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Chapter 1: Introduction

Most of the materials of this thesis is from the following article:

Sagar Shrestha, Xiao Fu, and Mingyi Hong, “Optimal Solutions for Joint Beamforming

and Antenna Selection: From Branch and Bound to Graph Neural Imitation Learning”,

in IEEE Trans. Signal Process., doi: 10.1109/TSP.2023.3244096.©2023 IEEE.

Proper re-organization and modifications were incorporated to enrich the details and

to serve for the clarity of the thesis.

1.1 Background

In multi-antenna wireless communication systems, a base station (BS) uses multiple

antennas to transmit private information to the respective users. By using channel

state information (CSI) of the users, the base station (BS) can steer each message in the

direction of its intended user by selecting different weights for the antenna elements. This

procedure, called Beamforming, helps to boost signal strength and reduce interference

at the receiver compared to transmitting isotropically. In the past decade, a plethora

of beamforming algorithms have been proposed under various scenarios; see, e.g., [24,26,

29,51,66,67,72].

An important problem that arises in practice is that the BS may not be able to oper-

ate all antennas simultaneously. Often, hardware elements called radio frequancy (RF)

chains, required to operate antenna elements, are fewer in number than the antenna

elements. This is due to the costly and power hungry nature of RF chains compared

to antenna elements [21, 48, 51, 63]. Various other factors can also contribute to the

limitation of simultaneously operable antennas—such as energy consumption considera-

tions [4, 30], problem size reduction [55], overhead minimization [41], and algorithm ac-

commodations [62]. Thus, one needs to consider the problem of jointly selecting a subset

of antennas and the beamforming weights for maximizing efficiency and signal quality.
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The problem is called joint beamforming and antenna selection (BF&AS) [29,51,66].

Jointly designing the beamformers and selecting antennas is a mixed integer and non-

linear program, which is known to be NP-hard [14,35]. A large portion of the literature

tackles this problem using continuous programming-based approximations. For exam-

ple, [2, 29, 51, 66] used convex and nonconvex group sparsity-promoting regularization

to encourage turning off antenna elements. However, the continuous approximations

are often NP-hard problems as well (especially when the sparsity promotion is done via

nonconvex quasi-norms as in [51]), and thus it is unclear if they can solve the problem of

interest optimally. In addition, works using greedy methods to assist antenna selection

also exist (see, e.g., [13,18,35,47,52]). But the optimality of joint (R)BF&AS is still not

addressed in these works.

In recent years, machine learning (ML) approaches are employed to handle the joint

BF and AS problem. In [28], a supervised learning approach was proposed. The basic

idea is to use a continuous optimization algorithm to produce training pairs (i.e., channel

matrices and sparse beamformers), and then learn a neural network-based regression

function using such pairs. Similar ideas were used in [19,71] with various settings. This

type of approach in essence mimics the training pair-generating algorithms at best, and

thus the optimality of their solutions is again not guaranteed.

1.2 Contributions

In this work, we revisit the joint BF and AS and its extension under imperfect channel

state information (CSI), namely, the joint robust beamforming (RBF) and AS problem.

We are interested in the unicast BF and RBF formulations in [6] and [73], respectively.

The goal is to satisfy the users’ quality-of-service (QoS) constraints while minimizing the

power consumption, with only a subset of the antenna elements activated. Our detailed

contributions are as follows:

• Optimal Joint (R)BF&AS via Branch and Bound. Our first contribution

lies in an optimal computational framework to attain the global optimal solutions

to the joint (R)BF&AS problems. To this end, we propose a Branch and Bound

(B&B) [15,36] framework that is tailored for the problems of interest. Our design

leverages problem structures of unicast BF and RBF, which allows for branching
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only on a subset of the optimization variables—thereby having reduced complexity

and being effective. Unlike continuous optimization-based approximations in [2,

29, 51, 66] whose solutions are often sub-optimal or infeasible, the proposed B&B

is guaranteed to return an optimal solution.

• An ML-based Acceleration Scheme. B&B is known for its relatively weak

scalability. To improve efficiency, an idea from the ML community (see, e.g.,

[27, 56]) is to learn a binary classifier offline using multiple problem instances.

The classifier determines whether or not any encountered intermediate state of the

B&B algorithm could be “skipped”, as skipping these states saves computational

resources and expedites the B&B process. Generic ML learning functions (e.g.,

support vector machines (SVM)) used in existing works like [27, 37] do not reflect

the problem structure in wireless communications. In this work, we propose a

graph neural network (GNN) [64] based learning function designed to exploit the

physics of the (R)BF problem—which offers an enhanced classification accuracy.

More importantly, the GNN is agnostic to the change of scenarios (e.g., problem

size) during training and testing. This feature is designed to meet the need of

wireless communication systems, as the number of users served by a base station

could change quickly in practice.

• Theoretical Understanding. We present comprehensive performance charac-

terizations for the proposed approaches. In particular, we show that the ML-based

acceleration retains the global optimality of the B&B procedure with high proba-

bility, under reasonable conditions. ML-based B&B acceleration has limited the-

oretical studies, and the results were developed under often overly ideal settings

(e.g., convex classifier) [27, 61]. There is a lack of understanding of the impacts

of key factors such as nonconvexity, limited training samples, and the employed

ML model’s structure. Our analysis takes important aspects into consideration,

such as the nonconvexity of the GNN learning process, the GNN’s structure and

complexity, the GNN’s function approximation error, and the amount of available

samples. As a consequence, the analysis offers insights to reveal key trade-offs in

practice.
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1.3 Related Works

B&B was proposed for beamforming problems in [42, 43], and antenna selection prob-

lems in [20, 39, 58]. Particularly, the work in [42] considered a single group multicast

beamforming problem, the work in [39] considered a joint power allocation and antenna

selection problem, the work in [58] considered antenna selection-assisted rate maximiza-

tion in wiretap channels, and [20, 21] considered receive antenna selection for sum rate

maximization. However these are different from the QoS-constrained downlink transmit

beamfroming formulation considered in our work, which requires new B&B designs. ML-

based B&B acceleration so far has been mostly used formixed integer and linear programs

(MILPs) in the ML community, e.g., [23, 27], where the B&B design is standard. Such

methods have also been adopted in wireless communications in [37, 65] where resource

allocation tasks are framed as mixed integer and nonlinear programs (MINPs). How-

ever, the joint (R)BF&AS problem has not been considered. In addition, comprehensive

theoretical understanding to such ML-acceleration procedures has been elusive.

1.4 Overview of the Thesis

The organization of this thesis is as follows:

Chapter 2 introduces the problem of (R)BF&AS and summarizes representative ex-

isting methods along with their challenges. Chapter 3 proposes an optimality guaranteed

method based on B&B for solving the problem under consideration. Chapter 4 presents

an acceleration scheme based on GNN and imitation learning for acclerating the pro-

posed B&B procedure. Further, a comprehensive theoretical analysis of the resulting

accerated B&B scheme is provided in Chapter 4. Chapter 5 provides extensive nu-

merical results that demonstrate the efficacy of the proposed method and validates our

theoretical analysis. Finally conclusion and discussions are provided in Chapter 6

1.5 Notation

x, x and X denote a scalar, a vector, and a matrix, respectively. xn denotes the nth

column of X. We use the matlab notation X(n, :) to denote the nth row of X. [N ]

denotes the set {1, 2, . . . , N}. ∥x∥2, ∥x∥∞, ∥X∥2, ∥X∥F , ∥X∥row−0 denote the vector ℓ2

norm, vector ℓ∞ norm, matrix spectral norm, matrix Frobenius norm, and the number
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of non-zero rows in the matrix, respectively. Tr(X), XH , and X⊤ denote the trace,

hermitian, and transpose ofX. |X | denotes the cardinality of the set X . E[·] denotes the
expectation operator. X ⪰ 0 denotes that X is positive semi-definite matrix. X(S, :)
with S ⊆ [N ] denotes the submatrix of X ∈ CN×M containing only the rows of X

contained in the set S. X−n denotes the submatrix of X with the nth column removed.

f(·) is C-Lipschitz continuous iff ∥f(x)− f(y)∥2 ≤ C∥x− y∥2.
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Chapter 2: Problem Statement and Challenges

We consider a typical downlink communication scenario where a base station (BS) is

serving M single antenna users. We suppose that the BS has N antennas. Denote

wm ∈ CN as the beamforming vector for serving user m. The message signal for user m

is represented by sm(t). Given the channel hm ∈ CN between the BS and user m, the

signal received by user m can be expressed as follows:

ym(t) = hH
mwmsm(t)︸ ︷︷ ︸

signal

+
∑
ℓ̸=m

hH
mwℓsℓ(t)︸ ︷︷ ︸

interference

+ nm︸︷︷︸
noise

,

where nm is zero-mean circular symmetric white Gaussian noise with variance σ2
m. As-

sume w.l.o.g. that {sm(t)}Mm=1 are mutually uncorrelated and temporally white with

zero-mean and unit-variance. Beamforming scenario for 3 antennas and 3 users is de-

picted in Figure 2.1. The total transmission power is given by

Antennas

Users

Figure 2.1: Illustraction of beamforming with 3 antennas and 3 users

M∑
m=1

∥wm∥22 := ∥W ∥2F,
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Figure 2.2: Downlink communication scenario depicting antenna selection and beam-
forming.

whereW = [w1, . . . ,wM ]. The signal to interference and noise ratio (SINR) at the mth

receiver is expressed as:

SINRm =
|wH

mhm|22∑
ℓ̸=m |wH

ℓ hm|22 + σ2
m

. (2.1)

In this work, our interest lies in a scenario where the BS only activates L anntennas

as shown in Figure 2.2. Hence, we aim to select a subset A ⊆ {1, . . . , N} such that

|A| ≤ L and wm(i) ̸= 0 only when i ∈ A. Thus we want to design wm such that

wm(n) = 0,∀n ∈ A,∀m ∈ [M ].

2.1 Unicast Beamforming and SOCP

One of the most popular formulations for beamforming is the so-called Quality of Service

(QoS) formulation [32,60,70] that tries to maintain a pre-specified SINR level for all users

while minimizing the total power consumed at the BS. When hm is known, the unicast

BF problem can be formulated as follows:

minimize
W

∥W ∥2F (2.2a)

subject to
|wH

mhm|2∑
ℓ ̸=m |wH

ℓ hm|2 + σ2
m

≥ γm, m ∈ [M ], (2.2b)

where γm is the pre-specified SINR for mth user. Problem (2.2) is called “unicast” BF

because every user receives its own message, in contrast to “multicast” where each group

of users receive a common message. Problem (2.2) appears to be nonconvex, but it can
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be recast as a second-order cone program (SOCP). The following lemma shows that one

can re-write (2.2b) as a second-order cone constraint:

Lemma 1 ( [6]). Eq. (2.2b) can be equivalently written as a second-order cone constraint:

1√
γmσ2

m

Re(wH
mhm) ≥

√∑
ℓ̸=m

|wH
ℓ hm|2 + 1, (2.3)

for all m ∈ [M ]. Therefore, any algorithm for solving SOCP can be used to solve (2.2)

optimally.

The intuition behind the proof of Lemma 1 is to note that the absolute value |wH
mhm|2

is equal for any rotation of wm, i.e., exp(iθm)wm. This allows us to select θm such that

wH
mhm is a real number. Hence one can obtain (2.3) by taking square root on both sides

of (2.2b). The fact that (2.2) is a convex program allows us to solve it efficiently using

any convex optimization method. This will be instrumental in the development of our

proposed B&B algorithm in Chapter 3

2.2 Robust Beamforming and SDR

In practice, the BS cannot have perfect knowledge of CSI at the users. The CSI is

usually estimated using feedback information from the users [44, 49]. In this scenario,

the following worst-case RBF formulation is often considered [10,33,46,68,73]:

minimize
W

∥W ∥2F (2.4a)

subject to min
hm∈Um

|wH
mhm|2∑

ℓ̸=m |wH
ℓ hm|2 + σ2

m

≥ γm,

∀m ∈ [M ], (2.4b)

where Um := {hm+em | ∥em∥2 ≤ εm} is the uncertainty region around the approximate

channel in which the true channel vector lies, hm is the approximate channel vector avail-

able at the BS, and εm is the bound on the approximation error. Problem (2.4) cannot be

directly converted to a convex program as in the perfect CSI case (cf. Lemma 1). How-

ever, Problem (2.4) can be tackled by a convex relaxation technique, namely, semidefnite
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relaxation (SDR) [45]. Let Wm := wmw
H
m. Then the SDR of (2.4) is given by

minimize
{Wm∈CN×N}Mm=1

M∑
i=1

Tr(Wm) (2.5a)

subject to min
hm∈Um

h
H
mWmhm∑

j ̸=m h
H
mWjhm + σ2

m

≥ γm, (2.5b)

Wm ⪰ 0, ∀m ∈ [M ].

Note that (2.5) and (2.4) are equivalent if the constraintWm = wmw
H
m (or, rank(Wm) =

1) has not been relaxed. The semi-infinite constraint (2.5b) can be equivalently written

as a linear matrix inequality using the S-lemma (see [46] for more details):

minimize
{Wm,Ym}Mm=1,t

M∑
m=1

tr(Wm) (2.6)

subject to Ym =

[
Qm + tmI rm

rHm sm − tmε2m

]
, m ∈ [M ],

Ym ⪰ 0, Wm ⪰ 0, tm ≥ 0 m ∈ [M ],

where Qm =
1

γm
Wi −

∑
j ̸=i

Wj

rm = Qmhm

sm = hH
mQmhm − σ2

m.

Interestingly, this relaxation procedure turns out to be tight under reasonable con-

ditions:

Lemma 2 ( [46, Theorem 1]). Suppose that Problem (2.4) is feasible. Let Πm :=

I −H−m(HH
−mH−m)−1HH

−m be the orthogonal complement projector of H−m. If

∥Πmhm∥22
ε2m

> 1 +M + (M − 1

M
)γm,∀m, (2.7)

then the optimal solution of (2.4) can be obtained using SDR.

The condition in (2.7) means that if the downlink channels associated with different
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users are sufficiently different, then the SDR is tight.

