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This Thesis aims to determine whether we can improve the accuracy, resolution,

and speed of calculations for common power system problems using simple com-

putational models that scale well to machine learning and high performance com-

puting solutions. The second chapter of this Thesis implements more precise aging

and degradation models for power grid equipment for a more precise Contingency

Analysis. Contingency Analysis, a widely used reliability metric in the grid, deter-

mines whether a single (or multiple) transmission or generator outage will place

the grid in an unstable state. After the aging models are defined, aging related fail-

ure rates of the models are integrated into the grid by constraining power limits.

Contingency Analysis experiments are then performed, determining whether in-

creasing the age of the grid will increase the number of contingencies on the grid.

This effectively defines Contingency Analysis simulations that are more robust

with respect to deterioration of equipment, traditionally ignored in this type of



simulation. The third chapter applies Critical Slowing Down, a statistical method

that can be used as a feature engineering technique, the process of extracting key

properties of data, to Phasor Measurement Units (PMU). In this case, Critical

Slowing Down has been shown to be indicative of critical transitions in power sys-

tems data. Critical Slowing Down analysis is applied to the data to enhance the

training time, accuracy, and time localization of Artificial Neural Network classi-

fication of events on the grid, by allowing easier localization of critical transitions.

The fourth chapter compares GPU architectures and CPU architectures for the

implementation of widely used machine learning algorithms for PMU data. GPU

architecture leverages mass parallelization, which is useful for many complex algo-

rithms. However, CPU architecture is much faster for serial processes, which many

of the algorithms are also based upon. Many of these algorithms contain some mix

of serialization and parallelization, making it generally unclear on whether CPU

architecture or GPU architecture is more applicable for the algorithm at hand.

This chapter compares the computational performance of GPU architectures and

CPU architectures of commonly used machine learning algorithms for PMU data.

The dataset sizes are varied for each of the algorithms determining whether CPU

architectures or GPU architectures scale better for large datasets.
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Chapter 1: Introduction

The electric grid is one of the most important infrastructure networks in the United

States and will be of even greater importance in the near future. Communities are

becoming more reliant on electricity making the electric grid critical to protect.

Residences and commercial buildings are now using electricity as the main energy

resource over gas and oil. Transportation is becoming more reliant on electricity,

with vehicles and even railways transitioning toward electricity rather than fossil

fuels. Forecasts show that electric energy usage will increase if electrification of

industries is highly incorporated in the near future, even with more tightly con-

trolled energy efficiency measures [38]. People are now more connected than ever

with smartphones and other personal computing devices, allowing for long distance

communication. Many tedious tasks are being automated and many tools that are

being used by industries are directly connected to electrical devices. Without

reliable electricity distribution, our healthcare system, economy, and daily lives

would become much different than it is today. For example, particular events like

a global pandemic would highlight our reliance on reliable electricity distribution.

Widespread power outages could block communication between governments and

their people, which could exacerbate the situation. Additionally, Healthcare fa-

cilities and transportation may not be able to supply those in need with supplies

and services in time. Without reliable electricity distribution, many situations
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in modern life would be difficult to comprehend. This reliance on electricity will

only increase, as many upcoming industries and software tools are heavily driven

by it. For example, Figure 1.1 shows that training a huge AI model with neural

architecture search for long periods of time can take the five times the amount of

energy (measured in CO2 emissions) as a car in its entire lifetime [47].

The grid is also a physical system of thousands of electrical components that

are subject to weathering and failure. Similar to any other system, the grid’s in-

dividual components will eventually fail, placing additional stress on the electric

grid and possibly causing it to become unstable. In extreme cases a transmission

line or some other equipment failure will cause additional stress on other equip-

ment, leading to a chain of component failures across the grid. This is known as a

cascading failure, and can lead to outcomes such as blackouts. For reference, one

of the larger blackouts, the Northeast US blackout, cost over $5 billion to the US

economy [2].

The electric grid is also the largest interconnected system in the United States,

connecting residences, industries, and other facilities directly or indirectly to dis-

tant electricity generation plants. This grid is composed of thousands of transmis-

sion lines, transformers, generators, and other devices that allow the electricity to

be produced, to flow across wide areas, and to be transformed into usable power

levels based on the consumer’s needs. However, this system is much more complex

than the network alone. The grid will become unstable if there is more gener-

ated electricity in the grid than electricity demanded or vice versa. Additionally,

the grid is not owned by a single entity. Rather, the grid is maintained region-
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Figure 1.1: Benchmarking of AI CO2 emissions compared to lifestyle CO2 emissions
[47]

ally be various utilities and thus is deregularized. Order 888 made transmission

services open access, which effectively split transmission services and generation

services [12]. Additionally, Order 2000 formed Regional Transmission Organiza-

tions (RTOs), such that all utilities within an RTOs region must act accordingly

to their RTO [13]. As a result, individual utilities want to ensure that their gener-

ation or transmission is online to maximize profits, but had to act accordingly to

their RTOs. Furthermore, the RTOs have to communicate between each other as

well as the grid is still interconnected between RTOs. These issues create an even

more complex network, especially at the communication level.

Due to the complexity of the network, Extensive precautions and research have

been and are being done to reduce the likelihood that the electric grid becomes

unstable, leading to a blackout. Reliability metrics, such as contingency analysis

(CA), are used in facilitation of the grid, alongside verifying the current stability
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of the grid. These reliability metrics are critical for scheduling planned outages

(such as scheduling a transmission line outage for construction) and to ensure that

an unplanned outage won’t lead to unstable conditions on the grid. Additionally,

the rise of Phasor Measurement Units (PMUs) provide real-time data of the cur-

rent state of the grid. This data consists of voltage, current, frequency, and rate

of change of frequency. The PMU data can be leveraged using various machine

learning or AI algorithms, which help detect outages and other grid instabilities.

The overall hypothesis of this work is: Can we improve the accuracy, resolu-

tion, and speed of calculations for common power system problems using simple

computational models that scale well to high performance computing and machine

learning solutions?

This thesis expands upon CA and utilize PMU data to reinforce the grid from

instabilities. In chapter 2, we develop aging models for equipment and adjust the

grid state by reducing power limits according to the progressively aged equipment.

This adjusted grid state is then input into an AC Optimal Powerflow (AC-OPF)

CA simulation, determining whether age is a factor in the number of contingencies

in the CA and giving us a more robust CA simulation.

In chapter 3, we utilize PMU data using Critical Slowing Down (CSD), a sta-

tistical metric that has been shown to be indicative of Power System instabilities,

and artificial neural networks (ANNs) to detect anomalies within the grid.

In chapter 4, we explore GPU computing of common algorithms used in power

systems and compare them to their CPU alternatives. Algorithm efficiency is

critical in power system data as data is sampled at high frequencies. Algorithms
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that lag behind this frequency may cause the algorithm to detect instabilities too

slowly to allow timely maintenance. This chapter will serve as a benchmark, help-

ing operators determine the best hardware setup and algorithm implementations

for their controls by comparing and contrasting CPU implementation and GPU

implementations of algorithms that are commonly used in power system data.
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Chapter 2: Grid Reliability: Equipment Degradation Modeling

As more communities become increasingly dependent on electrical power demand,

reliable distribution of power has become vital to our society. The margin for op-

erational errors in the energy delivery infrastructure is very small. Over a decade

ago, the 2003, the Northeast US blackout cost over $5 billion to the US econ-

omy [2]. A blackout of similar magnitude today would be a catastrophic event to

our economy. Smart Grid technologies play an important role in preventing black-

outs by incorporating improvements in communications, cyber attack resilience,

and implementing energy storage facilities [4, 6, 45]. However, these technologies

cannot completely solve reliability issues of the grid. The components of the grid

have finite lifespans and internal or external forces can damage the equipment.

