth dw, using the Laplace

equation, evaluating the homogeneous boundary condition on the interface between

water and air and assuming a constant pressure a relation for ω and k is found with

[16],

ω2 = gk tanh(kdw). (1.4)
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This is also known as the dispersion equation. If the phase velocity depends on

frequency, a wave is dispersive, which is in general the case for gravity waves on

water. Substituting (1.2) into tanh(kd) makes it evident that for a water depth

dw = λ/2, tanh(π) ≈ 1, wherefore equation 1.4 simplifies to

ω2 = gk. (1.5)

Hence, dw > λ/2 is commonly used to speak about deep water, because of the inde-

pendence of the dispersion equation from the water depth. The dispersion relation

yields the phase velocity (the propagation speed of the wave),

vp ≡ ω/k = g/ω = λ/T. (1.6)

On the other hand, it follows that the wave length is only a function of the time

period T , namely,

λ =
g

2π
T 2 ≈ 1.56T 2. (1.7)

In conclusion, a regular wave can be completely described in terms of the period T

and its height H. Although a sinusoidal shape is often assumed for practical use,

real ocean waves are neither symmetric in the horizontal nor in the vertical direction.

They more likely follow an approximately trochoidal form, which means they have a

peaked crest and a flatter trough [33]. There are different ways to describe the waves

in a nonlinear way and for the deep water case the method of Sir George Stokes from

the 19th century is suitable [52]. After the example of Stokes a third order approach
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to relate the wave elevation η with k and the position coordinate x is used, namely,

η(x) = Aw cos(kx) +
1

2
kA2

w cos(2kx) +
3

8
k2A3

w cos(3kx), (1.8)

where Aw is the wave amplitude. This is also known as a Stokes wave. Consequently,

Figure 1.3: Excerpt from [52] showing a Stokes wave with Aw = 7λ/80 and the plane
sea level.

this representation leads to a wave height from the trough to the crest of

H = 2Aw(1 +
3

8
k2Aw), (1.9)

due to the addition of all single amplitudes for x = nλ, n ∈ N leading to the crest

and due the positive sign of the double frequency term for x = (n+ 1/2)λ n ∈ N in

a trough. Again, for small values of k and small amplitudes the wave height becomes

independent of k and converges to two times the wave amplitude. However, the

maximum displacement from the sea level (gray, dashed line ( )) of the Stokes

distinguishes from the harmonic trigonometric waves, which are illustrated in the top

right graph in Fig. 1.4 for a Stokes wave with a period of T = 8s and an amplitude of
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Aw = 5m with a solid dark red line ( ) in comparison with a cosine function with

the same period and amplitude (dotted, crimson line ( )). The crest becomes

higher and the trough lower. Nevertheless, the difference is small compared to the

corresponding wave length of λ = 100m, displayed in the top left plot with equally

scaled axes and becomes even less regarding sea conditions that are more likely, e.g.

T = 10s, Aw = 1m. The more common sea conditions are displayed with the dark blue

and royal blue lines for the Stokes wave and the corresponding cosine, respectively

( / )). On the bottom part of Fig. 1.4 the wave elevation η is given as a

0 5 10
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Figure 1.4: Regular waves.

function of t, following the same relation as before, namely

η(t) = Aw cos(ωt) +
1

2
kA2

w cos(2ωt) +
3

8
k2A3

w cos(3ωt). (1.10)
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This time dependent function will be used to emulate regular waves in the simulations

in this work, with T and Aw as parameters, wherefore

k =
1

g

(
2π

T

)2

(1.11)

is used. All shown functions are simulated until a time of 14s, which is directly

discernible in the time dependent function in the bottom part. With the top part

the wave length dependent propagating speed becomes obvious, wherefore the wave

with the higher period ( ) travel a longer distance compared the wave with the

smaller wave length.

1.2.1.2 Irregular Waves

Real ocean waves usually do not travel undisturbed over very long distances or are

locally generated by the wind. This class with a stochastic nature is called irregular

waves and the following descriptions follows again Falnes [16]. Approximately, they

can be considered as a superposition of waves with many different frequencies, based

on available statistical values of the amplitude, phase and direction of propagation.

Consequently, a real sea state can be modeled with components of harmonic waves,

still assuming linear wave theory. Therefore, spectral descriptions of the sea states are

used, e.g. the well known Pierson-Moskowitz (PM) spectrum. This functional relation

between the frequency and the corresponding energy is based on semi-empirical results
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and defined as

S(f) =
APM

f 5
exp

(
−BPM

f 4

)
, (1.12)

where APM and BPM are used to parameterize the spectrum and a feasible choice is

APM =
BPMH

2
s

4
, and BPM =

(
5

4

)
f 4

p . (1.13)

Now, the definition of the significant wave height Hs from (1.1) can be stated as

Hs = 4

√∫ ∞
0

S(f)df. (1.14)

Here, fp denotes the peak frequency, which is the inverse of the peak period Tp. The

corresponding angular frequency ω dependent spectrum Sω can be described by

Sω(ω) =
1

2π
S
( ω

2π

)
. (1.15)

In Fig. 1.5 different wave spectra Sω(ω) for various pairs of significant wave heights Hs

and peak periods Tp are illustrated. The different wave heights Hs are identified with

the colors dark red (2.5 m), dark green (3.5 m) and dark blue (4.5 m), respectively.

The varying amplitudes modulus of the harmonic wave components |A(ω)| can be

calculated with the information provided be the real-valued non-negative Sω(ω) with

|A(ωn)| =
√

2Sω(ωn)∆ω, (1.16)
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Figure 1.5: Angular frequency dependent Pierson-Moskowitz spectrum for different
combinations of Hs and Tp.

where ωn denotes a frequency in the interval of ω ∈
[√

6
10
,
√

6
10

+ 2.5
]

[rad/s] equally

distributed into Nw = 200 frequencies, to cover the energy dense area of the spectrum.

The irrational boundaries of the interval are chosen to avoid repetition over time for

the irregular wave.

As most of the oceans energy content is associated with waves of periods between

5s to 15s, some cases in this interval are evaluated. All the dashed-dotted lines repre-

sent a spectrum with Tp = 13s, which is the highest depicted period, resulting in the

highest energy density. The dotted lines illustrate the lower time period of Tp = 7s,

leading to lower energy density. The more common wave frequency of Tp = 10s is

plotted with the highest opacity and the dashed and solid lines, respectively. The

only solid line in the figure represents the energy spectra, representative for most of

the sea states, namely the combination of Hs = 2.0m and Tp = 10s ( ), which

will be used to characterize the irregular waves in this work.

The spectrum Sω(ω) contains no information about the phase of the individual
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wave component. The phase φRND is assumed to be continuously uniformly dis-

tributed in the interval [−π, π] for every Nw = 200 components. Now, the free water

surface η at time t can be computed as a superposition of every wave component with

its corresponding phase as

η0(t) =
Nw∑
n=1

|A(ωn)| cos(ωnt− φRND
n ). (1.17)

The random phase φRND
n is generated once and later reused to have the same irregular

wave for different simulation runs. As final step, the time profile η0(t) will be ramped,

to start from rest at t = 0 s with the function

η(t) = η0(t)

(
2

1 + exp (− t
2
)
− 1

)
(1.18)

In Fig. 1.6 the surface elevation η for this wave is plotted until a time t = 120s and

compared to a Stokes wave with the equivalent parameters, namely Tp ≡ T = 10s

and Hs ' 2Aw = 2m Note that for the excitation force and the free surface elevation

in the time domain simulations the spatial coordinates and a wave spread is taken

into account (see Sec. 2.2.4).

1.2.2 Wave Body Interactions

In order to use ocean waves as power source, it is necessary to understand the theory

of the behavior of bodies in water. An overview introducing wave body interactions

and the occurring radiation and diffraction can be found in [16] and [6]. The progress
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Figure 1.6: Time dependent surface elevation of an irregular wave and a Stokes wave,
witch Hs = 2m and Tp = 10s.

of a plane wave meeting floating objects, in this case, small devices, the so-called

point absorbers (see section 1.3.1), is visualized in Fig. 1.7 following the idea of [6] to

demonstrate the effects of radiation. To simplify the illustration a calm sea surface

is assumed, until in Fig. 1.7 (a) the first incident wave hits the point absorber. In

order to absorb energy from the incoming plane wave the body is set into motion,

hence a circular wave is radiated from the moving floating object(Fig. 1.7 (b)). On

the one hand, this wave interferes constructively and destructively with the incident

ocean wave and on the other hand it is an incident wave for other bodies. As time

continuous in Fig. 1.7 (c) the second floating point was already exposed to multiple

incident waves and is radiating circular waves as well. This wave will again propagate

and interfere with both waves and bodies. It follows that responses of the bodies are

dependent on the radiated waves of all the other bodies, which makes the calculation

of the responses non-trivial (see section 3.4).

Another illustrated example for waves interacting with bodies with the aim to

absorb the energy is found in Fig.1.8 [16]. The black cylinder in the figure represents
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(a) (b) (c)

Figure 1.7: Interaction between incident waves (coming from the left) and point
absorbers: (a): Wave meets the first point absorber, (b): First point absorber radiates
a circular wave due to its motion after absorbing energy from the incident wave, (c):
Next point absorber that met by incident waves radiates circular waves itself.

an oscillating floating point absorbers. In Fig. 1.8 (a) the device moves in heave (up

and down) and therefore generates symmetric plane waves propagating away from

the oscillating body compared with Fig. 1.8 (b) where the device generates plane

antisymmetric waves either through pitch or surge (back and forth) motion. Without

the bodies movement the water surface would be calm. Fig. 1.8 (c) displays an

incident ocean wave. Finally Fig. 1.8 (d) represents the superposition of the waves

in (a), (b) and (c). In this case the incident wave would be absorbed completely, if

the bodies oscillate vertically and horizontally in an optimal way. However, the three

dimensional version of the problem is more complex, due to radiation in circular

patterns known from Fig. 1.7, wherefore it is not possible to cancel a plane wave

completely. This behavior is shown in Fig. 1.9 (c) together with the phenomenon of

diffraction.

This diffraction occurs as well if incident (plane) waves meet objects. The manner

how a wave is diffracted is dependent on the body’s geometry and strongly dependent
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(a)

(b)

(c)

(d)

Figure 1.8: Wave generation and absorption by floating bodies, adapted from [16]:
(a): Symmetric wave generation employing oscillating heave motion of a straight
array, (b): Antisymmetric wave generation, (c): Undisturbed incident ocean wave,
(d): Superposition of (a),(b) and (c), which illustrates the entire absorption of the
incident wave.

on their number and arrangement. One of the main parts responsible for the excita-

tion of other bodies are the diffracted waves, wherefore it is important to take them

into account while designing the array configuration. Certain arrangements can lead

to a constructive interaction hence an average higher excitation force usable in energy

conversion whereas the opposite can be the case as well due destructive interaction.

In [39] the authors study the dynamic performance of distinct array configurations

taking the interactions between the devices into account and their results are used to

illustrate several different diffraction cases. In Fig. 1.9 the dimensionless elevation

due diffraction of the water surface around one and two cylindrical bodies is shown

in (a) and (b), respectively. In Fig. 1.9 (c) the effects of radiation are taken into

account in addition to the diffraction for the two point absorbers.
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(a) (b) (c)

Figure 1.9: Wave diffraction around cylindrical bodies, (a): Single cylinder, (b): Two
cylinders in a line, (c): Two cylinders in a line with simulated radiation in addition
to the diffraction [39]

1.2.3 Hydrodynamic Fundamentals

A body immersed in water either with unsteady motion or with unsteady flow around

it experiences additional effects from the fluid acting on it. Those effects are described

after Falnes example [16]. The motion of the submerged body results in motion (flow)

of the surrounding water. A part of the energy is radiated away from the body, called

the radiated power

Pr =
1

2
Rrv

2. (1.19)

Here Rr denotes the radiation resistance, depending on the geometry and v the ve-

locity of the object. However, another part of the energy is stored instead. On the

one hand, in kinetic energy due to the velocity of the water and, on the other hand,

as potential energy caused by the deformation of the water surface. This energy

is transferred to the mechanical system itself. The difference between the average

values of added kinetic energy and the added potential energy is related to the so
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called added mass, which is usually positive. However, there are exceptional cases

leading to a larger added potential energy compared to kinetic energy and therefore a

negative added mass. The added mass is frequency dependent and will be referred to

with A(ω). For time domain simulations or equations of motion, the added mass for

ω →∞ is used to have weight added to the system (in a physical way) and denoted

A∞. An easy example is found in the lecture notes [55]. Under the assumption of

small motions and linear behavior a floating body is modeled as a basic mass-spring-

damper with displacement x, mass m, spring coefficient k and damping coefficient d,

i.e.

mẍ+ dẋ+ kx = f(t). (1.20)

Here f(t) stands for an external force acting on the mass. Now assuming an accel-

eration / deceleration in water and the following movement of the surrounding fluid

results in an added mass force −A∞ẍ on the right hand side of the equation. A

rearrange yields,

(m+ A∞)ẍ+ dẋ+ kx = f(t). (1.21)

With this example, it can be shown that the added mass changes the natural frequency

ωsystem of the system, namely

ωsystem =

√
k

m+ A∞
. (1.22)

Consequently the knowledge of the added mass is inevitable to simulate a floating de-

vice, although the derivation is non trivial for shapes deviating from basic geometries
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and require the use of sophisticated software solutions to calculate the values.

1.3 Ocean Wave Energy Conversion

The earliest patent was obtained by an engineer in Belfast, working on the Wells

turbine. It was filed in 1799 in Paris by Mr. Girard and his son [48]. Fascinated

by the force that the ocean can exert on ships, he imagined a lever connecting a

vessel and mechanical devices like pumps or directly to mills. At this time, nobody

thought about extracting electricity from renewables. The history of the rise of wave

energy conversion in the 70s and continuing years is reviewed in [12]. The oil crisis

of 1973 raised the interest in large-scale energy production from the waves. After

his wife told Stephen Salter, of the University of Edinburgh, he should solve the

energy crisis [48], he published a paper in the prestigious journal Nature in 1974,

which brought wave energy to the attention of the international scientific community.

In 1976 and 1978 the first conferences on wave energy took place in England and

one year later two genuinely international conferences in Edinburgh and Gothenburg.

The activities in the following years remained mainly at the academic level because

of the theoretical difficulty of the diffraction and radiation wave phenomena in the

hydrodynamic process of wave energy absorption. A further difficulty is related to

the design of the power take-off module (PTO) (air turbine, hydraulics, electrical

generator and others) due to the variability of the absorbed energy flux in several

time scales: wave-to-wave (seconds), sea states (hours and days) and seasonable vari-

ations. This (largely random) variability is considered as the main disadvantage of
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wave power, however, characterization of the wave climate had been done before for

navigation and harbor, coastal and offshore engineering, hence this knowledge is used

for the assessment of the wave energy resource and the conception of the individual

wave energy converter (WEC).

1.3.1 Types of Wave Energy Converters

Generally it can be said ”A good wave absorber must be a good wave-maker”, Falnes

[16]. However, the dependency on the water depth and the location on-, near- or

offshore (Fig 1.2) leads to a variety of distinct devices, unlike the common large

wind turbines, to exploit the existing condition at the area of application optimally.

Currently, it is estimated that around 150 WECs have been reported at a global scale

[50]. Depending on their location, working principle, mooring configuration, or size a

WEC can be placed in various categories. Different authors use different names and

allocations. The classification cannot be distinct in consequence of commonalities

and overlapping. The authors of [50] use the following categories according to the

working principle: point absorbers, attenuators and terminators. A point absorber is

similar to a buoy which captures energy from all direction at one point and can either

be floating or completely submerged. An attenuator is usually orientated with the

wave direction and generates energy through motion of floaters relative to each other.

Fig. 1.10 (b) shows a photograph of the Wave Star attenuator, where the floaters on

the left hand side transfer the motion of the waves through the levers to the hydraulic

cylinder PTO. Terminators act as breakwaters, but in contrast to fixed breakwaters



25

in harbors the terminators do not reduce the waves intensity through dissipation,

instead the water will be concentrated into a higher reservoir and released through a

hydro turbine. This operation principle is illustrated in the top part of Fig 1.10 (c).