When the condition of Lemma 2 is satisfied, the optimal beamforming matrixW ⋆ =

[w⋆
1,w

⋆
2, . . . ,w

⋆
M ] can be obtained from optimal solution, W ⋆

m,∀m, to the problem (2.6)

as follows:

w⋆
m =

√
λ
(m)
1 v

(m)
1 ,∀m ∈ [M ], (2.8)

where λ1 and v1 are the principal eigenvalue and eigenvector of W ⋆
m, respectively.

2.3 Joint (R)BF&AS: Existing Approaches

The joint (R)BF&AS problem frequently arises in practice for many reasons. For exam-

ple, due to the the costly and power-hungry nature of RF chains, in some antenna arrays,

the number of RF chains may be fewer than that of the antenna elements [21,48,51,63].

Furthermore, AS is also used for energy-efficiency considerations [30], problem size reduc-

tion, overhead control, and algorithm design accommodations—see, e.g., [41,54,55,62,63]

and the discussions therein. The problem considered in this work is as follows:

minimize
W

∥W ∥2F (2.9a)

subject to C(wm,hm, εm, σm) ≥ γm, (2.9b)

∥W ∥row-0 ≤ L. (2.9c)

where the row-0 function ∥ · ∥row-0 counts the number of nonzero rows in W and

C(wm,hm, εm, σm)

:=


|wH

mhm|2∑
ℓ ̸=m |wH

ℓ hm|2+σ2
m
, if BF is considered,

minh∈Um

|wH
mhm|2∑

ℓ ̸=m |wH
ℓ hm|2+σ2

m
, if RBF is considered.

Problem (2.9) is a non-convex combinatorial problem, and it is NP-hard [14]. Some

representative approaches for tackling joint (R)BF&AS problems are as follows:
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2.3.1 Continuous Approximations

In the literature, Problem (2.9) and other joint (R)BF&AS formulations are often han-

dled by continuous approximation. For example, a representative continuous approxi-

mation technique was used in [51] for handling a multicast version of (2.9). Using the

idea from [51], one can recast the unicast problem in (2.9) as a regularized formulation

as follows:

minimize
W

∥W ∥2F + λ∥W ∥row-0 (2.10)

subject to C(wm,hm, εm, σm) ≥ γm, m ∈ [M ].

The idea in [51] is to approximate the row-0 function using a group sparsity-inducing

norm, namely, the ℓ∞,1 norm, i.e., ∥W ∥row-0 ≈
∑N

n=1 ∥W (n, :)∥∞ and its nonconvex

counterpart ∥W ∥row-0 ≈
∑N

n=1 log (∥W (n, :)∥∞ + ε) [9]. Similar ideas were used in [2].

Such continuous approximations allow the use of standard nonlinear program techniques

to tackle (2.10). However, as mentioned, these methods do not provide any optimal-

ity guarantees. In addition, the feasiblity of W is often not met by the approximate

solutions.

2.3.2 Greedy Methods

A number of greedy approaches also exist for tackling various formulations of the joint

(R)BF&AS problem; see, e.g., [13, 18, 35, 47, 52]. The major idea is to activate or shut

down an antenna in every iteration using a certain criterion that is often defined by the

optimization problem’s objective function—see an example in Chapter 5.2.1. Notably,

such greedy algorithms are not necessarily computationally light, as will be seen in our

simulations.

2.3.3 Supervised Learning

More recently, a number of learning-based approaches are proposed to tackle the joint

(R)BF&AS problem; see, e.g., [11, 28, 31]. In [28], a multicast version of (2.9) was

considered. The idea is to use an existing joint multicast BF&AS algorithm (e.g., the
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algorithm from [51]) to generate “training pairs” {Ht, Ŵt}Tt=1 by simulating a large

number of problem instances, where t is the instance index, Ŵt is a (row-sparse) solution

produced by the training pair-generating algorithm, and Ht is the channel matrix of

instance t. Note that the training pairs can take other forms, e.g., {Ht, ẑt} where

ẑt ∈ RM is a binary vector found by the training pair-producing algorithm, indicating

which antenna is activated [28,71]. Then, a deep neural network (DNN) fθ(·) is trained
via

θ̂ ← argmin
θ

1

T

T∑
t=1

ℓ(Ŵt,fθ(Ht)), (2.11)

where θ represents the parameters of the DNN and ℓ(x, y) measures the divergence

between x and y. When a new H is seen in the test stage, one can use the learned DNN

to predict the solution, i.e., Ŵ = f
θ̂
(H). This “supervised learning” idea is similar to

a line of work in deep learning-based wireless system design; see, e.g., [38, 69]. Notably,

it cannot exceed the performance of the algorithm that produces the training pairs or

ensure producing a feasible solution in the test stage. Other deep learning-based ideas

were seen in [11, 19, 31, 40] using either supervised learning or unsupervised learning

variants, but similar challenges remain.

2.4 Summary

In this chapter, we have formulated the problem of unicast beamforming and antenna

selection along with its robust version. If we omit the antenna selection part, the unicast

beamforming problem can be re-written as a SOCP. Similarly, under reasonable con-

ditions, the SDR of the robust unicast beamforming problem is tight. Hence, one can

solve the (R)BF&AS problem by solving
(
N
L

)
convex problems (SOCP/SDR). However,

this is not feasible due to the exponential time complexity with respect to the number of

antennas. Representative existing methods attempt to resolve this issue by resorting to

approximate solutions. Hence, the issue of optimality remains. The following chapter is

devoted to addressing this issue by proposing an optimality guaranteed B&B procedure.
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Chapter 3: Optimal Joint (R)BF&AS via B&B

A natural idea for solving hard optimization problems is to employ a global optimiza-

tion technique, e.g., the B&B procedure [8, 15, 36] described in Chapter ??. Designing

a practically working B&B algorithm is often an art—it normally involves judicious ex-

ploitation of problem structures. That is, not every hard problem enjoys an efficient

B&B algorithm. Nonetheless, as we will see, the special properties of BF and RBF

allows for an effective B&B design.

3.1 Preliminaries of B&B

We follow the notations from the tutorial in [8] to give a brief overview of B&B’s design

principles. Consider a nonconvex problem:

minimize
x

f(x) (3.1a)

subject to x ∈ X . (3.1b)

where both the objective function and the constraint can be nonconvex. Suppose that

there is a partition of the space X = X1 ∪ . . .∪XS , and that lower and upper bounds of

f(x) over each Xi are easier to find (relative to directly solving (3.1)). Let Φlb(Xi) and

Φub(Xi) be the algorithms that return lower and upper bounds of the optimal solution

of (3.1) over the set Xi, respectively. Then, the following holds:

lG := min
1≤i≤S

Φlb(Xi) ≤ Φ(X ) ≤ min
1≤i≤S

Φub(Xi) =: uG. (3.2)

where Φ(X ) represents the optimal solution of (3.1) over the feasible region X . lG and

uG are the global lower and upper bounds of the optimal solution Φ(X ).
A premise of the success of B&B is that one could find a partition Xi for i = 1, . . . , S
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and a pair of functions Φlb and Φub which can make the following hold:

min
1≤i≤S

Φub(Xi)− min
1≤i≤S

Φlb(Xi) ≤ ϵ (3.3)

where ϵ > 0 is a pre-specified error tolerance parameter. Algorithm 1 describes the basic

working of the B&B algorithm for solving (3.1). One can see that we have maintained a

list of unbranched nodes (subsets) in F (t). In each iteration, we select a node from this

list and divide it into smaller subsets. The process of selecting the node and dividing it

is referred to as “branching”.

Algorithm 1 B&B FRAMEWORK
1: t = 0;
2: F (0) = {X};
3: l

(t)
G = Φlb(X );

4: u
(t)
G = Φlb(X );

5: while u
(t)
G − l

(t)
G > ε do

6: Select a node X̃ ∈ F (t) using some heuristics;
7: Divide X̃ into two subsets such that X̃1 ∪ X̃2 = X̃ ;
8: F (t+1) = (F (t)\X̃ ) ∪ {X̃1, X̃2};
9: l

(t)
G = minX∈F(t+1) Φlb(X );

10: u
(t)
G = minX∈F(t+1) Φub(X );

11: t = t+ 1;
12: end while

The effectiveness of B&B relies on two key factors. First, the design of the lower and

upper bounding algorithms represented by Φlb(Xi) and Φub(Xi), respectively, plays a

central role. Second, the method of branching also matters. It often requires a problem-

specific way to progressively and judiciously partition the constraint set X (usually from

rough to fine-grid), so that the difference in (3.3) could shrink quicker than exhaustive

search. Meeting either of the design requirements is not necessarily easy. Moreover, the

key designs in B&B algorithms (e.g., the X partition strategies) are highly problem-

dependent; that is, there is hardly a “standard recipe” for B&B algorithm design.
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(2.9b), (2.9c)

(2.9b), (2.9c),
W (n1, :) = 0

(2.9b), (2.9c),
W (n1, :) = 0,
W (n2, :) = 0

W (n2, :) = 0

(2.9b), (2.9c),
W (n1, :) = 0,
W (n2, :) ∈ CM

W (n2, :) ∈ CM

W (n1, :) = 0

(2.9b), (2.9c),
W (n1, :) ∈ CM

(2.9b), (2.9c),
W (n1, :) ∈ CM ,
W (n3, :) = 0

W (n3, :) = 0

(2.9b), (2.9c),
W (n1, :) ∈ CM ,
W (n3, :) ∈ CM

W (n3, :) ∈ CM

W (n1, :) ∈ CM

Figure 3.1: Illustration of B&B tree for problem (2.9). Here ni ∈ [N ] are the branching
variables selected at each node.

3.2 Proposed B&B for Joint (R)BF&AS

Problem (2.9) involves optimization in discrete and continuous spaces in the constraints.

Designing a B&B algorithm for such problems can be difficult due to the large search

space that consists of both types of constraints. However, the special structure of (R)BF

in (2.9) allows us to efficiently obtain bounds over the entire range of the values of the

continuous (beamforming) parameters once the discrete (antenna selection) parameters

have been chosen; this will be clearer in (3.5) and (3.6). As such, we only need to

construct a B&B tree over the discrete space.

3.2.1 B&B Tree Construction

We illustrate the idea of systematically partitioning the feasible region of Problem (2.9)

in Figure 3.1. Here, N (ℓ)
i denotes the feasible region corresponding to the ith node at the

ℓth level. In the sequel, we will use the term “node” and the associated feasible region

interchangeably. The root is denoted as N (0), and we have

N (0) = {W | W satisfies (2.9b), (2.9c)}.



16

In the first level, the region represented by the root node is split into two regions repre-

sented by two child nodes, namely,

N (1)
1 = {W | W (n1, :) = 0, W satisfies (2.9b), (2.9c)}

N (1)
2 = {W | W (n1, :) ∈ CM , W satisfies (2.9b), (2.9c)}.

where n1 ∈ [N ] is an antenna index selected by a designed antenna selection criterion

(e.g., via random sampling). Up to the first level of the tree, the status (“include

(activate)” or “exclude (shut down)”) of all antennas other than antenna n1 have not

been decided.

Note that the nodes in the B&B tree could constitute a partition in various forms.

For example, for nodes in the same level, we have

N (ℓ)
1 ∪ . . . ∪N (ℓ)

Sℓ
= N (0),

where Sℓ = 2ℓ is the number of nodes in the ℓth level of the tree. In addition, we have

N (ℓ)
s = N (ℓ+1)

s1 ∪N (ℓ+1)
s2 , (3.4)

where s1 := 2(s − 1) + 1 and s2 := 2(s − 1) + 2 represent the left and right children

developed from N (ℓ)
s in the full tree. In fact, the children of N (ℓ)

s in any level and N (ℓ)
−s

also present a partition of the root node, where N (ℓ)
−s is the union of N (ℓ)

1 , . . . ,N (ℓ)
Sℓ

with

N (ℓ)
s excluded.

The B&B algorithm starts from the first level to compute lower and upper bounds of

(2.9) over the node-defined regions. Then, the B&B algorithm picks a node to “branch”,

i.e., to further partition oftentimes using a heuristic-based metric; see [15]. Going deeper

in the tree towards the final leaves will allow us to progressively decide which antennas

to activate or shut off. Let t denote the iteration index of the B&B algorithm, where an

iteration corresponds to a branching (partitioning a node) operation. Use P(t) to denote

the collection of (s, ℓ) corresponding to the unbranched nodes. Then, the union of N (ℓ)
s ’s

for (s, ℓ) ∈ P(t) represents a partitioning of the root in iteration t. In each iteration t,

the stopping criterion in (3.3) is evaluated. It follows that the following two quantities
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need to be evaluated:

l
(t)
G = min

(s,ℓ)∈P(t)
Φlb(N (ℓ)

s ), u
(t)
G = min

(s,ℓ)∈P(t)
Φub(N (ℓ)

s ),

where l
(t)
G and u

(t)
G are the global lower and upper bounds in iteration t. In particular, the

lower and upper bounds over the newly created two child nodes need to be found—since

other nodes have been evaluated in a certain previous iteration. The hope is that one

would not need to visit all nodes of tree before reaching the stopping criterion in (3.3).

3.2.2 Lower and Upper Bounds

In order to compute Φlb(N
(ℓ)
s ) and Φub(N

(ℓ)
s ), let us define A(ℓ)

s ⊆ [N ] and B(ℓ)s ⊆
[N ]\A(ℓ)

s to be the index sets of the antennas that have been activated and shut down at

node s in level ℓ, respectively. Note that A(ℓ)
s ∪ B(ℓ)s ⊆ [N ] constitute the set of decided

antennas at the node. Then, finding the upper and lower bounds of ∥W ∥2F at this node

amounts to finding those of the following optimization problem:

minimize
W

∥W ∥2F (3.5)

subject to C(wm,hm, εm, σm) ≥ γm, ∀m,

W (n, :) = 0, ∀n ∈ B(ℓ)s ,

W (n, :) ∈ CM , ∀n ∈ A(ℓ)
s ,

∥W ∥row−0 ≤ L, n ∈ [N ].