Extensive research has been done to evaluate the effects of aging, weather, and

correlated outages on power grid equipment [8, 11]. Some of these effects may

deteriorate components to the point that they are not stable at their maximum

or minimum ratings, posing a threat to the stability of to many commonly used

reliability metrics, such as Contingency Analysis (CA).

CA is a widely accepted system study that facilitates managing the grid. CA

determines how likely a tripped transmission line could lead to cascading failures

in the system. Currently, the most common types of contingency violations are

either voltage violations or MVA limit violations [35]. Aged or deteriorated electri-
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cal components may not be able to tolerate their absolute maximum load ratings,

which impacts the validity of a contingency violation. To resolve this, previous

research has created probability models for thermal aging and other stress vari-

ables to screen buses with high probability for failure, creating better alerts for

contingency failures [10]. This chapter expands upon these aging models by intro-

ducing models for multiple types of equipment that include individual components

of each piece of equipment. The models are then integrated into CA by adapting

generator and branch power limits in the simulation.

2.1 Background and Motivation

CA is widely applied to manage power load within the grid and provides insight

on whether a branch or generator outage, or another contingency, puts the grid

at an unstable state. An N − 1 contingency represents a generator or branch

outage that leads to an unsolvable power flow solution. It is paramount to avoid

N − 1 contingencies propagating into a cascading failure. For this reason, to en-

sure N − 1 security, more extensive analyses have also been developed, helping to

get a better perspective on the state of the grid simulating additional failures, for

example N − 1− 1 contingencies, and N − k contingencies. Due to the computa-

tional complexities of these problems, previous research has investigated ways to

improve power flow convergence, speed of power flows solutions, and various CA

improvement techniques [19, 31,50].

Although improving the speed of CA is important to allow higher order CA,
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these methods fail to account for other factors that may be placed on components,

namely component deterioration due to weathering and aging, and disproportion-

ately contribute to risk. As alluded to in the introduction, components can be

placed in poor condition due to weathering, aging, or past correlated outages.

This chapter explores models for transformer, generator, and transmission line ag-

ing and implements them into CA. The models for these equipment are based on

research toward aging related failure causes of the equipment and their compo-

nents, shown in the subsections below.

2.1.1 Transformers

Transformers are critical components that link the distribution network to the

transmission network on the grid, so modeling the aging of transformers can be

critical in predicting an outage for sub-networks connected in between those trans-

formers.

2.1.1.1 Bushing Insulation

The remnant life of the transformer has a strong exponential relationship with

furanic compound presence in transformer oils. Furanic compound presence in

transformer oils is caused by insulating paper degradation and is accelerated from

faults [3]. This reference also notes that applying voltages above the transformers’

rated limits and temperatures also contribute to transformer bushing deterioration.
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2.1.2 Generators

Previous research has shown that when generator stator insulation becomes weak,

the generator becomes prone to mechanical and electrical failures. We examine

and integrate three models of High Voltage generator insulation failure:

2.1.2.1 Electrical stress

Electrical stress has a direct correlation with generator insulation failure. A com-

mon relationship between insulation life of dielectrics and electrical stress is given

below:

L = KE · E−CE (2.1)

where L is the insulation life, E is a given electrical stress, and KE and CE are

constants [46].

2.1.2.2 Mechanical stress

Mechanical stressors, such as vibrations, create mechanical defects in the insula-

tion. The pattern for mechanical stress also follows a power law:

L = KS · S−CS (2.2)

where L is the insulation life, S is a given mechanical stress, and KS and CS are

constants [46].



10

2.1.2.3 Thermal stress

Electrical and mechanical stressors are amplified by thermal stress, which depends

on the thermal expansion coefficient and the temperature of the insulation. Re-

search has found a simplified Arrhenius model that that combines electrical and

thermal stress:

L(T,E) = KE(T ) · E(−CE(T )) · e(B
T

) (2.3)

where L(T,E) is the insulation life dependent on temperature (T ) and electrical

stress (E), KE(T ) is a scalar related to temperature, CE(T ) depends on tempera-

ture, and B is a constant related to the activation energy of the aging process.

On the other hand, the amount of mechanical stress that the generator stator

insulation can withstand is linearly related to the temperature [44]. The slope of

this linear relationship is correlated to the insulators’ thermal expansion coefficient,

α. Adding these relationships into equation two gives us the following combines

thermal-mechanical equation:

L(T, S, α) = KS(T, α) · S−CS(T,α) (2.4)

Where L(T, S, α) is the insulation life dependent on Temperature (T ) and the

thermal expansion coefficient (α), along with mechanical stress (S). KS(T, α) is a

scalar related to temperature and the thermal expansion coefficient, and CS(T, α)

is a function of T and α determining the slope of exponential deterioration.
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2.1.3 Transmission Lines

Transmission line conductors lose strength due to annealing over time and the in-

sulators can also degrade over time, exposing the transmission line to more adverse

external factors [7]. Both factors affect the transmission line aging model.

2.1.3.1 Conductor loss of tensile strength

Conductors in transmission lines are prone to aging from high voltages and ther-

mal loads due to high power transfer. At high temperatures, the strands in the

transmission line’s conductor will elongate and lose strength [7]. These losses in

strength slowly decrease the transmission line’s maximum load over time, possi-

bly leading to failure under high load conditions. It has been observed that the

emissivity of the conductor grows over time and the percent loss of tensile strength

increases grows over time polynomially with a polynomial degree less than one [7].

It has also been observed that a higher temperature increases the rate at which

the tensile loses strength [7]. Existing research has explored a model that relates

the loss of tensile strength to a safety factor, SF , which indicates whether or not

the loss of tensile strength places the transmission line in critical condition [24]:

SF =
RTS · (1− LOS

100
)

MWT
(2.5)

Where RTS is the transmission lines rated tensile strength, LOS is the loss of

tensile strength, and MWT is maximum working tension under worst case load
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conditions.

2.1.3.2 Insulation loss

Insulation loss of transmission lines make the electrical components of a transmis-

sion line prone to failure due to external factors. To determine the deterioration

of insulation in transmission lines, the tangent of the loss angle has been widely

used [5]. The loss angle shifted from 90◦ indicates a loss of insulator resistance,

which influences dielectric losses [5]. A field study was explored determining the

rate of loss angle shift over a 30 year period for 15 transmission lines. The results

were consistent and nearly identical for each transmission line, each exhibiting and

exponential increase of loss angle over the 30 year time period. An important find-

ing from this study is that the applied voltage has minimal effect on the loss angle

increase over time, indicating that the insulator predominantly ages from external

factors [5].

2.2 Methodology

Using the research that describes individual component aging, as discussed in Sec-

tion II, we propose a comprehensive model in this section, and a framework to

integrate it into CA. This model then considers the multiple reasons for resulting

failures due to overall aging risk. The models are expressed as failure rate functions

that are dependent on time, using years as the unit, and the equipment specific
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Figure 2.1: Top-Down model approach

parameters. Since is not feasible to model every combination of equipment fail-

ures, the failure rate models in turn will reduce the power limits of the respective

generators and branches, allowing new contingencies to be revealed, if any.

The aging models for the components of equipment are modeled as Weibull

distributions defined by equipment-specific parameters. The shape parameter βX

is a constant for each Weibull distribution and the scale parameter ηX is a function

of the specific parameters of component type X to scale the Weibull distribution.

The Weibull distribution is described as follows, with X representing the type of

component:

f(t) =
βX
ηX
· ( t

ηX
)βX−1 · e−( t

ηX
)βX

(2.6)

The Weibull distribution’s failure rate function for the type of component is then

given as:

λX(t) =
βX
ηX
· ( t

ηX
)βX−1 (2.7)

To define Weibull distributions for each type of equipment, ηX is defined as a
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function of parameters of component X, providing a failure rate function for com-

ponent X when given a set of parameters for the component and the Weibull shape

parameter βX .

