
AN ABSTRACT OF THE THESIS OF

Noah C. Harris for the degree of Master of Science in Radiation Health Physics presented on

October 30, 2020.

Title: Developing Software Tools to Characterize Electrochemical Loss Scenarios via Gamma

Detection for Various Measurement Points, Source Geometries, and Process Times.

Abstract approved: __

Haori Yang

Faithful modeling of the expected gamma signals inside an electrochemical facility at various

key measurement points is important for understanding what detection limits are available for the

next generation of safeguards technologies. Gamma Detector Response and Analysis Software

(GADRAS) and the Separation Safeguards Performance Model (SSPM) were used to build

software tools for predicting the difference in radiation signatures between normal plant use and

plutonium diversion scenarios, for various operational configurations. These tools allow for

automated analysis of the large data sets generated by the SSPM, producing tables and charts for

both total gamma counts over time, and channel-by-channel gamma spectrum analysis for

specified time-slices. Preliminary application of this analysis suite shows a 99% confidence in

detecting a 0.2 SQ protracted electrorefiner diversion over the course of one year, and a 99%

confidence in detecting a 1.4 SQ protracted transuranic diversion over the course of one year.

© Copyright by Noah C. Harris

October 30, 2020

All Rights Reserved

Developing Software Tools to Characterize Electrochemical Loss Scenarios via Gamma

Detection for Various Measurement Points, Source Geometries, and Process Times

by

Noah C. Harris

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented October 30, 2020

Commencement June 2021

Master of Science thesis of Noah C. Harris presented on October 30, 2020

APPROVED:

__

Major Professor, representing Radiation Health Physics

__

Head of the School of Nuclear Science and Engineering

__

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader upon

request.

__

Noah C. Harris, Author

ACKNOWLEDGEMENTS

The author expresses sincere appreciation to the professors in the school of nuclear science and

engineering at Oregon State University, especially his research advisor Dr. Haori Yang, and to

the researchers at Sandia National Laboratories, primarily Dr. Ben Cipiti, Dr. Nathan Shoman,

and Dr. Gregory Thoreson for their guidance and mentorship. He would also like to express

gratitude to his wonderful wife Breanna and son Nathaniel for their constant support and

motivation throughout the program. Finally, he would like to thank his mother, Dana Harris, for

always pushing him to do his best and to keep learning.

TABLE OF CONTENTS

 Page

1 Introduction…………………………………………………………………………………..1

2 Literature Review.…………………………….…………………………….………..………3

 2.1 “123 Agreement”………………………………………………….……….……….3

 2.2 Electrochemical Reprocessing (Pyroprocessing)…………………………………..4

 2.3 NEUP Project…………………….…….….……….….…………….…….………..7

 2.4 MPACT……………………………………………………………………………..7

 2.5 Virtual Test Bed……………………………………………………………………10

3 Materials and Methods ……………………………….……..………………………………12

 3.1 Software Ecosystem…………………….…………………………………………12

 3.1.1 MATLAB………..….……………………………………………………12

 3.1.2 SSPM…………………………………………………………………….13

 3.1.3 Excel……………………………………………………….………….…13

 3.1.4 Visual Studio……………………………………………………………..14

 3.1.5 GADRAS…………………………………….…….…….………………14

 3.2 Methods ………………………………..…………….………….…………………15

 3.2.1 Running and Modifying SSPM………………………………….……….15

 3.2.2 Measuring Diverted SNM…………………………………….………….16

 3.2.3 Obtaining and Processing Isotopic Vectors………..….….………………16

 3.2.4 Writing to 1DM File………………………….…..………………………17

 3.2.5 GADRAS Transport Calculations…………………….……….…………18

 3.2.6 Data Analysis………………………….….….…………….…….…….…19

 3.2.6.1 Total Gamma CPS………………….….….…….………………19

 3.2.6.2 Peak Analysis………………………………………….………..20

 3.2.7 Parameter Space Selection………………………..………………………20

TABLE OF CONTENTS (Continued)

 Page

 3.2.7.1 Protracted vs. Abrupt Loss Scenarios……….….………….…..20

 3.2.7.2 Key Measurement Points………..……………………………..21

 3.2.7.3 Fuel Characteristics………………….….…….……….……….21

 3.2.7.4 Time Slices……………………………………………………..22

4 Results ………………………………………………….…….….……………………..……23

 4.1 Final Software Scheme………………………………….…….……….….…….….23

 4.2 Software Usage Guide……………………………….……….…….………………24

 4.2.1 Installation………………………………………………………………..24

 4.2.2 Usage……………………………………………………………………..24

 4.3 Data Processing Times……………………………………………………………..26

 4.3.1 SSPM…………………………………………………………….……….26

 4.3.2 Analysis………………………………………………………….……….27

 4.4 Preliminary Survey of Key Measurement Points………………………..…………27

 4.5 Explorations of Various Significant Quantity Diversion Scenarios…………….….28

 4.5.1 Qualitative Findings…………………………………………..………….28

 4.5.2 Quantitative Findings…….………….……..…….…………..….……….29

5 Discussion……………………………………………………….….….…………………….31

 5.1 Significance of Results…………………….…………….…………………………31

 5.2 Transfer to Sandia…………………………………………………………………..31

 5.3 Potential Further Developments……………………………………………………32

 5.4 Total Gamma CPS vs Spectrum Peak Analysis………..………….………………..33

 5.5 Defeat of Total Gamma CPS via Hot Substitution…………………..….….………33

 5.6 Significant Quantities and Timeliness………………………………………………34

 5.7 Verification and Validation………………………….……….….…….….…………36

6 Conclusions …………………………………….….…….…………….……………………..37

TABLE OF CONTENTS (Continued)

 Page

Bibliography …………………………………………….…………………………….……….39

Appendices …………………………………………………………………………………….42

 Appendix A: Gamma Charts…………………………………………………….…..…43

 Appendix B: Supporting Data and Figures…………….….….…….….………..……..46

 Appendix C: MATLAB and C# Code……………….….….…………………….…….53

LIST OF FIGURES

Figure Page

2.1: Diagram of the SSPM electrochemical flow chart.……………………….……………6

2.2: SSPM with various projected applications for MPACT instrumentation projects……..9

4.1: Control/data flow through the various software components………………………….23

LIST OF APPENDIX FIGURES

Figure Page

A.1 Protracted ER diversion scenario……………………………………….……….………..43

A.2 Protracted UTRU diversion scenario ……………………………………….……………43

A.3 Abrupt ER diversion scenario…………………..……………………….………………..44

A.4 Protracted UTRU drawdown diversion scenario………………………….…..………….44

A.5 Protracted oxidant production diversion scenario………………………….……………..45

B.1 Simulink setup for UTRU diversion detection……………………………………………46

B.2 Cylindrical GADRAS geometry………………………………………….……………….47

B.3 Slab GADRAS geometry………………………………………………………………….47

B.4: Example output from peak analysis mode………………………………………………..48

B.5-B.12 Survey of plutonium loss at various diversion locations…………………………48-52

Dedicated to Dana Harris

!1

1. INTRODUCTION

The purpose of this document is to act as a guide to those interested in the limits of gamma

detection as a tool for nuclear bulk material accounting in a pyroprocessing facility, including the

use of software developed during this project expressly for this purpose. For those interested in

the installation and use of this software, please refer to section 4.2 of this document.

 This work is being carried out as part of an agreement, known as a “123 Agreement”,

between the United States government and South Korea (Republic of Korea) to develop energy-

related nuclear technology. With the development of new industrial processes, electrochemical

processes in this case, comes the requirement of new safeguards. This work will hopefully aid

someone in designing the systems for such a facility, and give a reference for what kinds of

uncertainties may be expected in a gamma non-destructive analysis (NDA) module within a

larger overall electrochemical materials accounting system.

 Bulk accounting, such as required in an aqueous or electrochemical facility, is more

difficult than traditional nuclear accounting, in that the material is harder to track than discrete

quantities such as drums, boxes, etc. In addition, an electrochemical facility faces numerous

challenges compared to aqueous facilities including a lack of flush-outs, material holdup, lack of

input accountability and representative salt samples (due to salt inhomogeneity), and others [3].

These factors, coupled with the international interest in constructing electrochemical facilities in

the near feature, has led to a push for the development of novel techniques for safeguarding these

facilities. The United States Department of Energy has been leading this charge with their

Material Protection Accounting and Control Technologies (MPACT) campaign, in direct support

of the aforementioned “123 Agreement” with the South Korean government [8]. MPACT is

currently pursuing a set of goals called Milestone 2020 which is the grouping into which the

work of this thesis falls.

 The ultimate goal of the MPACT campaign is the creation of Virtual Facility Distributed

Test Bed which is meant bring together experimental and modeling capabilities across the

national laboratory and university complex to provide a one-stop-shop for advanced Safeguards

!2

and Security by Design (SSBD). Experimental testing alone of safeguards and security

technologies would be cost prohibitive, but testbeds and laboratory processing facilities with

safeguards measurement opportunities, coupled with modeling and simulation, provide the

ability to generate modern, efficient safeguards and security systems for new facilities [3].

 The Virtual Test Bed concept is built upon the Separation and Safeguards Performance

Model (SSPM), which is a virtual model of an electrochemical processing facility created by

Sandia National Laboratory based off of models developed at Argonne National Laboratory,

which also the birthplace of the electrochemical (sometimes called pyroprocessing) approach to

nuclear reprocessing. The work of this thesis is to take data from the SSPM and use radiation

transport codes to simulate detector response. By looking at differences between the data for loss

scenarios vs normal facility operations, we can explore the efficacy of using gamma detectors to

detect those loss scenarios. Gamma detection will be just one component of the virtual

safeguards test bed, and MPACT’s hope is that the unification of many simultaneous approaches

will lead to a truly robust safeguards outcome.

 Preliminary efforts towards this goal have already been documented and submitted in an

article for the Journal of Nuclear Materials Management [10], and this document is meant to be

an elaboration of those efforts.

!3

2. LITERATURE REVIEW

Although electrochemical (pyroprocessing) of spent fuel is a relatively new technology, only

recently being seriously developed at Argonne since the late 2000’s, and without any current

large-scale facilities, there is already a wealth of nascent information on the subject. The

technology is currently being considered for application by the Republic of Korea. However,

before that happens there must be advancement in the safeguards technologies pertaining to any

proposed pyroprocessing facility. The US government’s Department of Energy has an active and

vigorous research campaign known as MPACT which is exploring a plethora of avenues for the

advancement of technologies which may be useful in this area. MPACT’s efforts are beginning to

pay off, and some of the technologies they have been fostering, such as microcalorimetry, may

have an impact far beyond

2.1 “123 AGREEMENT”

The political impetus for this particular project’s funding springs from a treaty between the

governments of the United States and the Republic of Korea (ROK), who have entered into a

cooperative agreement to help advance mutual interests in the realm of nuclear power, known

colloquially as a “123 Agreement”. The two countries agreed in 2011 to a 10-year joint study on

pyroprocessing, to examine ways to deal with the ROK’s spent fuel challenge.

 As a result of developing its nuclear power sector, The ROK of course finds itself with a

growing inventory of spent fuel. Because it is a country which has a very high population

density, creative solutions must be employed [18]. The Korean Atomic Energy Research Institute

(KAERI) and the ROK government have been promoting pyroprocessing as a technology that

could reduce the volume of high-level radioactive waste requiring deep disposal by a factor of up

to 20, and the underground area required for a geologic repository by a factor of up to 100 [19].

In a bid on future reprocessing technology, KAERI has opted to develop the “Advanced spent

!4

fuel Conditioning Process” (ACP), and has even built a test facility, the ACP-Facility or ACPF,

in the basement of the Irradiated Material Examination Facility (IMEF) at KAERI.

 The subject of this thesis will be part of the unified effort in the development of proper

safeguards for any facilities implementing the ACP, and will be in support of the objective of the

agreement between the US and the ROK, as one of many approaches constituting the US DOE’s

MPACT campaign. In exchange for the development of this safeguards technology, the

agreement will help strengthen U.S. nonproliferation policy by ensuring South Korean

commitment, building protection mechanisms, and signaling to the global community that the

United States is prepared to work constructively with strong advocates and proponents of

nonproliferation [22].

2.2 ELECTROCHEMICAL REPROCESSING (PYROPROCESSING)

Electrochemical processing (pyroprocessing) is a new reprocessing technique first developed at

Argonne National Lab around 2010. Since that time, the details of this technique have been well

researched and worked out, and developing the safeguards technology remains the final piece of

the puzzle so that these types of facilities may be brought online, e.g. in the ROK.

 Pyroprocessing facilities use molten salts and electrochemical operations, known as

electrorefining or electrowinning, to separate actinides from spent nuclear fuel. The technology

was originally designed for processing metallic fuels but has also been adapted for use with

oxide fuels. Variation in the flowsheet design, beyond what is used as the basis for this work, is

certainly possible and depends somewhat on operator and country needs, engineering issues, and

any safeguards or security considerations. A referenced article [20] provides more detail on

flowsheet options and describes the AMPYRE (Argonne Model for Pyrochemical Recycling)

and DyER (Dynamic Electrorefiner) models. Additional information on electrochemical

flowsheets can be found in references [6] and [25], but a brief description is provided here:

 The flowsheet is based on a throughput of 100 metric tons of spent nuclear fuel per year

(MT/yr). Fuel assemblies are initially disassembled in a hot cell, and the fuel rods are de-clad

!5

from their protective alloy. The spent nuclear fuel (SNF) is chopped into smaller sized particles

and loaded into porous metal baskets for processing.

 Oxide fuel first goes through an oxide reduction (OR) step to convert most of the fuel to a

metallic form while liberating oxygen from the oxide fuel form. During this step some of the

trapped fission product gases in the fuel are also outgassed and captured. For a metal fuel

reprocessing operation, this step is not required. This oxide reduction is accomplished by

lowering the baskets into a molten salt and applying an electric potential across the basket and a

cathode. As current is passed, the metal oxides reduce to metals, and the oxide ions are released

into the molten salt and transported to the cathode where they are oxidized to produce oxygen

gas.

 The newly metallic fuel in the baskets then gets transferred to an electrorefiner (ER)

vessel, where the baskets are lowered into another molten salt. As before, an electric potential is

applied between the basket and a cathode—this potential drives fuel into the salt phase, and

extracts actinides in the salt onto the cathode. Separate cathodes are used for uranium (U)

recovery and combined uranium and transuranics (UTRU) recovery. The products are then

melted and poured to consolidate them into an ingot form for storage and/or future use for fuel

fabrication.

 The current flowsheet we’re using in the SSPM assumes the use of two cathodes that

operate at the same time in the ER vessel. The U cathode is a solid cathode that removes U only,

as the material builds up as dendrites on the cathode, and then the cathode is removed and

scraped to get the product. The UTRU cathode can also be solid, is usually a liquid cadmium

cathode. This is often a crucible containing liquid cadmium that is lowered into the ER salt.

When a potential is applied, the U and transuranics will transport into the cadmium in a metallic

phase. But the key point is that both the U and UTRU extraction can occur at the same time in

the same vessel.

 The U cathode processor is a furnace that melts down the U dendrites and distills off the

salt—the salt gets retuned to the ER vessel. The leftover U ingot then becomes a product of

!6

waste form. The UTRU cathode processor is also a furnace that distills off first the salt, then the

cadmium, so that the UTRU is remaining and cast into an ingot.

 The UTRU drawdown is a separate process. The purpose of drawdown ultimately is to

remove the rare earth fission products. But in order to do that, residual UTRU must first be

removed. So this process removes the UTRU using electrolysis, and then the same electrolysis

process is used to remove the rare earths. The leftover salt, which is mostly clean of fission

products, is returned to the ER vessel. A certain amount of the ER salt needs to be processed

continuously to maintain rare earth content below some maximum threshold. This is needed so

that the U/TRU product does not contain too many fission product poisons since there will

always be some small amount of rare earths going into the UTRU product.

Fig. 2.1: Diagram of the SSPM electrochemical flow chart. [2]

!7

 The removed UTRU metal from drawdown is not a good quality for fuel fabrication,

because it contains a high amount of rare earths, so it gets recycled back to the ER salt. The best

way to do that is to convert it to its oxidant form UTRU-Cl3. The UTRU just gets added back in

to prevent more waste. There are many variants on this process design. The UTRU metal could

also be returned to the baskets to be recycled back in. And the plant could use an external source

of UCl3 for the oxidant rather than recycling. That’s somewhat of a cost-benefit analysis.

 Separate fission product recovery processes are used to remove active metals from the

OR salt and rare earth fission products from the ER salt. Residual noble metals stay in the basket

and are recovered and placed into a metal waste form along with cladding and assembly

hardware.

2.3 NEUP UNIVERSITY SUPPORT FOR MPACT 2020 MILESTONE

The work of this thesis follows along with the second fiscal of year of work (task 4) of three

years total outlined in the technical narrative for the NEUP support project for MPACT [8]. This

period of time is meant to be used to develop a system for simulating radiation-based signatures

using the SSPM data. Thus, a greater part of focus has been spent on creating a robust toolset for

accomplishing this task, including an automated pipeline for both GADRAS-integration and

subsequent analysis. Although the use of these tools for analysis is not meant to be performed

until the third fiscal year of the project (FY 21), some time has still been spent on analyzing the

data produced, primarily so that the output of the tools may be judged and thus to establish the

usefulness and effectiveness of the software pipeline.

2.4 MPACT

Material Protection Accounting and Control Technologies (MPACT) is a United States

Department of Energy campaign whose mission is to develop innovative technologies and

analysis tools to enable next generation nuclear materials management for existing and future

U.S. nuclear fuel cycles, to manage and minimize proliferation and terrorism risk. [21]

!8

 The scope of this work includes the operator’s Material Control and Accountancy

(MC&A) system and Physical Protection System (PPS). The purpose of these systems is to

provide assurance that nuclear material is adequately protected and detect and respond to theft or

sabotage by sub-national groups. International safeguards measurements and verification are not

the subject of this work, but many of the measurement technologies and analyses presented here

can also be applied for international safeguards. [3] For example, the work of MPACT is being

used to directly support the terms of the “123 Agreement” between the US and ROK detailed

above [8].