In the bottom part of this figure the Wave Dragon terminator with his two reflectors,

to lead the waves to the overtopping reservoir, is photographed. In addition, the

oscillating water column (OWC) has to be mentioned. Falcão and Henriques give a

introduction to OWCs in [14]. A OWC device has a semi-submerged chamber open

to the sea and the atmosphere. The waves alternately raise and lower the level of

the inner free-surface of the water which leads to a pressure change in the chamber,

that forces an airflow, running a turbine connected to a generator. In Fig. 1.10 (a) a

concept of a OWC, fixed to e.g. a breakwater, is illustrated.

air chamber

OWC

air turbine

(a) (b) (c)

Figure 1.10: Types of Wave Energy Converters: (a) Concept of a fixed OWC, (b):
Attenuator - Wave Star [37], (c): Terminator - Wave Dragon [56]

The main advantage of the OWC compared to most other WECs is its simplicity:

The only moving part of the PTO is the rotor of a turbine, which is located above

the water level. Hence, OWCs are a major class of wave energy converters, possibly
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with the largest number of patents so far deployed into the sea.

1.3.2 Control of Wave Energy Converters

In addition to new pathways, wave energy researchers continue to find ways to drive

down costs, improve performance, and ensure safety, reliability, and acceptability of

grid-scale devices. Control design has long been and continues to be one of the primary

areas of research for reaching those goals [16]. The purpose of the control algorithms

is almost always to maximize energy absorption from the incoming waves, subject

to the WEC dynamics and the physical limitations of the device and the actuators

[20]. Recently, there has been a drive to reduce algorithm complexity by, for example,

avoiding excitation force estimation or forecasting and circumventing online numerical

optimization, both of which require complex computations by the controller at every

time step [47]. Another challenge are times when the wave resource exceeds the rated

device power. For example in wind turbines, this is dealt with by blade pitch control

to the shed power [3]. For WECs shedding strategies would strongly dependent on

archetype [47]. One type of WEC where such strategies are possible are oscillating

water column (OWC) WECs, by closing an additional valve [31]. However, there is

a gap in WEC control research that addresses multiple challenges at once, with easy

frameworks, that can be transferred to different WEC archetypes.
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1.4 Marmok-A-5 floating OWC

This floating oscillating water column is one of the simplest WEC and the most

basic form consists of a long vertical tube, open at both ends. In a report from the

British Department of Trade in 2005 this first concept of a Spar-buoy type WEC is

considered the most promising, regarding reliability and economic value compared to

other floating OWCs for energy generation [9] The first concept the Marmok-A-5 type

follows that scheme and is illustrated in 1.11 (a). In comparison to a fixed OWC, the

air chamber moves as well (predominantly in heave) due to the buoyancy through

waves and the oscillation of the entire structure radiates new waves (see Sec. 1.2.2).

However, the whole body’s movement is designed to be out of phase with the water

column [9], whereby the length of the tube determines the resonance frequency of the

OWC. Oceantec, the company that developed the Marmok-A-5 successfully deployed

a full scale prototype of the Marmok-A-5 in 2016 (see Fig 1.11 (c)). The dimensions

of the floating OWC can be understood with the people in the foreground in Fig 1.11

(b).

So far only a single MARMOK has been deployed, thus this work models arrays

later on. In Fig. 1.12 two identical MARMOKs are sketched to scale, with a sep-

aration distance of 30 m. In this sketch also the air chamber and the rectifying air

turbine on top are illustrated, which are discussed in the next section.
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(a) (b) (c)

Figure 1.11: OWC Marmok-A-5. (a) First concept [10], (b) Photograph of the full
scale Marmok-A-5 device while manufacturing and deployment [10], (c) Deployed
Marmok-A-5 equiupped with the biradial turbine [57].

1.4.1 Rectifying Air Turbines

As mentioned before, the reason for the simplicity of the OWC is the rotor of the

turbine being the only moving part. However, the concepts are not that trivial and

again there is no prevailing one over the years, wherefore the history and different tur-

bines are reviewed in [14]. The alternating airflow requires either the use of rectifying

valves, which are regarded as impractical in large devices but work, for example, in

small navigation buoys or self-rectifying turbines, i.e. the rotation direction remains

the same regardless of the airflow direction. Most of those self-rectifying turbines

are axial flow machines of two basic types: the earlier mentioned Wells turbine and

the impulse turbine. The Wells turbine, invented in 1976, is the most popular one,

even though impulse turbines are common alternatives, which also have been studied,

tested and used.

The presented characteristics and illustrations of the Wells turbine originate from
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Figure 1.12: Sketch of two Marmok-A-5 devices. Figure is to scale.

the lecture notes from [49]. The symmetrical profile of the rotor blades is determining

for the capability to rectify the in - and outflow. Additionally, a high circumferential

velocity is necessary, illustrated in Fig. 1.13 (a) with u to guaranty the uplift force

on the rotor blade. The dotted lines stand for the forces and flow velocities for an

inflow and the solid lines for an outflow, respectively. v is the the actual velocity of

the alternating airflow. w is the the relative velocity through addition of u and v,

leading to lift and the drag on the airfoil. The orthogonal part of the total force on
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the rotor blade Fu is the force which maintains the rotational speed of the turbine

and it is independent of the flow direction. In the front part of the photograph Fig.

u

wv

Lift

Drag

Total

outflow

inflow

Fu

Fu

(a) (b)

Figure 1.13: Wells turbine. (a) Sketch of the rotor blade profile and the prevailing
flows and forces, (b) Photograph of the Wells turbine [49].

1.13 (b), the symmetrical rotor blades of the Wells turbine are shown. On the one

hand, the hub is large to fit a generator inside, on the other hand, the circumferential

velocity close to the hub is lower compared to the tips of the rotor blades, which can

lead to flow separation, inducing changes in the lift and drag. The high velocities

and the flow separation can produce a high noise level, which is a common problem

of all air/gas turbines, especially if the WECs are deployed on the shore line or near

shore [14]. In [54] the authors conduct a study on the noise characteristics of several

self-rectifying turbines and conclude that impulse turbines have an advantage over

Wells turbines.

A new impulse turbine is the biradial turbine introduced in [15] and appears to be

the best choice in terms of performance. This turbine is illustrated in Fig. 1.14 and

is symmetric with respect to a plane vertical to its rotation axis. The name comes
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from the radial flow into and out of the central rotor, which is shown in Fig. 1.14 (b)

for both directions. The flow into the rotor is directed through guide vanes. There

z

rotor

guide vanes

Ω

HSSV

Figure 1.14: Biradial turbine with fixed guide vanes and the High Speed Stop Valve
added around the rotor. Adapted from [5].

are two distinct connected rows of guide vanes, illustrated in blue in the figure. By

sliding the complete guide vanes set axially, the guide vanes can be inserted into or

removed from the flow to ensure that the downstream guide vanes do not obstruct the

flow out of the rotor. The peak efficiency is about 79 % and is probably the highest

ever measured of a self-rectifying air turbine [14]. Therefore, the biradial turbine is

the choice for this work.

Other concepts are not further pursued, but there are more. For example, two iden-

tical unidirectional air turbines are joined in parallel, such that most of the flow is

admitted to one turbine with a good efficiency, while the other turbine is in choking

mode. Those turbines can either be connected to one generator or each run their own

generator or conventional unidirectional flow turbines (e.g. Francis turbine) equipped

with rectifying systems [14].
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1.5 Wave to wire models

Control of WECs has often been focused on hydrodynamic control to absorb the

maximum energy possible from ocean waves. This generally significantly simplifies the

performance of real power take-off (PTO) systems [42]. A downside of hydrodynamic

WEC control might be a decrease in the power quality, in terms of the peak-to-

average-power ration. This makes it more difficult to meet the standards for marine

energy grid integration. In order to simulate the effects all the way through the power

conversion chain, namely, from waves to device over PTO and power electronics up

to an electric network, need to be included in the dynamic model. Such models are

referred to as wave-to-wire models. However, including all the required dynamics and

constraints in the control problem may considerably vary the control strategy and

the power output [42].

1.5.1 Arrays of Wave Energy Converters

To efficiently harvest high amounts of wave energy, it is imperative to deploy multiple

WECs in an array configuration. Therefore, it is possible to capture a wider section

of a plane incident wave (see Fig.1.8). An introduction and factors that influence the

array layout are given in [60] and [8], respectively. In 1977 Budal was the first to

investigate the theory of power absorption of arrays coming up with the concept of

the interaction factor q(θ) = PN,max/(N ·P1,max) which is defined as the ratio between

the produced power by an array to the power produced by the same amount of single

(isolated) devices. This interaction factor is dependent on the incident wave angle
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θ, and strongly on the wave period and the placement of the devices [16] (although

the q factor is less dependent on the period in irregular waves (Sec. 1.2.1) and is

observed in Sec. 4.3. Note that As stated in section 1.2.2, the interaction between

radiated and diffracted waves can either be constructive or destructive, wherefore the

placement can lead to q > 1, or q < 1, respectively, for the interference inside the

array. In [8] the authors study the influence of the separation distance ds, the wave

directionality, the number of WECs on different array layouts, which are illustrated

in Fig. 1.15. Configuration (a) represents a class of linear layouts consisting of three

or four bodies. The standard three body configuration is a equilateral triangle (Fig

1.15 (b)). The base of the Rhombus configuration (Fig. 1.15 (c)) is an equilateral

triangle with an additional WEC with the same distance to the others. The triangle

also find itself in the Hexagon with central WEC configuration (Fig. 1.15 (d)), as

first suggested by Vicente et al. [58]. The authors vary the incident wave angle from

θm

ds ds

(a)

ds
θm

ds

ds

(b)

ds

θm

ds

ds

(c)

dsθm ds

ds

dsds

ds

dsds

(d)

Figure 1.15: Different Arrays Layouts. (a): Linear, (b): Triangle, (c): Rhombus, (d):
Hexagon.

0◦ to 90◦, wherefore the linear array (a), for example, changes from an attenuator to

a terminator (see Sec. 1.3.1) and reaches the same orientation to the waves like in

Fig. 1.8, hence, theoretically, an entire absorption of the part of the wave crest is
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possible, but the research group limits the simulation to the dominant heave motion.

The variation in the distance is orientated to the wave length corresponding to the

wave period on which the devices are tuned. In general a 180◦ delay in phase is

achievable [8]. The linear array was found to have the worst q factor in contrast

to similar efficiencies for the triangular and the squared configuration depending on

the wave climate. However, for multi-directional waves the equilateral triangle is

the optimal configuration [8] and therefore used for preliminary investigations in the

thesis. The main body of this work is concerned with a park of seven WECs placed

in a hexagon with a central WEC Fig. 1.15 (d). This configuration should retain the

good performance in multi directional waves. For the determination of the spacing

other non-hydrodynamic factors as electrical cabling, size restriction and mooring

cost can be important as well. Therefore, in this work a distance smaller than the

optimal one for reaching the 180◦ delay in phase is chosen. Another benefit of park

deployment is that the WECs have their power peaks at different instances in time

and if the WECs are electrically connected the park power is naturally smoothed

among the power network.

1.6 Summary

Ocean wave energy is a vast, nearly untapped renewable energy resource. But, the

development of wave energy converters is challenging and complicated due to the

harsh ocean environment and consequently associated with a high price tag. Dynamic

simulation models should be used for cheap and material free investigations of the
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WEC performance and potential strategies to improve the performance and guarantee

a safe operation.
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Chapter 2 Dynamic Model

Generally, dynamic models simplify a real world process while trying to reproduce the

essential features. Commonly, the simulation of dynamic models is conducted in the

time domain, although in wave energy research it is not unusual to simulate dynamic

equations in the frequency domain, if the made assumptions justify linear relations

between the properties of the system. The amount of detail desired in this work re-

quires nonlinear effects and consequently a time domain simulation model. However,

for some features of a system, e.g. the transition between two distinguishable oper-

ating regions, the continuous dynamics between the instances of time are irrelevant.

The occurrence of such a transition is called event and is observed when looking at

the system from a higher level. The next section describes the general approach on

how to model a floating OWC, followed by the description of the quantities storing

energy and their conservation in Sec. 2.1.1. The concept of energy carrying states

and the definition of the states for a park of N = 7 WECs are described in Sec. 2.1.3,

followed by the acting forces in Sec. 2.2. The next stage in energy conversion chain,

namely, the electric energy conversion, is modelled in terms of the power flow between

the WECs in the park and an energy storage unit up to the power grid, described

in Sec. 2.3. In Sec. 2.1.2 the forces and state variables are combined to express

the model in a state space representation, functioning as the time domain simulation

model.
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Figure 2.1: Sketch of the floating OWC WEC park configuration with minimum
separation distance ds between each WEC, exposed to a plane incident wave field
at angle θm. The inter body mooring lines are illustrated in cyan and the bottom
mooring lines in orange. Note that the end of the anchors of the bottom mooring
lines are not illustrated and the sketch is not perfectly to scale.

2.1 Modeling Approach

A Portuguese research group at the University of Lisbon extensively researches float-

ing OWC devices. The first principle approach to derive the main dynamic equations

of a single floating OWC is inspired by the work of that group, e.g. [13, 24, 31]. A

floating OWC WEC is considered a two body heaving system, with the first body

representing the buoy and the second body is the full oscillating water column. The

inner free surface is approximately level, since the incident ocean wave length is much
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greater than the buoy’s inner diameter. Therefore, the OWC is represented by an

imaginary rigid piston, indicated with superscript p. The two body system enables us

to use oscillating body theory to describe the interactions between buoy and piston.

Related is the assumption of small wave amplitudes and body motions to apply linear

water wave theory which enables the application of linear hydrodynamic interactions.

Practical corrections are made with nonlinear forces to mitigate the limitations of the

linear approach, such as the viscous drag force, mooring force and the nonlinear force

connecting the buoy and its water column due to the air pressure inside the cham-

ber. The latter force is another of the interactions between the two bodies, acting in

opposite direction on the buoy and the piston. When computing the change rate of

the pressure the air compressibility is taken into account.

The pressure in the air chamber is mostly affected by the relative heave motion

between buoy and piston, which makes the heave motion the main driver for power

conversion from kinetic power (ocean waves and body motion) to pneumatic power

(air pressure). To a smaller extent, the heave motion is influenced by motion in other

degrees of freedom (DoFs). However, the other dynamics in other DoFs are mostly of

interest for the overall motion of the WEC park, such as drifting and the interactions

due to a shared mooring system.

The aim of this work is a holistic simulation model for an OWC park, consequently

all buoy DoFs are considered together with the heave position of the imaginary rigid

piston. Let us use a right-handed Cartesian coordinate system to describe the spatial

state of the WECs. A positive heave displacement z(t) is defined to be upwards

and z(t) = 0 is at the calm ocean surface. The positive surge axis x shall point
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towards the shore, as illustrated in Fig. 2.2. The rotations about the surge x, sway

y and heave z, roll, pitch and yaw, shall be denoted rx, ry, rz, respectively. The

heave position of the piston shall be denoted zp(t). To express the dynamics of a

WEC a body fixed reference (x̂, ŷ, ẑ, r̂x, r̂y, r̂z, ẑp) should be used, since the inertial

properties of the WEC remain constant in time in this frame [21]. The origin of
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Figure 2.2: Arbitrarily displaced and simplified buoy with body coordinate frame
(x̂, ŷ, ẑ) and rotations (r̂x, r̂y, r̂z) and OWC piston heave position zp, in world coor-
dinate frame (x, y, z), with corresponding rotations (rx, ry, rz). Note: The origin of
body coordinate frame (̂ ) equals the bodies CoG, which is not represented in the
figure.

the body fixed frame is defined to be the center of gravity (CoG) of the respective

body. For every DoF Newton’s second law is used as basis for the equations of motion

(Sec. 2.1.2). Namely, that the change rate of the momentum equals the sum over all
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acting forces/torques,

m ˙̂v =
∑

F. (2.1)

2.1.1 Energy Conservation in OWC WECs

For the representation of the floating OWC i in terms of dynamical equations its

components need to be abstracted. In Fig. 2.3 the main components, namely, the

WEC with buoy and piston and the PTO with turbine and generator are illustrated.