We implement the CA using the open source library MATPOWER to evaluates

each of the model’s performance [63]. Figure 2.1 depicts the overall methodology

in a flowchart. The models are simulated across multiple aging components, where

the age and parameters involved in the aging models have Gaussian distributions.

The contingencies of these aged models are then compared with a CA with no

aging for baseline benchmarking.

2.2.1 Transformers

Based on the furanic compound analysis, an exponential model, and thus a Weibull

distribution, best models bushing deterioration. Temperature rise ratings, TR, and

the transformer’s insulation temperature rating, TI , are important parameters in

determining the rate of exponential deterioration.

The following equation represents the scale parameter ηX :

ηX = φtemp · ξX · e
1−δX
KX (2.8)

Where ξX is the baseline lifespan coefficient of transformers, δX is an index for the

likelihood of faults, KX is a constant that controls the rate of growth, and φtemp

is the ratio of temperature rise and insulation ratings ( TI
TR

).
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2.2.2 Generators

From Section II, B, Equation 2.3 introduces a mixed thermal-electrical stress model

on the insulation life of the stator, while Equation 2.4 introduces a mixed thermal-

mechanical stress model on the insulation life. These equations signify that higher

electrical and mechanical stresses shortens the lifespan of the insulation exponen-

tially. The rate of the decay is directly related to the temperature, T , in both

models. The interactions between these stress models are assumed to be small, so

the models are assumed to be independent.

2.2.2.1 thermal-mechanical stress model

The Weibull distribution for the thermal-mechanical model includes the insula-

tion’s thermal expansion coefficient, α, and the average mechanical stress that

the insulation endures, S̄, with respect to the rated stress. Additionally, σS is

introduced to account for high stress situations. Temperature of the conductor is

correlated to the load of the conductor (LC), which is expressed as the average

load divided the rated load. σLC represents the likelihood of the conductor being

in an overloaded state, which accelerates conductor deterioration.

The following equation represents the scale parameter ηtm of the thermal-

mechanical stress model’s Weibull distribution:

ηtm =
Ktm · e(−(2·(LC+σLC))) · e(−(2·(S̄+σS)))

α
(2.9)
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Where Ktm is a constant.

2.2.2.2 thermal-electrical stress model

The Weibull distribution for the thermal-electrical model includes the insulation’s

temperature (T ), the average electrical stress that the insulation endures (Ē), and

the constant related to the activation energy (B). Additionally, to account for the

insulation stress variability over time, σE is introduced for faster deterioration of

heavily over-stressed insulation. Temperature of the generator is correlated to the

load of the generator (LI), expressed as the average load divided the rated load.

σLI represents the likelihood of the insulator being in an overloaded state, which

accelerates insulation deterioration.

The following equation represents the scale parameter of the thermal-electrical

stress model’s Weibull distribution, ηte:

ηte = Kte · e(−(2∗(LI+σLI))) · e(−(2∗(Ē+σE))) · e
B
LI (2.10)

2.2.2.3 Combined model

The thermal-electrical stress and thermal-mechanical stress models are combined

by multiplying the rates of the insulation and stator properly working. This gives

the probability that the generator has no failures, shown in the equation below:

Pgen(t) = max(1− λtm(t), 0) ·max(1− λte(t), 0) (2.11)
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This equation provides the likelihood that the generator’s stator and insulation

both function properly. A max function is included to account for the failure rate

rising above one. In those cases, the insulation or stator are assumed to be non

functional, rendering the generator obsolete. The failure rate of the generator can

be expressed as follows:

λgen(t) = 1− Pgen(t) (2.12)

2.2.3 Transmission Lines

The explored models of conductor tensile strength loss and insulator loss provide

great details of how transmission lines age over time. Models for both the conductor

tensile strength loss and insulator loss are created using research gathered in section

III, and then the models are combined for a more robust model of transmission

line aging.

2.2.3.1 conductor tensile strength loss

From Section II, C, the safety factor is introduced giving a predicative indication

of whether a transmission line is in critical condition due to conductor tensile

strength loss, repeated below:

SF =
RTS · (1− LOS

100
)

MWT
(2.13)
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The safety feature and reliability of the conductor tensile strength is directly related

to the Rated Tensile Strength (RTS) and the Maximum Working Tension (MWT).

Additionally, a higher temperatures increases the rate at which the conductor

tensile loses strength. The variable L̄S is introduced to represent the average load

with respect to the transmission lines rated load. Additionally, σLS is introduced

to account for variance of the line load. L̄S and σLS is used to account for the

temperature of the transmission line.

A Weibull distribution will represent the exponential conductor tensile strength

loss with the scale factor as follows:

ηtxc(t) =
Ktxc ·RTS · e(−2·(L̄S+σLS))

MWT
(2.14)

Where Ktxc is a constant.

2.2.3.2 transmission line insulation

Previous research has found that applied voltage to the transmission line does

not have an impact on loss angle growth over time, suggesting that the conductor

insulation ages naturally over time. A simple Weibull distribution is an accurate

way of modeling the failure rate due to insulation deterioration. In this Weibull

distribution the scale factor, ηtxi, is simply a constant representing the conductor

insulation’s natural aging scale.
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2.2.3.3 combined model

The insulation and the conductor tensile strength loss model are combined by

multiplying the rates of the insulation and tensile properly working. This gives

the probability that the transmission line has no failures, as given in the equation

below.

PTX(t) = max(1− λtxc(t), 0) ·max(1− λtxi(t), 0) (2.15)

This equation provides the probability that the transmission line functions properly

given the current tensile strength loss and the insulation loss. A max function

accounts for the failure rate rising above one. In those cases, either the tensile

cannot withstand stress or the insulation has failed, placing the transmission line

in critical condition. The failure rate of the transmission line can then be expressed

as follows:

λTX(t) = 1− PTX(t) (2.16)

These models are integrated into the power flow simulations assuming that the

likelihood of equipment failure increases the constraints on power for the buses,

generators, and branches that the component is attached to. Using the assumption

that an X% failure rate represents an (1−X)% in power constraint, the following

implementations are used for the generator, transformer, and transmission lines.
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2.2.4 Generator Implementation

The generator implementation lowers the maximum active per unit power output

with respect to the minimum power output.

PGMax = PGMax − (λgen(t) · (PGMax − PGMin)) (2.17)

Where PGMax and PGMin are the maximum and minimum active power output

measured in p.u.

2.2.5 Transformer Implementation

The transformer implementation restricts the MVA limits of the branches con-

nected to the transformer’s bus. Since multiple buses connect to the same branch,

the minimum MVA limits of each branch are kept to account for the weakest link.

MVA(•) = MVA(•) · (1− λX(t)) (2.18)

2.2.6 Transmission Line Implementation

The transmission line implementation is a simple implementation, where a trans-

mission lines A, B, and C MVA ratings (long term, short term, and emergency,

respectively), denoted by MVA(•) are attenuated by the failure probability. Since

these ratings also are impacted by the transformer implementation, the minimum
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MVA limits of each branch are retained.

MVA(•) = MVA(•) · (1− λTX(t)) (2.19)

2.3 Verification

To create a more robust model for equipment, Gaussian distributions for the equip-

ment specific parameters are used to incorporate variability within the network.

We verify the model sensitivity analsysis by simulating N-1 contingencies with

MATPOWER 7.0 ac Optimal Power Flow (ac-OPF) method under different con-

trolled aging levels. Since the models are exponential, honing into specific time

frames of equipment damage is important as the number of contingencies and fail-

ures hypothetically begin to rise quickly as it approaches the anticipated age of

failure. To account for these ages, Gaussian distributions of ages will be applied

to each type of component separately, centered around 7 different aging levels.

These aging levels progress from level 1, where the equipment has starting age, to

level 7, where the equipment is past their anticipated failure age. Additionally,

three separate experiments are performed for the individual models of each type

of equipment. These experiments will only apply aging to their respective type of

equipment and will progressively increase the equipment age until ac-OPF failure.