 As a key part of their mission, the MPACT group is seeking to develop and and

demonstrate advanced material controls and accounting technologies to fill important gaps and

keep pace with upcoming technologies. This is accomplished via a comprehensive diversified

group working across many different domains, both in the national lab system and at universities

across the country. This is necessary due to the sheer number of disciplines involved to produce

the instrumentation that holds promise for next-generation safeguards applications. Examples of

the instrumentation groups currently working on MPACT projects include:

 (1) The microcalorimetry group at Los Alamos National Lab (LANL) is currently working on

developing an ultra-high resolution gamma spectroscopy nondestructive method of detecting

changes in concentration of key isotopes throughout the process. The SOFIA (Spectrometer

Optimized for Facility Integrated Applications) microcalorimeter instrument was used to

measure spent fuel samples from real-world facilities and purified U and Pu reference materials.

The enhanced energy resolution of microcalorimetry as compared to germanium detectors was

found to improve NDA capabilities by increasing peak-to-background ratio and ability to resolve

closely-spaced gamma ray energy peaks. The microcalorimeter measurements can potentially

measure certain actinide and fission product peaks with 1% counting statistics [5][3].

!9

(2) High Dose Neutron Detection (LANL): Modeling work was carried out using the High Dose

Neutron Detector (HDND) to determine detection of small amounts of TRU in the U ingot in the

case of diversion or off-normal operation.[20][21] The calculations found that a 0.005% weight

contamination of plutonium (Pu) in the U ingot would be detectable with greater than 95%

detection probability using the HDND with a counting time as low as 10 minutes [16][7].

Fig. 2.2: Diagram of the SSPM with various projected applications for MPACT instrumentation
projects. [2]

!10

(3) Actinide sensors and voltammetry are being developed both at Idaho National Laboratory

(INL) and by our collaborators at Virginia Tech. ER voltammetry appears the most promising for

an in-situ measurement of actinides and other properties of the salt with a measurement

uncertainty less than 1%. [27]

(4) A microfluidic sampler was developed by Argonne National Laboratory (ANL) for generation

of uniform salt samples for analysis. Acquiring representative salt samples was identified as a

key challenge area for electrochemical safeguards, and this technology serves to fulfill that need.

In addition, commercial scale plants will benefit from an automated way to collect samples. The

microfluidic salt sampler has demonstrated capabilities for high-throughput sample generation

with coupled analysis. [9][17][3].

 There are many measurement points available in the SSPM schema, and it is important to

understand how traditional NDA techniques fit into the larger picture. Microcalorimetry and

High Dose Neutron Detector (HDND) are novel NDA technologies being developed by other

research groups for use at the electrorefiner and product ingots. As a preview of the results, it

was found that for the two diversion scenarios explored in this paper, the metal waste and

uranium/transuranic product ingot NDA key measurement points (KMPs) had the most

predictive power, and the fission product waste was surprisingly less helpful.

2.5 VIRTUAL FACILITY DISTRIBUTED TEST BED

One of the primary deliverables of the MPACT campaign is the Virtual Facility Distributed Test

Bed, which is meant to incorporate all the of the simulation-based advances by the MPACT

group into a unified virtual test environment. The focus of this effort will be the SSPM, and most

of the advances by the group will be incorporated into the test bed by adding onto the SSPM

software ecosystem, or by informing the inputs to the test bed system via physical laboratory

testing environments. The Virtual Facility Distributed Test Bed is also capable of modeling

!11

physical plant security by means of Unity models built by researchers at Los Alamos [3] These

elements come together to provide a unified Security and Safeguards By Design (SSBD)

simulation capabilities. The work of this project, as outlined in the NEUP technical narrative [8],

is intended to be integrated into the Virtual Facility Distributed Test Bed by providing analysis

support for the NDA component of the safeguards approach. Integrating this work into the

SSPM will require some additional software beyond MATLAB running on a machine. A

GADRAS installation will be required of course, as well as Microsoft Visual Studio, in which the

API calls, logic, and interface are implemented. This analysis suite is also dependent on

Microsoft Excel. The hope is that the flexibility and automation of analysis is enough to justify

the larger software overhead.

 Other electrochemical measurements should prove easier to integrate into the virtual test

bed. An example of work which will fit more cleanly into the test bed as a MATLAB Simulink

block is being carried out by collaborators at Virginia Tech, who are working on an electrode

sensor model for the electrorefiner unit. [8][27]

!12

3. MATERIALS AND METHODS

This section is meant to enumerate the different software used for manipulating data from the

SSPM, running transport and detector response codes, and ultimately analyzing the results.

Additionally there is information about the statistical methods used for quantitative analysis of

the results, and there is information about the reasoning that went into choosing the particular

subset of SSPM and geometrical parameters that were decided upon for this project, given the

massive size of possible parameter combinations.

3.1 SOFTWARE ECOSYSTEM

The bulk of the work done on this project is in the manipulation and processing of SSPM data

using various software platforms and methods. Here is described the various softwares used for

the project and how they interoperate with one another.

3.1.1 MATLAB

The SSPM is built in Simulink, which is essentially a very complex plugin for the main

MATLAB program, which is comprised of the workspace and scripting, and allows us to

examine the isotopics sampled from various KMPs in the signal flows of the SSPM. MATLAB

also provides the ability to write to excel files, which is how data is moved out of the SSPM to

be processed. A script ‘copyToExcel.m’ (Appendix C) was written, which allows copying of

data from workspace variables to an excel file which then allows for further manipulation by the

Visual Studio programs. In order to change which data run one is reading from, change the

‘load()’ call at the top of the script to reflect which ‘.mat’ file to pull data from. To change which

time-slices are sampled from the data series one can change the time slices enumerated at the

start of each KMP’s respective section. It must be verified that the Excel rows allocated for

writing data are numerous enough to house the number of time slices entered. This is determined

by the constants in the for loop structures of ‘copyToExcel.m’. Lastly, this script can be set to not

trigger the C# program by commenting out line 78 the bottom of the script. This changes a flag

!13

variable which will be read by the Visual Studio C# add-in. If the flag is ‘createGeometry’, then

our C# add-in will run, if it is 0 the add-in will not run.

3.1.2 SSPM

The Separation Safeguards Performance Model was developed by Ben Cipiti et. al. at Sandia

National Laboratory for the purposes of modeling a pyroprocessing plant. The model was

developed in Simulink, which is a MATLAB-based graphical programming environment for

modeling, simulating and analyzing multi-domain dynamical systems. Its primary interface is a

graphical block diagramming tool and a customizable set of block libraries.

 Simulink’s block layout means that the model can easily be understood as a flow chart

between the different functional areas of the plant. This is very useful for navigating the layers of

complexity which are well encapsulated by this graphical programming language.

 The SSPM models movement of material through a pyroprocessing plant. This starts with

spent nuclear fuel which is then shredded and dissolved into molten salts before running through

first an OR, then an electrorefiner, then various tail-end processes.

3.1.3 EXCEL

Excel is an excellent way to store the data generated by the SSPM software because it is a fast

and convenient way to manipulate the many 1676 element vectors, as well as providing for

graphing needs with a robust interface and lots of customizability. It also plays along nicely with

Visual Studio via the Visual Studio Tools for Office (VSTO) interface. Overall it is a good piece

of connective and analytical software in the pipeline.

 The workflow for this project entails taking data from the Visual Studio (VS) program,

and shuffling the data around with Excel to develop the graphs by creating a chart and specifying

the proper data series, and other chart customization options. Then new data can be swapped in

keeping the same chart template, which indicates the difference between control and loss

scenarios with a dotted vs solid line on the graphs respectively.

!14

3.1.4 VISUAL STUDIO

Microsoft Visual Studio (VS) is where the software heavy lifting for this project is done. VS

allows writing to Xtended Markup Language (XML) to create ‘.1dm’ GADRAS files after data is

exported from the SSPM, using an Excel VSTO add-in. It also allows use of the GADRAS C#

Applications Programming Interface (API) for running the ‘.1dm’ files through transport

simulations (which creates a ‘.pcf’ file). Then VS is used to read from the ‘.pcf’ files and move

data to an intermediary file, which can finally be imported back into Excel (via Excel add-in) to

make charts, analyze the outputs, etc. The user interface which controls the behavior of the

analysis software is accomplished by means of the VS command-line tools and Windows forms.

3.1.5 GADRAS

GAmma Detector Response and Analysis Software (GADRAS), is a software suite developed at

Sandia National Lab with capabilities related to radiation transport and detector response. Its

primary function is the simulation of gamma-ray and neutron signals from sources with various

geometries and shielding configurations. This data can then be included as part of an ‘inject’

calculation, which incorporates information about the detector and its spatial relationship to the

source, as well as information about geographical location and coarse-grained environmental

properties, such as geographical location, which can help determine potassium-40 and cosmic

ray background contributions.

 GADRAS also contains an analysis suite which can be applied to the pre-computed

spectra (‘.pcf’) files generated as previously described. These tools include single-regression

analysis, multiple-regression analysis, radionuclide identification, and special-nuclear-material

(SNM) analysis, along with a few others which are not relevant to this project such as flux

computation and full-spectrum-analysis (FSA) model fitting. These tools may be useful in

providing insight on the spectra produced by feeding SSPM data into GADRAS.

!15

 GADRAS provides a C# API which can be used to turn isotopics data into a GADRAS

‘.1dm’ model file. This is a file which specifies composition and geometry of the material to be

placed near a simulated radiation detector.

3.2 METHODS

The main work of this project has consisted of creating a software analysis pipeline whereby

isotopic data created by the SSPM is processed and run through GADRAS to generate simulated

detector responses. These responses may then be subject to various analysis and evaluated for

their usefulness with regards to electrochemical safeguards applications.

 Because the SSPM represents a single year in 6480 hours of plant operations, and for

each hour represents the isotopic makeup in a given plant unit by a 1676-element vector, the

amount of information generated is quite formidable. And this is only for a single run of the

simulation. There are many different loss parameters that may be tweaked including diversion

location, diversion length, fuel enrichment, fuel burnup, and fuel cooling time. The dual task of

this project is to first strategize the best way to tackle this huge parameter space on the macro

level and then secondly using the software to automate analysis on the micro (individual

simulation) level.

3.2.1 RUNNING AND MODIFYING SSPM

After opening MATLAB, the SSPM Simulink file may be opened using the file hierarchy on the

left hand side. This will open a Simulink window with the electrochemical flowchart represented

in Simulink’s visual block-based programming. Before a simulation may be run, model

parameters must first be selected. This is accomplished by opening

‘SSPMeChem_GUI_MPACTrev1.mlapp' from the main MATLAB window in the same way the

Simulink file may be opened. This will bring up a GUI editor window. In this window, the “Run”

button is clicked to open the parameter selection screen. Here one is able to select various

parameters including fuel enrichment and burnup, cooling time, simulation time, diversion

!16

location, diversion period, diversion percentage, and there is even the potential to create a

custom fuel swap sequence if desired, although that feature is not used for the purposes of this

thesis. Now clicking “Generate Parameters for Standalone Run” will generate the parameters,

which will be stored in the MATLAB workspace in the “ModelParams” variable.

 Now that the parameters have been generated, the SSPM Simulink file will be able to use

them for an electrochemical simulation. Returning to the Simulink screen, the green “Run”

button at the top may be pressed to initialize and run the simulation. The built-in output of the

SSPM can be found in the MATLAB workspace, as the SSPM will generate workspace variables

during its execution.

3.2.2 MEASURING DIVERTED SPECIAL NUCLEAR MATERIAL (SNM)

The amount of plutonium or uranium diverted over the course of a simulation may be measured

by sampling the negative signal inside a given diversion block, and sending it through this chain

of Simulink blocks: Selector -> Sum -> Integrator -> Scope. This chain first selects only the

plutonium isotopes, then adds them together (we want to consider the diversion of all Pu

isotopes), then converts the per-time signal into a total mass (in kg) via the integrator, then

displays the data, which is how the figures B.5-B.12 were obtained. Appendix figure B.1 shows

the Simulink setup for UTRU diversion detection, along with the preferences for the selector

block.

3.2.3 OBTAINING AND PROCESSING ISOTOPIC VECTORS

Capturing data from the SSPM is a straightforward process. First in the block diagram, a

toWorkspace block is added (using the 3-D array setting with a sample time of 1 hr) and given

whatever variable name is desired. Then a signal line is attached to a preexisting signal line in

the diagram to sample the value at that point.

 The simulation is then run. Once the simulation is paused or stopped, the workspace

variables will be updated and data values will be available for navigation. Multiple variables may

!17

be selected and saved as a group, making saving and reopening simulation records much easier.

As many ‘toWorkspace’ blocks may be placed as desired, because even approximately 20 blocks

does not significantly slow down the simulation. Although it is recommended that a user ensures

that their sample time is not set to an extremely small value, which may indeed result in a

slowdown.

 Once this data is available in a MATLAB workspace, the ‘copyToExcel.m’ (found in

appendix C) may be used, which goes through the various KMP data series and writes the

vectors corresponding to a set of time-slices, also specified in that script, to an excel file

(isotopics.xlsx) for further processing.

3.2.4 WRITNG TO 1DM File

 SSPM data may be provided to GADRAS via an XML file with the extension .1dm. This

file tells GADRAS how to construct a 1-dimensional radiation transport model, with arbitrarily

defined custom materials comprised of any number of specified structural materials and

radionuclides. Various materials may be combined into a single model, separated into distinct

shells (in the spherical case), shown in the cross-sectional view of the “Model” tab. This allows

for the modeling of shielded sources, in which the source may be a homogeneous mixture of

various different radionuclides of varying compositional percentage.

 As mentioned before, the data displayed in the ‘Model’ tab is summarized in an XML file

with extension .1dm, which may be populated with data from the excel file into which SSPM

data is copied by using the C# Add-In described above. The specifics of this XML files are

designated Official-Use-Only and thus will not be disclosed, but suffice to say that isotopes and

their corresponding mass-fractions are provided for each material layer (which are then

normalized by GADRAS and as such may be used for any specified mass of the resultant custom

material).

 Three different source term geometries have been employed for this analysis: spherical,

cylindrical, and slab-shaped. The cylindrical configuration is a long skinny rod, and is not a true

!18

cylinder but approximated in GADRAS using a long skinny rectangular prism with square cross

section. The slab configuration is also a rectangular prism, with two of the dimensions having

substantial length, and the third being quite small compared to the first two. All three of these

geometrical configurations are lead shielded, with a concentric outer lead layer that matches each

particular geometry. Different thicknesses of lead shielding are used at different KMP’s, to

ensure optimal detector response. Included in appendix B.2 and B.3 are pictures of the various

source term geometries in the GADRAS model window.

 These parameters are chosen via a dialogue window which appears as part of the Excel

add-in (called as isotopics.xlsx opens) after the MATLAB script writes the isotopic vectors to the

spreadsheet. Additionally, this dialogue allows the user to select parameters for the GADRAS

transport and inject calculations, such as detector type, dimensions, distance from source, etc.

3.2.5 GADRAS TRANSPORT CALCULATIONS

 After SSPM data has been written to the ‘.1dm’ files, the Excel add-in will call another

binary which uses the specified parameters to initiate a transport calculation which produces

a .gam files in that same directory. These files contain information about the photon and neutron

energies and fluxes for that particular model. These .gam files will be used as the source terms

for GADRAS “Inject” calculations, in which detector response is simulated.

 The result of a GADRAS inject calculation is a pre-computed-spectrum ‘.pcf’ file, which

appears in the directory belonging to the GADRAS detector with which the inject calculation

was run. These ‘.pcf’ files may then be analyzed via the GADRAS “Analysis” tab. Or in the case

of the automated system developed for this project, a third Visual Studio program will write from

the .pcf file to a intermediary data file, which will then ultimately be read by a second GADRAS

Excel Add-In representing the final piece of software and terminal point of analysis for this

pipeline.

!19

3.2.6 DATA ANALYSIS

3.2.6.1 TOTAL GAMMA CPS

A main avenue of analysis that has been pursued on this project has been the total gamma

counts-per-second (CPS) for NDA radiation detection at the various KMPs. At the relevant

KMPs there is a detectable difference at the point of an abrupt diversion, or an increasing

difference over the course of a longer diversion.

 Once the GADRAS transport and inject calculations have been run, the output is stored in

a ‘.pcf’ filetype. This can be read by GADRAS or an associated program also developed at

Sandia known as Cambio. GADRAS displays the ‘.pcf’ data in table form. In order to create the

final graphs and have an easier time representing the data visually, the ‘.pcf’ data is put back into

Excel to create the charts. This is accomplished by once again leveraging the GADRAS C# API

using the ReadHeader API example. This example project is used as the basis for the

‘GammaAnalysis’ Visual Studio project, which as part of its capability writes a specified ‘.pcf’

file’s records’ total counts to an intermediary file to be used by a final Excel Add-In (via

totalGamma.xlsx) for the final analysis, which consists mainly in charting the total gamma

counts for various KMPs over the course of an operational year of the facility.

 Because multiple KMPs are dealt with on a single chart, the most optimal solution to the

problem of visual noise is to represent all measurements on the same KMP with a single color,

and to make the control scenario a dotted line whereas the diversion scenario would be a solid

line. A sample of the charts output by this process can be found in appendix A (figures A.1-A.5).

 In order to generate detection probabilities with associated confidence intervals, the null

hypothesis will be tested. That is to say, given a background count (the control gamma CPS)

what additional (or in our case subtractive) amount of counts will give the desired confidence

that we have facility misuse at play. This process is carried out in greater detail in section 4.5.2.

!20

3.2.6.2 PEAK ANALYSIS

An alternative to using total gamma count as the primary metric for our NDA analysis is the use

of gamma peak ratio analysis. This technique distinguishes between different energy gammas

and is concerned with how the energy spectrum changes in response to diversion scenarios in the

electrochemical facility.

 The ‘GammaAnalysis’ component of the software tools also has the capability to initiate

a channel-by-channel analysis of a specified gamma spectrum in addition to its total count

functionality. The difference here is that the spectrum is being examined for only a single KMP

at a single time-slice. Thus, the logical flow of using the software consists in using the total

gamma functionality of ‘GammaAnalysis’ to identify good KMP/time-slice candidates for

diversion discrepancy, which can then be explored individually using the channel-by-channel

spectrum analysis capability. A figure of a chart generated by the peak analysis mode can be

found in appendix B.4.

3.2.7 PARAMETER SPACE SELECTION

As stated in the introduction to this section. The possible parameter space of loss scenarios

generated by the SSPM is quite large, and must be reasonably reduced if there is to be a chance

of making some sort of comprehensive judgement in the time span allotted for the project. A

good initial reduction of this parameter space can be achieved by looking at which diversion

scenarios result in a substantial amount of plutonium being lost from the facility. An initial

survey for this thesis can be found in section 4.4 and appendix figures B.5-B.12.