For any given node N (ℓ)
s , the lower bound can be obtained by solving the following

relaxation of (3.5):

Φlb(N (ℓ)
s ) =minimize

W
∥W ∥2F (3.6a)

subject to C(wm,hm, εm, σm) ≥ γm,∀m, (3.6b)

W (n, :) = 0, ∀n ∈ B(ℓ)s ,

where we have dropped ∥W ∥row−0 ≤ L. If Problem (3.6) is not feasible, Φlb(N
(ℓ)
s ) is set

to +∞.
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In the following lemma, we show that (3.6) can be optimally solved for all nodes in

the B&B tree. It also helps derive a procedure for Φub(·).

Lemma 3. Regarding (3.6), the following hold:

(a) Consider the BF case where perfect CSI is given. Then, (3.6) can be optimally

solved by using SOCP.

(b) Consider the RBF case where imperfect CSI is given. Assume that

∥Πmh̃m∥22
ε2m

> 1 +M + (M − 1

M
)γm,∀m, (3.7)

where Πm := I−H̃−m(H̃H
−mH̃−m)−1H̃H

−m, holds for H̃ ∈ {H(S, :)|∀S ∈ [N ], |S| ≥
L}. Then, Problem (3.6) can be optimally solved using SDR.

(c) Under the same conditions of (a) and (b), solving the following gives a valid upper

bound of (3.5) under the BF and RBF cases, respectively:

Φub(N (ℓ)
s ) = minimize

W
∥W ∥2F (3.8a)

subject to C(wm,hm, εm, σm) ≥ γm, ∀m, (3.8b)

W (n, :) = 0, ∀n ∈ B̃(ℓ)s ,

where B̃(ℓ)s = C(ℓ)s ∪ B(ℓ)s represents the set of N − L antennas to be excluded, and

C(ℓ)s ⊆ [N ]\(A(ℓ)
s ∪ B(ℓ)s ) is the index set of undecided antennas that have been

assigned the minimum power in the solution of (3.6). If Problem (3.8) is not

feasible, Φub(N
(ℓ)
s ) is notationally set to +∞.

The proof of Lemma 3 is relegated to Appendix A.

3.2.3 Node Selection and Branching

After (3.6) and (3.8) are computed in iteration t, l
(t+1)
G and u

(t+1)
G are updated. If the

stopping criterion u
(t)
G − l

(t)
G ≤ ε is not met, one needs to pick a node in P(t) to further

partition. To this end, we employ the “lowest lower bound first” principle that is often
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used in the literature [15]. To be specific, we pick a non-leaf node N (ℓ⋆)
s⋆ such that

(ℓ⋆, s⋆) ∈ arg min
(s,ℓ)∈P(t)\Sleaf

Φlb(N (ℓ)
s ), (3.9)

where Sleaf := {(ℓ, s) : |A
(ℓ)
s | = L, |B(ℓ)s | = N − L} is the set of leaf nodes. To partition

the region N (ℓ⋆)
s⋆ , we need to pick an undecided antenna and decide whether to include

or exclude it in our solution. We select the antenna that has been assigned the largest

power among the undecided antennas in iteration t, i.e.,

n⋆ = arg max
i∈[N ]\(A(ℓ⋆)

s⋆
∪B(ℓ⋆)

s⋆
)

∥W (ℓ⋆)
s⋆ (i, :)∥22, (3.10)

where W
(ℓ⋆)
s⋆ := argminW (3.6) at N (ℓ⋆)

s⋆ . Then, n⋆ is used to partition N (ℓ⋆)
s⋆ into two

child nodes (i.e., excluding and including antenna n⋆ on top of the decided antennas in

N (ℓ⋆)
s⋆ ). The associated include/exclude sets in the child nodes, N (ℓ⋆+1)

s⋆i
, i ∈ {1, 2}, are

updated as follows:

B(ℓ+1)
s⋆1

= B(ℓ)s⋆ ∪ {n
⋆}, A(ℓ+1)

s⋆1
= A(ℓ)

s⋆ ,

A(ℓ+1)
s⋆2

= A(ℓ)
s⋆ ∪ {n

⋆}, B(ℓ+1)
s⋆2

= B(ℓ)s⋆ .

Note that if any of the child nodes, have L included or N − L excluded antennas, we

apply the following update:

B(ℓ
⋆+1)

s⋆i
= [N ]\A(ℓ⋆+1)

s⋆i
if |A(ℓ⋆+1)

s⋆i
| = L

A(ℓ⋆+1)
s⋆i

= [N ]\B(ℓ
⋆+1)

s⋆i
if |B(ℓ

⋆+1)
s⋆i

| = N − L. (3.11)

This ensures that we do not generate any new nodes that do not satisfy (2.9c). Finally,

the two children replace N (ℓ⋆)
s⋆ in P(t) to form P(t+1).

Note during the process, some nodes in the B&B tree can be simply discarded, or,

“fathomed”—as in the standard terminologies of B&B [15]. After iteration t, one can

potentially find a set of (s′, ℓ′) such that

Φlb(N
(ℓ′)
s′ ) > u

(t)
G .
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The above means that N (ℓ′)
s′ needs not to be further partitioned in the next iteration.

Hence, we can form a set F (t) in each iteration, which only contains the nodes that need

to be further considered, i.e.,

F (t) =
{(

s′, ℓ′
)
∈ P(t)

∣∣∣ Φlb

(
N (ℓ′)

s′

)
≤u(t)G

}
This is arguably the most important for attaining efficiency against exhaustive search.

A summary of the B&B procedure is presented in Algorithm 3.2.3.

Algorithm 2 BB

1: Input: Problem instance (hm, σm, γm, εm), ∀m, trained pruning policy πθ, relative er-
ror ϵ; # Add the root node first

2: A(0)
1 ← {},B

(0)
1 ← {};

3: Select node using (3.9) for N (0)
1 ;

4: Wincumbent ← solution to (3.8);

5: l
(t)
G ← ∥W

(0)
1 ∥2F , u

(0)
G ← ∥Wincumbent∥2F ;

6: F (0) ← {(0, 1)};
7: t← 0;
8: while |F (t)| > 0 and

∣∣∣u(t)
G −l

(t)
G

∣∣∣/l(t)G > ϵ do
9: Select a non-leaf node (ℓ⋆, s⋆) using (3.9)

10: Remove the selected node F (t) ← F (t)\N (ℓ⋆)
s⋆ ;

11: Select variable n⋆ using (3.10);

12: Generate child nodes N (ℓ⋆+1)
s⋆1

and N (ℓ⋆+1)
s⋆2

using (3.4) and append to F (t);

13: k ← argmini∈{1,2}Φub

(
N (ℓ⋆+1)

s⋆i

)
;

14: if Φub

(
N (ℓ⋆+1)

s⋆k

)
≤ u

(t)
G then

15: u
(t+1)
G ← Φub

(
N (ℓ⋆+1)

s⋆k

)
;

16: Wincumbent ← solution to (3.8) for N (ℓ⋆+1)
s⋆k

;

17: end if
18: l

(t+1)
G ← min(ℓ,s)∈F(t)Φlb

(
N (ℓ)

s

)
;

19: F (t+1) ←
{
(s′, ℓ′) ∈ F (t) | Φlb

(
N (ℓ′)

s′

)
≤ u

(t+1)
G

}
;

20: t← t+ 1;
21: end while
22: Return Wincumbent;
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3.2.4 An Alternative B&B Method

It is interesting to note that there is often more than one way to come up with a B&B

procedure for a given problem. For example, a commonly used approach for deriving

B&B of mixed integer and linear programs (MILPs), and more generally, subset selection

problems (see, e.g., [7, 37]) can also be used for our problem (2.9). The method is by

introducing auxiliary Boolean variables. Specifically, problem (2.9) can be expressed as

follows:

minimize
W ,z

∥W ∥2F (3.12a)

subject to C(wm,hm, εm, σm) ≥ γm,

z ∈ {0, 1}N , (3.12b)

z⊤1 ≤ L,

∥W (n, :)∥2 ≤ Cz(n), ∀n ∈ [N ].

where C < ∞ is a large positive constant and z(n) = 0 means that the nth antenna

is excluded whereas z(n) = 1 indicates the opposite. The constraint in (3.12b) can be

relaxed to be z ∈ [0, 1]N for finding the lower bound (see Appendix B.2.2 for details). In

this procedure, the branching operations are imposed on the new variable z [7,37]. The

reason that we do not choose formulation (3.12) to design B&B for our joint (R)BF&AS

problem is that this approach could be computationally (much) less efficient compared to

the proposed approach (see a proof in Theorem 1 in the next section). The computational

efficiency of our method comes from the fact that the computation of upper and lower

bounds in (3.6) and (3.8) can be reused for many nodes; see the proof of Theorem 1.

However, it is not obvious if such kind of computation reduction is still possible for the

formulation in (3.12).

3.3 Optimality

We show that the proposed algorithm will produce optimal solutions for the problem of

interest:

Theorem 1. Regarding the proposed B&B procedure in Algorithm 3.2.3, the following
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statements hold:

(a) When BF is considered, the proposed B&B solves (2.9) optimally.

(b) When RBF is considered, if the conditions in Lemma 3(b) are satisfied, the proposed

B&B solves (2.9) optimally.

(c) The total number of SOCPs/SDRs solved by the proposed B&B is upper bounded

by

QCompute =

(
N

L

)
+

N−L+1∑
i=2

(
N − i

L− 1

)
.

The number of SOCPs/SDRs needed by the B&B associated with the alternative

formulation in Sec. 3.2.4 is upper bounded by Q′
Compute = 2

(
N
L

)
− 1.

The proof of Theorem 1 is in Appendix B. At the first glance, it feels a bit surprising

that the B&B algorithms could use more than
(
N
L

)
SOCP/SDRs to find the optimal

solution, since this seems to be worse than exhaustive search. This is because, in the

worst case, B&B visits many more intermediate states in the search tree—but exhaustive

search only visits the leaves. Nonetheless, in practice, B&B is often much more efficient

than exhaustive search since B&B does not really exhaust all the nodes. Theorem 1

(c) spells out the advantage of our B&B design relative to the more classic B&B idea

as in (3.12) from the MILP literature. Note that the reduction of complexity shown in

(c) could be substantial. For example, when (N,L) = (12, 8), QCompute =660, whereas

Q′
Compute =989. Hence, there is a potential saving of 339 SOCPs/SDRs (reduction by

34%) in the worst case.

Remark 1. Under approximate CSI, the conditions in Lemma 3(b) is the premise for

our theorem to hold [cf. Theorem 1(b)]. When the condition is violated, it is possible

that the SDR in (3.5) might return solutions whose rank is higher than one in theory—

which would hinder the optimality of the B&B procedure. Nonetheless, such higher-rank

solutions were never seen in our simulations—which is consistent with observations from

the literature [10, 46, 68, 73]. Our conjecture is that the sufficient condition in Lemma

3(b) is far from necessary. In rare cases where rank-one solutions do not exist for

(3.5), standard procedures like randomization [45] may be resorted to for finding rank-

one approximations.
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3.4 Summary

In this chapter, we proposed an effective B&B procedure to solve (R)BF&AS problem

optimally. B&B design is problem-specific and often an art. An effective B&B pro-

cedure needs to exploit the problem structure to obtain optimal solution faster than

the exhaustive search. Due to the hidden convexity of the beamforming problem, the

proposed B&B procedure could “bypass” the continuous optimization related to beam-

forming and only branch on the discrete antenna selection constraint. The proposed

approach provides optimal solution using smaller computation budget than commonly

used frameworks for subset selection using B&B [7, 37]. Although more effective than

the exhaustive search, as will be seen in Chapter 5, it still suffers from exponential time

complexity and cannot be used for solving large-sized problems. In the next chapter, we

discuss a machine learning based solution based on imitation learning and graph neural

networks that can significantly speedup the branch and bound procedure while retaining

the optimality of the solution under some conditions.
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Chapter 4: Accelerated Joint (R)BF&AS via ML

The challenge of any B&B algorithm lies in the large number of nodes in the tree. This

means that in the worst case, many SOCPs and SDRs need to be solved. An idea from

the ML community is to “train” a classifier to recognize the relevant nodes, i.e., nodes

that lead to leaves containing the optimal solution [27]. If a node is deemed to be “ir-

relevant”, the B&B algorithm would simply skip branching on this node, and thus could

save a substantial amount of time. In this section, we will show that a similar idea

can be used for accelerating our B&B based joint (R)BF&AS algorithm—with carefully

designed neural models to meet the requirements arising in wireless communications.

More importantly, we will present comprehensive performance characterizations, includ-

ing sample complexity and global optimality retention, which are currently lacking in

the existing literature.

4.1 Preliminaries: Node Classification and Imitation Learning

4.1.1 Node Classification

Let us denote

πθ : RP → [0, 1]

as the node classifier parameterized by θ, which returns the probability of a node being

relevant. Let

ϕ(N (ℓ)
s ) ∈ RP

be the mapping from a node to its feature representation. When πθ(ϕ(N
(ℓ)
s )) < 0.5,

then the node is deemed irrelevant. Otherwise, the node is branched.

To train such a classifier, denote {(Ns, ys)}Ts=1 as the (node, label) training data,

where we have removed the level indices of the nodes for notation simplicity. To create

the training pairs, one could run random problem instances of (2.9) using the B&B
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procedure. Note that the label ys is annotated according to the following rule:

ys =

1, As ⊆ A⋆ and Bs ⊆ [N ]\A⋆,

0, otherwise,
(4.1)

where As and Bs are the index sets of included and excluded antennas at node s, respec-

tively, and A⋆ is the index set of the active antennas of the optimal solution found by

B&B of the associated problem instance.

4.1.2 Imitation Learning

The simplest supervised learning paradigm would learn πθ using the following risk min-

imization criterion:

minimize
θ

1

T

T∑
s=1

L (πθ (ϕs) , ys) + r(θ), (4.2)

where ϕs := ϕ(Ns), L(x, y) is a certain loss function, e.g., the logistic loss, and r(θ)

is a regularization term, e.g., r(θ) = λ∥θ∥22. Unfortunately, such a supervised learning

approach often does not work well, since it ignores the fact that the node generating

process is sequential and interactive with the node classifier in the test stage. In ML-

based MILP, the remedy is to adopt the imitation learning (IL) [61] approach, where πθ is

integrated in the training data generating process [27]. To be more specific, the training

data generation process is done in a batch-by-batch manner with online optimization.