Before the aging simulation, an ac-OPF without any branch outage is simulated

to verify that the Gaussian component aging did not age critical components to

the point where there is no feasible power flow solution. If this is the case, the
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component ages are re-randomized drawn from the Gaussian aging distribution

until either reaching 100 failed power flows or a power flow solution occurs.

2.4 Results

As indicated above, multiple cases of CA using Matpower 7.0 AC-OPF were ran

under the 7 aging levels to evaluate the equipment models. The test cases under

study are widely used benchmarking networks of a variety of sizes, namely case30,

case30Q, case39, case RTS GMLC, case1354pegase, case2383wp, case2736sp, case-

2737sop, and case2746wp [28] [21].

Figure 2.2 shows that simulating equipment aging on the grid creates more

contingencies than the non-aged baseline. All cases show that the number of con-

tingencies grow slowly at first and then after a critical threshold they exponentially

grow until the the aging causes the ac-OPF to not converge. Figures 2.3, 2.4,

and 2.5 show the individual equipment models in isolation. Similar to the com-

bined model, these figures show that contingencies generally increase as the age

is increased for all models. These fail at different ages for different cases, due to

differences of the grid state. The transformers and transmission line contingency

curves trace a much more clear trend than the ones from the generators, which is

due to the randomness of initializing the component parameters.
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Figure 2.2: Contingency Table With Aging Levels Applied to All Components
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Figure 2.3: Aging Level vs. Contingency - Generator
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Figure 2.4: Aging Level vs. Contingency - Transformer
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Figure 2.5: Aging Level vs. Contingency - Transmission Line
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2.5 Conclusion and Next Steps

Electrical equipment aging in the grid is one of the many reasons for bus, gen-

erator, and branch failures across an electrical grid. This analysis proposes to

integrate models for electrical equipment aging for transmission lines, generators,

and transformers. The models are transformed from failure rate functions to addi-

tional power limitation on branches and generators within the power flow analysis.

Example N-1 contingencies were then simulated across multiple cases and differ-

ent aging conditions to benchmark the integrated model. All of the cases show

an exponential growth of failures around the point where the equipment nears its

nominal full life expectancy. All cases also show excessively aged components re-

sult in violations on the ac-OPF, indicating that every outage is a violation. The

results of these experiments suggest that standard CA without combining multiple

individual aging effects may underestimate the number of contingencies in the grid.

Using at a minimum a basic form of aging or degradation model integrated with

power flow models will help reduce the uncertainty of the number of contingencies

on the grid for multiple other applications.

Some limitations of the models include a weak pre-contingency screening of the

grid. Future research should find ways to identify the most critical components

on the grid with more up-to-date condition data in order to find the more salient

scenarios of aging related contingencies.
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Chapter 3: Anomalies Within the Grid: Critical Slowing Down

With the increasing demand for power and electricity, reliability on the power grid

is at an all time high. Researchers have been heavily involved in developing pre-

ventative methods to both secure and maintain the grid’s status, such as advances

in computational performance and sensitivity in contingency analysis [52,59]. The

drawbacks to contingency analysis is that it does not always account (in a com-

putationally efficient way) for the critical line or transformer outages on the grid,

resulting in limited results that could cause more issues.

The rise of Phasor Measurement Units (PMUs) help us maintain and secure

the grid status by providing real-time data about the state of the grid. This

data has allowed researchers to heavily explore statistical patterns in data that

results from different grid states. Heavy research efforts have been put into using

machine learning and statistical processing methods to leverage this PMU data

and identify fault locations or determine events that cause islanding [29, 40, 56].

Research has also explored event detection on the grid for line outages, unusual

frequency patterns, and oscillatory events [16,42].

This chapter aims to expand on event detection by applying critical slowing

down (CSD), a statistical transformation method, to the input data [15]. CSD

has been shown to be indicative of events on power systems, while also being

quick to compute [22]. Additionally, it has been used with machine learning to
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predict voltage collapse on synthetic systems with renewable energy generation

and has been used as an indication of stability loss in a power system [33] [41].

As an indicator of critical transitions and instability in a power system, applying

CSD to PMU data could provide improvements to event classification accuracy

as frequency events, oscillation events, and outages create instabilities and critical

transitions in the network. Additionally, in the case of artificial neural networks

(ANNs), CSD may improve training time of the model as features of events are

more distinct after applying CSD to the input data. To evaluate the impact of

CSD on the data, two similarly structured ANNs are used to train and evaluate the

accuracy of event detection using CSD and without CSD, alongside the training

time of each model.

3.1 Background and Motivation

Event detection on the power system has been studied extensively by researchers

in order to develop models or algorithms that are able to correctly classify events.

The ability to quickly identify events on the grid is critical to determining whether

follow-up action is needed after the event to ensure that the grid is stable. Operator

or automated failure to address follow-up actions could result in the grid being in

an unstable state, possibly leading to cascading failures and widespread blackouts.

For example, in 2003, a blackout in the Northeast cost over $5 billion to the

U.S. and Canada economy, and left millions without power. Considering that

was almost two decades ago and considering that the economy and peoples’ lives
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revolve more heavily around technology and power, a similar blackout could be

magnitudes more catastrophic today than it was in 2003.

Artificial Neural Networks have become increasingly researched for PMU data

applications. For example, Spatial Pyramid Pooling was applied to a Convolutional

Neural Network (CNN) and achieved high accuracy [54], especially if the data is

of high quality (few missing datapoints).

Our research contributes to improving methods to classify power related events

using PMU data by using feature engineering and deep learning. The process

of feature engineering is to use the data to produce patterns that helps separate

whether an event has occurred or has not occurred. These features are used to help

localize an event using a Z-score function and are then be used as inputs to the

ANN, which may provide improvements to event classification accuracy against

providing the raw data into the ANN itself.

3.1.1 Critical Slowing Down

Research has observed that many statistically significant patterns that are indica-

tive of power system related events. As mentioned above, CSD has been shown

to predict some types of critical transitions on a power system [15,22]. It has also

been applied with machine learning to predict voltage collapse and instability in

power grids [9, 33, 41]. Power system events typically occur during instability or

cause critical transitions that destabilizes the grid, making CSD an ideal candidate

for feature engineering. CSD is comprised of two features that together have been
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shown to predict critical transitions:

1. Rolling autocorrelation of a detrended signal

2. Rolling variance of a detrended signal

3.1.1.1 Rolling Window Size

The rolling window size T is an important variable in CSD. Using a large T allows

one to see gradual changes in autocorrelation and variance of a signal over a long

time period, while a small T is more suitable for more rapid changes on a signal.

Power grid events of interest here typically consist of relatively rapid changes,

especially for equipment outages, so using a small T would be good for a PMU

dataset.

3.1.1.2 Detrending the Signal

Detrending the signal removes the low frequency components of the signal, leav-

ing behind only its high frequency components, which indicate times where fast

changes occur in the signal. To detrend the signal, a Gaussian Kernel is applied

to the data to capture the low pass frequency components of the data:

G(x, σ) =
1√
2πσ

e
−x2
2σ2 (3.1)
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where x is the input data and σ is the standard deviation of the gaussian filter

G(•, •) [15].

The detrended data y[k] can be found by subtracting the gaussian filtered signal

from the original dataset x[k].

y[k] = x[k]−G(x[k], σ) (3.2)

3.1.1.3 Variance

The variance over a rolling window of size T given the detrended signal y[k] can

be found using the following:

V ar[y[k]] =
1

T

k∑
n=k−T

(y[n]− µy)2 (3.3)

Where µy is the mean value of the detrended signal over the interval.