3.2.7.1 PROTRACTED VS. ABRUPT LOSS SCENARIOS

Given the results presented in graphs such as figure A.3, it can be shown that this method is

extremely effective at detecting abrupt loss scenarios for common diversion points such as the

ER, UTRU processing, etc. The confidence interval on these detections is effectively 100% for

testing of the null hypothesis. This is very good news for the use of this technique as a safeguard

!21

against abrupt diversion. However, safeguards are only as effective as their weakest link, and the

possibility of a protracted diversion event is much more pernicious and likely given a malicious

state-sponsored misuse of a facility. Thus the decision has been made to focus the main share of

this project on protracted loss scenarios and their associated probabilities of detection, which

seems to be a more interesting and salient focus.

3.2.7.2 KEY MEASUREMENT POINTS

As covered in section 2.3, Dr. Cipiti of MPACT has laid out his predictions for which KMPs will

benefit most from NDA gamma techniques. Figure 2.2 shows that it is predicted that the most

benefit will be obtained by using NDA at the metal waste and fission product waste KMPs. As

revealed in section 4, the U and UTRU product processing may also be prime candidates for

NDA. While the results of this project support the recommendation to use the metal waste KMP,

it was found, surprisingly, that the fission product waste KMP turned out to be far less useful

than anticipated.

3.2.7.3 FUEL CHARACTERISTICS

The SSPM parameter GUI (SSPMeChem_GUI_MPACTrev1.mlapp) offers 9 different possible

fuel burnup/enrichment combinations. For 33 GWd/MTHM: 2.6%, 3.3% and 4% enrichment.

For 45 GWd/MTHM: 3.3%, 3% and 4.7% enrichment. And for 60 GWd/MTHM: 4.03%, 4.73%

and 5.43% enrichment. Alongside this there are 5 different cooling times: 1 year, 5 years, 10

years, 25 years, and 50 years. Together, these parameters allow for 45 different combinations of

fuel input parameters. Given the time it takes to run the SSPM, it was opted to simplify this

complexity by collapsing the burnup/enrichment options into only three. This parameter was

chosen because of the simulations I had already run, the smallest output variance was found

when changing the enrichment, rather than changing the burnup or cooling time. Thus it was

opted to only use 33 GWd/MTHM at 2.6%, 45 GWd/MTHM at 3%, and 60 GWd/MTHM at

5.43%, calling these options ‘low’, ‘middle’, and ‘high’ respectively.

!22

3.2.7.4 TIME SLICES

The MATLAB script takes as an input both the name of the output ‘.pcf’ file to be created and

the time slices for each KMP that are desired. These time-slices have been selected by hand i.e.

going through the time-series in the MATLAB workspace and manually choosing a set of around

30 time-slices for each KMP. It is fine to do this manually, because it really only has to be done

once and then one can run many analysis scenarios without having to choose them again. It is

difficult to see which time-slices actually contain significant quantities of material for a given

KMP (due to flows of material around the plant) without going in and choosing them by hand.

!23

4. RESULTS

After several different iterations on the process, a fairly compact and reasonable automation

implementation has been settled upon, despite having to leverage so many different technologies.

This section describes that final product and how it is used. Additionally, the initial analysis of

the gamma NDA prospects will be presented. This analysis shows quite promising results for

NDA applications to pyroprocessing safeguards.

4.1 FINAL SOFTWARE SCHEME

Depicted below is the data and control flow through the various software components:

Fig. 4.1: Control/data flow through the various software components.

!24

For additional information on software data/control flow, read section 4.2.2 below.

4.2 SOFTWARE USAGE GUIDE

4.2.1 INSTALLATION

(1) Install the latest version of Microsoft Visual Studio, including the VSTO framework

and .NET 3.5, which requires an external download. Here is a link describing the process.

https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10.

(2) Install GADRAS 18.8.x the installation drive should be C:\ by default.

(3) If the folder ‘C:\GADRAS\Source\ApiTestSources\ApiTest_ParallelGADRAS’ does not

exist, then create it.

(4) Open the GammaNDA zip file and move the resulting folder to your desktop.

(5) Open the ‘GADRASAddIn’ Visual Studio project and click run to build and register this add-

in with the local copy of Excel.

(6) Open the SSPM and add any needed ‘ToWorkspace’ blocks to the main signal flow in order

to generate the variables that the ‘copyToExcel.m’ script will utilize. This is described in

section 3.2.3. By default it will look for variables named ‘UConf’, ‘UTRUConf’,

‘FPWasteInv’, and ‘MetalConf’, for U, UTRU, fission product, and metal waste KMPs

respectively.

(7) (Optional) Modify the diversion blocks of the SSPM to track how much plutonium is being

diverted for a given diversion scenario. This process is described in detail in section 3.2.2.

4.2.2 USAGE

(1) Open the SSPM MPACT GUI (SSPMeChem_GUI_MPACTrev1.mlapp), choose your

simulation parameters. My strategy for this step is described in sections 3.2.7.3 and 4.4.

(2) Run the SSPM to obtain diversion scenario data and write SSPM data to MATLAB

workspace variables. Save these variables to a .mat file for later use if you would like. Make

https://docs.microsoft.com/en-us/dotnet/framework/install/dotnet-35-windows-10

!25

sure that any .mat files you would like to load into MATLAB (for the next step) are located

on the desktop so that the script can find them.

(3) In ‘copyToExcel.m’ choose the .mat file you would like to load (line 1), or comment out this

line to use whatever variables are currently in the MATLAB workspace. Choose the name

you want your pcf file to have (lines 7 & 8, these string will concatenate together).

(4) Run ‘copyToExcel.m’ in the MATLAB workspace. After the data has been copied to

isotopics.xlsx, it should open automatically and trigger the Excel add-in.

(5) Once excel opens, a window should appear. Choose your geometry/transport/inject

parameters here. Click “Run Transport and Inject” when you are ready to start the

calculations. The dialogue window should disappear. Nothing visible should happen for a

few moments while the .1dm files are being written, then a console window should open to

track the progress of the transport and inject calculations.

(6) There is an unknown bug which in some cases causes the program to crash in between the

transport and inject phases. You will know this has happened if the .pcf file does not appear

in the detector folder and the ‘GammaAnalysis’ window does not appear prompting you to

enter in your loss and control scenario IDs. If this happens, open the TransportAndInject

Visual Studio project. In the ‘Program.cs’ file, change the ‘true’ boolean on line 18 to ‘false’.

This will prevent the transport sequence from running and jump straight to the inject

calculation. You will need to specify your own parameters for the inject calculation.

Comment out the existing inject call and replace it with your own with parameters inserted

by hand. Run the project in the Visual Studio editor. The inject calculation should now work

correctly. Once it has finished running, return the boolean on line 18 to ‘true’, comment out

your new inject function and uncomment the old ones. Always make sure to build the project

‘Toolbar->Build->Build Solution’ before your next analysis run to ensure normal operation.

(7) Once you have successfully completed the inject calculation. A new program

‘GammaAnalysis’ should open in a console window. This window may also be opened by

running the ‘GammaAnalysis’ project from the Visual Studio editor. This command window

!26

will prompt you to enter the names of your loss (diversion) scenario and control scenario .pcf

files found in the relevant detector folder after their inject calculations have been run. If you

do not yet have both a control and a diversion .pcf, just close the window and generate

another one. If you have both and are ready to analyze, then enter in their filenames (just

names, not full paths) without the ‘.pcf’ at the end. The console will then ask if you would

like to do total gamma or channel (spectrum) analysis. Enter ’t’ for total gamma and ‘c’ for

channel analysis. If you choose the channel mode, you will also be asked to specify the KMP

and time-slice for the spectrum comparison. Currently the options are ‘U’, ‘UTRU’, ‘MW’,

and ‘FP’.

(8) This will cause either ‘totalGamma.xlsx’ or ‘gammaChannels.xlsx’ to be automatically

opened, depending on the analysis mode you chose. The data will be arranged and a chart

will automatically be generated. Once the chart is generated, it is advisable to set cell A1 to

zero and save as new file for future reference. This will prevent the analysis add-in from

being run every time you open the file. Make sure the original (i.e. ‘totalGamma.xlsx’ or

‘gammaChannels.xlsx’) still has “totalGamma” or “gammaChannels” in cell A1 so it can still

run.

 Additional notes and warnings:

 It is currently inadvisable to choose time-slices for ‘copyToExcel.m’ which are below

1000, as the system will process them after every other record, so they will appear at the bottom

of the final Excel file. If it is really necessary to include these times, they may be moved by hand

in the final analysis, but this extra step may be avoided by simply excluding them.

4.3 DATA PROCESSING TIMES

4.3.1 SSPM

On the machine used for this project, which has a 3.4 GHz processor, it takes approximately 6.5

hours to run the SSPM. This would not benefit from additional cores or a Graphical Processing

!27

Unit (GPU), as the SSPM is coded as a single-threaded calculation and was not (probably cannot

be) coded to take advantage of Simulink’s GPU acceleration feature.

4.3.2 PCF ANALYSIS

On the machine used for this project, which has a 3.4 GHz processor, it takes approximately 20

minutes to process around 130 individual records (for a particular measurement point and time).

Given quite large variances in computer performance due to particularities among data sets, this

comes out to a data processing time on the order of 10 seconds per record for the whole

processing pipeline. This pipeline can benefit from parallel cores, as the GADRAS transport and

inject API supports up to eight cores for each records processing operation.

4.4 PRELIMINARY SURVEY OF KEY MEASUREMENT POINTS

A qualitative investigation of diversion behavior at the various key measurement points (KMPs)

enables a better understanding of which measurement points are most likely to be exploited by

an attacker, and thus which ones we should focus on for this analysis. Trials of all KMPs were

performed over the course of a year (using an undisclosed but substantial loss fraction,

enrichment, burnup, and cool down time) to determine the upper limits of how much plutonium

would be diverted by such an extreme diversion campaign. Sampling of the diverted plutonium

content was achieved via the method outlined in section 3.2.2.

 This survey identified the following diversion locations as significant (results can be

found in appendix scope images (B.5-B.12): SNF Storage, Shredded Fuel, ER, UTRU, U,

Oxidant Production, UTRU Drawdown. The following diversion locations were deemed

insignificant: Metal Waste, RE Drawdown, FP Waste, Blender/Ceramic Waste.

 Multiple attempts were made to utilize the multiple-regression analysis capabilities of

GADRAS on the product ingot spectra, yet all these attempts indicated a marked difficulty in

detecting individual concentrations of special nuclear material isotopes. E.g. one of these

measurements was taken with a variable width iron shield in a spherical geometry. Below around

!28

15 cm, the detector receives too many counts and fails to function correctly. At around 20 we

have a chi-squared value of 260, which decreases to around 160 at 40 cm of shielding before

beginning to increase again. Obviously these values mean that there is no meaningful correlation

between the special nuclear materials isotopes to be identified and the spectral data generated by

our source terms. This is an indication of the effective impossibility of using NDA for a direct

measurement of the SNM isotopes, and an indication that this is not an avenue which should be

considered.

 Several calculations were carried out on the results of spectra with different shielding

constraints, and show that the lead, copper, iron, and aluminum all behave in essentially the same

way with regards to the resulting spectrum that we observe. Since lead is a common shielding

material in the industry, due to it’s compactness and availability, This is the material assumed to

be used for shielding throughout the rest of this analysis.

4.5 EXPLORATIONS OF VARIOUS SIGNIFICANT QUANTITY DIVERSIONS

In light of the preliminary plutonium diversion survey conducted on the various possible

diversion locations described above, the most probable targets for facility misuse by a malicious

actor have been identified. The software developed in this thesis will be used to investigate these

cases more deeply, and a preliminary trial of these capabilities is documented in the proceeding

sections.

4.5.1 QUALITATIVE FINDINGS

The four diversion locations chosen for analysis are at (1) the electrorefiner (2) UTRU ingot

processing (3) UTRU drawdown, and (4) the oxidant production unit. These four were chosen

from the survey images found in appendix images B.5-B.12. The first two are the most important

locations as they require far smaller diversion percentages to obtain one significant quantity of

plutonium over the course of a year. As discussed in section 3.2.7.1, it was opted to explore

!29

protracted scenarios over abrupt scenarios, as the former have much stricter detection limits,

while the latter are fairly easy to detect. The relevant charts are presented in appendix images A.1

and A.2 Looking at these images, a few things may be noted. First, for the electrorefiner

diversion, note that the most important KMPs for detecting the facility misuse are the metal

waste KMP and, perhaps surprisingly, the U product KMP. Also surprising is how the fission

product waste KMP does not seem very useful. The UTRU product displays an oscillatory

behavior for this diversion. For the UTRU diversion, we note that only the UTRU KMP is

relevant. This makes sense, as the only KMP downstream of a UTRU diversion is the UTRU

KMP itself. Among all the scenarios explored, this UTRU diversion case is perhaps the most

difficult detect, and would warrant the most extra support from other safeguarding methods when

designing a pyroprocessing facility. The UTRU drawdown and oxidant production diversion

scenarios are presented in appendix charts A.4 and A.5. By inspection we can see that the UTRU

drawdown discrepancy is much larger than the oxidant production discrepancy. This coupled

with the fact that these diversions require a much higher percentage of the throughput to be

diverted (5.8% and 10% respectively), place them at a lower threat level than ER or UTRU

diversions, yet perhaps still worth the implementation of NDA monitors.

4.5.2 QUANTITATIVE FINDINGS

 For the protracted electrorefiner diversion, there are a few noteworthy points. The first is

that metal waste form and uranium product processing KMPs appear to be the most useful for

detecting a protracted diversion, as their values steadily diverge from the control scenario over

the course of the diversion. By the end of the diversion period the metal waste showed a

discrepancy of 2100 CPS and the uranium processing a discrepancy of 2800 CPS. The latter is

over 10 standard deviations with detectors operating at around 33,000 CPS. The standard

deviation (for testing the null hypothesis) is found in [15] as the square root of the total gamma

counts (182 CPS). If proportionality between diversion amount and count discrepancy is

!30

assumed, then it can be calculated that we have a 99% confidence in detecting a 0.2 SQ diversion

via gamma NDA.

The fission product KMP did not prove to be very useful for detecting this ER diversion,

and the transuranic KMP displayed a strange oscillatory behavior, which could still be useful in

detecting anomalous facility use, but has not yet been statistically analyzed.

 For the transuranic product diversion, it can be seen that the only relevant KMP is indeed

the transuranic NDA measurement. This makes sense as this diversion scenario is very far

“downstream” and should not affect all of the KMPs in the way that the electrorefiner diversion

does. For the duration of this diversion, a consistent discrepancy between the control and

diversion scenarios with an average CPS difference of approximately 400 is seen. The detectors

are running a total CPS of around 24,000. Thus the standard deviation (for testing the null

hypothesis) is 155 CPS. For just one measurement point we obtain a confidence interval of

around 93% that the diversion is occurring [15]. Over the course of this diversion we may have

as many as 60 measurement points. Research into the statistical implications of having so many

measurement points is ongoing. To obtain a confidence interval of 99% our standard deviation

could be multiplied by 2.58 [15]. 2.58*219 = 565. This discrepancy would correspond to a

diversion of 1.4 SQ if proportionality between diversion amount and count rate is assumed.

!31

5. DISCUSSION

Explored here are the implications and horizons of this research, as well as other details which

are relevant to understanding the totality of the landscape pertaining to these approaches.

5.1 SIGNIFICANCE OF RESULTS

The results obtained, and that this software system will further elucidate in the future, seem very

promising with regards to pyroprocessing safeguards applications. The probabilities for detecting

an abrupt loss scenario are very good and well within the desired limits put forth by the

International Atomic Energy Agency (IAEA), including the timeliness criteria (further discussed

in section 5.6). However, this is also the scenario which is most easily detected by other

safeguards mechanisms, and as a result, the one which a malicious agent would be least likely to

pursue. The protracted scenario is much more interesting. Based on preliminary findings,

detection limits which are within IAEA expectations can be obtained for all protracted diversion

scenarios modeled by the SSPM with the exception of a UTRU ingot diversion, which is still

close to those standards (99% confidence for a 1.4 SQ/a diversion). It is possible that even better

results are possible with the spectrum peak analysis capabilities. These results can be obtained by

the use of high-purity germanium detectors stationed at only three KMPs throughout the site

(although the fission product waste KMP is featured prominently throughout the study, it is

probably not necessary to obtaining these results). Thus, in conjunction with other

pyroprocessing safeguards methodologies being developed, it seems there is no reason that

extremely robust safeguarding systems cannot be brought online to enable the next generation of

nuclear reprocessing technologies to safely flourish.

5.2 TRANSFER TO SANDIA NATIONAL LABORATORY

Now that this set of analysis tools is in its rudimentary stage of completion, the process of

transferring the code over to Sandia National Laboratory personnel has begun. Although the code

does have many external dependencies and requires a fairly convoluted software environment,

!32

work is being done to investigate how this burden might be lessened. A fairly obvious possibility

is compiling the software into binary, as it is currently operated in Visual Studio project form to

provide maximum flexibility. When the feature set is more hammered down and users are not

desiring to add more functionality on the fly, it would be quite advantageous to compile binaries

to be used on new machines, along with the required dynamic link libraries, so that each end user

is not required to set up or manage a Visual Studio project, which could lead to software

incompatibilities. Another important consideration is the version of GADRAS used. This

software is written for GADRAS 18.8.11, and using a newer version of GADRAS may introduce

bugs.

5.3 POTENTIAL FURTHER DEVELOPMENTS

There are multiple avenues for further research along these lines, both on an analytical and an

instrumentation level. An important first expansion would be the inclusion of neutron count

analysis alongside the gamma counting. This would be fairly straightforward as GADRAS

allows for a neutron detector to be “attached” to any gamma detector being used, and the neutron

calculations are performed at the same time as the gamma calculations. The neutron transport

results are stored in the same .gam files used by the gamma detectors, and the addition of total

neutron counts to the ‘GammaAnalysis’ software would not be very difficult. Of course, it would

be important to keep in mind the HDND project also being developed by MPACT (more details

in section 2.3), and whether or not developing this neutron capability would be redundant in the

face of that work.