The IL training criterion is as follows (see Chapter 4.3 for data generation and training

process):

θ(i+1) = argmin
θ

1

i

i∑
t=1

1

|Dt|
∑

(ϕs,ys)∈Dt

L (πθ(ϕs), ys) + r(θ),

where Dt is the tth batch of training pairs. The learned model parameter θ̂ is selected

from θ(i)’s via the following:

θ̂ = arg min
θ∈{θ(i)}Ii=1

E(ϕs,ys) [L (πθ(ϕs), ys)] , (4.3)
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Figure 4.1: Illustration of the input graph representation for a node.

where I is the total number of batches generated during the training process. In practice,

one can use a validation set to approximate the above expectation. In the test stage, the

proposed B&B algorithm is run with the assistance of π
θ̂
.

The key of using IL to accelerate the proposed B&B for joint (R)BF&AS is twofold,

namely, a practical node classifier tailored for wireless communications and a convergent

online training algorithm. We will detail our designs to address the two requirements in

the next sections.

4.2 GNN-based Node Classifier for Joint (R)BF&AS

To design the node classifier, a critical consideration in wireless communications is that

the number of users to serve could drastically change from time to time. This requires

us to design an ML model that is agnostic to such changes, as re-training a model

when change happens is not affordable. Towards this end, we design a GNN-based node

classifier [64]. Note that GNNs learn aggregation operators over a graph, and thus is

naturally robust to the change of entities on the graph. We will leverage this property

to design our node classifier.

4.2.1 Neural Architecture Design

To describe the GNN-based node classifier, we first define a graph to represent N (ℓ)
s .

Figure 4.1 illustrates the idea, where the antennas and users represent the vertices, and

the channel represent the edge between the vertices. It is important to design the features
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of the vertices and the edges, so that they represent the essential information of the node

N (ℓ)
s . To be specific, we let

xn ∈ RVa , n ∈ [N ], xN+m ∈ RVu ,m ∈ [M ], and

en,N+m ∈ RVe , n ∈ [N ],m ∈ [M ] (4.4)

represent the feature vectors of antenna n (a vertex), user m (a vertex), and the channel

between the antenna n and the user m (an edge), respectively. Layer d of the GNN

“aggregates” the embedding of graph neighbors to update the uth vertex for all u ∈
[M+N ]. The definition of such aggregation can be flexible. For example, in the message

passing neural network [25], the aggregation is done by the following:

q(d)u = ξ(Z1q
(d−1)
u +

∑
v∈Eu

ξ(Z2q
(d−1)
v +Z3eu,v)), (4.5)

where q
(0)
u = xu; Zi for i = 1, 2, 3 are the aggregation operators of the GNN; ξ(·)

represents the activation functions of layer d; and Eu is the index set of all the one-hop

neighbors of vertex u on the graph. The output of the GNN is

πθ(ϕs) =
1

U

∑
u∈[U ]

ζ
(
β⊤q(D)

u

)
, ϕs = ϕ(Ns) ∈ RP

where U = M+N is the total number of vertices; ϕ(Ns) = [x⊤1, . . . ,x
⊤
N+M , e⊤1,N+1, . . . , e

⊤
N,N+M ]⊤;

and ζ(·) is a sigmoid function. Here, the parameter to be optimized is given by θ :=

[vec(Z1)
⊤, vec(Z2)

⊤, vec(Z3)
⊤,β⊤]⊤.

4.2.2 Feature Design

Table 4.1 shows the detailed feature descriptions. We design two types of features to

represent the B&B nodes. To be specific, Type I features represent the features whose

dimensions are not affected by the problem size parameters N,M,L. For example, Φlb is

a Type I feature as it is always a scalar under any (N,M,L). Type II features are those

whose dimensions change when (N,M,L) changes. For instance, the channel matrix

H ∈ CM×N is a Type II feature.
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Table 4.1: Feature Design for the GNN based node classifier.
Type I Features Type II Features

l
(t)
G A(ℓ)

s

u
(t)
G B(ℓ)s

Φlb(N
(ℓ)
s ) [∥Wℓ,s(1, :)∥22, . . . , ∥Wℓ,s(N, :)∥22]

Φub(N
(ℓ)
s ) H

ℓ Wincumbent (see Algorithm 4.3)

1(Φub(N
(ℓ)
s )− u

(t)
G < ϵ). Wℓ,s

|Wℓ,s(:,m)Hhm|2.
Aggregate Interference using Wℓ,s.

Table 4.2: Classification error (%) attained by SVM, FCN and GNN based classifier for
classifying relevance of the nodes. γm = σm = 1, ε = 0.1.

Perfect CSI Approximate CSI

Problem sizes
(4,3,2) (8,6,4) (4,3,2) (8,5,4)

(N,M,L)

SVM 8.49 16.67 7.17 11.67

FCN 6.93 13.95 26.95 10.18

GNN 7.26 12.23 6.62 8.49
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Note that the special structure of GNN allows us to employ both Type I and Type

II features. The reason is that the change of M,N and L only changes the number

of vertices/edges of the graph in Figure 4.1. This does not necessarily change Va, Ve

and Vu that determines the size of Zi [cf. Eq. (4.4)]—if xn and and en,m are designed

properly under the GNN framework (see Appendix 4.2.2.1). However, if one uses SVM

as in [27] or other types of neural networks (e.g., fully connected network (FCN) and

convolutional neural network (CNN)), Type II features are much less flexible to use. We

should remark that our feature design is not “optimal” in any sense, but using Type II

features arguably provides more comprehensive information about the node and could

often enhance the node classification accuracy.

Table 4.2 shows numerical evidence to support our postulate. There, different clas-

sifiers are trained by IL using problem instances as described in Chapter 5. The FCN

has two hidden layers with 32 hidden units in each layer, a sigmoid activation function

on the output layer, and ReLU activations on the remaining layers. The architecture of

the GNN is described in Chapter 5.2.3. The SVM and FCN could only use the Type I

features. The GNN with both types of features clearly offers a lower node classification

error.

4.2.2.1 Construction of input features

We assign the features tabulated in Table 4.1 among the elements of the following sets:

{xi | i ∈ [N ]}, {xN+i | i ∈ [M ]}, and {ei,N+j | i ∈ [N ], j ∈ [M ]}. Specifically, the

Type II features that can be represented with a vector of dimension N (i.e., A(ℓ)
s , and

B(ℓ)s , [∥Wℓ,s(1, :)∥22, . . . , ∥Wℓ,s(N, :)∥22]) are assigned to the elements of {xi | i ∈ [N ]} as
follows:

xi(1) =

1, if i ∈ A(ℓ)
s

0, otherwise,
xi(2) =

1, if i ∈ B(ℓ)s

0, otherwise, and

xi(3) = ∥Wℓ,s(i, :)∥22.

Similarly, the Type II features that can be represented by a vector of dimension M

(i.e., Wℓ,s(:,m)Hhm and the aggregated interference under Wℓ,s) are assigned to be the
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elements of {xN+i | i ∈ [M ]} as follows:

xN+i(1) =
∣∣Wℓ,s(:, i)

Hhi

∣∣2 , xN+i(2) =
∑
j ̸=i

∣∣Wℓ,s(:, j)
Hhi

∣∣2 .
The remaining Type II features can be represented by a vector of dimension NM , and

are assigned to the elements of {ei,N+j | i ∈ [N ], j ∈ [M ]} as follows:

(ei,N+j(1), ei,N+j(2), ei,N+j(3)) = (Re(H(i, j)),

Im(H(i, j)), |H(i, j)|)

(ei,N+j(4), ei,N+j(5), ei,N+j(6)) = (Re(Wincumbent(i, j)),

Im(Wincumbent(i, j)), |Wincumbent(i, j)|)

(ei,N+j(7), ei,N+j(8), ei,N+j(9)) = (Re(Wℓ,s(i, j)),

Im(Wℓ,s(i, j)), |Wℓ,s(i, j)|),

where Re(·) and Im(·) returns the real and imaginary part of the complex number.

Finally, the Type I features are assigned to the set {xN+i | i ∈ [M ]} as follows:

(xN+i(3), xN+i(4), . . . , xN+i(8))

= (l
(t)
G , u

(t)
G ,Φlb(N (ℓ)

s ),Φub(N (ℓ)
s ), ℓ,1(Φub(N (ℓ)

s )− u
(t)
G < ϵ)).

Remark 2. In addition to being able to work with both types of features, another impor-

tant benefit of using GNN is as folows: Since θ of the GNN model does not depend on

(N,M,L), the learned model can naturally work when the numbers of users and antennas

change, as long as Va, Vu, and Ve remain the same. That is, the model trained on problem

instances with (N,M,L) can be seamlessly tested on cases with (N ′,M ′, L′) ̸= (N,M,L).

This property of GNN will be vital for applying the proposed method in real-world sce-

narios where the problem size changes constantly (as the number of users to be served by

a BS changes all the time). It also helpd scale up the proposed method for coping with

large (N,M,L) using a θ trained from small problem sizes, which could save a substantial

amount of computational resources.

We should emphasize that GNN is “insenstive” to the change of problem size across

training and testing. However, drastic change of other aspects (e.g., channel model and
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noise level) across the two stages does affect the performance more substantially. In other

words, beyond the problem size, our GNN-based method still expects that the training and

testing data to share similar characteristics, as other machine learning models do.

4.3 Data Generation and Online Training

We use an IL framework to train the GNN, which is summarized in Algorithm 4.3.

The framework is based on the online learning method in [61]. The work in [61] was

proposed for convex learning criteria. Necessary modifications are made in Algorithm 4.3

to accommodate our nonconvex learning problem.

Algorithm 4.3 consists of two steps in each iteration: data collection and classifier

improvement. In the ith iteration, the accumulated dataset Di is obtained by solving

B&B on R problem instances using the current classifier learned from the previous data

batches, πθ(i) . Then, the classifier is retrained using ∪it=1Di and

θ̂(i+1) = argmin
θ∈Θ

gi(θ) + r(θ)

where Θ specifies the constraints of the GNN parameters [cf. Eq (4.7)]; the loss function

gi(·) is defined as follows:

gi(θ) :=
1

i

i∑
t=1

1

|Dt|
∑

(ϕs,ys)∈Dt

L(πθ(ϕs), ys); (4.6)

additionally, we select r(θ) = −ψ⊤θ in which ψ is sampled from exponential distribution

in each iteration. This specific choice of r(θ) plays an important role in our nonconvex

learning problem (where the nonconvexity arises due to the use of GNN). To be more

specific, such a random perturbation-based r(θ) is advocated by recent developments

from nonconvex online learning [1]. It was shown in [1] that using r(θ) = −ψ⊤θ ensures

no-regret type convergence of nonconvex online learning. This property is a critical

stepping stone towards establishing learning guarantees of our GNN-based framework.

This will become clearer in the proofs of Theorem 2.

The training data generation subroutine is given in Algorithm 4.3. To generate Di,

the algorithm first runs B&B on a given problem instance to find the optimal solution.
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Algorithm 3 ONLINE GNN LEARNING

1: Input: I,R(number of training instances per batch), η;
2: D1 = {};
3: for i = 1 to I do
4: Sample ψ ∼ (Exp(η))B;

# Exp(η) is the exponential distribution with pdf p(x) = η exp(−ηx); θ(i) ∈ RB;
5: for r = 1 to R do
6: Generate problem instance Q;
7: if i=1 then
8: D(Q) ← run BB(Q) and label the nodes using optimal solution;
9: else

10: D(Q) ← Algorithm 4.3(Q,πθ(i));
11: end if
12: Di ← Di ∪ D(Q);
13: end for
14: θ(i+1) = argminθ∈Θ

1
i

∑i
t=1

1
|Dt|

∑
(ϕs,ys)∈Dt

L(πθ(ϕs), ys)−ψ⊤θ
15: end for
16: Return θ̂ = argminθ∈θ1:I

1
|Dvalid

i |
∑

(ϕs,ys)∈Dvalid
i

[L(πθ(ϕs), ys)];

# where Dvalid
i validation batch i generated by B&B with πθ(i)

Next, B&B is run again but with πθ(i) to generate nodes. The training pairs (ϕs, ys) are

annotated by utilizing the optimal solution obtained in the first run.

The overall GNN-accelerated B&B procedure is summarized in Algoirthm 4.3. The

algorithm is termed as MachINe learning-based joInt beaMforming and Antennas seLec-

tion (MINIMAL) The node classifier is used in Line 11.

4.4 Performance Characterizations

Our goal is to characterize the performance of MINIMAL, e.g., under what conditions

(e.g., the amount of training samples and the complexity of the GNN) MINIMAL can

accelerate the proposed B&B without losing its optimality. To our best knowledge, such

performance characterization have not been provided for ML-based B&B acceleration,

even when the learning problem is convex.

To proceed, we will use the following assumptions:

Assumption 1. Assume that the following statements about the data features and the
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Algorithm 4 TRAINING DATA GENERATION

1: Input: Q, πθ;
# optimal solution and optimal selected antenna subset to problem Q

2: (W ⋆,A⋆) = BB(Q); (see Algorithm 3.2.3 for BB)
# Initialization

3: Execute Line 2 to Line 7 in Algorithm 4.3;
4: D ← {};
5: while B&B termination criteria is not met do
6: Execute Line 9 to Line 22 from Algorithm 4.3;

7: if N (ℓ⋆)
s⋆ is relevant then

8: D ← D ∪ {ϕ(ℓ⋆)
s⋆ , 0};

9: else
10: D ← D ∪ {ϕ(ℓ⋆)

s⋆ , 1};
11: end if
12: end while
13: Return D;

GNN in Sec. 4.2 hold:

(a) The input features are bounded, i.e., ∥xu∥2, ∥eu,v∥2 ≤ Bx,∀u, v.

(b) The activation functions ξ(·) and ζ(·) are Cξ-Lipschitz and Cζ-Lipschitz continu-

ous, respectively. In addition, ξ(0) = 0.