The air chamber is the interface between WEC and the PTO. Starting from the left

piston
xpos

xvel

Air
Chamber

xp* .mt

buoy

WEC PTO

turbine generator

xΩ

Ψ

.mt

xp*

xp*

xvel

xpos

Figure 2.3: Components of the floating OWC with the state variables, representing
the quantities capable of storing energy in the system.

in the figure, let us assume an ocean wave brings buoy and piston into motion, thus

wave energy is converted into potential and kinetic energy. Relative motion between

buoy and piston changes the volume of the air chamber, but the same amount of air

is trapped, assuming the air has not left through the turbine yet. This means that

the potential and kinetic energy is conserved in the chamber’s air pressure. Now,

this air pressure accelerates the turbine/generator set and consequently the energy is

converted into rotational (kinetic) energy, which will then be converted into electrical
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energy by the generator opposing the turbine. Let us assume that all the WECs

i ∈ [1; 7] are connected electrically, including a single energy storage (ES) unit in the

link. The ES stores energy in form of chemical potential energy.

2.1.2 State Space Representation

To describe properties of a system the description with variables known as state

variables is used often. Common practice is to define quantities that are capable

of storing energy in a system as the states, e.g. positions, velocities and pressures,

contained in vector x(t). The dynamic equations are a set of equations or rules

specifying how those state variables change over time, as a function of the current

and past values of the state variables, control inputs u(t), and uncontrollable inputs,

such as the ocean waves vector w(t), namely,

ẋ(t) = f
(
x(t),u(t),w(t)

)
(2.2)

This is the standard nonlinear state space representation and it is required when f( )

contains nonlinear relations between the states. In the real world most relations are

nonlinear and in this work pressure dynamics (Sec. 2.2.6), mooring (Sec. 2.2.3) and

viscous drag forces (Sec. 2.2.7) need to be modelled nonlinearly to accurately model

those effects. The control inputs u(t) require actuators in the physical system, but

can be used to alter the dynamics of the system. Commonly, control researchers use

the knowledge of the system contained in (2.2) to design the control inputs (Chap.
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6). Let us assume that all states can be measured directly, since the necessary sensors

are common and consequently the output equation is trivial.

If the dynamics can be adequately modeled with linear time invariant relations

the widely known linear state space form is a special case of (2.2), namely

ẋ(t) = Ax(t) +Bu(t) (2.3)

y(t) = Cx(t) +Du(t) (2.4)

Here y(t) denotes the systems outputs and A denotes the system dynamics matrix,

B the input distribution matrix, C the output distribution matrix and D the input

feed through matrix. in this work the linear state space form is used to model the

memory effect of the radiation force due the past device motion and the resulting

radiation force (Sec. 2.2.5). The notation of the time dependency of the state and

input variables is omitted in the rest of the thesis, but generally quantities indicated

with x and u are time varying.

2.1.3 State Vector

The instantaneous value of the main energy storing quantities in WEC i will be used

to describe the current system state xi and for the overall park state vector x the ES

state of charge (SOC) is included. Let us start with the position vector,

xpos,i =

[
xi yi zi rxi ryi rzi zp

i

]T
, (2.5)
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and the velocity vector in the body frame,

x̂vel,i =

[
˙̂xi ˙̂yi ˙̂zi ˙̂rxi

˙̂ryi
˙̂rzi

˙̂zp
i

]T
. (2.6)

The transformation from body frame into world frame is addressed in Sec. 2.2.1f. Let

us concatenate the position and velocity vectors of the N = 7 WECs to the vectors,

X pos =


xpos,1

...

xpos,N

 ∈ R7N and X̂ vel =


x̂vel,1

...

x̂vel,N

 ∈ R7N (2.7)

The pressure in the air chamber is accounted for in the vector of the relative pressure

difference

xp∗ ∈ RN (2.8)

The rotational speeds of the turbine-generator sets are contained in the vector

xΩ ∈ RN (2.9)

Lastly, the state of charge of the ES is denoted

xSOC ∈ [0, 1], (2.10)
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were xSOC = 0 indicates an empty ES and xSOC = 1 indicates a full ES. Finally, let

us define the main state vector for WEC park with N WECs,

x =



X pos

X̂ vel

xp∗

xΩ

xSOC


∈ R16N+1 (2.11)

This states space and control oriented notation is used through out the work to clearly

indicate the dependency on a state variable for the derivation of the acting forces and

later the control algorithms.

2.2 Acting Forces

The equations governing the dynamics of the system state x in (2.3) are mainly

physical forces. Fig. 2.4 shows an expanded version of Fig. 2.3 which includes

those forces and if the forces are a function of the state variables, their dependency

is illustrated. The subscript i is dropped in the figure. Now, taking into account

that the forces act along the time varying body axes, Equation (2.1) evolves to the

Cummins equation [7], in the control oriented notation,

˙̂xvel,i = M−1
i

(
F H
i + FM

i + F PTO
i + F R’

i + F Ex
i + F VD

i

)
. (2.12)
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Figure 2.4: Components of the floating OWC with the state variables and the acting
forces.

Here M−1
i denotes the inertia matrix, containing the physical device mass, the mo-

ment of inertia about the respective axis and the added mass components in all DoFs.

Consequently, M−1
i yields body i to body i interactions. The considered generalized

forces vectors F i on WEC i are composed of a linear force vector and rotational torque

vector. The following forces will be further derived in the ensuing sub-sections.

FH The hydrostatic restoring force vector, adding a spring like effect in some DoFs

(Sec. 2.2.2).

FM The mooring force vector due to mooring connection with the sea floor and the

inter body moorings (Sec. 2.2.3). No mooring is connected to the imaginary

piston.

FEx The excitation force vector accounts for all incident waves on the body and it

results from solving the diffraction problem (Sec. 2.2.4).

FR The radiation force vector includes interactions from the motion of other bodies

in the park. It results from solving the radiation problem, approximated with
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a linear state space model (Sec. 2.2.5).

FPTO The force vector due to the pressure change in the chamber induced by the

turbine/generator dynamics. It is acting in opposite direction for buoy and

OWC (Sec. 2.2.6).

FVD The viscous drag force vector based on the common assumption of a constant

drag coefficient following the semi-empirical Morison equation (Sec. 2.2.7).

2.2.1 Coordinate Transformation

The forces and velocities act along the time varying axes in the body coordinate

frame, while the displacements are given in the fixed world frame [21] (compare Fig

2.2). In linear hydrodynamic models there is no difference between the two frames,

but since nonlinearities are considered in all DoFs, the linear mapping J r,i is used at

every time step to correct for the translations and rotations between body frame ( ˆ )

and world reference frame, namely

xvel,i = J r,i

[
x̂i ŷi ẑi r̂xi r̂yi r̂zi ẑp

i

]T
︸ ︷︷ ︸

x̂vel,i

, (2.13)

with

J r,i =


Rr,i(r

z
i , r

x
i , r

y
i ) 03×3 0

03×3 T r,i(r
z
i , r

x
i , r

y
i ) 0

01×3 01×3 cos ryi cos rxi

 . (2.14)
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Here Rr,i is the intrinsic rotation matrix about rzi , r
x
i , ryi and applied to the transna-

tional velocities,

Rr,i =


cos rzi − sin rzi 0

sin rzi cos rzi 0

0 0 1




cos ryi 0 sin ryi

0 1 0

− sin ryi 0 cos ryi




1 0 0

0 cos rxi − sin rxi

0 sin rxi cos rxi

 (2.15)

The rotation,

T r,i =


1 sin rxi tan ryi cos rxi tan ryi

0 cos rxi − sin rxi

0 sin rxi / cos ryi cos rxi / cos ryi

 (2.16)

is applied to the rotational velocities. The last entry of (2.14) governs the pistons

heave velocity inside the potentially rotated WEC.
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2.2.2 Hydrostatic Restoring Force

The spring like effect of the hydrostatic restoring force acts in heave, roll and pitch,

but not in the other DoFs [40]. In matrix form for WEC i this yields,

F H
i =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −ρwgSb 0 0 0 0

0 0 0 −ρwgVbGM 0 0 0

0 0 0 0 −ρwgVbGM 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −ρwgSp





xi

yi

zi

rxi

ryi

rzi

zp
i



(2.17)

Here, ρw is the ocean water density, g is the gravity acceleration, and Vb denotes the

volume of water displaced by the buoy. The annular cross section of the buoy is de-

noted Sb and Sp denotes the inner cross-sectional area of the piston. The metacentric

height GM at rest is used, assuming that the body motion is less than GM . For

more detailed studies of the WEC motion and its stability in extreme conditions, the

instantaneous GM should be taken into account. It varies with the instantaneous

position of the device, directly affecting the center of buoyancy of the spar. If the

GM becomes negative, the motion becomes unstable, decreasing the extracted power,

since kinetic energy is transferred from the the heave mode to the pitch mode [46].

Those phenomena are a driver of parametric resonance.
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2.2.3 Mooring Force

In this work a quasi-static mooring model is used to keep the WEC park from drifting

away. A quasi-static model can capture some of the nonlinear mooring behavior, but

neglects the line motion itself [25].
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Figure 2.5: WEC park configuration at calm seat. Figure is to scale.

2.2.3.1 Bottom mooring

Six bottom mooring lines are connected to the outer WECs in the park, illustrated

in Fig. 2.5. The tensions in every line are computed individually. The instantaneous

tension in other mooring lines is irrelevant for the others, so that only the instanta-

neous positions of the respective fairleads, where a mooring line is connected to the

buoy affect the tension and consequently the force on the buoy. Giorgi et al. present

a compact description of the nonlinear equations to model a single bottom mooring
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line [21]. Such a mooring line is illustrated in Fig 2.6 in orange. The bottom mooring

α

α

1

α2

3

1L
2
L 3L

aT

bT

�lh(t)

�lz(
t)

JF

CF

Figure 2.6: Single bottom mooring line projected in plane. Figure is not to scale.

line is composed of three straight lines, with lengths L1, L2, L3, with weight per unit

length wL and a jumper (diamond) and clump weight (circle) in between. For sim-

plicity, the mooring line is projected in a plane (square) cutting through the anchor

and the buoy, so that the horizontal distance between the anchor and the fairlead

hfl(t) can be used together with the vertical distance zfl(t) to numerically compute

the tension of the cable at the buoy Tb and the anchor Ta. Let us restate the slightly

recasted equation system [21], with the vertical and horizontal force balance

0 =Tb sinα3 − wL(L1 + L2 + L3)− FC + FJ − Ta cosα1 (2.18)

0 =Tb cosα3 − Ta cosα1. (2.19)



51

Followed by a torque balance,

0 =Tb cosα3zfl(t)− Tb sinα3hfl(t)

+ wL

[
cosα1

(
L2

1

2
+ L1L2 + L2L3

)
+ cosα2

(
L2

2

2
+ L2L3

)
+ cosα3

L2
3

2

]

+ cosα1L1 (FC − FJ) + cosα2FC, (2.20)

and lastly two equations imposing geometrical constraints,

0 = cosα1L1 + cosα2L2 + cosα3L3 − hfl(t) (2.21)

0 = sinα1L1 + sinα2L2 + sinα3L3 − zfl(t). (2.22)

Here the unknowns α1, α2, α3 denote the angle between the respective line L1, L2, L3

and the horizontal plane. The net weight force and net buoyancy force of the clump

weight and the jumper are denoted FC and FJ, respectively. In the time domain

simulation, the system eqs. (2.18) to (2.22) is only solved every 0.1s to and hold the

value to save computation time. The previous solution is used as initial guess for the

nonlinear equation solver to further decrease the computation time.

2.2.3.2 Inter Body mooring

For an inter body (IB) mooring lines, two lines with the same length length LIB

and weight per unit length wIB are assumed together with a single weight force FIB

between a buoy-buoy connection, illustrated in Fig. 2.7 [26]. The system of equations
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γ
αe

IBL

IB
,eT

IBh (t)

IBz e s(t)=z(t) - z(t)

C,IBF

αs
β

l

IB
L

IB,s
T

start

end

Figure 2.7: Inter body mooring line between two arbitrary displaced WECs projected
into plane. Figure is not to scale.

is solved for the tensions at the start buoy TIB,s and the tension TIB,e at the buoy at

the end of the IB mooring line. The vertical force and torque balance,

0 =− TIB,s sinαs − 2wIBLIB − FC,IB + TIB,e sinαe (2.23)

0 =− wIB
L2

IB

2
(3 cosαs + cosαe)− FC,IB cosαs

+ TIB,e

(
sinαehIB(t)− cosαezIB(t)

)
(2.24)

are a function of the horizontal and vertical distance between the fairleads of two IB

moored buoys hIB(t) and zIB(t), respectively. The torque balance is formulated about

the starting buoy, indicated by subscript s. Assuming that the IB lines do not change

their length, the system of equations can be explicitly solved for the angles between
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the lines and the horizontal αs, αe with trigonometry, namely

αs

αe

 =

β − γ
β + γ

 , (2.25)

with the angles

β = tan−1

(
zIB(t)

hfl(t)

)
(2.26)

γ = sin−1

(
l

LIB

)
(2.27)

and the length

l =

√
L2

IB −
h2

IB(t) + z2
IB(t)

4
. (2.28)

Consequently, let us isolate TIB,s, TIB,e at the ends of the IB mooring lines in eqs. (2.23)

and (2.24) and calculate them analytically, with

TIB,s

TIB,e

 =

− sinαs sinαe

0 sinαehIB(t)− cosαezIB(t)


−1

·

 2wIBLIB + FC,IB

wIB
L2
IB

2
(3 cosαs + cosαe) + FC,IB cosαsLIB

 . (2.29)

Solving (2.29) directly yields a noticeable simulation time reduction, when compared

to the equation system with eqs. (2.23) and (2.24) (which would require two additional
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equations, e.g. the ones to impose geometrical constraints).

2.2.3.3 Line Tension in Body coordinate frame

The tensions of the mooring lines in the two previous subsections are currently given

in the imaginary plane of the mooring line. To finally compute the mooring forces

and torques, the tensions have to be transformed into the world and body coordinate

system, respectively, at every mooring simulation step. The position of fairlead j

from buoy i is given through,

pfl,i,j(t) = CoGi + xpos,i +Rr,i(r
z
i , r

x
i , r

y
i ) · p̂fl,i,j, (2.30)

as a function of the instantaneous buoy displacement and the constant position p̂fl,i,j

of the fairlead j in the body coordinate frame. Note that the outer WECs have

j = 3 fairleads, two for IB connections, one for the bottom mooring and the central

WEC has j = 4 fairleads, all connecting to other WECs. Therefore, the indices are

dropped in the following analysis, since the denotation is strongly depending on the

used mooring configuration and cannot be generalized. The focus of the analysis lies

on the conceptual method. Let αfl denote the angle in the horizontal world plane

between two mooring attachment points, start and end, (either anchor-fairlead, or

fairlead-fairlead) with y- distance ∆yse and x-distance ∆xse. Clearly,

αfl(t) = tan−1

(
∆yse

∆xse

)
(2.31)
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Note that the 2 argument arctangent is used in (2.31) to cover all quadrants of the

x-y plane. Now, state the vectors of the respective mooring tension in the world

frame,

vIB,s =


cosαs cosαfl

cosαs sinαfl

sinαs

 , vIB,e = −


cosαe cosαfl

cosαe sinαfl

sinαe

 , vBTM =


cos(−α3) cosαfl

cos(−α3) sinαfl

sin(−α3)

 .
(2.32)

Consequently, the mooring tensions can be transformed into the body frames with,

F̂ IB,s = TIB,sRr
vIB,s

||vIB,s||
, F̂ IB,e = TIB,sRr

vIB,e

||vIB,e||
, F̂ BTM = TbRr

vBTM

||vBTM||
. (2.33)

Now, consider the torques about the CoG of the respective body,

T̂ IB,s =


F̂ y

IB,sp̂
z
fl + F̂ z

IB,sp̂
y
fl

F̂ x
IB,sp̂

z
fl + F̂ z

IB,sp̂
x
fl√

F̂ x
IB,s + F̂ y

IB,srb sinαdiff

 , T̂ IB,e =


F̂ y

IB,ep̂
z
fl + F̂ z

IB,ep̂
y
fl

F̂ x
IB,ep̂

z
fl + F̂ z

IB,ep̂
x
fl

−
√
F̂ x

IB,e + F̂ y
IB,erb sinαdiff

 ,

T̂ BTM =


F̂ y

BTMp̂
z
fl + F̂ z

BTMp̂
y
fl

F̂ x
BTMp̂

z
fl + F̂ z

BTMp̂
x
fl√

F̂ x
BTM + F̂ y

BTMrb sinαdiff

 . (2.34)

Here the lever arm for the yaw torque is the constant radius of the buoy rb. The angle

for the yaw torque represents the deviation between the angle of the mooring lines in

the horizontal plane and the angle of the respective fairlead plus the instantaneous
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yaw rotation of the WEC

αdiff = αfl −
(

tan−1

(
p̂yfl
p̂xfl

)
+ r̂z

)
. (2.35)

Note, that again the respective angle, respective fairlead position and respective yaw

angle is used. The superscripts in (2.34) denote which component of the respective

mooring force in the body coordinate frame is used. Finally, the generalized mooring

force vector FM
i is computed by superposing the force and torque components of the

different mooring lines concatenate a zero for the piston,

FM
i =


F̂ IB,s + F̂ IB,e + F̂ BTM

T̂ IB,s + T̂ IB,e + T̂ BTM

0

 . (2.36)

2.2.4 Excitation Force

Let us assume a wave field with a Nθ-directional swell, with the vector of incident

wave angles θ ∈ RNθ and wave spread

Dθ, with

Nθ∑
m=1

Dθ
m = 1. (2.37)

Since linear water wave theory is assumed the wave excitation at WEC i is described

in terms of the phase shift

φSH
i =

2π

λ

(
xi cosθ + yi sinθ

)
. (2.38)
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Here the wave length vector λ ∈ RNθ follows (1.7). The resulting excitation force

is obtained as a superposition of the Nw wave-frequency components and the Nθ

directions,

F Ex
i =

Nθ∑
m=1

Nw∑
k=1

Γi(ωk, θm)Dθ
mAk,m cos

(
ωkt+ φSH

i,m + φRND
k,m + φEx

i (ωk, θm)
)
. (2.39)

Here φRND
k,m is a phase component for each frequency and direction and is a random

variable governed by a uniform distribution over [0, 2π]. The vector containing hy-

drodynamic excitation coefficients Γi(ωk, θm) ∈ R7 at the wave frequency ωk from

direction θm and the corresponding excitation phase component φEx
i (ωk, θm) incorpo-

rate excitation and diffraction properties of the bodies into the model. The amplitudes

of the waves components Ak,m depend on the wave spectrum Sω,m(ω) (1.16).