 Another further development which may be beneficial is the inclusion of highly-enriched

uranium (HEU) into the SNM for which we are attempting to detected significant diverted

quantities. The work of this thesis has focused on plutonium, as it is more coveted as a bomb-

making material than HEU due to substantially less being required for the fabrication of a

weapon. However, this certainly does not rule out the possibility of a significant quantity of HEU

being diverted from a pyroprocessing facility in the same manner, and it would be interesting to

!33

see if detection limits on such a diversion could possibly be lower than they are for the

plutonium case. The main diversion point of interest here would naturally be the U product

processing diversion location and KMP.

 With regards to further developments of the usability and dependability of the software

tools themselves, making the software easier to install on new machines would also provide

some benefit. Some difficulties have already been encountered in transferring the codes to

Sandia National Laboratory personnel, and those experiences are actively being used to inform

an iterative cycle which is leading to better packaging and self-containment of the software tools.

5.4 TOTAL GAMMA CPS VS SPECTRUM PEAK ANALYSIS

The use of total gamma CPS NDA systems vs an energy-specific peak analysis NDA system

presents an interesting balance of factors for facility designers. Although including peak ratio

analysis does introduce a new dimension of information (energy) along which facility misuse

could be detected, it also necessitates a lower gamma exposure than a detector which is being

used for total count analysis. Pileup and other effects which could compromise the resolution of

an energy spectrum are not important considerations for a system relying on total gamma count,

meaning that the detector may be exposed to a greater number of gamma counts, which will lead

to better counting statistics. It is also plausible that NDA systems relying on total gamma count

may be less expensive, as resolution, which is often a quite important driving cost for detectors,

is not an important factor. The difference in price between NaI and HPGe detectors is substantial,

and being able to recommend the former over the latter for a comparable increase in safeguards

efficacy, would make NDA detection a very attractive choice for a facility designer.

5.5 DEFEAT OF TOTAL GAMMA CPS VIA HOT SUBSTITUTION

One of the objections which may be raised to the use of total gamma count NDA safeguards is

the possibility of a malevolent agent defeating the safeguard by means of a “hot substitution”.

That is, because this method does not discriminate between gamma energy levels, the attacker

!34

may substitute in new radionuclides during the diversion procedure, in such a way that the total

gamma count detected at the critical KMPs is not changed. While this is certainly a worthwhile

objection, and should be considered in full, here are a few possible responses to this objection.

 One possible response is that although the attacker may very well substitute in whatever

radionuclides they like, the probability that just any radionuclide across the table of isotopes

would actually reach the desired KMP as the original would is substantially smaller. Unless they

are direct chemical analogues of the original material (which would fool a system sensitive to

gamma energy levels anyways) the substituted material will very likely not have the same

chemical properties as the original, and thus flow through the plant in a different way, setting off

not just the NDA detection system, but likely many other safeguards systems as well.

 Another response is that although this hot substitution is a viable threat, the necessity of

executing this additional dangerous and complicated maneuver will help to decrease the chance

of a diversion attack occurring. The general purpose of safeguards is to deter attackers, and

whether or not an NDA system, even one vulnerable to hot substitution, represents a substantial

enough deterrence to would-be attackers is an interesting question for someone designing

safeguards systems in such a facility.

5.6 SIGNIFICANT QUANTITIES AND TIMELINESS

The exposition of this project has thus far taken for granted the various standards and definitions

employed by the IAEA. The two most important definitions are those of significant quantity,

already used extensively, and timeliness of detection, which has not yet been discussed.

 A significant quantity (SQ) of material, officially defined as 8 kg of plutonium or 25 kg

of U-235 specifically. The difference between these two numbers results from the amount of

material which is lost in the conversion and manufacturing process during weapon fabrication for

highly-enriched uranium vs plutonium. This is taken into account by the IAEA and reflected in

the ultimate value [29].

!35

 Timeliness refers to the acceptable window within which a diversion must be detected,

and is dependent upon additional steps required to fabricate a bomb given characteristics of

diverted material. The standards are currently 1-month detection for unirradiated direct -use (no

further processing required), 3-months for irradiated direct-use, and 12-months for indirect-use

(further processing required). [28]

 The gamma NDA system preforms excellently with regards to the timeliness requirement.

This is because radiation detectors are a type of “process monitoring” which may be collected

very frequently, close to real-time, reflected by the fact that measurements can be taken from the

SSPM for each hour of operation. This is extremely good compared to some other IAEA

evaluation techniques, such as requiring human inspectors to visit a facility and take inventory.

Furthermore, the UTRU to be gained from a pyroprocessing facility, despite having high

plutonium content, may be designated as indirect-use given high amounts of undesirable

spontaneous neutron emitter Cm 244 [8]. Although this same argument does not hold for

uranium, the fuel being processed at an electrochemical facility will almost certainly be LEU

except in extraordinary situations. In light of these, I can safely say that the systems investigated

in this project do extremely well with regards to IAEA timeliness standards.

 As regards significant quantities, electrochemical plants are in theory more proliferation-

resistant, because the IAEA significant quantity does not always take into account certain aspects

of the material (such as UTRU containing high amounts of Cm 244) as described above. Instead

opting to emphasize “the need for safeguards to protect against the diversion and misuse of

separated plutonium applies essentially equally to all grades of plutonium. “ [8]. The presence of

curium in this product will almost certainly necessitate further processing and material loss by

any bad actors, therefore necessitating an increase in material diverted if a bomb is to be

manufactured. This reality means that our results may be overestimating the threshold detection

limits for SQ loss scenarios, i.e. the safeguards systems in reality may perform even better than

expected based on this work.

!36

5.7 VERIFICATION AND VALIDATION

Even though it has been shown that in a virtual facility, i.e. the SSPM, there can be detected a

difference in gamma counts between control and diversion scenarios, it is a nontrivial matter to

port that knowledge over to a real world pyroprocessing facility such as the ACPF. The problem

lies in how well the SSPM can truly be used as a substitute for an actual facility. Due to random

error and the impossibility of a completely faithful mathematical model of reality, the SSPM data

will, to a greater or lesser extent, diverge from the actual numbers achieved in a real world

facility.

 This speaks to a greater issue of verification and validation faced by this project. Luckily

the tail-end analyses in GADRAS are resting upon a widely-used and well tested software suite,

but the SSPM itself is very much a new and untested model. This is due to its fairly recent

development, combined with a lack of full-scale real world facilities to provide data against

which it may be validated. The difficulty in initially applying safeguards whose development is

dependent on empirical real-world plant results is that not such data exists. So we have a

chicken-and-egg problem in which plants may not be constructed without safeguards, but

safeguards may not be fully developed without plants.

 There are a couple of possible redemptive stances. The first is that the models used to

construct the SSPM (AMPYRE and DyER, see section 2.2) have been validated against scaled-

down versions of these pyroprocessing systems. This gives them some, if not full credibility as

the structural basis for the SSPM. The second point of solace is that given the sheer range of

technologies developed by the MPACT group, the first electrochemical plant will likely be over-

outfitted and used as a laboratory for such technologies. Under such intense scrutiny and having

so many different (likely redundant) measurement instruments running, the likelihood of a

malicious diversion drops significantly. This “laboratory-plant” will then provide the full-scale

real-world data necessary to validate models and refine the safeguards approaches, so that they

may be used more cost-effectively in any subsequently constructed pyroprocessing facilities.

!37

6. CONCLUSIONS

The tools developed during this project will be useful for anybody who is researching, designing,

or implementing safeguards for a pyroprocessing facility. Based on the cursory results obtained

by use of these tools, the conclusion may be reached that simple gamma NDA, while perhaps not

as new and exciting as other methods being pioneered for pyroprocessing safeguards

applications, can be an excellent mechanism for the detection of facility misuses. Based on the

preliminary findings, detection limits which are within IAEA expectations can be obtained for all

loss scenarios modeled by the SSPM, especially protracted and abrupt scenarios at the

electrorefiner, which has perhaps posed the greatest challenge to safeguarding [8]. The exception

of a UTRU ingot diversion, which is still close to those standards (99% confidence for a 1.4 SQ/

a diversion), is mitigated by the fact that electrochemical UTRU product is very radiologically

hot, and therefore not extremely attractive to potential bad actors. It is possible that even better

results are within reach through use of the spectrum peak analysis capabilities developed at the

end of the thesis writing period, whose impacts have not yet been fully evaluated. Furthermore,

these results can be obtained by the use of high-purity germanium detectors stationed at only

three KMPs throughout the site (although the fission product waste KMP is evaluated and

featured prominently throughout the study, it is probably not necessary to place a detector there).

Thus, in conjunction with other pyroprocessing safeguards methodologies being developed, it

appears there is no reason that extremely robust safeguarding systems cannot be brought online

to enable the next generation of nuclear reprocessing technologies to safely flourish.

 Hopefully these tools will be utilized by such professionals as can benefit from them,

perhaps as a part of MPACT’s Virtual Facility Test Bed or otherwise, and they can be

incorporated into analysis workflows for members of the international nuclear community who

are interested in pyroprocessing as an avenue for improving their nuclear energy production.

 This software is, at the time of writing, in the process of being transferred over to

personnel at Sandia National Laboratory, so that they may safely keep it and use it as they see fit.

Although the author will no longer be working on the project in any official capacity, he urges

!38

anyone reading this who is interested in using the software, or is perhaps having issues with the

software, to get in contact so that an attempt may be made to correct the issues. If there is a

problem which cannot be troubleshot by the contents of this thesis, particularly section 4.2,

please contact for additional support at noah.christopher.harris@gmail.com.

!39

BIBLIOGRAPHY

[1] Cho, I. J., D. H. Kook, K. C. Kwon, E. P. Lee, W. M. Choung, and G. S. You. "Design and
Verification of Shielding for the Advanced Spent Fuel Conditioning Process Facility." Health
Physics 94, no. 5 Suppl 2 (2008): S65-71.

[2] Cipiti, B. (2020, June). Milestone 2020 - Overview. Presented at the MPACT Spring 2020
Virtual Meeting.

[3] Cipiti, B., Browne M., Reim, M. 2021. “The MPACT 2020 Milestone: Safeguards and
Security by Design of Future Nuclear Fuel Cycle Facilities.” Journal of Nuclear Materials
Management xx-xx

[4] Cipiti, Benjamin B., and Mancel Jordan Parks. “Integration of Materials Accountancy and
Process Monitoring Data with Physical Protection.” No. SAND2016-10373C. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), 2016.

[5] Croce, M. et al. 2021. Electrochemical Safeguards Measurement Technology Development at
LANL, J. Nucl. Mater. Manage, Vol. X, No. X.

[6] Frigo, Arthur A., Dale R. Wahlquist, and James L. Willit. “A conceptual advanced
pyroprocess recycle facility.” No. ANL/CMT/CP-111325. Argonne National Lab.(ANL),
Argonne, IL (United States), 2003.

[7] Fugate, M. L., Key, B.P., and Tutt, J.R. 2019. Monitoring an Electro-Refining Process:
Revision 1, LA-UR-19-29553, Los Alamos National Laboratory.

[8] Haori, Y., Zhang, J., & Cipiti, B. (2018). Integration of Nuclear Material Accounting Data
and Process Monitoring Data for Improvement on Detection Probability in Safeguarding

[9] Hoyt, N.C., Launiere, C.A., and Stricker, E.A. 2021. In-Process Monitoring of Molten Salt
Composition by Voltammetry and Automated Sampling-based Techniques, J. Nucl. Mater.
Manage, Vol. X, No. X.

!40

BIBLIOGRAPHY (Continued)

[10] Harris, N.C. et al. 2021. University Research to Support the MPACT 2020 Milestone, J.
Nucl. Mater. Manage, Vol. X, No. X.

[11] Higham, Desmond J., and Nicholas J. Higham. MATLAB guide. Society for Industrial and
Applied Mathematics, 2016.

[12] Horne, Steven M., Gregory G. Thoreson, Lisa A. Theisen, Dean J. Mitchell, Lee Harding,
and Wendy A. Amai. GADRAS-DRF 18.5 User’s Manual. No. SAND2015-5176. Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), 2015.

[13] Humberto Garcia, Wen-Chiao Lin, Reed Carlson, and Idaho National Laboratory.
"Evaluating Safeguards Benefits of Process Monitoring as Compared with Nuclear Material
Accountancy." 2014, 01 July 2014.

[14] Kim, Ho-Dong, T.H Lee, J.S Yoon, S.W Park, S.Y Li, T.K Menlove, H. Miller, M.C Tolba,
A. Zarucki, R. Shawky, S. Kamya, and 555 North Kensington Avenue, La Grange Park, Il 60526
American Nuclear Society. "Safeguards System for the Advanced Spent Fuel Conditioning
Process Facility." 2007, 01 July 2007.

[15] Knoll, Glenn F. Radiation detection and measurement. John Wiley & Sons, 2010.

[16] Lafreniere, P., Fugate, M., and Key, B. 2021. Advanced Integration of Safeguards
Measurements, J. Nucl. Mater. Manage, Vol. X, No. X.

[17] Launiere, C. et al. 2019. Benchtop Assembly and Testing of Flow Cell Pneumatic Droplet
Generator and Sampling Line, M3NT-19AN040104011, Argonne National Laboratory.

[18] Lee, Sung-Ho, Dong-Sup So, Byung-Doo Lee, Hyun-Jo Kim, and Ho-Jun Park. "Safeguards
Approach to ACPF (Facility Level)." In Proceedings of the Korean Nuclear Society Conference,
pp. 1183-1184. Korean Nuclear Society, 2005.

[19] Lim, Eunjung. "South Korea’s Nuclear Dilemmas." Journal for Peace and Nuclear
Disarmament 2, no. 1 (2019): 297-318.

!41

BIBLIOGRAPHY (Continued)

[20] Maggos, L.E., Williamson, M.A., and Pereira, C. 2021. Flowsheet and Facility Design to
Support Safeguards and Security by Design (SSBD) for Future Nuclear Fuel Cycle Facilities, J.
Nucl. Mater. Manage, Vol. X, No. X.

[21] Miller, Michael. “Material Protection, Accounting and Control Technologies (MPACT)
Campaign Overview and Advanced Instrumentation Development.” Lecture, Instrumentation and
Control Review Meeting, September 17, 2014.

[22] Philip Baxter, “Approaches to Nuclear Cooperation: A Review of the U.S.-ROK
Agreement,” Science & Diplomacy, Vol. 4, No. 3 (September 2015*).

[23] Seo, Hee, Seong-Kyu Ahn, Chaehun Lee, Jong-Myeong Oh, and Seonkwang Yoon. "ASNC
Upgrade for Nuclear Material Accountancy of ACPF." Nuclear Inst. and Methods in Physics
Research, A 880 (2018): 58-66.

[24] “Simulink.” Simulink Documentation. Accessed September 25, 2020. https://
www.mathworks.com/help/simulink/.

[25] Williamson, M. A., and J. L. Willit. "Pyroprocessing flowsheets for recycling used nuclear
fuel." Nuclear Engineering and Technology 43, no. 4 (2011): 329-334.

[26] You, Gil-Sung, Choung, Won-Myung, Ku, Jeong-Hoe, Cho, Il-Je, Kook, Dong-Hak, Kwon,
Kie-Chan, Lee, Eun-Pyo, and Lee, Won-Kyung. "DESIGN AND CONSTRUCTION OF AN
ADVANCED SPENT FUEL CONDITIONING PROCESS FACILITY (ACPF)." Nuclear
Engineering and Technology 41, no. 6 (2009): 859-66.

[27] Zhang, Jinsuo. "Electrochemistry of actinides and fission products in molten salts—Data
review." Journal of Nuclear Materials 447, no. 1-3 (2014): 271-284.

[28] Fortakov, V. Nuclear verification: What it is, how it works, the assurances it can provide.
No. INIS-XA--183. 1998.

[29] International Atomic Energy Agency. IAEA Safeguards Glossary-2001 Edition.
International Atomic Energy Agency, 2002.

!42

APPENDICES

These appendices contain loss scenario comparison charts generated during my analysis and

other supporting data/images, as well as the MATLAB and C# codes written for the project.

!43

APPENDIX A: GAMMA CHARTS

 Figure A.1: Protracted electrorefiner loss of 1 SQ.

 Figure A.2: Protracted UTRU product loss of 1 SQ.

!44

 Figure A.3: Abrupt electrorefiner loss of 1 SQ.

 Figure A.4: Protracted UTRU drawdown loss of 1 SQ.

!45

 Figure A.5: Protracted oxidant production loss of 1 SQ.

!46

APPENDIX B: SUPPORTING DATA & FIGURES

Fig. B.1: Simulink setup for UTRU diversion detection, along with the preferences for the

selector block.

!47

Fig. B.2: Cylindrical GADRAS geometry.

Fig. B.3: Slab GADRAS geometry.

!48

Fig. B.4: Example output from peak analysis mode. You can see the red data series overlaid on
top of the red one, representing the difference in the gamma peaks between the diversion and
control scenarios.

Fig. B.5 Protracted plutonium loss at spent fuel storage.

!49

Fig. B.6 Protracted plutonium loss at fission product waste.

Fig. B.7 Protracted plutonium loss at metal waste.

!50

Fig. B.8 Protracted plutonium loss at oxidant production.

Fig. B.9 Protracted plutonium loss at rare earth drawdown.

!51

Fig. B.10 Protracted plutonium loss at UTRU drawdown.

Fig. B.11 Protracted plutonium loss at shredded fuel inventory.

!52

Fig. B.12 Protracted plutonium loss at spent fuel storage.

!53

APPENDIX C: CODE

########################## copyToExcel.m ##########################

load('215.mat');
%load('run2.mat');
%variables
filename = 'isotopics.xlsx';

%diversionString = 'ER25';
%rangeString = 'r1500-1550';

diversionString = 'control-high-5yr';
rangeString = '';

%sampling density = 10; %sampling density *per KMP

%C = {'hello' 'yes' 'no' 'goodbye'}; %sample of cell array data
%C = {'b7684'};
%writecell(C,filename,'Sheet',1,'Range','A7');
%writematrix(UConf(7684,:),filename,'Sheet',1,'Range','B7');

%need to come up with the best way of identifying these intervals,
%perhaps there is a "leading isotope", which is present in some
%amount at every interval, such as Caesium

%clear previous isotopic data before writing new isotopic data
X = strings(200,1677);
writematrix(X,filename,'Sheet',1,'Range',sprintf('A5'));

%UConf
numlist = {1060, 1156, 1252, 1348, 1444, 1540, 1636, 1732, 1828, 1924, 2020, 2115, 2212,
2308, ...
 2404, 2596, 2788, 2980, 3172, 3364, 3556, 3748, 3940, 4132, ...