3.1.1.4 Autocorrelation

The autocorrelation coefficient ac can be found by applying an autoregression

function to y[k] and then obtaining ac by minimizing the following:

ac = arg min
a

T∑
k=1

(y[k]− ay[k − 1])2 (3.4)
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3.1.2 Artificial Neural Network

Artificial Neural Networks have many functions, one of which is classifying data.

However, there are many different architectures of ANNs and a general Convolu-

tional Neural Network (CNN) may not be the best architecture to classify time-

series data, as many better performing architectures of neural networks have been

introduced. Our dataset has multiple PMUs, each with multiple features, so it is

advised to apply 1-D convolutions to the dataset rather than 2 dimentional (2-

D) convolutions. This is because features such as Voltage and Rate of Change

of Frequency may be convoluted together. Additionally, 1 dimensional (1-D) max

pooling should be used rather than 2-D max pooling as using 2-D max pooling may

cause different features of PMUs to be pooled together. In this case the signal with

a larger value, generally voltage, is always the selected pooling candidate.

In addition to needing 2-D operations to be changed to 1-D operations for the

CNN, different architectures of CNNs may perform differently. In a 2018 research

study, it was shown that both the ResNet architecture, and FCNs performed well

with time series data, in contrast to Multilayer Perceptron models, Time-CNN

models, and Multi-Scale Convolutional Neural Network (MCNN) models [27]. Due

to the efficacy of both the ResNet and FCN models, both models are used here to

classify events and are compared for accuracy.
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3.1.2.1 Fully Convolutional Network

FCNs are CNNs with only convolutional layers, rather than having additional dense

layers at the end of the network, excluding the final dense layer that classifies the

data [32]. This can vastly improve model complexity due to the size of dense

layers. This dense layer can be sacrificed in exchange for many more convolution

layers, which in turn can provide more strictly convolutional feature maps. For

long time-series data sets with multiple features, this can be useful as the time

series data may either have to be heavily max-pooled along the time axis, which

may reduce the resolution around the time of the event.

3.1.2.2 Residual Neural Networks

ResNets differ from CNNs by providing residual connections between convolution

blocks in the network [25]. These residual connections help the optimization solver

with identity mapping of features in deeper layers as it can draw on previous

identity maps and solve for the perturbations of the residual identity maps rather

than learning a new map. This has been proven to improve accuracy, especially in

deeper layers.

3.1.3 Contributions

This chapter contributes to neural network based classification of event data by

using critical slowing down to engineer new features out of the PMU data. These
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features for both non-event PMU data and PMU event data is sent into a Z-score

function, which helps localize and extract a predicted 6-second interval of data

for the event or non-event. The extracted data is then input to a ResNet and

a FCN and evaluated on classification accuracy. This classification accuracy is

compared with using raw PMU data to localize and extract the predicted 6-second

interval and are then be input into each network, where the raw PMU data is

evaluated on classification accuracy. The contribution after analyzing the results

from these experiments are determining whether feature engineering can localize

events reliably, and if network architectures drastically change performance results

for power-system related experiments.

3.2 Methodology

To test how well the Critical Slowing Down features perform, a set of four exper-

iments are conducted, with network type and determining whether or not to use

CSD being the variables between the experiment runs. The experiment descrip-

tions are given below:

1. Critical Slowing Down applied to data. ResNet network used.

2. Critical Slowing Down applied to data. FCN network used.

3. Critical Slowing Down not applied to data. ResNet network used.

4. Critical Slowing Down not applied to data. FCN network used.
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Using both the ResNet and the FCN provides robustness in determining how well

the CSD features perform as it provides more insight as to whether the classi-

fication accuracy differences between CSD extracted features and the raw data

are dependent on network architectures. Additionally, controlling for ResNet and

FCN provides valuable comparisons in determining whether one architecture has

a significant advantage over the other or not.

3.2.1 Network Architectures

In order to create a fair comparison between the networks, the FCN and ResNet

networks are identical, other than the residual connections. They have the same

depth, size, and dropout. The network architectures are depicted in Fig. 3.1.

3.2.2 Data and Data Localization

The data for this experiment is a set of real PMU data over a 2 year time period,

with 30 Hz and 60 Hz sample rate PMUs. The data was be unstacked, providing

a feature to the dataset for every PMU and PMU signal combination. The PMU

signals include frequency, rate of change of frequency, voltage magnitude, and

current magnitude in this experiment.

To account for the mismatch in PMU data rates, along with missing data due to

PMU outages, linear interpolation was performed on the data to ensure all points

have real values.
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Figure 3.1: Network architectures of the FCN (left) and ResNet (right). Each
network uses 3 blocks of 5 7x1 convolution layers. Each block has double the
number of output filters with respect to the previous block.

Making a fair comparison to the input data is vital to the efficacy of the results

of the experiment as well. Applying preprocessing methods to either the dataset

with CSD applied to the dataset or the dataset without CSD applied and not the

other will produce obscure results. Additionally, the events are given by the reso-

lutions of minute intervals and it is observed that the events can happen between

two minutes before the labeled event time and two minutes after the labeled event
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Algorithm 1 CSD Preprocessing

Input: input dataset X
Output: output dataset Y
X = CSD(X)
X = X - X.mean(”by col”) / X.std dev(”by col”)
ts = max(X.mean(”by row”)).timestamp
Y = getSubset(X, ts-3seconds, ts+3seconds)
return Y

Algorithm 2 Raw Data Preprocessing

Input: input dataset X
Output: output dataset Y
X = X - X.mean(”by col”) / X.std dev(”by col”)
ts = max(X.mean(”by row”)).timestamp
Y = getSubset(X, ts-3seconds, ts+3seconds)
return Y

time. The use of 30 and 60 Hz PMU units results in approximately 14,400 samples

of data over the four minute window where the event can occur. This will force the

model to either be too shallow, too large computationally and take up too much

memory, or require excessive max-pooling.

To accommodate these issues, a Z-score function was applied to the datasets to

extract the timestamp with the highest average Z-score across all features, which

is the predicted location of the event. This predicted location is used to extract

the time range between 3 seconds before the timestamp with the highest average

Z-score and the 3 seconds after the timestamp with highest average Z-score. The

algorithms 1 and 2 show the preprocessing applied to both the CSD case and the

non-CSD case. In each equation, the output dataset Y is the data that is input

into the FCN and ResNet.
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Because the localization may be prone to prediction errors, three data window

sizes before extraction are investigated as separate experiments:

1. A 10 minute window, +/- 5 minutes from an event’s labeled time.

2. A 6 minute window, +/- 3 minutes from an event’s labeled time.

3. A 4 minute window, +/- 2 minutes from an event’s labeled time.

These window sizes were chosen to provide insight as to whether CSD provides

an improvement to the classification accuracy of the ANNs and/or if CSD pro-

vides improvements to the localization of events. As previously stated, there is an

assumption in this particular dataset that events can happen up to two minutes

before or after the labeled event time. These ranges were chosen such that events

would not overlap with one another, and that the event actually occurred on the

given interval.

3.2.3 Training the Network

As referenced in figure 3.1, a dropout of 0.4 is applied after the final convolutional

layer to reduce overfitting on the dataset. The optimizer of the each network is

the Adagrad optimizer, which has been found to perform well for sparse data.

Considering each window is 6 seconds, and the processed data represents the CSD

Z-score or the raw data Z-score, most of the data in the window is near zero and

irrelevant to classification, while a small minority of the window contain the event,

which likely have a much higher Z-score [43].
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3.2.4 Hyperparameter tuning

To ensure that both the CSD case and non-CSD case are performing to their opti-

mal condition, alongside the ResNet and FCN, hyperparameter tuning is applied

using grid search to ensure the best learning rate and epoch is achieved. The learn-

ing rates applied to the hyperparameter tuning grid are the following: [1e-2, 5e-3,

1e-3, 5e-3, 1e-4, 5e-5]. The first 75 epochs were tested. All these tests were aver-

aged using 4 sets distinct training and testing sets with a 25% and 75% respective

split.