(c) Let L : R × R → [−BL, BL] be CL-Lipschitz in its first argument, i.e., |L(x, y) −
L(x′, y)| ≤ CL|x− x′|.

(d) The parameters of the GNN are bounded; i.e., ∥Zi∥2 ≤ BZ ,∀i ∈ {1, 2, 3} and

∥β∥2 ≤ Bβ.

Let us define the set of parameters Θ as follows:

Θ :=
{
θ = [vec(Z1)

⊤, vec(Z2)
⊤, vec(Z3)

⊤,β⊤]⊤ |

∥Zi∥2 ≤ BZ ,β ≤ Bβ, i ∈ {1, 2, 3}
}
. (4.7)

Using the above, we first characterize the generalization error of the GNN with the

following Lemma:
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Algorithm 5 MAIN ALGORITHM: MINIMAL

1: Input: Problem instance (hm, σm, γm, εm), ∀m, trained pruning policy πθ, relative
error ϵ;

# Add the root node first

2: A(0)
1 ← {},B

(0)
1 ← {};

3: Select node using (3.9) for N (0)
1 ;

4: Wincumbent ← solution to (3.8);

5: l
(0)
G ← ∥W

(0)
1 ∥2F , u

(0)
G ← ∥Wincumbent∥2F ;

6: F (0) ← {(0, 1)};
7: t← 0;
8: while |F (t)| > 0 and

∣∣∣u(t)
G −l

(t)
G

∣∣∣/l(t)G > ϵ do
9: Select a non-leaf node (ℓ⋆, s⋆) using (3.9);

10: Remove the selected node F (t) ← F (t)\N (ℓ⋆)
s⋆ ;

11: if πθ

(
ϕ
(ℓ⋆)
s⋆

)
≥ 0.5 then

12: Select variable n⋆ using (3.10);

13: Generate child nodes N (ℓ⋆+1)
s⋆1

and N (ℓ⋆+1)
s⋆2

using (3.4) and append to F (t);

14: k ← argmini∈{1,2}Φub

(
N (ℓ⋆+1)

s⋆i

)
;

15: if Φub

(
N (ℓ⋆+1)

s⋆k

)
≤ u

(t)
G then

16: u
(t+1)
G ← Φub

(
N (ℓ⋆+1)

s⋆k

)
;

17: Wincumbent ← solution to (3.8) for N (ℓ⋆+1)
s⋆k

;

18: end if
19: l

(t+1)
G ← min(ℓ,s)∈F(t)Φlb

(
N (ℓ)

s

)
;

20: end if
21: F (t+1) ←

{
(s′, ℓ′) ∈ F (t) | Φlb

(
N (ℓ′)

s′

)
≤ u

(t+1)
G

}
;

22: t← t+ 1;
23: end while
24: Return Wincumbent;

Lemma 4 (Generalization Error of GNN). Consider a GNN πθ in Sec. 4.2 and G =

{ϕk, yk}Kk=1 of i.i.d. samples. Then, for θ ∈ Θ, the following holds with probability at
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least 1− δ:

Gap(δ,K) (4.8)

:= E[L(πθ(ϕ), y)]− 1/K
∑

(ϕk,yk)∈G

L(πθ(ϕk), yk)

≤ 8CL
K

+
24CLBL√

K

√
(3E2 + E) log Λ + 3BL

√
log (2/δ)

2K
,

where α = ((1 + UCξ)CξBZ),

Λ = 1 + 12
√
EKBZmax{ΣZ1 ,ΣZ2 ,ΣZ3 ,Bβ/BZΣβ},

ΣZ1 = CζBβUC3
ξBZBx

α(D+1) − 2α+ 1

(α− 1)2
,ΣZ2 = UCξΣZ1 ,

ΣZ3 = CζBβUC2
ξBZBx

αD − 1

α− 1
,

Σβ = CζBxα
D + CζUC2

ξBZBx
αD − 1

α− 1
,

where the expectation is taken w.r.t. the distribution of (ϕk, yk).

Note that our GNN generalization error bound is rather different from some existing

results, e.g., [22], as edge features (i.e., eu,v) were not considered in their work. Lemma 4

can be used to understand the GNN’s performance with a single batch. To characterize

the node classification accuracy of the GNN learned through the described imitation

learning algorithm, we need the following assumptions:

Assumption 2. Let supθ1,θ2∈Θ ∥θ1 − θ2∥∞ ≤ H, for some H < ∞. Let all the loss

functions gi(·) [cf. Eq. (4.6)] for i = 1, . . . , I are G-Lipschitz continuous with respect to

the ℓ1-norm, i.e. |gi(θ1)− gi(θ2)| ≤ G∥θ1 − θ2∥1, ∀i.

Assumption 3. The minimal empirical loss over the aggregated dataset is bounded by

ν.

min
θ∈Θ

1

IJ

I∑
i=1

∑
(ϕs,ys)∈Di

Eψ[L(πθ(ϕs), ys)] ≤ ν.

Assumption 2 is not hard to meet if the data features and the network parameters

are bounded. Assumption 3 characterizes the expressiveness of the GNN.
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To present our main theory, we compute the expected number of nodes that will be

visited (with the associated SOCPs/SDRs solved) by Algorithm 4.3 when run with π
θ̂
in

the testing stage. Let us denote ρ
θ̂
as the probability with which the classifier accurately

classifies a node. Also denote S as the set of all possible B&B trees that can be realized

by Algorithm 4.3 under a given instance. Let Pr(s; θ̂), s ∈ S be the probability with

which a particular tree s is realized. Let Qs
θ̂
denote the number of visited nodes in tree

s. Let Q
θ̂
= E[Qs

θ̂
] where the expectation is taken over the probability mass function

Pr(s; θ̂), s ∈ S. In the following theorem, we characterize the classification accuracy, ρ
θ̂
,

and present a bound on Q
θ̂
.

Theorem 2. Suppose that Assumptions 2-3 hold, and that the GNN in MINIMAL is

prameterized by θ̂ in (4.3). In addition, assume that every single batch Di consists of

i.i.d. samples, and that Algorithm 4.3 is used for GNN learning. Then, we have

Q
θ̂
≤

2N
(
2ρ
θ̂
− ρN

θ̂

)
2ρ
θ̂
− 1

+ 1.

Further, when θ̂ is selected using (4.3), with a probability at least 1− δ,

Ep
θ̂
,ψ

[
L
(
π
θ̂
(ϕs), ys

)]
(4.9)

≤ ν +O
(
1/I1/3

)
+ Gap

(
δ

2
, J

)√
2 log(2/δ)

I
.

Assume the logistic loss function L is employed. Then, the node classification accuracy

ρ
θ̂
≥ exp

(
−Ep

θ̂
,ψ

[
L
(
π
θ̂
(ϕs), ys

)])
.

In addition, MINIMAL returns an optimal solution with probability at least ρN
θ̂
.

The proof of Theorem 2 is relegated to Appendix D. This result bounds the number

of nodes visited by the proposed algorithm under a given classification accuracy. It also

characterizes the classification accuracy that can be achieved by the proposed training

procedure. One can see that when the batch size is large enough, Gap is close to zero.

Additionally, when the GNN is expressive (and thus ν is small) and the algorithm is

run for large enough iterations I, the accuracy of the classifier, i.e., ρ
θ̂
, approaches 1 [cf.
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Eq. (4.9)]. Consequently, the total number of nodes visited will be close to 2N + 1 at

most. This shows linear dependence of the computational complexity of the proposed

method on N , which is a significant saving compared to
(
N
L

)
for the exhaustive search.

Remark 3. We should remark that the results in Theorem 2 has a couple of caveats.

First, we assumed that the samples in each Di are i.i.d. If every node created by πθ(i) in

Algorithm 4.3 is used, then the samples in Di are likely not i.i.d., as the nodes in the same

B&B tree are generated in a sequential manner. Nonetheless, simple remedies can assist

creating an i.i.d. batch Di—e.g., by taking only one random node from a B&B tree. This

is inevitably more costly, and seems not to be necessary in practice—as using nodes from

Algorithm 4.3 for training works fairly well in our simulations. Second, the expectation

based criterion (4.3) is only approximated in practice, e.g., via using empirical averaging.

Characterizing the empirical version of (4.3) can be done via concentration theorems in

a straightforward manner. However, this would substantially complicate the expressions

yet reveals little to no additional insight. Hence, we leave it out of this work.

4.5 Summary

In this chaper, we detailed the proposed ML-based acceleration scheme for B&B based on

GNN and imitation learning. To avoid the high computation complexity of the proposed

B&B procedure, one can train a classifier to recognize and skip the intermediate steps in

B&B procedure without affecting the solution. To this end, an imitation learning scheme

is proposed to learn a classifier to recognize relevant nodes in the B&B procedure. To

meet the special demands of wireless communication systems, our classifier should be

agnostic to the change in problem dimension. Graph neural network is proposed as a

natural choice for the task. The learnt classifier can then be “plugged” into the B&B

procedure to make decisions about whether to branch or skip the selected node. Finally,

we presented a comprehensive analysis of the resulting ML-assisted B&B which reveals

the role of GNN design, sample complexity, number of iterations of the training algorithm

in determining the size of the B&B tree. In the next chapter, we provide experimental

evidence to support our theoretical analysis and demonstrate how the proposed method

can be used to tackle large-scale problems while obtaining high-quality or near-optimal

solutions.
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Chapter 5: Numerical Experiments

In this section, we showcase the effectiveness of the proposed B&B algorithm and its

machine learning based acceleration using numerical simulations. We use CVXPY [17]

which calls MOSEK [3] to solve the SOCPs/SDRs in (3.6) and (3.8). The elements

of Rayleigh fading channel vectors {hm}Mm=1 are sampled independently from circularly

symmetric zero mean Gaussian distribution with unit variance. Implementation of the

proposed methods can be found on the authors’ website1.

5.1 Evaluation of B&B for Joint (R)BF&AS

In Figure 5.1, we verify the convergence of the proposed B&B algorithm under both the

perfect and the approximate CSI cases. The figure shows the convergence of the global

upper and lower bounds (i.e., u
(t)
G and l

(t)
G ) computed by the proposed B&B procedure

for (N,M,L) = (8, 4, 4). One can see that the global bounds converge to the optimal

objective value in both the perfect and approximate CSI case. This verifies our optimality

claim in Theorem 1. Note that the B&B algorithm for both cases converges in less than

24 iterations (i.e., visiting ≤ 48 nodes). This is much less than the worst-case complexity

of B&B, i.e., visiting 139 nodes. The empirical complexity is also better than the worst-

case complexity of exhaustive search, which is 70 node visits in this case.

Table 5.1 gives a closer look at the effectiveness of the proposed B&B framework.

Specifically, Table 5.1 shows the performance of the proposed B&B procedure for various

problem sizes, compared to the exhaustive search strategy for the perfect CSI case. The

result is averaged over 30 Monte Carlo trials. One can see that the B&B algorithm can

constantly attain reduced complexity, in terms of the number of nodes visited (i.e., the

number of SOCPs solved). In particular, when the number of users is relatively small, the

B&B can attain an around 8-fold acceleration (cf. the case where (N,M,L) = (12, 2, 8)).

Similar results can be seen in Table 5.2, where the imperfect CSI case is considered.

Table 5.3 compares our B&B and the alternative B&B using the formulation (3.12)

1https://github.com/XiaoFuLab/Antenna-Selection-and-Beamforming-with-BandB-and-ML.git

https://github.com/XiaoFuLab/Antenna-Selection-and-Beamforming-with-BandB-and-ML.git
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Figure 5.1: Convergence of the global upper and lower bounds, computed by the proposed
B&B algorithm, to the optimal solution. Problem instance of size (N,M,L) = (8, 4, 4).

Table 5.1: Performance of the proposed B&B algorithm for various problem sizes in the
perfect CSI case compared to the exhaustive search. σ2

m = 1.0, γm = 1.0,∀m ∈ [M ].
Problem size Proposed B&B Exhaustive Search
(N,M,L) Time SOCPs Time SOCPs

(8, 2, 4) 1.58 34.07 2.95 70

(8, 3, 4) 2.29 40.67 2.58 70

(8, 4, 4) 3.30 47.30 4.53 70

(8, 5, 4) 5.31 63.27 5.46 70

(8, 6, 4) 8.24 82.93 6.10 70

(10, 2, 6) 2.28 50.20 9.11 210

(10, 4, 6) 6.47 88.37 14.75 210

(10, 6, 6) 14.55 141.80 20.00 210

(10, 8, 6) 24.56 186.90 25.59 210

(12, 2, 8) 2.95 65.53 21.39 495

(12, 4, 8) 10.57 137.80 33.45 495

(12, 6, 8) 21.89 211.87 46.53 495

(12, 8, 8) 37.69 279.67 62.46 495

(12, 10, 8) 69.48 398.40 80.94 495
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Table 5.2: Performance of the proposed B&B algorithm for various problem sizes in the
Approximate CSI case compared to the exhaustive search. σ2

m = 1.0, γm = 1.0, ∀m ∈
[M ].

Problem size Proposed B&B Exhaustive Search
(N,M,L) Time SDPs Time SDPs

(8, 2, 4) 7.09 31.60 12.71 70

(8, 3, 4) 15.09 39.37 21.25 70

(8, 4, 4) 28.39 49.00 32.58 70

(10, 2, 6) 19.49 65.27 51.38 210

(10, 4, 6) 80.47 85.73 133.38 210

(10, 6, 6) 236.26 137.37 262.10 210

(10, 8, 6) 520.81 180.13 452.76 210

(12, 2, 8) 26.83 62.80 157.62 495

(12, 4, 8) 175.45 122.13 471.54 495

Table 5.3: Number of SOCPs solved by two B&B Strategies. σ2
m = 1.0, γm = 1.0, ∀m ∈

[M ].
Problem size)

(4,2,2) (8,4,6) (8,6,6) (10,5,6)
(N,M,L)

Proposed B&B 6.86 16.73 22.63 117.67

Alternative Using (3.12) 8.06 24.66 33.8 159.6

in the perfect CSI case. One can see that the proposed procedure consistently solves

fewer SOCPs. This supports Theorem 1 (c).