!54

 4324, 4516, 4708, 4900, 5092, 5284, 5476, 5668, 5860, 6052, 6244};
for a = 1:length(numlist)
 txt = sprintf(strcat('%d~U~',diversionString,rangeString), numlist{a});
 C = {txt};
 writecell(C,filename,'Sheet',1,'Range',sprintf('A%d',a+4));
 writematrix(UConf(numlist{a},:),filename,'Sheet',1,'Range',sprintf('B%d',a+4));
end

%UTRUConf
numlist = {1060, 1156, 1252, 1348, 1444,1540,1636,1732,1828,1924,2020,2115,2212,2308, ...
 2404, 2596, 2788, 2980, 3172, 3364, 3556, 3748, 3940, 4132, ...
 4324, 4516, 4708, 4900, 5092, 5284, 5476, 5668, 5860, 6052, 6244};
for a = 1:length(numlist)
 txt = sprintf(strcat('%d~UTRU~',diversionString,rangeString), numlist{a});
 C = {txt};
 writecell(C,filename,'Sheet',1,'Range',sprintf('A%d',a+49));
 writematrix(UTRUConf(numlist{a},:),filename,'Sheet',1,'Range',sprintf('B%d',a+49));
end

%FPWasteInv
numlist = {1115, 1210, 1306, 1402, 1499, 1594, 1690, 1786, 1883, 2075, 2266, 2459, 2651,
2843, ...
 3035, 3227, 3420, 3611, 3803, 3995, 4187, 4378, 4571, 4762, 4954, ...
 5146, 5338, 5531, 5723, 5915, 6107, 6300};
for a = 1:length(numlist)
 txt = sprintf(strcat('%d~FP~',diversionString,rangeString), numlist{a});
 C = {txt};
 writecell(C,filename,'Sheet',1,'Range',sprintf('A%d',a+99));
 writematrix(FPWasteInv(numlist{a},:),filename,'Sheet',1,'Range',sprintf('B%d',a+99));
end

%Metal Waste
numlist = {1060, 1155, 1252, 1347, 1444, 1539, 1635, 1827, 2019, 2211, 2307, 2499, 2691,
2883, 3075, ...
 3267, 3459, 3651, 3843, 4035, 4227, 4419, 4611, 4803, 4995, 5187, ...
 5379, 5571, 5763, 5955, 6147, 6339};
for a = 1:length(numlist)
 txt = sprintf(strcat('%d~MW~',diversionString,rangeString), numlist{a});
 C = {txt};

!55

 writecell(C,filename,'Sheet',1,'Range',sprintf('A%d',a+149));
 writematrix(MetalConf(numlist{a},:),filename,'Sheet',1,'Range',sprintf('B%d',a+149));
end

C = {'createGeometry'};
writecell(C,filename,'Sheet',1,'Range','A1');

fprintf('Done!\n');

winopen('isotopics.xlsx');

%exit;

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\Form1.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace GADRASAddIn
{
 public partial class Form1 : Form
 {

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {

 checkedListBox1.Items.Add("Metal Waste", CheckState.Checked);
 checkedListBox1.Items.Add("Fission Product Waste",

CheckState.Checked);
 checkedListBox1.Items.Add("U Ingot", CheckState.Checked);
 checkedListBox1.Items.Add("U/TRU Ingot", CheckState.Checked);
 }

 //comboBox1 is detector
 //comboBox2 is geometry
 //textBox1 is detector height (dimension)
 //textBox3 is detector width (dimension)
 //textBox4 is detector length (dimension)
 //textBox2 is shielding
 //textBox10 is time
 //textBox5 is detector distance
 //textBox8 is detector height (configuration)
 //textBox6 is elevation
 //textBox7 is latitude
 //textBox9 is longitude

 private void button1_Click(object sender, EventArgs e)
 {
 bool u = false;
 bool utru = false;
 bool fp = false;
 bool mw = false;

Noah Harris

Noah Harris
56

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\Form1.cs 2
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98

 for (int i=0; i < checkedListBox1.CheckedItems.Count; i++)
 {
 if (checkedListBox1.CheckedItems[i].ToString() == "U Ingot")
 {
 u = true;
 }
 if (checkedListBox1.CheckedItems[i].ToString() == "U/TRU Ingot")
 {
 utru = true;
 }
 if (checkedListBox1.CheckedItems[i].ToString() == "Fission

Product Waste")
 {
 fp = true;
 }
 if (checkedListBox1.CheckedItems[i].ToString() == "Metal Waste")
 {
 mw = true;
 }
 }

 this.Hide();
 string detector;
 switch (comboBox1.Text)
 {
 case "HPGe":
 detector = "C:\\GADRAS\\Detector\\HPGe\\HPGe95%";
 break;
 case "NaI":
 detector = "C:\\GADRAS\\Detector\\3x3\\NaI MidScat";
 break;
 default:
 detector = "C:\\GADRAS\\Detector\\HPGe\\HPGe95%";
 break;
 }

 string geometry = comboBox2.Text;
 //default to spherical geometry
 if (geometry == "")
 {
 geometry = "Sphere";
 }

 Globals.ThisAddIn.Make1DMsAndRunTransportAndInject(detector,
geometry, textBox1.Text, textBox3.Text, textBox4.Text,
textBox2.Text, textBox10.Text, textBox5.Text, textBox8.Text,
textBox6.Text, textBox7.Text, textBox9.Text, u, utru, fp, mw,
textBox11.Text);

 }

Noah Harris

Noah Harris
57

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\Form1.cs 3
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

 private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 private void label1_Click(object sender, EventArgs e)
 {

 }

 private void label3_Click(object sender, EventArgs e)
 {

 }

 private void comboBox3_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 private void label8_Click(object sender, EventArgs e)
 {

 }

 private void checkedListBox1_SelectedIndexChanged(object sender,
EventArgs e)

 {

 }

 private void comboBox2_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 private void textBox1_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox3_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox4_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox2_TextChanged(object sender, EventArgs e)

Noah Harris

Noah Harris
58

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\Form1.cs 4
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

 {

 }

 private void textBox10_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox5_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox8_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox6_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox7_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox9_TextChanged(object sender, EventArgs e)
 {

 }

 private void textBox11_TextChanged(object sender, EventArgs e)
 {

 }
 }
}

Noah Harris

Noah Harris
59

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34

35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Xml.Linq;
using Excel = Microsoft.Office.Interop.Excel;
using Office = Microsoft.Office.Core;
using Microsoft.Office.Tools.Excel;
using System.Windows.Forms;
using System.IO;
using System.Diagnostics;
using System.Xml;
using Microsoft.Office.Interop.Excel;
using Microsoft.Office.Core;
using System.Globalization;

namespace GADRASAddIn
{
 public partial class ThisAddIn
 {

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 //simply adds our main function as a handler for the workbook

activate event
 this.Application.WorkbookActivate += Application_WorkbookActivate;
 }

 private void Application_WorkbookActivate(Excel.Workbook Wb)
 {
 //here the worksheet had been activated and we will be able to obtain

 data from it
 Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];

 //check to see if run flag written by MATLAB is 1, if so run the
program

 Excel.Range flagRange = worksheet.Range["A1"];
 if (flagRange.Cells[1, 1].Text == "createGeometry")
 {

 Form1 myForm = new Form1();
 myForm.ShowDialog();

 //this is the old way to activate the next step
 //BuildModelsAndRunTransportAndInject();
 }

Noah Harris

Noah Harris
60

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 2
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85

86
87
88
89
90

91
92
93
94

95

 if (flagRange.Cells[1, 1].Text == "totalGamma")
 {
 CreateTotalGammaChart();
 }

 if (flagRange.Cells[1, 1].Text == "gammaChannels")
 {
 CreateGammaChart();
 }

 //only need spherical for now, will ask if other geometries are
relevant

 //rn cylinder and slab are only relevant for ingots
 //WriteCylinderXML("test", 5, true);
 //WriteSlabXML("test", 47, true);
 //WriteSphereXML("test", 47, "15", true);
 }

 public void CreateTotalGammaChart()
 {
 Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];
 //reading from the data transfer file
 StreamReader sr = new StreamReader(Environment.GetFolderPath

(Environment.SpecialFolder.Desktop) + "\\Gamma NDA Analysis" + "\
\dataForGammaAnalysis.txt");

 worksheet.Range["A2", "J500"].Clear();

 string line = sr.ReadLine();
 //loss scenario first
 int index = 2;
 while (line != "$")
 {
 //first write the time in
 worksheet.Range["A" + index].Cells[1, 1].Value2 = line.Split('~')

[0];

 if (line.Split('~')[1] == "U")
 {
 worksheet.Range["B" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }
 if (line.Split('~')[1] == "UTRU")
 {
 worksheet.Range["C" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }

Noah Harris

Noah Harris
61

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 3
96
97
98

99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119

120
121
122
123

124
125
126
127

128
129
130
131

132
133
134
135
136
137
138
139
140

 if (line.Split('~')[1] == "MW")
 {
 worksheet.Range["D" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }
 if (line.Split('~')[1] == "FP")
 {
 worksheet.Range["E" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }
 index++;
 line = sr.ReadLine();
 }
 //save this for later
 int maxIndex1 = index;
 index = 2;
 line = sr.ReadLine();
 //then do control scenario
 while (line != null)
 {
 worksheet.Range["F" + index].Cells[1, 1].Value2 = line.Split('~')

[0];

 if (line.Split('~')[1] == "U")
 {
 worksheet.Range["G" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }
 if (line.Split('~')[1] == "UTRU")
 {
 worksheet.Range["H" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }
 if (line.Split('~')[1] == "MW")
 {
 worksheet.Range["I" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }
 if (line.Split('~')[1] == "FP")
 {
 worksheet.Range["J" + index].Cells[1, 1].Value2 = line.Split

('~')[4];
 }
 index++;
 line = sr.ReadLine();
 }

 int maxIndex2 = index;

 sr.Close();
 //File.Delete("C:\\Users\\student\\Desktop\

Noah Harris

Noah Harris
62

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 4

141
142
143
144
145

146

147
148
149
150

151

152
153
154

155

156
157
158

159

160
161
162

163

164
165
166

167

168
169
170
171
172

173

174
175

\dataForGammaAnalysis.txt");

 worksheet.Shapes.AddChart2(201, Excel.XlChartType.xlLine).Select();
 Excel.Chart cha = Application.ActiveChart;
 cha.ApplyChartTemplate(Environment.GetFolderPath

(Environment.SpecialFolder.Desktop) + "\\..\\AppData\\Roaming\
\Microsoft\\Templates\\Charts\\TotalGammaChart.crtx");

 //cha.ApplyChartTemplate("C:\\Users\\student\\AppData\\Roaming\
\Microsoft\\Templates\\Charts\\tryAgain.crtx");

 //cha.SetSourceData(worksheet.Range["Sheet1!C2:E6"]);

 cha.ChartTitle.Text = "Loss Scenario Over Time";
 cha.Axes(Excel.XlAxisType.xlValue,

Excel.XlAxisGroup.xlPrimary).AxisTitle.Text = "Gamma CPS"; //Set Y-
Axis

 cha.Axes(Excel.XlAxisType.xlCategory,
Excel.XlAxisGroup.xlPrimary).AxisTitle.Text = "Time"; //Set X-Axis

 //LOSS SCENARIO
 cha.SeriesCollection(1).XValues = worksheet.Range["Sheet1!A2:A" +

 maxIndex1];
 cha.SeriesCollection(1).Values = worksheet.Range["Sheet1!B2:B" +

maxIndex1];
 cha.SeriesCollection(1).Name = "U (Loss)";

 cha.SeriesCollection(2).XValues = worksheet.Range["Sheet1!A2:A" +
 maxIndex1];

 cha.SeriesCollection(2).Values = worksheet.Range["Sheet1!C2:C" +
maxIndex1];

 cha.SeriesCollection(2).Name = "UTRU (Loss)";

 cha.SeriesCollection(3).XValues = worksheet.Range["Sheet1!A2:A" +
 maxIndex1];

 cha.SeriesCollection(3).Values = worksheet.Range["Sheet1!D2:D" +
maxIndex1];

 cha.SeriesCollection(3).Name = "MW (Loss)";

 cha.SeriesCollection(4).XValues = worksheet.Range["Sheet1!A2:A" +
 maxIndex1];

 cha.SeriesCollection(4).Values = worksheet.Range["Sheet1!E2:E" +
maxIndex1];

 cha.SeriesCollection(4).Name = "FP (Loss)";

 //CONTROL SCENARIO
 cha.SeriesCollection(5).XValues = worksheet.Range["Sheet1!F2:F" +

 maxIndex2];
 cha.SeriesCollection(5).Values = worksheet.Range["Sheet1!G2:G" +

maxIndex2];
 cha.SeriesCollection(5).Name = "U (Control)";

Noah Harris

Noah Harris
63

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 5
176

177

178
179
180

181

182
183
184
185

186

187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205

206
207

208
209
210
211
212
213
214
215
216
217

 cha.SeriesCollection(6).XValues = worksheet.Range["Sheet1!F2:F" +
 maxIndex2];

 cha.SeriesCollection(6).Values = worksheet.Range["Sheet1!H2:H" +
maxIndex2];

 cha.SeriesCollection(6).Name = "UTRU (Control)";

 cha.SeriesCollection(7).XValues = worksheet.Range["Sheet1!F2:F" +
 maxIndex2];

 cha.SeriesCollection(7).Values = worksheet.Range["Sheet1!I2:I" +
maxIndex2];

 cha.SeriesCollection(7).Name = "MW (Control)";

 cha.SeriesCollection(8).XValues = worksheet.Range["Sheet1!F2:F" +
 maxIndex2];

 cha.SeriesCollection(8).Values = worksheet.Range["Sheet1!J2:J" +
maxIndex2];

 cha.SeriesCollection(8).Name = "FP (Control)";

 }

 public void CreateGammaChart()
 {
 Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];
 //reading from the data transfer file
 StreamReader sr = new StreamReader(Environment.GetFolderPath

(Environment.SpecialFolder.Desktop) + "\\Gamma NDA Analysis" + "\
\dataForGammaAnalysis.txt");

 worksheet.Range["A2", "J500"].Clear();

 string line = sr.ReadLine();
 //loss scenario first
 int index = 2;
 while (line != "$")
 {
 //first write the time in
 worksheet.Range["A" + index].Cells[1, 1].Value2 = line.Split('~')

[0];

 worksheet.Range["B" + index].Cells[1, 1].Value2 = line.Split('~')
[1];

 index++;
 line = sr.ReadLine();
 }
 //save this for later
 int maxIndex1 = index;
 index = 2;
 line = sr.ReadLine();
 //then do control scenario
 while (line != null)

Noah Harris

Noah Harris
64

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 6
218
219

220
221

222
223
224
225
226
227
228
229
230

231
232
233
234
235
236

237

238
239
240
241
242
243

244

245
246
247

248

249
250
251
252

253

254
255

 {
 worksheet.Range["C" + index].Cells[1, 1].Value2 = line.Split('~')

[0];

 worksheet.Range["D" + index].Cells[1, 1].Value2 = line.Split('~')
[1];

 index++;
 line = sr.ReadLine();
 }

 int maxIndex2 = index;

 sr.Close();
 //File.Delete("C:\\Users\\student\\Desktop\

\dataForGammaAnalysis.txt");

 worksheet.Shapes.AddChart2(201, Excel.XlChartType.xlLine).Select();
 Excel.Chart cha = Application.ActiveChart;

 cha.ApplyChartTemplate(Environment.GetFolderPath
(Environment.SpecialFolder.Desktop) + "\\..\\AppData\\Roaming\
\Microsoft\\Templates\\Charts\\GammaChannelsChart.crtx");

 //cha.ApplyChartTemplate("C:\\Users\\student\\AppData\\Roaming\
\Microsoft\\Templates\\Charts\\tryAgain.crtx");

 //cha.SetSourceData(worksheet.Range["Sheet1!C2:E6"]);

 //int someTime = 11213312; //LOL

 cha.ChartTitle.Text = "Loss Scenario Over Energy at ";// + someTime;
 cha.Axes(Excel.XlAxisType.xlValue,

Excel.XlAxisGroup.xlPrimary).AxisTitle.Text = "Gamma CPS"; //Set Y-
Axis

 cha.Axes(Excel.XlAxisType.xlCategory,
Excel.XlAxisGroup.xlPrimary).AxisTitle.Text = "Energy"; //Set X-
Axis

 //LOSS SCENARIO
 cha.SeriesCollection(2).XValues = worksheet.Range["Sheet1!A2:A" +

 maxIndex1];
 cha.SeriesCollection(2).Values = worksheet.Range["Sheet1!B2:B" +

maxIndex1];
 cha.SeriesCollection(2).Name = "Loss Scenario";

 cha.SeriesCollection(1).XValues = worksheet.Range["Sheet1!C2:C" +
 maxIndex2];

 cha.SeriesCollection(1).Values = worksheet.Range["Sheet1!D2:D" +
maxIndex2];

 cha.SeriesCollection(1).Name = "Control Scenario";

Noah Harris

Noah Harris
65

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 7
256
257
258

259
260
261
262
263

264
265
266

267
268

269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285
286
287
288
289

290
291
292
293

 }

 public void Make1DMsAndRunTransportAndInject(string detector, string
geometry, string height, string width, string length, string shielding,
 string time, string distance, string detHeight, string elevation,
string latitude, string longitude, bool u, bool utru, bool fp, bool mw,
 string coreNumber)

 {

 //also here is where we write to XML now using guidance from Form1

 BuildModels(geometry, float.Parse(shielding,
CultureInfo.InvariantCulture.NumberFormat), u, utru, fp, mw);

 ProcessStartInfo startInfo = new ProcessStartInfo
(Environment.GetFolderPath(Environment.SpecialFolder.Desktop) + "\
\Gamma NDA Analysis" + "\\TransportAndInject\\TransportAndInject\
\bin\\Debug\\net35\\TransportAndInject.exe");

 startInfo.WindowStyle = ProcessWindowStyle.Normal;
 startInfo.Arguments = detector + " " + geometry + " " + height + " "

+ width + " " + length + " " + shielding + " " + time + " " +
distance + " " + detHeight + " " + elevation + " " + latitude + " "
 + longitude + " " + coreNumber;// e.g. "C:\\GADRAS\\Detector\\HPGe
\\HPGe95%";

 Process.Start(startInfo);