3.2.5 Evaluation of the Networks

The evaluation of the network consists of two metrics: the mean verification accu-

racy of 8 uniquely seeded sets of the data and the mean area under curve region

of convergence (AUC-ROC) of those 8 uniquely seeded sets of data. The 8 sets

were composed of 75% training data and 25% verification data sets for a more

exhaustive overview of the data. The mean verification accuracy simply consists

of the average verification accuracy of the 8 uniquely seeded sets. The mean area

under curve region of convergence is a metric for confidence of the predictions. A

higher AUC-ROC provides more confidence at distinguishing between events and

non-events. Let the true positive rate and false positive rate be defined as follows:

TPR(k) =

∫ ∞
k

f1(x) dx (3.5)
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FPR(k) =

∫ ∞
k

f0(x) dx (3.6)

where f1(x) is the conditional probability density function (PDF) of the event class

score value given that the event class is the true class, f0(x) is the conditional PDF

of the event class score value given that the non-event class is the true class, and

k is a threshold parameter, to which the event class score is compared to make the

classification decision. The AUC can then be calculated as follows:

AUC ROC =

∫ 1

0

TPR(FPR−1(x)) dx = P (X1 > X0) (3.7)

where X1 is the score of an event, and X0 is the score of a nonevent. Overall, this

tells us the probability that an event score will be higher than a non-event score,

which provides the probability that the event is classified correctly.

3.3 Results

The results of the FCN and ResNet comparing critical slowing down against non-

critical slowing down are shown in Figures 2-7. Figures 2, 4, and 6 show the FCN

cases with a +/- 2 minute interval, +/- 3 minute interval, and +/- 5 minute inter-

val, respectively. Similarly, figures 3, 5, and 7 show the ResNet cases with a +/- 2

minute interval, +/- 3 minute interval, and +/- 5 minute interval, respectively.

The first important result from this experiment is the differences in network

architecture. The median AUC-ROC’s generally favor the ResNet over the FCN

over the six experiments. However, the biggest difference comes into play when



42

Figure 3.2: FCN Results, -2/+2 minutes from labeled event time - The results show
that CSD improves the AUC-ROC over the raw data, and an improved verification
accuracy, signifying better event localization.

applying CSD to the data. With CSD, the FCN provides slight improvements

in the AUC-ROC, with verification accuracies similar to those of the raw data.

However, the ResNet observes a large shift in performance as the event accuracy is

much better with CSD than without CSD, while the non-event accuracy is worse

with CSD than without CSD.

We observed that the dataset has a large number of potential critical transitions

that were not labeled, which may indicate that there are many events that went

unlabeled. For this reason, using the ResNet with CSD may be the cause of

misidentifying many of the non-events as events, due to having properties of critical

transitions (which may or may not be events). The results of all of these

experiments can be summarized as Table 3.1, which includes the median AUC-ROC

of an experiment x, denoted x̃, and the maximum AUC-ROC of an experiment

x, denoted Max(x). The median was taken to represent the average over the



43

Figure 3.3: ResNet Results, -2/+2 minutes from labeled event time - The results
show no significant improvement using CSD over the raw data

Figure 3.4: FCN Results, -3/+3 minutes from labeled event time - The results
show that CSD improves the AUC-ROC over the raw data, signifying better event
localization.

mean in consideration of the poor AUC-ROC during the first few epochs of the

training. As one can see in Table 3.1, the maximum and median AUC-ROC using

CSD outperformed the raw data for most test cases and at worst performed nearly

identically to the raw data.
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Figure 3.5: ResNet Results, -3/+3 minutes from labeled event time - The results
show that CSD improves the AUC-ROC over the raw data, signifying better event
localization.

Figure 3.6: FCN Results, -5/+5 minutes from labeled event time - The results
show that CSD improves the AUC-ROC over the raw data, signifying better event
localization and classification.
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Figure 3.7: ResNet Results, -5/+5 minutes from labeled event time - The results
show that CSD no significant improvement for the AUC-ROC over the raw data.
However, it does show better verification accuracy.
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Table 3.1: Performance comparison of the proposed CSD-enhanced ANNs by mea-
suring AUC ROC

x̃ Max(x)

FCN Raw Data (+/- 2
min)

0.9141 0.9141

FCN CSD (+/- 2 min) 0.9317 0.9351

ResNet Raw Data
(+/- 2 min)

0.9338 0.9342

ResNet CSD (+/- 2
min)

0.9313 0.9346

FCN Raw Data (+/- 3
min)

0.8626 0.8651

FCN CSD (+/- 3 min) 0.9101 0.9199

ResNet Raw Data
(+/- 3 min)

0.8809 0.8943

ResNet CSD (+/- 3
min)

0.9165 0.9236

FCN Raw Data (+/- 5
min)

0.8951 0.9229

FCN CSD (+/- 5 min) 0.9125 0.9240

ResNet Raw Data
(+/- 5 min)

0.8906 0.8928

ResNet CSD (+/- 5
min)

0.8926 0.9057
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3.4 Conclusion and Future Work

Protection of the power grid is an important function in today’s society, which

depends on electrical power more than it ever has before. Being able to acknowl-

edge when critical events occur on the grid allows us to more accurately perform

risk analysis, closely monitoring the power flow and wide-area stability after events

and during system recovery. We took real PMU data and engineered new features

using the CSD technique. These features were fed into residual and FCN networks

and the classification accuracies of events against non-events were calculated. The

raw data was also fed into these neural networks as a baseline comparison.

The results consistently showed that the CSD engineered features had higher

AUC-ROC overall than the raw data. Although the verification accuracy was

similar for both cases, the AUC-ROC suggests that CSD provides more confidence

in the correct decisions, or less confidence in the incorrect decisions, both of which

make expected accuracy to improve with more data. Additionally, the ResNet

improved the AUC-ROC further. Finally, when CSD was applied with the ResNet,

the event accuracy improved and the non-event accuracy dropped. Due to the

presence of unlabeled critical transitions in the data, there may be events in the

non-event data, which could only be captured using the ResNet and CSD.

Future work can improve upon this research by analyzing more feature en-

gineering patterns that may show significant results on all types of events and

combining this with the Critical Slowing Down method. Additionally, formulating

a data augmentation onto the events or synthesizing more event data could provide
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tremendous value, so the network can more easily learn the significant features of

the events, while also being less prone to overfitting. Synthesizing PMU data for

events using power system models could be critical in ensuring that the network

comprehensively learns an event’s features. Additionally, using some combination

of synthesized events and real events, new events can be synthesized using state of

the art Generative Adversarial Networks [55, 60]. Finally, we also plan to explore

other network architectures to possibly improve performance and training time for

the data, such as the Transformer network architecture [51].
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Chapter 4: Performance Scaling of Algorithms: Evaluation of GPU

vs. CPU Architectures for Time-domain Power System Data

PMUs continue to be instrumental in determining whether or not events have oc-

curred on the grid, and erroneous interpretation by machine learning algorithms

could possibly causing misleading grid stability verification results. These inaccura-

cies could increase the probability that another high magnitude blackout could oc-

cur, drastically impacting the economy and people’s lives. Critical Slowing Down,

alongside many of the other aforementioned machine learning algorithms, are used

on the grid to isolate when the grid is unstable or whether there has been an

equipment outage on the grid.

One of the challenges with PMUs is the amount of data that is being accu-

mulated. Most PMUs operate at 30 to 60 Hz, which is dramatically higher than

previously used supervisory control and data acquisition systems (SCADA) [1].

SCADA operates at a slower sample rates of 0.1 to 0.2 Hz, such that its algorithms

do not need to be designed for enormous datasets and high sample frequencies [36].

PMU-based algorithms acquire huge datasets and must operate at high frequen-

cies. To achieve this, the algorithms must be computationally efficient and scale

well to large datasets.