2.2.5 Radiation Force

The radiation problem yields more hydrodynamic coefficients which can be taken into

account for in the time domain representation with the generalized force vector

F R
i (t) = −

N∑
j=1

A∞ij ˙̂xvel,j(t)︸ ︷︷ ︸
FR,∞
i

−
N∑
j=1

∫ t

0

Kij(t− τ)x̂vel,j(τ)dτ︸ ︷︷ ︸
FR’
i

, (2.40)

acting on WEC i due to WEC j. With the state space representation in mind, the

radiation force vector will be separated into two components. The first component

F R,∞
i explicitly depends on the acceleration ˙̂xvel,j and the second component F R’

i
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explicitly depends on the velocity x̂vel,j of the jth WEC. Here A∞ij ∈ R7×7 represents

the constant added mass on WEC i due to motion of WEC j, as a result of the

frequency dependent added mass Aij(ω) evaluated at ω −→∞ as in Cummins formu-

lation [7]. The kernel function of the convolution integral in (2.40) incorporates the

frequency dependent radiation damping coefficient Bij(ω) ∈ R7×7 into the radiation

force component depending on the velocity, via the inverse Fourier transformation

Kij(t) =
2

π

∫ ∞
0

Bij(ω) cos(ωt)dω (2.41)

Consequently, instead of using the two real, frequency dependent matrix functions

A(ω) ∈ R7N×7N and B(ω) ∈ R7N×7N the time dependent matrix function K(t) ∈

R7N×7N is used and the constant matrix A∞ ∈ R7N×7N containing the same hydrody-

namic information. This is known as the Kramers-Kronig relation in hydrodynamic

radiation. The derivation using the principle of causality is described in [16] in de-

tail. Instead of solving the convolution integral in (2.40) at every time step, it is

approximated with a linear state space representations that shares the same impulse

response. This has three major benefits. First, it makes the system more conve-

nient for motion control and second, an increase in efficiency in terms of simulation

time and third an easier integration into standard simulation environments such as

Matlab/Simulink [53]. The implementation of the following method is based on the

open source code from WECSim [62], with adjustments on how to find the maximal

admissible order for the state space representation. To obtain a minimal realization

of the discrete time impulse response the realization theory is being followed, due
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its simplicity advantage over the continuous time [53]. Let us omit the subscript

in the following description of the general approach, since the interactions between

different WECs and different DoFs would generate confusion. The Hankel singular

values are used, because of their representation of the energy for each artificial ra-

diation state. High energy states are retained and discarded low energy states. Let

kD[tn], with tn = n∆t, n = 0, 1, 2, . . . , Nt denote the discretized version of a single

impulse response component out of K(t). The Hankel matrix is a matrix assembly

of the samples of the discrete input response, namely,

H =



kD[1] kD[2] · · · · · · kD[Nt]

kD[2] kD[3] · · · kD[Nt] 0

...
... 0

...

... kD[Nt] 0
. . .

...

kD[Nt] 0 · · · · · · 0


. (2.42)

Now, H can also be realized by using singular value decomposition,

H = USV H (2.43)

where S contains the singular values in descending order on its diagonal. The unitary

matrices U and V contain the singular vectors in their columns and V H denotes the

Hermitian transpose (complex conjugate transpose) of V . Now, let us assume the

desired order OR of the radiation state space system is known and let us consider the
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partitioning

S =

S1 0

0 S2

 . (2.44)

Here S1 contains the OR largest singular values on its diagonal and S2 the remaining

singular values. In Sec. 3.4 how to find a suitable maximal order OR for the approxi-

mation so that S1 sufficiently approximates the linear impulse response, is addressed.

Therefore, (2.43) evolves into

H =

[
U 1 U 2

]S1 0

0 S2

[V H
1 V H

2

]
≈ U 1S1V

H
1 , (2.45)

The discrete radiation state space matrices can now be realized with [62] based on

[32],

AD
R =S

−1/2
1 UT

11U12S
1/2
1 (2.46)

BD
R =V H

1 S
1/2
1 (2.47)

CD
R =U11S

1/2
1 (2.48)

DD
R =kD[0], (2.49)

with U11 and U12 containing the first OR singular vectors, with n11 = 0, 1, . . . , Nt− 2

and with n12 = 1, 2, . . . , Nt−1, respectively. Finally, the discrete state space matrices
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are numerically transformed into continuous time [62],

AR =
(
AD

R − IOR

)(∆t

2

(
IOR + AD

R

))−1

(2.50)

BR =∆t

(
∆t

2

(
IOR + AD

R

))−1

BD
R (2.51)

CR =CD
R

(
∆t

2

(
IOR + AD

R

))−1

(2.52)

DR =DD
R −

∆t

2

(
CD

R

(
∆t

2

(
IOR + AD

R

))−1

BD
R

)
. (2.53)

Now, bringing back the subscripts for WEC i, j ∈ [1 : N ] and use the respective

DoFs, to state the generalized radiation force vector

F R’
i =

∑
j

(
CR
ijxrad,ij +DR

ijx̂vel,j

)
, (2.54)

with

ẋrad,ij = AR
ijxrad,ij +BR

ijx̂vel,j. (2.55)
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Here xrad,ij ∈ R
∑
j OR

ij is the artificial radiation state vector and

AR
ij =



AR
x̂ix̂j

. . . 0
AR
xiẑ

p
j

AR
ŷix̂j

. . .

0 . . .

AR
ẑpi ẑ

p
j



∈ R
∑
j OR

ij×
∑
j OR

ij , (2.56)

BR
ij =



BR
x̂ix̂j

. . .

BR
x̂iẑ

p
j

BR
ŷix̂j

. . .

...
...

...

. . .

BR
ẑpj ẑ

p
j



∈ R
∑
j OR

ij×7, (2.57)
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CR
ij =



Crad
b1b1

· · · Crad
b1pN

01×Nrad
b2b1 · · · 0

1×Nrad
b2pN

01×Nrad
b1b1 · · · 0

1×Nrad
b1pN Crad

b2b1
. . . Crad

b2pN
0

. . .
...

. . .

0 · · · 0
1×Nrad

pN−pN Crad
pN b1

. . . Crad
pNpN


.

(2.58)

It was also observed that requiring a very accurate fit seems to be of less im-

portance [32]. This can be attributed to the feedback structure of the model, which

filters out some of the dynamics associated with the convolution terms.

2.2.6 Air Chamber Pressure Force

The force connecting the buoy and the piston with the PTO results from the pressure

in the air chamber, which is consequently a function of the displaced volume of the

OWC and the mass flow rate through the turbine. In the following section the dy-

namics of the pressure are derived, following the example of [31] to model the PTO

with a bi-radial turbine. The main assumptions are:

• The compression/expansion of the air is isentropic

• There is no heat transfer in the air chamber walls

• The temperature of the chamber has only small changes, due to the continuous

in and outflow
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Beginning with a mass balance on the air chamber control volume,

ρciV̇ci + ρ̇iVci = −ṁti , (2.59)

where ρci is the air density, ṁti is the mass flow through the turbines which is positive

for an exhalation and is additionally a function of the position high speed stop valve

(HSSV) pHSSV, which is located before the turbine rotor and its position can be

controlled. Vc denotes the volume of air inside the chamber, with the air chamber

height as a function of position of the bodies

Vci = (h0 + xzbi − xzpi )Spi (2.60)

Let us define the dimensionless relative pressure as a function of the absolute air

pressure pi in the chamber of OWC i and the atmospheric pressure pat, i.e.

xp∗i =
pi − pat

pat

. (2.61)

Assuming air as a perfect gas and the process of air compression/expansion as isen-

tropic as proposed in [13], yields

pi
ργi

=
pat

ργat

≡
xp∗i + 1

ργci
=

1

ργat

(2.62)

where γ = cp/cv ≈ 1.4 denotes the specific heat ratio of air, also known as the

isentropic expansion factor. cv and cp denote the specific heat capacities of air for a
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constant volume and pressure, respectively, and are constant under the assumption

of a perfect gas. Solving for ρci in (2.62), results in

ρci = ρat(xp∗i + 1)
1
γ . (2.63)

Taking the logarithmic derivative L(f) := ḟ/f of (2.63), yields

γ
ρ̇ci

ρci

=
ẋp∗i

xp∗i + 1
. (2.64)

Substituting (2.63) and (2.64) into (2.59) results in

ẋp∗i = −γ ṁti

ρatVci

(xp∗i + 1)
γ−1
γ − γ V̇c

Vci

(xp∗i + 1) (2.65)

Equation (2.65) will appear in the written out form in the fully described state space

representation, where the chamber volume and its derivative depend on the position

and velocity states, respectively.

The force on the OWC and buoy is now dependent on the pressure difference of the

atmosphere pi − pat in the chamber together with the cross section of the piston and
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can be stated as

F PTO
i =



0

0

(xp∗i pat)Sp

0

0

0

−xp∗i patSp



. (2.66)

To completely determine (2.65), the mass flow is required, thus it is necessary to

consider the turbine dynamics. The ensuing approach is adapted from [30]. Beginning

with the change of the rotational speed xΩi of the turbine

ẋΩi =
1

It

(
Tti − Tgeni −BtxΩ,i

)
(2.67)

where Iti is the moment of inertia of the ith turbine/generator set, Tti , Tgeni are instan-

taneous torques of the ith turbine and the generator, respectively, and Bt is a constant

that models viscous friction losses. To identify the torque of the turbine, it is nec-

essary to regard its performance characteristics which are presented in dimensionless

form. To normalize those values, the rotational speed xΩi , the turbine diameter dt

and the reference air density ρin are needed. Furthermore, the turbine characteristics

change with the position of the HSSV uHSSV, which limits the air flow into the turbine.

ρin is defined under stagnation conditions at the turbine entrance and dependent on

the flow direction, hence a function of the pressure difference between the chamber
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and the atmosphere, i.e.

ρini =


ρat(xp∗i + 1)

1
γ , if xp∗i > 0 (exhalation)

ρat, if xp∗i < 0 (inhalation).

(2.68)

The dimensionless pressure head can now be computed as

Ψi =
patxp∗i
ρinix

2
Ωi
d2

t

. (2.69)

The dimensionless mass flow rate coefficient of a turbine is defined by

Φi(Ψi, uHSSV,i) =
ṁti

ρinixΩid
3
t

. (2.70)

Finally, the dimensionless power coefficient is given by

Πi(Ψi, uHSSV,i) =
Pti

ρinix
3
Ωi
d5

t

. (2.71)

Those three characteristic coefficients are related through the turbine efficiency as

follows:

ηti(Ψi, uHSSV,i) =
Πi

ΦiΨi

(2.72)

In [4] Φi ( ) and ηti ( ) are given as functions of the dimensionless pressure

head Ψi and the position of the HSSV uHSSV as illustrated in Fig. 2.8 together with

the dimensionless power coefficient ( ) calculated with Π = ηΦΨ. The mass flow

rate ṁti can be determined from (2.70) and is a function of the rotational speed,
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Figure 2.8: Turbine characteristics as functions of the dimensionless pressure head Ψ.
Namely, efficiency η, dimensionless flow rate Φ and dimensionless power coefficient
Π.
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which will become important regarding the controllability of the system. As stated

before, an additional high speed stop valve is installed before the biradial turbine, to

realise for example latching. Assuming the HSSV can stop the entire mass flow, the

mass flow rate can be stated as

ṁti(xΩi , uHSSV,i) = Φi(Ψi, uHSSV,i)ρinixΩid
3
t , (2.73)

where pHSSV,i denotes the position of the stop valve and is open for pHSSV,i = 0 and

completely closed for pHSSV,i = 1, respectively. Finally, with equations (2.71) and

(2.72) all necessary quantities to compute the turbine torque are known, i.e.

Tti = ρinix
2
Ωi
d5

tηtiΦiΨi (2.74)

The generator power torque Tgeni is the commonly used control input to WEC. Addi-

tionally, the position of the HSSV provides further influence on the pressure change

in the air chamber.

2.2.7 Viscous Drag Force

The last considered force is the one due to viscous drag between water and the

bodies. It is based on the drag component of the semi-empirical Morison equation

[38], namely,

F VD
i = −1

2
ρwCVDAVDx̂vel,i|x̂vel,i|. (2.75)
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Here CVD represents a matrix with quadratic drag coefficient on its diagonal, esti-

mated based on empirical data for slender cylinders and AVD denotes the matrix with

the reference area for respective DoF.

2.3 Electric Power Flow Model

The next steps in the power conversion chain happen with much faster dynamics

than the WEC motion. Harris shows that the transfer function of the generator

current dynamics are approximately one when the main interest is the commanded

control torque [28]. The switching dynamics of the power electronics (PE) are even

faster. Furthermore, there is no interaction between the electromagnetic energy con-

version and the hydrodynamics of the WEC. Consequently, the dynamic model will

not include the detailed generator and PE switching dynamics, instead the respective

efficiencies account for power dissipation. The generator is run in torque mode and

the assumption that Tgen,i commanded by the drive is received, holds. A suitable

generator to directly attach to the biradial turbine is the SIEMENS IEC low-voltage

squirrel cage (SC) electrical model 1LE1603-2AB53-4GB4-Z. The empirical data of

the generator efficiency ηgen of the SC machine is illustrated in Fig. 2.9 [4, 5]. Now,

let us state the alternating current (AC) electric power,

PAC
elec,i = ηgen,i|Tgen,i|xΩ,i(t) (2.76)
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Figure 2.9: Generator efficiency map as a function of the turbine-generator sets ro-
tational speed and generator (control) torque. From [5].

The electric components after each SC machine and their connections are illustrated

in Fig. 2.10. Let us assume that every single WEC has the PE to convert from AC

to direct current (DC), with round trip efficiency ηPE, hence

PDC
elec,i =


ηPEP

AC
elec,i, for PAC

elec,i ≥ 0

PAC
elec,i/ηPE, for PAC

elec,i < 0.