 //set the flag to zero so that we don't run transport on reopen
 Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];
 Excel.Range flagRange = worksheet.Range["A1"];
 flagRange.Cells[1, 1].Value2 = 0;

 }

 private void BuildModels(string geometry, float shielding, bool u, bool
utru, bool fp, bool mw)

 {
 Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];
 Excel.Range flagRange = worksheet.Range["A1"];
 string currentString = "";

 //U PRODUCT
 if (u)
 {
 for (var i = 5; i < 50; i++) //change this to alter how much of

the excel spreadsheet is processed
 {
 currentString = worksheet.Range["A" + i].Cells[1, 1].Text;
 if (currentString != "")
 {

Noah Harris

Noah Harris
66

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 8
294
295
296
297

298
299

300
301

302
303
304
305
306
307
308
309
310

311
312
313
314
315
316

317
318

319
320

321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336

 //WriteCylinderXML(currentString, i);
 //WriteSlabXML(currentString, i);
 if (geometry == "Sphere")
 WriteSphereXML(currentString, i, (shielding *

10).ToString());
 if (geometry == "Cylinder")
 WriteCylinderXML(currentString, i, (shielding *

10).ToString());
 if (geometry == "Slab")
 WriteSlabXML(currentString, i, (shielding *

10).ToString());
 }
 }
 }

 //U-TRU PRODUCT
 if (utru)
 {
 for (var i = 50; i < 100; i++) //change this to alter how much of

 the excel spreadsheet is processed
 {
 currentString = worksheet.Range["A" + i].Cells[1, 1].Text;
 if (currentString != "")
 {
 if (geometry == "Cylinder")
 WriteCylinderXML(currentString, i, (shielding *

150).ToString());
 if (geometry == "Slab")
 WriteSlabXML(currentString, i, (shielding *

150).ToString());
 if (geometry == "Sphere")
 WriteSphereXML(currentString, i, (shielding *

150).ToString());
 //WriteSphereXML(currentString, i, "100",true);
 }
 }
 }

 //FISSION PRODUCT WASTE
 if (fp)
 {
 for (var i = 100; i < 150; i++) //change this to alter how much

of the excel spreadsheet is processed
 {
 currentString = worksheet.Range["A" + i].Cells[1, 1].Text;
 if (currentString != "")
 {
 if (geometry == "Sphere")
 WriteSphereXML(currentString, i, (shielding *

25).ToString());

Noah Harris

Noah Harris
67

C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 9
337
338

339
340

341
342
343
344
345
346
347
348
349

350
351
352
353
354
355

356
357

358
359

360
361
362
363
364
365
366
367
368
369
370

371
372
373

374
375
376
377
378
379

 if (geometry == "Cylinder")
 WriteCylinderXML(currentString, i, (shielding *

25).ToString());
 if (geometry == "Slab")
 WriteSlabXML(currentString, i, (shielding *

25).ToString());
 }
 }
 }

 //METAL WASTE
 if (mw)
 {
 for (var i = 150; i < 200; i++) //change this to alter how much

of the excel spreadsheet is processed
 {
 currentString = worksheet.Range["A" + i].Cells[1, 1].Text;
 if (currentString != "")
 {
 if (geometry == "Sphere")
 WriteSphereXML(currentString, i, (shielding *

12).ToString());
 if (geometry == "Cylinder")
 WriteCylinderXML(currentString, i, (shielding *

12).ToString());
 if (geometry == "Slab")
 WriteSlabXML(currentString, i, (shielding *

12).ToString());
 }
 }
 }

 //flagRange.Cells[1, 1].Value2 = 0;
 //MessageBox.Show("Done writing XML Files! ");