5.2 Evaluation of ML-accelerated B&B for Joint (R)BF&AS

In this section, we demonstrate the efficacy of MINIMAL.

5.2.1 Baselines

A number of baselines are as follows:

1. Supervised Learning: We follow the supervised learning (SL) ideas in [28,71] to

train a neural network for antenna selection (cf. Sec. 2.3). Specifically, we use the

proposed B&B algorithm to generate training pairs with optimal antenna selection
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as the labels, i.e., {Ht, zt}Tt=1, where zt is a binary vector representing optimal

antenna selection for the tth training instance. The learned deep model predicts a

vector z which may not satisfy ∥z∥0 ≤ L, and thus we take the L elements that

have the largest magnitude as in [28]. For this baseline, we use an fθ that is a 3-

layer neural network, where the first two layers are convolutional layers with ReLU

activations and the last layer is a fully connected layer with sigmoid activation.

2. Greedy Method: A plethora of greedy algorithms exist for different variants of

joing BF&AS problems; see, e.g., [13, 18, 35, 47, 52]. We design a greedy baseline

for (2.9) following the general idea of [13], which is described as follows:

(a) Let H = {1, . . . , N} denote the set of all antennas (set to active initially).

(b) Solve SOCPs with H̃−n = H\{n}, ∀n ∈ H. Let Ĥ−n̂ correspond to the

smallest objective value. Then, set H = H\n̂.

(c) Repeat (ii) if |H| > L; otherwise return H.

We call this method Greedy. Note that Greedy’s computational burden is not

necessarily light, as a total amount of O(N2) SOCPs have to be solved (e.g.,

≈ 1000 SOCPs have to be solved for N = 32).

3. Continuous Approximation: As the third baseline, we use the continuous

optimization-based idea in [51] and modify it to solve the unicast cases in this

work. Although [51] did not explore their method for the approximate CSI case,

we note that the same idea can be used after proper modifications to the sub-

problems (i.e., using the S-lemma to come up with an SDR formulation of the

subproblem). We term this method iteratively reweighted convex relaxation-based

optimization (IrCvxOpt).

Following the implementation instruction of [51], we run IrCvxOpt for at most 30

iterations with its bisection-based λ-tuning method for 30 iterations as well. The

algorithm is stopped if the relative change of the reweighting matrix is smaller

than 10−4 or a solution comprising of ≤ L antennas is found. If the algorithm

returns > L antennas, we select the L antennas from the returned antennas that

is assigned the maximum power in the returned beamforming solution Ŵ . All of
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the evaluation metrics (see Sec 5.2.4) are computed using the final L antennas and

Ŵ output by the algorithms.

5.2.2 Training Setups

We use a GNN tailored for our beamforming setting (see details in Chapter 5.2.3). We set

(R, I) = (30, 20) in Algorithms 4.3-4.3. The loss function L is selected to be the binary

cross-entropy loss, i.e., L(x, y) = −y log(x)−(1−y) log(1−x). In batch i, the parameters

of the classifier is initialized with θ(i), and updated using the Adam algorithm [34] for

10 epochs, where the sample size of Adam is set to be 128. The initial step size of Adam

is set to 0.001. As described in Section 4.1.2, we select θ̂ from θ(1), . . . ,θ(I) using 30

validation problem instances using a sample average version on (4.3).

In order to account for the class imbalance (number of relevant nodes usually much

smaller than number of irrelevant nodes in the training set), we apply a larger positive

weight on the “positive” training pairs. Further, premature/early pruning of the B&B

tree (i.e., when ℓ is small) should be discouraged as it is more risky. Hence, we weight

each term L(πθ(i)(ϕ
(ℓ)
s ), y

(ℓ)
s ) using (q1[y(ℓ)s = 1]+1)1ℓ , where q ∈ R offsets the imbalance

ratio, and 1[·] denotes the indicator function. We select q = 11 via trial and error, and

use the same q in all experiments.

5.2.3 GNN Architecture

The GNN is designed to accommodate the unequal input feature dimensions for anten-

nas and users. We enhance the expressiveness GNN by letting different layers to have

different aggregation matrices in our experiments. The initial embeddings of a common

size E are obtained using a single layer fully connected neural network, i.e.,

q(0)n = ReLU(Z1xn), q
(0)
N+m = ReLU(Z2xm)

eu,v = ReLU(Z3ẽu,v).

where Z1 ∈ RE×Va , Z2 ∈ RE×Vu , Z3 ∈ RE×Ve , and ReLU : RE → RE deontes elementwise

nonlinear function such that ReLU(x) = max{x, 0}.
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The first layer of GNN only updates the antenna vertices, i.e., qn, n ∈ [N ], as follows

q(1)n = Z9

(
ReLU

(
Z8q

(0)
n +

M∑
m=1

Z7

(
ReLU

(
Z6q

(0)
n +

Z5q
(0)
N+m +Z4en,N+m

))))
,∀n ∈ [N ]

q
(1)
N+m = q

(0)
N+m,∀m ∈ [M ].

The second layer only updates the user vertices as follows

q
(2)
N+m = Z15

(
ReLU

(
Z14q

(1)
N+m +

N∑
n=1

Z13

(
ReLU

(
Z12q

(1)
N+m

+Z11q
(1)
n +Z10en,N+m

))))
,∀m ∈ [M ]

q(2)n = q(1)n ,∀n ∈ [N ].

Such “split updating” of different nodes’ embeddings in two layers has been advocated

in [23] for the type of graph structure used in this work (i.e., a bipartite graph). Moreover,

there is a potential saving in the computational cost in both training and testing [57]

compared to updating all nodes’ embeddings in each layer.

Finally, πθ(ϕ) is computed using the q
(2)
N+m,∀m ∈ [M ] as follows:

πθ(ϕ) = Sigmoid

(
1

M

M∑
m=1

β⊤ReLU(Z16q
(2)
N+m)

)
,

where Z4, . . .Z16 ∈ RE×E , β ∈ RE , and Sigmoid : R → R is the sigmoid function, i.e.,

Sigmoid(x) = 1
1+exp(−x) .

5.2.4 Evaluation Metrics

We define the optimality gap (Ogap) as follows:

Ogap :=
∥Ŵ ∥2F − ∥W ⋆∥2F

∥W ⋆∥2F
× 100%,
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Table 5.4: Performance of algorithms for N ≤ 16 cases with perfect CSI. σ2
m = 0.1, γm =

10.0,∀m ∈ [M ].
Problem Size Metric MINIMAL Greedy IrCvxOpt SL

(N,M,L)

(6, 3, 3)
Ogap 0.00 1.18 20.54 64.39

speedup 1.73 0.92 4.68 17.70
SOCPs 10.25 15.00 6.65 1

(8, 4, 4)
Ogap 0.0 0.83 20.19 38.08

speedup 2.72 1.35 6.40 40.52
SOCPs 14.9 26.0 12.05 1

(10, 5, 5)
Ogap 0.85 2.83 68.34 -

speedup 4.10 2.46 8.47 -
SOCPs 28.05 40.00 22.60 -

(12, 6, 6)
Ogap 2.16 3.43 234.88 -

speedup 5.87 4.72 10.96 -
SOCPs 49.00 57.00 27.90 -

(16, 8, 8)
Ogap 2.94 6.59 159.28 -

speedup 12.39 23.88 78.62 -
SOCPs 234.50 100.00 29.00 -

Table 5.5: Objective values, ∥W ∥2F , attained by the algorithms for N ≥ 32 cases with
perfect CSI. σ2

m = 0.1, γm = 10.0,∀m ∈ [M ].
Problem Size MINIMAL Greedy IrCvxOpt

(N,M,L)

(32, 12, 12) 4.35 21.73 12.44
(64, 16, 16) 5.23 61.66 72.73
(128, 8, 8) 1.86 22.45 3.13

(128, 16, 16) 4.60 40.29 163.93

whereW ⋆ is the optimal solution provided by the B&B algorithm and Ŵ is the solution

provided by an algorithm under test. We also define the runtime speedup as follows:

speedup :=
Run-time of B&B (seconds)

Run-time of method under test (seconds)
.
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5.2.5 Results

Table 5.4 shows the performance of all methods under γm = 10.0, σ2
m = 0.1,∀m ∈ [M ]

for cases where N ≤ 16. Results are averaged over 20 random test instances. One can see

that MINIMAL consistently attains a very small Ogap (< 3% for all cases), whereas the

baselines have much larger Ogaps. The SLmethod only requires solving a single SOCP, as

the antenna selection part is done by the learned f
θ̂
. However, the solution quality is not

acceptable, indicating that the learned neural network for AS performs poorly. Notably,

in our simulations, we observed that SL needs a large amount of problem instances to

generate its training data for a given (N,M,L). For example, under the settings in

Table 5.4, T = 12, 000 instances were used for SL, but only 600 instances were used for

the proposed method.

Table 5.5 shows the performance of the algorithms in cases where N ≥ 32. Note

that generating training samples for SL is too costly in these case, and thus we drop this

baseline in this table. This is because for each (N,M,L), one has to re-train fθ from

scratch under SL—but generating training examples for large size N is not affordable.

For the proposed algorithm, we use the GNN trained on smaller problem size, i.e.,

(N,M,L) = (16, 8, 8) (cf. Remark 2), which allows us to avoid re-training. In this

simulation, we test all methods under limited computational budget (i.e., every method

is allowed to use up to 2N SOCPs), for controlling the runtime. Unlike the previous

cases where the Ogap is presented, we could only compare the objective values in this

simulation, as obtaining the optimal solution is very costly. One can see that the proposed

method attains objective values that are oftentimes order-of-magnitude smaller than

those of the baselines. IrCvxOpt sometimes attains small objective values (e.g., when

(N,M,L) = (128, 8, 8)), but the performance is not consistent across different cases.

Table 5.6 shows the performance of the algorithms under imperfect CSI using the

RBF constraints. For (N,M,L) = (16, 8, 8), we use the model trained on (N,M,L) =

(10, 5, 5), and limit the number of SDRs to 2N . Similar to the perfect CSI case, the

proposed method attains the smallest Ogap/objective value compared to all baselines.

The IrCvxOpt again sometimes outputs acceptable results, but could not maintain con-

sistently good performance over all cases.

Table 5.7 tests the algorithms’ ability of finding feasible solutions of (2.9). Note

that finding a feasible solution for QCQP problems is often highly nontrivial [50]. As
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Table 5.6: Performance of algorithms under approximate CSI. σ2
m = 0.1, γm =

10.0, εm = 0.02, ∀m ∈ [M ].
Problem Size Metric MINIMAL Greedy IrCvxOpt SL

(N,M,L)

(8, 4, 4)
Ogap 0.09 1.27 4.97 21.97

speedup 3.54 1.43 10.64 47.08
SDRs 13.30 26.00 4.70 1.0

(10, 5, 5)
Ogap 2.04 2.20 10.72 -

speedup 4.19 1.90 18.89 -
SDRs 23.90 40.00 7.75 -

(16, 8, 8) ∥W ∥2F 2.93 24.39 3.15 -
SDRs 34.00 34.00 18.25 -

Table 5.7: Performance of Algorithms under Various γm’s with Approximate CSI.
(N,M,L) = (8, 4, 4), εm = 0.02, σ2

m = 0.1,∀m ∈ [M ].
γm(dB) Metric MINIMAL Greedy IrCvxOpt

(# feasible ins.)

30.00 Ogap 0.40 4.63 17.76
(50) # feasible solutions 50 50 44

33.01 Ogap 0.51 11.21 45.07
(40) # feasible solutions 40 39 32

34.77 Ogap 0.00 19.02 133.88
(25) # feasibile solutions 25 25 21

36.02 Ogap 0.00 72.19 31.65
(10) # feasible solutions 10 10 7

making ∥W ∥row−0 ≤ L [cf. Eq. (2.9c)] can be easily done via simple post-processing

(e.g., by thresholding some rows of the solution W to zeros), we primarily examine if

the algorithms could find W ’s that satisfy the SINR specifications in (2.9b). To be

specific, the algorithms are tested using various γm’s. Naturally, higher values of γm

may make all the SINR constraints hard to satisfy. We run 50 random trials. One can

see that under γm =30dB, all the problem instances have at least a feasible solution for

(2.9b). Both MINIMAL and Greedy can find solutions that are feasible for all instances,

but MINIMAL enjoys a much smaller Ogap. When γm grows, the problem admits fewer

infeasible instances. However, MINIMAL always returns a feasible solution, as long as

the instance has one. Greedy also works fine for finding feasible solutions, but the Ogap
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becomes much larger when γm increases. IrCvxOpt is less competitive in terms of both

Ogap and feasibility.

5.3 Summary

In this chapter, we provided experimental results to demonstrate the efficacy of the

proposed B&B algorithm and the ML-assisted B&B algorithm. First, we showed that

the B&B procedure provides optimal solution under significantly less computation budget

compared to the exhaustive search for the (R)BF&AS problem. Next, for small problem

sizes, we showed that our ML-assisted scheme, MINIMAL, provides near-optimal solution

compared to the baselines with comparable run-time. For large problem sizes, we showed

that we could obtain high quality solutions using classifier trained on small problem

size N ≤ 16. This demonstrates the size-insensitivity property of the proposed GNN

classifier.
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Chapter 6: Conclusion and Discussion

In this work, we revisited the joint beamforming and antenna selection problem under

perfect and imperfect CSI and proposed a machine learning-assisted B&B algorithm to

attain its optimal solution. Unlike the vast majority of existing algorithms that rely on

continuous optimization to approximate the hard mixed integer and nonconvex optimiza-

tion problem without optimality guarantees, our B&B algorithm leverages the special

properties of joint (R)BF&AS to come up with optimal solutions. More importantly, we

proposed a GNN-based machine learning method to help accelerate the B&B algorithm.

Our analysis showed that the design ensures provable acceleration and retains optimal-

ity with high probability, under proper GNN design and given a sufficiently enough

sample size. To our best knowledge, this is the first comprehensive characterization

for ML-based B&B. Our GNN design also easily handles a commonly seen challenge in

communications, namely, the problem size change across training and test sets, without

visible performance losses. Simulations corroborated our design goals and theoretical

analyses.