One important factor in how fast the algorithm can run is the type of computer

architecture the algorithm is running on. It has been noted that GPU computing
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works well on computationally complex problems and can dramatically decrease

computation time for algorithms where parallelism is applicable [23]. However,

it has also been noted that for many iterative algorithms, sequential implemen-

tations of algorithms outperform their GPU enabled counterparts [14]. However,

many machine learning algorithms can benefit the GPU due to benefiting from

parallelism and being computationally complex, while also being iterative. This

complicates the decision of whether to use a GPU implementation of an algorithm

or a sequential CPU implementation of an algorithm.

This chapter will focus on benchmarking GPU implementations and CPU im-

plementations of common machine learning algorithms used in PMU data analytics

to provide a reference of what architecture scales best for for PMU data analytic

algorithms.

4.1 Clustering Algorithms for PMU data Analytics

Clustering algorithms are used in PMU data Analytics for many reasons, such as

anomaly detection, partitioning oscillatory modes, power system network parti-

tioning, and data visualization [20, 30, 37, 53, 62]. In specific, K-means clustering

and Density-based spatial clustering of applications with noise (DBSCAN) are two

widely used clustering algorithms for PMU data.

K-means works by specifying K clusters that the data will be fit to. The
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objective function is to minimize the following function:

f(S, x) = min
S

k∑
i=1

∑
x∈Si

`2(x, µi) (4.1)

Where Si is the set of elements belonging to cluster i, µi is the mean of cluster

set Si, S is the superset of all sets, and `2 is the L2-norm function. An abstract

algorithm for this can be given as follows:

Algorithm 3 K-means algorithm

Randomly select k datapoints from X to initialize centroids of the k clusters
while Improvements are made do

Assign each datapoint in X to Si with the nearest centroid µi
Recompute the µi for all Si.

end while

DBSCAN on the other hand is a more complex algorithm that has a dynamic

number of clusters. DBSCAN requires a distance threshold ε and a minimum

number of points for cluster k. As the name suggests, DBSCAN creates clusters

based on density. There are two different types of points in a cluster: core points,

and border points. Core points are points that have at least k neighboring points

within the distance radius ε, while border points have less than k neighboring

points within that radius [18]. A point p is directly density-reachable of a point

q if p is in the ε radius of q and q is a core point. Finally, a point q is density-

reachable to p if there exists a chain of points q, x1, x2, . . . , xn, p, such that each

pair xi−1, xi are directly density reachable [18].

Using core points, direct density-reachability, and density-reachability, the al-



52

gorithm for DBSCAN can be given as follows:

Algorithm 4 DBSCAN abstract algorithm

Compute the number of neighbors for each point p in X
Classify each point p with at least k neighbors within ε as core points.
Merge all density-reachable core points together in their own clusters.
Assign each non-core point to either a cluster if it is within ε of a core point.
Otherwise, label it as noise.

To compare the runtime and scaling of the GPU algorithm and CPU algorithms

for K-means and DBSCAN, two experiments will be conducted for each algorithm.

The first experiment will hold the number of features in the dataset constant and

change the number of datapoints. In this experiment the number of datapoints

will be held constant at 25000. The second experiment will hold the number of

datapoints constant and alter the number of features. The number of features will

be held to 64. The algorithms that will be looked at use the RAPIDS AI CUML

library for the Cuda-GPU implementation of the algorithms and Scikit-Learn for

the CPU implementations of the algorithms [39,49].

4.1.1 Results

Figure 4.1 shows that the GPU implementation scales better with an increased

number of features as opposed to the CPU implementation. The CPU implemen-

tation has a much more significant positive trend for computation time vs. number

of features than the GPU implementation, likely due to the GPU being able to

parallelize the L2-norm function across features. Figure 4.2 also shows that the
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Figure 4.1: Kmeans: Number of Features vs. Computation Time. Number of
datapoints constant at 25000

GPU implementation outperforms the CPU implementation of Kmeans. As the

number of datapoints increase, the GPU implementation appears to outperform

the CPU slightly for a small number of datapoints, and then significantly for a

larger number of datapoints.

Similar to Kmeans, Figure 4.3 shows that the GPU DBSCAN implementa-

tion scales better with an increased number of features as opposed to the CPU

implementation. The difference between the CPU implementation and the GPU

implementation appears more significant for the DBSCAN implementation, likely

due to the complexity of the algorithm. Figure 4.4 shows that the GPU implemen-

tation takes longer for a small number of datapoints, and then begins to outperform
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Figure 4.2: Kmeans: Number of Datapoints vs. Computation Time. Number of
features constant at 64

the CPU implementation.

Based on this experiment, it becomes clear that if there is a large number of

features for the PMU algorithm (which can consist of all reported data for multiple

PMUs), the GPU implementations of DBSCAN and K-means will outperform the

CPU implementation counterparts. For a high number of datapoints, the GPU

implementation may also be useful to a lesser extent than a high number of features.
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Figure 4.3: DBSCAN: Number of Features vs. Computation Time. Number of
datapoints constant at 25000
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Figure 4.4: Kmeans: Number of Datapoints vs. Computation Time. Number of
features constant at 64
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4.2 Rolling Window Applications and Critical Slowing Down

Rolling window applications, such as the rolling autocorrelation and rolling vari-

ance used in CSD has been used in PMU data analytics for anomaly detection and

as precursory indicators for instability and events in the grid [33, 41]. One of the

important notes about rolling window calculations is that the solutions can often

be iteratively updated, such that a the rolling window of elements Xn−W+1, . . . , Xn

can be computed using Xn, Xn−W , and the results of the rolling window calcu-

lations of elements Xn−W , . . . , Xn−1, where W is the window size. This is much

more efficient than computing variance, autocorrelation, or some other statistic on

each window of size W .

The rolling variance can be updated iteratively using the mean of the previous

W elements and the element Xn that is replacing Xn−W . The equation for the

rolling update is given as follows:

µupdate = µprev +
Xn −Xn−W

W

σ2
update = (Xn −Xn−W )(Xn − µupdate +Xn−W − µprev)

(4.2)

The autocorrelation function is simply calculating the pearson coefficient be-

tween a dataset X and a lagged copy of dataset X, Xlag. The pearson coefficient

can easily be broken up into a sum of X · Xlag and the square root of the vari-

ance of X and Xlag. Thus, we can easily break rolling autocorrelation into simpler

problems of finding the rolling sum of X · Xlag and the variances of X and Xlag

and then combining them.
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As can be seen by the rolling variance formula (and consequently the rolling

autocorrelation formula that follows from it), rolling window statistical calculations

can often be simplified into non-complex iterative update algorithms, which should

benefit the sequential CPU implementation.

For the rolling window calculations for both autocorrelation and variance, the

only experiment will look at the number of features vs computation time. The

window size does not matter as the update formula only depends on values of

the previous calculation and the new and replaced datapoints. Regardless of the

window size, the iterative update can be done in constant time.

4.3 Results

Figure 4.5 shows the results for the rolling variance calculation. As the number of

features increases, the GPU implementation of rolling variance begins to approach

the CPU implementation. However, the CPU implementation outperforms the

GPU implementation for at least up to 512 features. The rolling variance imple-

mentation is better suited for CPU unless mass parallelization can be utilized.

Figure 4.6 shows similar results for the rolling autocorrelation calculation. Once

again, the rolling autocorrelation performs much better on the CPU at a low

number of features. However, at 128 features, the GPU implementation begins

to outperform the CPU implementation. The rolling autocorrelation update is a

more complex update than the rolling variance update, which explains why the

GPU gains more significant advantage on the rolling autocorrelation over rolling
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variance. However, the update for rolling autocorrelation is still not complex,

which suggests that rolling autocorrelation should be implemented on the CPU

unless mass parallelization can be utilized.