 //~~~~~~~~~~~~~~~~ RUN TRANSPORT AND INJECT NOW
~~~~~~~~~~~~~~~~~~~~~~

            /*
            ProcessStartInfo startInfo = new ProcessStartInfo("C:\\Users\\student

\\Desktop\\TransportAndInject\\TransportAndInject\\bin\\Debug\
\net35\\TransportAndInject.exe");

            startInfo.WindowStyle = ProcessWindowStyle.Normal;
            startInfo.Arguments = "hello";
            Process.Start(startInfo);
            */

            //need to pass arguments to the transport function that we collect 

Noah Harris


Noah Harris
68



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 10

380
381

382
383
384
385
386
387
388
389
390
391
392
393

394
395
396
397

398
399
400
401

402
403
404
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

from Form1
            //also this is the old way of calling this
            //Process.Start("C:\\Users\\student\\Desktop\\TransportAndInject\

\TransportAndInject\\bin\\Debug\\net35\
\TransportAndInject.exe"); // or we can just directly start the 
TransportAndInject from here

            return;
        }

        private void WriteSlabXML(string s, int index, string shieldWidth = "15",
 bool test = false)

        {
            //MessageBox.Show("going to try and write an XML File! ");

            //XmlTextWriter writer = new XmlTextWriter("C:\\Users\\student\
\Desktop\\1dm_files\\" + s+"Slab.1dm", System.Text.Encoding.UTF8); 

            XmlTextWriter writer;
            if (test)
            {
                writer = new XmlTextWriter(Environment.GetFolderPath

(Environment.SpecialFolder.Desktop) + "\\" + s + "~Slab.1dm", 
System.Text.Encoding.UTF8);

            }
            else
            {
                writer = new XmlTextWriter("C:\\GADRAS\\Source\\ApiTestSources\

\ApiTest_ParallelGADRAS\\" + s + "~Slab.1dm", 
System.Text.Encoding.UTF8);

            }
            writer.WriteStartDocument(true);
            writer.Formatting = Formatting.Indented;
            writer.Indentation = 2;
            writer.WriteStartElement("model");
            writer.WriteStartElement("version");
            writer.WriteString("18.8.10.0");
            writer.WriteEndElement();
            writer.WriteStartElement("description");
            writer.WriteEndElement();
            writer.WriteStartElement("intervals");

            writer.WriteStartElement("interval"); //start product interval
            writer.WriteStartElement("name");
            writer.WriteString("Pyro Product");
            writer.WriteEndElement();

Noah Harris


Noah Harris
69



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 11
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

443

444
445
446
447

448
449
450
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

            writer.WriteStartElement("width");
            writer.WriteString("1");
            writer.WriteEndElement();
            writer.WriteStartElement("density");
            writer.WriteString("19.4");
            writer.WriteEndElement();
            writer.WriteStartElement("age");
            writer.WriteString("20");
            writer.WriteEndElement();
            writer.WriteStartElement("state");
            writer.WriteString("solid");
            writer.WriteEndElement();
            writer.WriteStartElement("constituents");

            if (Application.ActiveWorkbook == null)
            {
                return;
            }

            Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];
            Excel.Range range = worksheet.Range["B"+index, "BLM"+index]; //HERE 

IS THE SPECIFIED RANGE
            Excel.Range isotopeReferenceRange = worksheet.Range["B4", "BLM4"]; //

HERE IS THE ISOTOPE REFERENCE RANGE

            for (int i = 1; i < 1677; i++)
            {
                if (isotopeReferenceRange.Cells[1, i].Text != "" && range.Cells

[1, i].Text != "0")
                {
                    //MessageBox.Show(range.Cells[1,i].Text);
                    //MessageBox.Show(range.Cells[3,i].Text);
                    createNode(isotopeReferenceRange.Cells[1, i].Text, 

range.Cells[1, i].Text, writer);
                }
            }

            writer.WriteEndElement(); //end constituents

            writer.WriteStartElement("box");
            writer.WriteStartElement("width");
            writer.WriteString("300");
            writer.WriteEndElement();
            writer.WriteStartElement("height");
            writer.WriteString("100");
            writer.WriteEndElement();
            writer.WriteEndElement();

            writer.WriteEndElement(); //end product interval
            //--------------------------------------------------------------
            writer.WriteStartElement("interval"); //start shield interval
            writer.WriteStartElement("name");

Noah Harris


Noah Harris
70



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 12
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

513
514
515
516

517
518
519

            writer.WriteString("Lead (Pb)");
            writer.WriteEndElement();
            writer.WriteStartElement("width");
            writer.WriteString(shieldWidth);
            writer.WriteEndElement();
            writer.WriteStartElement("density");
            writer.WriteString("11.35");
            writer.WriteEndElement();
            writer.WriteStartElement("age");
            writer.WriteString("20");
            writer.WriteEndElement();
            writer.WriteStartElement("state");
            writer.WriteString("solid");
            writer.WriteEndElement();
            writer.WriteStartElement("constituents");

            writer.WriteStartElement("constituent");
            writer.WriteStartElement("name");
            writer.WriteString("Pb");
            writer.WriteEndElement();
            writer.WriteStartElement("mass_fraction");
            writer.WriteString("1");
            writer.WriteEndElement();
            writer.WriteEndElement();

            writer.WriteEndElement();
            writer.WriteStartElement("box");
            writer.WriteStartElement("width");
            writer.WriteString("330");
            writer.WriteEndElement();
            writer.WriteStartElement("height");
            writer.WriteString("131");
            writer.WriteEndElement();
            writer.WriteEndElement();
            writer.WriteEndElement(); //end shield interval

            writer.WriteEndDocument();
            writer.Close();
            //MessageBox.Show("XML File created ! ");
        }

        private void WriteCylinderXML(string s, int index,string shieldWidth = 
"30", bool test = false)

        {
            //MessageBox.Show("going to try and write an XML File! ");

            //XmlTextWriter writer = new XmlTextWriter("C:\\Users\\student\
\Desktop\\1dm_files\\" + s + ".1dm", System.Text.Encoding.UTF8);

            XmlTextWriter writer;
            if (test)
            {

Noah Harris


Noah Harris
71



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 13
520

521
522
523

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561

562
563
564
565

                writer = new XmlTextWriter(Environment.GetFolderPath
(Environment.SpecialFolder.Desktop) + "\\" + s + 
"~Cylinder.1dm", System.Text.Encoding.UTF8);

            } else
            {
                writer = new XmlTextWriter("C:\\GADRAS\\Source\\ApiTestSources\

\ApiTest_ParallelGADRAS\\" + s + "~Cylinder.1dm", 
System.Text.Encoding.UTF8);

            }
            writer.WriteStartDocument(true);
            writer.Formatting = Formatting.Indented;
            writer.Indentation = 2;
            writer.WriteStartElement("model");
            writer.WriteStartElement("version");
            writer.WriteString("18.8.10.0");
            writer.WriteEndElement();
            writer.WriteStartElement("description");
            writer.WriteEndElement();
            writer.WriteStartElement("intervals");

            writer.WriteStartElement("interval"); //start product interval
            writer.WriteStartElement("name");
            writer.WriteString("Pyro Product");
            writer.WriteEndElement();
            writer.WriteStartElement("width");
            writer.WriteString("2.5");
            writer.WriteEndElement();
            writer.WriteStartElement("density");
            writer.WriteString("19.4");
            writer.WriteEndElement();
            writer.WriteStartElement("age");
            writer.WriteString("20");
            writer.WriteEndElement();
            writer.WriteStartElement("state");
            writer.WriteString("solid");
            writer.WriteEndElement();
            writer.WriteStartElement("constituents");

            if (Application.ActiveWorkbook == null)
            {
                return;
            }

            Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];
            Excel.Range range = worksheet.Range["B" + index, "BLM" + index]; //

HERE IS THE SPECIFIED RANGE
            Excel.Range isotopeReferenceRange = worksheet.Range["B4", "BLM4"]; //

HERE IS THE ISOTOPE REFERENCE RANGE

            for (int i = 1; i < 1677; i++)
            {
                if (isotopeReferenceRange.Cells[1, i].Text != "" && range.Cells

Noah Harris


Noah Harris
72



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 14

566
567
568
569

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

[1, i].Text != "0")
                {
                    //MessageBox.Show(range.Cells[1,i].Text);
                    //MessageBox.Show(range.Cells[3,i].Text);
                    createNode(isotopeReferenceRange.Cells[1, i].Text, 

range.Cells[1, i].Text, writer);
                }
            }

            writer.WriteEndElement(); //end constituents

            writer.WriteStartElement("box");
            writer.WriteStartElement("width");
            writer.WriteString("300");
            writer.WriteEndElement();
            writer.WriteStartElement("height");
            writer.WriteString("5");
            writer.WriteEndElement();
            writer.WriteEndElement();

            writer.WriteEndElement(); //end product interval
            //--------------------------------------------------------------
            writer.WriteStartElement("interval"); //start shield interval
            writer.WriteStartElement("name");
            writer.WriteString("Lead (Pb)");
            writer.WriteEndElement();
            writer.WriteStartElement("width");
            writer.WriteString(shieldWidth);
            writer.WriteEndElement();
            writer.WriteStartElement("density");
            writer.WriteString("11.35");
            writer.WriteEndElement();
            writer.WriteStartElement("age");
            writer.WriteString("20");
            writer.WriteEndElement();
            writer.WriteStartElement("state");
            writer.WriteString("solid");
            writer.WriteEndElement();
            writer.WriteStartElement("constituents");

            writer.WriteStartElement("constituent");
            writer.WriteStartElement("name");
            writer.WriteString("Pb");
            writer.WriteEndElement();
            writer.WriteStartElement("mass_fraction");
            writer.WriteString("1");
            writer.WriteEndElement();
            writer.WriteEndElement();

            writer.WriteEndElement();
            writer.WriteStartElement("box");
            writer.WriteStartElement("width");

Noah Harris


Noah Harris
73



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 15
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

632
633

634
635
636
637

638
639
640
641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

            writer.WriteString("330");
            writer.WriteEndElement();
            writer.WriteStartElement("height");
            writer.WriteString(shieldWidth);
            writer.WriteEndElement();
            writer.WriteEndElement();
            writer.WriteEndElement(); //end shield interval

            writer.WriteEndDocument();
            writer.Close();
            //MessageBox.Show("XML File created ! ");
        }

        private void WriteSphereXML(string s, int index, string shieldWidth = 
"15", bool test = false)

        {
            //XmlTextWriter writer = new XmlTextWriter("C:\\Users\\student\

\Desktop\\1dm_files\\" + s+"Slab.1dm", System.Text.Encoding.UTF8); 
            XmlTextWriter writer;
            if (test)
            {
                writer = new XmlTextWriter(Environment.GetFolderPath

(Environment.SpecialFolder.Desktop) + "\\" + s + "~Sphere.1dm",
 System.Text.Encoding.UTF8);

            }
            else
            {
                writer = new XmlTextWriter("C:\\GADRAS\\Source\\ApiTestSources\

\ApiTest_ParallelGADRAS\\" + s + "~Sphere.1dm", 
System.Text.Encoding.UTF8);

            }
            writer.WriteStartDocument(true);
            writer.Formatting = Formatting.Indented;
            writer.Indentation = 2;
            writer.WriteStartElement("model");
            writer.WriteStartElement("version");
            writer.WriteString("18.8.10.0");
            writer.WriteEndElement();
            writer.WriteStartElement("description");
            writer.WriteEndElement();
            writer.WriteStartElement("intervals");

            writer.WriteStartElement("interval"); //start product interval
            writer.WriteStartElement("name");
            writer.WriteString("Pyro Product");
            writer.WriteEndElement();
            writer.WriteStartElement("width");
            writer.WriteString("5");
            writer.WriteEndElement();
            writer.WriteStartElement("density");

Noah Harris


Noah Harris
74



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 16
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

679

680
681
682
683

684
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

            writer.WriteString("19.4");
            writer.WriteEndElement();
            writer.WriteStartElement("age");
            writer.WriteString("20");
            writer.WriteEndElement();
            writer.WriteStartElement("state");
            writer.WriteString("solid");
            writer.WriteEndElement();
            writer.WriteStartElement("constituents");

            if (Application.ActiveWorkbook == null)
            {
                return;
            }

            Excel.Worksheet worksheet = Application.ActiveWorkbook.Worksheets[1];
            Excel.Range range = worksheet.Range["B" + index, "BLM" + index]; //

HERE IS THE SPECIFIED RANGE
            Excel.Range isotopeReferenceRange = worksheet.Range["B4", "BLM4"]; //

HERE IS THE ISOTOPE REFERENCE RANGE

            for (int i = 1; i < 1677; i++)
            {
                if (isotopeReferenceRange.Cells[1, i].Text != "" && range.Cells

[1, i].Text != "0")
                {
                    createNode(isotopeReferenceRange.Cells[1, i].Text, 

range.Cells[1, i].Text, writer);
                }
            }

            writer.WriteEndElement();
            writer.WriteStartElement("sphere");
            writer.WriteEndElement();
            writer.WriteEndElement(); //end product interval
            //--------------------------------------------------------------
            writer.WriteStartElement("interval"); //start shield interval
            writer.WriteStartElement("name");
            writer.WriteString("Lead (Pb)");
            writer.WriteEndElement();
            writer.WriteStartElement("width");
            writer.WriteString(shieldWidth);
            writer.WriteEndElement();
            writer.WriteStartElement("density");
            writer.WriteString("11.35");
            writer.WriteEndElement();
            writer.WriteStartElement("age");
            writer.WriteString("20");
            writer.WriteEndElement();
            writer.WriteStartElement("state");
            writer.WriteString("solid");
            writer.WriteEndElement();

Noah Harris


Noah Harris
75



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 17
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

            writer.WriteStartElement("constituents");

            writer.WriteStartElement("constituent");
            writer.WriteStartElement("name");
            writer.WriteString("Pb");
            writer.WriteEndElement();
            writer.WriteStartElement("mass_fraction");
            writer.WriteString("1");
            writer.WriteEndElement();
            writer.WriteEndElement();

            writer.WriteEndElement();
            writer.WriteStartElement("sphere");
            writer.WriteEndElement(); //end shield interval

            writer.WriteEndDocument();
            writer.Close();
        }

        private void ThisAddIn_Shutdown(object sender, System.EventArgs e)
        {
        }

        private void createNode(string name, string massFraction, XmlTextWriter 
writer)

        {
            writer.WriteStartElement("constituent");
            writer.WriteStartElement("name");
            writer.WriteString(name);
            writer.WriteEndElement();
            writer.WriteStartElement("mass_fraction");
            writer.WriteString(massFraction);
            writer.WriteEndElement();
            writer.WriteEndElement();
        }

        #region VSTO generated code

        /// <summary>
        /// Required method for Designer support - do not modify
        /// the contents of this method with the code editor.
        /// </summary>
        private void InternalStartup()
        {
            this.Startup += new System.EventHandler(ThisAddIn_Startup);
            this.Shutdown += new System.EventHandler(ThisAddIn_Shutdown);
        }
        
        #endregion

Noah Harris


Noah Harris
76



C:\Users\student\Desktop\GADRASAddIn\GADRASAddIn\ThisAddIn.cs 18
761
762
763
764
765
766

    }

}

Noah Harris


Noah Harris
77



...Analysis\TransportAndInject\TransportAndInject\Program.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22

23

24

25

26
27
28
29
30
31

32
33
34
35

36
37
38
39

using System;
using System.IO;
using System.Collections.Generic;
using System.Diagnostics;
using System.Xml;
using Sandia.Gadras.API;
using System.Globalization;

namespace TransportAndInject
{
    class Program
    {

        static void Main(string[] args)
        {

            //detector geometry height(dimension) width(dimension) length
(dimension) shielding time distance height(configuration) elevation
 latitude longitude

            if (true)
            {
                //this code expects a detector to be passed in via command args
                ParallelTransport.RunTransport(args[0], args[1], args[2], args

[3], args[4], args[5], args[6], args[7], args[8], args[9], args
[10], args[11], args[12]);

                //i think i need a try/catch for the code below? in case target 
directory already exists?

                System.IO.Directory.Move("C:\\GADRAS\\Source\\ApiTestSources\
\ApiTest_ParallelGADRAS", "C:\\GADRAS\\Source\
\AIP_FINALOpen");//move files over to the inject directory

                System.IO.Directory.CreateDirectory("C:\\GADRAS\\Source\
\ApiTestSources\\ApiTest_ParallelGADRAS");

            }

            try
            {
                string currentPcf = ParallelInject.RunInject(args[0], args[1], 

args[2], args[3], args[4], args[5], args[6], args[7], args[8], 
args[9], args[10], args[11], args[12]);

            }
            catch (System.Exception e)
            {
                string currentPcf = ParallelInject.RunInject(args[0], args[1], 

args[2], args[3], args[4], args[5], args[6], args[7], args[8], 
args[9], args[10], args[11], args[12]);

            }

            
            System.IO.Directory.Delete("C:\\GADRAS\\Source\\AIP_FINALOpen", 

true);

Noah Harris


Noah Harris
78



...Analysis\TransportAndInject\TransportAndInject\Program.cs 2
40
41

42

43

44
45

46
47
48
49

50
51
52
53
54
55
56
57
58

59
60

61

62

63

64

65

66

67
68

            //Once transport and inject are complete, we can call the analysis 
binary

            //ProcessStartInfo startInfo = new ProcessStartInfo("C:\\Users\
\student\\Desktop\\TransportAndInject\\TransportAndInject\\bin\
\Debug\\net35\\TransportAndInject.exe");

            ProcessStartInfo startInfo = new ProcessStartInfo
(Environment.GetFolderPath(Environment.SpecialFolder.Desktop) + "\
\Gamma NDA Analysis" + "\\GammaAnalysis\\GammaAnalysis\\bin\\Debug\
\net35\\GammaAnalysis.exe");

            startInfo.WindowStyle = ProcessWindowStyle.Normal;
            startInfo.Arguments = "hello";// e.g. "C:\\GADRAS\\Detector\\HPGe\

\HPGe95%";
            Process.Start(startInfo);

            ApiExampleHelper.ApiExampleHelper.Exit(0, "Success", 
true);                         //Success

        }

    }

    class ParallelTransport //########################### START TRANSPORT 
####################################################

    {
        static int m_numberOfCores = 

8;                                              //Number of cores to 
use simultaneously

        static string m_modelFileDirectory = "C:\\GADRAS\\Source\\ApiTestSources\
\ApiTest_ParallelGADRAS";//..\\..\\..\\ModelFiles";               //
Directory containing model 1dm files

        static string m_apiServicePath = "C:\\GADRAS\\Program\
\GadrasAPIServer.exe"; //Path to API server executable

        static string m_tempFolder = "C:\\GADRAS\
\Temp";                                //Path to a dir that is root of 
all temp dirs used here

        static string m_gadrasRoot = "C:\
\GADRAS";                                    //Path to root GADRAS 
directory that contains data files

        static string m_startingDetector = "C:\\GADRAS\\Detector\\HPGe\
\HPGe95%";//"ApiTestDetectors\\3x3_ParallelInject";//"3x3\\NaI 
MidScat";                      //Stargin detector directory for 
parallel instances

        static List<string> 
m_modelFiles;                                           //List of 1dm 
model files from model file directory

        private static bool m_verbose = 

Noah Harris


Noah Harris
79



...Analysis\TransportAndInject\TransportAndInject\Program.cs 3

69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90

91
92
93
94
95
96
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113

true;                                      //Whether anything is 
printed to the console during execution.

        #region Helper functions

        static List<string> getFiles(string p_Directory, string p_pattern)
        {
            System.IO.DirectoryInfo di = new System.IO.DirectoryInfo

(p_Directory);
            System.IO.FileInfo[] fiList = di.GetFiles(p_pattern);
            List<string> files = new List<string>();

            foreach (System.IO.FileInfo fi in fiList)
            {
                files.Add(fi.FullName);
            }

            return files;
        }
        #endregion

        #region Handlers
        static void TransportCompletedHandler(object state, 

System.ComponentModel.RunWorkerCompletedEventArgs e)
        {
            Sandia.Gadras.API.ParallelTransportResults results = 

(Sandia.Gadras.API.ParallelTransportResults)e.Result;
            bool noErrors = results.CompletedSuccessfully;
            string errorMessage = results.ErrorMessage;

            if (m_verbose)
            {
                if (noErrors)
                    Console.WriteLine(string.Format("No errors: {0}", 

System.IO.Path.GetFileName(results.InputModelFileName)));
                else
                    Console.WriteLine(errorMessage);
            }
        }

        static void ProcessExitHandler(object state, EventArgs e)
        {
            if (m_verbose)
            {
                System.Diagnostics.Process p = (System.Diagnostics.Process)state;
                if (p.ExitCode != 0)
                {
                    Console.WriteLine("[--------------------------------");
                    Console.WriteLine("Service exited with error: {0}", 

p.ExitCode);
                    Console.Write(p.StandardOutput.ReadToEnd());
                    Console.WriteLine("--------------------------------]");

Noah Harris


Noah Harris
80



...Analysis\TransportAndInject\TransportAndInject\Program.cs 4
114
115
116
117
118
119
120

121
122

123

124
125

126
127
128
129
130
131
132
133
134
135

136
137
138

139
140
141
142
143

144

145
146

147
148

                }
            }
        }
        #endregion

        //static void Main(string[] args)
        public static void RunTransport(string detector, string geometry, string 

height, string width, string length, string shielding, string time, 
string distance, string detHeight, string elevation, string latitude, 
string longitude, string cores)//string[] args)

        {
            //m_verbose = (args.Length == 0 || args[0] == "-

v");                      //Verbose if no args, or first arg is "-
v"

            // additional args can be implemented to allow user to specify 
m_numberOfCores, m_modelFileDirectory/m_modelFiles, 
m_apiServicePath, m_tempFolder, or m_gadrasRoot

            m_modelFiles = getFiles(m_modelFileDirectory, 
"*.1dm");                             //Initialize list of model 
files for transport

            m_startingDetector = detector;

            Console.WriteLine("~~~ Start Transport ~~~");

            m_numberOfCores = int.Parse(cores);

            if (m_verbose)
            {
                Console.WriteLine("Using {0} cores to process {1} files from 

{2}:", m_numberOfCores, m_modelFiles.Count, 
System.IO.Path.GetFullPath(m_modelFileDirectory));

                foreach (var modelFile in m_modelFiles)
                {
                    Console.WriteLine("  {0}", System.IO.Path.GetFileName

(modelFile));
                }
            }

            // set workspace to be application directory
            string workspaceDirectory = Path.GetDirectoryName

(System.Reflection.Assembly.GetExecutingAssembly().Location);
            Sandia.Gadras.API.ParallelFunctions pf = new 

Sandia.Gadras.API.ParallelFunctions(m_apiServicePath, 
ProcessExitHandler, m_tempFolder, m_gadrasRoot, m_startingDetector,
 m_numberOfCores); // initialize parallel functionality

            pf.Transport(m_modelFiles, workspaceDirectory, 
TransportCompletedHandler); // make the call

            pf.ShutDown();

Noah Harris


Noah Harris
81



...Analysis\TransportAndInject\TransportAndInject\Program.cs 5
149
150
151
152
153
154
155
156
157
158

159
160

161
162
163
164
165
166
167
168
169
170
171
172

173
174

175

176
177

178

179

180

181

182

183

            if (m_verbose)
            {
                //Console.WriteLine("Press any key to continue...");
                //Console.ReadKey(true); // Commented for ApiTests
            }
            Console.WriteLine("~~~ End Transport ~~~");
            Console.WriteLine("\n");

            //ApiExampleHelper.ApiExampleHelper.Exit(0, "Success", 
true);                         //Success, need to comment this out 
for automatic sequential execution

        }
    } //########################### END TRANSPORT 

####################################################

    class ParallelInject //################################## START INJECT 
######################################

    {
        static int m_numberOfCores = 8;             //Max number of cores to use 

in this example
        static string m_gadrasRoot = "C:\\GADRAS";  //Path to root GADRAS 

directory that contains data files
        static string m_currentDetector = "HPGe\\HPGe95%";
        static string m_gamFileDirectory = "C:\\GADRAS\\Source\\AIP_FINALOpen";//

 ParallelModelFiles"; // "..\\..\\..\\GamFiles";  //Directory 
containing source gam files

        static string m_apiServicePath = "C:\\GADRAS\\Program\
\GadrasAPIServer.exe"; //Path to API server executable

        static string m_tempFolder = "C:\\GADRAS\
\Temp";                                //Path to a dir that is root of 
all temp dirs used here

        static string m_startingDetector = "HPGe\\HPGe95%";   //Starting detector
 directory for parallel instances

        static List<string> 
m_gamFiles;                                             //List of gam 
source files from gam file directory

        static List<Sandia.Gadras.API.ParallelInjectInput> 
m_injInputs;             //Inject setup files for each source produced 
by transport

        static Sandia.Gadras.API.GadrasAPIWrapper 
m_gadrasAPI;                      //Required for checking source string

Noah Harris


Noah Harris
82



...Analysis\TransportAndInject\TransportAndInject\Program.cs 6

184
185

186
187
188
189

190

191
192
193
194
195
196
197
198
199
200
201
202
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

227
228

 and inject setup

        private static bool m_verbose = 
true;                                      //Whether anything is 
printed to the console during execution.

        //static string m_pcfFile = "ControlRecord.pcf";      // PCF file that 
all records are collected to

        static string m_pcfFile = "default.pcf";      // PCF file that all 
records are collected to

        #region Helper functions

        /// <summary>
        /// Get list of files from given directory matching given search pattern
        /// </summary>
        /// <param name="p_Directory">Directory to search for files</param>
        /// <param name="p_pattern">Pattern for matching files</param>