Moving forward, a natural question is if the proposed ML-accelerated B&B method

can be extended to offer efficient and optimal solutions to other joint (R)BF&AS criteria,

e.g., those in [16, 26, 29, 51, 66, 72]. This can in principle be done, but the caveat lies

in designing an effective B&B algorithm for the problem of interest. In our case, our

B&B design leveraged the fact that (2.9) is optimally solvable when given a fixed set

of antennas, which is a property that not all the joint BF&AS formulations enjoy—

e.g., the multicast version of (2.9) cannot be handled by a similar B&B. Therefore, a

meaningful future direction is to consider such more challenging cases and come up with

a ML-assisted (near)-optimal method.
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Appendix A: Poof of Lemma 3

(a) The BF setting implies that C(wm,hm, εm, σm) is from (2.2b). Then, the equivalence

of (2.2b) and (2.3) implies that (3.6) for any node N (ℓ)
s can be optimally solved using

SOCP. Hence Lemma 3(a) holds due to Lemma 1.

(b) Note that (3.6) with B(ℓ)s is equivalent to (2.4) with antennas restricted to the

set [N ]\B(ℓ)s . Hence, when the condition in (3.7) is satisfied for H([N ]\B(ℓ)s , :), then

(3.6) with B(ℓ)s can be optimally solved using SDR due to Lemma 2. Further, the B&B

procedure ensures that |B(ℓ)s | ≤ N −L,∀(s, ℓ). Hence, the set {H(S, :)|S ∈ [N ], |S| ≥ L}
includes all possible instances of (3.6) encountered during the B&B procedure. Therefore,

Lemma 3(b) holds.

(c) Note that |B̃(ℓ)s | = N − L. Hence, the solution of Problem (3.8) satisfies the

constraint (2.9c). Further, due to Lemma 3 (a) and (b), Problem (3.8) can be optimally

solved using SOCP and SDR for the BF and RBF cases, respectively. Hence, Φub(N
(ℓ)
s )

is a valid upper bound of the optimum of (2.9).
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Appendix B: Proof of Theorem 1

B.1 Proof of (a) and (b)

Note that if the SOCP and SDR return optimal solutions to every leaf node of the B&B

tree, then the B&B procedure is ensured to find the optimal solutions of the the joint

BF/RBF&AS problems. The reason is that the B&B tree only has a finite number of

leaves.

For the BF setting with perfect CSI, the subproblem at a leaf node (ℓ, s) can be

expressed as

minimize
W

∥W ∥2F (B.1)

subject to
|wH

mhm|2∑
ℓ̸=m |wH

ℓ hm|2 + σ2
m

≥ γm, ∀m ∈ [M ]

W (n, :) = 0, ∀n ∈ B(ℓ)s ,

where |B(ℓ)s | = N − L. Since ∥W ∥row−0 ≤ L is automatically satisfied, it is omitted.

Problem (B.1) can be rewritten as

minimize
W

(ℓ)
s

∥W (ℓ)
s ∥2F (B.2)

subject to
|wH

mhm|2∑
ℓ̸=m |wH

ℓ hm|2 + σ2
m

≥ γm, ∀m ∈ [M ]

where W
(ℓ)
s = W ([N ]\B(ℓ)s , :), and we let wm = W

(ℓ)
s (:,m) by slightly abusing the

notation. Since Problem (B.2) can be recast as a convex problem as detailed in (2.3),

the solution to the above is indeed optimal.

Similarly, under the RBF setting with imperfect CSI, the subproblem at a leaf node
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can be written as

minimize
W

∥W ∥2F (B.3)

subject to min
hm∈Um

h
H
mWmhm∑

j ̸=m h
H
mWjhm + σ2

m

≥ γm,

W (n, :) = 0, ∀n ∈ B(ℓ)s ,

where |B(ℓ)s | = N − L. Problem (B.3) can be further rewritten as

minimize
W

(ℓ)
s

∥W (ℓ)
s ∥2F (B.4)

subject to min
hm∈Um

h
H
mWmhm∑

j ̸=m h
H
mWjhm + σ2

m

≥ γm,

whereW
(ℓ)
s andwm are defined as in (B.2), and hm =H

(ℓ)
s (:,m) withH

(ℓ)
s =H([N ]\B(ℓ)s , :

) (recall that Um := {hm + e|∥e∥2 ≤ εm}). Using the condition in Theorem 1 (b), and

invoking Lemma 3, one can see that (B.4) can be solved optimally using SDR.

B.2 Proof of (c)

B.2.1 Amount of SOCPs/SDRs Solved by Proposed B&B

In our B&B procedure, (3.6) and (3.8) are equivalent for any node and its right child

node, i.e.,

Φlb

(
N (ℓ)

s

)
= Φlb

(
N (ℓ+1)

s2

)
,Φub

(
N (ℓ)

s

)
= Φub

(
N (ℓ+1)

s2

)
.

The first equation is because B(ℓ)s = B(ℓ+1)
s2 and the second because B̃(ℓ)s , ∀(ℓ, s) in (3.8) is

determined using the solution to (3.6). Hence, one can avoid redundant computations in

the nodes by storing and reusing the results of (3.6) and (3.8). Using this observation,

we derive an upper bound of the number of SOCPs/SDRs that need to be solved by the

B&B.

Consider a B&B tree where none of the nodes are fathomed (Fig. B.1). Note that
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Figure B.1: Illustration of a B&B tree (where no nodes are fathomed).

there are QLeaf =
(
N
L

)
leaf nodes (squares in Fig. B.1). Therefore, there are QTotal =

2
(
N
L

)
−1 nodes in total (all circles and squares). Each non-leaf node (circles) is branched

into a right child node and a left child node. Hence, there are QRight =
(
N
L

)
−1 right child

nodes (shaded solid circles and squares) and QLeft =
(
N
L

)
− 1 left child nodes (unshaded

solid circles and squares).

The constraints of the SOCPs/SDRs corresponding to the leaf nodes can be different

from that of its parent even if they correspond to a right child node, i.e., shaded squares.

This is because of the update step in (3.11) for the leaf nodes. To explain, a right child

node, N (ℓ)
s , is converted into a leaf node if L of the decided antennas are included, i.e.,

|A(ℓ)
s | = L. For this node, B(ℓ)s = [N ]\A(ℓ)

s , i.e., all remaining undecided antennas are

excluded. Since B(ℓ)s will be different from that of its parent node, the solutions of (3.6)

and (3.8) can be different from that of its parent node.

Therefore, only the non-leaf right child nodes (shaded solid circles) can reuse previ-

ously stored upper bound and lower bound solutions from their parents. Let QRightLeaf

denote the number of right child leaf nodes (shaded squares). Then, the total number

of nodes whose associated SOCPs/SDRs that need to be solved in the worst case is

QCompute = QTotal −QRight +QRightLeaf .

To count QRightLeaf , notice that the right and left child nodes of a parent node

correspond to ‘including’ and ‘excluding’ an antenna, respectively. A parent node is

branched into a right child leaf node if it contains exactly L− 1 included antennas and

fewer than or equal to N − L − 1 excluded antennas. This implies that there can be

fewer than or equal to (L− 1) + (N − L− 1) = N − 2 decided antennas. Hence, a right

child leaf node is created whenever a node has ≤ N − 2 decided antennas, where L− 1
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of them are included, is branched. Therefore, we have the following holds:

QRightLeaf =

(
N − 2

L− 1

)
+

(
N − 3

L− 1

)
+ · · ·+

(
L− 1

L− 1

)
=

N−L+1∑
i=2

(
N − i

L− 1

)
.

Consequently,

QCompute =

(
N

L

)
+

N−L+1∑
i=2

(
N − i

L− 1

)
.

Note that QCompute nodes may correspond to 2QCompute SOCPs/SDRs (cf. (3.6) and

(3.8) for each node). However, for the leaf nodes (3.6) and (3.8) are identical. Hence

there are only QCompute −
(
N
L

)
instances of (3.6). Moreover, there can be at most

(
N
L

)
instances of (3.8), since

(
N
L

)
correspond to selecting L out of N antennas. Therefore,

there are at most QCompute SDRs/SOCPs solved by the B&B procedure.

B.2.2 The SOCPS/SDRs Needed in B&B for Problem (3.12)

To complete the proof, let us examine the number of SOCPs/SDRs that are needed to

exhaust the B&B tree of the formulation in (3.12).

A node problem of (3.12), for the node N (ℓ)
s is as follows:

minimize
W ,z

∥W ∥2F (B.5)

subject to C(wm,hm, εm, σm) ≥ γm,

z ∈ {0, 1}N , z⊤1 ≤ L,

z(n) = 0, n ∈ B(ℓ)s , z(n) = 1, n ∈ A(ℓ)
s ,

∥W (n, :)∥2 ≤ Cz(n), ∀n ∈ [N ].

The lower bound is obtained by solving the convex relaxation of the above, i.e., z ∈ {0, 1}
is relaxed to z ∈ [0, 1]N . One can see that the lower bounds obtained at the parent node

and both child nodes may be different.

It is because (B.5) depends upon both A(ℓ)
s and B(ℓ)s and each child node will differ

from its parent in one of the two sets, i.e, B(ℓ+1)
s1 ̸= B(ℓ)s and A(ℓ+1)

s2 ̸= A(ℓ)
s . The above
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implies that the number of SOCPs/SDRs with B&B using (B.5) has an upper bound

of Q′
Compute = 2

(
N
L

)
− 1 (specially, with

(
N
L

)
instances of (3.8) and

(
N
L

)
− 1 instances of

(3.6)).
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Appendix C: Proof of Lemma 4

We use the empirical Rademacher complexity of the GNN class to assist finding the

expected risk’s error, which is a classic way of establishing generalization bounds [5, 12,

53]. To proceed, let us define the sets

Xϕ :=
{
ϕ =

[
x⊤1, . . . ,x

⊤
U , e

⊤
1,1, . . . , e

⊤
U,U

]
∣∣ ∥xu∥2, ∥eu,v∥2 ≤ Bx,∀u, v ∈ [U ]

}
,

XZ := {Z ∈ RE×E |∥Z∥2 ≤ BZ}, and

Xβ := {a ∈ RE | ∥a∥2 ≤ Bβ}.

First, consider the following lemma:

Lemma 5 ( [53, Theorem 3.1]). Let T be a family of functions mapping from Xϕ×{0, 1}
to [−b, b]. Assume G consists of K i.i.d. samples {ϕk, yk}Kk=1. With probability at least

1− δ over the samples G, for any τ ∈ T ,

E[τ(ϕ, y)]− 1

K

∑
(ϕk,yk)∈G

τ(ϕk, yk) ≤ 2R̂G(T ) + 3b

√
log 2/δ

2K
,

where R̂G(T ) is the empirical Rademacher complexity [53] of the set T with respect to

the samples G.

Let us define the set T := {(ϕ, y) 7→ L(πθ(ϕ), y) | θ ∈ Θ}, a class of functions that

maps from Xϕ × {0, 1} to [−BL, BL]. Then, applying Lemma 5 to T over the set G
ensures that with probability at least 1− δ over G, ∀θ ∈ Θ,

E[L(πθ(ϕ), y)]−
1

K

∑
i∈[K]

L(πθ(ϕi), yi)

≤ 2R̂G(T ) + 3BL

√
log 2/δ

2K
, (C.1)
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In the following, we derive an upper bound on R̂G(T ). To this end, we instead define a

set Π := {ϕ 7→ πθ(ϕ)|θ ∈ Θ}, and derive R̂G(Π). With this, we can use Talagrand’s

Lemma [53, Lemma 4.2] to obtain R̂G(T ) as R̂G(T ) = CLR̂G(Π).

In order to derive R̂G(Π), we use Dudley’s entropy integral [5, Lemma A.5], which

provides an upper bound on the empirical Rademacher complexity by using the covering

number of Π. To clarify, a µ-cover of Π is any set C ⊆ Π such that ∀πθ ∈ Π, ∃π
θ̃
∈ C

such that

max
ϕ∈Xϕ

∣∣πθ(ϕ)− πθ̃(ϕ)∣∣ ≤ µ.

Similarly, the covering number of the set Π at scale µ is denoted by N(Π, µ) and defined

as the minimum cardinality of a µ-cover set of Π. The following lemma summarizes the

Dudley’s entropy integral that uses the covering number of a set to bound its empirical

Rademacher complexity.

Lemma 6 ( [5, Lemma A.5]). Given samples G of size K, the empirical Rademacher

complexity of the set Π with respect to the samples G is upperbounded as follows:

R̂G(Π) ≤ inf
a>0

(
4a√
K

+
12

K

∫ √
K

a

√
logN(Π, µ)dµ

)
. (C.2)

To proceed with the derivation of log(N(Π, µ)), we first characterize the Lipschitz

constants of the GNN with respect to its parameters. Consider parameters θ and θ̃,

which correspond to (Z1,Z2,Z3,β) and (Z̃1, Z̃2, Z̃3, β̃), respectively. Let q
(d)
u and q̃

(d)
u

denote the embeddings learned for the uth vertex at the end of dth layer of the GNN

with parameters θ and θ̃, respectively. Then, for any input ϕ, the absolute difference
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between the outputs of the two GNNs can be written as

∣∣πθ(ϕ)− πθ̃(ϕ)∣∣ (C.3)

=

∣∣∣∣∣∣ 1U
∑
u∈[U ]

(
ζ(β⊤q(D)

u )− ζ(β̃⊤q̃(D)
u )

)∣∣∣∣∣∣
≤ 1

U

∑
u∈[U ]

Cζ

∣∣∣β⊤q(D)
u − β̃⊤q(D)

u + β̃⊤q(D)
u + β̃⊤q̃(D)

u

∣∣∣
≤

Cζ
U

∑
u∈[U ]

(∥∥∥q(D)
u

∥∥∥
2

∥∥∥β − β̃∥∥∥
2
+Bβ

∥∥∥q(D)
u − q̃(D)

u

∥∥∥
2

)
.