(2.77)

Next, a DC-link is modelled so that the power can flow freely between the different

WECs in the park. This enables the use of the SC generator in motor mode, e.g. for

reference speed following. The power necessary to turn the first WECs turbine could

come from a currently generating WEC. The high current cables could for example
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Figure 2.10: Electric power flow model of the WEC park.

go along the IB mooring lines. Let us further assume a directly connected storage

medium (battery) in the DC link. The last part of the link is a grid connection, via

an inverter with efficiency ηPE,IV. The instantaneous power of the link is therefore,

Plink =
∑
i

PDC
elec,i − Pload (2.78)

If the grid load power Pload can be met by the aggregated power of the individuals

WECs Plink ≥ 0. On the other hand, if the load is not met the differences need to
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come from the storage medium with efficiency ηSM. The state of charge xSOC of the

battery is the last state space state, with its change rate being

ẋSOC =
1

W rated
SM


ηSMPlink, for Plink ≥ 0

Plink/ηSM, for Plink < 0.

(2.79)

Here WSM denotes the rated storage capacity of the battery. Assuming to be able to

control that amount of grid power transmission, let us define the last input,

uload = Pload. (2.80)

This finalizes the power conversion chain from wave to wire.

2.4 OWC Park State Space Simulation Model

The equations above are transformed to represent them in the state space with vari-

able vector,

ẋ =



Ẋ pos

˙̂X vel

ẋp∗

ẋΩ

ẋSOC


=



J rX̂ vel

(M)−1 ·F(x)

f p∗(x,uHSSV)

fk(xp∗ ,xΩ,ugen)

fSM(xΩ,ugen, uload)


(2.81)

Note that script letters represent concatenated vectors and matrices to include all

vectors i ∈ [1; 7]. The linear mapping between reference and body coordinate frame
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J r contains the individual matrices J r,i on its diagonal. The inertial matrix (M)−1

contains the individual mass and moment of inertia components in the respective

DoF with M . Coupling between surge-pitch and sway-roll for the respective buoy

is taken into account with M cpl [40]. Furthermore, M contains entries connecting

spatially distinct WECs due to the added mass components A∞, thus

M = M +M cpl + A∞ (2.82)

Further cross body interactions originate from the mooring force and the radiation

force, hidden in F(x). The pressure, rotational speed and charge states change rates

in (2.81) are presented as functions of their major drivers, but follow eqs. (2.65),

(2.67) and (2.79) respectively.

2.5 Summary

The presented first principle equations describe how wave energy is converted to the

power grid over time, with help of a Spar-buoy type WEC park. Those system dy-

namics in all degrees of freedom are presented in a generalized a control oriented state

space form. Selecting different WEC park configurations are only subject to differ-

ent hydrodynamics coefficients and potentially a different mooring configuration, but

the general approach is applicable. The dynamic model enables the simulation in

engineering software like MATLAB/Simulink and the design of model based control

algorithms to alter the system dynamics. However, the parameters like the hydrody-
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namics coefficients need to be identified first.
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Chapter 3 Hydrodynamics

The commonly used approach to approximate the hydrodynamic interactions in terms

of linear hydrodynamic coefficient has shown to not significantly differ from more de-

tailed nonlinear approaches [59]. Therefore, the Boundary Element (BEM) solver

software ANSYS Aqwa is used to obtain the main hydrodynamic coefficients, which

are required to quantify the hydrodynamic forces (Sec. 2.2.5 and Sec. 2.2.4). The

process to determine a suitable separation distance was iterative. First, the BEM

results were generated for a triangular array and then the dynamic simulation with

Matlab/Simulink of the array restricted to heave motion was evaluated for its inter-

actions [17]. The spacing of ds = 30 m seemed a good compromise between proximity

and enough space for maintenance through boats. Next, the dynamic simulation

model in six DoF confirmed that the WECs do not collide with ds = 30 m.

This chapter describes how the hydrodynamic coefficients of a triangular array

with ds = 30 m with a full column representation of the internal water column are

obtained and later combined with the hydrodynamic coefficients of the hexagon park

simulated without the internal water column in the BEM solver ANSYS Aqwa Re-

lease 19.1. The combination is necessary since the seven device in a hexagon violate

the maximal diffracting elements in Aqwa, when the internal water column is repre-

sented by an artificial rigid body, as done for the triangular array. This is possible

since the triangular array is a sub-component of the hexagon park and the properties
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can be interpolated and extrapolated, respectively.

(a) (b)

Figure 3.1: Screen shots from the BEM solver ANSYS Aqwa. Left: Triangu-
lar Marmok-A-5 array with full-column presentation of the water column. Right:
Hexagon seven Marmok-A-5 park with incident wave directions.

3.1 Boundary Element Solver Simulation

ANSYS Aqwa is a 3D simulation tool witch Graphical User Interface (GUI), which

uses ANSYS Workbench as its front end. Workbench is a multi physics software

that enables importing different CAD formats as well as coupling between distinct

physical problems. A facilitation for the simulation process is the Project Schematic

where different stages of the simulation are initiated through adding of so-called

systems. For example, the Hydrodynamic Diffraction system which provides a toolset

for the investigation of the effects of waves on structures, to develop the hydrodynamic

parameters required for motion and response analyses. The Project Scheme is divided

into multiple steps which can be processed hierarchically until the desired results are

obtained. CAD models are imported in the Geometry system, with the specialized
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software package DesignModeler (DM) behind it. The model has to be displaced in

order to set the XY-Plane where the water surface should meet the semi-submerged

geometries. Aqwa is only able to work with surface bodies with their normals pointing

outwards therefore all geometries have to have their wall thickness set to zero.

The single OWC WEC is translated and duplicated at the same time to build up

the desired park configurations with a spacing of ds = 30 m between the centers of

the WECs. As soon as all bodies are in place and are transformed to surface bodies,

the XY-Plane can be used to cut through all bodies, in order to emulate the water

surface. Dissected bodies have to be reassembled using the Part function of the DM.

The buoy dimensions are as illustrated in Fig. 1.12 and relevant to the actual

parameters of the prototype. The OWC is modeled as a physical body inside the

BEM modeler with a diameter dBEM
p = dp − 0.02 m, as pictured by the red dashed

box surrounding the piston in Fig. 1.12 for the triangular array, but not for the

hexagon park. Instead of using a weightless thin plate to represent the water surface

inside the chamber as done in the beginning of this study, a full column representation

of the piston is used since it reduces numerical instabilities in the frequency dependent

hydrodynamic coefficients, which agrees with the results of [51, 1]. Furthermore, the

calculated overall mass approaches the actual one, which is of importance for the

natural frequency of the piston in the time domain simulations. The meshed water

column is illustrated in Fig. 3.1 (a). The incident wave angle θ ranges from −60°

to 60° in an interval of 8° and from −180° to 180° in an interval of 40°, which are

illustrated in the WEC park in Fig. 3.1 (b). The wave frequency is also divided into

multiple ranges f1,f2 and f3, to better cover the areas of interest, which require a finer
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Table 3.1: Numerical values of the BEM simulation parameters.
Quantity sym/var value

spacing distance WECs ds 30 m
water depth dw 80 m
incident wave range 1 θ1 −60°:8°:60°
incident wave range 2 θ2 −180°:40°:180°
wave frequency range 1 f1 {0.015:0.05:0.250}[Hz]
wave frequency range 2 f2 {0.256:0.06:0.496}[Hz]
wave frequency range 3 f3 {0.506:0.01:0.606}[Hz]
diameter buoy db 5.00 m
diameter inner tube dp 2.82 m
piston diameter in BEM dBEM

p 2.80 m

resolution for low frequencies and long wave periods, respectively. The approximation

of the infinite frequency for A∞ij is done with the high frequency ωHF = 100.0 rad/s in

Aqwa 19.1. In the ensuing sections the main hydrodynamic results are presented.

3.2 Order Reduction

To improve the computational cost, an interaction distance cut-off is introduced for

the hexagon park, while maintaining acceptable accuracy [27]. Therefore, interactions

between WECs with more than ds = 30 m separation are neglected. The scheme is

illustrated in Fig. 3.2. The central WEC interacts with all surrounding WECs and

the corner WECs interact with the three WECs that lay on the circle around them

with radius ds. In the next section the scheme is also illustrated in matrix form.



80

1

2 3

4

5 6

7

Figure 3.2: Considered cross body interactions in the OWC WEC park. Interactions
of bodies with more than ds = 30 m are neglected.

3.3 Added Mass

The concatenated added mass matrix at approximately infinite frequency A∞ is part

of the inertial matrix (M)−1 in (2.81).

A∞ =



A∞11 A∞12 A∞13 A∞14 0 0 0 Abp,∞
1

A∞21 A∞22 0 A∞24 A∞25 0 0 Abp,∞
2

A∞31 0 A∞33 A∞34 0 A∞36 0 Abp,∞
3

A∞41 A∞42 A∞43 A∞44 A∞45 A∞46 A∞47 Abp,∞
4

0 A∞52 0 A∞54 A∞55 0 A∞57 Abp,∞
5

0 0 A∞63 A∞64 0 A∞66 A∞67 Abp,∞
6

0 0 0 A∞74 A∞75 A∞76 A∞77 Abp,∞
7

Ap,∞
b1

Ap,∞
b2

Ap,∞
b3

Ap,∞
b4

Ap,∞
b5

Ap,∞
b6

Ap,∞
b7

App,∞



. (3.1)
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Here A∞ij ∈ R6×6 denotes the added mass of WEC buoy i due to acceleration of WEC

buoy j in all DoFs, which directly originate from the BEM simulation of the park with

the seven spar-buoy WECs. The matrices in the column Abp,∞
i ∈ R6×7 contain the

added mass on all DoFs of WEC i due to heave acceleration of the pistons, derived

from the BEM simulation of the triangular array with the pistons. The matrices in

the last row Ap,∞
bi
∈ R7×6 denote the heave added mass components on the pistons

due to acceleration of buoy bi in all DoFs, again derived from the triangular array.

The last matrix in the lower right corner App,∞ ∈ R7×7 contains the heave added

mass components on pistons due to piston heave motion, from the triangular array.

The zero matrices are the results if the interaction distance cut-off. The cut-off also

affects Abp,∞
i , Ap,∞

bi
and App,∞ since they contain bodies from spatially distinct WEC

systems, resulting in many zero entries. The numerical values of some examples

representing a group of added mass matrices are presented in appendix A.

3.4 Radiation Damping

The radiation damping effects have a high computational complexity to simulate,

since they take the past motion of a body into account. In this work a reduction

method based on the magnitude the radiation impulse response function (IRF) Kij(t)

(eq. (2.41)) is used. The algorithm (adapted from WECSim [62]) that approximates

Kij(t) with a state space representation through a Hankel singular value decompo-

sition (2.43) iteratively increases the order OR until either the goodness of the fit

exceeds 0.95, or the maximal order is reached. The maximal order OR
max is depending
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on the initial goodness

R2
i = ||Kij(t)− K̄ij||. (3.2)

Here K̄ij denotes the mean value of Kij(t). A high R2
i means a lot of oscillations in

the IRF and potentially time delays. Consequently it needs higher order dynamics

to perform an accurate fit. If the maximal value of Kij(t) does not meet a user

defined threshold OR
max is set to zero. This implies that the radiation interactions

for this combination are neglected. Radiation damping effects of the same body are

never neglected, mostly for stability reasons and not because they significantly alter

the dynamic response. This methods results in the same pattern as the interaction

distance cut off, as illustrated with

B =



B11 B12 B13 B14 0 0 0 0

B21 B22 0 B24 B25 0 0 0

B31 0 B33 B34 0 B36 0 0

B41 B42 B43 B44 B45 B46 B47 0

0 B52 0 B54 B55 0 B57 0

0 0 B63 B64 0 B66 B67 0

0 0 0 B74 B75 B76 B77 0

0 0 0 0 0 0 0 Bpp



. (3.3)

In contrast to the added mass, the entries B are sparse matrices with the frequency

dependent radiation coefficients in all six DoFs. In Fig. 3.3 a few of the radiation

damping coefficients are illustrated as example. The first subplot contains the heave-
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heave radiation Bzz(ω) coefficients of for a WEC in the triangular array and a WEC

in the hexagon park. Except for numerical instabilities the coefficients show good

agreement. The next two subplot show coefficients only available to the triangular
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Figure 3.3: Frequency dependent radiation damping coefficient examples from the
BEM results of the triangular three WEC array and the seven WEC hexagon WEC
park.

array, since they involve the pistons heave motion. The interactions between heave-

buoy and heave-piston do not pass the threshold (central subplot in Fig 3.3 and are

neglected for the IRFs. The most important IRFs for a buoy due to its own motion are

illustrated in Fig 3.4 in dashed, together with the respective state space approximation

in solid and the corresponding order O used for the fit. Due to symmetry of the buoy

a lot of radiation combinations are qualitatively identical, e.g. Kxx and Kyy. Most of

the inter-body radiation combinations have in common, that they decay quickly so
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Figure 3.4: Most significant radiation impulse response functions of a buoy due to its
own motion.

that they can easily with the relatively low order O4. An exception is the surge-sway

IRF Kxy (and consequently also Kyx). Here O6 is necessary to meet the meet the

desired goodness of the fit. The radiation effects between spatially distinct WEC

generally need a higher order of the state space approximation, because the peak of

the IRF is not at the initial time. Some of those cross-body radiation interactions are

illustrated in Fig 3.5. For example Kyjxi in the top left corner would have benefited
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from an order> O6, but the magnitude of the maximal value ofKyjxi resulted inO6 as

threshold. In the top right corner of the figure an example with the highest admissible

order O8 is illustrated. It has to be noted that the lower right plot is an interaction
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Figure 3.5: Most significant radiation impulse response functions between spatially
distinct buoys and for the heave radiation of the piston.

due a body’s own motion, namely the IRF for the heave radiation of the piston. Here

O2 sufficiently model the simple IRF. Overall the method with Hankel singular value

decomposition yields much better goodness of fit with the same state space order
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compare to the Prony method previously used in [17]. Especially, for cross-body

interactions since Prony’s method superposes decaying exponential functions, that

all start decaying at the initial time. The overall concatenated radiation state space

system eqs. (2.54) and (2.55) has 7N = 49 inputs and outputs and 3210 artificial

radiation states. Without the order reduction it would have been well above 10000

states.

3.5 Excitation Coefficients

The combination of the excitation force coefficients for the excitation force (2.39)

between hexagon park and triangle array is straight forward. Fig 3.6 illustrates all

the heave excitation force coefficients Γxi (ωk, θm) for the array with the three WECs

and the three pistons in the left column and the corresponding phase components

φEx
i (ωk, θm) in the right column. The pistons excitation force coefficient is invariant

to the incident wave angle θm and only a function of the wave frequency ωk. The

pistons phase is qualitatively identical with the phase component of its buoy. This

makes it evident to use the pistons excitation force coefficient from the triangular

array and combine it with the phase component of the buoys from hexagon park, to

artificially add the heave excitation properties of the water column to the WEC park.

All seven excitation force coefficients of the WEC park and the corresponding phase

coefficients are illustrated in Fig. 3.7. The symmetry of the hexagon clearly is evident

in the coefficients. For example, the pairs WEC1 and WEC5, WEC1 and WEC6,

and WEC2 and WEC7 have the same coefficient, but mirrored about the surge axis,
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Figure 3.6: Excitation force magnitude and corresponding phase coefficients for the
triangular OWC WEC array and the corresponding imaginary pistons.



88

Figure 3.7: Excitation force magnitude and corresponding phase coefficients for the
OWC WEC park.
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where the incident wave angle is zero. The central WEC4 is axis symmetric with the

surge axis. The excitation properties complete the linear hydrodynamic coefficients.

3.6 Summary

The hydrodynamic properties of the hexagon WEC park are approximated based on

two BEM simulations. One including the results of the imaginary rigid pistons from

the triangular WEC array and another one focusing on the diffraction effects among

the WEC park in hexagon shape, with central WEC. With this method the limitations

of ANSYS Aqwa are overcome and different park configurations can be approximated

similarly based on sub-arrays. The time domain simulation of the derived system

dynamics cannot be conducted with the BEM solver, due to too much detail in the

air chamber and PTO dynamics.
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Chapter 4 Numerical Experiments

The purpose of this chapter is to evaluate the dynamic model derived in Chap. 2

and hydrodynamically quantified in Chap. 3. There is no experimental data publicly

available to validate the simulation results again and conducting physical experiments

is far beyond the scope of this work. However, based on computer simulation experi-

ments and comparing their outcome to the expectations a discussion why the results

are acceptable is made. As time domain simulation environment MATLAB/Simulink

is used. The simulations are first conducted without incoming waves and next with

irregular waves.