Figure 4.5: Rolling Variance: Number of Features vs. Computation Time
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Figure 4.6: Rolling Autocorrelation: Number of Features vs. Computation Time

4.4 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique that leverages

PMU data. It has been used in applications such as PMU spoofing error detection,

fault location, outlier detection, and many others [17,34,58]. PCA can be computed

using two techniques: Singular Value Decomposition (SVD) of the data X or the

Eigendecomposition of the X ′s covariance matrix.

SVD decomposes the data matrix X as follows:

X = UΣW T (4.3)
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Where U ∈ Rn×n contains column vectors that are orthogonal unit vectors, W ∈

Rp×p contains column vectors that are orthogonal unit vectors, and Σ ∈ Rn×p is

a diagonal matrix containing the singular values σk across the diagonal. SVD can

then retrieve a truncated version of the X by considering the first k columns of

vector U , denoted as U k, the first k columns and rows of Σ, denoted by Σk, and

the first k rows of W T , denoted as W T
k :

X̃ = U kΣkW
T
k (4.4)

Method 2 for computing PCA includes computing the covariance matrix of X

as follows:

KXX = E[XXT − µXµXT ] (4.5)

KXX can then be decomposed as follows:

KXX = QΛQT (4.6)

Where Λ ∈ Rn×n is a diagonal matrix containing the eigenvalues of KXX and Q is

an orthogonal matrix containing the eigenvectors of KXX . Like the SVD method,

X can be truncated by the following:

X̃ = QkΛkQ
T
k (4.7)

The experiments for PCA will compare both of these methods. Two experi-
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ments will be conducted. The first experiment will vary the number of features

(columns) and hold the number of datapoints (rows) constant at 25000. The sec-

ond experiment will vary the number of datapoitns (rows) and hold the number of

features constant at 128. Each reduction will reduce the number of features from

p to
⌊
p
2

⌋
.

4.4.1 Results

The results of both experiments can be shown in Figure 4.7 and Figure 4.8. Both

experiments show similar trends. The covariance method outperforms the SVD

method for this specific dataset. The SVD approach with the GPU scales poorly

due to memory consumption and begins to fail at a large number of datapoints.

On the other hand, for the covariance and eigendecomposition approach, the CPU

implementation is favored for small datasets. As the number of features or the

number of datapoints rises, the GPU implementation begins to outperform the

CPU implementation due to the complexity of the calculation. PMU data will

generally only have less than 10000 datapoints if calculating on less than 3 minutes

of data, so the GPU implementation would likely be preferred as memory allows

and depending on CPU and GPU specifications.
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Figure 4.7: PCA: Number of Features vs. Computation Time
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Figure 4.8: PCA: Number of Datapoints vs. Computation Time
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Chapter 5: Conclusions and Future Work

In this Chapter we summarize our findings and discuss future steps to build upon

the research in this Thesis toward facilitating the use of time-domain power system

data in artificial intelligence approaches for the grid.

5.1 Conclusions

As global trends continue to consume more electricity for various reasons, our

lives and the economy become more reliant on electricity, thus causing need for a

more reliable electric grid. Instabilities in the electric grid can cause unstable grid

condition, causing the grid to operate at far-from-optimal frequencies, currents,

and voltages. In some situations, this can damage critical electronic equipment,

placing the grid at a greater risk. These problems can often lead to load shedding,

which can be a major inconvenience for the people effected. While the grid in an

unstable condition, there is a higher risk that an event such as a line outage will

overload other equipment, possibly leading to a cascading failure. One such of

these cascading failures was the Northeast US blackout that cost over $5 billion to

the US economy. With the rise of electric vehicles, ecommerce, and the economy

becoming more reliant on electricity to operate, a blackout of a similar magnitude

would be catastrophic. This chapter has looked at common problems of evaluating
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threats to our grid and has introduced new ways into addressing these common

problems. Doing so will provide a more accurate evaluation of the power grid’s

state, allowing utilities and operators to mitigate potential threats to our grid in

a preventative manner.

In Chapter 2, we introduced CA and discussed that it did not account for aging

within the grid. Excessive aging of electrical equipment can cause the equipment

to fail below the rated power levels provided. For example, transmission lines lose

tensile strength over time, increasing the risk of the tensile breaking under tension.

Transformers lose their bushing insulation over time, which will increase the like-

lihood of a fault. Similarly, Generators can be placed under high mechanical and

electrical stress, which can also cause their insulation to wear away over time. To

account for these issues, chapter 2 introduced exponential aging models for trans-

formers, transmission lines, and generators. These aging models were modeled onto

the grid by decreasing the power rating of equipment as each piece of equipment

were aged. Using AC-OPF, we verified that the number of contingencies increase

as the average equipment age was increased on the grid, suggesting that current

CA may underestimate the number of contingencies on the grid. More work can

be done to refine the implementation of aging models onto the grid, along with

improving the accuracy of the equipment models.

Chapter 3 introduced PMUs, which provide real-time data of the grid. One use

of the PMU data is using machine learning and artificial intelligence algorithms

to determine when an event takes place on the grid, such as a line outage or

transformer outage. It is critical to determine if there is a outage on the grid, as the
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results of CA assumes all components of the grid is operating, unless told otherwise.

Chapter 3 introduced CSD, a statistical method applied to a rolling window, that

is used as preprocessing to the data to input into ANNs. The experiment found

that the maximum and median AUC-ROC using CSD outperformed the raw data

for most cases and at worst performed nearly identically to the CSD applied data.

One other problem that causes issues in grid reliability and the efficacy of ma-

chine learning algorithms is the computational complexity of the algorithm and

how fast it can run on the PMU data. An algorithm that is designed to detect

anomalies is worthless if it is unable to classify incoming data in a timely manner,

as the results of the algorithm will lag behind when the event took place. This will

lead to the event not being resolved in a timely manner, leading to reactionary so-

lutions rather than preventative solutions. Chapter 4 introduces GPU computing

in which it looked at many commonly used algorithms that are used with PMU

data and benchmarked performance of a GPU implemented algorithm against its

CPU implemented counterpart. Chapter 4 found that computationally complex

algorithms, such as clustering algorithms, scale well when using a GPU. More iter-

ative and less complex algorithms, such as rolling window applications, generally

benefit more from using a CPU, unless mass parallelization along features is ap-

plicable. Finally, PCA benefits heavily from using a GPU if the dataset is large in

both number of features and number of datapoints. In general, GPUs scale better

for these algorithms for larger datasets and more complex computational steps in

the algorithm.
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5.2 Future Work

Many advancements in the fields of artificial intelligence, algorithms, and data

structures are important areas for exploration in power systems.

Further research toward detecting events on the grid is critical to ensure utili-

ties and operators can work toward counteracting the events to restabilize the grid.

Explore other network architectures to possibly improve performance and train-

ing time for the data, such as the Transformer network architecture and various

graphical neural networks [51,61].

Research in reinforcement learning is gaining traction for emergency control

and power management [26,57]. Further research can look at other aspects of the

grid that can benefit from the introduction of reinforcement learning. Reinforce-

ment learning can also optimistically look at whether PMU data and power system

algorithm outputs can provide enough information to control an entire grid. Suc-

cessfully doing so could show that reinforcement learning is capable of looking at

the current state of the grid, and making experienced decisions, such as changing

current generation or shedding specific loads.

The grid is also a sparse network, such that buses are only connected to a

small subset of the other buses in the network. Many numerical algorithms and

machine learning techniques use matrix computations on the adjacency matrices

and other sparse matrices provided by the power system network. As a result,

these matrix computations can be highly inefficient as only a small proportion

of the computations are necessary. Techniques have utilized sparse matrices to
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improve computations on power flow algorithms, such as the Newton-Raphson

power flow method [48]. Many other algorithms can be computationally improved

from sparse matrix evaluation. Power system algorithms can also benefit from

improvements in sparse matrix data structures and algorithms.
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