First, we can bound ∥q(D)
u ∥2 as follows:∥∥∥q(D)

u

∥∥∥
2

=

∥∥∥∥∥ξ
Z1q

(D−1)
u +

∑
(u,v)∈E

ξ
(
Z2q

(D−1)
v +Z3eu,v

)− ξ(0)∥∥∥∥∥
2

≤ Cξ∥Z1∥2
∥∥∥q(D−1)

u

∥∥∥
2

+ C2
ξ

∑
(u,v)∈E

(
∥Z2∥2

∥∥∥q(D−1)
v

∥∥∥
2
+ ∥Z3∥2 ∥eu,v∥2

)

≤ CξBZ

∥∥∥q(D−1)
u

∥∥∥
2
+ C2

ξU max
v

(
BZ

∥∥∥q(D−1)
v

∥∥∥
2
+BZBx

)
.

Solving the recursion from the final inequality, we obtain

∥∥∥q(D)
u

∥∥∥
2
≤ αDBx + UC2

ξBZBx
αD − 1

α− 1
, (C.4)

where α = ((1 + UCξ)CξBZ).
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Next, we bound Γ
(D)
u :=

∥∥∥q(D)
u − q̃(D)

u

∥∥∥
2
from (C.3) as follows:

Γ(D)
u

=

∥∥∥∥∥ξ
Z1q

(D−1)
u +

∑
(u,v)∈E

ξ
(
Z2q

(D−1)
v +Z3eu,v

)
− ξ

Z̃1q̃
(D−1)
u +

∑
(u,v)∈E

ξ
(
Z̃2q̃

(D−1)
v + Z̃3eu,v

)∥∥∥∥∥
2

≤ Cξ

∥∥∥Z1q
(D−1)
u − Z̃1q̃

(D−1)
u

∥∥∥
2

+ UC2
ξ max

v

(∥∥∥Z2q
(D−1)
v − Z̃2q̃

(D−1)
v

∥∥∥
2
+
∥∥∥Z3 − Z̃3

∥∥∥
2
Bx

)
≤ Cξ

(∥∥∥q(D−1)
u

∥∥∥
2

∥∥∥Z1 − Z̃1

∥∥∥
2
+BZΓ

(D−1)
u

)
+ UC2

ξ max
v

(∥∥∥q(D−1)
v

∥∥∥
2

∥∥∥Z2 − Z̃2

∥∥∥
2
+BZΓ

(D−1)
v

+Bx

∥∥∥Z3 − Z̃3

∥∥∥
2

)
.

Solving the recursion in the last inequality, and using Γ
(0)
u = 0, ∀u, we get

Γ(D)
u ≤ Σ̃Z1

∥∥∥Z1 − Z̃1

∥∥∥
2
+ Σ̃Z2

∥∥∥Z2 − Z̃2

∥∥∥
2

+ Σ̃Z3

∥∥∥Z3 − Z̃3

∥∥∥
2
,

where Σ̃Z1 = UC3
ξBZBx

α(D+1) − 2α+ 1

(α− 1)2
,

Σ̃Z2 = U2C4
ξBZBx

α(D+1) − 2α+ 1

(α− 1)2
,

Σ̃Z3 = UC2
ξBZBx

αD − 1

α− 1
.
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Using the above bound on Γ
(D)
u in (C.3), we get

∣∣πθ(ϕ)− πθ̃(ϕ)∣∣ ≤ Σβ

∥∥∥β − β̃∥∥∥
2
+ΣZ1

∥∥∥Z1 − Z̃1

∥∥∥
2

+ΣZ2

∥∥∥Z2 − Z̃2

∥∥∥
2
+ΣZ3

∥∥∥Z3 − Z̃3

∥∥∥
2
, (C.5)

where Σβ = CζBxα
D + CζUC2

ξBZBx
αD−1
α−1 , ΣZ1 = CζBβΣ̃Z1 , ΣZ2 = CζBβΣ̃Z2 , and

ΣZ3 = CζBβΣ̃Z3 .

Eq. (C.5) implies that for any θ ∈ Θ, the existence of θ̃ in the cover set such that

|πθ(ϕ) − πθ̃(ϕ)| ≤ µ can be satisfied by ensuring the existence of (β̃, Z̃1, Z̃2, Z̃3) such

that the right hand side of (C.5) ≤ µ. Hence, if we construct µ/4Σβ-cover of Xβ, and
µ/4ΣZi

-cover of XZ , ∀i ∈ {1, 2, 3}, the Cartesian product of the four sets correspond to a

µ-cover of Π. Hence, the covering number of Π at scale µ can be upper bounded by the

product of the covering numbers of the four sets as follows:

N (Π, µ) ≤ N

(
Xβ,

µ

4Σβ

)
×

3∏
i=1

N

(
XZ ,

µ

4ΣZi

)
. (C.6)

In addition, the covering number for XZ and Xβ can be upper bounded using [12, Lemma

8] and [59], respectively, as follows:

N(XZ , µ) ≤

(
1 +

2
√
EBZ
µ

)E2

,N(Xβ, µ) ≤
(
3Bβ
µ

)E

Using the above bounds in (C.6), we get

N (Π, µ) ≤
(
12BβΣβ

µ

)E

×
3∏

i=1

(
1 +

8
√
EBZΣZi

µ

)E2

≤

1 +
12
√
EBZmax

{
Bβ

BZ
Σβ,ΣZ1 ,ΣZ2 ,ΣZ3

}
µ

3E2+E

.

Finally, we can use Lemma 6 to obtain a bound on R̂G(Π).



69

To this end, we upper bound the integral on the right hand side of (C.2) as follows:

∫ √
K

a

√
logN(Π, µ)dµ ≤

√
K
√

logN(Π, a).

The above inequality holds because
√
logN(Π, µ) increases monotonically with the de-

crease of µ. Taking a = 1/
√
K, we get the following:

R̂G(Π) ≤ 4

K
+

12
√
3E2 + E√
K

×√
log

(
1 + 12

√
EKBZmax

{
Bβ
BZ

Σβ,ΣZ1 ,ΣZ2 ,ΣZ3

})
.

Combining the above with R̂G(T ) ≤ CLR̂G(Π) and substituting in (C.1), we get the

final result.
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Appendix D: Proof of Theorem 2

Proof of Theorem 2 can be divided into two parts. In the first part we bound the expected

loss under of the learned GNN. For this we will use the proof idea from [61]. However, the

proof technique in [61] hinges on the convexity of their online learning problem. Hence,

we make appropriate modifications to accommodate our non-convex GNN-based learning

problem. In the second part, using the expected loss, we characterize the number of nodes

needed to be visited by Algorithm 4.3 for solving a given problem instance optimally.

D.1 Expected Loss of Algorithm 4.3

Note that the online learning algorithm in Algorithm 4.3 is a no-regret algorithm. The

definition of regret is as follows:

Definition 1 (Regret). Regret of an online algorithm that produces a sequence of policies

θ1:I = {θ(1),θ(2), . . . ,θ(I)} is denoted by RegI . It is the average loss of all policies with

respect to the best policy in hindsight, i.e.,

RegI :=
1

I

I∑
i=1

1

|Di|
∑

(Φs,ys)∈Di

[L(πθ(i)(ϕs), ys)]

−min
θ∈Θ

1

I

I∑
i=1

1

|Di|
∑

(Φs,ys)∈Di

[L(πθ(ϕs), ys)].

Definition 2 (No-regret Algorithm). A no-regret algorithm is an algorithm that produces

a sequence of policies θ1:I such that the average regret goes to 0 as N goes to ∞:

RegI ≤ γI and lim
I→∞

γI → 0.

For strongly convex L, the work in [61] shows that Algorithm 4.3 is a no-regret

algorithm with η = ∞, i.e., ψ = 0 (recall that η is the parameter of the exponential

distribution, i.e., ψ ∼ Exp(η), where Exp(η) := η(exp(−η))). However, for non-convex L
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we cannot guarantee that Algorithm 4.3 is a no-regret algorithm [1]. But with 0 < η <∞,

under Assumption 2, Algorithm 4.3 was shown to be a no-regret algorithm [1].

Lemma 7. [1, Theorem 1] When Assumption 2 holds, the regret after N iterations can

be bounded by:

Eψ∼Exp(η)[RegI ] ≤ γI ≤ O(1/I1/3).

Finally, the following lemma establishes the expected loss of the policy returned by

Algorithm 4.3.

Lemma 8. For Algorithm 4.3, with probability at least 1− δ,

min
θ∈θ1:I

E(ϕs,ys)∼pθ ,ψ[L(πθ(ϕs), ys)]

≤ min
θ∈Θ

1

I

I∑
i=1

1

J

∑
(ϕs,ys)∈Di

Eψ[L(πθ(ϕs), ys)]

+ γI + Gap

(
δ

2
, J

)√
2 log(2δ )

I
. (D.1)

Proof. Define ωi,∀i ∈ [I] as:

ωi :=Ep
θ(i)

,ψ[L(πθ(i)(ϕs), ys)]

− 1

J

∑
(ϕs,ys)∈Di

Eψ[L(πθ(i)(ϕs), ys)].

Next, we use Lemma 4 to obtain a bound on ωi, ∀i; i.e., with probability at least 1− δ/2,

the following holds simultaneously for ωi,∀i ∈ [I] : ωi ≤ Gap
(
δ
2 , J

)
. Consequently,

Ωi :=
∑i

t=1 ωt, i = {1, . . . , I} forms a martingale sequence, i.e., E[Ωi|Ω1, . . . ,Ωi−1] =

Ωi−1. Also, we have |Ωi+1−Ωi| ≤ Gap(δ/2, J),∀i ∈ [I − 1] with probability 1− δ/2. Next,

consider the following lemma:

Lemma 9 (Azuma-Hoeffding’s Inequality). Let X0, . . . , XI be a martingale sequence

and |Xi −Xi−1| ≤ ci. Then with probability 1− δ,

Pr(XI −X0 ≥ ϵ) ≤ exp

(
−ϵ2

2
∑I

i=1 c
2
i

)
.
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Using Lemma 9, we have the following holds with probability of at least (1− δ/2)2 ≥
1− δ,

ΩI ≤ Gap

(
δ

2
, J

)√
2I log(2/δ). (D.2)

Now, consider the following inequality:

min
θ∈θ1:I

Epθ ,ψ[L(πθ(ϕs), ys)]

≤ 1

I

I∑
i=1

Epθi
Eψ[L(πθ(i)(ϕs), ys)]

=
1

I

I∑
i=1

1

J

∑
(ϕs,ys)∈Di

Eψ[L(πθ(i)(ϕs), ys)] +
1

I

I∑
i=1

ωi.

Hence, with probability of at least 1− δ, we have

min
θ∈θ1:I

Epθ ,ψ[L(πθ(ϕs), ys)]

(a)

≤ min
θ∈Θ

1

I

I∑
i=1

1

J

∑
(ϕs,ys)∈Di

Eψ[L(πθ(ϕs), ys)] +O(1/I1/3)

+ Gap

(
δ

2
, J

)√
2 log(2/δ)

I

(b)

≤ ν +O(1/I1/3) + Gap

(
δ

2
, J

)√
2 log(2/δ)

I
,

where (a) is by Lemma 7 and (D.2), and (b) is obtained via using Assumption 3.

When the loss function L is selected to be binary cross-entropy loss, i.e.,

L(x, y) = −y log(x)− (1− y) log(1− x),

1− e−L(x,y) corresponds to the classification error. Therefore, classification accuracy for
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any θ, i.e., ρθ is given by

ρθ = Epθ ,ψ[exp(−L(πθ(ϕs), ys))].

Note that θ̂ = argminθ∈θ1:I Epθ ,ψ[L(πθ(ϕs), ys)]. Next, we characterize ρ
θ̂
. To that

end, the following follows from Lemma 8.

exp(Epθ ,ψ[−L(πθ(ϕs), ys)])

≥ exp

(
−ν −O(1/I1/3)− Gap

(
δ

2
, J

)√
2 log(2/δ)

I

)
=⇒ ρ

θ̂
= Epθ ,ψ[exp(−L(πθ(ϕs), ys))]

(b)

≥ exp

(
−ν −O(1/I1/3)− Gap

(
δ

2
, J

)√
2 log(2/δ)

I

)
,

where (b) follows from Jensen’s inequality.

D.2 B&B expected number of nodes and optimality

Let ϵFP denote the false positive error rate, i.e., the probability of classifying an irrelevant

node as relevant. Also define ϵFN denote the false negative error rate, i.e., the probability

of classifying a relevant node as irrelevant. Then the expected number of branches

generated by using pruning policy on B&B was derived in [27]:

Lemma 10 ( [27, Theorem 1]). Assume that the node selection method in (3.9) ranks

an irrelevant node higher than a relevant node with probability ϵr. Then the expected

number of branches (number of non-leaf nodes) is

Q
θ̂
− 1

2
≤
((

1− ϵFN
1− 2ϵrϵFP

+
ϵFN

1− 2ϵFP

)
ϵrϵFP

N∑
n=0

(1− ϵFN)
n

+(1− ϵFN)
N+1 (1− ϵr)ϵFP

1− 2ϵFP
+ 1

)
N,

Our node selection strategy is the lowest lower bound first as detailed in Section ??.

In the worst case scenario, ϵr = 1. Therefore, using Lemma 10, the expected number of
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branches is

≤ N

(
1− ρ

θ̂

2ρ
θ̂
− 1

N∑
n=0

ρn
θ̂
+ 1

)
(c)
= N

(
1− ρN+1

θ̂

2ρ
θ̂
− 1

+ 1

)

=
N(2ρ

θ̂
− ρN

θ̂
)

2ρ
θ̂
− 1

.

Since the expected number of branches correspond to the expected number of non-

leaf nodes, the total number of nodes in the tree is ≤
2N(2ρ

θ̂
−ρN

θ̂
)

2ρ
θ̂
−1 + 1. Next, we we

characterize the probability that Algorithm 4.3 provides the optimal solution. To this

end, observe that there is only one relevant node at any depth n of the B&B algorithm.

The probability of not pruning a relevant node is ≥ ρ
θ̂
. Therefore, the probability of

not pruning a relevant node at any depth of the branch and bound tree is ≥ ρN
θ̂

(since

N is the maximum depth of the tree). Hence, the probability of obtaining an optimal

solution is at least ρN
θ̂
.
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