4.1 Simulation Parameters

In table 4.1 the numerical values of important simulation parameters are listed. The

mooring line parameters are oriented based on the work of Gomes et al. [26]. The net

force of the inter-body mooring clump weights results from a bisection algorithm in

order to balance equalize the mooring force in x-direction, when the WEC park is at

it’s initial position. The net force of the clump weight and the net force of the jumper

of the bottom mooring lines parallel to the y-direction are then computed to balance

the net mooring force in the sway direction. The turbine and generator parameters

are taken from Carrelhas’ work [4]. The capacity of the storage medium is chosen so
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that it theoretically could maintain 14.4 kW for 20 min.

4.2 Decay Tests

The first tests for the simulation models are conducted without incoming waves.

Instead, an initial condition (IC) is used for a single state to observe how the energy

dissipates or is converted into other states over time. Each of the following figures is

the result of a different simulation run, illustrated mostly based on the quantities of

WEC2, and in some cases states from different WECs to illustrate how the energy is

transferred. The first test addresses the decay of the turbine generator set rotational

speed in Fig. 4.1. The IC for the turbine rotational speed is set to its nominal speed

xIC
Ω,2 = 1470 rpm. The generator is assumed to not to oppose any torque, but its inertia

and friction is added to the turbine. The decaying rotational speed is illustrated in

the first plot in Fig 4.1 and it is mostly caused by the turbine friction, as expected.

In the second row, the ICs for the heave WECs position are slightly below the still

water surface (dashed blue, because it equals the pistons IC). The displaced water

equals the mass of all the attached mooring lines and therefore entire park is in

equilibrium. The WECs have slightly different ICs, since they carry the mooring

weight to a different extend. The third row contains the horizontal displacements of

WEC2 and its rotational displacements. The WEC2 moves horizontally for about

1 cm, which is insignificant compared to the WEC dimensions. Consequently, the

horizontal components of the mooring force in the last plot appear to be zero compared

to the vertical force component, which is constant since the heave position does not



92

Table 4.1: Numerical values of the simulation parameters
Quantity sym/var value
horizontal distance mooring anchor to WEC 180 m
length bottom mooring line 1 L1 153 m
length bottom mooring line 2 L2 30 m
length bottom mooring line 3 L2 52 m
net force bottom mooring ‖ x clump weight F x

C −26 kN
net force bottom mooring ‖ x jumper F x

J 30 kN
bottom mooring line weight per unit length wL 34.82 kg/m
length inter-body mooring LIB 17 m
inter-body mooring line weight per unit length wIB 30.1 kg/m
net force inter-body mooring clump weight FIB −20.388 kN
net force bottom mooring ‖ y clump weight F y

C −10.065 kN
net force bottom mooring ‖ y jumper F y

J 21.1656 kN
diameter turbine dt 0.5 m
MOI turbine It 5 kg m2

MOI generator It,gen 0.24 kg m2

turbine and generator friction coeff. (assumed) Bt 0.03 kg m/s2

maximal generator torque Tmax
gen 216.5 N m

rated generator power P rated
gen 30 kW

maximal generator rotational speed Ωmax
gen 3000 rpm

power electronics efficiency ηPE 92.5 %
storage medium efficiency ηSM 89.44 %
rated capacity of the storage medium W rated

SM 4.8 kW h
Lower / Upper bound first derivative σ Km; KM 30.9; 51.7
Upper bound second derivative σ C0 150
Linearity region σ0 1 rad/s
slope sgn and switch approx. c1; c2 50 ; 105

SMC parameter α; λ; γ 6; 8; 0.5
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noticeably change over time. The horizontal displacement must results from the

mooring system that is not in perfect equilibrium, but more than sufficient to not to

unexpectedly alter the systems dynamics.

For the next decay test the IC for the heave position of WEC2 is set to be 3 m

above the still water surface. The vertical displacement of WEC2 and its piston are

illustrated in Fig. 4.2 in the first plot. The resulting oscillation decays by over 90%

after 90 s in ten oscillations. This indicates that the natural period of the WEC is

about 9 s. The motion of the WEC, clearly drives the motion of the piston. Some of

the motion energy from WEC is radiated away to WEC1 and WEC4, illustrated in

the second row of Fig. 4.2. However, note the y-axis scale. The oscillation is magnified

six times. The horizontal and rotational displacements of WEC2 are illustrated in

the third plot. The excitation of the surge displacement and the pitch rotation is

explained with the mooring system. When only WEC2 is elevated not only the

mooring force in vertical direction increases, but also the mooring force component

in the x-direction and consequently a pitch torque as well. The vertical component

mooring force in the last plot decays with the vertical displacement of WEC2. The

behaviour of the decay from a horizontal displacement is presented in Fig. 4.3. The

initial position of WEC is set to be additional 3 m from the central WEC, along the

line through WEC2 and WEC4, thus ∆x̂2 = −2.6 m and ∆ŷ2 = 1.5 m. Noticeable is

that the horizontal positions decay about four times slower compared to the vertical

position (illustrated in the first row of Fig. 4.3). The transfer to the motion to the

other WECs is mostly due to the mooring force and to a lesser extent because of the

radiation force. The second plot shows that first WEC1 and WEC4 are horizontally
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displace in the direction of WEC and later the motion is transferred to WEC6, which

is on he opposite end of the park (all WECs in the park are affected). The magnitude

of yaw rotation (in dashdotted orange) in the third plot would not occur naturally.

But it is an expected behaviour, because the initial displacement of WEC2 does not

include an initial rotation. Therefore, the yaw angle of the fairleads is not aligned with

the mooring lines initially and consequently the buoy experiences a torque about the

yaw axis. The yaw rotation decays very slowly, since there is no restoring component.

The mooring forces components in the last plot are somewhat proportional to the

instantaneous horizontal, but strongly nonlinear. The last decay test investigates

the behaviour for a pitch IC in Fig. 4.4, namely ∆r̂y2 = 15°. Note that the right

y-axis in the third row of Fig. 4.4 is changed compared to the previous plots. The

first observation is the slight coupling between the pitch excitation and the resulting

heave excitation, in the first row. The heave modes of the other WEC are excited

to a lesser extend (about 10%, but noticeably). The strong coupling with the surge

displacement x̂2 is again explained with the initial tension in the mooring system.

When WEC2 is rotated about its center of gravity, the fairleads change their position

and are not in equilibrium, although the CoG has not been initially displaced.

4.3 Irregular Waves Performance

In this section the excitation of the WEC park does not originate from its initial

conditions, but from the simulated ocean waves. First, a single sea state is used

to discuss the park behaviour, when exposed to a wave with significant wave height
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Hs = 2 m, peak energy period Tp = 9 s and a single incident wave angle θ1 = 15°.

This sea state is important for the annual energy capturing in the wave climate of

Leixões, Portugal [43]. The choice for the sea climate of Leixões, Portugal is based on

the origin of the Marmok-A5 and the probability of sea state occurence is illustrated

in Fig. 4.7. The first plot in Fig. 4.5 presents the free surface elevation at the location

of WEC2. The resulting heave displacement is illustrated in the second plot for both

the buoy and the piston of WEC2. Recall that the natural period of the WEC is

somewhere around 9s, explaining the higher oscillation amplitude compared to the

free surface elevation in many times.

The heave position of the WEC server array, namely WEC2, WEC4 and WEC5

are illustrated together in the third plot of Fig. 4.5. The signals are shifted in time, but

only vary in the ballpark of 5% in their maximal values. To quantify the instantaneous

WEC motion, a new quantity is introduced for the later following control design.

Namely, the averaged, moving root-mean-square (RMS) value of the server array

z̄RMS
server, which is illustrated on top of plot three in red and uses the right y-axis. Here,

z̄RMS
server will be used to quantify how well the entire WEC park responds to incoming

waves over the last 30 seconds. Note that the RMS value has no relation to power and

that the notation can be miss-leading, but satisfies it’s purpose of being a measure to

quantify and compare the WEC motion in the recent past. The last plot in Fig.4.5

shows that the mooring configuration does its job in keeping the WEC within a radius

of 60 cm of its horizontal origin and the rotation does not exceed 2°. The next Fig. 4.6

is from the same simulation run with WECs heave displacement and z̄RMS
server in the

first plot, but the other quantities are exchanged. First, it has to be mentioned that,
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although the control law has not been introduced yet, the turbine is controlled with

the benchmark control law (6.1). Otherwise, the turbine would quickly accelerate

above its maximal rotational speed. The rotational speed is illustrated in the last

plot of Fig. 4.6. In the second plot all the forces acting on WEC2 are illustrated.

The hydrostatic restoring force has an up to 5 times higher magnitude compared

to the other significant forces, namely excitation force, pressure chamber force and

mooring force. The viscous drag and the radiation force component due the velocity

components are not noticeable with the naked eye. The radiation force component

due to the acceleration cannot be decoupled from the other force (compare (2.81)).

The resulting chamber pressure and the related turbine pressure head coefficient are

illustrated in the third row in Fig. 4.6. After the turbine is up to speed after about 35

seconds a noticeable amount of air can flow through the turbine and consequently the

relative chamber pressure oscillates within a reasonable range. The rotational speed

decreases always when z̄RMS
server decreases. This time behaviour shows that different

phases of WEC resonance can occur within minutes in the same sea state. This

brings up the idea to control the WEC differently in the time intervals of low WEC

response, as if it would be a different operating regime. The results from a previous

study show that it can be beneficial to follow a constant rotational speed in low

energetic sea state [18]. As last part of the irregular wave numerical experiments,

time domain simulations with a simulation time of 20 minutes, or 1200 seconds are

conducted in every sea state representative of the climate in Leixões, Portugal. The
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performance is investigated based on the time averaged mechanical power

P̄mech =
1

1200− 20

∫ 1200

20

TgenxΩdt. (4.1)

The power results for different incident wave angles are illustrated in Fig. 4.8. The

color shading of the bivariate plots represent the array interaction factor q (compare

Sec. 1.5.1). To obtain the the interaction factor, a simulation model with a single

WEC in all DoF had to be built. The main difference (except, obviously, the missing

WECs and consequently the missing interactions) is that the single WEC does not

use interbody mooring cable, but the same bottom mooring cables with lighter clump

weights. If the power number is written with black font q > 1 and if it is written in

white q < 1. The results show that especially in sea states with higher wave heights

the park performs worse compared to the same amount of isolated WECs. However,

this study does not look into survivability and violating the constraints of the physical

components yet. The nature of the WEC park might be beneficial in regards to a

safe operation.
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Figure 4.2: Decay test for vertically displaced WEC2, with z2 = 3 m.
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Figure 4.8: Average mechanic park power (turbine power) in the wave climate of
Leixões, Portugal. The color/shading indicates the q-factor.
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Chapter 5 Discrete Event Model

The previous chapter showed that different phases of resonance occur within min-

utes in the same sea state. This brings up the idea to implement different operating

regimes, since in low energetic sea states a reference velocity enforcing control al-

gorithm has shown to improve the power capturing [17]. Furthermore, in times of

high WEC response the physical constraints of the components could be violated and

would require an extreme conditions operating regimes. To identify different global

and local operating regimes it requires some kind of of observer and to enable different

controllers it will require a supervisory controller on top of the local controllers.

A supervisory control based on the concept of discrete-event systems (DES) nat-

urally yields a hierarchical structure, due to the abstraction of the lower levels for

the higher levels (compare Fig. 6.5). Furthermore, each level of control causes an

allowable range of operation for the lower levels [45]. The DES itself evolves with the

occurrence of events [44], one example would be if the generator exceeds its maximal

admissible rotational speed. When looking at the state space time domain simulation

model from this perspective, the continuous dynamics between events are unimpor-

tant. The discrete states from the set Q of a DES should not be confused with state

space states with a clear physical meaning. The discrete states rather describe an

operating regime of the WEC. The possible paths of discrete states via events is

illustrated in Fig. 5.1 for the entire (controlled) WEC park.
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5.1 OWC park Automaton

The Automaton Gi describes the discrete event dynamics of the WEC i in the WEC

park, including the local controllers that are designed in Chap. 6. The park Au-

tomaton G is extended from the work of Bratcu et. al., modelling the behaviour of

a wind turbine for safe and optimal operation [2]. Note that the Automaton in Fig.

5.1 is vectorized, i.e. bold face indicates a vector of states or events with each entry

accounting for a single WEC. Clearly, different WECs can be in different states at

the same instance of time. A few uncontrollable events, namely u1, u2 and u4 are

effective globally. The controllable event c3C can only be activated for the WECs

in the client part of the array, thus the state RFSMC can only be reached by such,

since the server array determines the reference velocity. The functional states are all

indicated by the box around them, and identified as,

WT Waiting

S Start

RFSMC Reference following with SMC

IDFB Ideal Feedback control

IDFB HSSV Ideal FB control with HSSV

BRK Break sequence

BRKT Break sequence timer

STOP Stop park

IMF Irreversible mechanical failure

IEF Irreversible electrical failure

Those states describe the possible behavior of an OWC WEC. Note that discrete

states such as vibrations or parametric resonance could be easily included in the
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Figure 5.1: Discrete event model of the WEC park G, including centralized con-
trollers.
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Automaton, but since the developed time domain model is not capable of simulating

such effects, they are neglected. The states contained in the blue trapezoid and

the purple ellipsoid represent the desired behavior of the system will be referred to as

marked states Qm,i. The marked states Qm,i ⊂ Qi model a cyclic working process and

all but the STOP state are the functional states responsible for power conversion. The

STOP state needs to be accessible from all other states, in case of a manual shut down

of the WEC, through the controllable event c8,i. A safe operation of the automaton

is achieved if the catastrophic state IMF and IEF are prevented. Let us define the

desired states QD,i = Qi − {IMFi, IEFi}.

The states inside the red rectangle are states of extreme operation and are only

admissible for a limited amount of time, thus the corresponding timing states. The

overload state OL is not a functional state, in the sense that no controller can prevent

electrical overload once it occurs (all local controllers have protection mechanisms

included to avoid overload, so if OL is reached, the local controller failed).

Let us introduce transition states to model the time for decision making of the

supervisor (here one time step) and to break algebraic loops, since e.g. the position

of the stop valve is used to determine a discrete state, but is also a control output at

the same time. Therefore, the temporary states,

DS Decision state

CF Control failure

FA Failure

TS Transition states

OL Overload state
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are used. The events that the actuators in the WEC can control are called controllable

events Σc,i:

c1 WEC activation

c2 Start power conversion

c3 Enable reference following control (SMC)

c4 Enable Ideal Feedback (FB) control

c5 Enable FB and HSSV control

c6 Disable current controller

c7 Enable break sequence

c8 Manual stop

c9 Emergency stop

c10 Start counting

c11 Continue counting

The behaviour of the discrete model is complete with the uncontrollable events Σu,i:

u1 Enough WEC heave motion (global)

u2 Turbine rotation > min. generator speed

u3 Not enough WEC heave motion (global)

u4 Medium-High WEC heave motion (global)

u5 Low WEC heave motion (global)

u6 Turbine at 90% max. generator speed

u7 Turbine below 90% max. generator speed

u8 Turbine over max. speed

u9 Half of time over max. speed passed

u10 Functional failure

u11 Half of admissible time in overload passed

u12 No suitable controller found
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This yields the set of all events Σi = Σc,i ∪ Σu,i. To describe the transition between

the states in Qi via the events in Σi, the transition function δi : Qi × Σi → Qi is

used. Note, that the event c3C is blocked for the server array. Uncontrollable events

are always enabled to occur. This fully describes the automaton for each WEC

Gi = (Qi,Σi, δi, q0, Qm,i), (5.1)

with the initial state q0 being the STOP state for the entire park.
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Chapter 6 Control Design

The purpose of the control algorithms for WECs is almost always to maximize energy

absorption from the incoming waves, subject to the WEC dynamics and the physical

limitations of the device and the actuators [20]. A challenge for floating OWCs is

that the turbine pressure head versus flow rate is nearly quadratic which implies

that the turbine rotational speed barely affects the hydrodynamic process of the

WEC [5]. Consequently, this work focuses on improving the electro-mechanical energy

conversion instead, while maintaining safe operation, without damaging the actuators

and electric components. This is done with a supervisory controller, which sits on a

higher hierarchical level than the local controller on WEC i. The supervisor switches

between different local control strategies for the control inputs, namely, the generator

torque ugen,i = Tgen,i and the position of the High Speed Stop Valve uHSSV,i = pHSSV,i.