        /// <returns></returns>
        static List<string> getFiles(string p_Directory, string p_pattern)
        {
            System.IO.DirectoryInfo di = new System.IO.DirectoryInfo

(p_Directory);
            System.IO.FileInfo[] fiList = di.GetFiles(p_pattern);
            List<string> files = new List<string>();

            foreach (System.IO.FileInfo fi in fiList)
            {
                files.Add(fi.FullName);
            }

            return files;
        }

        /// <summary>
        /// Copy given file to detector directory
        /// </summary>
        /// <param name="p_fileName">File to copy to detector directory</param>
        static void copyFileToDetectorDirectory(string p_fileName)
        {
            string detectorDirectory =
                System.IO.Path.Combine(
                Sandia.Gadras.Utilities.Configs.API.DetectorDir,
                Sandia.Gadras.Utilities.Configs.API.CurrentDetector);

            string fullDestination = System.IO.Path.Combine(detectorDirectory, 
System.IO.Path.GetFileName(p_fileName));

            System.IO.File.Copy(p_fileName, System.IO.Path.GetFileName

Noah Harris


Noah Harris
83



...Analysis\TransportAndInject\TransportAndInject\Program.cs 7

229
230
231
232
233

234
235
236

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

(p_fileName), true);
        }
        /// <summary>
        /// Collects single record pcf files into single record
        /// </summary>
        /// <param name="pcfs"></param> Single record pcf files generated by 

ParallelInject
        static void gatherRecords(List<string> pcfs)
        {
            string mainPCF = System.IO.Path.GetFileNameWithoutExtension

(m_pcfFile) + ".pcf";
            if (System.IO.File.Exists(mainPCF))
            {
                System.IO.File.Delete(mainPCF);
            }
            int i = 1;
            foreach (string p in pcfs)
            {
                m_gadrasAPI.spectraFileInsertData(p, mainPCF, i);
                System.IO.File.Delete(p);
                i++;
            }
        }

        /// <summary>
        /// Create inject setup
        /// </summary>
        /// <param name="p_gamFile">Gam file to use as source for inject</param>
        /// <returns>Inject setup</returns>
        static Sandia.Gadras.API.InjectSetup makeInjectSetup(string p_sourceName,

 string p_outputPCFFile, int p_outputPCFRecord, string height, string 
width, string length, string shielding, string time, string distance, 
string detHeight, string elevation, string latitude, string longitude)

        {
            Sandia.Gadras.API.InjectSetup injectSetup;
            string sourceName;

            injectSetup = new Sandia.Gadras.API.InjectSetup();

            try
            {
                sourceName = m_gadrasAPI.sourceCheckSourceString(p_sourceName);
            }
            catch (Sandia.Gadras.Utilities.GadrasUserException e)
            {
                Console.WriteLine("source " + p_sourceName + " not valid");
                throw e;
            }

            injectSetup.setDefaults(m_gadrasAPI);

            injectSetup.FileName = p_outputPCFFile;           //PCF filename full

Noah Harris


Noah Harris
84



...Analysis\TransportAndInject\TransportAndInject\Program.cs 8

275
276
277
278
279
280
281
282
283
284
285
286
287
288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

 path 
            if (string.IsNullOrEmpty(sourceName.Trim()))
            {
                injectSetup.Title = "Background";
            }
            else
            {
                injectSetup.Title = sourceName;
            }
            injectSetup.Record = p_outputPCFRecord;
            injectSetup.Source = sourceName;

            //If blank, will generate background record.
            //injectSetup.ContainsInternalSource = 

false;                                       //Looks for 
internal.pcf to include as internal source (common in LaBr 
detectors)

            //injectSetup.DetectorDeadTimeUs = 
12;                                              //Dead time of 
detector per event (microseconds)

            injectSetup.DetectorHeightCm = float.Parse(detHeight, 
CultureInfo.InvariantCulture.NumberFormat);                        
                       //Height of detector (cm)

            injectSetup.DistanceToSourceCm = float.Parse(distance, 
CultureInfo.InvariantCulture.NumberFormat);                        
                     //Distance to source (cm)

            //injectSetup.DwellTimeIsLiveTime = 
false;                                          //If true, the 
DwellTimeSec is the live time, otherwise it's the real time

            injectSetup.DwellTimeSec = float.Parse(time, 
CultureInfo.InvariantCulture.NumberFormat);                        
                           //Length of measurement

            //var eCal = new EnergyCalibration()                                 
               

            //{                                                                  
               

            //    Order0 = 0,                                                    
               

            //    Order1 = 3000,                                                 
               

            //    Order2 = 0,                                                    
               

            //    Order3 = 0,                                                    
               

            //    LowEnergy = 0                                                  
               

            //};                                                                 
               

            //injectSetup.EnergyCalibration = 
eCal;                                             //Actual energy 
calibration of the recording

Noah Harris


Noah Harris
85



...Analysis\TransportAndInject\TransportAndInject\Program.cs 9
303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

            //injectSetup.EnergyCalibrationFile = 
eCal;                                         //Energy calibration 
of the recording written to file (can simulate uncalibrated 
detector)

            //var eRes = new EnergyResolution
()                                                 //

            //
{                                                                  
               //

            //    FWHM = 
3,                                                                 
    //

            //    Offset = 
0,                                                                 
  //

            //    Power = 
0,                                                                 
   //

            //    LowEnergySkew = 
0,                                                            //

            //    HighEnergySkew = 
0,                                                           //

            //    SkewPower = 
0,                                                                /
/

            //    SkewExtent = 
0                                                                //

            //};                                                                 
               //

            //injectSetup.EnergyResolution = 
eRes;                                              //Energy 
resolution of the recording

            //injectSetup.IncludePoissonVariations = 
true;                                      //Flag to simulate 
poisson variance in each channel (simulate measurement as opposed 
to perfect source)

            var locInfo = new LocationInfo
()                                                  //

            
{                                                                                
 //
                Elevation = float.Parse(elevation, 

CultureInfo.InvariantCulture.NumberFormat),                    
                                            //

                Latitude = float.Parse(latitude, 
CultureInfo.InvariantCulture.NumberFormat),                    
                                            //

                Longitude = float.Parse(longitude, 
CultureInfo.InvariantCulture.NumberFormat),                    
                                          //

                Overburden = 
0                                                              

Noah Harris


Noah Harris
86



...Analysis\TransportAndInject\TransportAndInject\Program.cs 10

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338
339
340
341
342
343

344
345

  //
            };                                                                   

             //
            //injectSetup.LocationInfo = 

locInfo;                                               //Location 
info for cosmic background (can be used to estimate terrestrial 
background)

            //injectSetup.IncludeCosmicBackground = 
true;                                       //Flag to put cosmic 
background in spectrum (calculated from location)

            //injectSetup.IncludeTerrestrialBackground = 
true;                                  //Flag to put terrestrial 
background inspectrum

            //injectSetup.NeuMeasEnv = 
NeutronMeasurementEnvironment.OUTSIDE_OR_LARGE_BAY;      //

            //var terrestrialBackground = new TerrestrialBackground
()                           //

            //
{                                                                  
               //

            //    Attenuation = 
0,                                                              //

            //    K40 = 
0,                                                                 
     //

            //    Uranium = 
0,                                                                 
 //

            //    Th232 = 
0,                                                                 
   //

            //    LowEnergyContinuum = 
0,                                                       //

            //    HighEnergyContinuum = 
0                                                       //

            //};                                                                 
               //

            //injectSetup.TerrestrialBackground = 
terrestrialBackground;                        //Terrestrial 
background contribution

            //injectSetup.TimeStamp = 
DateTime.Now;                                             //Time 
stamp to put on spectrum

            return injectSetup;
        }
        #endregion

        #region Handlers
        static void InjectCompletedHandler(object state, 

System.ComponentModel.RunWorkerCompletedEventArgs e)
        {
            Sandia.Gadras.API.ParallelInjectResults results = 

Noah Harris


Noah Harris
87



...Analysis\TransportAndInject\TransportAndInject\Program.cs 11

346
347
348
349
350
351
352

353
354
355
356
357
358
359
360
361
362
363
364
365
366

367
368
369
370
371
372
373
374
375

376
377

378

379
380
381
382
383
384
385

(Sandia.Gadras.API.ParallelInjectResults)e.Result;
            bool noErrors = results.CompletedSuccessfully;
            string errorMessage = results.ErrorMessage;

            if (m_verbose)
            {
                if (noErrors)
                    Console.WriteLine(string.Format("No errors: {0}", 

System.IO.Path.GetFileName
(results.InputInjectSetup.FileName)));

                else
                    Console.WriteLine(errorMessage);
            }
        }

        static void ProcessExitHandler(object state, EventArgs e)
        {
            if (m_verbose)
            {
                System.Diagnostics.Process p = (System.Diagnostics.Process)state;
                if (p.ExitCode != 0)
                {
                    Console.WriteLine("[--------------------------------");
                    Console.WriteLine("Service exited with error: {0}", 

p.ExitCode);
                    Console.Write(p.StandardOutput.ReadToEnd());
                    Console.WriteLine("--------------------------------]");
                }
            }
        }
        #endregion

        //static void Main(string[] args)
        public static string RunInject(string detector, string geometry, string 

height, string width, string length, string shielding, string time, 
string distance, string detHeight, string elevation, string latitude, 
string longitude, string cores)//string[] args)

        {
            //m_verbose = (args.Length == 0 || args[0] == "-

v");                      //Verbose if no args, or first arg is "-
v"

            // additional args can be implemented to allow user to specify 
m_numberOfCores, m_gadrasRoot, m_currentDetector, 
m_gamFileDirectory/list of sources, m_apiServicePath, or 
m_tempFolder

            m_startingDetector = m_currentDetector;
            if (detector == "C:\\GADRAS\\Detector\\3x3\\NaI MidScat\\")
            {
                m_startingDetector = "3x3\\NaI MidScat";
                m_currentDetector = "3x3\\NaI MidScat";
            }

Noah Harris


Noah Harris
88



...Analysis\TransportAndInject\TransportAndInject\Program.cs 12
386
387
388
389

390
391
392
393

394
395
396

397
398
399

400
401
402
403

404
405
406
407

408
409
410
411

412
413
414

415
416
417
418
419
420

421
422

            m_numberOfCores = int.Parse(cores);

            m_gamFiles = getFiles(m_gamFileDirectory, 
"*.gam");                                 //Initialize list of gam 
files/source strings for inject

            Console.WriteLine("~~~ Start Inject ~~~");

            Console.WriteLine("Number of processors on this machine: " + 
Environment.ProcessorCount);

            if (m_verbose)
            {
                Console.WriteLine("Using {0} cores to process {1} files from 

{2}:", m_numberOfCores, m_gamFiles.Count, 
System.IO.Path.GetFullPath(m_gamFileDirectory));

                foreach (var gamFile in m_gamFiles)
                {
                    Console.WriteLine("  {0}", System.IO.Path.GetFileName

(gamFile));
                }
            }

            m_gadrasAPI = ApiExampleHelper.ApiExampleHelper.setup
(true);                        //Instantiate API wrapper to get 
injectSetup tools

            try
            {
                m_gadrasAPI.detectorSetCurrent

(m_currentDetector);                   //Set current detector
            }
            catch (Exception)
            {
                ApiExampleHelper.ApiExampleHelper.Exit(-1, string.Format("Failed 

to set detector to {0}", m_currentDetector), m_verbose);
            }

            Sandia.Gadras.API.ParallelFunctions pf = new 
Sandia.Gadras.API.ParallelFunctions(m_apiServicePath, 
ProcessExitHandler, m_tempFolder, m_gadrasRoot, m_startingDetector,
 m_numberOfCores); // instantiate parallel functionality

            m_injInputs = new List<Sandia.Gadras.API.ParallelInjectInput>();
            List<string> pcfFiles = new List<string>();
            int i = 1;

            //in order for each pcf file to reflect the scenario it came from in 
name, we need to change m_pcfFile to reflect the diversion string 
minus time

            foreach (var gamFile in m_gamFiles)

Noah Harris


Noah Harris
89



...Analysis\TransportAndInject\TransportAndInject\Program.cs 13
423
424
425

426
427

428
429
430
431
432

433
434
435
436
437
438
439
440
441
442
443

444

445

446
447
448
449
450
451

452
453
454
455
456
457
458
459

            {
                // convert GAM file path into source name
                string sourceName = System.IO.Path.GetFileNameWithoutExtension

(gamFile);
                m_pcfFile = sourceName.Split('~')[2];
                //string pcfFile = m_pcfFile + "_" + i.ToString() + ".pcf"; //## 

THIS IS THE LINE WE CHANGE
                string pcfFile = m_pcfFile + "_" + sourceName  + ".pcf"; 
                // write to the first record in the output file
                int pcfOutputRecord = 1;
                pcfFiles.Add(pcfFile);
                m_injInputs.Add(new Sandia.Gadras.API.ParallelInjectInput

(m_currentDetector, makeInjectSetup(sourceName, pcfFile, 
pcfOutputRecord,height,  width,  length,  shielding,  time,  
distance,  detHeight,  elevation,  latitude,  longitude)));

                i++;
            }

            Console.WriteLine("Make the call to Inject");
            long start = DateTime.Now.Ticks;// / TimeSpan.TicksPerMillisecond;
            pf.Inject(m_injInputs, InjectCompletedHandler); // make the call
            Console.WriteLine("Ready to Shutdown");
            long end = DateTime.Now.Ticks;
            pf.ShutDown();
            gatherRecords(pcfFiles);
            Console.WriteLine("Ran " + m_injInputs.Count + " injects, with " + 

m_numberOfCores + " cores, in " + (end - start) / 
TimeSpan.TicksPerMillisecond + "ms");

            long avgInjTime = (end - start) / (m_injInputs.Count * 
TimeSpan.TicksPerMillisecond);

            //Console.WriteLine("Average time " + avgInjTime + "ms/inject, Core 
time: " + avgInjTime*m_numberOfCores + "ms*core/inject ");

            Console.WriteLine("~~~ End Inject ~~~");

            return m_pcfFile;

            //ApiExampleHelper.ApiExampleHelper.Exit(0, "Success", 
true);                         //Success

        }
    } //###################### END INJECT #####################################

}

Noah Harris


Noah Harris
90



...Gamma NDA Analysis\GammaAnalysis\GammaAnalysis\Program.cs 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37

38
39
40
41
42
43
44
45

46

47

using System;
using System.IO;
using System.Collections.Generic;
using Sandia.Gadras.API;
using System.Diagnostics;

namespace GammaAnalysis
{
    class Program
    {

        public static int rowNumber;
        static void Main(string[] args)
        {

            Console.WriteLine("Please enter your detector. Options: HPGe 
(default), NaI");

            string detectorType = Console.ReadLine();
            if (detectorType == "")
            {
                detectorType = "HPGe";
            }
            Console.WriteLine("Please enter the loss scenario ID");
            string loss = Console.ReadLine();
            Console.WriteLine("Please enter the control scenario ID");
            string control = Console.ReadLine();
            Console.WriteLine("What would you like to do? Type 't' for total 

gamma analysis, 'c' for channel analysis");
            string analysisType = Console.ReadLine();

            string kmp = "";
            string time = "";
            if (analysisType == "c")
            {
                Console.WriteLine("Please enter the KMP you want to analyze. 

Options: U, UTRU, FP, MW");
                kmp = Console.ReadLine();
                Console.WriteLine("Please enter the time you want to analyze");
                time = Console.ReadLine();
            }

            //if no args, then user has to specify the detector they will use

            //this reads the PCF files and writes to the data text file to be 
used by excel analysis

            ReadHeader.Read(loss, control, analysisType, detectorType, kmp, 
time);

Noah Harris


Noah Harris
91



...Gamma NDA Analysis\GammaAnalysis\GammaAnalysis\Program.cs 2
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65

66
67

68
69

70
71
72
73

74

75
76
77
78

79

80
81
82
83

84

            ApiExampleHelper.ApiExampleHelper.Exit(0, "Success", true);        //
Success

        }

    }

    class ReadHeader
    {
        static string m_currentDetector = "C:\\GADRAS\\Detector\\HPGe\\HPGe95%";
        static string m_pcfFileName = "project.pcf";
        static int m_pcfRecordIndex = 2;
        private static bool m_verbose = 

true;                                      //Whether anything is 
printed to the console during execution.

        public static void Read(string currentPcf, string controlPcf, string 
analysisType, string detectorType, string kmp, string time) //string[] 
args

        {
            //m_verbose = (args.Length == 0 || args[0] == "-

v");                      //Verbose if no args, or first arg is "-
v"

            Sandia.Gadras.API.GadrasAPIWrapper gadrasAPI = 
ApiExampleHelper.ApiExampleHelper.setup(m_verbose);  //Load 
settings and instantiate API

            //Add in changing detector type here
            string fullPcfFileName = "C:\\GADRAS\\Detector\\HPGe\\HPGe95%\\" + 

currentPcf + ".pcf";
            string controlPcfFileName = "C:\\GADRAS\\Detector\\HPGe\\HPGe95%\\" +

 controlPcf + ".pcf";

            if (detectorType == "HPGe")
            {
                fullPcfFileName = "C:\\GADRAS\\Detector\\HPGe\\HPGe95%\\" + 

currentPcf + ".pcf";
                controlPcfFileName = "C:\\GADRAS\\Detector\\HPGe\\HPGe95%\\" + 

controlPcf + ".pcf";

            } else if (detectorType == "NaI")
            {
                fullPcfFileName = "C:\\GADRAS\\Detector\\3x3\\NaI MidScat\\" + 

currentPcf + ".pcf";
                controlPcfFileName = "C:\\GADRAS\\Detector\\3x3\\NaI MidScat\\" +

 controlPcf + ".pcf";

Noah Harris


Noah Harris
92



...Gamma NDA Analysis\GammaAnalysis\GammaAnalysis\Program.cs 3
85
86
87
88
89

90
91
92

93
94

95
96

97
98

99

100

101

102

103

104
105

106

107

108

109

110
111

112

            }

            Sandia.Gadras.API.DetectorEnergyCalibration detectorEnergyCalibration
 = new Sandia.Gadras.API.DetectorEnergyCalibration();

            //##########
            gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 

m_pcfRecordIndex).NeutronsCPS.ToString();

            detectorEnergyCalibration = 
gadrasAPI.spectraFileLoadRecordEnergyCalibration(fullPcfFileName, 
m_pcfRecordIndex);   //Make the call, read first reacord, index 1

            if 
(m_verbose)                                                        
  //Review the results

            {
                //Console.WriteLine("\nEnergy calibration constants in\n  {0}:

\n", fullPcfFileName);
                //Console.WriteLine("Order0:    {0,10:F3}", 

detectorEnergyCalibration.Calibration.Order0);
                //Console.WriteLine("Order1:    {0,10:F3}", 

detectorEnergyCalibration.Calibration.Order1);
                //Console.WriteLine("Order2:    {0,10:F3}", 

detectorEnergyCalibration.Calibration.Order2);
                //Console.WriteLine("Order3:    {0,10:F3}", 

detectorEnergyCalibration.Calibration.Order3);
                //Console.WriteLine("LowEnergy: {0,10:F3}", 

detectorEnergyCalibration.Calibration.LowEnergy);
                //########
                //Console.WriteLine("\nNEUTRON CPS\n  {0}:\n", 

gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 
m_pcfRecordIndex).NeutronsCPS.ToString());

                //Console.WriteLine("\nName\n  {0}:\n", 
gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 
m_pcfRecordIndex).Title);

                //Console.WriteLine("\nChannel Gamma Counts\n  {0}\n", 
gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 
m_pcfRecordIndex).GammaCounts[145].ToString());

                //can just multiply the cps by live time to get total count, but 
the cps is a scaled down version of the total count anyways so 
it's cool

                //Console.WriteLine("\nGamma CPS\n  {0}\n", 
gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 
m_pcfRecordIndex).GammasCPS);

                StreamWriter sw = new StreamWriter(Environment.GetFolderPath
(Environment.SpecialFolder.Desktop) + "\\Gamma NDA Analysis" + 
"\\dataForGammaAnalysis.txt");

Noah Harris


Noah Harris
93



...Gamma NDA Analysis\GammaAnalysis\GammaAnalysis\Program.cs 4
113
114
115
116
117

118

119

120
121

122

123
124
125
126
127
128
129
130
131

132
133

134

135
136
137
138
139
140
141
142

143
144
145
146
147
148

149

150

151

                if (analysisType == "t")
                {
                    string name = "";
                    string counts = "";
                    int numLossRecords = gadrasAPI.spectraFileGetInfo

(fullPcfFileName).NumRecords;
                    int numControlRecords = gadrasAPI.spectraFileGetInfo

(controlPcfFileName).NumRecords;
                    for (int recordIndex = 1; recordIndex < numLossRecords + 1; 

recordIndex++)
                    {
                        name = gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 

recordIndex).Title;
                        counts = gadrasAPI.spectraFileLoadRecord(fullPcfFileName,

 recordIndex).GammasCPS.ToString();

                        
                        //this is the updated version of passing data to Excel
                        sw.WriteLine(name + "~" + counts.ToString());
                    }

                    sw.WriteLine("$"); // this divides the loss and control data

                    for (int recordIndex = 1; recordIndex < numControlRecords + 
1; recordIndex++)

                    {
                        name = gadrasAPI.spectraFileLoadRecord

(controlPcfFileName, recordIndex).Title;
                        counts = gadrasAPI.spectraFileLoadRecord

(controlPcfFileName, recordIndex).GammasCPS.ToString();

                        //this is the updated version of passing data to Excel
                        sw.WriteLine(name + "~" + counts.ToString());
                    }

                    Process.Start(Environment.GetFolderPath
(Environment.SpecialFolder.Desktop) + "\\Gamma NDA Analysis" 
+ "\\totalGamma.xlsx");

                } 
                else if (analysisType == "c")
                {
                    string name = "";
                    int numLossRecords = gadrasAPI.spectraFileGetInfo

(fullPcfFileName).NumRecords;
                    int numControlRecords = gadrasAPI.spectraFileGetInfo

(controlPcfFileName).NumRecords;
                    for (int recordIndex = 1; recordIndex < numLossRecords + 1; 

recordIndex++)
                    {

Noah Harris


Noah Harris
94



...Gamma NDA Analysis\GammaAnalysis\GammaAnalysis\Program.cs 5
152

153
154

155
156
157

158

159

160

161

162
163

164
165

166
167

168
169
170
171
172
173

174
175
176

177
178

179
180

181
182
183

184

                        name = gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 
recordIndex).Title;

                        if (name.Split('~')[0] == time && name.Split('~')[1] == 
kmp)

                        {

                            string cal = gadrasAPI.spectraFileLoadRecord
(fullPcfFileName, recordIndex).EnergyCalibration.Order0Text;

                            string cal1 = gadrasAPI.spectraFileLoadRecord
(fullPcfFileName, recordIndex).EnergyCalibration.Order1Text;

                            string cal2 = gadrasAPI.spectraFileLoadRecord
(fullPcfFileName, recordIndex).EnergyCalibration.Order2Text;

                            string cal0 = gadrasAPI.spectraFileLoadRecord
(fullPcfFileName, recordIndex).EnergyCalibration.Order3Text;

                            int fds = gadrasAPI.spectraFileLoadRecord
(fullPcfFileName, recordIndex).ChannelCount;

                            float fdsag = gadrasAPI.detectorGetEnergyForChannel
(1000f, 4096, detectorEnergyCalibration);

                            for (int channel=0; channel < 4096; channel++) //need
 to make this flexible?

                            {
                                sw.WriteLine

(gadrasAPI.detectorGetEnergyForChannel(channel + 1, 4096, 
detectorEnergyCalibration).ToString() + "~" + 
gadrasAPI.spectraFileLoadRecord(fullPcfFileName, 
recordIndex).GammaCounts[channel].ToString());

                            }
                        }

                    }

                    sw.WriteLine("$"); //delimits between loss and control 
scenarios

                    for (int recordIndex = 1; recordIndex < numControlRecords + 
1; recordIndex++)

                    {
                        name = gadrasAPI.spectraFileLoadRecord

(controlPcfFileName, recordIndex).Title;

                        if (name.Split('~')[0] == time && name.Split('~')[1] == 
kmp)

                        {

                            string cal = gadrasAPI.spectraFileLoadRecord
(controlPcfFileName, 
recordIndex).EnergyCalibration.Order0Text;

                            string cal1 = gadrasAPI.spectraFileLoadRecord

Noah Harris


Noah Harris
95



...Gamma NDA Analysis\GammaAnalysis\GammaAnalysis\Program.cs 6

185

186

187

188
189

190
191

192
193

194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

(controlPcfFileName, 
recordIndex).EnergyCalibration.Order1Text;

                            string cal2 = gadrasAPI.spectraFileLoadRecord
(controlPcfFileName, 
recordIndex).EnergyCalibration.Order2Text;

                            string cal0 = gadrasAPI.spectraFileLoadRecord
(controlPcfFileName, 
recordIndex).EnergyCalibration.Order3Text;

                            int fds = gadrasAPI.spectraFileLoadRecord
(controlPcfFileName, recordIndex).ChannelCount;

                            float fdsag = gadrasAPI.detectorGetEnergyForChannel
(1000f, 4096, detectorEnergyCalibration);

                            for (int channel = 0; channel < 4096; channel++) //
need to make this flexible?

                            {
                                sw.WriteLine

(gadrasAPI.detectorGetEnergyForChannel(channel+1, 4096, 
detectorEnergyCalibration).ToString() + "~" + 
gadrasAPI.spectraFileLoadRecord(controlPcfFileName, 
recordIndex).GammaCounts[channel].ToString());

                            }
                        }

                    }

                    Process.Start(Environment.GetFolderPath
(Environment.SpecialFolder.Desktop) + "\\Gamma NDA Analysis" 
+ "\\gammaChannels.xlsx");

                }

                sw.Close();

            }

        }
    }

}

Noah Harris


Noah Harris
96