The supervisor also decides if the WEC park is run at a constant base load for the grid

load control input uload = Pload, or if more or less power needs to be transmitted to

the grid depending on the battery state of charge and the current park performance.

6.1 Local Control

In this section the actual numeric values for the control inputs ugen,i, uHSSV,i and

uload are quantified. Every algorithm has protection mechanisms to not to exceed the
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Figure 6.1: Dimensionless turbine characteristics for an open HSSV, with the best
efficiency point indicated.

actuators limitation incorporated.

6.1.1 Feedback Control Law Optimizing Pneumatic Efficiency

Henriques et. al. present an ideal feedback control for the generator torque based on

the instantaneous angular velocity for practical use [30, 29], namely,

uIDFB
gen,i = min

(
abepx

2
Ω,i,

P rated
gen

xΩ,i

, Tmax
gen

)
. (6.1)

It is ideal in terms of the maximization of the aerodynamic efficiency of a fixed

OWC which runs the identical biradial turbine and limited by the physical generator

constraints, namely the rated power P rated
gen and the maximal generator torque Tmax

gen .

To determine the parameter abep at the best efficiency point, let us use Π(Ψbep)
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(compare 6.1) and rearrange the turbine torque equation (2.74),

abepx
2
Ω,i = ρatd

5
turbΠ(Ψbep)︸ ︷︷ ︸
abep

x2
Ω, (6.2)

and use the the atmospheric density as reference density. This generator control will

function as benchmark in the time domain simulation.

6.1.2 Second-Order Sliding Mode Generator Control

In preliminary work different second-order SMC controllers that are tuned for the

OWC array equipped with biradial turbines and the constraint to the maximal torque

are presented [19]. The four algorithms are derived after the example of the funda-

mental work from [35]. For this work the controller with the smoothest control signal

is chosen, a second-order SMC approach with a prescribed law of variance (PLV) that

calculates the generator torque Tgen based on the rotational speed xΩ and its time

derivative ẋΩ to follow a reference angular velocity Ωref. This allows the generator to

operate efficiently in terms of electric energy conversion as soon as there is a pressure

difference in the air chamber. The turbine torque is considered a disturbance for the

SMC algorithm and the maximal expected disturbance needs to be estimated to tune

the control parameters.
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6.1.3 SMC Derivation

Starting with the entire system dynamics (2.81) which are rewritten as

ẋ = f(x(t), ugen, uHSSV), (6.3)

where f satisfies class C1. A real generator is physically constrained to a maximal

value Tmax
gen , thus the dimensionless control input u = ugen/T

max
gen is introduced and

the SMC is designed s.t. it will keep |u| ≤ 1. Let us define the sliding surface in

terms of the control error between the constant reference rotational speed Ωref and

the instantaneous rotational speed,

σ(t,x) = Ωref − xΩ. (6.4)

The sliding variable σ(t,x) is of class C2. The differential operator considering u

constant

Lu =
∂

∂t
(·) +

∂

∂x
(·)f(x,ugen,uHSSV), (6.5)

represents the total derivative with respect to (6.3). Let us define

σ̇(t,x, u) = Luσ(t,x) = −ẋΩ. (6.6)

Now assume there exists a set {t,x, u} : |σi(t, x)| < σ0, where σ0 is called the linearity

region, such that

0 < Km <

∣∣∣∣∂σ̇i∂u

∣∣∣∣ < KM. (6.7)
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With the positive constants Km and KM. Moreover, boundedness of the second

derivative of the sliding surface is required, namely,

|LuLuσi(t, x)| < C0. (6.8)

If the assumptions of the bounded derivatives (6.7) and (6.8) are satisfied, the PLV

algorithm [35] drives σ and σ̇ towards 0 and makes the system dynamics follow the

reference velocity with a smooth control input signal. This PLV algorithm computes

the time rate of change of ui, namely,

u̇i =


−ui, if |ui| > csw,i

−α sgn(σ̇i − g(σi)) if |ui| ≤ csw,i.

(6.9)

The choice of function g(σi) = −λ sgnσi|σi|γ, with λ > 0, 0.5 ≤ γ < 1 and

α >
(
C0 + sup g′(σi)g(σi)

)
/Km (6.10)

is a sufficient condition for convergence to the sliding surface [61]. The switching

variable csw,i limits the area of regular operation, since the control effort is opposed

as soon as |ui| > csw,i. Here, csw,i is used to respect the physical generator constraints,

thus

csw,i = min
(
1, P gen

rated/(T
max
gen xΩ,i)

)
, (6.11)
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and therefore ugen ≤ min(Tmax
gen , P

gen
rated/xΩ,i). After time integration and scaling with

the maximal generator torque the control signal for the generator is obtained,

uSMC
gen,i = Tmax

gen

∫
u̇idt. (6.12)

From the definition of the sliding surface (6.4) and the requirement of σ̇ in the control

algorithm (6.12) it follows that the controller needs knowledge of ẋΩ,i(t) in eq. (2.67)

and therefore the rotational speed xΩ,i(t) needs to be measured as well as the relative

air pressure inside the chamber xp∗,i(t) to use the turbine dynamics to estimate the

instantaneous Tturb,i. An alternative that does not require ẋΩ, namely a super twist-

ing sliding mode controller from [35], is previously proposed, for the Marmok-A-5

equipped with the biradial turbine [17]. But its control signal is less smooth and it

overshoots after the torque limit is reached.

6.1.3.1 PLV Controller Parameters

The numerical values for the controller parameters α, λ and γ, which are based on

the bounds Km, KM and C0, that bound the disturbances, are given in table 4.1 and

the reference rotational speed is

The change rate of (6.6) with respect to the input is

∂σ̇

∂u
=
Tmax

gen

J
(6.13)

and Km = 0.75|Tmax
gen |/J and KM = 1.25|Tmax

gen |/J is chosen. For the second derivative
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let us assume the density of the mass flow (2.63) to be constant, due to the fact that

it only changes slightly when alternating for an inhalation or an exhalation, but it

simplifies the analytical derivation. Consequently,

σ̈ =LuLuσ(t, x) (6.14)

=−J−1

(
∂Tturb

∂t
+
∂Tturb

∂xp∗
ẋp∗+

∂Tturb

∂xΩ

ẋΩ−2BẋΩ

)
︸ ︷︷ ︸

C(x,u)

+
Tmax

gen

J
u̇. (6.15)

To identify the partial derivatives of the turbine torque, the partial derivatives of the

power coefficient Π are required, which finally are a function of ∂Π/∂Ψ, ∂Ψ/∂xp∗ ,

∂Ψ/∂xΩ and ∂Ψ/∂t. Theoretically C(x, u) is radially unbounded, however, with

previous simulation of the park and knowledge of the subspace of the state space that

is reached by the park of OWCs, an upper bound C0 can be computed numerically.

Therefore the expected disturbance that will occur to push the system dynamics of

the sliding surface is estimated. The choice of γ = 0.5 and the combination α = 6

and λ = 8 satisfies the inequality (6.10).

6.1.4 Valve Control

The high speed stop valve (HSSV) can limit or cut off airflow through the turbine

and consequently reduce conversion between pneumatic and mechanical power. This

power shedding is useful in times when the mechanical power would exceed the gen-

erator constraints. Previously, the HSSV is closed entirely when Ωmax
gen is reached [29].

But, the generator efficiency map in Fig. 2.9 indicates that the efficiency ηgen is
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dropping significantly beyond 0.9 Ωmax
gen . Therefore, the HSSV control used here, lim-

its the mechanical power by partially closing the HSSV, which is physically possible

between 0.4 (40% open) and 1 (open), for an efficient electro-mechanical conversion.

A closure > 0 and < 0.4 is physically not possible, since the pressure due to the

restricted cross-area is too low for the HSSV to maintain its position, thus it needs

to be closed entirely. When the HSSV position control is activated a straight forward

proportional-integral (PI) controller with anti wind up structure to maintain 0.9 Ωmax
gen

is used while possible within the HSSV constraints. Let us define the control error

eΩ,i(t) = 0.9Ωmax
gen − xΩ,i(t). (6.16)

The integrators initial condition is one and is reset on every new activation. The

resulting control law in terms of the anti-wind-up cases is,

uHSSV,i =


KpeΩ,i +

∫
KieΩ,i, if 0.4 < uHSSV,i < 1

KpeΩ,i +
∫ (

KieΩ,i −KWU(uHSSV,i − 0.4)
)
, if uHSSV,i ≤ 0.4

KpeΩ,i +
∫ (

KieΩ,i −KWU(uHSSV,i − 1)
)
, if uHSSV,i ≥ 0.9 ≥ 1

(6.17)

Here the constant Kp, Ki , KWU denote the proportional, integral and anti-wind-up

gain, respectively.
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6.1.5 Grid Load Control

The command for the power available for grid transmission uload follows one of three

cases. The first case, thereafter called the default case, outputs a constant power

predefined based on the significant wave height and the peak energy period, which

could be forecasted hours or even days in advance. The second case is a protection

mechanism for the ES. This case is active if the ES cannot store the excess power

of the park, while the default constant power is delivered to the grid. Consequently,

more than the default power needs to flow into the grid and it will never get the

ES full. This yields two conditions for the second case: The ES is almost full AND

the current WEC motion response is high. The last case is activated when the ES is

almost empty (close to its lower threshold of the effective storage) AND the current

WEC motion is low, consequently the WECs cannot meet the default grid load.

uload =


P grid

base(Hs, Tp) default

P grid
base(Hs, Tp)

(
0.1

1−xSOC
− 1
)

xSOC ≥ 0.9 & z̄RMS
server ≥ 1

P grid
base(Hs, Tp)

(
10xSOC − 1

)
xSOC ≤ 0.2

(6.18)

Here, the base load is a function of the very first equation in this thesis. Namely,

the theoretical wave energy Pw per meter wave crest (1.1), with an assumed wave to

wire efficiency of 30% and the buoys diameter dp as reference length, but limited to

85 kW. This yields,

P grid
base(Hs, Tp) = min

(
0.3dpPw(Hs, Tp), 85e3

)
. (6.19)
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The resulting grid base loads are illustrated in the scatter plot in Fig. 6.2. Note,
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Figure 6.2: Grid base load P grid
base(Hs, Tp) depending on the significant wave height and

the peak energy period for the grid control.

that the load in the last case in (6.18) is zero if xSOC = 0.1, thus it prevents the

charge from falling significantly lower. The conditions could be realized with a fuzzy

logic, but in this work a supervisory control approach is used, since the global state

of charge and the respective WEC motion are used to determine the event discrete

park state.

6.2 Reference Speed Generation

A main take-away from a study leading up to this work is that for low sea states better

power conversion is achieved if the turbine/generator set follows a constant reference
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speed [18]. The reference speed needs to be appropriate for the available energy in

the waves. Originally, the reference speed was set to the average rotational speed

previously obtained from the simulation with the Ideal FB control law (6.1) for each

sea state. The power gains can be explained with the inertia of the turbine/generator

set, that have been assumed to be zero when deriving (6.1). In this work an extended

idea is pursued. Instead of a constant reference rotational speed, a time varying

reference is allowed, but the reference signal shall have less frequent changes compared

to the rotational speed that would be achieved with the Ideal FB control law. With

the information gathered between the server array WECs 2,4 and 5 a reference signal

can be computed online, which is guaranteed to be met wit the available wave energy.

The server array has a wave estimator and reference speed generation algorithm on

board to share the information with the client WECs.

6.2.1 Wave Estimator

The wave estimator in this work it not required to obtain detailed information about

the ocean waves, instead its main goal is an estimate for the incident wave direction

θest and an estimate for phase velocity vp,est (compare (1.6)) over the last approxi-

mately 100 seconds. The estimates are based on the time difference between signif-

icant wave troughs measured at the buoys of the server array. The condition for a

wave trough candidate is

ηtr(ttr) = η(ttr) < 0 AND
(
η(ttr)− η(ttr−1)

)
< 0. (6.20)
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Here ttr ∈ R3 is the vector of time instances when a trough is at the respective buoy

from the server array, namely WEC2, WEC4 and WEC5. The time step before the

condition is satisfied is ttr−1 . The time difference between WEC2 and WEC4 and

WEC5 and WEC4 is of interest, thus

∆t42 = ttr(2)− ttr(1) (6.21)

∆t45 = ttr(2)− ttr(2) (6.22)

However, due to the irregularity of the waves sometimes the condition is satisfied

shortly after the first one, if two local troughs follow each other (see Fig. 1.6 at 30

seconds). Therefore, ∆t42 and ∆t45 are only accepted if they are larger than 1 second.

The one second is an estimate based on the minimal distance a wave has to travel

between the first two WECs and WEC4, namely (
√

3/2)ds and the maximal expected

phase velocity, based on Tmax
p = 14 s. Now, based on simple geometry within the

equilateral server triangle array, the relation

0 = sin
(
60◦ − θest

)
− ∆t42

ds

vp,est (6.23)

0 = cos
(
30◦ − θest

)
− ∆t45

ds

vp,est (6.24)

holds when assuming a plane wave. Here, the distance between the WECs is assumed

to be constant, since the entire park moves together horizontally, as shown in Chap. 4,

thus ds is used. The equation system (6.23) is solved in MATLAB/Simulink for

θest and vp,est using the Algebraic Constraint block. Lastly, the frequently occurring
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guesses are low pass filtered with a first order transfer function with time constant

τest = 30 s,

θ̃est(t) =
(
1− e−t/τest)θest(t) (6.25)

ṽp,est(t) =
(
1− e−t/τest)vp,est(t) (6.26)

The resulting estimates over time for the wave used in Sec. 4.3 is illustrated in Fig. 6.3.

Recall, the incident wave angle used is θ = −15°, which is successfully estimated after

approximately 100 seconds.
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Figure 6.3: Time evolution of the estimated incident wave angle and the estimated
phase velocity

6.2.2 Delayed and Smoothed Reference Rotational Velocity

Now, let us obtain the distances a plane wave needs to travel between the server

WEC2 and its client WEC1 and WEC3 and between server WEC5 and its clients



125

WEC6 and WEC7. Again, the assumption that the horizontal distance between two

distinct WEC does not change significantly compared to their initial distance holds,

thus

dest(t) =



d12(t)

d32(t)

d65(t)

d75(t)


= ds



cos
(
30°− |θ̃est(t)|

)
√

3 cos
(
|θ̃est(t)|

)
√

3 cos
(
|θ̃est(t)|

)
cos
(
30° + |θ̃est(t)|

)


. (6.27)

Together with the estimated velocity of the wave this yields the time delay for the

reference turbine velocity,

τ ref(t) =



τ12(t)

τ32(t)

τ65(t)

τ75(t)


=
dest(t)

ṽp,est(t)
. (6.28)

The instantaneous turbine rotational speeds from WEC2 and WEC5 are delayed so

that after τ ref(t) the delayed reference velocity reaches 95 %, with help of a first order

time varying state space system,

ẋref
Ω (t) =



3/τ12(t)

3/τ32(t)

3/τ65(t)

3/τ75(t)


xref

Ω +



1 0

1 0

0 1

0 1


xΩ,2

xΩ,5

 . (6.29)
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Furthermore, the delay yields natural low pass filtering. This smooths out the high

frequency turbine acceleration, which happens every time the air flow alternates.

Consequently, the air pressure does not need to overcome the inertia of the tur-

bine/generator at the high frequency, but can be opposed by the generator torque

directly, improving the electro-magnetic energy conversion. The state space system

for the reference speed is only activated when reference following is required, thus the

initial condition is reset and set to the momentous rotational speed of the respective

turbine. The last step is to decrease the reference rotational speed by 20% from its

delayed states,

Ωref =



Ωref
1 (t)

Ωref
3 (t)

Ωref
6 (t)

Ωref
7 (t)


=



0.8

0.8

0.8

0.8


xref

Ω (6.30)

Note that this constant value is arbitrary and it is chosen to ensure that the power flux

in the diffracted wave is enough to reach the reference when hitting the client WECs.

The resulting reference rotational velocity for server WEC2 and its client WECs is

illustrated inf Fig. 6.4. The reference following system is not active whenever Ωref is

constant, because the conditions for reference following are not met. The decision if

the conditions are met is in the hand of the supervisory control system.
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Figure 6.4: Turbine angular velocity from WEC2 and the generated reference velocity
signal for WEC3.

6.3 Supervisory Control

To constrain the behavior of the previously presented Automaton in Chap. 5, Fig. 5.1

which describes the discrete event dynamics of the WEC park a standard supervisory

control approach is used [45]. The approach is combined with some elements presented

for the work on wind turbines [2]. Ultimately, the supervisor Si is a discrete event

Automaton Ti, driven by the states of the WEC park plant Gi, with an output map

ψi, that imposes the predefined behavior onto Gi through a control action γi, as

illustrated in Fig. 6.5. Let us name the desired Automaton

Di = (QD,i,Σi, δi, q0, Qm,i). (6.31)

A language of an Automation is the (infinite) set of sequences of events along its path

(see paths in Fig. 5.1). The general language of Gi shall be denoted L(Gi) and the
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State Transition 𝝍𝒒 ∈ 𝑸
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𝒙 = 𝑓(𝒙,𝒖)

Drive events𝜮

Figure 6.5: Hierarchical structure of the supervisory controller, managing the opera-
tion regime of the WEC park. The supervisor is driven by time continuous variables
from the WEC park that trigger discrete events.

language of the behaviour over the marked states Lm(Gi). The language through the

marker states Qm, controlled by Si in Gi is

Lm(Gi, Si) = Lm(Gi) ∩ L(Gi, Si). (6.32)

This is the language of the desired closed loop system.

6.3.1 Controllability and supervisor formal design

Now, let the language of the desired behavior of Automaton Di be denoted Ki. Gener-

ally, the aim of the supervisor is not to modify L(Gi) itself, but to achieve the desired
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language Lm(Gi, Si), while maintaining the nonblocking behaviour. The necessary

condition for this language controllability [[45], prop. 4.1 ] are restated in

Proposition 1 Fix a nonblocking Automaton G with closed language L(G) and marked

language Lm(G).

1. For nonempty K ⊆ L(G) there exists a supervisor S such that L(G,S) = K iff

K is prefix closed and controllable.

2. For nonempty K ⊆ Lm(G) there exists a supervisor S such that Lm(G,S) = K,

and the closed loop system is nonblocking iff K is controllable,

and K̄ ∩ Lm(G) = K

Furthermore, K is controllable if

K̄Σu ∩ L(G) ⊆ K̄. (6.33)

Here, K̄ denotes a prefix of K. Therefore, (6.33) requires that any previous sequence

of events in K if followed by an uncontrollable event u, needs to be be a prefix of

another sequence in K. This makes K̄ invariant under control action of Σu. Clearly,

due to the desired cyclic behavior of the designed supervisor Di, this condition is

satisfied. The Automaton Gi can always be pushed back into a sequence of events

in Ki and furthermore, as the marked states are part of Di, Ki is Lm(Gi)-closed,

satisfying the second condition in proposition 1. Consequently, the supervisor can

be realized with (Ti, ψi). The difference to, for example, a Markov Decision Process

is that the WEC park dynamics under the local controllers are not stochastic and
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Continuous Discrete state

rot. speed
xΩ,i

(1)
[0; 0.025)

(2)
[0.025; 0.9)

(3)
[0; 1)

(4)
≥ 1 ×Ωmax

gen

valve pos.
uHSSV,i

(1)
= 0

(2)
[0.4; 1)

(3)
= 1

elec. power
Pelec,i

(1)
≤ −1

(2)
(−1; 1)

(3)
≥ 1 ×P rated

gen

array motion
moving RMS

(1)
[0; 0.2)

(2)
[0.2; 0.4)

(3)
[0.4; 1)

(4)
≥ 1

battery charge
xSOC

(1)
[0; 0.1)

(2)
[0.1; 0.2)

(3)
[0.2; 0.9)

(4)
[0.9; 1)

Table 6.1: Discrete Event Observer

specifying the language Ki after the paths identified in Fig 5.1 prescribes the desired

closed loop behavior.

6.3.2 State Observer

The Automaton Ti , which is a component of the supervisor Si functions similar to

an observer, namely, it uses the state space states to detect the current discrete event

state qi ∈ Qi. It is at this stage where knowledge about the system is incorporated

into the numeric values that function as threshold. The first three rows of Table 6.1

are taken for each WEC i, whereas the last two rows are global states. The extreme

values originate from the physical constraints. The intermediate intervals for the

rotational speed intervals are determined due to the efficiency of the generator Fig.

2.9. It has to be noted that the values for the array motion which is based on the mean
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moving average root-mean-square (RMS) heave position of the three server WECs is

somewhat arbitrary, but based on the observations of the time domain simulation

model power generation capabilities.

6.3.3 Decision Maker

All five states detected in Table 6.1 are used to construct the state transition function

ψi for the supervisor Si of WEC i (compare Fig 6.5). Here, ψi is a 5-tuple, with the

respective dimension for the inputs, i.e. Z4×3×3×4×4. The state transition function is

constructed before the simulation for every WEC i to implement a mapping from the

discrete state qi to a control action, based on the cyclic behavior originating from the

design of the controlled Automaton in Fig. 5.1 and its prescribed language Ki. If no

new discrete event occurs, there is no change in the discrete state and consequently

no new control action. The only difference between server and client array is that

instead of activating c3C , the supervisor will force the WECs in the server array to

activate c4. The consequence of reaching a state with no predefined control action is

c9, the stop of the WEC.
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Chapter 7 Control Simulation Results

The time domain simulations are conducted with MATLAB/Simulink using the fixed

time step Euler (ode1) solver because of the solver’s reliability when handling discon-

tinuous dynamics (∆t = 0.001s). The discontinuous dynamics arise because of the

switching nature of the SMC reference following control and the switching between

different local controllers through the supervisor.

7.1 Detailed Irregular Wave Simulations

To illustrate the effectiveness of the proposed control architecture, the same sea state

as in Chap. 4 is used with the same random wave created with the PM spectrum.

Recall, the significant wave height is Hs = 2m and main energy period is Tp = 10s.

The simulation is conducted over 1200s simulation time to go through different phases

of WEC response. The detailed time evolution of important quantities from server

WEC2 and client WEC3 are illustrated in Fig. 7.1 as an example. Clearly, the

free surface elevation in the first plot is identical over the first 400 seconds as in

Fig. 4.5 and so is the heave displacement of WEC2 ẑ2 (as expected ẑ3 is similar,

but shifted in time). Therefore, the quantities like the horizontal and rotational

displacements are not pictured. Instead, the focus is on the system states which define

the control algorithms outputs and are vice versa impacted by the control feedback.
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Figure 7.1: Time series simulation results for the (server) WEC2 and the (client)
WEC3, in a random wave with Hs = 2m and Tp = 9s.
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The rotational speed of the turbine/generator set is illustrated in the third plot of

Fig. 7.1. Here, the rotational speed of the client WEC3 (in dashed blue) differs from

xΩ,2 (in solid dark blue) when the reference following control is active. The reference

following is active when the server array heave motion response is low (and if there

is enough charge in the battery to input power into the client WECs). The resulting

supervisor control output for WEC3 equals the value 6, which is illustrated in the six

row of Fig. 7.1. During those time intervals the respective generator control torque

ugen,3 in the fourth row seems to chatter. However, recall that the generator dynamics

are much faster then the hydrodynamics and the 2nd order SMC signal is smooth

in the order of a second, as shown in the more detailed studies [18, 19]. However,

the continuing alternation between high and small control torque decreases the peak-

2-average power ratio, but the electromagnetic energy conversion is forced to be at

higher efficiency. The rotational speeds never exceed 0.9 Ωmax
gen (dotted), therefore the

HSSVs of both WECs are open the entire time (after it is initially opened, see fourth

row). The WEC park meets the constant grid base load and has excess power to

continuosly increase the battery state of charge. When xSOC gets closer to one the

grid load uload is increased so that xSOC < 1∀t. Note that the efficiency assumed

for the base load was not sea state dependent and the parks natural frequency of

the park is close to Tp = 9s, therefore the wave-to-wire efficiency is higher compared

to other sea states and the base load should be higher based on the newly gathered

knowledge. Now, let us investigate the supervisor performance for a more energetic

sea state, to evaluate if the protection mechanism work as they are designed to do.

For this purpose a random wave with Hs = 4m and Tp = 9s is used and the results
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Figure 7.2: Time series simulation results for the (server) WEC2 and the (client)
WEC3, in a random wave with Hs = 4m and Tp = 9s.
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are presented in Fig. 7.2. The main difference to the previous wave case are, first,

that the reference following control is activated less, because of the generally higher

server array motion. Second, the rotational speed exceeds 0.9 Ωmax
gen (dotted), but with

the partial closure of the HSSV (illustrated in the fourth row) to rotational speed is

successfully kept below Ωmax
gen (dashed). Last, in the beginning of the simulation the

park is not capable of delivering the constant base load, which is now higher due

to the theoretical higher wave energy, see Sec. 6.1.5. As a consequence, the load is

decreased to not drain the battery too much. The initial SOC is the same for all

simulation runs. Fig. 7.3 presents the same simulation run, but only the time interval

from 400 s to 800 s is illustrated. Consequently, the HSSV action becomes visible.

Namely, the partial closure when the turbine/generator set is accelerating followed

by entirely opening as soon as the rotational speed is back under 0.9 Ωmax
gen . The

control action uHSSV,3 is higher than uHSSV,2, as is the average rotational speed Ω3

of the client WEC, resulting from the higher heave motion ẑ3 response. The higher

motion response is not control related, but due to the hydrodynamic interactions.

7.2 Average Power Results

This section presents average mechanical power and average electrical (AC) power

simulation results. However, the focus is not on the absolute achieved values, but

on the qualitative results when compared to the Ideal FB control law that has been

used together with HSSV protection mechanisms in Sec. 4.3. Again, a power value

in black illustrates a higher or equal power value when compared to the Ideal FB
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Figure 7.3: Time series simulation results from 400 s to 800 s for the (server) WEC2
and the (client) WEC3, in a random wave with Hs = 4m and Tp = 9s.



138

and a white font indicates less power, respectively. The main takeaways from the

mechanical power results, illustrated in Fig. 7.4 are first that the annual mechanical

power increase through supervisory control is insignificant with about 0.4%. Second,

the supervisory controller spends more energy than energy is transferred to the tur-

bine, in the very low energetic sea states (Tp = 4 s to 5 s). Consequently, the WEC

park should not be run with reference following mode enabled in the low energetic sea

states. The color/shading of the average electric park power indicates more improve-

ment compared to the mechanical power. This especially holds for the low-medium

energetic sea states. Also, when looking at the number of sea states with black power

values it becomes evident that the supervisor improves the wave-to-wire energy con-

version in most sea states. However, the annual improvements are still only just short

of 2%, which was to be expected, since the Spar-buoy type WECs dynamics are not

significantly altered by the turbine and chamber dynamics.
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Figure 7.5: Average park electrical power for the supervisory control in the wave
climate of Leixões, Portugal [43]. The color/shading indicates the comparison to the
Ideal control law.
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Chapter 8 Conclusion

The main contribution of this work is the detailed control oriented state-space sim-

ulation model. A version of the model which is restricted to heave motion is the

foundation of five graduate students research. In the MATLAB/Simulink environ-

ment all signals and functions are generalized and vectorized such that new physical

array configurations can be emulated conveniently when the necessary hydrodynamic

coefficients are available and adjustments to the mooring configuration are made. As

shown, the limitations of ANSYS Aqwa can be overcome with interpolation between

different BEM results as part of the post-processing. The extended wave-to-wire

model considering all degrees of freedom, which is presented in this thesis, proves

that the preferable separation distance of 30 m is admissible with the used shared

mooring configuration, without WEC collision. The average park interaction factor

is lower than one, meaning that the park converts less power compared to the same

amount of devices if they were isolated. However, the shared mooring configuration

saves 66% of the mooring cable compared to individually moored WECs, which saves

initial cost.

The WEC control inputs, namely the generator torque and the valve position have

little to no impact on the hydrodynamic process of the floating Spar-buoy WEC,

therefore it is difficult for a controller to improve the wave to device interactions.

The relative pressure in the air chamber crosses zero about every WEC oscillation
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period, due to the inhalation and exhalation. Consequently, maintaining the best

efficiency of the self rectifying turbine at all times is impossible with the alternating

air flow. There is the potential to maintain an ideal pressure head for longer by using

the valve, but this comes with the downside of shedding power and decreasing the

turbine efficiency.

This thesis focuses on the efficiency of the electromagnetic energy conversion as

the leverage point for power improvement in different operating regimes. For times of

low WEC - wave resonance a generally lower reference turbine velocity is prescribed

from the server WECs to the client WECs. In times of high WEC-wave response an

algorithm to shed power is used not only to physically protect the components, but

to maintain a high generator efficiency. While this especially improves the average

power in low energetic sea states, the annual electric power improvement for the sea

climate in Leixões, Portugal is about 2%.

The implemented classical supervisory control approach ensures safe operation

of the park with switching between different local controllers and it has emergency

shut down options to protect the components. The supervisor is global in the sense

that it uses global knowledge about the wave field and the WEC response, obtained

from the server array performance, to make decisions for the client array. Although

the proposed controller only improves the annual electric power conversion by 2%,

it shows potential for investigations with different local controllers, optimized for

different operating regimes. Furthermore, there is potential for the application of

the standard supervisory control approach in Wave Energy in general, due to its

adaptability to different WEC types and incorporation of safety mechanisms.
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Unless Spar-buoy OWC WECs are equipped with additional actuators (mechani-

cal solution), it is unlikely that even a globally optimal controller that takes all park

interactions into account significantly improves power capturing, compared to the

existing methods.
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Chapter A Added Mass Numeric Values

The numerical values for the added mass matrices in (3.1) are stated below. The

highest added mass values are due to the acceleration for the bodies itself, represented

by

A∞ii ≈ A∞11 =



637580 −7 3 −118 2657400 −265

−10 637600 −77 −2657200 87 −49

−21 −84 23748 −905 253 0

−96 −2657300 −798 79131000 1196 193

2657600 88 −12 993 79127000 −1462

−263 −48 −0 201 −1487 1


. (A.1)

The first cross-body interactions are taken into account with

A∞ij ≈ A∞12 =



−1548 −1519 −59 1507 −2063 1

−1533 214 −35 298 −1532 1

−247 −142 14 28 −57 0

1326 358 −129 −5358 38690 −1

−1892 −1324 224 38639 −49999 2

0 0 0 −1 2 −0


. (A.2)
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The cross-body interactions in opposite direction is qualitatively similar, but note the

change of some signs,

A∞ji ≈ A∞21 =



−1545 −1530 60 1551 −2086 0

−1518 215 34 315 −1531 0

246 143 14 −41 62 −0

1321 361 128 −5321 38570 −1

−1900 −1338 −225 38660 −49941 2

1 0 −0 −1 2 −0


. (A.3)

The next matrix,

Abp,∞
1 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

6883 0 0 0 0 0 0

−223 260 260 260 0 0 0

−381 −448 −448 −448 0 0 0

0 0 0 0 0 0 0


, (A.4)

is one example for the effect of piston motion on a buoy. For different WECs the

nonzero entries of Abp,∞
1 will be at the respective location conforming the interactions
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distance cut-off. The same holds for the

Ap,∞
b1

=



−752 584 3491 −547 0 0

0 0 0 225 1037 0

0 0 0 225 1037 0

0 0 0 225 1037 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, (A.5)

where the entries represent the added mass to all the pistons, due to the motion of

the first buoy in six DoF. The piston-piston interactions clearly show the interaction

distance cut-off structure,

Ap,∞
77 =



14928 −32 −32 −32 0 0 0

−32 14928 0 −32 −32 0 0

−32 0 14928 −32 0 −32 0

−32 −32 −32 14928 −32 −32 −32

0 −32 0 −32 14928 0 −32

0 0 −32 −32 0 14928 −32

0 0 0 −32 −32 −32 14928



. (A.6)
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